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Abstract. We study the insulated conductivity problem with inclusions embedded in
a bounded domain in R”. When the distance of inclusions, denoted by ¢, goes to 0, the
gradient of solutions may blow up. When two inclusions are strictly convex, it was
known that an upper bound of the blow-up rate is of order e~1/2 for n = 2, and is of
order e~1/2+F for some B > 0 when dimension 1 > 3. In this paper, we generalize the
above results for insulators with flatter boundaries near touching points.
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1 Introduction and main results

Let () be a bounded domain in R” with C? boundary, and let D} and D} be two open sets
whose closure belongs to (), touching only at the origin with the inner normal vector of
dD7 pointing in the positive x,-direction. Denote x = (x/, x,,). Translating D} and D} by
% along x,-axis, we obtain

1:=Di+(0,¢/2) and Dj:=Dj;— (0',¢/2).
When there is no confusion, we drop the superscripts ¢ and denote D; := Dj and D; :=

D5. Denote O := Q\ (D; U D;). A simple model for electric conduction can be formu-
lated as the following elliptic equation:

div(ar(x)Vu,) =0 in Q,
(o) Vi) o
up = ¢(x) on 90,
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where ¢ € C2(9Q)) is given, and

ag(x) =

k€ (0,00) in D;UDs,,
1 in Q,

refers to conductivities. The solution uj and its gradient Vu represent the voltage poten-
tial and the electric fields respectively. From an engineering point of view, It is an inter-
esting problem to capture the behavior of Vuy. Babuska, et al. [3] numerically analyzed
that the gradient of solutions to an analogous elliptic system stays bounded regardless of
¢, the distance between the inclusions. Bonnetier and Vogelius [5] proved that for a fixed
k, |Vuy| is bounded for touching disks D; and D, in dimension n = 2. A general result
was obtained by Li and Vogelius [11] for general second order elliptic equations of diver-
gence form with piecewise Holder coefficients and general shape of inclusions Dy and
D, in any dimension. When k is bounded away from 0 and oo, they established a W1
bound of u; in O, and a C* bound in each region that do not depend on e. This result
was further extended by Li and Nirenberg [10] to general second order elliptic systems of
divergence form. Some higher order estimates with explicit dependence on rq,7;, k and ¢
were obtained by Dong and Li [7] for two circular inclusions of radius r; and r, respec-
tively in dimension n = 2. There are still some related open problems on general elliptic
equations and systems. We refer to p. 94 of [11] and p. 894 of [10].

When the inclusions are insulators (k = 0), it was shown in [6,9,13] that the gradient of
solutions generally becomes unbounded, as ¢ — 0. It was known that (see e.g., Appendix
of [4]) when k — 0, uj converges to the solution of the following insulated conductivity
problem:

—Au=0 in Q,
M _ onoD, i=12 (1.2)
ov

u=¢q on 0Q.

Here v denotes the inward unit normal vectors on dD;, i = 1, 2.
The behavior of the gradient in terms of € has been studied by Ammari et al. in [1]
and [2], where they considered the insulated problem on the whole Euclidean space:

Au=0 in ]R"\(DlUDz),
ou _ 0 on dD;, i=1,2, (1.3)
ov

u(x) —H(x) = O(|x|"1) as |x| = .

They established when dimension n = 2, D} and D; are disks of radius 1 and r; respec-
tively, and H is a harmonic function in IR?, the solution u of (1.3) satisfies

V|| o5,y < Ce™ 12,
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for some positive constant C independent of e. They also showed that the upper bounds
are optimal in the sense that for appropriate H,

IVl os,) > €712/ C.

In fact, the equation

{div <ak(x)Vuk) =0 in R?\ (D1 UD,),

u(x) —H(x) = O(|x|™!) as |x| = oo,

was studied there, and the estimates derived have explicit dependence on rq, 5, k and e.
Yun extended in [14] and [15] these results allowing D] and D3 to be any bounded
strictly convex smooth domains in R?.
The above upper bound of Vu was localized and extended to higher dimensions by
Bao, Li and Yin in [4], where they considered problem (1.2) and proved

||Vu\|Lm(ﬁ) < C£_1/2||q0||cz(aﬂ), whenn > 2. (1.4)

The upper bound is optimal for n = 2 as mentioned earlier. For dimensions n > 3, the
upper bound was recently improved by Li and Yang [12] to

Vil iy < Ce™* P9l 2oy, When n >3, (1.5)

for some B > 0.
Yun [16] considered the problem (1.3) in R3, with unit disks

D1:Bl(0,0,1+£/2), D2:B1(0,0,—1—€/2),

and a harmonic function H. He proved that for some positive constant C independent of
12
max |Vu(0,0,x3)| < ce's”.
|x3|<e/2

He also showed that this upper bound of |Vu| on the e-segment connecting D; and D; is
optimal for H(x) = x1.

