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Abstract: We study the existence of regular solutions of the incompressible stationary
Navier–Stokes equations in n-dimensional Euclidean space with a given bounded exter-
nal force of compact support. In dimensions n ≤ 5, the existence of such solutions was
known. In this paper, we extend it to dimensions n ≤ 15.

1. Introduction and Main Results

The incompressible stationary Navier–Stokes equations that describe the motion of a
steady-state viscous fluid are formulated as follows (with viscosity ν = 1):

{ −"u + (u · ∇)u + ∇ p = f,
div u = 0,

(1.1)

where u and f are vector fields representing velocity and external force respectively, p
is a scalar function representing pressure. Let f be a bounded external force, we say that
(u, p) is a regular solution of (1.1), if

u ∈ W 2,s
loc , and p ∈ W 1,s

loc ,

for any s < ∞.
We are interested in the existence of regular solutions of (1.1), in dimensions n ≥ 5.

Such existence results are classical in dimensions n = 2, 3, see, e.g., [37], while in
dimension n = 4 it follows from Gerhardt [22]. The problem (1.1) is classified as
“super-critical” in dimensions n ≥ 5. Frehse and Růžička [15] showed that in a bounded
domain in R5 with Dirichlet boundary data u = 0, problem (1.1) has certain weak
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solutions which are “almost regular”. Struwe [34] established on R5 and on torus T5 a
C1 a-priori bound of solutions and proved the existence of regular solutions. Frehse and
Růžička in subsequent papers [16,19] produced weak solutions of the Dirichlet problem
that are regular in the interior in dimension n = 5, 6, and established in [17,18] the
existence of regular solutions in Tn for 5 ≤ n ≤ 15. We refer to [21,27,36] and [2,
Chapter 7] for simplified proofs and more discussions on this subject.

For small data, the existence of regular solutions of the Dirichlet problem in any
dimension were studied by Farwig and Sohr [14].

In this paper, we consider the stationary Navier–Stokes equations on the Euclidean
space: {−"u + (u · ∇)u + ∇ p = f

div u = 0
in Rn, (1.2)

and extend the above mentioned result in [34] for n = 5 to n ≤ 15. Our main result is
as follows.

Theorem 1.1. For 5 ≤ n ≤ 15 and f ∈ L∞(Rn) with compact support, there exists a
regular solution (u, p) of (1.2). Furthermore, the solution (u, p) satisfies

|u(x)| ≤ C
(1 + |x |)n−2 , |∇u(x)| + |p(x)| ≤ C

(1 + |x |)n−1 , ∀x ∈ Rn, (1.3)

where C > 0 depends only on n, an upper bound of the diameter of supp( f ), and an
upper bound of ‖ f ‖L∞(Rn).

Remark 1.2. For simplicity, the external force is assumed to be compactly supported.
Indeed, our proof works for f with sufficient decay at infinity.

Remark 1.3. If in addition, f ∈ Wm,∞, for m ≥ 0, then u ∈ Wm+2,s
loc , p ∈ Wm+1,s

loc for
any s < ∞, and for all 1 ≤ l ≤ m + 1,

|∇lu(x)| + |∇l−1 p(x)| ≤ C
(1 + |x |)n−2+l , ∀x ∈ Rn .

where C > 0 depends only on n, an upper bound of the diameter of supp( f ), and an
upper bound of ‖ f ‖Wm,∞(Rn). This follows from standard estimates for stationary Stokes
equations.

One related question iswhether H1 weak solutions of (1.1) are regular. An affirmative
answer is classical in dimensions n = 2, 3. The case n = 4 was proved by Gerhardt
[22]. Giaquinta and Modica [23] proved that H1 weak solutions are regular for a class
of nonlinear systems including the stationary Navier–Stokes in dimensions n ≤ 4. Sohr
[32] showed that u ∈ H1 ∩ Ln is regular in any dimension. The question remains open
in dimensions n ≥ 5.

Starting from the groundbreakingwork ofDeLellis and Székelyhidi Jr. [10], there has
been much development in applications of the convex integration method in connection
with the Euler and Navier–Stokes equations; see the survey papers [5,11]. Buckmaster
andVicol [6] recently proved the nonuniqueness ofweak solutions of the 3Devolutionary
Navier–Stokes equationswith finite energy using the convex integrationmethod; see also
[4,8,29] for related works. In particular, it was shown in [29] that there exists a non-
regular solution u of (1.1) on Tn with n ≥ 4, f = 0, which lies in Hβ(Tn) for any
β < 1

200 . It was also pointed out that the regularity can be improved to Hβ for any
β < 1

2 when n is sufficiently large.
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In a seminal paper [7], Caffarelli, Kohn and Nirenberg proved that the 1-dimensional
Hausdorff measure of the singular set of a suitable weak solution to the 3D evolutionary
Navier–Stokes equations is zero. Partial regularity results for stationary Navier–Stokes
equations were established by Struwe [33] in dimension n = 5, and by Dong and
Strain [13] in dimension n = 6. For suitable weak solutions, they established an ε-
regularity criterion in terms of a scaling invariant quantity of ∇u. This implies that u is
regular outside a set of zero n − 4 dimensional Hausdorff measure. The above results
were extended up to the boundary by Kang [26] and Dong and Gu [12] in dimensions
n = 5, 6 respectively. Tian and Xin [35] established an ε-regularity criterion in terms of
a scaling invariant quantity of the vorticity for smooth solutions in any dimension.

For some other related studies on incompressible stationary Navier–Stokes equations
on the Euclidean space, see, e.g., [25,28,38] and the references therein.

Theorem 1.1 is proved by establishing a-priori estimates of solutions in appropriate
function spaces, and then applying the Leray–Schauder degree theory. Our proof is based
on the results andmethods developed in the work of Frehse and Růžička [15–21], Struwe
[34], and Tian and Xin [35].

Let 




Ui j (x) =
1

2nωn

[
δi j

(n − 2)|x |n−2 +
xi x j
|x |n

]
,

Pj (x) =
1

nωn

x j
|x |n ,

(1.4)

denote the fundamental solution of the stationary Stokes equations. That is, for each
fixed j , we have { −"Ui j + ∂i Pj = δi jδ0,

∂iUi j = 0,
where δi j is the Kronecker delta (δi j = 0 for i *= j and δi i = 1) and δ0 is the Dirac mass
at the origin.

Instead of working with (1.2), we will work with the following integral equation

ui (x) =
∫

Rn
Ui j (x − y)

(
f j (y) − uk(y)∂ku j (y)

)
dy, (1.5)

and find a solution u with proper decay at infinity. We define the space C1
d(Rn) to be

the closure ofC∞
c,σ (Rn), the space of smooth, divergence-free, and compactly supported

vector fields on Rn , under the norm

‖u‖C1
d (Rn) :=

∥∥∥(1 + | · |)n−3u
∥∥∥
L∞(Rn)

+
∥∥∥(1 + | · |)n−2∇u

∥∥∥
L∞(Rn)

.

To prove Theorem 1.1, we only need to show the existence of a solution u ∈ C1
d(Rn)

of (1.5). For such a solution u, let

p(x) :=
∫

Rn
Pj (x − y)

(
f j (y) − uk(y)∂ku j (y)

)
dy. (1.6)

One can verify that (u, p) solves the stationary Navier–Stokes equation (1.2).

