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application of the by now standard degree theory for second
order fully nonlinear elliptic operators.
© 2022 Published by Elsevier Inc.

1. Introduction

The Nirenberg problem, raised by Nirenberg in the years 1969-1970, asks to identify
functions K on the two-sphere S? for which there exists a metric § on S? conformal
to the standard metric g such that K is the Gaussian curvature of §. Naturally, this
problem extends to higher dimensions with the Gaussian curvature replaced by the
scalar curvature.

There has been vast literature on the Nirenberg problem and related ones and it
would be impossible to mention here all works in this area. One significant aspect most
directly related to this paper is the fine analysis of blow-up (approximate) solutions or
the compactness of the solution set. These were studied in [2,10,14,15,17,34,48,49], and
related references. For more recent and further studies, see [43,61], and related references.
For n > 3 and k > 2, the ox-Nirenberg problem was studied in [13,58,59].

In this paper, we are interested in the existence and compactness of solutions of a non-
linear version of the Nirenberg problem on the standard sphere (S?, g). This equation has
similar structures to the o;-Yamabe and ox-Nirenberg problems in higher dimensions.

Throughout this paper, we use (S?, g) to denote the standard two sphere. On (S2, g),
for a conformal metric g, = e%g, let

1 1
Ay, = —Vﬁu + §du ® du — Z|Vgu\29 + K9, (1.1)

where K, = 1 is the Gaussian curvature of the metric g.
For A = (A, X2) € R2 let 01(\) := A1 + A2 and 02(\) := A2 be the elemen-

tary symmetric functions. We use A(g,, 1Agu) to denote the eigenvalues of g, 11491” and
ok(g, ' Ay, ) to denote oy (A(gy tAy,)) for k = 1,2. Note that o1(g, *A4,,) = 2K, .
We study the equation
o2(9, ' Ag,) = K(x), Mg, '4,,) €Tz onS? (1.2)

where
Iy = {(/\1,)\2) A > O,)\g > 0}

is the first quadrant.
For a positive function K in C?(S?) satisfying the nondegeneracy condition

VK|, +|AK]|, > 0 on S?, (1.3)
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we define the sets

Crit, (K) = {z € S*|V,K(z) = 0, A,K (z) > 0},
Crit_(K) = {x € S*|V K (z) = 0, A, K (x) < 0}.

Set deg(VK,Crit_(K)) := deg(VK,O,0), the Brouwer degree, where O is any open
subset of S? containing Crit_(K) and disjoint from Crit; (K). By (1.3), this is well-
defined.

For any K satisfying (1.3) and having only isolated nondegenerate critical points,

deg(VK, Crit_(K)) = Z (—=1)"®
€S2, VK (z)=0,AK(z)<0

where i(Z) denotes the number of negative eigenvalues of V2K (Z).
For an introduction to degree theories, see e.g. [63, Chapter 1].
The first main theorem in this paper is the following existence and compactness result

for equation (1.2).

Theorem 1.1. Let (S?%,g) be the standard two sphere, and let K be a positive function
in C%(S?) satisfying the nondegeneracy condition (1.3). Then there exists a positive
constant C' depending only on K, such that

lullc2(s2y < C, for all C? solutions u of equation (1.2). (1.4)
Moreover, if deg(VK, Crit_(K)) # 1, then (1.2) admits a solution.
Remark 1.2. See Proposition 4.5 for more detailed dependence of C on K.

Remark 1.3. If K € C?>%(S?), 0 < a < 1, and O is a bounded open subset of C*4%(S?)
which contains all solutions of (1.2), then

deg(o2(g, ' A,,) — K,0,0) = —1 + deg(VK, Crit_ (K)).

Here the degree on the left hand side is the degree for second order nonlinear elliptic
operators defined in [47].

Remark 1.4. Such results for the oj-Nirenberg problem was proved in [13] on S* for oy;
in [58] on S™ for o, n > 3 and n/2 < k < n; and in [59] on S™ for o, 2 < k < n/2 and

for axisymmetric functions K.

The following result is a Kazdan-Warner type identity.
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Theorem 1.5. Let X be a conformal Killing vector field on (S2, g), and let g, = e“g be a
conformal metric to g on S%, where u is a smooth function on S?, then

/X(Ug(gu_lAgu))e“dVg 0. (1.5)
SQ

Remark 1.6. In dimensions n > 3, such results were proved in [35] and [69], see also [29].
For o7 instead of o9 in (1.5), it is the well-known Kazdan-Warner type identity for the
Nirenberg problem. See [5] and [44].

Remark 1.7. Note that Theorem 1.5 can also be obtained using [24, Theorem 2.11]. In
this case, we can check that o2(g~'Ay) is normally conformally variational (see [24,
Definition 2.10]) on S?.

As usual, there is a necessary condition for the existence of solutions of equation
(1.2). We say that a function K on S? satisfies the Kazdan-Warner type condition if
there exists some positive C? function f on S? satisfying

/X(K)deg o,
S2

for any conformal Killing vector field X on S2.

Theorem 1.8. If K does not satisfy the Kazdan-Warner type condition, then there is no
C? solution to equation (1.2).

Theorem 1.8 is a corollary of Theorem 1.5.
For example, if K(x) = 2 + x3, then (1.2) has no C? solution.
More generally, other than the os-equation, we are interested in equations:

FMga'4g,)) = K(x), Xgi'Ag,) €T, onS?, (1.6)
where the definition of f and I" are given below.
Let
I" be an open convex symmetric cone in R? with vertex at the origin, (1.7)
and
Iy cT' Iy, (1.8)

where T'y := {(A1, A2) : A1 + A2 > 0} and T's := {(A1, A2) : A\ > 0, Ay > 0}. Here, I" being
symmetric means that (A1, A\2) € T implies (A2, A1) € T. Also, a function f defined on T
is said to be symmetric if f(A1, A2) = f(A2, A\1).
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It is not difficult to see that I satisfies (1.7) and (1.8) if and only if I' = I',, for some
1 <p <2 where

Fp = {)\ = ()\1,/\2) DA > (p — 2))\1, AL > (p— 2))\2}.

Note that the above definition of I'; and I'y is consistent with earlier definitions.
Let I' =T, 1 < p < 2, and consider

f e CHT)NCO(T) is symmetric, (1.9)

f is homogeneous of degree 1, (1.10)
of .

>0, fi = oA >0in T, fl,,=0, (1.11)

f is concave in T'. (1.12)

Zf,\i >¢ in I for some § > 0. (1.13)

i=1

For (f,T') = (01,T'1), problem (1.6) is the Nirenberg problem. Theorem 1.1 is for

1
(f;1) = (03,T2).
In order to prove Theorem 1.1, as well as to study the more general equation (1.6),
a number of ingredients and estimates are needed. The first analytical ingredient is a
Liouville type theorem for oo(A(A")) = 1, where

Av = —

Vu ldu®du 1|Vul?
+ = - = I
el 2 ev 4 ev

When rescaling appropriately a blow-up sequence of solutions of (1.2), we are led to an
entire solution of o2(A(4A")) =1 on R

Equations f(A(A™)) = 1, which we call Mobius invariant equations, are naturally
associated with A“. A Liouville type theorem for the Mobius invariant equations was
established in our previous paper [52].

Other ingredients and estimates, which are described below, are also needed in ana-
lyzing a sequence of blow-up solutions and giving fine asymptotic profile of such blow-up
solutions.

The following is a Liouville type theorem for f(A(A%)) = 0.

Theorem 1.9. Let I' = T', for some 1 < p < 2, and let u be a (continuous) viscosity
solution of

A(A") € 0T in R2\{0}.

Then w is locally Lipschitz in R*\{0} and radially symmetric about the origin. Moreover,
u(zx) is monotonically nonincreasing in |x|.
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Corollary 1.10. Let I' =T, for some 1 < p < 2, and let u be a (continuous) viscosity
solution of

MAY) € oI in R?,
Then u = constant in R2.

In dimensions n > 3, such results were proved in [50,51] for locally Lipschitz u,
I',, T CT'y. In fact, as proved in [57], a continuous viscosity solution of such equations
is automatically locally Lipschitz. Therefore, the results in [50,51] hold for continuous
viscosity solutions. Note that a first such result was proved in [12] for u € Cllo’cl7 n =4,
and I' =Ty,

If T' =Ty, the equation A(A") € 9T becomes Au = 0. Corollary 1.10 can be viewed as
a nonlinear extension of the classical Liouville theorem: A nonnegative harmonic function
in R? is a constant. However, there is no sign condition assumed on w in Corollary 1.10.

Equation M\(A") € 9T is sometimes equivalently stated as f(A(A*)) = 0 for f defined
on T satisfying (1.9) and (1.11). One example is I' = Ty, then the equation becomes
det(A™) = 0 together with semi-positive definiteness of A“.

We then prove the following local derivatives estimates for general (f,I"). For such
equations, it is delicate to prove the local gradient estimates of u under the assumption
that v is bounded from above, while it is more standard to prove the second derivatives
estimates of u under the assumption that u is C'!' bounded.

Theorem 1.11. Let I' =T, for some 1 < p <2, f satisfy (1.9)-(1.11) and (1.13), K be
a Ct positive function in B, C R?, and let u € C3(B,) satisfy

FOA(A"Y) =K, X(A") €T in B,. (1.14)
Then
|Vu| <C in B, s,

for some constant C depending only on r, (f,T), and upper bounds of supp u and
K llc1(s,)-

The above local gradient estimates do not need the concavity assumption (1.12). Note
that if I' = T',, for some 1 < p < 2 and f satisfies (1.9)-(1.11) and (1.12), then (1.13)
follows.