In this paper, we assume that for some m € [2,00) and a small universal constant Ry,
the portions of 9D} and 9D} in [—Ry, Rg|" are respectively the graphs of two C? functions
f and g in terms of x/, and

f(0') =g(0)) =0, Vf(0') =Vg(0) =0, (1.6a)
MIX|" < (f — ) (&) < Ap|x!|™ for 0 < |x'| < Ry, (1.6b)
IV(f —g)(x)] < Ag|x/|™ ! for 0 < |x'| < Ry, (1.6¢)
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for some A1, Ay, A3 > 0. Let a(x) € C*(Q)), for some a € (0,1), be a symmetric, positive
definite matrix function satisfying

A<a(x) <A for xeQ,

for some positive constants A, A. Let v = (v4,-- -, 1) denote the unit normal vector on
0D and dD;, pointing towards the interior of D; and D;. We consider the following
insulated conductivity problem:

—ai(aifaju) =0 in (),
a’9juv; = 0 on 9(D;U D), (1.7)
u=gq on d(Q),

where ¢ € C2(9Q)) is given. For 0 < r < Ry, we denote
Oy i= {(x/, X)) €Q| — % +g(x) <x, < %—I—f(x'), |x" — xf| < r} , (1.8a)
e _ E ! / — _ _E / /
T, = {xn = S+ f(x), %] < Ro}, T_: {xn S+, %] < Ro}. (1.8b)

Since the blow-up of gradient can only occur in the narrow region between D; and D5,
we will focus on the following problem near the origin:

{ —ai(aijaju) =0 in QO,RO/

. 1.9
alduv; =0 on I'yuUrl_, (19)

where v = (vy, -+ ,v,) denotes the unit normal vector on I'y and I'_, pointing upward
and downward respectively.

Theorem 1.1. Let m, 'y, T'_, a, « be as above, and let u € Hl(QO,RO) be a solution of (1.9).
There exist positive constants ro, p and C depending only on n, m, A, A, Ro, a, A1, A2, A3,

1 £llc2gar1<ropy N8l ca(qw<royy and l|allcx(ry ), SUCh that

Cllul|e e+ ||y~ m when n =2,
- { ]2y, (€ + I51™) w10

)—1/m+[3 ,

Cllull (g, (&4 [x01™ when n > 3,

forall xy € Qg and e € (0,1).
Remark 1.1. For m = 2, (1.10) was proved in [4] and [12] for n = 2and n > 3, respectively.

Let u € H'(Q) be a weak solution of (1.7). By the maximum principle and the gradi-
ent estimates of solutions of elliptic equations,

[l @) < l9lle@0), (1.11a)
IVull@nay,y) < Clollcea) (1.11b)

Therefore, a corollary of Theorem 1.1 is as follows.
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Corollary 1.1. Let u € H'(Q) be a weak solution of (1.7). There exist positive constants p and
C depending only on n, m, A, A, Ry, &, A1, Az, A3, |0D1]|c2, ||9D2]| 2, ||0Q2| 2, and Ha”c*(ﬁ)’

when n = 2,
(1.12)

_1
CH(l”HCZ(aQ)€ ",

such that
C||(P||c2(an)€7%+ﬁ, when n > 3.