Remark 1.4. In the definition of the space C1
d(Rn), if the exponents n − 3 and n − 2 are

replaced by α and α +1, for any α ∈ (1, n−2), our proof will go through essentially the
same way. The solution u we find enjoys a better decay as stated in (1.3). The reason we
choose an exponent α < n − 2 is to ensure that the operator defined by the right hand
side of (1.5) is a compact operator from C1

d(Rn) to itself.
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The following crucial a-priori estimate allows us to show the existence of a solution
of (1.5) in C1

d(Rn) using the Leray–Schauder degree theory.

Theorem 1.5. For 5 ≤ n ≤ 15, and for f ∈ L∞(Rn) with compact support, let u ∈
C1
d(Rn) be a solution of (1.5). Then

‖u‖C1
d (Rn) ≤ C,

where C > 0 depends only on n, an upper bound of the diameter of supp( f ), and an
upper bound of ‖ f ‖L∞ .

The remaining part of this paper is organized as follows. Some preliminary a-priori
estimates are proved in Sect. 2. Theorem 1.5 is proved in Sect. 3. In Sect. 4, we apply the
Leray–Schauder degree theory to complete the proof of Theorem 1.1, using Theorem
1.5.

2. Some Preliminary A-Priori Estimates

In this section, we give some preliminary estimates on solutions u of (1.5) in C1
d(Rn).

First, we present a calculus lemma that can be verified easily.

Lemma 2.1. Let

F(x) :=
∫

Rn
|x − y|−α(1 + |y|)−β dy, x ∈ Rn,

with 0 ≤ α < n,α + β > n. Then for all x ∈ Rn,

|F(x)| ≤
{
C log(2 + |x |)(1 + |x |)−α, if β = n,

C(1 + |x |)−γ , if β *= n,

where γ = min{α,α + β − n}, C > 0 depends only on α,β and n.

Proof. In the following, C denotes some positive constants depending only on α,β and
n whose values may change from line to line.

Since α < n and α + β > n, the inequality is clear for |x | ≤ 2. So we will assume
|x | > 2. Define,

+1 := {y : |y − x | ≤ |x |/2}; +2 := {y : |x |/2 ≤ |y − x | ≤ 4|x |};
+3 := {y : |y − x | ≥ 4|x |}.

It is easy to see that

|x |/2 ≤ |y| ≤ 3|x |/2, ∀ y ∈ +1; |y| ≤ 5|x | ∀ y ∈ +2;
|y − x | ≥ 4

5
|y| ≥ 12

5
|x |, ∀y ∈ +3.

It follows that

F(x) ≤ C
3∑

i=1

∫

+i

|x − y|−α(1 + |y|)−βdy

≤ C
{
|x |−β

∫

+1

|x − y|−αdy + |x |−α

∫

+2

(1 + |y|)−βdy +
∫

+3

|y|−α−βdy
}

=: I + I I + I I I.
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Since

I + I I I ≤ C |x |n−α−β ,

and

I I ≤






C |x |n−α−β , β < n;
C(log |x |)|x |−α, β = n;
C |x |−α, β > n.

Lemma 2.1 is proved. +,
For u ∈ C1

d(Rn), since

|u| ≤ ‖u‖C1
d
(1 + |x |)−(n−3) and |∇u| ≤ ‖u‖C1

d
(1 + |x |)−(n−2), (2.1)

the corresponding pressure given by (1.6) satisfies

|p(x)| ≤ C
(
‖ f ‖C1

d
+ ‖u‖2

C1
d

) ∫

Rn
|x − y|−(n−1)(1 + |y|)−(2n−5) dy,

where C > 0 depends only on n. Therefore, by Lemma 2.1, we have

|p(x)| ≤






C
(
‖ f ‖C1

d
+ ‖u‖2

C1
d

)
log(2 + |x |)(1 + |x |)−(n−1), when n = 5,

C
(
‖ f ‖C1

d
+ ‖u‖2

C1
d

)
(1 + |x |)−(n−1), when n ≥ 6,

(2.2)

where C > 0 depends only on n.
Now we give an initial a-priori estimate for (u, p).

Lemma 2.2. For n ≥ 5, and for f ∈ L∞(Rn) with compact support, let u ∈ C1
d(Rn)

be a solution of (1.5) and p be given by (1.6), then

‖∇u‖L2(Rn) + ‖u‖
L

2n
n−2 (Rn)

≤ C‖ f ‖
L

2n
n+2 (Rn)

, (2.3)

‖∇ p‖
L

n
n−1 (Rn)

+ ‖p‖
L

n
n−2 (Rn)

≤ C
(

‖ f ‖2
L

2n
n+2 (Rn)

+ ‖ f ‖
L

n
n−1 (Rn)

)
, (2.4)

where C > 0 depends only on n.

Proof. Asmentioned before, (u, p) solves the stationary Navier–Stokes equations (1.2).
The proof follows from a standard energy estimate argument. Let η be a smooth cut-off
function such that η ≡ 1 in BR , η ≡ 0 outside B2R , and |∇η| ≤ CR−1. In the following,
C ′ denotes a constant which is allowed to depend on u, but is independent of R. We
multiply (1.2) by uη2, and integrate by parts,

∫
|∇(uη)|2 −

∫
|u|2|∇η|2 −

∫
|u|2u · ∇ηη − 2

∫
pu · ∇ηη =

∫
f · uη2.

By (2.1), (2.2), and Hölder’s inequality, we have
∫

BR

|∇u|2 ≤ C
R2

∫

B2R\BR

|u|2 + C
R

∫

B2R\BR

|u|3 + C
R

∫

B2R\BR

|p||u| +
∫

B2R
| f ||u|

≤ C ′

Rn−4 +
C ′

R2n−8 +
C ′ log R
Rn−3 + ‖ f ‖

L
2n
n+2 (B2R)

‖u‖
L

2n
n−2 (B2R)

,
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when R is large. Taking R → ∞ will yield

‖∇u‖2L2(Rn)
≤ ‖ f ‖

L
2n
n+2 (Rn)

‖u‖
L

2n
n−2 (Rn)

≤ C‖ f ‖
L

2n
n+2 (Rn)

‖∇u‖L2(Rn)

by Poincare inequality, which implies

‖u‖
L

2n
n−2 (Rn)

+ ‖∇u‖L2(Rn) ≤ C‖ f ‖
L

2n
n+2 (Rn)

.

Then we have

‖(u · ∇)u‖
L

n
n−1 (Rn)

≤ ‖u‖
L

2n
n−2 (Rn)

‖∇u‖L2(Rn) ≤ C‖ f ‖2
L

2n
n+2 (Rn)

,

and (2.4) follows from potential estimates applying on the representation (1.6). +,
We denote the total head pressure by

θ := |u|2
2

+ p.

This quantity has played an important role in the study of the stationary Navier–Stokes
equations. It was already observed by Gilbarg and Weinberger [24] that it satisfies an
elliptic equation

−"θ + u · ∇θ = −|∂i u j − ∂ j ui |2 + f · u − div f. (2.5)

The following a-priori estimate on u in terms of the Lr norm of θ+ := max{θ, 0},
r > n/2, can be deduced from the work [15,16,35].