We also prove the local derivatives estimate for equation A(A") € 9T

Theorem 1.12. Let I' =T, for some 1 < p < 2, and let u be a (continuous) viscosity
solution of N(A*) € 9T in By. Then for every 0 < e < 1, there exists a constant C
depending only on I' and €, such that
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|[Vu| < C a.e. in By_.
We then establish local C? estimates.

Theorem 1.13. Let I' =T, for some 1 < p <2, f satisfy (1.9)-(1.11) and (1.12), K be
a C? positive function in B, C R?, and let u € C*(B,) satisfy

FMAY) = K, N(A*) €T in B,.
Then
IV2u| < C' in B, s,

for some constant C depending only on r, (f,T'), and upper bounds of supp u and

1K]lc2(B,)-

The general local gradient estimates in dimensions n > 3 were derived in [51] using
blow-up analysis and the Liouville theorem for degenerate equations together with Bern-
stein type arguments. Note that the local gradient estimates for f = 0,1/ Mand I = 'y
were proved in [26]; see also [25,28,45,65,71] for efforts in achieving further generality.
The local C? estimates in dimensions n > 3 were discussed in [12,18,26,45].

The following theorems are Bbocher type theorems, which characterize the asymptotic

behavior of solutions near isolated singularities. They are for I' = I'y,, 1 < p < 2. For
1 < p < 2, the equation is A\(A%) € II'. For p = 2, the equation is A(A") € T, i..
supersolutions to A(A*) € JI'. Note that for p = 1, the equation \(A%*) € IT" is Au = 0,
and additional assumption is needed for the B6cher theorem.
Theorem 1.14. IfI' =Ty, let uw € LSC(B1\{0}) N L{S.(B1\{0}) be a viscosity supersolu-
tion of N(A*) € T in B1\{0}. Then either u can be extended to a function in Cp:}(By)
oruw = —4Inl|z| + C for some constant C, and A* = 0. Moreover, in the former case,
there holds

, <c(r
fwllcn s, ey < OF) g w

where w = e~ ¥/4,

Theorem 1.15. Let I' = T'), for some 1 < p < 2, and let u € C, (B1\{0}) be a viscosity
solution of M(A*) € OT in B1\{0}. Then either u can be extended to a function in
CO)p_l(B1)7 or

loc

42—
v = (711’) In(r=®-D/C=9) L p) 4 g,
Py
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where a = suppg,\ joy(u(z) +4Inz]) < 00, and W € L5, (B1) is a nonpositive function
satisfying

minw <@ < maxw in B\{0}, VO0<r<l.
OB, OB

Moreover, in the former case, there holds

[wl[cor-1(8,,,) < C(T) Joox w,

where w = exp(— 2 u).

The Bécher type theorems for equation A(A*) € OI' in B1\{0} when n > 3 were
established in [53]. The behaviors of our solutions are quite different from the results in
[53].

In the case of non-degenerate elliptic equation o (A(A*)) = 1 for n > 3, the local
behavior near isolated singularity was studied in [6] for £ =1 and in [36] for 2 < k < n.
They proved that u(x) = u.(|z])(1 + O(|z]|*)) where u, is some radially symmetric solu-
tion of f(A(A")) = 1 on R™\{0} and « is some positive number. See [32] for expansions to
arbitrary orders. See also [70] for expansions of solutions of conformal quotient equations.

Recall that when dimension n > 3, the existence of solutions of the og-Yamabe
problem has been proved for k > n/2, k = 2 or when (M, g) is locally conformally
flat, the compactness of the set of solutions has been proved for k > n/2 when the
manifold is not conformally equivalent to the standard sphere — they were established
in [11,22,27,31,45,54,65]. For more recent works on o-Yamabe type problems, see for
example [1,3,4,7-9,19-21,23,30,32,33,38-42,55,56,60,66—68] and references therein. How-
ever, there are still many challenging open problems on general compact Riemannian
manifolds - the compactness remains open for 2 < k < n/2 and the existence remains
open for 2 < k < n/2. One motivation of studying the equations in dimension two is
to gain insights and inspirations into solving the above mentioned open problems in
dimensions n > 3.

The strategies of the proofs of our main theorems are described as follows. Liouville
type theorem Theorem 1.9 is established using comparison principles and asymptotic
behavior of solutions. For local gradient estimates Theorem 1.11, we first prove it using
Bernstein type arguments assuming in addition w is also bounded from below, then
establish the result using blow-up analysis and Theorem 1.9. Theorem 1.12 is proved in
a similar way. Local C? estimates Theorem 1.13 is obtained by Bernstein type arguments.
In the proof of Bocher type theorems Theorem 1.14 and 1.15, we first classify all the
radially symmetric (continuous) viscosity solutions in any annulus {0 < a < |z| < b <
oo}, then establish the results with the help of a comparison principle.

In the proof of existence and compactness result Theorem 1.1, we first prove the
compactness part. Since C! and C? estimates are already established, the only issue
left is a C° estimate. We first analyze the behavior of a sequence of blow-up solutions
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and prove that every sequence of solutions cannot blow up at more than one point with
the help of the Liouville type theorem for oo(A(A*)) = 1. Then we obtain an optimal
decay estimate, where the Bocher type theorem is used. Next we use a Kazdan-Warner
type identity together with the nondegeneracy condition on K and the above one point
blow-up behavior to prove the C° estimate. The existence part is proved thanks to the
degree theory and compactness of solutions.

The rest of our paper is organized as follows. In Section 2, we establish the Liouville
type theorem Theorem 1.9 and the local derivatives estimates Theorem 1.11, Theo-
rem 1.12 and Theorem 1.13. Bbécher type theorems Theorem 1.14 and Theorem 1.15 are
proved in Section 3. The existence and compactness theorem Theorem 1.1 is proved in
Section 4. Three calculus lemmas are given in Appendix A for readers’ convenience.
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2. Liouville type theorems and local estimates
2.1. Preliminaries

2.1.1. Viscosity solutions

In order to introduce the definition of viscosity solution, let us first define the set of
upper semicontinuous and lower semicontinuous functions.

For any set S C R?, we use USC(S) to denote the set of functions u : S — RU{—o0},
u # —oo in S, satisfying

limsup u(x) < u(zg), Vo€ S.

Tr—xo

Similarly, we use LSC(S) to denote the set of functions v : S — R U {+o0}, u # +oo
in S, satisfying

liminf u(x) > u(xg), Vo € S.

r—Xo

Definition 2.1. Let £ be an open subset in R?, we say u € USC(Q) is a viscosity subso-
lution of

AAY) €ar, in Q (2.1)
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if for any point zg € Q, p € C*(Q), (u — ¢)(x0) = 0, u — ¢ < 0 near xg, we have
A(A®(z0)) € R?\T.

Similarly, we say u € LSC(Q) is a viscosity supersolution of (2.1), if for any point
x9 € Q, p € CHQ), (u—¢)(x9) =0, u — ¢ > 0 near xg, we have

)\(A‘f”(:cg)) € f
We say u is a viscosity solution of (2.1), if it is both a subsolution and a supersolution.

We remark that our definition is consistent with [51, Definition 1.1] and [57, Definition
1.3].

2.1.2. Previous results
In this section, we state some previous results which we use in this paper. The first
one is an asymptotic behavior for viscosity supersolution.

Proposition 2.2. (/52]) Let T' =T, for some 1 < p <2, and let u be a viscosity superso-
lution of (2.1) in R?\ B,, for some ro > 0. Then there exists Ko > 0, such that

(j)%f u(r) + 41Inr is monotonically nondecreasing in r for r > K.

r

Consequently, liminf (u(z) +4In |z]) > —oo.
T—r00
The above proposition can be equivalently stated as follows:

Proposition 2.2°. Let I' =T, for some 1 < p <2, and let u be a viscosity supersolution
of (2.1) in By, \{0} for some ro > 0. Then there exists € > 0, such that

énf u(r) is monotonically nonincreasing in r for 0 < r < e.
B,

Consequently, lim inf u(z) > —oo.
x—0

We now state a lemma concerning comparison principle. It is a special case of Corollary
1.9 in [57], see also [51, Proposition 1.14] for a result of this type in dimensions n > 3.

Lemma 2.3. Let Q be an open subset in R?, E C Q be a closed set with zero Newtonian
capacity. Let u € USC() be viscosity subsolution of (2.1) in Q and v € LSC(Q\ E) be
viscosity supersolution of (2.1) in Q\ E. Assume further that

inf v > —o0,
O\E

and v < v on 09, then info\ p(v —u) > 0.
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Proof. Let w = —u, we have
u w 2 1 1 2
A =e Vw+§Vw®Vw—Z|Vw|I .

Then all the assumptions in Corollary 1.9 in [57] are satisfied. Note that we do not need
the assumption u < v in Q\ E, this can be seen in the proof of Corollary 1.9 in [57]. O

A consequence of the comparison principle is the Lipschitz regularity for viscosity so-
lution. For related arguments in higher dimensions, see [53, Lemma 3.1] and [46, Lemma
A.2].

Lemma 2.4. Let u € C°(Bs) be viscosity solution of (2.1) in Bs. Then u € C}(Bs).

loc
Furthermore, there exists a constant C' such that

su ev 1
|[Vu| < C’(,pi)4 in Bj.
infp, ev
Proof. For x € R%, A > 0, let
Ny —x) ly — | 2
wea@) = e + L) — 4 BTy e R\ (a). (22)

Let R > 0 be given by

4In(4R) = inf u — sup u.
Bo Bs

By the above we have

ug A(y) <supu+4IndR = igfu <u(y), forany |z|<1, 0<A<R, |y =2,
Bo 2

and uy y = w on 0B(z, ).
By the conformal invariance property of A%, if A(A*) € JT', then A(A%=:») € JT". See
our previous paper [52] for details.

Since A(A%=*) € OI' in By \ B(z,\) in the viscosity sense, by Lemma 2.3, for any
0 < A<R,z € B, we have

Ugx <u, in By\ B(z,\).

