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Abstract: We study the existence of regular solutions of the incompressible stationary
Navier—Stokes equations in n-dimensional Euclidean space with a given bounded exter-
nal force of compact support. In dimensions n < 5, the existence of such solutions was
known. In this paper, we extend it to dimensions n < 15.

1. Introduction and Main Results

The incompressible stationary Navier—Stokes equations that describe the motion of a
steady-state viscous fluid are formulated as follows (with viscosity v = 1):

{—Au+(u'v)u+vl’=f’ (1.1)

divu =0,

where u and f are vector fields representing velocity and external force respectively, p
is a scalar function representing pressure. Let f be a bounded external force, we say that
(u, p) is a regular solution of (1.1), if

u e Wfo’cs, and p e Wllo’cs,

for any s < oo.
We are interested in the existence of regular solutions of (1.1), in dimensions n > 5.
Such existence results are classical in dimensions n = 2, 3, see, e.g., [37], while in
dimension n = 4 it follows from Gerhardt [22]. The problem (1.1) is classified as

“super-critical” in dimensions n > 5. Frehse and Rtzic¢ka [15] showed that in a bounded
domain in R> with Dirichlet boundary data u = 0, problem (1.1) has certain weak
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solutions which are “almost regular”. Struwe [34] established on R3 and on torus T° a
C! a-priori bound of solutions and proved the existence of regular solutions. Frehse and
Ruzicka in subsequent papers [16,19] produced weak solutions of the Dirichlet problem
that are regular in the interior in dimension n = 5, 6, and established in [17,18] the
existence of regular solutions in T” for 5 < n < 15. We refer to [21,27,36] and [2,
Chapter 7] for simplified proofs and more discussions on this subject.

For small data, the existence of regular solutions of the Dirichlet problem in any
dimension were studied by Farwig and Sohr [14].

In this paper, we consider the stationary Navier—Stokes equations on the Euclidean
space:

{ Au+ (u V)u+.Vp_f inR". (12)
divu =0

and extend the above mentioned result in [34] for n = 5 to n < 15. Our main result is
as follows.

Theorem 1.1. For 5 < n < 15 and f € L*°(R") with compact support, there exists a
regular solution (u, p) of (1.2). Furthermore, the solution (u, p) satisfies

C C
lu(x)] < T )= IVu(x)| +p()| = 0+ Vx e R", (1.3)

lxn=1’
where C > 0 depends only on n, an upper bound of the diameter of supp(f), and an
upper bound of || f || Lo rn)-

Remark 1.2. For simplicity, the external force is assumed to be compactly supported.
Indeed, our proof works for f with sufficient decay at infinity.

Remark 1.3. If in addition, f € W™, form > 0, then u € W,">*, p € W+ for
any s < oo,and forall 1l </ <m+1,

C

e AR

IViu(x)| +|V!~!
where C > 0 depends only on n, an upper bound of the diameter of supp(f), and an
upper bound of || f || wm.ce(rny. This follows from standard estimates for stationary Stokes
equations.

One related question is whether H'! weak solutions of (1.1) are regular. An affirmative
answer is classical in dimensions n = 2, 3. The case n = 4 was proved by Gerhardt
[22]. Giaquinta and Modica [23] proved that H' weak solutions are regular for a class
of nonlinear systems including the stationary Navier—Stokes in dimensions n < 4. Sohr
[32] showed that u € H' N L" is regular in any dimension. The question remains open
in dimensions n > 5.

Starting from the groundbreaking work of De Lellis and Székelyhidi Jr. [10], there has
been much development in applications of the convex integration method in connection
with the Euler and Navier—Stokes equations; see the survey papers [5,11]. Buckmaster
and Vicol [6] recently proved the nonuniqueness of weak solutions of the 3D evolutionary
Navier—Stokes equations with finite energy using the convex integration method; see also
[4,8,29] for related works. In particular, it was shown in [29] that there exists a non-
regular solution u of (1.1) on T" with n > 4, f = 0, which lies in HP(T") for any
B < ﬁ. It was also pointed out that the regularity can be improved to H? for any

B < % when n is sufficiently large.
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In a seminal paper [7], Caffarelli, Kohn and Nirenberg proved that the 1-dimensional
Hausdorff measure of the singular set of a suitable weak solution to the 3D evolutionary
Navier—Stokes equations is zero. Partial regularity results for stationary Navier—Stokes
equations were established by Struwe [33] in dimension n = 5, and by Dong and
Strain [13] in dimension n = 6. For suitable weak solutions, they established an ¢-
regularity criterion in terms of a scaling invariant quantity of Vu. This implies that u is
regular outside a set of zero n — 4 dimensional Hausdorff measure. The above results
were extended up to the boundary by Kang [26] and Dong and Gu [12] in dimensions
n =5, 6 respectively. Tian and Xin [35] established an e-regularity criterion in terms of
a scaling invariant quantity of the vorticity for smooth solutions in any dimension.

For some other related studies on incompressible stationary Navier—Stokes equations
on the Euclidean space, see, e.g., [25,28,38] and the references therein.

Theorem 1.1 is proved by establishing a-priori estimates of solutions in appropriate
function spaces, and then applying the Leray—Schauder degree theory. Our proofis based
on the results and methods developed in the work of Frehse and Rizi¢ka [15-21], Struwe
[34], and Tian and Xin [35].