Proposition 2.3. For n ≥ 2, r > n/2, and f ∈ L∞(B1), let (u, p) be a regular solution
of the stationary Navier–Stokes equations

{−"u + (u · ∇)u + ∇ p = f
div u = 0

in B1 := {x ∈ Rn ∣∣ |x | < 1}. (2.6)

Assume

‖u‖W 1,2(B1) + ‖p‖W 1,n/(n−1)(B1) + ‖ f ‖L∞(B1) + ‖θ+‖Lr (B1) ≤ C0

for some constant C0, then

‖u‖L∞(B1/2) + ‖∇u‖L∞(B1/2) ≤ C, (2.7)

where C > 0 depends on n, C0, and a positive lower bound of r − n/2.

Remark 2.4. We will give in this section a short proof of Proposition 2.3 using results
from [16] and [35]. Proposition 2.3 can also be deduced through arguments in [16] and
[20], which will be presented in the Appendix.

Before proving Proposition 2.3, let us recall the previously mentioned ε-regularity
criterion by Tian and Xin:
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Theorem A [35]. For n ≥ 2 and f ∈ L∞(B1), let (u, p) be a regular solution of (2.6),
with

‖u‖L2(B1) ≤ M0,

for some constant M0. There is a positive constant ε0 depending only on n and M0, such
that if for some R0 > 0,

r−(n−4)
∫

Br (x0)
|∂i u j − ∂ j ui |2 < ε0, for all 0 < r < R0, x0 ∈ B1/2,

then there exists a positive constant R1 depending only on n, R0,M0, and an upper
bound of ‖ f ‖L∞(B1), such that

sup
Br/2

|∇u| ≤ Cr−2, for all 0 < r < R1,

where C is a positive constant depending only on n, M0 and an upper bound of
‖ f ‖L∞(B1).

Remark 2.5. The corresponding theorem stated in [35] is for f = 0. However, their
proof can be modified to allow nonzero f . Indeed, we can replace their representation
formula (2.20) on [35, Page 227] by

w(x) = (∇. ∗ ((n − 1)w ∧ u +∗ f ))(x) + H1(x), x ∈ B1/2,

with the convolution integral over B1. Here . is the fundamental solution of the Laplace
equation, w(x) =∗ du(x), ∗ denotes the Hodge star operator, and H1 is harmonic in B1.
This representation formula can be found in Section 4 of [31].

Proof of Proposition 2.3. Following the arguments in the proof of Theorem 1.5 in [16],
we have,

∫

BR(x0)

|∇u|
|x − x0|n−4 ≤ CRβ , for any x0 ∈ B1/2, 0 < R < 1/4, (2.8)

where C and β are positive constants depending only on n, C0, and a positive lower
bound of r − n/2; see the last line of page 372 and the first two lines of page 373 for the
statement, as well as Lemma 3.5, Lemma 3.1 and (2.14) in the paper.

It follows from (2.8) that

1
Rn−4

∫

BR(x0)
|∇u|2 ≤ C1Rβ , for any x0 ∈ B1/2, 0 < R < 1/4. (2.9)

We choose ε0 as in TheoremAwith M0 = ‖u‖L2(B1), and choose R0 satisfyingC1R
β
0 <

ε0. Then

1
Rn−4

∫

BR(x0)
|∇u|2 ≤ ε0, for any x0 ∈ B1/4, 0 < R < R0.

By Theorem A, we have

|∇u(0)| ≤ C,
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where C > 0 depends on n, r, and C0. Since the problem is translation invariant, we
actually have

‖∇u‖L∞(B1/2) ≤ C.

Boundedness of u follows from the interpolation inequality:

‖u‖L∞(B1/2) ≤ C
(
‖u‖L2(B1/2) + ‖∇u‖L∞(B1/2)

)
≤ C.

+,

Next, we prove the following proposition:

Proposition 2.6. For 5 ≤ n ≤ 15, and f ∈ L∞(Rn) with compact support, let u ∈
C1
d(Rn) be a solution of (1.5) and p be given by (1.6). Then there exists an r > n/2

depending only on n, such that

‖θ+‖Lr (Rn) ≤ C(r, f ),

where C(r, f ) > 0 depends only on n, r , an upper bound of the diameter of supp( f ),
and an upper bound of ‖ f ‖L∞ .

The following a-priori estimate is a consequence of Proposition 2.3, Lemma 2.2 and
Proposition 2.6.

Corollary 2.7. For 5 ≤ n ≤ 15, and f ∈ L∞(Rn) with compact support, let u ∈
C1
d(Rn) be a solution of (1.5). Then

‖u‖L∞(Rn) + ‖∇u‖L∞(Rn) ≤ C( f ), (2.10)

where C( f ) > 0 depends only on n, an upper bound of the diameter of supp( f ), and
an upper bound of ‖ f ‖L∞ .

We will prove Proposition 2.6 through the following lemmas.

Lemma 2.8. For f ∈ L∞(Rn) with compact support, let u ∈ C1
d(Rn) be a solution of

(1.5) and p be given by (1.6). Then for any 2n
n+2 ≤ q < n

2 , we have

‖θ+‖
L

nq
n−2q (Rn)

≤ C(q, f )
(
‖u‖Lq ({supp( f )}) + 1

)
, (2.11)

where C(q, f ) > 0 depends only on n, q, an upper bound of the diameter of supp( f ),
and an upper bound of ‖ f ‖L∞ .

Remark 2.9. On Tn , the estimate

‖θ+‖
L

nq
n−2q (Tn)

≤ C
(
‖u‖Lq (Tn) + 1

)

was proved in [18, Proposition 3.3].
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Proof. Let η be a smooth cut-off function such that η ≡ 1 in BR , η ≡ 0 outside B2R ,
and |∇η| ≤ CR−1. In the following, we use C ′ to denote a constant which is allowed
to depend on u, but is independent of R. Note that by Lemma 2.2, (2.1), (2.2), and the
definition of θ , we have

|θ | ≤ C ′ log(2 + |x |)
(1 + |x |)n−1 and ‖∇θ‖

L
n

n−1
≤ C

(
‖ f ‖2

L
2n
n+2

+ ‖ f ‖
L

n
n−1

)
, (2.12)

where C is a positive constant depending only on n. Take

s = nq − n
n − 2q

, (2.13)

we multiply (2.5) by θ s+η
2 and integrate by parts, we have

s
∫

Rn
|∇θ+|2θ s−1

+ η2 + 2
∫

Rn
∇θ+ · ∇ηθ s+η − 2

s + 1

∫

Rn
u · ∇ηθ s+1+ η

= −
∫

Rn
|∂i u j − ∂ j ui |2θ s+η2 +

∫

Rn
f · uθ s+η

2

+ s
∫

Rn
f · ∇θ+θ

s−1
+ η2 + 2

∫

Rn
f · ∇ηθ s+η.