By Lemma A .2, v is Lipschitz continuous on B;. The lemma is now proved. O



12 Y. Li et al. / Journal of Functional Analysis 283 (2022) 109606

2.2. Symmetry and Liouville type theorems for f(A(A™)) =0

Given the comparison principle and asymptotic behavior, Theorem 1.9 can be proved
as in [50] or [51]. For reader’s convenience, we include the proof below.

Proof. Let u, ) be defined by (2.2). For every x € R?\ {0} and for every 0 < A < |z|, we
2 2
want to use comparison principle to u, » and u in By(x) \ {z, |m||$|_2>‘ x}. We only need
2|2 — A2
[]?

By the asymptotic behavior Proposition 2.2,

to check u, ) is bounded below near z and

x.

liminf (u(z) +41n|z|) > —oo, liminf(u(-—5) —4In|z|) > —occ.
T—00 z—0

2]
It follows that
inf Ugp,\ > —O00.
Ba(@)\{z, 2222 0
By the comparison principle Lemma 2.3, we have
u(y) 2 uza(y), VO<A<l|zlly—z|=Ay#0. (2.3)

For any unit vector e € R%, a > 0, y € R? satisfying (y — ae) - e < 0, and for any
R > a, we have, by (2.3) with x = Re and A = R — q,

Xy-o). .l
u(y)Zu(m—l—W)—élln T

Sending R to infinity, we obtain
u(y) > u(y — 2(y - e — a)e), for any y € R? satisfying (y — ae) - e < 0.
This gives the radial symmetry of the function v and
u(y) = u(yr,y2) > ua(y) :=u(2a—y1,92), Vy1<a, a>0.

Since v = u, on y; = a, we have a(%;yz‘“) <0 aty = (a,0), ie. v(a) <0 whenever
u is differentiable. Because u and wu, satisfy the same equation in y; < a, we have,
by Hopf lemma, 8(%;3;“) < 0aty=(a,0),ie u'(a) < 0 whenever u is differentiable.
Consequently, v/(r) < 0 a.e. as u is Lipschitz continuous by Lemma 2.4. O

2.8. Local gradient estimate

In this section, we establish Theorem 1.11 and Theorem 1.12. The proof follows the
strategy in [51], and relies on the Liouville type theorem Theorem 1.9.
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2.3.1. Gradient estimate assuming lower bound

We first give the proof of gradient estimate for the equation f(A(A™)) = K, assuming
both upper bound and lower bound of w. Namely, we prove the following proposition.
The proof is based on Bernstein type arguments.

Proposition 2.5. LetT' =T, for some 1 < p < 2, f satisfy (1.9)-(1.11) and (1.18), and K
be a C' positive function in B, C R%. For constant —oo < a < 3 < oo, let u € C3(Bs,)
satisfy

FOAAY) =K, a<u<p, A(A*) €T in Bsa,. (2.4)
Then
[Vu| <C in B,
for some constant C' depending only on «, 8,7, |K|c1 and (f,T).

Proof. For simplicity, write

[Vul®
4

1
W =A% = e‘“(—V2u + §du ® du — (S”)

Fix some small constants €, ¢; > 0, depending only on «, § such that the function
@(s) := ee® satisfies

Fze, ¢ —36 - @220, onlaf (25)

Let p > 0 be a smooth function taking value 1 in B, and 0 outside Bs,, satisfying
|Vp|? < Cip, where C; depends on p only. Consider

G = pe?™|Vu)?.

Let G(xg) = maxp, G for some xg € Boy. If g € OBy, then G = 0. We only need to
consider 2y € Ba,.. After a rotation of the axis if necessary, we may assume that W(zg) is
a diagonal matrix. In the following, we use subscripts of a function to denote derivatives.
For example, G; = 0,,G, Gij = 0z,.,G. We also use the notation fi= g—){:. Applying
0Oz, to equation (2.4), we have

Wi = K. (2.6)
By calculation,

G; = 2pePuriu, + p¢’e¢|Vu|2ui + e¢|Vu|2pi = 2pePup;uy + (¢'u; + %)G
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At xg, we have G; = 0, i.e.

Qupiup, = —¢' | Vultu; — ﬁ|Vu|2, i=1,2. (2.7)
p

Notice that Wi; = e™"(—u;; + su? — 2|Vul?), so we have

1 1
Ui5 = 7€uWi¢ + 5 % — Z‘V’UJF (28)

Take second derivatives of G and evaluate at xg,
0> (Gyj) :2ukijuke¢p + 2ukiukje¢p + 2ukiuke¢¢'ujp + qukiuked’pj
+ (¢"uuj + ¢'uiy + W)pe‘ﬂvm2 + (¢'u; + %)Gj.

The last term above vanishes since G; = 0. Therefore, at zg, using formula (2.6), (2.7)
and (2.8), we obtain

0>e Gy
=2pf uinur, + 2pf up; + 2p¢' frugiuru; + 2f upiugp; + f1(¢" 07
2
+ ¢ ug + ppup—2pl)9|vu|2
o i w12 1 2 i, 2 rpif a1 2,2, Pili 2
=2pftu| — " Wi + gui — 2 [Vul” | +2pf u; — p¢' f*{ &'Vl ui + TIVUI
k
— fipi <¢"Vu2uz- + &IWIQ) +p0" [Vul fiu? + p<z>’|w|2fi(_ oW
P
1 1 ) 2
+ _u? o —|Vu|2 + fz|vu|2ppm Pi
2 4 p
2
2pr{ — Wi g, — €| Vul*Wi; — %MWF - “2—p|vU|2 + 91V’
p

Ujpj i
2, |Vu|2} +2pf '},
J

—pd'f’ <¢’|Vu|2u? + %Wuﬁ) —fp: (¢>’|Vu2ui + %lWF)

1 2 i, 2 / 2 pi u 1, 1 2 i 2PPii—P?
+ p¢"|Vul® flui + p¢'|Vul"f* —e Wii"‘iui - Z|VU‘ + f'|Vul T

:{ — 2pe" Kyuy, — 2pe®|Vul? f — fluipi|Vul* + Z Jij|Vu|2 Zf’
j i

/ 20 w 2 2iPPii—2/%2 i, 2
= 2¢'|Vul* ' piu; — pe" ¢’ |Vul* f + [Vul|*f L, + 2pf uks
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;[ Vult 1 i
100 Y PV (- ()2 - Lor vul

In the following, we use C3 to denote some positive constant depending only on
a, B,r, K, and (f,T) that may vary from line to line. Using (1.11), (1.13) and (2.5), we
obtain

0>e ?f'Gy
T Vu
> - Cg|Vu|Zf Co|Vul? Zfl Co/p|Vul? wa pd’ ZfzI *

+(¢" = ()7 = 5 )of [ Vul*u]

i i i, A i
> = OofVul Y S = Gl Vul? Y f = CovplVul* Y+ e fVult,
Multiply by /p, then
i i i, C i
0> —Coy/p|Vul Y f1 = ColVulP/p Y [ = CopVul* Y f +le3/22f IVul?
i 2 i 3 i, G 3/2 i 4
2 =Gl VUl 3= GVl S = Copl Vel 314 o S f 1
= |Vu|(=Cs — Cav/p|Vu| = Ca(y/p|Vul)? + fIVUI Zfl

Therefore,

—C2 = Co\/p|Vu| = Ca(Vp|Vul)* + (WIWI)

which implies p|Vu|?(z9) < Oy, so is G(z0). Since G(zg) is maximum, |Vu| < Cy on
B:. O

2.3.2. Gradient estimate for f(A(A%)) = K
In this section, we prove Theorem 1.11. Now we no longer assume a lower bound for

We need to introduce some notations. Let v be a locally Lipschitz function in some
open subset Q of R2. For 0 < a < 1,z € Q, and 0 < § < dist(x,08), let

s e @)
[’U]a’(s(.%') o O<|y—2\<5 ly — x|

if Wadist(z00) <1,
d(v,2;Q,00) := ¢ p where 0 < p < dist(x,00N) and p*[v]a,,(z) =1

Z.f [U]a,dist(wﬁﬂ) Z 1
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Now we prove Theorem 1.11:
Lemma 2.6. Under the assumption of Theorem 1.11, we have the Hélder estimates:

uly) ~u@)l _ oo

sup Voi<a<l

—_ «
lyl |z <r|y—a|<2r  |Y —

Proof. Suppose the contrary, then for some 0 < o < 1, there exists, in By, C® functions
{u;}, C! functions {K;} satisfying, for some a > 0,

| Koy <@, u; <aon B,

a,
FON(A“)) = K;, MNA“) €T in B,
but

inf  §(u;,z) — 0,
ZEEBl/z

where
J(U’ia ‘T) = 5(u27 &€ BQa Oé)
It follows, for some z; € By,

1 — |y 1— |z
—— — ImaXx
O(uiy ;) o<1 0(ui, x)

Let
1-— |(E2|
i T i = 0(uq, ;).
o 5 € (ui, x;)
Then
i 0o, € — 0,
€
and
€ < 20(ui,2) Y|z — x| < oy
Let
gj
vily) = wilw + ay) —wizi), yl < — (2.9)
7

By the definition of §(u;, ;),
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[’Ui}a’l(o) = 5(u’i7xi)a[ui]aﬁ(u“mi)(‘ri) =1 (210)

For any 8 > 1 and |z| < 8, we have that for large 4,
1
|ui(2) — wi(w; + €iz)] <Jui(2) —ui(5 (2 + zi + €2)))|
1
+ |uz(§(z +x; + €x)) — ui(x; + €x)],

1 1
|z — (x; + )| = 2|z — 5(z—|—xz +ex)| = 2|§(z—|—xi +ex) — (2 + €2)],

[Vi]a,1(%) = €' [uila,e; (Ti + €1)

<20 sup [uily g (2) + [ g (1 + i)
|z—(zi+eiz)|<e;

< C(ﬂ)( sup 5(uivz)a[ui]a,5(ui,z)('z)
|z—(zite,x)|<e;

+ 5(“/17 T; + eix)a[ui}a,é(ui,:zzi+eiw) (xz + €Z$))
<C(pB).