Let ] 5
. XX
Uij(x) = [ 4= ,{] ;
2nw, | (n —2)|x| |x| (1.4)
P; 2 .
(x) |x|ﬂ

denote the fundamental solution of the stationary Stokes equations. That is, for each
fixed j, we have
—AU,']' + ain = Sij(S(),
0;U; j = 0,
where §;; is the Kronecker delta (§;; = Ofori # j and §;; = 1) and § is the Dirac mass
at the origin.
Instead of working with (1.2), we will work with the following integral equation

ui(x) = /Rn Uij(x = ) (f; () — ux ()3 j () d, (1.5)

and find a solution u with proper decay at infinity. We define the space C, (R to be
the closure of C2% (R"), the space of smooth, divergence-free, and compactly supported
vector fields on R” under the norm

el = |+ 1D

otz

Lo (Rn Lo© (Rn :

To prove Theorem 1.1, we only need to show the existence of a solution u € C:i (R™)
of (1.5). For such a solution u, let

p(x) = /R” Pi(x =) (fj () = ug(y)du;(y)) dy. (1.6)

One can verify that (u, p) solves the stationary Navier—Stokes equation (1.2).

Remark 1.4. In the definition of the space Cé(R”), if the exponents n — 3 and n — 2 are
replaced by o and « + 1, for any @ € (1, n —2), our proof will go through essentially the
same way. The solution © we find enjoys a better decay as stated in (1.3). The reason we
choose an exponent &« < n — 2 is to ensure that the operator defined by the right hand
side of (1.5) is a compact operator from C}i (R™) to itself.
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The following crucial a-priori estimate allows us to show the existence of a solution
of (1.5) in Cé (R™) using the Leray—Schauder degree theory.

Theorem 1.5. For 5 < n < 15, and for f € L (R") with compact support, let u €
CI(R™) be a solution of (1.5). Then

”u”C;(R") <C,

where C > 0 depends only on n, an upper bound of the diameter of supp(f), and an
upper bound of || f || L.

The remaining part of this paper is organized as follows. Some preliminary a-priori
estimates are proved in Sect. 2. Theorem 1.5 is proved in Sect. 3. In Sect. 4, we apply the
Leray—Schauder degree theory to complete the proof of Theorem 1.1, using Theorem
L.5.

2. Some Preliminary A-Priori Estimates

In this section, we give some preliminary estimates on solutions # of (1.5) in Cé (R™).
First, we present a calculus lemma that can be verified easily.

Lemma 2.1. Let

F(x) = /Rn b —yI"*(+lyD P dy, xeR",
with) <a <n,a + B > n. Then for all x € R",
Clog2+[xD(1+[xD™%, if B =n,
C+xP77, ifB #n,

where y = min{a, o + 8 — n}, C > 0 depends only on «, B and n.

[F(x)] 5[

Proof. In the following, C denotes some positive constants depending only on «, 8 and
n whose values may change from line to line.

Since &« < n and o + B > n, the inequality is clear for |x| < 2. So we will assume
|x] > 2. Define,

Qui={y:ly—xI=<IxI/2}; Q:={y:Ix|/2 <]y —x| <4x|;
Q3 :={y: |y —x| > 4lxl]}.

It is easy to see that
Ix[/2 < Iyl <3lx|/2, Yy € Qi; [y =5Ix|Vy €y
4 12
ly —x| = §|y| = ?|x|, Vy € Q3.

It follows that

3
F) < CZfQ e = ¥ (1 + [y Py
i=1 i

sc{m—f‘/ |x—y|—“dy+|x|—°‘/ (1+|y|)—ﬁdy+/ |y|—“—ﬁdy}
Q Q0 Q23
= I+I1I+1II.
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Since
I+I1II <Clx|" %P,
and
Clx|"™7, B <n
I1 < { C(log|xIx|™, B=n;
Clx|™%, B > n.
Lemma 2.1 is proved. O
Foru e C:J(R"), since
Jul < llullcy (L4 12D and [Vul < flulley (141D~ @.1)

the corresponding pressure given by (1.6) satisfies

P = € (Ifllgy+lul2y) [ 1= 317001+ 1)~ ay,
d Cd R»
where C > 0 depends only on n. Therefore, by Lemma 2.1, we have

C (Ifllcy + Iuli2, ) 1og @+ e (1 + [x)) ™", whenn =5,
Pl < ‘ 22)

€ (I lley + luly ) (14 )=, when n > 6,

where C > (0 depends only on 7.
Now we give an initial a-priori estimate for (u, p).

Lemma 2.2. For n > 5, and for f € L*(R") with compact support, let u € C(} ®R™)
be a solution of (1.5) and p be given by (1.6), then

, <CIFI, 2.3)

1Vull 2y + el .

=2 (R

1921, 2 gy + 1PN 22 gy < <||f|| " ||f||Ln1(Rn) 24

where C > 0 depends only on n.

Proof. As mentioned before, (1, p) solves the stationary Navier—Stokes equations (1.2).
The proof follows from a standard energy estimate argument. Let n be a smooth cut-off
function such that n = 1 in Bg, n = 0 outside Byg, and |Vn| < CR~!.Inthe following,
C’ denotes a constant which is allowed to depend on u, but is independent of R. We
multiply (1.2) by un?, and integrate by parts,

f|V<un>|2—/|u|2|Vn|2—/|u|2u-Vnn—zfpu-wn=ff-un2.