Note that s ≥ 1 due to the range of q. We drop the first term on the right hand side and
take absolute value inside the integrals, we have

s
∫

BR

|∇θ+|2θ s−1
+ ≤ C

R

∫

B2R\BR

|∇θ+|θ s+ +
C
R

∫

B2R\BR

|u|θ s+1+

+ C
∫

{supp( f )}
|u|θ s+ + C

∫

{supp( f )}
|∇θ+|θ s−1

+ +
C
R

∫

B2R\BR

θ s+

=: I + I I + I I I + I V + V, (2.14)

where C > 0 depends only on n, ‖ f ‖L∞ and ‖∇ f ‖L∞ . We denote o(1) to be a quantity
that goes to 0 as R → ∞.

When R is large, for I , we have, by Hölder’s inequality and (2.12)

I ≤ C
R

(∫

Rn
|∇θ+|

n
n−1

) n−1
n

(∫

B2R\BR

θ sn+

) 1
n

≤ C ′

R

(
Rn

(
log R
Rn−1

)sn) 1
n

= o(1).

We use (2.1) and (2.12) to estimate

I I ≤ C ′

R
RnR−n+3

(
log R
Rn−1

)s+1

= o(1).

For I I I , we apply Hölder’s inequality and get

I I I ≤ C‖u‖Lq ({supp( f )})‖θ s+‖
L

q
q−1 (Rn)

.
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For I V , we use Young’s inequality and get

I V ≤ s
2

∫

{supp( f )}
|∇θ+|2θ s−1

+ + C
∫

{supp( f )}
θ s−1
+ .

For V , we have, by (2.12),

V ≤ C ′Rn−1
(
log R
Rn−1

)s

= o(1).

Note that, by (2.12),
∣∣∣∣θ

sq
q−1
+

∣∣∣∣ ≤ C ′[log(2 + |x |)]
sq
q−1

(1 + |x |)
sq(n−1)
q−1

,

and sq(n−1)
q−1 > n because of (2.13). Sending R → ∞ in (2.14), we have

∫

Rn
|∇θ+|2θ s−1

+ ≤ C‖u‖Lq ({supp( f )})‖θ s+‖
L

q
q−1 (Rn)

+ C
∫

{supp( f )}
θ s−1
+ < ∞,

where C > 0 depends only on n, supp( f ), and ‖ f ‖L∞ . Applying Poincare inequality
on the left hand side will yield

(∫

Rn
θ
(s+1) n

n−2
+

) n−2
n

≤ C
∫

Rn

∣∣∣∣∇
(

θ
s+1
2

+

)∣∣∣∣
2

= C
∫

Rn
|∇θ+|2θ s−1

+ ,

where we have used (2.12) and (2.13) again to justify the validity of the Poincare in-
equality. Therefore

(∫

Rn
θ
(s+1) n

n−2
+

) n−2
n

≤ C‖u‖Lq ({supp( f )})‖θ s+‖
L

q
q−1 (Rn)

+ C
∫

{supp( f )}
θ s−1
+ .

Applying Hölder’s inequality and Young’s inequality to the last term, we have

∫

{supp( f )}
θ s−1
+ ≤ C

(∫

{supp( f )}
θ
(s+1) n

n−2
+

) (s−1)(n−2)
(s+1)n

≤ 1
2

(∫

Rn
θ
(s+1) n

n−2
+

) n−2
n

+ C.

Therefore,
(∫

Rn
θ
(s+1) n

n−2
+

) n−2
n

≤ C‖u‖Lq ({supp( f )})‖θ s+‖
L

q
q−1 (Rn)

+ C. (2.15)

By (2.13), we have (s + 1) n
n−2 = sq

q−1 = nq
n−2q . Then estimate (2.11) follows from

plugging (2.13) into (2.15) and applying Young’s inequality. +,
In view of Proposition 2.3, we would like to restrict q, such that

nq
n − 2q

>
n
2
,

which is equivalent to q > n/4.
The following two lemmas were obtained in [18], see Corollary and Theorem 4.1 on

page 137 there. We provide proofs for reader’s convenience.
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Lemma 2.10. For f ∈ L∞(Rn) with supp( f ) ⊂ BR0 , let u ∈ C1
d(Rn) be a solution of

(1.5) and p be given by (1.6). Then for any 0 < s < n − 4, n/4 < q < n/2, we have

∫

BR0+2

|p|
|x − y|s+2 dx ≤ C(q, s, R0, f )

(
‖θ+‖

L
nq

n−2q (BR0+3)
+ 1

)
, ∀y ∈ BR0+1

where C(q, s, R0, f ) > 0 depends only on n, q, s, R0, and an upper bound of ‖ f ‖L∞ ,
and in particular, does not depend on y.

Proof. Fix y ∈ BR0+1. We define a smooth cut-off function η1 satisfying

η1 = 1 in BR0+2; η1 = 0 in Bc
R0+3; |∇η1| + |∇2η1| ≤ C.

We multiply the pressure equation

−"p = ∂i u j∂ j ui − div f (2.16)

by η1|x − y|−s , where (2.16) is obtained by taking divergence on (2.6), and integrate by
parts, after some arrangements we have

s(s + 2)
∫

Rn

|u · (x − y)|2η1
|x − y|s+4 − s

∫

Rn

|u|2η1
|x − y|s+2 + s(s + 2 − n)

∫

Rn

pη1
|x − y|s+2

= −
∫

Rn
p"η1|x − y|−s − 2

∫

Rn
p∇η1 · ∇(|x − y|−s) −

∫

Rn
f · ∇(η1|x − y|−s)

− 2
∫

Rn
u j ui∂i (|x − y|−s)∂ jη1 −

∫

Rn
u j ui |x − y|−s∂i jη1 =: RHS (2.17)

Since y ∈ BR0+1, η1 ≡ 0 in Bc
R0+3, and supp(∇η1) ⊂ BR0+3 \ BR0+2, we have

|RHS| ≤ C
(∫

{R0+2≤|x |≤R0+3}
|p| dx +

∫

{R0+2≤|x |≤R0+3}
|u|2 dx + ‖ f ‖L∞(Rn)

)

≤ C(s, f )
(

‖p‖
L

n
n−2 (Rn)

+ ‖u‖
L

2n
n−2 (Rn)

+ ‖ f ‖L∞(Rn)

)
≤ C(s, f ),

where we have used Lemma 2.2 and Hölder’s inequality. The left hand side of (2.17)
can be written as

s(s + 2)
∫

Rn

|u · (x − y)|2η1
|x − y|s+4 + s(s + 2 − n)

∫

Rn

θη1

|x − y|s+2

− s(s + 4 − n)
2

∫

Rn

|u|2η1
|x − y|s+2 .

