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Abstract
In this paper, we classify Möbius invariant differential operators of second order 
in two-dimensional Euclidean space, and establish a Liouville type theorem for 
general Möbius invariant elliptic equations. The equations are naturally associ-
ated with a continuous family of convex cones Γ

p
 in ℝ2 , with parameter p ∈ [1, 2] , 

joining the half plane Γ1 ∶= {(!1, !2) ∶ !1 + !2 > 0} and the first quadrant 
Γ2 ∶= {(!1, !2) ∶ !1, !2 > 0} . Chen and C. M.  Li established in 1991 a Liouville 
type theorem corresponding to Γ1 under an integrability assumption on the solution. 
The uniqueness result does not hold without this assumption. The Liouville type 
theorem we establish in this paper for Γ

p
 , 1 < p ≤ 2 , does not require any additional 

assumption on the solution as for Γ1 . This is reminiscent of the Liouville type theo-
rems in dimensions n ≥ 3 established by Caffarelli, Gidas and Spruck in 1989 and 
by A. B. Li and Y. Y. Li in 2003–2005, where no additional assumption was needed 
either. On the other hand, there is a striking new phenomena in dimension n = 2 that 
Γ
p
 for p = 1 is a sharp dividing line for such uniqueness result to hold without any 

further assumption on the solution. In dimensions n ≥ 3 , there is no such dividing 
line.
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1 Introduction

For n ≥ 3 , consider the equation

The Liouville type theorem of Caffarelli et al. [5] asserts that positive C2 solutions 
of (1.1) are of the form

where a > 0 and x̄ ∈ ℝn . Under an additional hypothesis u(x) = O(|x|2−n) for large |x| ,  
the result was established earlier by Obata [47] and Gidas et al. [19].

Geometrically, Eq. (1.1) means that the scalar curvature of the Riemannian 
metric u

4

n−2 dx2 is equal to 4n(n − 1) . An analogous equation in dimension two is

Geometrically, it means that the Gaussian curvature of eudx2 is equal to 1
2
 . The above 

equation has plenty of solutions according to a classical theorem of Liouville [45]: 
Let Ω be a simply connected domain in ℝ2 , then all C2 real solutions u of −Δu = eu 
in Ω are of the form

where z = x1 +
√
−1x2 , and f(z) is a locally univalent meromorphic function, i.e., a 

meromorphic function in Ω which has zeros or poles of order at most 1. In particu-
lar, let f(z) be any holomorphic function satisfying f ′(z) ≠ 0 in ℂ , the u given by the 
representation formula (1.3) is a solution of (1.2). For instance, if we take f (z) = ez , 
then we obtain a solution u(x1, x2) = log(8e2x1 (1 + e2x1 )−2).

On the other hand, Chen and C. M. Li proved in [15] that C2 solutions of (1.2) 
satisfying

are of the form

where a > 0 and x0 ∈ ℝ2.
Eq. (1.2) is conformally invariant. For a C2 function u, let

(1.1)−Δu = n(n − 2)u
n+2

n−2 on ℝ
n.

u(x) =

(
a

1 + a2|x − x̄|2

) n−2

2

,

(1.2)−Δu = eu on ℝ
2.

(1.3)u(x1, x2) = ln
8|f ′(z)|2

(1 + |f (z)|2)2
,

(1.4)
∫
ℝ2

eu dx < +∞

u(x) = 2 ln
8a

8a2 + |x − x0|2
in ℝ

2,

(1.5)u! ∶= u◦! + ln |J! |,
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where !(z) is a holomorphic function with nonzero Jacobian determinant |J! | . Then 
we have

Here we consider the holomorphic function ! as a map from ℝ2 to ℝ2.
In particular, if u is a solution of (1.2), then u! is also a solution in the cor-

responding domain. In fact, Eq. (1.2) is in a sense the only conformally invariant 
equation as explained below.

Let S2×2 denote the set of 2 × 2 real symmetric matrices.

Definition 1.1 Let H be a function from ℝ2 ×ℝ ×ℝ2 × S
2×2 to ℝ . We say that a 

second-order differential operator H(⋅, u,∇u,∇2u) is conformally invariant if for any 
meromorphic function ! on ℂ , and any function u ∈ C2(ℝ2) , it holds that:

Note that (1.6) is understood to hold at any point z ∈ ℂ which is not a pole of 
! or zero of ! ′.

The following proposition classifies all conformally invariant second-order dif-
ferentiable operators.

Proposition 1.2 H(⋅, u,∇u,∇2u) is conformally invariant in ℝ2 if and only if it is of 
the form:

where g is a function from ℝ to ℝ.

In this paper, we study a larger class of invariant operators, namely those 
invariant under Möbius transformations.

Recall that a Möbius transformation is a transformation generated by a finite 
composition of

where ! is a nonzero constant, and O is an orthogonal matrix. In complex variables 
z = x1 +

√
−1x2 , they are given by

Definition 1.3 Let H be a function from ℝ2 ×ℝ ×ℝ2 × S
2×2 to ℝ . We say 

H(⋅, u,∇u,∇2u) is Möbius invariant if for any Möbius transformation ! and any 
function u ∈ C2(ℝ2) , it holds that:

−e−u!Δu! = (−e−uΔu)◦! on ℝ
2.

(1.6)H(⋅, u! ,∇u! ,∇
2u! ) ≡ H(⋅, u,∇u,∇2u)◦! .

H(⋅, u,∇u,∇2u) = g(−e−uΔu),

!(x) = x + x0, !(x) = "x, !(x) = Ox, and !(x) =
x

|x|2
in ℝ

2,

!(z) =
az + b

cz + d
or

az̄ + b

cz̄ + d
, a, b, c, d ∈ ℂ and ad − bc ≠ 0.
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We prove that all Möbius invariant operators can be expressed as F(Au) , where

is a 2 × 2 symmetric matrix operator of second order.
Notice that tr(Au) = −e−uΔu , conformally invariant operators are, as shown in 

Proposition 1.2, a function of the trace of Au in this setting.
The operator Au has the following invariance property: for any Möbius transfor-

mation ! and any x ∈ ℝ2 , Au! (x) = OT (Au
◦!)O , where O = |J! |−1∕2J! ∈ O(2) , the 

set of all real orthogonal matrices.
Moreover, for a Möbius transformation ! , denote y = !(x) as the coordinate 

change, and v = u! , then

Hence, F(Au! ) ≡ F(Au
◦!) for any F ∶ S

2×2
→ ℝ which is invariant under orthogo-

nal conjugation. We say that F is invariant under orthogonal conjugation if

For M ∈ S
2×2 , let !(M) = (!1(M), !2(M)) with !1(M) and !2(M) being the eigen-

values of M. Then a function F on S2×2 satisfying (1.9) corresponds to a symmetric 
function f on ℝ2 satisfying F(M) = f (!(M)) for all M ∈ S

2×2.
We classify all Möbius invariant operators in the following proposition.

