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Abstract

In this paper, we classify Mobius invariant differential operators of second order
in two-dimensional Euclidean space, and establish a Liouville type theorem for
general Mobius invariant elliptic equations. The equations are naturally associ-
ated with a continuous family of convex cones Fp in R2, with parameter p € [1,2],
joining the half plane I'} :={(4;,4,) : 4, + 4, >0} and the first quadrant
I, :={(4;,4) : 41,4, > 0}. Chen and C. M. Li established in 1991 a Liouville
type theorem corresponding to I'; under an integrability assumption on the solution.
The uniqueness result does not hold without this assumption. The Liouville type
theorem we establish in this paper for I, I < p < 2, does not require any additional
assumption on the solution as for I'}. This is reminiscent of the Liouville type theo-
rems in dimensions n > 3 established by Caffarelli, Gidas and Spruck in 1989 and
by A. B. Li and Y. Y. Li in 2003-2005, where no additional assumption was needed
either. On the other hand, there is a striking new phenomena in dimension n = 2 that
', for p = 1is a sharp dividing line for such uniqueness result to hold without any
further assumption on the solution. In dimensions n > 3, there is no such dividing
line.
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1 Introduction

For n > 3, consider the equation

—Auzn(n—2)u% on R", (1.1)

The Liouville type theorem of Caffarelli et al. [5] asserts that positive C? solutions
of (1.1) are of the form

n=2
a 2

ux) = ——mm — ,

2 <1+a2|x—5c|2>

where a > 0 and ¥ € R”. Under an additional hypothesis u(x) = O(|x|>™") for large |x|,
the result was established earlier by Obata [47] and Gidas et al. [19].

Geometrically, Eq. (1.1) means that the scalar curvature of the Riemannian
metric u2 dx? is equal to 4n(n — 1). An analogous equation in dimension two is

—Au=¢€* on RZ (1.2)

Geometrically, it means that the Gaussian curvature of e“dx” is equal to 1 The above
equation has plenty of solutions according to a classical theorem of Liouville [45]:
Let Q be a simply connected domain in R, then all C? real solutions u of —Au = e*
in Q are of the form

_S@PF
1+ QPP

where z = x| + \/—_lxz, and f(z) is a locally univalent meromorphic function, i.e., a
meromorphic function in Q which has zeros or poles of order at most 1. In particu-
lar, let f{z) be any holomorphic function satisfying f’(z) # 0 in C, the u given by the
representation formula (1.3) is a solution of (1.2). For instance, if we take f(z) = €%,
then we obtain a solution u(x;, x,) = log(8e*1(1 + *1)72).

On the other hand, Chen and C. M. Li proved in [15] that C? solutions of (1.2)
satisfying

u(x;,x,) =1In

(1.3)

/ e’ dx < +o0 (1.4)
R2

are of the form

8a . 2
=2ln————— R-,
u) n 8a? + |x — xy|? mn

where a > 0 and x, € R~
Eq. (1.2) is conformally invariant. For a C* function u, let

u, ‘=uoy +Inl|J,|, (1.5)
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where y(z) is a holomorphic function with nonzero Jacobian determinant |J,, |. Then
we have

—e"Au, = (—e™"Au)oy on R2.

Here we consider the holomorphic function y as a map from R? to R2.

In particular, if u is a solution of (1.2), then U, is also a solution in the cor-
responding domain. In fact, Eq. (1.2) is in a sense the only conformally invariant
equation as explained below.

Let S>? denote the set of 2 X 2 real symmetric matrices.

Definition 1.1 Let H be a function from R? x R x R? x S>? to R. We say that a
second-order differential operator H(-, u, Vu, VZu) is conformally invariant if for any
meromorphic function y on C, and any function u € C%(R?), it holds that:

H(-,u,, Vu,, V2u,) = HC,u, Vu, Viu)oy. (1.6)

Note that (1.6) is understood to hold at any point z € C which is not a pole of
y or zero of y'.

The following proposition classifies all conformally invariant second-order dif-
ferentiable operators.

Proposition 1.2 H(-,u, Vu, V2u) is conformally invariant in R? if and only if it is of
the form:

H(-,u, Vu, V?u) = g(—e™“Au),

where g is a function from R to R.

In this paper, we study a larger class of invariant operators, namely those
invariant under Mobius transformations.

Recall that a Mobius transformation is a transformation generated by a finite
composition of

dx) =x+x5, d(x)=Ax, ¢p(x) =0x, and ¢(x) = ﬁ in R?,
X

where A is a nonzero constant, and O is an orthogonal matrix. In complex variables
z=x; + V—1lx,, they are given by

az+b _az+b
or

¢ = cz+d  cz+d’

a,b,c,d € C and ad — bc # 0.

Definition 1.3 Let H be a function from RZx R x R2xS>? to R. We say
H(-,u, Vu, V?u) is Mobius invariant if for any Mobius transformation y and any
function ¥ € C*(R?), it holds that:
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Y.Lietal.

H(-,u,, Vu,,V?u,) = H(,u, Vu, Vu)oy on R, (1.7
We prove that all Mobius invariant operators can be expressed as F(A"), where
A 1= —e"V2u+ %e_”du ® du - %e‘”qulzl (1.8)

is a 2 X 2 symmetric matrix operator of second order.

Notice that tr(A"*) = —e™Au, conformally invariant operators are, as shown in
Proposition 1.2, a function of the trace of A" in this setting.