By (2.1), (2.2), and Holder’s inequality, we have

2 C 2 C 3 C
[Vul” < o |ul *z |ul *z [pllul + [f ] ul
Br Byp\Br Bap\Br Bagr\Br Bag

c’ C’ C'logR
+ 7l [[ue]]

< + +
= Rn—4 " R2n—8 Rn—3 Lﬁ(B R) Lj(B R
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when R is large. Taking R — oo will yield

190 gy < I, 2y Wl 2y < CUFN 2 192

by Poincare inequality, which implies

u + ||Vu n <C
Il 2o, o+ IVl ageny < CUFI 2 o

Then we have

G - V)ull IVullp2 ey < C||f||

‘2 (Rm) 2 (R”)

< lul

Ln I(Rn

and (2.4) follows from potential estimates applying on the representation (1.6). O

We denote the total head pressure by

0= |M|2 +
=7 p

This quantity has played an important role in the study of the stationary Navier—Stokes
equations. It was already observed by Gilbarg and Weinberger [24] that it satisfies an
elliptic equation

—AO+u-VO = —|u; — djui>+ f-u —div f. 2.5)

The following a-priori estimate on u in terms of the L” norm of 6, := max{6, 0},
r > n/2, can be deduced from the work [15,16,35].

Proposition 2.3. Forn > 2,r > n/2, and f € L°°(By), let (u, p) be a regular solution

of the stationary Navier—Stokes equations

in By :={x e R" | |x| < 1}. (2.6)

—Au+W-VYu+Vp=f
divu =0

Assume

lullwizepyy + IPlwine-negy + 1 f L) + 10«8,y = Co
for some constant C, then
lullLooBy ) + IVUllLo(By ) < Cs 2.7

where C > 0 depends on n, Cy, and a positive lower bound of r — n /2.

Remark 2.4. We will give in this section a short proof of Proposition 2.3 using results
from [16] and [35]. Proposition 2.3 can also be deduced through arguments in [16] and
[20], which will be presented in the Appendix.

Before proving Proposition 2.3, let us recall the previously mentioned e-regularity
criterion by Tian and Xin:
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Theorem A [35]. Forn > 2 and f € L°°(B)), let (u, p) be a regular solution of (2.6),
with

lullp2s,) = Mo,

for some constant M. There is a positive constant g depending only on n and My, such
that if for some Ry > 0,

rf(”74)/ |0juj — ajui|2 <€, forall0 <r < Rg, xo € By,
By (x0)

then there exists a positive constant Ry depending only on n, Ry, My, and an upper
bound of || f | L>(B,), such that

sup |Vu| < Cr_2, forall0 <r < Ry,

B2
where C is a positive constant depending only on n, My and an upper bound of
Il £l oo (By)-
Remark 2.5. The corresponding theorem stated in [35] is for f = 0. However, their

proof can be modified to allow nonzero f. Indeed, we can replace their representation
formula (2.20) on [35, Page 227] by

wx) = (VL *((n— Dw Au+" f))(x)+ Hi(x), x¢€ B2,

with the convolution integral over By. Here I' is the fundamental solution of the Laplace
equation, w(x) =* du(x), * denotes the Hodge star operator, and H; is harmonic in Bj.
This representation formula can be found in Section 4 of [31].

Proof of Proposition 2.3. Following the arguments in the proof of Theorem 1.5 in [16],
we have,

v
/ _ vl — <CRP, foranyxo€ By, 0<R<1/4, (28
Br(xo) 1X — Xol"

where C and § are positive constants depending only on n, Co, and a positive lower
bound of r — n/2; see the last line of page 372 and the first two lines of page 373 for the
statement, as well as Lemma 3.5, Lemma 3.1 and (2.14) in the paper.

It follows from (2.8) that

1
W/ |Vul*> < CiR?, foranyxo € Bi2,0 <R < 1/4. (2.9)
BRr(x0)

We choose &g as in Theorem A with Mo = ||u||;2(p,, and choose Ry satisfying C; Rg <
£o. Then

1

W/ |Vu|2§80, forany xo € B1/4,0 < R < Ro.
Br(x0)

By Theorem A, we have
IVu0)| = C,
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where C > 0 depends on n, r, and Cyp. Since the problem is translation invariant, we
actually have

IVullLos, ) < C.

Boundedness of u follows from the interpolation inequality:

el = € (2, + VullLm,) < C.

Next, we prove the following proposition:

Proposition 2.6. For 5 < n < 15, and f € L*®(R") with compact support, let u €
C:i (R™) be a solution of (1.5) and p be given by (1.6). Then there exists anr > n/2
depending only on n, such that

1041l Lr @y < C(r, f),

where C(r, f) > 0 depends only on n, r, an upper bound of the diameter of supp(f),
and an upper bound of || f|| L.

The following a-priori estimate is a consequence of Proposition 2.3, Lemma 2.2 and
Proposition 2.6.

Corollary 2.7. For 5 < n < 15, and f € L*®@R") with compact support, let u €
CI(R™) be a solution of (1.5). Then

llull ooy + I Vull Loy = C(f), (2.10)

where C(f) > 0 depends only on n, an upper bound of the diameter of supp(f), and
an upper bound of || f || Loo.

We will prove Proposition 2.6 through the following lemmas.
Lemma 2.8. For f € L*°(R") with compact support, letu € C ; (R™) be a solution of

(1.5) and p be given by (1.6). Then for any % <gq < %, we have

”0+”LT'—“]T‘Z(R") < C(q, ) (lullLaqsuppcryn +1) (2.11)

where C(q, f) > 0 depends only on n, q, an upper bound of the diameter of supp(f),
and an upper bound of || f|| L.