IVull o) < {

2 Proof of Theorem 1.1

Our proof of Theorem 1.1 is an adaption of the arguments in our earlier paper [12] for
m = 2, and follows closely the arguments there.
We fixay € (0,1), and let rp > 0 denote a constant depending only on 1, m, v, Ry, A1,
A2, || fllc2 and ||g||c2, whose value will be fixed in the proof. For any xo € Qg ,, we define
1
§:= (e+ [xp|™) . (2.1)

We will always consider 0 < & < r{f'. First, we require rg small so that for |xg| < ro,

R
106 < 817 < ZO

Lemma 2.1. For n > 3, there exists a small ro, depending only on n, m, v, and Ry, such that
for any xo € Qo 5|xp| < v < 877, if u € HY (Qyyor \ Qy r/a) 15 a positive solution to the

—ai(aif(x)a‘u(x)) =0 in Qo \ Quyr/ar

equation
{ al (x)oju(x)vi(x) =0 on (T UT_) N Oupar \ Qg r/as
then
su u<C inf u, 22
p Qe \ Qg /2

on,r\QxO,r/Z
for some constant C > 0 depending only on n, m, A, A, Ry, A1, Ao, ||fllc2 and ||g]|c2 but

independent of r and u.
Proof. We only need to prove (2.2) for |x{| > 0, since the |x{| = 0 case follows from the

).

result for |x{| > 0 and then sending |x{| to 0. We denote
X

r Xl r
I G R C R

and perform a change of variables by setting
(2.3)

) (x,z xn) S ng,Zr \ on,r/4-

g(x')+e/2 1
2

e+ f(x) —g(x')

y = —x,
Yn :Zhr (xn —



Y. Y.Liand Z. Yang / Anal. Theory Appl., 37 (2021), pp. 114-128 119

This change of variables maps the domain Q) >, \ Qy,,/4 to an annular cylinder of height
hy, denoted by Qo \ Qy/a,, where

Qst :={y=(,yn) eR" | V| <5, |yu| <t}, (2.4)

fors,t > 0. We will show that the Jacobian matrix of the change of variables (2.3), denoted
by d.y, and its inverse matrix d,x satisfy

1(0:y)7] <C, |(@yx)T| < C for y € Qap, \ Qryap, (2.5)

where C > 0 depends only on n, m, Ry, A1, Ay, ||f]|c2 and ||g]| c2-
Let v(y) = u(x), then v satisfies

—0;(b7(y)9v(y)) =0 in Qup \ Qr/an,, 2.6)
b"(y)ojo(y) =0 on {yn=—h}U{yn =},
where the matrix (b (y)) is given by
i (0xy) (a) (9xy)*
1 —
(b (y)) det@ry) 2.7)
(9yy)! is the transpose of d.y. )
It is easy to see that (2.5) implies, using A < (a) < A,
A y
¢ S (07(y)) <CA for y € Qo \ Qr/as (2.8)

for some constant C > 0 depending only on 1, m, Ry, A1, Az, || fl|c2 and || g ]| c2-

In the following and throughout this section, we will denote A ~ B, if there exists a
positive universal constant C, which might depend on n, m, A, A, Ro, A1, A2, ||f]|c2 and
l|g|lc2, but not depend on ¢, such that C"!B < A < CB.

From (2.3), one can compute that

(0xy)' =1 for 1<i<n-—1,
2h
) - ,
@)™ T et fh+y) -8 +Y)
(@) = — 20X +¥') +2yn[0if (xo + ') — 9ig(xo + )]
: e+ flxg+y) —glg+y)
(0:y)T =0 for 1<i<n—1, j#i.

for 1<i<n-1,

By (1.6b), one can see that
, roxp "

hrN8+ xo—iw
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Since |y, | < hy, by using (1.6a) and (1.6b), we have that, for1 <i<mn —1,

< r19ig (g + ) + hu[[0if (xg + )| + |9ig (xg + /)]
N e+ f(xg +y) —8(x +y')
h:

)(aani

) / / ] / /
_C8+f(x6+y’)—g(xg+y’) [[0:f (x0 + ")+ [0ig (x0 +v/') ]
e g 5|

lxg +y/.

SC /
e+ |xg+y'"
Since r/4 < |y'| < 2r < 26177 and |x}| < 6, we can estimate

[@y)"] < Clxg+y'| < C(lx| + 1)) < Co™.

Next, we will show that

(0xy)" ~1 for v € Qun \ Qr/an,-

Indeed, by (1.6b), we have

;om
r X

(Bu)™ = 2h, €+ x(’)_zm
W T e+ y) — g+ y) | ety

Since |y'| > r/4, it is easy to see

/o |m
nn €+ X(/.]_i%
d <C
(9xy)"" < 8+|x6+yl‘m =

On the other hand, since |y’| < 2r and |x}| < r/5, we have
A rox;

m
r_ 20 > (U
0T T \a)

e+ xg+ " <e+mlxp|" +mly|" < C(e+1").