The operator A has the following invariance property: for any Mobius transfor-
mation y and any x € R%, A% (x) = 0" (A%oy)0, where O = |J,,|7'/2J,, € O(2), the
set of all real orthogonal matrices.

Moreover, for a Mobius transformation y, denote y = w(x) as the coordinate
change, and v = Uy, then

e"(Aldy, ® dy)) = €"(A}dx; ® d,).

Hence, F(A") = F(A"oy) for any F : S - R which is invariant under orthogo-
nal conjugation. We say that F is invariant under orthogonal conjugation if

F(O™'MO) = FM), YM € 872, 0 € 0(2). (1.9)

For M € 872, let AM) = (A,(M), A,(M)) with 4,(M) and 1,(M) being the eigen-
values of M. Then a function F on S satisfying (1.9) corresponds to a symmetric
function f on R? satisfying F(M) = f(A(M)) for all M € 52,

We classify all Mobius invariant operators in the following proposition.

Proposition 1.4 Let H(-,u, Vu, V*u) be Mobius invariant in R?, then H is of the
Sform:

H(-,u, Vu, V?u) = F(A")

where F : 8% — R is invariant under orthogonal conjugation, i.e., F satisfies
(1.9).

In dimension n > 3, a classical theorem of Liouville states that any local confor-
mal diffeomorphism in R” is the restriction of a Mdbius transformation. Therefore,
unlike Definitions 1.1 and 1.3 for operators in R?, conformally invariant operators
and Mobius invariant operators in R” are the same for n > 3. The classification of
conformally invariant operators of second order was given by A. B. Li and Y. Y. Li
in [32]. Our proof of Proposition 1.4 follows the arguments there.

The main result in this paper is a Liouville type theorem for Mdbius invariant
elliptic equations F(A*) = 1in R2.

From now on, let

I" be an open convex symmetric cone in R? with vertex at the origin, (1.10)

and
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crcry, (1.11)

where I'} 1= {(4,,4,) : 4, + 4, >0} and I', :={(4}, 4,) : 4, > 0,4, > 0}. Here,
I" being symmetric means that (4,, 4,) € I' implies (4,, 4;) € I'. Also, a function f
defined on I is said to be symmetric if f(4,, 4,) = f(4,, 4)).

It is not difficult to see that I" satisfies (1.10) and (1.11) if and only if I' =T, for
some 1 < p <2 where

T,= (A= 4) 1 4> @ =22, 4 > (p -2k}

Note that the above definition of I'; and I', is consistent with earlier definitions.

Theorem 1.5 Let I' =T, for some 1 <p <2, and let f € C\(") be symmetric and
satisfy diff >0inT,i=1,2. Assume that u is a C* solution of

FOA) =1 in R?, (1.12)

where A(A*) € T are the eigenvalues of A". Then, for some x, € R* and some con-
stants a, b > 0 satisfying 2~ 'a=2b,27'a™2b) € T and f(2"'a?b,27'a?b) = 1,

8a

=2In——.
u() g 8lx —xy|2+ b

(1.13)

Remark 1.6 Theorem 1.5 still holds when replacing f € C'(I') and 9, S>0inT,
i = 1,2 by: For any compact subset K C I', there exists constant C(K) > 1 such that

1
@IIMII SfA+p) —fD) S CENpull, YA A+u €K, u=(uy, ), Hys 4y > 0.
Remark 1.7 For u given in (1.13), A* =2"'a=2bI, where I is the 2 x 2 identity
matrix.

In the above theorem, no additional assumption on u near infinity is made. In
particular, we do not assume a priori the integrability condition (1.4). The hypoth-
esis d,f >0 means that the equation f(A(A")) =1 is elliptic. For I'=T; and
f(41,4y) = A, + 4,, the equation is —Au = e". As mentioned earlier, solutions were
classified in [15] under the assumption (1.4). In this case, the conclusion does not
hold without the assumption. When f(4,, 4,) = 0,(4) := A, 4,, defined on I',, the
equation becomes det(A*) = 1.

I, is a continuous family of convex cones in parameter p € [1,2]. When p =1,
without the integrability condition (1.4), there are abundant solutions to Eq. (1.12),
as shown in (1.3). If p > 1, the uniqueness result holds with no additional assump-
tion on u. We emphasize the curious fact that for Eq. (1.12), p = 1is a sharp divid-
ing line for such uniqueness result. There is no such dividing line in dimensions
n>3.

A Liouville type theorem of the form ¢,(A(A*)) = 1 in R* was proved by S.-Y.
A. Chang et al. in [12], where o, denotes the second elementary symmetric
function in R*. For n > 3, a Liouville type theorem for general elliptic equation
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f(A(A")) = 1in R" was proved by A. B. Li and Y. Y. Li in [32] and [33]. The latter
is an extension of the above-mentioned Liouville type theorem for Eq. (1.1).

The crucial point in the proof of the uniqueness result Theorem 1.5 is to handle
the possible singularity of the solution at infinity. Our proof requires new novel
ingredients.