This implies for any g > 1,

—C(B) <vily) <CB), Vyl<p. (2.11)

By Proposition 2.5, we have, for any 8 > 1,

[Vui(y)l < C(B), ¥ |yl <B.
Passing to a subsequence,

v; = v in O (R?) forall @ <y <1,
where v is a function in Cp:! (R?) satisfying [v]a,1(0) = 1. In particular, v cannot be a
constant.

Clearly, for v; := e’“’?(z’?)e;2 — o0, and T = xz; + €,

FONA"D)) = FAA" @) = K, gl < 2

2

Thus,

lim f(A(A"®))) = lim ~;'K; = 0.
1—00 1—00

By standard arguments, see e.g. [51, Theorem 1.10], v is a locally Lipschitz viscosity
solution of A\(AY) € IT" in R2.

By Theorem 1.9, v is a constant. This leads to a contradiction to [v],1(0) = 1. The
Holder estimate is established. O
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Based on the Holder estimates, we establish Theorem 1.11:
Proof. The Holder estimate yields the Harnack inequality

supu < C' + inf u
By, Bar

Consider w := u — u(0), the equation of w on Bs, is
FOMAY)) = e O K, XAY)eT
and w satisfies
—C<w<C in By,.
Since u(0) is bounded from above, using Proposition 2.5, we have
|[Vu| < C in B,.
Theorem 1.11 is established. 0O

2.8.3. Gradient estimate for f(A(A*)) =0

Now we prove Theorem 1.12. The proof is similar to the proof of Theorem 1.11. We
will need Theorem 1.9 and the comparison principle Lemma 2.3 to finish the proof.

In the following, for simplicity, write d(v, z, a) = §(v, z; By, a).

Now we give the proof of Theorem 1.12.

Proof. Since the equation \(A*) € JT" is invariant under scaling, it suffices to consider
e = 15/16. We first claim that

qap @) =l

(T,a) forany 0 <a<1
T#£YEB /8 |.’I,‘ - y|o¢

Assume otherwise the above fails. Then for some 0 < o < 1, we can find a sequence of
positive C%! functions u; in By such that A(A%#) but

sup —a — O0.
w?ﬁyEBl/g |x - y‘

It follows that for some xz; € Bgy4,

3a-fel 1 3/4-|n
d(ui, x4, @) 2 2By, O(ui, x, @)

Let 0; = m and €; = 6(u;, x;, @). Then
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i, 00, ¢ — 0,and ¢; < 46(uy, z,a) for any |z — x;| < o;.
€
We now define v;(y) as in (2.9), then (2.10) holds.
For any fixed 8 > 1 and |y| < 3, there holds, for sufficiently large i,
[vila,1(y) < 4.

Since v;(0) = 0 by definition, we deduce from the above that (2.11) holds.
Now we can apply Lemma 2.4 to obtain

|Vus| < C(B) in Bgj, for all sufficiently large i.

Passing to a subsequence, we see that v; converges in Ccoe’ (o < & < 1) on compact
subsets of R? to some locally Lipschitz function v, which satisfies A\(4¥*) € 9T in the
viscosity sense. By Theorem 1.9,

vy = v,(0) = lim v;(0) = 1.

17— 00

This contradicts that [v;]q,1(0) = 1, in view of convergence of v; to v.. So we have proved
the claim.
Because of the claim, we can find some universal constant C' > 0 such that

u(0) = C <u <u(0) + Cin Byyg
Apply Lemma 2.4 again, so we obtain the required gradient estimate in By,15. O
2.4. Local C? estimate
We prove Theorem 1.13 in this part, using Bernstein type arguments.

Proof. For convenience, we write u = —v. Define W = V%0 + 3dv ® dv — +|Vv|?4;;. So
equation (1.14) becomes

f(W)=Ke™".

It suffices to show Aw is bounded. Since A(A*) € I' C I'y, we know 0 < ¢tr(W) = Awv.
Without loss of generality, we may assume r = 1. Let Q = n(Av + $|Vv[?) = nH,
where 7 is a cut-off function satisfying
0<n<l,
n=1in By, and n = 0 outside By,
[Vl < CV/,
V2| < C.
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Now we need to get the upper bound for H.
Suppose zq is the maximal point of Q. At zg, we have

1
0=Qi=mnH+nH; =ni(Av+ §|VU|2) + (Vi + VEVk:)s (2.12)

and

Qij = nijH +niHj +njHi +nHi; = (ni; — 2772;“

JH +nHi;.
Here we have used (2.12). We know @);; is negative semidefinite.

Hij = kkij + UkiVkj + UkVkij- (2.13)

Now by the condition fy, > 0, f¥ = B%J_ is positive definite. So use the condition on 7,

we have

0> f9Qy = fi((ni; — 2771'7;” VH +nHi;) > ~CY fUH +nfH;.  (2.14)

Using (2.13), we obtain
F9H;; = £ (vkkij + vkivr; + vivrig) = 1 + 11,

where I = fijvijkk and I] = fij (Ukﬂ}kj + Ukvijk).
To compute I, notice that

(|V2u|2 + vlvlkk)éij.

1 1
Wij ek = Vijkk + = (VikkVj + 20055 + 0;0jkk) — B

2
Then
_ fiJ 1 1 2,12 )
I= f79Wijn — §(Uikk'l)j + 203,055 + ViVjEE) + E(IV V)% + Vv )0ij)
g g 1
= [T Wijkk + [ (= (vikkv; + vikvje) + §(|V2v|2 + VK ) 0ig )
Now use (2.12) to replace v;xx and vk,
= f9Wine + f ((gQ + Uk Uki)Vj — VikVjk + §|V V]85 — ivz(;Q + vk i)
ij ij o2 2 1
= f9Wijkr + [ (0pviv; — virvjp + §|V v|*04; — ivlvkvklézj)
ii i 1
oMy — 2o sy
+f Q(UUJ 2”117 ZJ)

Using the condition on 7, we obtain
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| . 1 1 TI
I> f9Wij ke + [ (0pvrivy — vavje + §|V2U|25ij - §'Ulvkvkl6ij) -C E fiHyY2,
7

For II, we use the formula

1 1 1
Wijk = vijr + S VikVj Uk = Evzvzk&j

to replace v;;1, then we obtain
IT= fij(vkivkj + VUL )
g g 1
= e f"Wijk + [ (Vkiveg — vpvinvy + ivkvlvlkisij)-

Combine I and II, then

. g g . 1 1
[P Hij > f9Wij ek + o f" Wi + [ (vrvgiv; — vikvje + §|v2U|26ij - §'Ulvkvkl(5ij)

. 1 o
+ 7 (kivrj — vrvikv; + ivkvlvlkaij) - C'Z fiHy 2
g 3 1. o
=" Wij ke + o[ Wijr + §f”|v20|25ij - CZ fiHyY2,

Now multiply by 7 on (2.14). In the following, we use Cs to denote some positive constant
depending only on C' and |Vu/, that may vary from line to line.

0>—Cn)d f'H+n*f7Hy
> 0* fOWig o + 0o Y Wi+ 50 Z: frVR? — Czi:f (Hy*'? +nH)
> 02 fIWij ok + 0P on S Wi + 5772 Zf V20l = Cy Z FEL A+ V20)).

By concavity of f, (Ke™")kr = fur < [YW;jkk. Use the property that > fy, > 4, we
obtain

1 3 3
02 PR oK™ g1 3£V = o 341+ 0l

7

1, iio2, (2 i 2
> 2 S0PV = G Y L+ 0l V),
So

02 1[V20f? — Co(1 + 1| V2.
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This implies n|V?v|(z¢) < C2, so maxp, Q(z) = Q(zo) = n(Av + 1|Vv|?)(zo) < Co.
Therefore, Av < Cy in B /. Using gradient estimate Theorem 1.11, we reach the con-
clusion. O

3. Bocher type theorems

In this section, we prove Bocher type theorems Theorem 1.14 and 1.15. Our proof
uses the idea in [53], with some twists.

3.1. Classification of radially symmetric case

We will classify all the radially symmetric viscosity solutions of A(A*) € 9T in annulus
domain.
Now we state this classification theorem.

Theorem 3.1. Let I' = T, for some 1 < p < 2. Denote r = |x|. Then all radially
symmetric (continuous) viscosity solutions of A(A") € T in annulus {a < |z| < b},
a >0 and b < oo, are classified as follows:

(a) u=Cilnr+ Cs, C1,C2 €R, if p=1,

(b)u=—-4lnr+Cy oru=Cy, CL €R, if 1l <p <2,

(c) u=— 1ln(rp_1—|—C1)+C'2, where C1 >0, if 1 <p <2,

4(2 —
(d) v = %lp)ln(r_(p_l)/@_p) —C1) 4+ Cq, where C; >0, if 1l <p<2,0<b<
Cl—(z—l))/(p—l)7
_ 42-p) ~(r-1)/(2-p) :
(e)u-pTIH(Cl—rp P))y + Cy, where C; > 0, if 1 < p < 2,

C;(Q_p)/(p_l) S a S 0.

Remark 3.2. When n > 3, any radially symmetric (continuous) viscosity solution of
A(AY) € OT', for 2 < k < n in an annulus {a < |z| < b} can always be extended to a
solution in R™\{0}. However, this does not hold for n = 2, as shown in Theorem 3.1

(d)(e)-

Proof. First we assume that u is smooth.
Let u = wu(r) satisfy the equation A(A") € OI'. Denote A(A") = (A1, A2), then a
calculation gives:

. 1 N2 "
AL = 4€u((u) — 4u"),
1 1
Ao 1= @(—;u’@—i—ru')).