A\ roorym_ 1 m
e+ —|x0| 28+(Z_g) 26(84—7’ )/

Therefore,
€_|_ x’ — lié "
(a y)nn > l 0 4xl > l
YT C et xp+ym T C
and (2.9) is verified.

We have shown (9,y)" ~ 1foralli = 1,---,n, and |(3,y)7| < C6U0~7) for i # j.
We further require ¢ to be small enough so that off-diagonal entries of d,y are small.

Therefore (2.5) follows. As mentioned earlier, (2.8) follows from (2.5).
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Now we define, for any integer [,

A= {yEIR”

i <ly|<2r, I—=1)h <z, < (l+1)h,}.
Note that Ag = Qo s, \ Qy/a,- For any | € Z, we define a new function 4 by
3(y) =0 (v, (=) (ya—2Ih)), Wy € A,
We also define the corresponding coefficients, fork =1,2,--- ,n —1,
B (y) = B(y) = (=)0 (¢, (<1 (g —202)), Vy € Ay,
and for other indices,
Biy) == b7 (v, (=) (ya —21h,)), Wy € AL

Therefore, 3(y) and b¥ () are defined in the infinite cylinder shell Q2,00 \ Q;/4 00 By (2.6),
0 € HY(Qare0 \ Qr/400) satisfies

—0;(b(y)9/5(y)) =0 in Qareo \ Qr/aco-

Note that for any I € Z and y € A, b(y) = (b(y)) is orthogonally conjugated to
b(y, (-1 (y, — 2ih,)). Hence, by (2.8), we have

A -
< b(y) <CA for y € Qrroo \ Qr/ac0-

We restrict the ’domaip. to be Q2+ \ Q;/1,, and make the change of variables z = y/r. Set
o(z) =9(y), b (z) = b'(y), we have

—9;(b"(2)9;0(z)) =0 in Qa1 \ Qi/a1,
% < E(Z) < CA for z € Q2,1 \ Q1/4,1.

Then by the Harnack inequality for uniformly elliptic equations of divergence form, see
e.g., [8, Theorem 8.20], there exists a constant C depending only on n, m, A, A, Ro, A1, Az,
| fllc2 and ||g]|c2, such that

sup 7<C inf 0.

Q1,1/2\Q1/2,1/2 Qu12\Qu2172
In particular, we have
sup 70<C inf 0,
Qi /r\Q1 /2y /v Qu iy /r\Q1 /2,1y /1

which is (2.2) after reversing the change of variables. O
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Remark 2.1. Lemma 2.1 does not hold for dimension n = 2, since Q21 \ Q1,41 C R? is the
union of two disjoint rectangular domains, and the Harnack inequality cannot be applied
on it. Therefore, we will separate the cases n = 2 and n > 3 in our proof of Theorem 1.1.

For any domain A C (), we denote the oscillation of u in A by oscau := sup AU —
inf4 u. Using Lemma 2.1, we obtain a decay of oscq, ;U in ¢ as follows.

Lemma 2.2. For n > 3, let u be a solution of (1.9). For any xo € Q) ,, where rg is as in Lemma
2.1, there exist positive constants o and C, depending only on n, m, A, A, Ro, A1, Ay, ||f||c2 and
|\gllc2 such that

osc, ,u < Cllul L”(QXO,O.l_W)é’YU- (2.10)

Proof. For simplicity, we drop the x subscript and denote ), = (), in this proof. Let
5|xp| <7 < 6'"7and uy = supg, u — u,uy = u — infq, u. By Lemma 2.1, we have

sup u; < C; inf uy, sup up; < Cp inf up,
Q?’\Q}’/Z Qr\Qr/z Qr\Qy/z QI’\Q?/Z

where C; > 1is a constant independent of r. Since both #; and u; satisfy Eq. (1.9), by the
maximum principle,

sup u; = sup u;, inf u; = infu;,
QN2 Qr Q2 O
fori = 1,2. Therefore,
supuj < Crinfuy, sup up < Crinfu,.
o, Q, 0, Q,

Adding up the above two inequalities, we have

osco u < ! 0scq, U
Q, —_ Cl +1 QZr ‘

Now we take o > 0 such that277 = &ij then

osco, U < 27%0scq,, U. (2.11)