Theorem 1.5 is proved using the moving sphere method. The first step of the
moving sphere method is to prove that for every x € R?, there exists Ay(x) > 0
such thatu, ;(y) < u(y) for all 0 < 4 < Ay(x) and |y — x| > 4, where
2y =x) > |y — x|

—4m 2"
- P T

u () 1= u<x +
The main difficulty we need to overcome to prove the theorem is to establish this
step. When n > 3, this step can be achieved from the estimate u(x) > (min,,B1 u)|x|*"
for |x| > 1, which follows from the superharmonicity and positivity of #; see Lemma
2.1 in [43] and Lemma 2.1 in [32]. For I'; in dimension n = 2, this step simply fails
without the integrability condition (1.4) on u. The integrability condition was used

in [15] to assure a uniform convergence of ﬁ to a finite number as |x| tends to

infinity, and such uniform convergence has played a crucial role in the proof of the
two dimensional Liouville type theorem there. The situation here is much more deli-
cate since we do not have any additional assumption on u near infinity like (1.4), and

it is difficult to establish a uniform limit of 1?1(|)2| as |x| tends to infinity. Instead, we

establish the following asymptotic behavior of the solution near infinity which is
enough to allow the moving sphere procedure to get started. We then prove the theo-
rem without first knowing that z(l)zl has a finite limit at infinity or that the integrabil-

1
ity condition (1.4) holds.

Proposition 1.8 Let I' =T, for some 1 < p <2, and let u be a viscosity supersolu-
tion of

AMA") € 0T  in R®>\ Bx (1.14)
2

for some ry, > 0. Then there exists K, > 0, such that

})%f u(r)+41nr is monotonically nondecreasing for r > K,. (1.15)

r

Consequently, liminf,_,  (u(x) +41n|x|) > —c0.

X—00

Chow and Wan [16, Corollary 2] gave a complex analysis proof of the above-
mentioned Liouville type theorem for Eq. (1.2) using Liouville’s representation
formula (1.3).

Question 1.9 Is there a complex analysis proof of Theorem 1.57
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In connection with the above question, we bring attention to a simple complex
analysis proof of the following Jorgen’s theorem by Nitsche [46]: Any smooth
solution of det(D?u) = 1in R? must be a quadratic polynomial.

We write AZ.dxi ®dx; in complex variables. Denote z=x; + \/—_le and
=x - \/—_lxz. It is straightforward to check that

I\l

Aldy; ® dv; = B dz ® dz + B'.dz ® dZ + B dZ ® dz + BL.dZ ® dZ,

1.2
n u — _ 1
B = <Bzz Bzz> — et uzzl , U, + S
u u *
B B, Uz + Uz — Uz

. . 1
If u is a real function, then —u_, + Euf

B"is a Hermitian matrix.

We have the following ways to describe the Mobius invariance in complex
variables.

For any Mobius transformation y and any z € C, B (z) = U*(B"oy)U, where

| <0_w w
U=——| &% &% )eUv®,
yw'(2) >

0z

where

is the complex conjugate of —u.. + 142, and

Z 277

the set of all unitary matrices.
Moreover, for a Mdbius transformation y, denote z = w(w) as the coordinate
change, and v = Uy, Then

e (BZZdz ®dz + B;Zdz ®dz + B;ZdZ ®dz+ Bgzdz ® dz)
= e"(BtVde ® dw + Bfw_vdw ®dw + B‘;de"v ® dw + Bf_vwdv"v ® dw).
The second-order differential matrix operator A” in (1.8) corresponds to a (0, 2)-ten-

sor on the standard Euclidean 2-sphere (S?, g,) in R?. For a C? function u on S?, we
associate with the conformal metric g, := e“g, a (0, 2)-tensor

1 1
A, = —V;]u + gdu ® du — Zlvgou|2g0 + K, 80

where K, = 1is the Gaussian curvature of the metric g,

Theorem 1.5 is the starting point of our proof of the following results in a subse-
quent paper [36] on the existence and compactness of solutions to the o,-Nirenberg
problem.

For K satisfying the nondegeneracy condition

|VK|,, +|AK], >0 on S?, (1.16)

we define the sets
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Crit,(K) = {x € $* : VK =0,A, K(x) >0},
Crit_(K) = {x€ S* : V, K(x) = 0,A, K(x) < 0}.

Set deg(VK, Crit_(K)) := deg(VK, 0,0), where O is any open subset of S? contain-
ing Crit_(K) and disjoint from Crit, (K). By (1.16), this is well defined.

Theorem 1.10 ([36]) Assume that K € C*(S?) is a positive function satisfying the
nondegeneracy condition (1.16). Then there exists a positive constant C depending
only on K, such that

||M|IC2(§Z) S C,
for all C? solutions u of the equation
oy (Mg, A ) = K(x), AA,) €T, on S°. (1.17)

Moreover, if deg(VK, Crit_(K)) # 1, then (1.17) admits a solution.

Remark 1.11 If K € C>%(S?),0 < a < 1, and O is an open subset of C**(S?) which
contains all solutions of (1.17), then

deg(c,(A(A") — K, O,0) = —1 + deg(VK, Crit_(K)).

Here the degree on the left hand side is as defined in [34].

Remark 1.12 For any K satisfying (1.16) and having only isolated nondegenerate
critical points,

deg(VK,Crit_(K)) = Z (= 1),
X€S?,VK(x)=0,AK(X)<0

where i(X) denotes the number of negative eigenvalues of V2K (%).

Theorem 1.10 is related to the Nirenberg problem, which amounts to solving
o1(4(A,)) = Kon S2. There has been much work on the Nirenberg problem and related
ones, see, e.g., K. C. Chang and Liu [10], S.-Y. A. Chang and Yang [14], Z.-C. Han [26],
Jin et al. [31], and the references therein. For n > 3 and k > 2, the ¢-Nirenberg problem
was studied by S.-Y. A. Chang et al. [13] and Y. Y. Liet al. [41].