Remark 2.9. On T", the estimate

9 n < n 1
10411, 2, 1 = € (lullzagen +1)

was proved in [18, Proposition 3.3].
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Proof. Let 1 be a smooth cut-off function such that = 1 in Bg, n = 0 outside B,
and |[Vp| < C R~ In the following, we use C’ to denote a constant which is allowed
to depend on u, but is independent of R. Note that by Lemma 2.2, (2.1), (2.2), and the
definition of 6, we have

0] <

n+2

C’log(2 + |x|) 5
NS and [|VO] o sC(IIfIILz,, +||f||Lnnl), (2.12)

where C is a positive constant depending only on n. Take

s="4"" 2.13)
n—2q

we multiply (2.5) by Ginz and integrate by parts, we have
2
s/ VO, 1265 1n? + 2/ VO, - Viein — —— / u-Vnoitiy
R R~ s+1 Jpe

= —/ |0;u j —aju,»|29jn2+/ f-u@inz
n Rn

+5 f-ve+9i—1n2+2f f-Vnbin.
Rn Rn

Note that s > 1 due to the range of g. We drop the first term on the right hand side and
take absolute value inside the integrals, we have

c c
s/ Vo, 26571 < —/ |V9+|9i+—/ |u|05*!
Bg R JByr\Bx R JByr\Bx

K s—1 C K}
+C |6 +C V6,165~ + = 6}
{supp(f)) {supp(f)) R Jpyk\B

= I1+I11+I11I+1IV+V, 2.14)

where C > 0 depends only on n, || f||L and |V f| L. We denote o(1) to be a quantity
that goes to 0 as R — oo.
When R is large, for 1, we have, by Holder’s inequality and (2.12)

n—1

1
C W\ T w
= (Lower) (L)
R n Bor\Bgr
1
c’ log R\ ™\
E(R"(;f’_l) ) = o(1).

We use (2.1) and (2.12) to estimate

c’ 1 R s+1
1< = RR™(222) o).
R R"

For 111, we apply Holder’s inequality and get

I11 <C 03 .
< Cllullza (suppcrim l +||quT1(]Rn)
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For 1V, we use Young’s inequality and get

1V < 5[ V6,26~ +C/ ps-!
—= + Yy + -
2 Jisupp()) {supp(f))

For V, we have, by (2.12),

log R\*
V§C’R”_1<0g ) = o(1).

Rn—l
Note that, by (2.12),

sq

q—1
O+

sq
! 7—1
_ Cllog(2+ le)]

— sq(n—1) k]

(1+1x]) EEN

and sqy%l) > n because of (2.13). Sending R — oo in (2.14), we have

/ IV6.°6,™" < Cllulloqoupprm 1031, 2, +c/ 0,7 < oo,
R" ®") {supp(f)}

where C > 0 depends only on n, supp(f), and || f||L~. Applying Poincare inequality
on the left hand side will yield
s+l
v <9+2 )

n—2
1) 2. n
(f 0" )"2) =c| —c [ iveper
n n Rn

where we have used (2.12) and (2.13) again to justify the validity of the Poincare in-
equality. Therefore

n=2
(s+1),,fz> n s s—1
6 < CllullLa sl «  +C o5t
(/n + ({supp(HD 1Y+ L7T (Rm) (supp(F)) +

Applying Holder’s inequality and Young’s inequality to the last term, we have

(S—(|)(1';—2) 1 n—2

n s+n n n

/ ;7' <c ( / 9i””“> <> ( / ei””“) +C.
{supp(f)} {supp(/)) 2 \UJre

2

Therefore,
n—2
(s+D) 2\ 7
</ 0, 2) <C||M||Lq({supp(f))”9 I LI(R)%-C. (2.15)
By (2.13), we have (s + 1)."5 = ;qu = = 2q Then estimate (2.11) follows from
plugging (2.13) into (2.15) and applying Young’s inequality. O
In view of Proposition 2.3, we would like to restrict ¢, such that
nq n
> =,
n—2qg 2

which is equivalent to g > n/4.
The following two lemmas were obtained in [18], see Corollary and Theorem 4.1 on
page 137 there. We provide proofs for reader’s convenience.
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Lemma 2.10. For f € L*(R") with supp(f) C Bg,, letu € Cé(R”) be a solution of
(1.5) and p be given by (1.6). Then forany 0 <s <n —4,n/4 < g < n/2, we have

4
—————dx < C(q,s, Ro, /) | 1041l _nq_ +1), Vy e Bpy+l
~/BR0+2 lx — y[|s+2 L (BRry+3) o

where C(q, s, Ry, ) > 0 depends only on n, q, s, Ry, and an upper bound of || f || Lo,
and in particular, does not depend on y.

Proof. Fix y € Bpy+1. We define a smooth cut-off function n; satisfying
i = 1in Bryo: n1 =0in By 51 Vil + V70| < C.
We multiply the pressure equation
—Ap = duld;u’ —div f (2.16)

by n1|x — y| =%, where (2.16) is obtained by taking divergence on (2.6), and integrate by
parts, after some arrangements we have

. _ 2 2
S(s +2) lu-(x=»I'm / |ul"n1 pm
R

+ 5 S+2—n —_—
o T =y ( ) Jon e =y

= —/ pPAnNx =y — 2/ PV -V(x —y[™) —f f-Vimlx =yI™)
Rn ]Rn Rn

N |x _ y|s+2

—2/ ujuiai(|x—y|_s)8/-m—/ wu'lx —y| ™ &;m =: RHS (2.17)
n Rll

Since y € Bry+1, 11 = 01in Bf€0+3’ and supp(Vn1) C Bry+3 \ Bry+2, we have

RHS| sc(/ |p|dx+/ |u|2dx+||f||Loo<Rn>)
{Ro+2=<|x|<Ro+3} {Ro+2=<|x|<Ro+3}

=C(. f) (IIPII

s + |lu n + oo (RN <CS, ,
L2 @) l ”L%—Z(Rn) WA F2TG: )) <C(s, f)

where we have used Lemma 2.2 and Holder’s inequality. The left hand side of (2.17)
can be written as