Proposition 1.4 Let H(⋅, u,∇u,∇2u) be Möbius invariant in ℝ2 , then H is of the 
form:

where F ∶ S
2×2

→ ℝ is invariant under orthogonal conjugation, i.e., F satisfies 
(1.9).

In dimension n ≥ 3 , a classical theorem of Liouville states that any local confor-
mal diffeomorphism in ℝn is the restriction of a Möbius transformation. Therefore, 
unlike Definitions 1.1 and 1.3 for operators in ℝ2 , conformally invariant operators 
and Möbius invariant operators in ℝn are the same for n ≥ 3 . The classification of 
conformally invariant operators of second order was given by A. B. Li and Y. Y. Li 
in [32]. Our proof of Proposition 1.4 follows the arguments there.

The main result in this paper is a Liouville type theorem for Möbius invariant 
elliptic equations F(Au) = 1 in ℝ2.

From now on, let

and

(1.7)H(⋅, u! ,∇u! ,∇
2u! ) = H(⋅, u,∇u,∇2u)◦! on ℝ

2.

(1.8)Au ∶= −e−u∇2u +
1

2
e−udu⊗ du −

1

4
e−u|∇u|2I

eu(Au
kl
dyk ⊗ dyl) = ev(Av

ij
dxi ⊗ dxj).

(1.9)F(O−1MO) = F(M), ∀M ∈ S
2×2, O ∈ O(2).

H(⋅, u,∇u,∇2u) = F(Au)

(1.10)Γ be an open convex symmetric cone in ℝ
2 with vertex at the origin,
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where Γ1 ∶= {(!1, !2) ∶ !1 + !2 > 0} and Γ2 ∶= {(!1, !2) ∶ !1 > 0, !2 > 0} . Here, 
Γ being symmetric means that (!1, !2) ∈ Γ implies (!2, !1) ∈ Γ . Also, a function f 
defined on Γ is said to be symmetric if f (!1, !2) ≡ f (!2, !1).

It is not difficult to see that Γ satisfies (1.10) and (1.11) if and only if Γ = Γp for 
some 1 ≤ p ≤ 2 where

Note that the above definition of Γ1 and Γ2 is consistent with earlier definitions.

Theorem 1.5 Let Γ = Γp for some 1 < p ≤ 2 , and let f ∈ C1(Γ) be symmetric and 
satisfy !"i f > 0 in Γ , i = 1, 2 . Assume that u is a C2 solution of

where !(Au) ∈ Γ are the eigenvalues of Au . Then, for some x0 ∈ ℝ2 and some con-
stants a, b > 0 satisfying (2−1a−2b, 2−1a−2b) ∈ Γ and f (2−1a−2b, 2−1a−2b) = 1,

Remark 1.6 Theorem  1.5 still holds when replacing f ∈ C1(Γ) and !"i f > 0 in Γ , 
i = 1, 2 by: For any compact subset K ⊂ Γ , there exists constant C(K) > 1 such that

Remark 1.7 For u given in (1.13), Au = 2−1a−2bI , where I is the 2 × 2 identity 
matrix.

In the above theorem, no additional assumption on u near infinity is made. In 
particular, we do not assume a priori the integrability condition (1.4). The hypoth-
esis !"i f > 0 means that the equation f (!(Au)) = 1 is elliptic. For Γ = Γ1 and 
f (!1, !2) = !1 + !2 , the equation is −Δu = eu . As mentioned earlier, solutions were 
classified in [15] under the assumption (1.4). In this case, the conclusion does not 
hold without the assumption. When f (!1, !2) = "2(!) ∶= !1!2 , defined on Γ2 , the 
equation becomes det(Au) = 1.

Γp is a continuous family of convex cones in parameter p ∈ [1, 2] . When p = 1 , 
without the integrability condition (1.4), there are abundant solutions to Eq. (1.12), 
as shown in (1.3). If p > 1 , the uniqueness result holds with no additional assump-
tion on u. We emphasize the curious fact that for Eq. (1.12), p = 1 is a sharp divid-
ing line for such uniqueness result. There is no such dividing line in dimensions 
n ≥ 3.

A Liouville type theorem of the form !2("(Au)) = 1 in ℝ4 was proved by S.-Y. 
A.  Chang et  al. in [12], where !2 denotes the second elementary symmetric 
function in ℝ4 . For n ≥ 3 , a Liouville type theorem for general elliptic equation 

(1.11)Γ2 ⊂ Γ ⊂ Γ1,

Γp = {! = (!1, !2) ∶ !2 > (p − 2)!1, !1 > (p − 2)!2}.

(1.12)f (!(Au)) = 1 in ℝ
2,

(1.13)u(x) ≡ 2 ln
8a

8|x − x0|2 + b
.

1

C(K)
‖!‖ ≤ f (" + !) − f (") ≤ C(K)‖!‖, ∀", " + ! ∈ K, ! = (!1, !2), !1, !2 > 0.
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f (!(Au)) = 1 in ℝn was proved by A. B. Li and Y. Y. Li in [32] and [33]. The latter 
is an extension of the above-mentioned Liouville type theorem for Eq. (1.1).

The crucial point in the proof of the uniqueness result Theorem 1.5 is to handle 
the possible singularity of the solution at infinity. Our proof requires new novel 
ingredients.

Theorem 1.5 is proved using the moving sphere method. The first step of the 
moving sphere method is to prove that for every x ∈ ℝ2 , there exists !0(x) > 0 
such that ux,!(y) ≤ u(y) for all 0 < ! < !0(x) and |y − x| ≥ ! , where

The main difficulty we need to overcome to prove the theorem is to establish this 
step. When n ≥ 3 , this step can be achieved from the estimate u(x) ≥ (min!B1

u)|x|2−n 
for |x| ≥ 1 , which follows from the superharmonicity and positivity of u; see Lemma 
2.1 in [43] and Lemma 2.1 in [32]. For Γ1 in dimension n = 2 , this step simply fails 
without the integrability condition (1.4) on u. The integrability condition was used 
in [15] to assure a uniform convergence of u(x)

ln |x|
 to a finite number as |x| tends to 

infinity, and such uniform convergence has played a crucial role in the proof of the 
two dimensional Liouville type theorem there. The situation here is much more deli-
cate since we do not have any additional assumption on u near infinity like (1.4), and 
it is difficult to establish a uniform limit of u(x)

ln |x|
 as |x| tends to infinity. Instead, we 

establish the following asymptotic behavior of the solution near infinity which is 
enough to allow the moving sphere procedure to get started. We then prove the theo-
rem without first knowing that u(x)

ln |x|
 has a finite limit at infinity or that the integrabil-

ity condition (1.4) holds.