Since s(s +2−n) < 0 and s(s+4−n)
2 < 0, there exists a positive constantC(s) depending

only on s and n, such that

1
C(s)

(∫

Rn

|u · (x − y)|2η1
|x − y|s+4 +

∫

Rn

|u|2η1
|x − y|s+2

)
−

∫

Rn

θη1

|x − y|s+2 ≤ C(s, f ). (2.18)
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Replacing θ by 2θ+ − |θ | in (2.18), we have
∫

Rn

|u · (x − y)|2η1
|x − y|s+4 +

∫

Rn

|u|2η1
|x − y|s+2 +

∫

Rn

|θ |η1
|x − y|s+2

≤ C(s)
∫

Rn

θ+η1

|x − y|s+2 + C(s, f )

≤ C(s)‖θ+‖L n
2 (BR0+3)

(∫

BR0+3

|x − y|− (s+2)n
n−2

) n−2
n

+ C(s, f )

≤ C(q, s, f )
(

‖θ+‖
L

nq
n−2q (BR0+3)

+ 1
)
,

where we have used Hölder’s inequality, the facts (s+2)n
n−2 < n and nq

n−2q > n
2 . Since

p = θ − |u|2
2 , we have

∫

Rn

|p|η1
|x − y|s+2 ≤

∫

Rn

|θ |η1
|x − y|s+2 +

1
2

∫

Rn

|u|2η1
|x − y|s+2

≤ C(q, s, f )
(

‖θ+‖
L

nq
n−2q (BR0+3)

+ 1
)
.

+,
Lemma 2.11. For f ∈ L∞(Rn) with supp( f ) ⊂ BR0 , let u ∈ C1

d(Rn) be a solution of
(1.5) and p be given by (1.6). Then for any max{2, n/4} < q < min{4, n/2}, we have

‖u‖Lq (BR0 )
≤ C(q, R0, f )

(

‖θ+‖
q−2
2q

L
nq

n−2q (BR0+3)
+ ‖θ+‖

1
2

L
nq

n−2q (BR0 )
+ 1

)

, (2.19)

where C(q, R0, f ) > 0 depends only on n, q, R0, and an upper bound of ‖ f ‖L∞ .

Remark 2.12. In the lemma above, in order for the interval (max{2, n/4},min{4, n/2})
to be nonempty, we require n/4 < 4, which is equivalent to n < 16. This is the only
place where the restriction of dimensions n ≤ 15 enters.

Proof. We define a smooth cut-off function η2 satisfying

η2 = 1 in BR0; η2 = 0 in Bc
R0+1; |∇η2| + |∇2η2| ≤ C.

For any max{2, n/4} < q < min{4, n/2}, we define

ϕ(y) := cn

∫

Rn

1
|x − y|n−2 |p(x)|

q−2
2 sgn(p(x))η2(x) dx, y ∈ Rn,

where cn is the constant related to the fundamental solution of Laplace operator, such
that

−"ϕ = |p| q−2
2 sgn(p)η2, (2.20)

and sgn is the sign function such that

sgn(p) =






1, when p > 0;
0, when p = 0;

−1, when p < 0.
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Fix an s ∈ (0, n − 4) such that

2
4 − q

·
[
−n + 2 +

(s + 2)(q − 2)
2

]
> −n. (2.21)

By Hölder’s inequality, we have

|ϕ(y)| ≤ cn

∫

Rn

( |p|η2
|x − y|s+2

) q−2
2

|x − y|−n+2+ (s+2)(q−2)
2 η

4−q
2

2 dx

≤ cn

(∫

Rn

|p|η2
|x − y|s+2

) q−2
2

(∫

Rn
|x − y|

2
4−q ·

[
−n+2+ (s+2)(q−2)

2

]

η2

) 4−q
2

≤ C
(∫

Rn

|p|η2
|x − y|s+2

) q−2
2

due to (2.21). Then by Lemma 2.10, we have

‖ϕ‖L∞(BR0+1)
≤ C(q, f )

(

‖θ+‖
q−2
2

L
nq

n−2q (BR0+3)
+ 1

)

. (2.22)

We multiply (2.16) by ϕη2 and integrate by parts, we have

−
∫

Rn
p"ϕη2 + 2

∫

Rn
ϕ∇ p · ∇η2 +

∫

Rn
pϕ"η2 =

∫

Rn

(
∂i u j∂ j ui − div f

)
ϕη2,

which implies, by (2.20), Hölder’s inequality, Lemma 2.2 and (2.22),
∫

Rn
|p| q2 η22 =

∫

Rn

(
∂i u j∂ j ui − div f

)
ϕη2 − 2

∫

Rn
ϕ∇ p · ∇η2 −

∫

Rn
pϕ"η2

≤ C( f )‖ϕ‖L∞(BR0+1)

(
‖∇u‖2L2(Rn)

+‖∇ f ‖L∞(Rn)+‖∇ p‖
L

n
n−1 (Rn)

+‖p‖
L

n
n−2 (Rn)

)

≤ C( f )‖ϕ‖L∞(BR0+1)
≤ C(q, f )

(

‖θ+‖
q−2
2

L
nq

n−2q (BR0+3)
+ 1

)

. (2.23)

Since |u|2 ≤ 2|p| + 2θ+, by (2.23) and Hölder’s inequality, we have
∫

BR0

|u|q ≤ C(q)

(∫

BR0

|p| q2 +
∫

BR0

θ
q
2
+

)

≤ C(q, f )

(

‖θ+‖
q−2
2

L
nq

n−2q (BR0+3)
+ 1 + ‖θ+‖

q
2

L
nq

n−2q (BR0 )

)

,

which implies (2.19). +,
Proof of Proposition 2.6. We fix a q satisfying max{2, n/4} < q < min{4, n/2}, then
by Lemma 2.8 and Lemma 2.11, we have

‖θ+‖
L

nq
n−2q (Rn)

≤ C(q, f )
(
‖u‖Lq ({supp( f )}) + 1

)

≤ C(q, f )
(

‖θ+‖
q−2
2q

L
nq

n−2q (Rn)
+ ‖θ+‖

1
2

L
nq

n−2q (Rn)
+ 1

)
.
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This implies, using 0 < q−2
2q < 1,

‖θ+‖
L

nq
n−2q (Rn)

≤ C(q, f ),

where C(q, f ) > 0 depends only on n, q, supp( f ), and ‖ f ‖L∞ . Recall that q > n/4 is
equivalent to nq

n−2q > n
2 , Proposition 2.6 is proved with r = nq

n−2q . +,

3. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. First, we quantify the decay of ∇u
in L2 norm as follow.

Lemma 3.1. For f ∈ L∞(Rn) with compact support, let u ∈ C1
d(Rn) be a solution of

(1.5). Then for any ε > 0, there exists an R depending only on ε, n, an upper bound of
the diameter of supp( f ), and an upper bound of ‖ f ‖L∞(Rn), such that

∫

Rn\BR

|∇u|2 < ε.

Proof. In the following,C denotes some positive constants depending only on n, R0 and
an upper bound of ‖ f ‖L∞ whose values may change from line to line, where R0 > 0
satisfies supp( f ) ⊂ BR0 .

Let u ∈ C1
d(Rn) be a solution of (1.5) and p be given by (1.6). For all i > R0, we

take ηi to be a smooth cut-off function such that

ηi = 0 in Bi ; ηi = 1 in Bc
i+1; |∇ηi | ≤ C in Ei := Bi+1 \ Bi .