2
u-(x— 0
sy [l oy I
Re |x — ylst R |X — y[s*?
s(s+4 —n) |u|2m
2 A |x—y|5+2.
Since s(s+2—n) < 0and S(Hzﬂ < 0, there exists a positive constant C (s) depending

only on s and n, such that

1 S =P 2 0
/ |- (x —y)I"m +/ |ue|"m _/ M _ s f). (218)
C) \Jrr  |x =y Re Jx — Y72 Re Jx — Y72
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Replacing 6 by 26, — |6] in (2.18), we have

/ Iu‘(x—y)|2m+/ |u|*n +/ 1011
no x =yt Re |x — Y52 Jga |x — yls*2

O+m
<C —— + C(s,
< C(s) e e — 2 (s, f)

C 9 _ (s+2)n

< — —2

=CI +||L%(BRO+3) . lx —yl™
0+

<C(q,s, 0 n +1),
< (qsf)(ll e e )

n—2

) n +C(s. f)

where we have used Holder’s inequality, the facts % < n and % > 5. Since
2
p=0-— %, we have

Iplm 1011 1 lu|*n1
T S T e 5 Ty _ v1s+2
Re |x — Y12 7 Jga fx — y5*2 0 2 Jpa |x — yIs*

SC(CI’S’ f) (”9+”L—L +1>

n
=24 (Bgys3)
O

Lemma 2.11. For f € L*°(R") with supp(f) C Bg,, letu € Cé(R") be a solution of
(1.5) and p be given by (1.6). Then for any max{2, n/4} < g < min{4, n/2}, we have

g2
2

1
“ng + 11604117 g + 1) . (219

L7240 (BRy+3) L"=24 (BR,)

lullza (g, < C(q, Ro, f) <||9+||

where C(q, Ry, f) > 0 depends only on n, q, Ry, and an upper bound of || f || L.

Remark 2.12. In the lemma above, in order for the interval (max{2, n/4}, min{4, n/2})
to be nonempty, we require n/4 < 4, which is equivalent to n < 16. This is the only
place where the restriction of dimensions n < 15 enters.

Proof. We define a smooth cut-off function 7, satisfying
m=1inBr,: m=0inBg ,;; [Vial+|Vin| < C.

For any max{2, n/4} < g < min{4, n/2}, we define

1 -2
o) = e /R s PO T s (@ dx, <R

where ¢, is the constant related to the fundamental solution of Laplace operator, such
that

q=2
—Ap = |pl'Z sgn(p)n2, (2.20)
and sgn is the sign function such that
1, when p > 0;
sgn(p) = 0, when p =0;

—1, when p <O.
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Fixans € (0, n — 4) such that

2 [—n+2+ w} > —n. 2.21)
4—gq 2

By Holder’s inequality, we have

[N

q—

lplna ) 2 R O
oI < Cn[l;{ (m [x — ] N2+ ,722 dx
4—q

g2
lplm \ = 2 [y 6= =
SC%(/ T} |x_y|4—q[ 2 ]’72
Rr |X - yl n

q—2

<c / lpln2 2
- R’ |X — y|*+?
due to (2.21). Then by Lemma 2.10, we have

2

el Brys = C(qs f) II9+|| +1]. (2.22)
Ln 2‘1 (BRy+3)
We multiply (2.16) by ¢n; and integrate by parts, we have

—/ pA¢n2+2/ wVp~Vnz+/ pPYAnN =/ (fiiujajui —div f) N2,
R7 R~ R~ Rn

which implies, by (2.20), Holder’s inequality, Lemma 2.2 and (2.22),

/ Ipl%n§=/ (&ujajui — div f) ¢n2—2/ con'Vnz—/ PYAM
R R}‘l

< CONIPN LB (178132, IV F @+ VP, oy o HIPN oy )

= CHONellL=Bgyn = Clq. f) <||9+|| “ng_ + 1) . (2.23)

L"=24 (Bgy+3)

Since |u|> < 2|p| + 26,, by (2.23) and Hélder’s inequality, we have

q q
/ |u|qsc<q)(/ |p|2+/ 93)
BR() Bg BR()

4=2 a4
=C(q, f) (I|9+|| : F 1416047 0y )

] 4 (BRry+3) L"=24 (BR,)

0

which implies (2.19). |

Proof of Proposition 2.6. We fix a g satisfying max{2, n/4} < g < min{4, n/2}, then
by Lemma 2.8 and Lemma 2.11, we have

4 gy = C(q. ) (lullagsuppcryy + 1)

—2

1
<C@q, ) (||9+|| SR [N +1>-
=2 R L7=24 R")
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This implies, using 0 < % <1,

<C(q. ),

24 (R")

where C(q, f) > 0 depends only on n, g, supp(f), and ||f||Loo Recall thatg > n/4is
2q > 75, Proposition 2.6 is proved with r = O

n2q

3. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. First, we quantify the decay of Vu
in L? norm as follow.

Lemma 3.1. For f € L°°(R") with compact support, let u € C(} (R™) be a solution of
(1.5). Then for any ¢ > 0, there exists an R depending only on ¢, n, an upper bound of
the diameter of supp( f), and an upper bound of || f || oo ®n), such that

/ |Vul?
R™"\Bg

Proof. Inthe following, C denotes some positive constants depending only on n, Ry and
an upper bound of || f||L~ whose values may change from line to line, where Ry > 0
satisfies supp(f) C Bg,.