Proposition 1.8 Let Γ = Γp for some 1 < p ≤ 2 , and let u be a viscosity supersolu-
tion of

for some r0 > 0 . Then there exists K0 > 0 , such that

Consequently, lim infx→∞ (u(x) + 4 ln |x|) > −∞.

Chow and Wan [16, Corollary 2] gave a complex analysis proof of the above-
mentioned Liouville type theorem for Eq. (1.2) using Liouville’s representation 
formula (1.3).

Question 1.9 Is there a complex analysis proof of Theorem 1.5?

ux,!(y) ∶= u

(
x +

!2(y − x)

|y − x|2

)
− 4 ln

|y − x|
!

.

(1.14)!(Au) ∈ "Γ in ℝ
2 ⧵ Br0

2

(1.15)inf
!Br

u(r) + 4 ln r is monotonically nondecreasing for r > K0.
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In connection with the above question, we bring attention to a simple complex 
analysis proof of the following Jörgen’s theorem by Nitsche [46]: Any smooth 
solution of det(D2u) = 1 in ℝ2 must be a quadratic polynomial.

We write Au
ij
dxi ⊗ dxj in complex variables. Denote z = x1 +

√
−1x2 and 

z̄ = x1 −
√
−1x2 . It is straightforward to check that

where

If u is a real function, then −uzz + 1

2
u2
z
 is the complex conjugate of −uz̄z̄ + 1

2
u2
z̄
 , and 

Bu is a Hermitian matrix.
We have the following ways to describe the Möbius invariance in complex 

variables.
For any Möbius transformation ! and any z ∈ ℂ , Bu! (z) = U∗(Bu

◦!)U , where

the set of all unitary matrices.
Moreover, for a Möbius transformation ! , denote z = !(w) as the coordinate 

change, and v = u! . Then

The second-order differential matrix operator Au in (1.8) corresponds to a (0, 2)-ten-
sor on the standard Euclidean 2-sphere (!2, g0) in ℝ3 . For a C2 function u on !2 , we 
associate with the conformal metric gu ∶= eug0 a (0, 2)-tensor

where Kg0
≡ 1 is the Gaussian curvature of the metric g0.

Theorem 1.5 is the starting point of our proof of the following results in a subse-
quent paper [36] on the existence and compactness of solutions to the !2-Nirenberg 
problem.

For K satisfying the nondegeneracy condition

we define the sets

Au
ij
dxi ⊗ dxj = Bu

zz
dz⊗ dz + Bu

zz̄
dz⊗ dz̄ + Bu

z̄z
dz̄⊗ dz + Bu

z̄z̄
dz̄⊗ dz̄,

Bu =

(
Bu
zz̄
Bu
zz

Bu
z̄z̄
Bu
z̄z

)
= e−u

(
−uzz̄ − uzz +

1

2
u2
z

−uz̄z̄ +
1

2
u2
z̄

− uzz̄

)

.

U =
1

! ′(z)

(
"!

"z

"!

"z̄
"!̄

"z

"!̄

"z̄

)

∈ U(2),

eu(Bu
zz
dz⊗ dz + Bu

zz̄
dz⊗ dz̄ + Bu

z̄z
dz̄⊗ dz + Bu

z̄z̄
dz̄⊗ dz̄)

= ev(Bv
ww
dw⊗ dw + Bv

ww̄
dw⊗ dw̄ + Bv

w̄w
dw̄⊗ dw + Bv

w̄w̄
dw̄⊗ dw̄).

Agu
∶= −∇2

g0
u +

1

2
du⊗ du −

1

4
|∇g0

u|2g0 + Kg0
g0,

(1.16)|∇K|g0 + |ΔK|g0 > 0 on !
2,
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Set deg(∇K, Crit−(K)) ∶= deg(∇K,O, 0) , where O is any open subset of !2 contain-
ing Crit−(K) and disjoint from Crit+(K) . By (1.16), this is well defined.

Theorem  1.10 ([36]) Assume that K ∈ C2(!2) is a positive function satisfying the 
nondegeneracy condition (1.16). Then there exists a positive constant C depending 
only on K, such that

for all C2 solutions u of the equation

Moreover, if deg(∇K, Crit−(K)) ≠ 1 , then (1.17) admits a solution.

Remark 1.11 If K ∈ C2,!(!2) , 0 < ! < 1 , and O is an open subset of C4,!(!2) which 
contains all solutions of (1.17), then

Here the degree on the left hand side is as defined in [34].

Remark 1.12 For any K satisfying (1.16) and having only isolated nondegenerate 
critical points,

where i(x̄) denotes the number of negative eigenvalues of ∇2K(x̄).

Theorem  1.10 is related to the Nirenberg problem, which amounts to solving 
!1("(Agu

)) = K on !2 . There has been much work on the Nirenberg problem and related 
ones, see, e.g., K. C. Chang and Liu [10], S.-Y. A. Chang and Yang [14], Z.-C. Han [26], 
Jin et al. [31], and the references therein. For n ≥ 3 and k ≥ 2 , the !k-Nirenberg problem 
was studied by S.-Y. A. Chang et al. [13] and Y. Y. Li et al. [41].

The above-mentioned Liouville type theorem for general conformally invariant equa-
tions f (!(Au)) = 1 in [33] was stimulated by the study of fully nonlinear elliptic equa-
tions involving the Schouten tensor, and in particular by the study of the !k-Yamabe 
problem.

The existence of solutions of the !k-Yamabe problem has been proved for k ≥ n

2
 , 

k = 2 or when (M, g) is locally conformally flat, and the compactness of the set of 
solutions has been proved for k ≥ n

2
 when the manifold is not conformally equivalent 

to the standard sphere—they were established in [11, 20, 22, 24, 32, 37, 49]. For 

Crit+(K) = {x ∈ !
2 ∶ ∇g0

K(x) = 0,Δg0
K(x) > 0},

Crit−(K) = {x ∈ !
2 ∶ ∇g0

K(x) = 0,Δg0
K(x) < 0}.

‖u‖C2(!2) ≤ C,

(1.17)!2("(g
−1
u
Agu

)) = K(x), "(Agu
) ∈ Γ2 on !

2.

deg(!2("(A
v)) − K,O, 0) = −1 + deg(∇K, Crit−(K)).

deg(∇K, Crit−(K)) =
∑

x̄∈!2,∇K(x̄)=0,ΔK(x̄)<0

(−1)i(x̄),



1 3

A Liouville Theorem for Möbius Invariant Equations  

more recent works on !k-Yamabe type problems, see, for example, [1–3, 7–9, 17, 18, 
21, 23, 25, 27–30, 38, 39, 42, 48, 50, 51] and references therein. On the other hand, 
the existence of solutions remains open when 2 < k <

n

2
 , and the compactness of 

solutions remains open when 2 ≤ k <
n

2
.