The above-mentioned Liouville type theorem for general conformally invariant equa-
tions f(A(A*)) = 1in [33] was stimulated by the study of fully nonlinear elliptic equa-
tions involving the Schouten tensor, and in particular by the study of the ¢,-Yamabe
problem.

The existence of solutions of the 6,-Yamabe problem has been proved for k > =,
k =2 or when (M, g) is locally conformally flat, and the compactness of the set of
solutions has been proved for k > g when the manifold is not conformally equivalent
to the standard sphere—they were established in [11, 20, 22, 24, 32, 37, 49]. For
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more recent works on ¢,-Yamabe type problems, see, for example, [1-3, 7-9, 17, 18,
21, 23, 25, 27-30, 38, 39, 42, 48, 50, 51] and references therein. On the other hand,
the existence of solutions remains open when 2 < k < g, and the compactness of
solutions remains open when 2 < k < g

One of our motivations in studying the Mobius invariant equations in dimension
two is to gain insights and inspirations into solving the above-mentioned open prob-
lems on the existence and compactness of the 6,-Yamabe problem, for 2 < k < '5’

The rest of our paper is organized as follows. In Sect. 2, we recall the definition
of viscosity solutions for 4(A") € dI" and a regularization lemma. We then give a
proof of the crucial asymptotic behavior of viscosity supersolutions Proposition 1.8.
Theorem 1.5 is proved in Sect. 3 using the method of moving spheres, a variant of
the method of moving planes. Propositions 1.2 and 1.4 are proved in Sect. 4. Two
calculus lemmas are given in “Appendix” for the reader’s convenience.

2 Asymptotic Behavior

In this section, we establish an estimate on the asymptotic behavior for viscosity
supersolution of A(A*) € dI" on R?\ {compact set}. This estimate allows the method
of moving spheres argument to get started in the proof of Theorem 1.5 in Sect. 3.

We start with the definition of viscosity solutions for A(A*) € dI', see [35, 40] for
details.

Let us first define the set of upper semi-continuous and lower semi-continuous
functions.

For any set SCR? we use USC(S) to denote the set of functions
u:S—->RU{-o0},u+# —ocoin S, satisfying

limsup u(x) < u(xy), Vx, € S.
X=X

Similarly, we use LSC(S) to denote the set of functionsu : S - RU {+o0}, u # +0
in S, satisfying

liminfu(x) > u(xy), Vx, €S.
X=X

Definition 2.1 Let I satisfy (1.10) and (1.11) and  be an open subset in R?. We say
u € USC(Q) is a viscosity subsolution of

AAY) edl’ in Q 2.1)
if for any point x, € Q, @ € CX(Q), (u — @)(xy) = 0and u — @ < 0 near x;, we have
MA®(xy) € R*\T.

Similarly, we say u € LSC(L) is a viscosity supersolution of (2.1), if for any point
Xy € Q, ¢ € CHQ), (u— @)(x,) = 0and u — @ > 0 near x,, we have
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MA®(xy)) €T.

We say u is a viscosity solution of (2.1), if it is both a subsolution and a
supersolution.

Let us recall the well-known regularization of semi-continuous functions
which will be used in the paper, see [4, 40] for details.

Lemma 2.2 Let Q be an open set, Q' cC Q, and Q" cc Q'. Let u € LSC(Q) be a
viscosity supersolution of (2.1). We define the e-lower envelope of u by

u,(x) := inf {u(y) + 1Iy —x|2}, Vx € Q.
yedy €
Then there exists ¢, = €,(Q', Q") > 0, such that for 0 < € < ¢,

(1) u, is monotonically decreasing in €, and u, — u pointwise, as e — 0%.
(i) wu.(x)— é |x|? is concave in Q'. Consequently, u, is second-order differentiable
almost everywhere in Q" and u, is Lipschitz in Q".
(iii) u, is a viscosity supersolution of (2.1) in Q", and A(A*) € T at the points of
Q" where u is second-order differentiable.

Proof We will prove it for Q = By, Q' = B, Q" = By ; the general case can
be proved in the same way. Let x,, x; € Bg. Obviously there exists x7, such that
u(xo) = u(xy) + ile; - x0|2; moreover, u,(x;) < u(x,). So we obtain

1 2
;Ix(”; = Xo|” = u (x) — u(xy) < ulxy) — u(xy);
hence,
|x* —x,|> < € oscu
0o~ Xol" = ’
and we also know u(x) — u(xg) < u.(xy) — u(xy) < 0. Now by the lower semi-conti-

nuity of u, we obtain (i).
Take x € By,

1 2
u (xg) < u(x) + le—x0|
1 2 1
Su(x)+g|x—x1|2+glx—xlllxl — Xl +E|x1 - X 2

<ulx)+ 1|x—xl|2+ 3 < 2R|x; — xy.
€ €

Take supremum over x € By, then we obtain u,(x,) < u(x;) + @le — x| Hence
6R . . . €
[ (xy) — u (x;)| < ?l)c1 — Xy, so u, is locally Lipschitz.
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Define
3 1 £
Py(x) = u(xy) + Elx =Xyl

so it has the property
Po(xo) = ue('x(])’
Pyx) >u(x), xe BR.

That is, P, touches u, from the above at x, in Bg. So for small h,
A7 (1, (x0) — - |x|%) < 0, where
u(xg + h) + u(xg — h) — 2u(x,)

|A]?