Take a point P € (a,b). We have three cases: A\3(P) > 0, A2(P) < 0, A2(P) = 0.
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In case 1, A2(P) > 0, assume there is a maximal interval (c¢,d) C (a,b) containing P
such that Ay > 0 in (¢, d). Since A(A*) € IT', A1 + (2 — p)A2 = 0 in (¢, d). So we have in
(¢,d),

The first equation implies v’ < 0.
1
Ifp=1u"+=u =0, then u = CyInr + Cs in (¢,d). The condition Ay > 0 implies
r
that —4 < C7 < 0.

4
If p # 1, then let g = —, we obtain p — 14 ¢’ —
u

2 _
% = 0. So we can solve this

equation and obtain ¢ = —r — C372~P. Hence

U= —

o1 ln(rp_l —l—Cg) + Cy4.
Since Ay > 0, C3 > 0.
Now we prove that (a,b) = (c,d). In fact, from the explicit form of u, we can see
u' # 0 in [e,d]. If a # ¢, for example, then A2(c) =0, i.e.

4+ cu'(c) = 0. (3.1)

If p=1, (3.1) implies C; = —4, contradiction;

If p # 1, (3.1) implies C3 = 0, then v = —41lnr + Cy, by direct computation, Ay is
identically 0 in (¢, d). This is a contradiction.

Thus, (a,b) = (¢, d).

In case 2, A2(P) < 0, consider the maximal interval (¢,d) C (a,b) containing P such
that A2 < 0 in (¢, d). Since A(A™) € IT" in (¢, d), (2 —p)A1 + A2 = 0. Obviously p # 2. So
we have in (¢, d),

1
——u' (44 ru’) <0,
r

u//

(1=p) =42 =P s = 72 =0,

If p=1, then u = Cy Inr + Cs. It follows from Ay < 0 that C1(4+C1) > 0.So C; >0
or C; < —4.
If p # 1, then

42—
Lo X 11)) In [r~ = D/2=P) _ ¢4 4 G

Since Ay < 0, we obtain Cs > 0.
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Now we prove that (¢, d) = (a,b). Otherwise, we will have A2 = 0 on the boundary of
(¢,d), which implies:

If p=1, u = constant, and Ay = 0;

Ifp#1,C5=0,50u=—4Inr+ Cg, and A2 = 0.

Both lead to a contradiction.

In case 3, \o(P) = 0, by previous arguments, we must have Ay = 0 on (a, b). It is easy
to see either u = Const or u = C' — 41lnr. Then we can compute easily that A; = 0.

We have proved that all smooth solutions u must be one of (a)-(e). It is straightforward
to check that function given by (a)-(e) satisfies the equation A(A") € 9T

Now we consider viscosity solutions wu.

Lemma 3.3. AssumeI' =T5. For0 <a <b < oo, letu e LSC({a < |z| < b}) be radially
symmetric and satisfy N(A*) € T in {a < |z| < b} in the viscosity sense. Then u is
non-increasing and u(z) + 41n|z| is non-decreasing in |z|, i.e. fora <c < d <b,

0 <u(e) —u(d) <4(Ind —1Inc).
In particular, u is locally Lipschitz in {a < |z| < b}.

Proof. If v is in C?, then

1 1
)\2 = @(—FU/(ZL +7”U/)) Z 07

which implies 4’ < 0 and (u +41nr)’ > 0. The lemma is already proved in this case.
Now consider u € LSC'. Define w = e~%/2, then A" = 2wB,,, where

1
By, = V2w — —|Vw|?I.
2w

Let p € C°(R?) supported in B; satisfying p > 0 and /p = 1. For ¢ > 0, let
R2
pe(x) = ép(%) and let we :== w#p, in {a+€ < |z] < b—e€}. Set ue = —2Inw,.. We know
U — u a.e. as € — 0.
Since A(A") € T, we know A\(B,) € T. By the convexity of B, in w as pointed
out in [58, Lemma A.1], A(B,,) € T, which implies A\(A%) € T. Hence u. < 0 and
(ue +41In7r) > 0. It follows that, for Va < ¢ <d < b,

0 < ue(e) — ue(d) <4(lnd — Inc).
Sending € — 0T, we obtain

0 <u(c)—u(d) <4(lnd—1nec). O
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The next two corollaries concern the existence and uniqueness of radially symmetric
viscosity solutions on any finite annulus with given boundary values, as well as their
regularity.

Corollary 3.4. Assume I' = I's. For any 0 < a < b < oo, «,f3, there exists a radially
symmetric function u in C°({a < |x| < b}) satisfying

AMAY) € T in {a < |z|] < b},
“|aBa = o “|aBb =0,

if and only if
b
0<a—-f<4In-. (3.2)
a
Moreover, such solution is unique, and v € C*({a < |z| < b}).

Proof. By Lemma 3.3, (3.2) is necessary for solvability. The uniqueness follows from
the comparison principle Lemma 2.3. Now we prove the existence part. Without loss
of generality, we can assume that o = 0. If § = 0 then v = 0 is the solution. Now
assume 8 # 0. Then % < eP/* < 1. Tt is easy to check that the solution is given by

u=—4In(r + C1) + Cs, where

Clearly, u € C*. O

Corollary 3.5. Assume I' = I'y,, where 1 < p < 2. For any 0 < a <b < o0, 0,3 € R,
there exists a unique radially symmetric function u in C°({a < |x| < b}) satisfying

{ A(AY) € T in {a < |z| < b},

“|aBa = “|aBb =p.
Moreover, u € C*({a < |z| < b}).

Proof. We only need to prove the existence, the remaining is clear. When p = 1, the
existence is obvious since u can be taken of the form Cjlnr + Cs. So we only consider
1 < p < 2. Without loss of generality, we assume « = 0.

If 5 =0, then u = 0 is a solution.

4(2 —
If 3 < —41In(b/a), take u = % In(r=(P=H/2=P) — 1) 4 Cy with

p—(P—1)/(2=p) _ 4= (p—1)/(2—p) o(8/4)x(p—1)/(2—P)
1= 1— e(B/H=(p—1)/(2—p) '
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then wu satisfies the equation in the annulus. One can see that there is a unique Cy so
that u satisfies the boundary conditions. By a direct computation, we can check that
Cy > 0and b< ¢y B/ 7D,

If —4In(b/a) < B <0, take u = —

- In(rP~! + C1) + Oy with

apfl _ 65(1771)/41)1771
>0,

C1 = eBlr—-1/a _ 1 =

then u satisfies the equation in the annulus. One can see that there is a unique Cs so
that u satisfies the boundary conditions.

4(2 —
If 3 >0, take u = (71])) In(C; — r_(p_l)/(g_p)) + Cy with
p—
B a—(P—1)/(2=p) o (B/4)*(p—1)/(2—p) _ p—(p—1)/(2—p)
1= eB/D+(p-1)/(2=p) — 1 '

then wu satisfies the equation in the annulus. One can see that there is a unique Cy so
that u satisfies the boundary conditions. By a direct computation, we can check that
Cy>0and ¢y &P/ < g

By now, we have proved that every radially symmetric viscosity solution of A(A*) € oI"
is a smooth solution. Therefore, we have completed the proof of Theorem 3.1. O

3.2. A comparison type result

The next lemma shows that the strong maximum principle holds for radially symmet-
ric viscosity solutions of A\(A%*) € JT.

Lemma 3.6. Let ' =T, where 1 <p <2. For0<a <b< oo, letu € C°({a < |z| < b})
and u € LSC({a < |x| < b}) be radially symmetric and satisfy respectively \(A*) € oT
and \(A") € T in {a < |z| < b} in the viscosity sense. Assume that u < @ in {a < |z| <
b}. Then

either u < w in {a < |z| < b} oru=1u in {a < |z| < b}
Proof. Suppose for some ¢, d € (a,b), u(c) < u(c) and u(d) = u(d). We may assume that
¢ < d; the other case can be proved similarly. By Theorem 3.1, u is smooth and takes

some specific form.
We first observe that

u=1uin {d < |z| < b}.
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In fact, if there exists some d < 7 < b such that u(¥) < u(7), then by comparison
principle on {c < |z| < 7}, we obtain, for small ¢ > 0, (1 + €)u < w in {c < |z| < T},
violating u(d) = u(d).

Fix a d € (d,b), and let o = 3(u(c) + a(c)).

Case (i): If ' = T'y, then apply Lemma 3.3 to both u and @ to get

0 < u(c) — u(d) < a — u(d) < @(c) — a(d) < 41112

By Corollary 3.4, there exists a unique C? radially symmetric solution v of A\(A%) € OT
in {c < |z| < d} satisfying v(c) = a and v(d) = u(d) = u(d).

Case (ii): If T # T'9, then the existence of v is given by Corollary 3.5.

By comparison principle, v < @ on {¢ < |z| < d}. On the other hand, since u(c) < v(c)

and u(d) = v(d), we have, in view of the explicit form of radial solutions given by
Theorem 3.1, u < v in {¢ < |z| < d}. Thus, u(d) < v(d) < i(d), contradiction. 0

A consequence of the above lemma is the following comparison type result.

Corollary 3.7. Let I' =T'p,, where 1 <p < 2. For0 <a <b < oo, let u € C'l{a < |2| <
b}), u € LSC({a < |z| < b}) be radially symmetric and satisfy respectively A\(A*) € oT
and M(A") € T in {a < |z| < b} in the viscosity sense. Assume that u(b) < u(b) and
u(d) > u(d) for some a < d < b. Then

a<uin{a<|z| <d}
Moreover, if u(b) < u(b), then u < u in (a,d).