One of our motivations in studying the Möbius invariant equations in dimension 
two is to gain insights and inspirations into solving the above-mentioned open prob-
lems on the existence and compactness of the !k-Yamabe problem, for 2 ≤ k <

n

2
.

The rest of our paper is organized as follows. In Sect. 2, we recall the definition 
of viscosity solutions for !(Au) ∈ "Γ and a regularization lemma. We then give a 
proof of the crucial asymptotic behavior of viscosity supersolutions Proposition 1.8. 
Theorem 1.5 is proved in Sect. 3 using the method of moving spheres, a variant of 
the method of moving planes. Propositions 1.2 and 1.4 are proved in Sect. 4. Two 
calculus lemmas are given in “Appendix” for the reader’s convenience.

2  Asymptotic Behavior

In this section, we establish an estimate on the asymptotic behavior for viscosity 
supersolution of !(Au) ∈ "Γ on ℝ2∖{compact set} . This estimate allows the method 
of moving spheres argument to get started in the proof of Theorem 1.5 in Sect. 3.

We start with the definition of viscosity solutions for !(Au) ∈ "Γ , see [35, 40] for 
details.

Let us first define the set of upper semi-continuous and lower semi-continuous 
functions.

For any set S ⊂ ℝ2 , we use USC(S) to denote the set of functions 
u ∶ S → ℝ ∪ {−∞} , u ≠ −∞ in S, satisfying

Similarly, we use LSC(S) to denote the set of functions u ∶ S → ℝ ∪ {+∞} , u ≠ +∞ 
in S, satisfying

Definition 2.1 Let Γ satisfy (1.10) and (1.11) and Ω be an open subset in ℝ2 . We say 
u ∈ USC(Ω) is a viscosity subsolution of

if for any point x0 ∈ Ω , ! ∈ C2(Ω) , (u − !)(x0) = 0 and u − ! ≤ 0 near x0 , we have

Similarly, we say u ∈ LSC(Ω) is a viscosity supersolution of (2.1), if for any point 
x0 ∈ Ω , ! ∈ C2(Ω) , (u − !)(x0) = 0 and u − ! ≥ 0 near x0 , we have

lim sup
x→x0

u(x) ≤ u(x0), ∀x0 ∈ S.

lim inf
x→x0

u(x) ≥ u(x0), ∀x0 ∈ S.

(2.1)!(Au) ∈ "Γ in Ω

!(A"(x0)) ∈ ℝ
2 ⧵ Γ.
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We say u is a viscosity solution of (2.1), if it is both a subsolution and a 
supersolution.

Let us recall the well-known regularization of semi-continuous functions 
which will be used in the paper, see [4, 40] for details.

Lemma 2.2 Let Ω be an open set, Ω′ ⊂⊂ Ω , and Ω′′ ⊂⊂ Ω′ . Let u ∈ LSC(Ω̄) be a 
viscosity supersolution of (2.1). We define the !-lower envelope of u by

Then there exists !0 = !0(Ω
′,Ω′′) > 0 , such that for 0 < ! < !0 , 

 (i) u! is monotonically decreasing in ! , and u! → u pointwise, as ! → 0+.
 (ii) u!(x) −

1

!
|x|2 is concave in Ω′ . Consequently, u! is second-order differentiable 

almost everywhere in Ω′′ and u! is Lipschitz in Ω′′.
 (iii) u! is a viscosity supersolution of (2.1) in Ω′′ , and !(Au" ) ∈ Γ̄ at the points of 

Ω′′ where u is second-order differentiable.

Proof We will prove it for Ω = B2R , Ω′ = BR , Ω′′ = BR∕2 ; the general case can 
be proved in the same way. Let x0 , x1 ∈ B̄R . Obviously there exists x∗

0
 , such that 

u!(x0) = u(x∗
0
) +

1

!
|x∗

0
− x0|2 ; moreover, u!(x0) ≤ u(x0) . So we obtain

hence,

and we also know u(x∗
0
) − u(x0) ≤ u!(x0) − u(x0) ≤ 0 . Now by the lower semi-conti-

nuity of u, we obtain (i).
Take x ∈ B̄R,

Take supremum over x ∈ B̄R , then we obtain u!(x0) ≤ u!(x1) +
6R

!
|x1 − x0| . Hence 

|u!(x0) − u!(x1)| ≤
6R

!
|x1 − x0| , so u! is locally Lipschitz.

!(A"(x0)) ∈ Γ̄.

u!(x) ∶= inf
y∈Ω̄′

{
u(y) +

1

!
|y − x|2

}
, ∀x ∈ Ω̄′.

1

!
|x∗

0
− x0|

2 = u!(x0) − u(x∗
0
) ≤ u(x0) − u(x∗

0
);

|x∗
0
− x0|

2
≤ ! osc u,

u!(x0) ≤ u(x) +
1

!
|x − x0|

2

≤ u(x) +
1

!
|x − x1|

2 +
2

!
|x − x1||x1 − x0| +

1

!
|x1 − x0|

2

≤ u(x) +
1

!
|x − x1|

2 +
3

!
⋅ 2R|x1 − x0|.
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Define

so it has the property

That is, P0 touches u! from the above at x0 in B̄R . So for small h, 
Δ2

h
(u!(x0) −

1

!
|x0|2) ≤ 0 , where

This implies that u!(x) − 1

!
|x|2 is concave in BR , so we have obtained (ii).

Let x0 ∈ BR∕2 , and let P(x) be a paraboloid touches u! by below at x0 . Consider 
the paraboloid

Since

we can pick !0 such that ∀! ≤ !0 , if x0 ∈ BR∕2 , then x∗
0
∈ BR . Take any x sufficient 

closed to x∗
0
 so that x + x0 − x∗

0
∈ BR.

By the definition of u!,

If x is sufficiently close to x∗
0
 , then by the assumption on P, we obtain

Therefore, we have

At x∗
0
 , we have, by definition,

This shows Q is a paraboloid touching u from below at x∗
0
 . Since u is a viscosity 

supersolution,

P0(x) = u(x∗
0
) +

1

!
|x − x∗

0
|,

P0(x0) = u!(x0),

P0(x) ≥ u!(x), x ∈ B̄R.

Δ2
h
u(x0) ∶=

u(x0 + h) + u(x0 − h) − 2u(x0)

|h|2
.

Q(x) = P(x + x0 − x∗
0
) −

1

!
|x0 − x∗

0
|2.

|x∗
0
− x0|

2
≤ ! osc u,

u!(x + x0 − x∗
0
) ≤ u(x) +

1

!
|x0 − x∗

0
|2.

u!(x + x0 − x∗
0
) ≥ P(x + x0 − x∗

0
).

Q(x) = P(x + x0 − x∗
0
) −

1

!
|x0 − x∗

0
|2 ≤ u(x).

Q(x∗
0
) = P(x0) −

1

!
|x0 − x∗

0
|2 = u!(x0) −

1

!
|x0 − x∗

0
|2 = u(x∗

0
).