Atu(xy) 1=

This implies that u,(x) — = |)c|2 is concave in By, so we have obtained (ii).
Let x, € Bg,, and let P(x) be a paraboloid touches u, by below at x,. Consider
the paraboloid

* 1 s
O(x) = P(x + xy — x) — g|x0 - X, 2,

Since
* 2 <
lxg — xol” < € oscu,

we can pick €, such that Ve < ¢, if x, € Bg,, then x; € Bg. Take any x sufficient
closed to x; so that x + xj — x; € Bpg.
By the definition of u,,

1
u (x +x9 — xg) < ulx) + =|xy — xglz.

€
If x is sufficiently close to xg, then by the assumption on P, we obtain

u(x+xy — xo) > P(x+xy— xo).
Therefore, we have

B |
O(x) = P(x +xo — X3) — E|x0 — X317 < ux).
At x(’;, we have, by definition,
s 1 12 1 %2 *
Q(—xo) = P(-x()) - ;lxo _xol = ug(xo) - Elxo - -xol = M()CO).

This shows Q is a paraboloid touching u from below at x;. Since u is a viscosity
supersolution,

AA2) eT.
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However, VO(x!) = VP(x,), V2Q(x}) = VZP(x;), so we obtain
AAPE)Y e T

This implies that u, is a viscosity supersolution. (iii) is proved. O

In the remaining part of this section, we prove the asymptotic behavior Proposi-
tion 1.8.

Proof of Proposition 1.8 Let

w(r) := |i{l_f u(x).

In the following, we will make the identification v(y) := v(|y|).
Since u € LSC(R? \ B, ), we have v € LSC(R? \ B, /»). Being the infimum
over a family of viscosity supersolutions, v is a viscosity supersolution of (1.14).
Define

- . 1 =
Ver) = _inf {V(|)’|)+ E|y—x|2}, Vx € Byp\B o,
4

YEB R \B 3rp

forR>ry+2,0<e< eO(R) where €,(R) = ¢,(Q, Q") > 0is as defined in Lemma
2.2 with Q' = B, \B 3, 3r0, =B R\B Clearly, ¥, g(x) is radially symmetric, and we

will use ¥, z(r) to denote Ve g(x), for |x| =r.

Since ¥, z(r) — lr2 is concave, by the Rademacher’s theorem and the Alexan-
droff’s theorem, v€ r 1s differentiable almost everywhere, ve (N — —r is monotoni-
cally nonincreasing, and ¥, p is second-order dlfferentlable almost everywhere More

precisely, there exists E, z C (rg, R) with |E, gz N (ry, R)| = R — r,, satisfying:
Forr € E_p,
o . h
6] v;R(r) 1= lim,,_ M is finite,
ey o~ . R+HD=V, (1) .
(i) vé’ R(1) 1=1im,_ 4 % is finite, where ¥ R( ) is the extension to (ry, R)

of #/ . defined on E_, given by

- .1 -
V’S’R(l) 1= lim — / v’S’R(s)ds, Vi € (ry, R).
6<s<t+6

6—0 26
. [Ve g (r+1) =T (1) =7 (r)h—-\‘/L’R(r)hzl
(ii) lim,_,, = 2 =0.

In the following, when there is no ambiguity, we use ¥ to denote ¥_ . Denote
MAYY = (44, Ay), then

L 1 1LV 1. .
() = 5(—\/’ + Z(V’)2>’ Ay(r) = 5<_7 - Z(v’)2> in E_p
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A Liouville Theorem for Mébius Invariant Equations

By Lemma 2.2 (ii)—(iii), V' — %r is monotonically nonincreasing, and A(4") € T’
in E_ . We distinguish into two cases.

Case 1: I'=T,.
By Lemma 2.2 (iii), (4;, 4,) € [, in E, g, 80

~r ~r
iy = i(—"; - i(v’)2> =-Z(3+77)20 nEp

It follows that
(F+4Inr) >0 in E_g.

Since ¥ is locally Lipschitz, ¥ +41Inr is monotonically nondecreasing in (ry, R).
Sending € — 0, using Lemma 2.2 (i), we obtain (1.15).

Case2: I, GG,
Define

E = {reEeR SV () < —‘—‘}.
’ ’ r
When there is no confusion, denote
E=E., E=E.,

It is clear that

o a2 (= + D) .
jy = <_v_ _ i(ﬁ'f) SRS R S (22)

e’ r e’ r

Since (4, 4,) € T', we also have 4, > O on E, so

R WNTNG PR _W(l ry ;
/ll—eﬁ( p +4(v)>— - 9,+4> >0 onkE. 2.3)
Denote
.
8(r) ¥ 1

From (2.2) and (2.3), we have
g>0, ¢ >0 inkE.

We start with a lemma:

Lemma23 ForR>ry+2,0<e<¢y(R), ifa € ES’R, then
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(@,RNE, =R NE..

Moreover,VYa < a < f <R, a,f € E, we have

0< /ﬂ g'(ndr < g(B) — g(a). 24
Proof Let7 € E. By Lemma 2.2 (ii), ¥/ — %r is monotonically nonincreasing, so
lim ¥/ (r) <¥(7) < lim ¥(n). 2.5)
Therefore,
lim <T/(r) + %) <V@E+ ; <0.