Multiplying (1.2) by uηi and integrating by parts, since u and p have the decay (2.1)
and (2.2), we have

∫

Rn\Bi+1
|∇u|2 ≤ C

∫

Ei

(
|u||∇u| + |u|3 + |p||u|

)
. (3.1)

For m ≥ 2l, we have
∫

Rn

(
|∇u|2 + |u| 2n

n−2 + |p| n
n−2

)

≥
l+m∑

i=l

∫

Ei

(
|∇u|2 + |u| 2n

n−2 + |p| n
n−2

)

≥ min
l≤i≤l+m

i
∫

Ei

(
|∇u|2 + |u| 2n

n−2 + |p| n
n−2

) l+m∑

i=l

1
i

≥ 1
C

(
log

(m
l

))
min

l≤i≤l+m
i
∫

Ei

(
|∇u|2 + |u| 2n

n−2 + |p| n
n−2

)
.

It follows that, by Lemma 2.2, for some i ∈ {l, l + 1, · · · , l + m},
∫

Ei

(
|∇u|2 + |u| 2n

n−2 + |p| n
n−2

)
≤ C

i log(ml )
. (3.2)
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By Hölder’s inequality and (3.2), we can estimate
∫

Ei

|u||∇u| ≤ ‖u‖
L

2n
n−2 (Ei )

‖∇u‖L2(Ei )
|Ei |

1
n

≤ Ci
n−1
n ‖u‖

L
2n
n−2 (Ei )

‖∇u‖L2(Ei )
≤ C

(
log

(m
l

)) 1−n
n

. (3.3)

We recall that by Corollary 2.7, we have

‖u‖L∞(Rn) ≤ C. (3.4)

When n ≥ 6, by (3.4), (3.2), and Hölder’s inequality, we have
∫

Ei

|u|3 ≤ ‖u‖
n−6
n−2
L∞(Ei )

‖u‖
2n
n−2

L
2n
n−2 (Ei )

≤ C
(
log

(m
l

))−1
, (3.5)

∫

Ei

|p||u| ≤ ‖p‖
L

n
n−2 (Ei )

‖u‖
L

n
2 (Ei )

≤ ‖u‖
n−6
n−2
L∞(Ei )

‖p‖
L

n
n−2 (Ei )

‖u‖
4

n−2

L
2n
n−2 (Ei )

≤ C‖p‖
L

n
n−2 (Ei )

‖u‖
4

n−2

L
2n
n−2 (Ei )

≤ C
(
log

(m
l

))−1
. (3.6)

When n = 5, by Hölder’s inequality and (3.2),

∫

Ei

|u|3 ≤ |Ei |
6−n
2n ‖u‖3

L
2n
n−2 (Ei )

≤ Ci
(6−n)(n−1)

2n ‖u‖3
L

2n
n−2 (Ei )

≤ C
(
log

(m
l

))− 9
10
,

(3.7)
∫

Ei

|p||u| ≤ |Ei |
6−n
2n ‖p‖

L
n

n−2 (Ei )
‖u‖

L
2n
n−2 (Ei )

≤ C
(
log

(m
l

))− 9
10
. (3.8)

By (3.1), (3.3), (3.5), (3.6), (3.7) and (3.8), we have

∫

Rn\Bi+1
|∇u|2 ≤

∫

Ei

|u||∇u| + |u|3 + |p||u| dS ≤ C
(
log

(m
l

))− 9
10
.

Taking m = l2, Lemma 3.1 is proved. +,
Now we are ready to prove Theorem 1.5, with the help of Theorem A, Corollary 2.7,

and Lemma 3.1.

Proof of Theorem 1.5. Let u ∈ C1
d(Rn) be a solution of (1.5) and p be given by (1.6).

By Hölder’s inequality and (2.3), for any x0 ∈ Rn and R > 0, we have

R−(n−2)
∫

BR(x0)
|u|2 ≤ R−(n−2)

(∫

BR(x0)
|u| 2n

n−2

) n−2
n

(∫

BR(x0)
1
) 2

n

≤ CR−(n−4)
(∫

BR(x0)
|u| 2n

n−2

) n−2
n

≤ C1R−(n−4), (3.9)
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where C1 > 0 depends only on n, supp( f ), and ‖ f ‖L∞ . We choose ε0 as in Theorem
A with M0 = C1. Because of (2.10), for any x1 ∈ Rn , we have

r−(n−4)
∫

Br (x1)
|∂i u j − ∂ j ui |2 ≤ C2r4,

where C2 > 0 depends only on n, supp( f ), and ‖ f ‖L∞ . Therefore, one can choose r1
such that C2r41 < ε0, and hence

r−(n−4)
∫

Br (x1)
|∂i u j − ∂ j ui |2 < ε0, for all 0 < r < r1, x1 ∈ Rn . (3.10)

By Lemma 3.1, there exists an R0 depending on ε0, r1, n, supp( f ), and ‖ f ‖L∞ , such
that

∫

Rn\BR0

|∂i u j − ∂ j ui |2 ≤ C
∫

Rn\BR0

|∇u|2 < ε0rn−4
1 .

For any R > R0, |x0| = 3R and x1 ∈ BR(x0), we have

r−(n−4)
∫

Br (x1)
|∂i u j −∂ j ui |2 ≤ r−(n−4)

∫

Rn\BR0

|∂i u j −∂ j ui |2 < ε0, ∀r1 ≤ r < R/2.

(3.11)
Combining (3.10) and (3.11), we have

r−(n−4)
∫

Br (x1)
|∂i u j − ∂ j ui |2 < ε0, ∀r < R/2, x1 ∈ BR(x0). (3.12)

In the following, unless stated otherwise, C denotes some positive constants depend-
ing only on n, an upper bound of the diameter of supp( f ), and an upper bound of ‖ f ‖L∞
whose values may change from line to line.

We set v(x) = Ru(Rx + x0), then we have, by (3.9) and (3.12),

‖v‖L2(B1) ≤ CR−(n−4)/2,

r−(n−4)
∫

Br (x1)
|∂iv j − ∂ jvi |2 < ε0, ∀r < 1/2, x1 ∈ B1,

and v satisfies the equation
{ −"v + ∇π = −(v · ∇)v,

div v = 0
in B1,

where π(x) = R2 p(Rx + x0). Applying Theorem A on v gives us

‖∇v‖L∞(B1/2) ≤ C,

and hence

‖(v · ∇)v‖L2(B1/2) ≤ CR−(n−4)/2.

By the interior estimate of the stationary Stokes equations (see, e.g., [38, Theorem 2.2]),
we have

‖v‖W 2,2(B1/4) ≤ C(‖(v · ∇)v‖L2(B1/2) + ‖v‖L2(B1/2)) ≤ CR−(n−4)/2,
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which implies

‖v‖
L

2n
n−4 (B1/4)

≤ CR−(n−4)/2

by Sobolev inequality. Then we have

‖(v · ∇)v‖
L

2n
n−4

≤ CR−(n−4)/2,

and we can repeat the process above. For any q < ∞, after repeating this process finite
times, we have

‖v‖W 2,q (B1/8) ≤ C(q)R−(n−4)/2,

which implies

‖v‖C1(B1/8)
≤ CR−(n−4)/2.

Reversing the change of variable will give

|u(x0)| ≤ C |x0|−n/2+1, and |∇u(x0)| ≤ C |x0|−n/2.