!(AQ(x∗
0
)) ∈ Γ̄.
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However, ∇Q(x∗
0
) = ∇P(x0) , ∇2Q(x∗

0
) = ∇2P(x0) , so we obtain

This implies that u! is a viscosity supersolution. (iii) is proved.   ◻

In the remaining part of this section, we prove the asymptotic behavior Proposi-
tion 1.8.

Proof of Proposition 1.8 Let

In the following, we will make the identification v(y) ∶= v(|y|).
Since u ∈ LSC(ℝ2 ⧵ Br0∕2

) , we have v ∈ LSC(ℝ2 ⧵ Br0∕2
) . Being the infimum 

over a family of viscosity supersolutions, v is a viscosity supersolution of (1.14).
Define

for R > r0 + 2 , 0 < ! < !0(R) , where !0(R) = !0(Ω
′,Ω′′) > 0 is as defined in Lemma 

2.2 with Ω′ = B2R∖B̄ 3r0
4

 , Ω′′ = BR∖B̄r0
 . Clearly, ṽ",R(x) is radially symmetric, and we 

will use ṽ",R(r) to denote ṽ",R(x) , for |x| = r.
Since ṽ",R(r) − 1

"
r2 is concave, by the Rademacher’s theorem and the Alexan-

droff’s theorem, ṽ",R is differentiable almost everywhere, ṽ′
",R
(r) −

2

"
r is monotoni-

cally nonincreasing, and ṽ",R is second-order differentiable almost everywhere. More 
precisely, there exists E!,R ⊂ (r0,R) with |E!,R ∩ (r0,R)| = R − r0 , satisfying:

For r ∈ E!,R , 

 (i) ṽ′
",R
(r) ∶= limh→0

ṽ",R(r+h)−ṽ",R(r)

h
 is finite,

 (ii) ṽ′′
",R
(r) ∶= limh→0

ṽ′
",R

(r+h)−ṽ′
",R

(r)

h
 is finite, where ṽ′

",R
(⋅) is the extension to (r0,R) 

of ṽ′
",R

 defined on E!,R , given by 

 (iii) limh→0

|ṽ",R(r+h)−ṽ",R(r)−ṽ′",R(r)h−
1

2
ṽ′′
",R

(r)h2|

h2
= 0 . 

In the following, when there is no ambiguity, we use ṽ to denote ṽ",R . Denote 
!(Aṽ) = (!1, !2) , then 

  

!(AP(x0)) ∈ Γ̄.

v(r) ∶= inf
|x|=r

u(x).

ṽ",R(x) = inf
y∈B̄2R∖B 3r0

4

{
v(|y|) + 1

"
|y − x|2

}
, ∀x ∈ B̄2R∖B 3r0

4

,

ṽ′
",R
(t) ∶= lim

#→0

1

2# ∫t−#<s<t+#

ṽ′
",R
(s)ds, ∀t ∈ (r0,R).

!1(r) =
1

eṽ

(
−ṽ′′ +

1

4
(ṽ′)2

)
, !2(r) =

1

eṽ

(
−
ṽ′

r
−

1

4
(ṽ′)2

)
in E#,R.
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By Lemma 2.2 (ii)–(iii), ṽ′ − 2

"
r is monotonically nonincreasing, and !(Aṽ) ∈ Γ̄ 

in E!,R . We distinguish into two cases. 

Case 1: Γ = Γ2 . 
By Lemma 2.2 (iii), (!1, !2) ∈ Γ̄2 in E!,R , so 

It follows that 

Since ṽ is locally Lipschitz, ṽ + 4 ln r is monotonically nondecreasing in (r0,R) . 
Sending ! → 0 , using Lemma 2.2 (i), we obtain (1.15).
Case 2: Γ2 ⫋ Γ ⫋ Γ1.

Define

When there is no confusion, denote

It is clear that

Since (!1, !2) ∈ Γ , we also have !1 > 0 on Ẽ , so

Denote

From (2.2) and (2.3), we have

We start with a lemma:

Lemma 2.3 For R > r0 + 2 , 0 < ! < !0(R) , if a ∈ Ẽ",R , then

!2 =
1

eṽ

(
−
ṽ′

r
−

1

4
(ṽ′)2

)
= −

ṽ′

eṽ

(
1

r
+

1

4
ṽ′
)
≥ 0 in E#,R.

(ṽ + 4 ln r)′ ≥ 0 in E",R.

Ẽ",R ∶=

{
r ∈ E",R ∶ ṽ′(r) < −

4

r

}
.

E = E!,R, Ẽ = Ẽ!,R.

(2.2)!2 =
1

eṽ

(
−
ṽ′

r
−

1

4
(ṽ′)2

)
= −

(ṽ′)2

eṽ

(
1

ṽ′
+

r

4
)

r
< 0 on Ẽ.

(2.3)!1 =
1

eṽ

(
−ṽ′′ +

1

4
(ṽ′)2

)
=

(ṽ′)2

eṽ

(
1

ṽ′
+

r

4

)′

> 0 on Ẽ.

g(r) =
1

ṽ′(r)
+

r

4
.

g > 0, g′ > 0 in Ẽ.
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Moreover, ∀a < ! < " < R , !, " ∈ E , we have

Proof Let r̄ ∈ Ẽ . By Lemma 2.2 (ii), ṽ′ − 2

"
r is monotonically nonincreasing, so

Therefore,

Hence, there exists ! > 0 , such that ṽ′(r) + 4

r
< 0 for any r̄ < r < r̄ + " , i.e., 

(r̄, r̄ + ") ∩ E ⊂ Ẽ.
Since a ∈ Ẽ , b ∶= sup{c ∶ (a, c) ∩ E ⊂ Ẽ} is well defined.
For a < ! < s < " < b , !, s, " ∈ E , since ṽ′(r) − 2

"
r is monotonically nonincreas-

ing, we have

By the definition of Ẽ , we have, using −ṽ′(r) ≥ 4

r
 , for any a < r < b , r ∈ E,

Therefore,

So let

We have

(a,R) ∩ Ẽ",R = (a,R) ∩ E",R.

(2.4)0 <
∫

!

"

g′(r)dr ≤ g(!) − g(").

(2.5)lim
r→r̄+

ṽ′(r) ≤ ṽ′(r̄) ≤ lim
r→r̄−

ṽ′(r).

lim
r→r̄+

(
ṽ′(r) +

4

r

)
≤ ṽ′(r̄) +

4

r̄
< 0.

ṽ′(s) − ṽ′
(
s +

1

m

)
≥ −

2

"

1

m
.