Proof. Assume the contrary that u(c) < @(c) for some ¢ € (a,d). According to The-
<

orem 3.1, u is a smooth function. We also know that u(b) < w(b). An application of

comparison principle yields that
u > u on Bb\BC

In particular, u(d) > u(d). From the boundary condition, it follows that u(d) = u(d).
Now by Lemma 3.6, we obtain u = % on B\ B,, violating u(c) < @(c). O

3.3. Remowable singularity result
We will need the following removable singularity result.
Lemma 3.8. Let I' =T, where 1 < p < 2. Let u € LSC(B1\{0}) be a viscosity solution

of M(A%) € T in B1\{0}. Then u, with u(0) = liminf, .o u(x), is a function in LSC(B)
satisfying N(A™) € T in By in the viscosity sense.
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Proof. It is easy to see that u, with «(0) = liminf, ,ou(z) is in LSC(B;). This lemma
is a special case of Theorem 3.7 in [57]. O

Proposition 3.9. Let I' =T, where 1 < p < 2. Let w € LSC(B:\{0}) N LyS.(B1\{0}) be
a function satisfying A\(A*) € T in B;\{0} in the viscosity sense and

lim inf(u(z) + 41n|z|) = —occ.

|z|—0

Then the function u with u(0) = liminf ;o u(x) is in CYP~Y(By). Moreover, set w =
1

exp(—23-u), then

[wllgor-1(8, ,,) < C(T) pax w.

Proof. By Lemma 3.8, \(A%) € T in viscosity sense. Let v(z) = v(|z|) = mingp,,, u.
Then A(A?) € T in By in the viscosity sense, hence v is superharmonic. It follows that v
is nonincreasing.
By the hypothesis, liminf,_,o(v(r) + 4Inr) = —oo, hence there exists 0 < r; < 3/4
such that
3

3
v(r1) +4lnrm < U(Z) +4In 1

Thus, there exists C7; > 0 and C5 such that the function

4
o(r) = _p — In(r*~! 4 Cy) + Cy

satisfies 9(r1) = v(r1) and 9(3/4) = v(3/4). By Theorem 3.1, A\(A?) € 9T in B;\{0}. By
Corollary 3.7, we have v < 9 in (0,71). In particular, v is bounded from above at the
origin, and

u(0) = liminf u = liminf v(r) < co.
|z]—0 r—0

By Lemma 3.8, A\(A%) € T in the viscosity sense. By the superharmonicity of u,

c:= inf u= min u > —oo0.
Bs,y 0B3/4

For T € B3, consider

. In(4? e — 2P~ +b) + ¢,

where b > 0 satisfies
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§a(7) = — Inb+ c=u(z).

p—1
We will show that
u>&z in Bgjy.
It is easy to see that
§z(x) < —4In(4|z — 7|) +c < cfor all z € OBs 4.
Also, since &z (z) = u(x), for any € > 0, there exists 0 < 0 < % such that
{z(z) — e <wuin Bs(7).

Since by Theorem 3.1,

A(A% ™) € 9T in By \{z},
and

& — e <wuon 9(Bs/y\Bs(Z)),
we can apply comparison principle to get

§z — e <win B3/4\Bs(7).
Therefore,
&z — € < uin Byjy.

Sending € — 0, we obtain u > &z in Bg/y4.
Now set

u(z)),

w(z) = exp(~"
then it follows that, using (3.3) and (3.4),

w(z) — w(z) < 4Pz — 2P~ max w for all ,Z € By s.
9Bj)4

Switching role of z and = we obtain

lw(z) — w(z)| < 4P~z — 2P~ max w for all z,z € By ».

0B3/4

which proves the result. O

29

(3.3)

(3.4)
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3.4. Proof of Bocher type theorems

3.4.1. The case I' =T'5: proof of Theorem 1.1/
Proof. We write v(z) = wv(|z[) = mingp, u. Then v belongs to LSC(B:\{0}) N
L2 (B1\{0}) and satisfies A\(A”) € T in B1\{0} in the viscosity sense.

We claim that

either v(z) = —41n|x| + C for some constant C or sup v < 0.
By/2\{0}

Indeed, if the first alternative does not hold, we can find 0 < r; < r9 < 1 such that
v(r1) +41lnr; # v(r:) + 41lnrs.
By Lemma 3.3,
v(ry) <o(ry) <4(lnrg —Inry) 4+ v(rs).

Therefore, we can find function

() = —— (P 4+ 1) + Oy
p—1

satisfying ©(r1) = v(r1) and 9(r2) = v(re), C1 > 0. By Theorem 3.1, A\(A®) € I in
B;1\{0}. By Corollary 3.7, we have v < ¢ in (0,71). In particular, v is bounded near the
origin. The claim is proved.

If the first alternative holds, we have v > v in B1\{0}, Au < 0= Awv in B;\{0}, and
the set {x € B1\{0} : u = v} is non-empty. By strong maximum principle, u = v and
the conclusion follows.

If the second alternative holds, then conclusion follows from Proposition 3.9. O

3.4.2. The case I' =T, 1 < p < 2: proof of Theorem 1.15
Now we consider the case I' # I'y. By Proposition 3.9, it suffices to assume

liminf(u(z) +4In|z]) > —oc.
|z|—=0

Lemma 3.10. Let T = T, for some 1 < p < 2. Let u € C2H(B1\{0}) be a viscosity

loc
solution of

A(AY) € a7

in B1\{0}, and u satisfy liminf|,o(u(z) +41n|z|) > —oco. Then
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lim (u(z) +41n|z|)

|z]|—0
exists and is a finite number.

Proof. We still define that

v(r) = minu.
Then v is superharmonic in B1\{0}. Since {0} has zero Newtonian capacity, v is super-
harmonic in B;. In particular, v is non-increasing.
Fix some 0 < p; < 1 and for 0 < p < p1, j € Ny, let w, ; be the radially symmetric
function which is of the form
42 -p)

wp,i(r) = o1 In(r

L i)+ b,
pd) T Opj

in B1\{0} such that w, ;(p) = v(p) +% and w, ;(p1) = v(p1). After solving the equation,
we obtain that

_ _p—(p—l)/(2—p) + pl—(p—l)/(2—p)674<pzi;) (wp(p)—wp(p1))
Ap,j =

64(172—__1,))(“1/3(.0)_“’0(91)) —1 ’

4(2 - p) p—(P=1)/(2=p) _ p;(pfl)/(%p)
b = Wpi(p) = ==~ In 1| — o il Wl —ws (o)
Claim: w, ;(r) > v(r) for all 0 <7 < p.

In fact, by Theorem 3.1, we know if a, ; > 0 then A(A¥r3) € OT, if a, ; < 0 then by
direct computation, A\(A"»s) € R2\T. Therefore, w, ; is a subsolution. If w, ;(s) < v(s)
for some s < p, then the comparison principle implies that w, ;(r) < v(r) for s < r < p1,
which implies in particular that w, ;(p) < v(p), contradicting our choice of w,_ ;(p). The
claim is proved.

It follows that

limsup(v(r) +41nr) < limsup(w, ;(r) +4Inr) =b, ; for all 0 < p < p; and j € N,.

r—0 r—0

In particular,

limsup(v(r) + 41lnr) < 4o0.

r—0

Since lim inf |, _o(u(z) + 41n |z]) > —oo, we obtain

- . 1 4@2—p). p-0-D/C=p) _ ,;me-D/@D)
1£)n_>%1 p.J lrpn_)lgl (v(p) + ; P n - eiﬁ(wp(p)iwp(m))

)
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1
= liminf(v(p) +41np) + = > —cc.
J

p—0

Therefore,

1
limsup(v(r) + 41lnr) < liminf(v(p) + 41np) + —.
J

r—0 p—0

Send j — oo, it follows that lim, ,o(v(r) + 41nr) exists and is finite.
We thus have

a = liminf(u(z) +41n|x|) = lir%(v(T) +41nr).
r—

|z|—0

We next claim that

A :=limsup(u(z) + 41n |z|) is finite.

|z]|—0

To prove the claim, for 0 < r < 1/4, let

urly) = ulry), 3 <ol <2
Then u, satisfies A(A%r) € IT" in {1/2 < |y| < 2}. Thus, by Theorem 1.12,
(7
where C' depends only on n. Equivalently,

maxu < C + minu. (3.5)
0B, r
The claim follows from above.
By Proposition 2.2, we know a > 0. Moreover, (3.5) implies that A < a + C < oc.
Next we show A = a. Assume by contradiction that A > a. Then for some € > 0, we
can find a sequence x; — 0 such that

u(z;) +4Injz;| > a+ 2e.
Furthermore, we can assume that

8%1111 u+4ln|z;| =v(x;) +4ln|z;] <a+e.

£
Define

u;(y) = u(i) +41n 1

<R;=lz;|"" = 0.
R; Rj’ |y J |J|
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Then we have

A(A%) € aT in B, \{0},

minu; < a+ € and maxu; > a + 2e.
0B 0B

Since mingp, u; is bounded, we can apply Theorem 1.12 to obtain the boundedness of
u; and |Vu;| on every compact subset of R?\{0}. By the Ascoli-Arzela theorem, after
passing to a subsequence, u; converges uniformly on compact subset of R2\{0} to some
locally Lipschitz function w,. Furthermore, u, satisfies the equation \(A**) € JI" in the
viscosity sense.