Because of (2.10), so far we have shown that

|u(x)| ≤ C
(1 + |x |)n/2−1 , and |∇u(x)| ≤ C

(1 + |x |)n/2 . (3.13)

Now we use (1.5), the integral equation u satisfies, by (3.13) and Lemma 2.1,

|u(x)| ≤
∫

Rn
|U (x − y)| (| f (y)| + |u(y)||∇u(y)|) dy

≤ C
∫

Rn

1
|x − y|n−2

1
(1 + |y|)n−1 dy ≤ C

(1 + |x |)n−3 ,

|∇u(x)| ≤
∫

Rn
|∇U (x − y)| (| f (y)| + |u(y)||∇u(y)|) dy

≤ C
∫

Rn

1
|x − y|n−1

1
(1 + |y|)n−1 dy ≤ C

(1 + |x |)n−2 .

Hence Theorem 1.5 is proved. +,

4. Proof of Theorem 1.1

From now on we fix an arbitrary external force f ∈ L∞(Rn) with compact support. For
v ∈ C1

d(Rn) and t ∈ [0, 1], we consider the vector-valued function u = (u1, · · · , un)
given by

ui (x) =
∫

Rn
Ui j (x − y)

(
t f j (y) − vk(y)∂kv j (y)

)
dy. (4.1)

We define an operator

F : [0, 1] × C1
d(Rn) → C1

d(Rn),

(t, v) 4→ u,
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where u is given by (4.1). By Lemma 2.1, we have

|F(t, v)(x)| ≤
∫

Rn
|U (x − y)| (| f (y)| + |v(y)||∇v(y)|) dy

≤ C
∫

Rn

1
|x − y|n−2

1
(1 + |y|)2n−5 dy ≤ C log(2 + |x |)

(1 + |x |)n−2 , (4.2)

|∇F(t, v)(x)| ≤
∫

Rn
|∇U (x − y)| (| f (y)| + |u(y)||∇u(y)|) dy

≤ C
∫

Rn

1
|x − y|n−1

1
(1 + |y|)2n−5 dy ≤ C log(2 + |x |)

(1 + |x |)n−1 , (4.3)

where C > 0 depends on n, an upper bound of the diameter of supp( f ), and upper
bounds of ‖ f ‖L∞ and ‖v‖C1

d
. Therefore F is well-defined.

A fixed point of F(1, ·) in C1
d(Rn) is a solution u ∈ C1

d(Rn) to the integral equation
(1.5). We will show the existence of such a fixed point by using the Leray Schauder
degree theory. First, we show that the operator F is compact.

Lemma 4.1. F : [0, 1] × C1
d(Rn) → C1

d(Rn) is compact.

Proof. Let {(t i , vi )} be a bounded sequence in [0, 1] × C1
d(Rn), we will show that

there exists a ξ ∈ C1
d(Rn), and a subsequence, still denoted by {(t i , vi )}, such that

F(t i , vi ) → ξ in C1
d(Rn).

First we will show that, after passing to a subsequence, there exists a ξ ∈ C1(Rn)
such that

F(t i , vi ) → ξ in C1
loc(Rn).

It suffices to show that

‖F(t i , vi )‖W 2,q (BR)
≤ C(q, R), ∀R > 1, ∀1 < q < ∞, (4.4)

where C(q, R) > 0 depends only on n, q, R, but does not depend on i . For any R > 1,
and for any x ∈ BR , we can write

F(t i , vi )(x) =
(∫

{|y|<2R}
+

∫

{|y|≥2R}

)
U (x − y)

(
t i f (y) − (vi (y) · ∇)vi (y)

)
dy

=: I (x) + I I (x).

By the Calderon–Zygmund estimate, we have

‖I‖W 2,q (BR)
≤ C

(
‖ f ‖Lq (B2R) + ‖(v · ∇)v‖Lq (B2R)

)
≤ C(q, R).

For l = 0, 1, 2,
∣∣∣∇l I I (x)

∣∣∣ ≤
∫

{|y|≥2R}

∣∣∣∇lU (x − y)
∣∣∣ (| f (y)| + |v(y)| |∇v(y)|) dy

≤ C
∫

{|y|≥2R}

1
|y|n−2+l

1
(1 + |y|)2n−5 dy ≤ C(R), ∀|x | < R.

Therefore, (4.4) follows.
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For any ε > 0, by (4.2) and (4.3), there exists an R > 1 depending only on ε and n,
such that

|F(t i , vi )(x)|(1 + |x |)n−3 < ε, |∇F(t i , vi )(x)|(1 + |x |)n−2 < ε, ∀|x | > R.

Therefore ξ ∈ C1
d(Rn) and, after passing to a subsequence, F(t i , vi ) → ξ in C1

d(Rn). +,
Proof of Theorem 1.1. Fix any f ∈ L∞(Rn) with compact support. Showing the exis-
tence of a solution inC1

d(Rn) to (1.2) is equivalent to showing the existence of a solution
of

u − F(1, u) = 0.

By Proposition 1.5, we know that there exists a constant M such that

‖u‖C1
d (Rn) ≤ M,

for any solution u ∈ C1
d(Rn) of u − F(t, u) = 0, for any t ∈ [0, 1]. So u − F(t, u) = 0

has no solution on ∂B2M , where B2M := {u ∈ C1
d(Rn); ‖u‖C1

d (Rn) < 2M}. The Leray–
Schauder degree

deg(I d − F(t, ·), B2M , 0)

is well defined for t ∈ [0, 1], and, by the homotopy invariance, it is independent of t . In
particular,

deg(I d − F(1, ·), B2M , 0) = deg(I d − F(0, ·), B2M , 0).

See, e.g., Section 2.3 in [30].
u − F(0, u) = 0 is equivalent to

{−"u + ∇ p = −(u · ∇)u
div u = 0

in Rn .

Therefore, u ≡ 0 is the only solution in C1
d(Rn) to the equation u − F(0, u) = 0. Since

Fu(0, 0) = 0, we have (see, e.g., [30, Theorem 2.8.1])

deg(I d − F(0, ·), B2M , 0) = 1 *= 0.

This implies the existence of u ∈ C1
d(Rn) that satisfies the integral equation (1.5). Let

p be given by (1.6), then (u, p) is a regular solution of (1.2). Since the solution u we
obtain satisfies the bound

‖u‖C1
d (Rn) ≤ 2M.

It follows, from the calculations in (4.2) and (4.3),

|u(x)| ≤ C(ε)

(1 + |x |)n−2−ε
and |∇u(x)| ≤ C(ε)

(1 + |x |)n−1−ε
,

for some ε > 0. Estimate (1.3) follows from Lemma 2.1 and similar calculations as
above. +,
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Appendix

A.1 Another proof of Proposition 2.3. In this section, we provide another proof of
Proposition 2.3 using the arguments in [16] and [20]. First, let us recall the definition of
Sobolev–Morrey spaces and state an embedding theorem in [1].

Definition A.1. Let + be a bounded smooth domain, 1 ≤ p < ∞, 0 ≤ λ < n. We say
a function f ∈ L p,λ(+), if

sup
x∈+,r>0

1
rλ

∫

Br (x)∩+
| f |p < ∞,

with norm

‖ f ‖L p,λ(+) =
(

sup
x∈+,r>0

1
rλ

∫

Br (x)∩+
| f |p

) 1
p

.