0 ≤
1

ṽ′(r +
1

m
)ṽ′(r)

≤

r(r +
1

m
)

16
.

m

(
1

ṽ′(s +
1

m
)
−

1

ṽ′(s)

)

=
m(ṽ′(s) − ṽ′(s +

1

m
))

ṽ′(s +
1

m
)ṽ′(s)

≥ −
s(s +

1

m
)

8"
≥ −

b2

8"
.

hm(s) = m

(
1

ṽ′(s +
1

m
)
−

1

ṽ′(s)

)

≥ −
b2

8"
, # < s < $.

lim
m→∞

hm(s) =

(
1

ṽ′(s)

)′

in E.
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By Fatou’s lemma,

Thus, using g′ > 0 in Ẽ , (2.4) follows.
Now we will prove b = R.
By (2.4), using also ṽ′ < 0 on Ẽ , there exists ! > 0 , such that

If b ≠ R , then by Inequality (2.5), there exists ! > 0 , such that

This violates the definition of b.
Thus, b = R . Lemma 2.3 is now proved.   ◻

For given R > r0 + 2 and 0 < ! < !0(R) , define a!,R
0

 to be:

If Ẽ",R = ∅ then define a!,R
0

= R.
If Ẽ",R ≠ ∅ , then r0 ≤ a!,R

0
< R , and, by Lemma 2.3, (a!,R

0
,R) ∩ Ẽ!,R = (a!,R

0
,R) ∩ E!,R.

Since Γ2 ⫋ Γ ⫋ Γ1 , there exists a unique constant 0 < p < 1 such that (1,−p) ∈ !Γ.
Note that

We will prove

Let k(r) = r
−

1

p g(r) . We have, using (2.2), (2.3) and (2.6),

Set h̃m(s) = m(k(s +
1

m
) − k(s)) , a!,R

0
< " < s < # < R , !, s, " ∈ Ẽ$,R , then using 

Lemma 2.3, we have

∫

!

"

(
1

ṽ′(s)

)′

ds ≤ lim inf
m→∞ ∫

!

"

hm(s)ds

= lim inf
m→∞

(
− m

∫

"+
1

m

"

1

ṽ′(s)
ds + m

∫

!+
1

m

!

1

ṽ′(s)
ds

)

=
1

ṽ′(!)
−

1

ṽ′(")
.

ṽ′ +
4

r
< −" < 0 on

(
a + b

2
, b

)
∩ E.

ṽ′ +
4

r
< −

"

2
< 0 on [b, b + #) ∩ E.

a!,R
0

= inf{a ∶ a ∈ Ẽ!,R, if Ẽ!,R ≠ ∅}.

(2.6)!2 > −p!1 in (a",R
0
,R) ∩ Ẽ",R.

(2.7)!
−

1

p g(!) < "
−

1

p g(") for a#,R
0

< ! < " < R.

k′(r) > 0 in (a!,R
0
,R) ∩ Ẽ!,R.

h̃m(s) = m

((
s +

1

m

)−
1

p

g

(
s +

1

m

)
− s

−
1

p g(s)

)
≥ m

((
s +

1

m

)−
1

p

− s
−

1

p

)
g(s) ≥ −C



 Y. Li et al.

1 3

and

By Fatou’s lemma, we have

Hence, (2.7) follows.
By Lemma 2.2 (i), for any R > r0 + 2 , there exists !′(R) → 0+ as R → ∞ , such 

that ∀0 < ! < !′(R),

We will have two cases: 

Case 1: There exists Ri → ∞ , and 0 < !i < !′(Ri) , such that a!i,Ri

0
→ ∞.

Case 2: There exists Ri → ∞ , and 0 < !i < !′(Ri) , such that a!i,Ri

0
→ K0 < ∞.

For Case 1:
For any r0 < ! < " , ! < a

"i,Ri

0
 for large i. So

Integrating on [!, "] , by Lemma 2.2 (ii), we obtain

Sending i to ∞ , using (2.8), we obtain

For Case 2:
For any K0 < ! < " < ∞ , [!, "] ⊂ (a

$i,Ri

0
,
Ri

2
) for large i.

Using (2.7), we have

Since 0 < p < 1 , it follows that

h̃m(s) → k′(s) as m → ∞, for a",R
0

< # < s < $ < R, s ∈ Ẽ",R.

k(!) − k(") = lim inf
m→∞

(
m
∫

!+
1

m

!

k(s)ds − m
∫

"+
1

m

"

k(s)ds

)

= lim inf
m→∞ ∫

!

"

h̃m(s)ds ≥ ∫

!

"

k′(s)ds > 0, ", ! ∈ Ẽ$,R.

(2.8)|ṽ",R(x) − v(x)| ≤ e−R, ∀r0 ≤ x ≤ R.

d

dr
(ṽ"i,Ri

(r) + 4 ln r) = ṽ′
"i,Ri

(r) +
4

r
≥ 0, ∀# ≤ r ≤ $.

ṽ"i,Ri
(#) + 4 ln # ≥ ṽ"i,Ri

($) + 4 ln $.

v(!) + 4 ln ! ≥ v(") + 4 ln ".

1

4
⋅

Ri

2
>

1

ṽ′
"i,Ri

(
Ri

2
)
+

1

4
⋅

Ri

2
>

g(x)

x
1

p

(
Ri

2

) 1

p

for x ∈ [#, $].

1

ṽ′
"i,Ri

(x)
+

x

4
< CR

1− 1

p

i
= o(1) uniform for x ∈ [#, $].
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Therefore,

By Lemma 2.2 (ii), integrating on x, we obtain

Sending i → ∞ , using (2.8) and Ri → ∞ , we obtain

Proposition 1.8 is now proved.
  ◻

3  Liouville Theorem

In this section, we prove Theorem 1.5. Given the asymptotic behavior established 
in Sect. 2, we can handle the possible singularity of u at infinity either by follow-
ing the proof in [33, Theorem 1.3], or by invoking a general result in [6]. Here we 
give the latter.

Recall:

Theorem A [6, Theorem 1.1] For n ≥ 1 , let Ω be a domain in ℝn containing the ori-
gin, and let F ∈ C1(Ω,ℝ,ℝn,Sn×n) satisfy

Assume that u ∈ C2(Ω∖{0}) satisfies

for some r̄ > 0 , v ∈ C2(Ω) , and

Then

Remark 3.1 In n ≥ 2 , a superharmonic function u ∈ C0(B1∖{0}) satisfying 
infB1∖{0}

u > −∞ has the above property (3.1).

d

dx
(ṽ"i,Ri

(x) + 4 ln x) = ṽ′
"i,Ri

(x) +
4

x
> o(1) uniform for x ∈ [#, $].

ṽ"i,Ri
(#) + 4 ln # > ṽ"i,Ri

($) + 4 ln $ + o(1).

v(!) + 4 ln ! ≥ v(") + 4 ln ".

−
!F

!Mij

(x, s, p,M) > 0, ∀(x, s, p,M) ∈ Ω ×ℝ ×ℝ
n × S

n×n.