Hence, there exists 6 > 0, such that ¥(r) + % <0 for any r<r<7+9, ie.,
(7, 7+8)NECE.
Sincea € E, b :=sup{c : (a,c) N E C E}is well defined.
Fora<a<s<p<b,a,s p€E,since V(r)— %r is monotonically nonincreas-
ing, we have

v (s) — v’(s+ l) > 221
m

em

By the definition of E, we have, using —V'(r) > %, foranya<r<b,r € E,

1 r(r+ l)
0< < .
(r + =) (r) 16
Therefore,
1 1 m¥ (s) — V(s + <)) s(s+ 4) b2
m _ — m > m >_2.
P(s+-) V) V(s + -)V(s) 8e 8e
So let
2
h,(s)=m ;—Nl Z—b—, a<s<p.
Vis+1) V) 8e
We have

lim A,,(s) = < ! > in E.

m— oo v (S)
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A Liouville Theorem for Mébius Invariant Equations

By Fatou’s lemma,

B 1 / B
/ - ds < liminf / h,,(s)ds
« \}’(s) m—oo [
a+ 1 pa 1
= liminf | — m/ —ds + m/ —ds
m—e0 « V() s V()

11
V() V(a)
Thus, using g’ > 0in E, (2.4) follows.

Now we will prove b = R.
By (2.4), using also ¥ < 0 on E, there exists u > 0, such that

f/+iL <-u<0 on <a+b,b> NE.
r 2
If b # R, then by Inequality (2.5), there exists 6 > 0, such that
w4 d <—g <0 on [b,b+8NE.
r

This violates the definition of b.
Thus, b = R. Lemma 2.3 is now proved. O

For given R > ry + 2 and 0 < € < ¢y(R), define ag’R to be:
a® =infla : a € E . if E, , # 0}.
If E, ; = ¢ then define af* = R.

IfE_p # 0, thenry < af)’R < R, and, by Lemma 2.3, (@*, R N E. x = (ai*,R) N E_.
Since I’y & I' & Iy, there exists a unique constant 0 < p < 1such that (1, —p) € dI.
Note that
Ay > —phy in (@§®,R)NE_ 4. (2.6)
We will prove
1 1
a rgla)<frgp) foraff <a<p<R 2.7
1
Let k(r) = r » g(r). We have, using (2.2), (2.3) and (2.6),
K(r)>0 in @ RNE,.

Set h,,(s) = m(k(s + i) — k(s)), ag’R <a<s<P<R, a,s,p€ Ee,R’ then using
Lemma 2.3, we have

R, (s) = m<<s+ i>_;g(s+ l) —s_fl'g(s)> > m<(s+ l>_; —s_lli>g(s) >-C
m m m
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and
Em(s) — K'(s) as m — oo, for aS’R <a<s<fP<R s EE&R.

By Fatou’s lemma, we have

b+ at+t
k(p) — k(o) = liminf <m/ k(s)ds — m/ k(s)ds>
nm—o0 ﬂ a

p p
= liminf / h, (s)ds > / K(s)ds>0, a,f€E.

m—oo

Hence, (2.7) follows.

By Lemma 2.2 (i), for any R > r, + 2, there exists ¢/(R) — 0" as R — oo, such

that VO < € < €/(R),
Per(0) —v(@)| <e® Vry<x <R

We will have two cases:

Case 1: There exists R; — o0, and 0 < ¢; < ¢/(R,), such that ag’R" — 0.

(2.8)

Case 2: There exists R, — o0, and 0 < ¢; < €’(R;), such that ag"’R" - K < o0.

For Case 1:
Foranyry <a < f,f < aS"’R" for large i. So

L n ) +4lnn =7 (N + 220, Va<r<p.
dr % €l r

Integrating on [a, f], by Lemma 2.2 (ii), we obtain

Ve g (B)+4Inf 27V, g (a)+4Ina.

Sending i to oo, using (2.8), we obtain
v(if)+4Inp > v(a)+4Ina.

For Case 2:
Forany K, < a < § < oo, [a, f] C (ag"’R", %) for large i.
Using (2.7), we have

R. R, R\’
.E'> 1 +1.E’>@<E’>p for x € [a, B].

- R 4 1
vf,‘:R,-(E) xr

e

Since 0 < p < 1, it follows that

-1
— 1 + X< CR. " =o(1) uniform for x € [a, B].
vei,Ri(x) 4

@ Springer



A Liouville Theorem for Mébius Invariant Equations

Therefore,
d s Alnx) = ¥/ 45 o(1) uniform f
a(ve[’Ri(x) +4lnx) =7, p () + T > o(1) uniform for x € [a, f].

By Lemma 2.2 (ii), integrating on x, we obtain

Do g, () +4In > T, 5 () +4Ina+o(D).

Sending i — oo, using (2.8) and R; — oo, we obtain
v(if)+4Inp > v(a)+4Ina.

Proposition 1.8 is now proved.

3 Liouville Theorem

In this section, we prove Theorem 1.5. Given the asymptotic behavior established
in Sect. 2, we can handle the possible singularity of u at infinity either by follow-
ing the proof in [33, Theorem 1.3], or by invoking a general result in [6]. Here we
give the latter.

Recall:

Theorem A [6, Theorem 1.1] For n > 1, let Q be a domain in R" containing the ori-
gin, and let F € C1(Q, R, R", 8™") satisfy

_OF

oM;;

Assume that u € C*(Q\{0}) satisfies

(x,5,p,M)>0, V(xs5pMeQXxRxXR"xS™.

ForanyV € R", w(x) := u(x) + V - x satisfies Bi{l{%} w= r(r)ll}n w, YO<r<r,
3.1
for some 7 > 0,v € CXH(Q), and

u>v in Q\{0},
F(x,u, Vu, VZu) > F(x,v, Vv, V2v) in Q\{0}.