We start with r = 79 = §'77/2, and set r;;1 = r;/2. Keep iterating (2.11) k + 1 times,
where k satisfies 56 < r; < 104, we will have

(k+1)

osco,u < osco, u < 27 oscq,, u < 21’(k+1)‘7HuHLm(Q

s1-1)°

Since
106 > ¥ = 27Fry = 27 (g1,

we have
2-(k+1) < 1087

and hence (2.10) follows immediately. O
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Proof of Theorem 1.1. First we consider the case when n > 3. Let u € H'(Qog,) be a
solution of (1.9). For xg € () ,,, we have, using Lemma 2.2,

[ — uollr=(q, ) < Cllullre(a o (2.12)

xo/(Sl*’Y)

for some constant 1. We denote v := u — ug, and v satisfies the same equation (1.9). We
work on the domain ), 5,4, and perform a change of variables by setting

P s
{y == x), (2.13)

Yn = 5 1x,.

The domain Q) 5,4 becomes

1 1 1
{y eR" | |y] < 7 51 <—2s+g(x6 +5y’)> <yp <ot <23+f(x6+5y/)> }

We make a change of variables again by

Z =4y,
_ o1 ( Syn —8(xg+0y) +e/2 1> (2.14)
" e+ f(xy+0y) —gxp+oy) 2/)°

Now the domain in z-variables becomes a thin plate Q; su-1, where Qs is defined as in
(24). Let w(z) = v(x), then w satisfies

9i(b7(z)0jw(z)) =0 in Q u1,
{ b (2)j(z V20 on {ze= VU (e =5}, 215
where the matrix b(z) = (b'(z)) is given by
(b(z)) = (a@e(f(l;lgyz) (2.16)

Similar to the proof of Lemma 2.1, we will show that the Jacobian matrix of the change of
variables (2.14), denoted by d,z, and its inverse matrix d.y satisfy

1(0,2)7] <C, |(0:y)7| <C forz € Qqpm, (2.17)

where C > 0 depends only on 7, k, Ro, A1, A2, || f|lc2 and || g||c2- This leads to

<b(z) <CA forze€ Qgm1. (2.18)

Ol >
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From (2.14), one can compute that

9,2) =4 for 1<i<n—1,
Y
25

O = P T o7/8) =g + 62 /3)’
(3,2)" = 26M3ig(xp + 02" /4) + (20 + 0" 1)S[0if (xg + 62 /4) — 9ig(xp + 02/ /4)]
Y e+ f(x( +0z'/4) — g(x} + 62/ /4)
for 1<i<n-1,
(ayz)if: for 1<i<n-—1, j#i

First we will show that
(ayZ)nn ~ 1 fOI' z € Ql/&m—l. (219)

Since |z'| < 1and |xj| < 4, it is easy to see that

1 om 1 o 1

nm o P

(9y2)™ > Ce+ |xh+6z//4m — Ce+ Cém — C
0

for z ¢ Qll(gm—l.

On the other hand, when |x}| < 8%, we have § < (2¢) i, and hence

(a Z)nn < com < Ce <C for zZ € Ql sm—1.
Y T e |xh + 62/ /A T e+ |xh + 6z /A :

When |x(| > gn, we have |62/ /4] < |x4| /2, and hence

com com
a nn < <
N I LN FA =y T
26™

<——————— <C for z€ 1.
AT .

Therefore, (2.19) is verified. Since |z,| < 67!, |z/| < 1and |xj| < 6, by (1.6a) and (1.6b),
forl<i<n-—1,

26" |aig (xp + 02/ /4)| + 20™[|auf (xp + 02'/4)]| + [dig(xh + 62/ /4)]]

|(ayz) ’ < €+f(x6 +(5Z//4) _g(x6 +(52//4)
com o o
§€+f(x6 +(SZ//4> _g(x6 —|—§ZI/4) Haif(x() +5Z /4)’ + ’alg(xo +5Z /4)”

57’}’1
<
_Ce + |xy + 0z’ /4™
<C(jx4| +3I2']) < C,

|xo + 62" /4]

where in the last line, we have used the same arguments in showing (d,z)"" < C earlier.
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We have shown (9,z)" ~ 1foralli = 1,---,n, and [(9,2)7| < C6 fori # j. We
further require ry to be small enough so that off-diagonal entries are small. Therefore
(2.17) follows. As mentioned earlier, (2.18) follows from (2.17).