(3.1)
For any V ∈ ℝ

n, w(x) ∶= u(x) + V ⋅ x satisfies inf
Br∖{0}

w = min
!Br

w, ∀0 < r < r̄,

u > v in Ω∖{0},

F(x, u,∇u,∇2u) ≥ F(x, v,∇v,∇2v) in Ω∖{0}.

lim inf
x→0

(u − v)(x) > 0.
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Proof of Theorem  1.5 We use the method of moving spheres. The proof is simi-
lar to that of [33, Theorem 1.3], see also the proofs of [43, Theorem 1.1] and [44, 
Theorem 1.1].

To begin with, we recall the notation

Denote F(Au) = f (!(Au)) . Notice that if F(Au) = 1 , then F(Au,!) = 1 , where we have 
used the invariance property of Au and F.

For the sake of convenience, denote

Lemma 3.2 For every x ∈ ℝ2 , there exists !0(x) > 0 such that ux,!(y) ≤ u(y) , for all 
0 < ! < !0(x) and |y − x| ≥ !.

Proof Without loss of generality. We assume x = 0 . Consider the function 
u(r, !) + 2 ln r . We have

Thus, there exists r0 > 0 , such that for all 0 < r < r0 , we have

It follows that for 0 < r1 ≤ r2 < r0 , we have

Choose r2 = |y| , r1 = !2

|y|
 , then for all 0 < ! ≤ |y| < r0 , we have

i.e.,

It follows that for all 0 < ! ≤ |y| < r0 , we have

Now let us consider |y| ≥ r0 . By Proposition 1.8, we have

ux,!(y) = u

(
x +

!2(y − x)

|y − x|2

)
− 4 ln

|y − x|
!

.

u!(y) = u

(
!2y

|y|2

)
− 4 ln

|y|
!
.

!

!r
(u(r, ") + 2 ln r) =

!u

!r
+

2

r
.

!

!r
(u(r, ") + 2 ln r) > 0.

u(r1, !) + 2 ln r1 ≤ u(r2, !) + 2 ln r2.

u

(
!2

|y|
, "

)
+ 2 ln

!2

|y|
≤ u(|y|, ") + 2 ln |y|,

u

(
!2

|y|
, "

)
− 4 ln

|y|
!

≤ u(|y|, ").

u!(y) ≤ u(y).
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Thus, there exists a constant a, such that for all |y| ≥ r0 , we have

Then for |y| ≥ r0 ≥ ! , we have

It follows that there exists 0 < !0 ≤ r0 , such that for all |y| ≥ r0 , 0 < ! ≤ !0 , we have

The lemma is now proved.  ◻

By Lemma 3.2, we can define for x ∈ ℝ2,

By Proposition 1.8,

We have two cases: 

Case 1: ! = +∞ .  
      We will prove that this case does not occur. We first prove that 

Once (3.2) is proved, by Lemma A.1, we obtain that u must be constant and 
therefore Au = 0 . This violates the condition !(Au) ∈ Γ . Hence, Case 1 does not 
occur. Without loss of generality, we only need to prove (3.2) for x = 0 . Suppose 
"̄ ∶= "̄(0) < ∞ . For each ! > 0 fixed, we have 

Since ! = +∞ , we have, for every ! > 0 , u(y) − u!(y) → +∞ as |y| → ∞ . It follows 
that there exists M > 0 , such that 

Since F(Au) = 1 is Möbius invariant, we have F(Au!) = 1 . Therefore, by the condi-
tion !"i f > 0 in Γ , there exists a linear second-order elliptic operator L, such that 

lim inf
|y|→∞

(u(y) + 4 ln |y|) > −∞.

u(y) + 4 ln |y| ≥ a.

u(y) − u!(y) = u(y) + 4 ln |y| − u

(
!2y

|y|2

)
− 4 ln !

≥ a − u

(
!2y

|y|2

)
− 4 ln !.

u(y) ≥ u!(y).

"̄(x) ∶= sup{# ∶ ux,"(y) ≤ u(y), |y − x| ≥ ", 0 < " < #} ∈ (0,+∞].

! ∶= lim inf
|x|→∞

(u(x) + 4 ln |x|) ∈ (−∞,+∞].

(3.2)"̄(x) = +∞, ∀x ∈ ℝ
2.

u(y) − u!(y) = u(y) + 4 ln |y| − u

(
!2y

|y|2

)
− 4 ln !, y ∈ ℝ

2∖{0}.

(3.3)u!(y) < u(y), 0 ≤ ! ≤ !̄ + 1, |y| ≥ M.
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By the maximum principle and the Hopf lemma, we have 

By the compactness of !B#̄ and (3.5), we have 

By the continuity of ∇u , there exists ! > 0 , such that

Since u = u! on !B" , we have

On the other hand, (3.4) implies

By the continuity of u, there exists 0 < ! < " , such that

By (3.3), (3.6) and (3.7), we have proved

This violates the definition of "̄ , and (3.2) is proved. 

Case 2: ! ∈ ℝ.
    We first claim that "̄(x) < ∞ , ∀x ∈ ℝ2.

In fact, for all |y − x| ≥ ! , 0 < ! < !̄(x) , we have

i.e.,

Fix x ∈ ℝ2, ! > 0 , let y → ∞ , and then let ! → !̄(x) . It follows that

L(u − u"̄) = 0 on ℝ
2 ⧵ B"̄,

u − u"̄ = 0 on #B"̄.

(3.4)u − u"̄ > 0 on ℝ
2 ⧵ B"̄,

(3.5)!

!r
(u − u#̄) > 0 on !B#̄.

!

!r
(u − u#̄)|!B#̄

≥ b > 0.

!

!r
(u − u")(y) ≥

b

2
, "̄ ≤ " ≤ "̄ + $, " ≤ |y| ≤ " + $.

(3.6)u!(y) ≤ u(y), !̄ ≤ ! ≤ !̄ + #, ! ≤ |y| ≤ ! + #.

u"̄(y) ≤ u(y), "̄ + # ≤ y ≤ M.

(3.7)u!(y) ≤ u(y), !̄ ≤ ! ≤ !̄ + #, !̄ + $ ≤ y ≤ M.

u!(y) ≤ u(y), !̄ ≤ ! ≤ !̄ + #, |y| ≥ !.

ux,!(y) ≤ u(y),

u

(
x +

!2(y − x)

|y − x|2

)
− 4 ln

|y − x|
!