By Theorem 1.9, u, is a radially symmetric function, i.e. u.(y) = u.(|y|). This results
in a contradiction to mingp, u; < a + €, maxpp, u; > a + 2¢ and convergence of u; to
u. We conclude that A =a. O
Lemma 3.11. Let T = T, for some 1 < p < 2. Let u € Cp'(B1\{0}) be a viscosity

loc
solution of

A(A") € oT in B;\{0},
and u satisfies lim inf ;o (u(x) +4In|z]) > —oco. Then

42—
v (711’) In(r=®-D/C=0) L p) 4 g,

p—
where W is a nonpositive function in Li; (B1), and a = suppg,\ (o} (u(x) +41n|z]) < +o0.
Moreover,

minw < < Iggxu? in B\{0}, VO<r<l (3.6)

T

Proof. By Lemma 3.10, a = supp,\ 101 (u(7) + 4In |z[) < +oo. Since u(x) +4Inlz| < a
in B1\{0}, it follows that & < 0 in B;\{0}. Now we will show that

minw < w < rggxﬁ) in B,\{0}, VO0O<r<l1.

r

Fix 0 <r <1, for € > 0, set

4(2 —
vl (z) = 12-p) In(r~®=Y/C=P) L maxp) +a + e,
’ p—1 9B,
4(2 —
v () = 42=p) In(r~®P=D/C=P) { mind) 4 a — e

p—1 9B,

By Theorem 3.1, we have )\(A”jﬂ') € 0T and A\(A%r) € 9T in B,\{0}, and v, < u < vf,
on 0B,. Furthermore, by Theorem 3.10, there exists 6 = d(e,r) > 0 such that
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v, <u<vf, in Bs\{0}.
Thus, by Proposition 2.3,
v, <u<vf, in B\{0}.
Sending € — 0, we obtain (3.6). O
Theorem 1.15 follows from Lemma 3.10 and Lemma 3.11.
4. Existence result
In this section, we prove the existence result Theorem 1.1.
4.1. Kazdan- Warner type identity

We first establish Theorem 1.5, the Kazdan-Warner type identity on (S2, g) for the
o9-Nirenberg problem.
Recall that
Ag

1 1
.= —Vgu + Edu ® du — 1|Vgu|2g +g.
For any 2 x 2 symmetric matrix A, denote the k-th Newton transformation Tj(A) =
Z;?:O(fl)jok_j(A)Aj, namely, Ty = &;5, Ty = 01(A)d;; — A. Then we have

(k+ 1Doge1(A) = Te(A)FAL, for k=0,1. (4.1)

Proposition 4.1. Let u be a smooth function on S?. On (S2, g,) where g, = eg, we have
(i) VA = VpAae.

(i) VaTy(gu 1Ay, )¢ =0, k=0,1.

Here the covariant derivative is taken with respect to g,.

Proof. We prove (i) here. (ii) follows from (i) as in [64].

It suffices to show V1 A1s = Vo Aj1 and VaAi9 = Vi Agy. We will only prove ViAjp =
Vo A1, and the other one is similar.

Set up local coordinates {x1,z2} such that g = e®d;;, where ¢(x) = In W.
Therefore, g, = e“793;;.

By definition (1.1),

1 1
Aij = —u;; + Ffjuk + Euiuj — Z(u% + u%)éij + 8¢5ij (4.2)

where Ffj is the Christoffel symbols with respect to g.
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V1A = 01(A12) — A(Vier,es) — Aler, Vies)

= 01(A12) —T11 A1 — TF Ay — T, A1 — T3, A1,
VaAyr = 02(A11) — 2A(Vaer, e1)
= Dy(Aqy) — 2T 1, Ay — 213, A ),

where f‘k< is the Christoffel symbols with respect to g,.

By dlrect computations, I'l; = 2, = ¢1/2, ['?] = —¢/2, T'1y = T3, = ¢2/2, T3, =
—¢1/2, and Fz-j is given the formula of Fij with ¢ replaced by ¢ + u.

Therefore,

ViAi2 — VoA
=(01(A12) = T11 Avg = T7 Agy — T A1y — T, 410) — (92(A11) — 20,411 — 205, A1)
=01(A12) — 02(A11) — fflAQQ + f‘%zAll
=01(A12) — 02(A11) + (u2 + ¢2)(A11 + A22)/2

Using (4.2) and the formula of 1"”, we obtain

A1 = —u1z + ¢ou1 /2 + drus /2 + uruz /2,
Ay = —upy + 1ur /2 — Goug/2 + ui /4 —u3 /4 + €,
Aqr + Agp = —ugq — ugo + 2¢.

It follows that

ViAiz — VaAn

=(—u112 + P12t /2 + d2u11/2 + P11u2/2 + Pru12/2 + ur1U2/2 + Uru12/2)
— (—u112 + G12u1 /2 + Prura/2 — Posuz /2 — Paua/2 + urtna/2 — Uzuzz /2 + € ds)
+ (uz + ¢2)(—u11 — uga + 2¢%)/2

1
:(§(¢711 + ha2) +eP)ua =0. O
Proof of Theorem 1.5. We claim that
(X,Vo3) = Vo (TEV (divX) + 20, X%), (4.3)

where T} denotes the components of 7;.

Once the claim is true, Theorem 1.5 for k = 2 follows by integrating (4.3) over S2.
Proof of the claim:

Let ¢; denote the local one-parameter family of conformal diffeomorphisms of (S, g)
generated by X. Thus for some function us, we have ¢;(g) = e“tg =: g;. We have the
following properties:
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o2(g7 Ag) 0 ¢y = 0a(g; " Ag,). (4.4)
U= 4 uy = divX =V, X (4.5)
dt],_g
L (g Ay = Vg - g (16
t=0

Using (4.1), (4.4), (4.5), (4.6), and Proposition 4.1,

(X,Vog) = T (~Vii— wAp)
= TPV — 2090
= T’V — 20,V X
= TPV + 2(X, Vaa) — 2V (02X?)
= V(T V% + 205 X ") + 2(X, Vo).

Claim (4.3) follows. O
4.2. One point blow-up phenomena
Theorem 4.2. Let (f,T)) satisfy (1.9)-(1.12), and 1 < p < 2, {K;} be a sequence of
positive C2 functions on S? satisfying for some positive constants c; and Cy, ming> K; >
c1 > 0 and sup | Kiljc2(s2y < Cp < oo for all i, and let {u;} € C? be a sequence of
functions satisfying

f(/\(g;,lAgw)) = K;, )\(g;ilAgui) er, onS?
and, with x; € S?,

w;(x;) = maxu; — 0o.
S2

Then for some constant C' > 0 depending only on p, ¢; and Cs,

ui(r) < —2Indy(z,z;) + C for all x € S*\{z;}.
Here dgy(x,x;) denotes the distance between x and x; in the metric g.

We start with a lemma, see e.g. [37, page 271], [16, page 135].

Lemma 4.3. Let (N, g) be a two dimensional complete smooth Riemannian manifold with

smooth boundary ON. If, for some constants co > o > 0, K, > —a? on N and if the
geodesic curvature k of ON with respect to its inner normal satisfies k > ¢y on ON, then
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dg(xz,0N) < U(a, co) for all z € N,

where dy denotes the distance function induced by g and

o if =0,
U(O[,CQ) = 610 “1/¢ .
~coth™ (%), if o > 0.

Proof of Theorem 4.2. The proof is analogous to the proof of [54, Lemma 3.1].

Lemma 4.4. Assume for some C; > 0, M; — oo and y; € S? that

ug(

Yi)
2 } < uz(yl) + (.

ui(yi) — oo and sup{u;(y) : dg(y,yi) < Mie™

Then for any 0 < p < 1, there exists M = M(C1, ), such that for all sufficiently large

2

i (y4q)

Volg,, ({y : dg(y,y;) < Me™ 2" }) > (1 — p) Vol (S?).

Proof. Without loss of generality, assume f(A(g7'4,)) = 1 on S?, where g is the stan-
dard metric on S2.
For ¢ € R?, a > 0, ¢ = In 4, define

Ugq(z) =2In ¢, x€R2

- +
a? + |z — qf?

Write S? = {(21, 22, 23) € R?[2] + 25 + 25 = 1}.
Let (w1, 22) € R? be the stereographic projection coordinates of z € S?, i.e.

2$¢ . |JZ|2 -1
= _for1<i<2 and z3 = .
zZ 1+|x|2 or STSs and zs |x|2+1
Then
g =ldz=|* = ( )|da|? = ero0|da|?.

14+ |z)?
A calculation gives

(eUa'qgﬂat)_lAeUa,qgﬁat =1,
and

f()\(AeUa,qgﬂm)) =1 on R?,

where gaa; = |dz|? is the standard metric on R2.
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Define a map ®; : R? ~ T,,,(S?,g) — S? by:
®;(z) = exp,, e%i(yi)x,
and let
i (7) = u; 0 ®;(x) + ¢ — ui(yi), « € R2

Then u; satisfies

ui(yi)—c
2

F(M(Aga;z,)) = 1Land A(Aa,5,) € T on {|z] < me },

(R?). Furthermore, ;(0) = ¢, and by
assumption, 4; < C7 +c. By local derivatives estimates Theorem 1.11 and Theorem 1.13,

where h; = e“i(yi)_cq);‘g. Now h; — GAat on C3

loc

@; is uniformly bounded in C? on any compact set of R?. By Nirenberg’s estimate [62],
@i; subconverges in C % (R?) to some function . € C?(R?) which satisfies

FAM(Agiegq,)) =1 and A(Agag,,,) € I on R%,

By the Liouville theorem in our earlier paper [52], we have @, = U,, ,, for some a, >0
and z, € R2. Since %, (0) = lim%;(0) = ¢ and %, < C; + ¢, we have, for some constant
C depending only on Cf,

|zx| < C and Cl<a, <C.
In particular, for any R > 0 and p > 0,
@ — Gl o2,y < p for all sufficiently large 4.