Then

lim ionf(u —v)(x) > 0.

Remark 3.1 In n>2, a superharmonic function u € C%B,\{0}) satisfying
infy \ (o) # > —oo has the above property (3.1).

@ Springer



Y.Lietal.

Proof of Theorem 1.5 We use the method of moving spheres. The proof is simi-
lar to that of [33, Theorem 1.3], see also the proofs of [43, Theorem 1.1] and [44,
Theorem 1.1].

To begin with, we recall the notation

2(y — -
U, =u x+M —41n|y xI.
’ ly —x|? 4

Denote F(A“) = f(A(A")). Notice that if F(A*) = 1, then F(A4"**) = 1, where we have
used the invariance property of A* and F.
For the sake of convenience, denote

A%y [yl
u,(y) —u<| |2> —4ln7.

Lemma 3.2 For every x € R?, there exists Ay(x) > 0 such that u, ,(y) < u(y), for all
0< A< i) and|y —x| > A

Proof Without loss of generality. We assume x = 0. Consider the function
u(r,0) + 21Inr. We have

—(u(r 0)+2Inr)=— i %
0 r

Thus, there exists 7, > 0, such that for all 0 < r < r;, we have
0
—(u(r,0)+2Inr) > 0.
or
It follows that for 0 < r; < r, < ry, we have
u(ry,0)+2Inr, <u(r,,0)+2lnr,.

Chooser, = |y|.r; = '1—2, then for all 0 < A < |y| < ry, we have

2
<f| >+21nﬂ <u(lyl,0)+21n|y|,

1.€e.,

2
<}L 0> 4lnm<u(|y| 0).
Iy’ A

It follows that for all 0 < 4 < |y| < ry, we have

u(y) < u).

Now let us consider |y| > r,. By Proposition 1.8, we have
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lllrln inf(u(y) + 41n|y|) > —o0.
y|— o0

Thus, there exists a constant a, such that for all [y| > r,, we have
uy) +4Inlyl > a.
Then for |y| > ry > A, we have

A2y
u(y) —u;(y) = u(y) +4Inly| - u<W> —4InA

2
Za—u</1—)2)> —41nA.
¥l

It follows that there exists 0 < A, < ry, such that for all [y| > rj, 0 < 4 < 4, we have
u(y) > “,1()’)-
The lemma is now proved. O
By Lemma 3.2, we can define for x € R2,
Ax) 1= sup{pu : u 0 < u@), ly—x[24,0< A< u} €(0,+oo].

By Proposition 1.8,
a = llirlninf(u(x) +41n|x|) € (—o0, +0o0].

‘We have two cases:

Case 1: a = +oo0.
We will prove that this case does not occur. We first prove that

Ax) = 400, VxeR2 (3.2)
Once (3.2) is proved, by Lemma A.l, we obtain that ¥ must be constant and
therefore A* = (. This violates the condition A(A*) € I'. Hence, Case 1 does not

occur. Without loss of generality, we only need to prove (3.2) for x = 0. Suppose
A := 2(0) < oo. For each A > 0 fixed, we have
Ay 5
u(y) —u;(y) = u(y) + 41n|y| —u T —4In4, yeRN\{0}.

Since a = 400, we have, for every 4 > 0, u(y) — u,;(y) = +oo as |y| = oo. It follows
that there exists M > 0, such that

w,() <u(y), 0<A<2A+1, |y|>M. (3.3)

Since F(A") = 1 is Mobius invariant, we have F(A"+) = 1. Therefore, by the condi-
tion g, f > 0inI', there exists a linear second-order elliptic operator L, such that
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Lw—u;)=0 onR?*\Bj,
U—u; = 0 Ol‘laB;.

By the maximum principle and the Hopf lemma, we have
U—uj; >0 on RZ\B;,
i(u —u;)>0 on 0B;
or 4 o

By the compactness of 0B; and (3.5), we have

0

—(u—uplyp, 2b>0.

or

By the continuity of Vu, there exists 6 > 0, such that

ai(u—ui)(y)zg, A<A<A+6, A<|y|<A+6.
p

Since u = u, on 0B, we have

w,) <u@y), A<A<A+68, ALy <LA+6.
On the other hand, (3.4) implies

ui(y) Su(y), A+5<y<M.

By the continuity of u, there exists 0 < € < 6, such that

w,) <u@y), A<A<Ai+e, A+6<y<M.
By (3.3), (3.6) and (3.7), we have proved

uw,) <u@y), A<A<i+e, |y=A

This violates the definition of 4, and (3.2) is proved.

Case 2: ¢ € R.
We first claim that A(x) < o0, Vx € R
In fact, for all [y — x| > 1,0 < A < A(x), we have

ux,/l(y) < Lt(y),

i.e.,

2 _ —
u<x+ M) —41In |y/lx| < u(y).

ly — x|?

Fix x € R2, 1 > 0, let y = o0, and then let A — A(x). It follows that
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a>u(x)+4Inix), Vxe R

Therefore, A(x) < oo, Vx € R2. The claim is proved.
Next, we will prove

Uy sy = U ON R2\{x}, Vx € R%

Once (3.8) is proved, Theorem 1.5 follows from Lemma A.2.

(3.8)

Without loss of generality, we only need to prove (3.8) for x = 0. We still

denote A = A(0). It suffices to prove
u; =u on R?\ B;.
From the definition of 4,

u; <u on R*\ Bj.