We say a function g ∈ Wk,p,λ(+), if ∇αg ∈ L p,λ(+), for all |α| ≤ k, with norm

‖g‖Wk,p,λ(+) =
∑

|α|≤k

‖∇αg‖L p,λ(+).

Theorem A.2. Let 1 < p < ∞, 0 ≤ λ < n. If f ∈ W 1,p,λ(B1), then f ∈ L p∗,λ(B1),
where






1
p∗ = 1

p
− 1

n − λ
, if p < n − λ;

p∗can be any finite number, if p ≥ n − λ.

Furthermore,
‖ f ‖L p∗,λ(B1) ≤ C(‖∇ f ‖L p,λ(B1) + ‖ f ‖L1(B1)), (A.1)

where C > 0 depends only on n, p and λ.
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Proof. For x, y ∈ B1, we have

| f (x) − f (y)| =
∣∣∣∣

∫ 1

0

d
dt

f (t y + (1 − t)x) dt
∣∣∣∣ ≤ 2

∫ 1

0
|∇ f (t y + (1 − t)x)| dt.

It follows that

| f (x) − fB1 | ≤ 1
|B1|

∫

B1
| f (x) − f (y)| dy

≤ C
∫

B1

∫ 1

0
|∇ f (t y + (1 − t)x)| dtdy

≤ C
∫

B1

|∇ f (z)|
|x − z|n−1 dz,

where C > 0 depends only on n, fB1 denotes the average of f over B1. Therefore,

| f (x)| ≤ C
∫

B1

|∇ f (z)|
|x − z|n−1 dz + | fB1 |. (A.2)

Estimate (A.1) follows after applying a Morrey estimate on Riesz potentials in [1, The-
orem 3.2] to (A.2). +,
We also need the following Sobolev–Morrey space analogue of the interior Sobolev
space estimates for the stationary Stokes equations proved in [38]. This can be proved
by using the Morrey space estimates instead of the L p estimates on Calderon–Zygmund
operators in the arguments there.

Theorem A.3. Let (u, p) be a smooth solution of the stationary Stokes equations
{ −"u + ∇ p = f,

div u = 0,
in B2 ⊂ Rn,

with smooth f . Then for 1 < q < ∞, 0 ≤ λ < n,

‖∇2u‖Lq,λ(B1) + ‖∇ p‖Lq,λ(B1) ≤ C(‖ f ‖Lq,λ(B2) + ‖u‖L1(B2\B1)),

where C > 0 depends only on n, q and λ.

Proof. We define

ũi := Ui j ∗ ( f jχB2), p̃ = Pj ∗ ( f jχB2),

where (U, P) is the fundamental solution of the stationary Stokes equations as (1.4),
χB2 is the characteristic function on B2. Then by the Morrey space estimates for the
Calderon–Zygmund operators (see, e.g., [9, Theorem 3]), we have

‖∇2ũ‖L p,λ(Rn) + ‖∇ p̃‖L p,λ(Rn) ≤ C‖ f ‖L p,λ(B2).

Let v := u − ũ,π = p − p̃, then (v,π) satisfies
{ −"v + ∇π = 0,

div v = 0,
in B2.
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Therefore, v is biharmonic. Indeed,

∂i ikkv
j = ∂i i jπ = ∂i j iπ = ∂i jkkv

i = 0.

By the interior estimates for biharmonic function (see, e.g., [3]),

‖∇2v‖L∞(B1) ≤ C‖v‖L1(B2\B1).

For any x0 ∈ B1, r < 1/2,

1
rλ

∫

Br (x0)∩B1
|∇2v|p dx ≤ Crn−λ‖∇2v‖p

L∞(B1)
≤ C‖v‖p

L1(B2\B1),

and hence

1
rλ

∫

Br (x0)∩B1
|∇2u|p dx ≤ 1

rλ

∫

Br (x0)∩B1
|∇2v|p dx +

1
rλ

∫

Br (x0)∩B1
|∇2ũ|p dx

≤ C(‖v‖p
L1(B2\B1) + ‖ f ‖p

L p,λ(B2)
)

≤ C(‖u‖p
L1(B2\B1) + ‖ũ‖p

L1(B2\B1) + ‖ f ‖p
L p,λ(B2)

)

≤ C(‖u‖p
L1(B2\B1) + ‖ f ‖p

L p,λ(B2)
).

This gives the desired estimate of ∇2u on B1. For the pressure part, we know

‖∇π‖L p,λ(B1) = ‖"v‖L p,λ(B1) ≤ C‖∇2v‖L p,λ(B1)

≤ C(‖u‖L1(B2\B1) + ‖ f ‖L p,λ(B2)).

Therefore,

‖∇ p‖L p,λ(B1) ≤ ‖∇π‖L p,λ(B1) + ‖∇ p̃‖L p,λ(B1) ≤ C(‖u‖L1(B2\B1) + ‖ f ‖L p,λ(B2)).

+,
Proof of Proposition 2.3. We know from (2.9) that there exist positive constants β and
C depending only on n, C0, and a positive lower bound of r − n/2, such that

‖∇u‖L2,n−4+β (B1/4) ≤ C. (A.3)

If β ∈ [2, 4), we have, by Theorem A.2, ‖u‖Lq (B2) ≤ C(q), for any q < ∞. Then
Proposition 2.3 follows from standard estimates for Stokes equations. Therefore, we
only need to treat the case β ∈ (0, 2).
Rewrite the stationary Navier–Stokes equations (2.6) as

−"u + ∇ p = f − (u · ∇)u.

By Theorem A.2 and (A.3),

‖u‖Ls,n−4+β (B1/4) ≤ C(‖∇u‖L2,n−4+β (B1/4) + ‖u‖L1(B1/4)) ≤ C,

where 1
s = 1

2 − 1
4−β . Thus, by Holder’s inequality,

‖ f − (u · ∇)u‖Lr,n−4+β (B1/4) ≤ ‖ f ‖Lr,n−4+β (B1/4) + ‖u‖Ls,n−4+β (B1/4)‖∇u‖L2,n−4+β (B1/4)

≤ C,
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where 1
r = 1

s +
1
2 . Then, by Theorem A.2 and Theorem A.3, we have

‖∇u‖Lt,n−4+β (B1/8) ≤ C(‖∇2u‖Lr,n−4+β (B1/8) + ‖∇u‖L1(B1/8))

≤ C(‖ f − (u · ∇)u‖Lr,n−4+β (B1/4) + ‖u‖L1(B1/4)) ≤ C,

where 1
t = 1

r − 1
4−β = 1 − 2

4−β . One can see that by this process, the regularity of ∇u

has been improved from Lti ,n−4+β to Lti+1,n−4+β , where 1
ti+1

= 1
ti
+ 1

2 − 2
4−β . We can

repeat this process final times to obtain

‖∇u‖L p,n−4+β (B1/16) ≤ C,

for some p ≥ n − 4 + β. This implies, by Theorem A.2, for any q < ∞,

‖u‖Lq (B1/16) ≤ C(q).

Then we have, by standard estimates for Stokes equations,

|u(0)| + |∇u(0)| ≤ C,

where C > 0 depends only on n, C0, and a positive lower bound of r − n/2. Since the
problem is translation invariant, estimate (2.7) follows. +,
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