Letu € Cgll (R™) be a solution of (1.5) and p be given by (1.6). For all i > Ry, we
take 7; to be a smooth cut-off function such that

ni =0in B;; n; = 1in By [Vnil < Cin E; := Bjy1 \ B;.

i+

Multiplying (1.2) by un; and integrating by parts, since # and p have the decay (2.1)
and (2.2), we have

[t sc [ (uiivute il +ipi). (1)
IRn\Bi+I

E;

For m > 2[, we have

2n n
[ (19u+ i 1pi)

[+m

>Z/ [Vul? + Jul ™ + |pl7*)
) l+m 1
> i ] \V4 2-|- = + nnTz> —
—z<?i‘£m’/Et_ (1Vul+ 1172 + 1 p| lel
1 m . . 2 2n_ n_
> —(log< )) min i (|Vu| + |u|n-2 +|p|n—2).
C [ I<i<l+m  JE,

It follows that, by Lemma 2.2, for some i € {/,[+1,--- ,] +m},

2n n C
Vul? +u|niz +|pliz) < — . 32
/E,- (17l 4 1172 < (3.2)
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By Holder’s inequality and (3.2), we can estimate

1
ul|Vu| < ||u n Vu N Ei|n
/Eil [Vul < | ”Lsz(Ei)” l22E) Eil

1-n

m n
<ci't ||u|| 2, 1Vl < C (log (7)) . (33)
We recall that by Corollary 2.7, we have
lullLoo@mry < C. (3.4)

When n > 6, by (3.4), (3.2), and Holder’s inequality, we have

may —1
/|u| <l lt =g () (35)
2 (Ei)
n—6 iz
/|p||u|<||p||Ln2(E)n 3y < 1 IP o BT S,
-1
<c 2 =c(og(%)) 3.6
P g 73, < (log (5 (3.6)

When n = 5, by Holder’s inequality and (3.2),

3 6—n 3 (6—n)(n—1) 3 m —10
/ [u]” < |Ei| 20 lu|l” 2 <Ci 2 ull® 4 <Clog(— ,
Ei L2 (E;) Ln=2 (E)) l

=2 (E,
(3.7)
9
6—n — 10
f Pl < 1E 5 0Pl el 2y < C (102 ()" (3.8)
By (3.1), (3.3), (3.5), (3.6), (3.7) and (3.8), we have
9
m 10
|Vu|2§/ || Vu| + |ul® + | pllu| dS < C (log (— .
/1;”\3:41 E; ( g(l>)
Taking m = [, Lemma 3.1 is proved. O

Now we are ready to prove Theorem 1.5, with the help of Theorem A, Corollary 2.7,
and Lemma 3.1.

Proof of Theorem 1.5. Letu € CC}, (R™) be a solution of (1.5) and p be given by (1.6).
By Holder’s inequality and (2.3), for any xo € R” and R > 0, we have

n

n=2 2
R—(n—z)f u|?> < R~ </ |u|nz—n2> n (/ 1),,
B (xo) Bg(xo0) B (x0)

n=2

<CR "% ( / |u|f"z) " <R, (3.9)
Bg(x0)
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where C; > 0 depends only on n, supp(f), and || f|| L. We choose & as in Theorem
A with My = Cy. Because of (2.10), for any x; € R", we have

r_("_4)/ ;1) — ju;|> < Car®,
By (x1)

where C; > 0 depends only on n, supp(f), and || f| L. Therefore, one can choose r{
such that Czrit < &0, and hence

r_("_4)/ 1uj — dju;i|* < e, forall0<r <ry, x€R" (3.10)
B, (x1)

By Lemma 3.1, there exists an Ry depending on &g, 71, n, supp(f), and || f|| Lo, such

that
/ |ju; — djui|* < C/ |Vul* < eori ™.
R"\Bg, R"\Bg,

For any R > Ry, |xo| = 3R and x1 € Bg(xp), we have

r_("_4)/ |8,-uj —3]'14,'|2 < r_("_4)/ |8iuj—8jui|2 <eé&p, Vr1 <r < R/2.
By (x1) Rn\BRO
(3.11)
Combining (3.10) and (3.11), we have
r_(”_4)/ uj — djui|* < e0, Vr < R/2, x1 € Br(xo). (3.12)
By (x1)

In the following, unless stated otherwise, C denotes some positive constants depend-
ing only on 2, an upper bound of the diameter of supp( f), and an upper bound of || f|| o
whose values may change from line to line.

We set v(x) = Ru(Rx + x¢), then we have, by (3.9) and (3.12),

vl L2(p,) < CR™OH72,

r_(n_4)f |8ivj — ajv,'|2 <e&9, Vr<1/2, x1 € By,
By (x1)
and v satisfies the equation

{ —Av+ Vo =—@- V),
n By,

divv=20
where 7 (x) = R?p(Rx + xo). Applying Theorem A on v gives us
IVvllLes, ) < C,
and hence
- V)vll2p,,) = CR™=9/2,

By the interior estimate of the stationary Stokes equations (see, e.g., [38, Theorem 2.2]),
we have

—(n—4)/2
lllw2ags, . < CUQ-Vvll2ep, )+ vl2p, ) < CR™OTV2,
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which implies

Ioll, 2o~ < CR™O™H2
Ln=4(By;4)

by Sobolev inequality. Then we have

(- V)v| 2 <CR™"=972,
L 4

n—

and we can repeat the process above. For any g < 00, after repeating this process finite
times, we have

Illw2a s, e < C@QR™ "2,
which implies
—(n—4)/2
Ivlcig, ) < CR™V2.
Reversing the change of variable will give
lu(x0)| < Clxol ™", and [Vu(xo)| < Clxo| ™.