3.9)

Suppose on the contrary that (3.9) does not hold, then by the strong maximum

principle,
u; <u on R?\ B;.
This is equivalent to
u; >u on B;\{0}.
By Theorem A, we know
1i|ryr|1 inf(u; () — u(y) > 0,
namely
lliynln 1inf(u(y) — u; (7)) > 0.
Hence, there exists ¢, > 0 and M > 0, such that
u(y) Zuz(y)+e, |yl >M.
It follows that there exists 6 > 0, such that
u@) > u;(v), 0<A<A+6, |yl =M.
Similar to Case 1, using the Hopf lemma, there exists ¢ > 0, such that
u@) 2 u;(y), 0<A<i+e, [|y=4

This violates the definition of A.
Therefore, we have proved (3.8).
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4 Conformal Invariance and Moébius Invariance
We first prove Proposition 1.4:

Proof of Proposition 1.4 Let x e R%, se R, p € R2, M € 8>, and O € O(2). Let
u be a smooth function satisfying u(x) = s, Vu(x) = p, and V?u(x) = M. Consider
w(z) = z + x. Now evaluating (1.7) at the origin, we have

HQ,s,p,M)=H(x,s,p,M).

So H is independent of x. In the following, we denote H(s,p, M) = H(0, s, p, M).
Now define another smooth function u satisfying u(0) =s, Vu(0) =0, and
V2u(0) = M. Consider w(z) = Oz, then evaluating (1.7) at the origin gives:

H(s,0,0"'MO) = H(s, 0, M). @.1)

Next define a function u satisfying u(0) = s, Vu(0) = p, and V?u(0) = M. Consider

w(z) =e/%z, so u, (2) = u(e™*/?z) — s. Evaluating (1.7) at the origin gives:
H(0,e™**p,e™*M) = H(s,p, M). 4.2)
Finally, define a = _IZ% € R?, and pick a smooth function u satisfying u(e) = s,
Vu(a) = p, and V?u(a) = M. Consider the Mobius transformation y(z) = |p|126|i|2' By
a direct computation, we have u,,(z) = u( Ipllzélzlz) —4In|z| +4In4 —41In|p| and

y @) =2
We can easily check that

uwoq/_l(a) =ula)=ys

and
Vuwow_l(a) =0.
So
2y VZu, oy (a)
Aoy~ (@) = ——Foy (@) = ————.
e'v e

By a direct computation, we can check the property that for any y € R? and Mébius
transformation v,

Aoyl (y) ~ A“(y),

where the notation A ~ B means A and B are orthogonally similar to each other.
Hence,

VZu, oy~ (a)
- — ~ A,
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1.e.,
Vi, op (@) ~ —e*A(a). (4.3)
Evaluating (1.7) at w~!(a), using also (4.1), (4.2) and (4.3),

H(s,p,M) = H(s,0, V?u, oy~ ())
= H(s,0,—e*A"(a))
= H(0,0,-A"(a)).

The proposition follows. O
Then we prove Proposition 1.2:

Proof of Proposition 1.2 1t is easy to see that we still have
H(-,u, Vu, V’u) = F(A"),

where F is invariant under orthogonal conjugation. However, we observe that for
general meromorphic functions, the relation A"y ~ A*oy does not hold. Now we are
going to prove that F must be a function of the trace.

Set w(z) = iz%, i.e., w(x,y) = Qxy, —x* +y?). Set u(x, y) = ax?. So

u 1 2a —4a’>x*>? 0
Aloy = T gday? ( 0 4a’x*y* |

Evaluating (1.6) at (0, y), we have

—2a 0
Aoy (0,y) = ( Oa 0) .

Similarly, by a direct computation,

u, (x,y) = 4ax’y* + In4 + In(x* + y*),

—2a—=> 0
A”w(o,y>=< 0 i>.
4yt

Taking appropriate a and y, the relation F(A*)oy = F(A" ) implies that

A((52))=(("5%3))

for any {A,,4,} satisfying that at least one of them is positive. Negative case
comes from evaluating (1.6) at (x, 0). Hence F must be a function of the trace, i.e.,
F(A") = g(—e™Au). Moreover, it is straightforward to check that g(—e™Au) is con-
formally invariant. O
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Appendix A: Two Calculus Lemmas
We now state two calculus lemmas for the reader’s convenience.

LemmaA.1 Letu € CY(R?) satisfy

2@y - -
a(x+2979) _an P2 ) vas 0 xeRL x| > A
ly —x|? A

Then u must be constant.

Proof Let f = e, then we have
4
Ay -
<L> f<x+ @_;;)) <f(), Vi>0,xeR2 |y—x|>A
ly — x| ly—x

By [43, Lemma 11.1] (see also [44, Lemma 3.3]), we conclude that f'is a constant;
hence, u is a constant. O

Lemma A.2 Let u € C'(R?). Suppose that for every x € R?, there exists A(x) > 0
such that

Uy O = u(), vy € R*\{x}.
Then for somea > 0,b > 0,x € R2,

8a

=2n——,
uw) =2 e

Proof Let f = e, then we have, for every x € R?, there exists A(x) > 0 such that

4 /12 _
( - >f<x+(y—’§)> =/, yeR\(x}).
ly — x| ly — x|

By [43, Lemma 11.1] (see also [44, Lemma 3.7]),

2
_ a
f(x)‘i<d+|x—x|2>'

Lemma A.2 follows. O
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