≤ u(y).
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Therefore, "̄(x) < ∞ , ∀x ∈ ℝ2 . The claim is proved.
Next, we will prove

Once (3.8) is proved, Theorem 1.5 follows from Lemma A.2.
Without loss of generality, we only need to prove (3.8) for x = 0 . We still 

denote "̄ = "̄(0) . It suffices to prove

From the definition of "̄,

Suppose on the contrary that (3.9) does not hold, then by the strong maximum 
principle,

This is equivalent to

By Theorem A, we know

namely

Hence, there exists !0 > 0 and M > 0 , such that

It follows that there exists ! > 0 , such that

Similar to Case 1, using the Hopf lemma, there exists ! > 0 , such that

This violates the definition of "̄.
Therefore, we have proved (3.8). ◻

! ≥ u(x) + 4 ln #̄(x), ∀x ∈ ℝ
2.

(3.8)ux,"̄(x) ≡ u on ℝ
2∖{x}, ∀x ∈ ℝ

2.

(3.9)u"̄ ≡ u on ℝ
2 ⧵ B"̄.

u"̄ ≤ u on ℝ
2 ⧵ B"̄.

u"̄ < u on ℝ
2 ⧵ B"̄.

u"̄ > u on B"̄∖{0}.

lim inf
|y|→0

(u"̄(y) − u(y)) > 0,

lim inf
|y|→∞

(u(y) − u"̄(y)) > 0.

u(y) ≥ u"̄(y) + #, |y| > M.

u(y) ≥ u!(y), 0 ≤ ! ≤ !̄ + #, |y| ≥ M.

u(y) ≥ u!(y), 0 ≤ ! ≤ !̄ + #, |y| ≥ !.
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4  Conformal Invariance and Möbius Invariance

We first prove Proposition 1.4:

Proof  of Proposition 1.4 Let x ∈ ℝ2 , s ∈ ℝ , p ∈ ℝ2 , M ∈ S
2×2 , and O ∈ O(2) . Let 

u be a smooth function satisfying u(x) = s , ∇u(x) = p , and ∇2u(x) = M . Consider 
!(z) = z + x . Now evaluating (1.7) at the origin, we have

So H is independent of x. In the following, we denote H(s, p,M) = H(0, s, p,M).
Now define another smooth function u satisfying u(0) = s , ∇u(0) = 0 , and 

∇2u(0) = M . Consider !(z) = Oz , then evaluating (1.7) at the origin gives:

Next define a function u satisfying u(0) = s , ∇u(0) = p , and ∇2u(0) = M . Consider 
!(z) = e−s∕2z , so u! (z) = u(e−s∕2z) − s . Evaluating (1.7) at the origin gives:

Finally, define ! = −
4p

|p|2
∈ ℝ2 , and pick a smooth function u satisfying u(!) = s , 

∇u(!) = p , and ∇2u(!) = M . Consider the Möbius transformation !(z) =
16z

|p|2|z|2
 . By 

a  direct computation, we have u! (z) = u(
16z

|p|2|z|2
) − 4 ln |z| + 4 ln 4 − 4 ln |p| and 

!−1(") = −
4p

|p|2
.

We can easily check that

and

So

By a direct computation, we can check the property that for any y ∈ ℝ2 and Möbius 
transformation !,

where the notation A ∼ B means A and B are orthogonally similar to each other. 
Hence,

H(0, s, p,M) = H(x, s, p,M).

(4.1)H(s, 0,O−1MO) = H(s, 0,M).

(4.2)H(0, e−s∕2p, e−sM) = H(s, p,M).

u!◦!
−1(") = u(") = s

∇u!◦!
−1(") = 0.

Au!◦!
−1(") = −

∇2u!

eu!
◦!

−1(") = −
∇2u!◦!

−1(")

es
.

Au!◦!
−1(y) ∼ Au(y),

−
∇2u!◦!

−1(")

es
∼ Au("),
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i.e.,

Evaluating (1.7) at !−1(") , using also (4.1), (4.2) and (4.3),

The proposition follows.   ◻

Then we prove Proposition 1.2:

Proof of Proposition 1.2 It is easy to see that we still have

where F is invariant under orthogonal conjugation. However, we observe that for 
general meromorphic functions, the relation Au! ∼ Au

◦! does not hold. Now we are 
going to prove that F must be a function of the trace.

Set !(z) = iz2 , i.e., !(x, y) = (2xy,−x2 + y2) . Set u(x, y) = ax2 . So

Evaluating (1.6) at (0, y), we have

Similarly, by a direct computation,

Taking appropriate a and y, the relation F(Au)◦! = F(Au! ) implies that

for any {!1, !2} satisfying that at least one of them is positive. Negative case 
comes from evaluating (1.6) at (x, 0). Hence F must be a function of the trace, i.e., 
F(Au) = g(−e−uΔu) . Moreover, it is straightforward to check that g(−e−uΔu) is con-
formally invariant.   ◻

(4.3)∇2u!◦!
−1(") ∼ −esAu(").

H(s, p,M) = H(s, 0,∇2u!◦!
−1("))

= H(s, 0,−esAu("))

= H(0, 0,−Au(")).

H(⋅, u,∇u,∇2u) = F(Au),

Au
◦! = −

1

e4ax2y2

(
2a − 4a2x2y2 0

0 4a2x2y2

)
.

Au
◦!(0, y) =

(
−2a 0
0 0

)
.

u! (x, y) = 4ax2y2 + ln 4 + ln(x2 + y2),

Au! (0, y) =

(
−2a − 3

4y4
0

0 3

4y4

)

.

F

((
!1 0
0 !2

))
= F

((
!1 + !2 0

0 0

))
,
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Appendix A: Two Calculus Lemmas

We now state two calculus lemmas for the reader’s convenience.

Lemma A.1 Let u ∈ C1(ℝ2) satisfy

Then u must be constant.

Proof Let f = eu , then we have

By [43, Lemma 11.1] (see also [44, Lemma 3.3]), we conclude that f is a constant; 
hence, u is a constant.   ◻

Lemma A.2 Let u ∈ C1(ℝ2) . Suppose that for every x ∈ ℝ2 , there exists !(x) > 0 
such that

Then for some a > 0 , b > 0 , x̄ ∈ ℝ2,

Proof Let f = eu , then we have, for every x ∈ ℝ2 , there exists !(x) > 0 such that

By [43, Lemma 11.1] (see also [44, Lemma 3.7]),

Lemma A.2 follows.   ◻
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u

(
x +

!2(y − x)

|y − x|2

)
− 4 ln

|y − x|
!

≤ u(y), ∀! > 0, x ∈ ℝ
2, |y − x| ≥ !.

(
!

|y − x|

)4

f

(
x +

!2(y − x)

|y − x|2

)
≤ f (y), ∀! > 0, x ∈ ℝ

2, |y − x| ≥ !.

ux,!(x)(y) = u(y), y ∈ ℝ
2∖{x}.

u(x) = 2 ln
8a

8|x − x̄|2 + b
.

(
!

|y − x|

)4

f

(
x +

!2(y − x)

|y − x|2

)
= f (y), y ∈ ℝ

2∖{x}.

f (x) = ±

(
a

d + |x − x̄|2

)2

.
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