Next, we will show

1bllcsg, ) < € (2.20)

for some C > 0 depending only on n, m, Ro, A, Az, A3, || fllc2, [Ig]lcz and ||a||ce, by

showing
1

’Vz det(dyz)

Then (2.20) follows from (2.21), (2.16), and ||a||c= < C.
By a straightforward computation, we have, foranyi =1, --- ,n —1,

V=(8,2)"(2)| < C,

< C forze Ql,&”’*l' (221)

3 1 _ 5 <s+f(x(’)+(5z’/4)—g(x6+5z’/4)>‘
“Idet(dyz) & 2. 4n—lgm
| 0[0if (xp + 07 /4) — 0ig(xp + 02 /4)]
- ‘ 2. 4n—15m ‘

C
< W\x6+5z’/4]m*1 <C for z€ Qqy

where in the last line, (1.6b) and (1.6c) have been used. Foranyi =1,--- ,n —1, by (1.6b)
and (1.6¢),

19:,(3y2)™ | = ‘2‘5”1“@# (xp+02'/4) — 9ig(x +62'/4)] ’

e+ f(xh+ 6 /4) —g(xh + 67 /4) 2
+1

< Com

(e [x( 4 0z /4|™)

- Com L x + 62/ /4|1

— (52m

S |xg + 62/ /4|1

<C for z€ Qs

where in the last line, we have used the same arguments in showing (ayz)”” < C earlier.
Similar computations apply to 9,,(9,z)™ fori =1,--- ,n — 1, and we have

102,(9y2)"| < C for z € Qqgn.
Finally, we compute, fori =1,--- ,n -1,

2600 f (x( + 62" /4) — 0ig(xy + 62" /4)]
e+ f(x( +0z'/4) — g(x( + 62/ /4)

Cé|xp + 62" /4™ 1
<C ¢ .
S et w1 oA =C for z€Qus

|02, (ayz)ni| =

Therefore, (2.21) is verified, and hence (2.20) follows as mentioned above.
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Now we define

S = {Z e R"

2] <1, (1-1)6" 1 <z, < (I + 1)5m—1}
for any integer /, and
S:={zeR"|[|Z| <1, |z4] <1}.

Note that Q; su-1 = Sop. As in the proof of Lemma 2.1, we define, for any | € Z, a new
function @ by setting

w(z) = w (z/, (—1)! (zn — 2l§m_1>) , VzeS,.

We also define the corresponding coefficients, fork =1,2,--- ,n —1,
Bk (z) = B (2) == (—1)'p™ (z’, (—1)! (zn . zz(smfl)) , VzeES,

and for other indices,

bi(z) = b7 (2, (-1)! (z, — 206" 1)), Wyes.
Then @ and b/ are defined in the infinite cylinder Q1 «. By (2.15), @ satisfies the equation

—0;(0"9;w) =0 in Q.
Note that for any I € Z, b(z) is orthogonally conjugated to b (z/, (—1)" (z, — 216" 1)),
for z € S;. Hence, by (2.18), we have
A

c <b(z) <CA for z€ Qe

and, by (2.20), y
Hbchx(El) <(C, VleZ.

Apply Lemma 2.1 in [12] on S with N = 1, we have

IV 215y < CllD | 2(s)-

1
2

It follows that

C
vaHLm(Quz,gm—l) = WHH}HLZ(QLMH) = CHwHLm(QW”’l)

for some positive constant C, depending only on n,a, Ro, m, A, A, A1, Az, As, || fllc2, ||glc2
and ||a||ce.

By (2.17), we have ||(0zy)||1~(q, ,,_,) < C, where C is independent of ¢ and . Revers-
ing the change of variables (2.14) and (2.13), we have, by (2.12)

OVl m(ery 7)< Cllollisy ) < Clltllimo, 10,)0™ (2.22)
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In particular, this implies

1+
6—Te,

Vu(xo)| < Cllulli=a_, )

and it concludes the proof of Theorem 1.1 for the case n > 3 after taking p = yo /2.
For the case n = 2, we work with u instead of v, and repeat the argument in deriving
the first inequality in (2.22), we have

SIVull =, 5 < Cllullr=@

x0,0/8 0.0/4)°

In particular,
[Vu(xo)| < Cllulls(er, 500

x0,6/4)

This concludes the proof of Theorem 1.1 for the case n = 2. O
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