Because of (2.10), so far we have shown that
lu(x)| < ¢ d [Vu)| < ¢ (3.13)
u(x ————— an ux)| < ——. .
T (L [xn/t (1 + [x[)n/?
Now we use (1.5), the integral equation u satisfies, by (3.13) and Lemma 2.1,

lu(x)] < /Rn U = Af DI+ eI Vu)]) dy

1 1
C d —_—
= /R 2 A+ Y S At
V)| < /R VUG = )] (£ O]+ [ Va)]) dy

1 1
< C/ dy < ———.
re [x — "7 (L4 |yt (L + |x[)n=2

Hence Theorem 1.5 is proved. O

4. Proof of Theorem 1.1

From now on we fix an arbitrary external force f € L°(R") with compact support. For
v e C(} (R™) and ¢t € [0, 1], we consider the vector-valued function u = (uy, --- , uy)
given by

w0 = [ U= (16,00 = )k, ) dy. @
We define an operator

F:[0,1] x CJ®") — CL(R™),
(t,v) —> u,
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where u is given by (4.1). By Lemma 2.1, we have

|F (2, v)(x)] < '/Rn U@ = IASDI+ v IVe)D) dy

B c/ 1 1 _ Clog2+|x]) 42
=5 e =y 2 Ay Y S A a2 '
IVE(t, v)(x)] < /R VUG = ) (£ )]+ ) [Vu)]) dy
1 1 Clog(2 + |x|)
C d , 4.3
= /R T A S A @Y

where C > 0 depends on n, an upper bound of the diameter of supp(f), and upper
bounds of || f]| L~ and ”U”c[} . Therefore F is well-defined.

A fixed point of F(1,-)in C é (R™) is a solution u € C ; (R™) to the integral equation
(1.5). We will show the existence of such a fixed point by using the Leray Schauder
degree theory. First, we show that the operator F is compact.

Lemma4.1. F : [0, 1] x CJ(R") — C}J(R") is compact.

Proof. Let {(t',v")} be a bounded sequence in [0, 1] x Cé(R"), we will show that
there exists a &€ € C ; (R™), and a subsequence, still denoted by {(¢%, v}, such that
F(t',v') — & in C)(R™).

First we will show that, after passing to a subsequence, there exists a £ € C!(R")
such that

F(i',v') — & inCL (R").
It suffices to show that
IF ' v)llw2asp) < Clg. R), YR >1, ¥l <q < oo, (4.4)

where C (g, R) > 0 depends only on n, ¢, R, but does not depend on i. For any R > 1,
and for any x € Bg, we can write

F(' o) @) = (/ + ) Ut =) (70 = 0T 0) - Vv () dy
{Ilyl<2R}  J{ly|=2R)}
T (x)+11(x).

By the Calderon—Zygmund estimate, we have

I 1lw2a gy < C (I1f e (Bag) + 1V - VIV La(Brz)) < Cq. R).
Forl =0,1,2,

Viro|s [ VU= | Gror o vem dy
{IlyI=2R}

| 1
= C/ dy < C(R), Vx| <R.
vi=2ry Y721+ [y)2n=3

Therefore, (4.4) follows.
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For any ¢ > 0, by (4.2) and (4.3), there exists an R > 1 depending only on ¢ and n,
such that
IF@ vl +1x)" 7 <&, [VFE, v)0)I(A+[x)"> <&, Vx| >R,
Therefore £ € C t} (R™) and, after passing to a subsequence, F (¢, v') — &in C }1 R™. O

Proof of Theorem 1.1. Fix any f € L°°(R") with compact support. Showing the exis-
tence of a solution in C :, (R™) to (1.2) is equivalent to showing the existence of a solution
of

u—F(l,u) =0.
By Proposition 1.5, we know that there exists a constant M such that

flu ”Cdl(R") <M,

for any solution u € CU]I(R") ofu— F(t,u) =0,foranyt € [0, 1]. Sou — F(t,u) =0
has no solution on d By, where Bayy := {u € Cé(R”); ”“”C",(R") < 2M}. The Leray—
Schauder degree

deg(ld — F(t,-), Bam, 0)

is well defined for ¢ € [0, 1], and, by the homotopy invariance, it is independent of 7. In
particular,

deg(ld — F(1,-), Bayr, 0) = deg(Id — F(0, -), Bay, 0).
See, e.g., Section 2.3 in [30].

u — F(0,u) = 0 is equivalent to

—Au+Vp=—wu-Viu
{ p ( ) in R".

divu =0

Therefore, u = 0 is the only solution in C(} (R™) to the equation u — F (0, u) = 0. Since
F,(0,0) = 0, we have (see, e.g., [30, Theorem 2.8.1])

deg(Id — F(0,-), Boy, 0) = 1 # 0.

This implies the existence of u € Ccll (R™) that satisfies the integral equation (1.5). Let
p be given by (1.6), then (u, p) is a regular solution of (1.2). Since the solution u we
obtain satisfies the bound

”u”C(}(R”) < 2M.
It follows, from the calculations in (4.2) and (4.3),

C(e) C(e)
lu(x)| < W and |Vu(x)| < W’

for some ¢ > 0. Estimate (1.3) follows from Lemma 2.1 and similar calculations as
above. O
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Appendix

A.1 Another proof of Proposition 2.3. In this section, we provide another proof of
Proposition 2.3 using the arguments in [16] and [20]. First, let us recall the definition of
Sobolev—Morrey spaces and state an embedding theorem in [1].

Definition A.1. Let 2 be a bounded smooth domain, 1 < p < 00,0 < A < n. We say
a function f € LP*(Q), if

! p
sup - If1P < oo,
xeQr>07T B, (x)NQ

with norm

1
IfllLray =1 suwp — Lf17
xeQr>0T B, (x)NQ2

We say a function g € W5PA(Q), if V¥g € LP*(Q), for all |«| < k, with norm

”g”W"-PvA(Q) = Z ||Vag||Lp.A(Q).

loe| <k

Theorem A.2. Let 1 < p < 00,0 < A < n. If f € WHPA(B)), then f € LP"*(By),

where
1 1 1 " N
— == , fp<n—»A
prp oan U7
p*can be any finite number, if p >n — A.
Furthermore,

£l ooy < CUV Fllorcsy + 1F 101 (51): (A1)
where C > 0 depends only on n, p and A.
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Proof. For x,y € By, we have

1 d 1
If(X)—f(y)|=‘fO Ef(ty+(1—l)X)dt 52/0 IVf@ty+(1—0x)|dr.

It follows that

1
f () — fa] < —/ o) — FO)]dy
|Bll By

1
< C/ / IVf(ty+ (1 —1t)x)|dtdy
B JO

\Y
SC/ V(@) dz.
B I-x_Z|n7]

where C > 0 depends only on n, fp, denotes the average of f over B;. Therefore,

100l < c/ yf—z(i)_l]dulfml. (A2)

B]|_|

Estimate (A.1) follows after applying a Morrey estimate on Riesz potentials in [1, The-
orem 3.2] to (A.2). O

We also need the following Sobolev—Morrey space analogue of the interior Sobolev
space estimates for the stationary Stokes equations proved in [38]. This can be proved
by using the Morrey space estimates instead of the L? estimates on Calderon—Zygmund
operators in the arguments there.

Theorem A.3. Let (u, p) be a smooth solution of the stationary Stokes equations

{—Au+Vp=f,

in B, C R",
divu =0, o2

with smooth f. Then for 1 <q < 00,0 <A <n,

IV2ull Loy + IV Pl Lo sy < CU L Lasisy) + 1l 218y p)-
where C > 0 depends only on n, q and ).
Proof. We define
uj :=Uij*(fjxB,), P=Pj*x(fixs)

where (U, P) is the fundamental solution of the stationary Stokes equations as (1.4),
XB, 1s the characteristic function on B;. Then by the Morrey space estimates for the
Calderon—Zygmund operators (see, e.g., [9, Theorem 3]), we have

V2@l Loy + 1V Bl Loagny < ClLF I Lracsy)-
Letv:=u —u,7 = p — p, then (v, ) satisfies

{—Av+V7r =0, .
in Bj.

divv =0,
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Therefore, v is biharmonic. Indeed,
iirrv’ = diijm = Byjim = Ojjxv’ = 0.
By the interior estimates for biharmonic function (see, e.g., [3]),
IV20ll o081y < ClIvIL1 By By)-
For any xg € By, r < 1/2,
1

— IV2u|Pdx < Cr" V20|V oy < ClVIIY :
- B, (x0)"B, L (By) L1(By\B))
and hence
1 2 1 2 1 25
- |V u|”dx§7 A% v|pdx+—A |V=it|P dx
r By (x0)NB r By (x0)NBy r By (x0)NBy
p p
S C(”v”L](Bz\B]) + ”f”Lp,)L(Bz))
p ~p p
p p
S C(”M”L](Bz\Bl) + ||f||Lp,k(32))'

This gives the desired estimate of V2u on Bj. For the pressure part, we know

IVl ppicp) = ||Av||L1M(Bl) = C”VZU”LW\(BI)
=< Clull gy + 1f Il Lr2By))-

Therefore,

IVPlLrisy S IVTlLeaiy ¥ IVPILeay < CUlullpip gy + 1F rasy))-

O

Proof of Proposition 2.3. We know from (2.9) that there exist positive constants 8 and

C depending only on n, Cy, and a positive lower bound of r — n/2, such that

||Vu”L2,n—4+ﬂ(Bl/4) < C. (A3)

If B € [2,4), we have, by Theorem A.2, |[ullp¢(,) < C(gq), for any g < oo. Then
Proposition 2.3 follows from standard estimates for Stokes equations. Therefore, we

only need to treat the case 8 € (0, 2).
Rewrite the stationary Navier—Stokes equations (2.6) as

—Au+Vp=f—(u-Vu.
By Theorem A.2 and (A.3),
s 3, ) < CUIVull 2a—08(5,,) + Null 15,40 < C.

where % = % - ﬁ. Thus, by Holder’s inequality,

If—(u- V)M||Lw74+ﬂ(31/4) = ||f||Lr,n74+/3(31/4) + ||M||Ls,nf4+/3(31/4)||Vu||L2,nf4+/3(Bl/4)

SC!
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where % = % + % Then, by Theorem A.2 and Theorem A.3, we have

IVullprn-ss gy ) < CUAVull prn-asn g, 5 + 1 Vull 1 (g, )

=Cdlf —(u- V)M||Lr.nf4+/5(31/4) + ||M||Ll(31/4)) <C,

where % = % - ﬁ =1- ﬁ. One can see that by this process, the regularity of Vu
has been improved from L%"~+F to Lli+1:7=4F \where % — tl + % — ﬁ. We can

repeat this process final times to obtain
IVull o8B, 16) < C
for some p > n — 4 + B. This implies, by Theorem A.2, for any g < oo,
lullza (s, 6 < C(q)-
Then we have, by standard estimates for Stokes equations,
lu(O)] +Vu(0)| < C,

where C > 0 depends only on n, Co, and a positive lower bound of r — n/2. Since the
problem is translation invariant, estimate (2.7) follows. O
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