It follows that the metrics eﬂiﬁi converge on compact subsets to the metric €% gga;. Since
(B(0,7),e%h;) is isometric to (®;(B(0,7)), gu,), for any 7 > 0, we obtain:

For any € > 0, there exists R = R(e,C1) > 0 such that

(i) [Volg, (®i(B(0, R))) — Vol(S?, g)| < Ce* for some C independent of i and e,

(ii) the curvature of the hypersurface 0®;(B(0, R)) with respect to g,, and the unit

normal pointing away from ®;(B(0, R)) is no smaller than %
Using (ii) and Lemma 4.3, we see that

diamg, (S*\®;(B(0,R))) < Ce.
By Bishop’s theorem and Ky, = Ko >0, this implies
Volg, (S*\®;(B(0, R))) < Ce*.

Lemma 4.4 is proved. O
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Now to prove Theorem 4.2, we will show that, for some constant C' > 0 independent
of 1,

ui(z) < —2Ind, (v, x;) + C for all z € S*\{z;}.
Suppose not, then for some #; € S?\{z;},
ui (&) +2Indg(z;, ;) = rré%x(ui +2Indy(z;,-)) — oo.

Since (S?, g) is compact, this implies u;(#;) — co.
wq (@)

Apply Lemma 4.4 to C; = 0, y; = z;, and M; = de 2 with some small § = §(S?, g),
we find

ui(®;)

_uie) 3
Voly,, ({y dy(,) < Me™ ™57} > 2ol (57)

where M is some universal constant. )
Apply Lemma 4.4 to C; = 2In2, y; = &;, and M; = %d(mi,zii)eul(zzl), we find

~ w; (@ 3
Voly,, ({y+ dy(y, 7) < Me™ "5 }) > Zvol,, (82),

i

where M is some universal constant. On the other hand, since ui(x;) > ui(Z;), and
wi(Z;) + 2Indg(x;, ;) — oo, we know the sets

ui(®y) ui (%)

{y:dy(y,x;) < Me™ 2 }and {y:d,(y,&;) < Me =}

are disjoint for sufficiently large 4. This is a contradiction. O
4.3. C° estimate

In this section, we establish the following C° estimate.

Proposition 4.5. Assume that K satisfies the nondegeneracy condition (1.3) and v € C?
satisfies equation (1.2). Then

v < C,

where C depends only on an wupper bound of |InK|, a positive lower bound of

VEK;|+|AK;|), and the modulus of continuity of WTVQK

1 (| 1 .
IVEK:llcos2) llcos2) v

Remark 4.6. The C° estimates of the oj-Nirenberg problem under such nondegeneracy
condition on K were obtained in [13] for oo on S*, in [58] for o4, n/2 < k < n, on S”,
n > 3, and in [59] for o, 2 < k < n/2, on S™ for axisymmetric functions K. For such
detailed dependence of the constant C' on K in dimensions n > 3, see [58] and [59].
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Proof. Suppose not, then
(i) there exist positive C? functions K; such that |In K;| is uniformly bounded,
mﬂVKi\ + |AK;|) is uniformly bounded from below by a positive constant,
o

1 2 . . .
and =s———V~“Kj; is equicontinuous
IV2Killcos2) ¢ 4 ’

(ii) there exist C? functions v; satisfying equation (1.2) with K replaced by K; and a
sequence of points {P;} such that v;(P;) = maxgz v; — 00 as i — 0.

We assume without loss of generality that P; = P for all i, and P is the south pole.

We claim that |[V?K;||co(sz) is uniformly bounded. Indeed, if V2K, [|cosz) is a
subsequence going to oo, then m
Arzela’s theorem, this sequence is precompact in C2, hence the convergence would hold in
(IVK;|+|AK;|) is uniformly

K, converges uniformly to 0. By Ascoli-

C?. This contradicts with the assumption that —ezmi—
IV2K:llcos2y
bounded from below by a positive constant.
Therefore, by (i) and the above claim, we may assume without loss of generality that
K; converges in C? to some positive C? function K.

Recall Theorem 4.2, there exists C > 0 such that
vi(z) < C —2Ind,(z, P) for all z € S*\{P}.

Let ® : RZ — S? be the inverse of stereographic projection. P is the south pole.

2yi .
= i=12,
1+ |y

Pt
yl?+1°

%

z3
Then we have
o2(M(A"1)) = K;(®(y)), M(A“) €Ty, in R?,

where

1

U; =vi(z) +2In ———.
() = vile) + 20 g

We know that 0 is a maximum point of u;, u;(0) — oo as i — oo.
Let \; = exp(u;(0)/2), and define

Then
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Passing to a subsequence and apply Liouville type theorem, for every ¢; — 07, we can
find R; — oo with R; < 6;1 and R;/\; — 0 as i — oo, such that

- 1
[@:(2) — 2In Wn(ﬂ(fzmi) < €. (4.7)

Now we prove a lemma which gives the optimal decay estimate of w;.
Lemma 4.7. There exists a constant C' independent of i such that
ui(y) < C —u;(0) — 41n Jy|. (4.8)
Proof. By Harnack inequality and the above estimate, it suffices to show

rangnui(y) <O —ui(0) —4lnr, Vr > R/,
where )\; and R; is defined above.

For any r > R;/\;, define 4;(§) = u;(2ré) +2Inr, V £ € By. Then A\(A%) € T'y in By.
Fix some & such that |&;| = 55, then

Moreover, by (4.7),
(€) + 26| = ﬁi(l?l) 92— —41n2 + of1).

Therefore, for some ig independent of r,

Since [6] < y& < 1

w; = exp(—u;/4),

, by (4.9)(4.10) and the Bocher type theorem Theorem 1.14, for

max w > (wi(0) —wi(&) o 1 _ 1

9B1/2 Cl&il ~Cl&GIV2 Cwi(0)

Back to u;, then we obtain (4.8). O

Now return to the proof of C° estimate. Let

- 1
Ki=————(K;0o® - K;(P)).
||V2Ki||00(sz)( (F)

By Kazdan-Warner type identity (1.5),
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1 o .
0= s [ Oo2(M(A"))e"dy = | O K;e"'dy, [=1,2, (4.11)
V2Kl cos?)
R2 R2
and

2
1 _
0= =g /yzazo A(A™))e dy = /y-VKie“idy. 412
HVQKZ'”CO(S2) =g, 2( J ( )

Fix some ro > 0. Note that (i) implies that K; is precompact in C2, and it follows that
\VK;(y)| = % on R2. Thus by (4.8) and (4.11),

0= / K dy + O\ %), 1=1,2. (4.13)

ly|<ro

By (4.8) and (4.7), if ¢ : R2\{0} — R is a homogeneous function of degree d € [0,2),
then

5, T+ P2

lim A¢ / q(y)e”i(y)dy—/(&dz (4.14)
R2

ly|<ro

Using Taylor’s theorem, we write

2
AKi(y) = FKi(0) + Y 01 Ki(0)yp + 0y (]y|  for y < [rol,

p=1

where 0,,,(1) — 0 as ro — 0. Plugging this into (4.13), using also (4.14),

2
0=MDQK;(0) + MDY 0,0 K;(0)ul? + oo (DA, 1=1,2, (4.15)

i
p=1

where M®) and uz(,i) are given by

ly|<ro

; 1 , o(1)

('L) _ Uj —

M = o / ypeidy N (4.16)
ly|<ro
Therefore, we have
o (1
IVEK;(0)| = °< ) as i — 0o. (4.17)
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For (4.12), by the same argument, we have

2 2
0=MDY AR O + MDY 0K )y +0r, (DA 1=1,2, (4.18)
=1

l,p=1

where

; 1 y o(1)  O(1)8y, + o(1)
Mz(p) = M0 / yiype™'dy = \; =+~ (4.19)

ly|<ro

Combine (4.15) and (4.18) we obtain

2
> AR 0) (g, — i ) = 0r (1A,

l,p=1
By (4.16) and (4.19), we obtain
Ageo Ki(0) = 0, (1) as i — oo.

This together with (4.17) implies mﬂv.&\ + |AK;|)(0) converges to 0 as i —

00, which is a contradiction to (i). O
Now evaluate equation (1.2) at a maximum point Z of u. In the following, we use C' to

denote some positive constant depending only on an upper bound of K that may vary

from line to line.
C>K(x) = Ug(g;lAgu)(j) > Uz(e_ug_lAg)(f) — o—2u(®)
Hence

maxu > —C.
SZ

By the gradient estimate Theorem 1.11, |Vu| < C where C depends only on maxg2 u
and || K||lc1(s2), so

minu > —C.
S2

The CO estimate is now proved.
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4.4. Degree theory

In this section, we prove Theorem 1.1 using degree theories. The proof is by now
standard, so we skip some computations here. For details, see [57].

Fix some 0 < o/ < a < 1. We first assume K € C*%(S?), and the case K € C?(S?)
can be obtained by approximation.

For p € [0, 1], denote K, = uK + (1 — p)/4. Consider the equation

02(MAy,)) = K., MA,,) €Ty onS2 (4.20)

By Theorem 1.11, Theorem 1.13 and Proposition 4.5, we can choose C sufficiently large
such that all solutions to (4.20) belong to the set

O = {5 € C*(S?) 1 [0l ca.or (g2) < C1. M(Ag, ) € Ta}. (4.21)
Consider the operator F), : O — C2%'(S2) defined by
F,[v] :=02(A(4y,)) — K, Yv €O. (4.22)

By [47], the degree deg(F),,0,0) is well-defined and independent of p € (0, 1]. By [48,
Theorem B.1], it is also independent of o/ € (0, «. Therefore, it suffices to compute the
degree for small x4 and some o € (0, @).

For P € S? and 1 <t < oo, we can define a Mdbius transformation on S? by sending
y to ty where y is the stereographic projection coordinates of points and the projection
is performed with P as the north pole to the equatorial plane of S2.

For any M&bius transformation ¢ : S2 — S? and a function v defined on S2, denote

T,(v) :=vop+4In|J,|

where J,, denotes the Jacobian of ¢.
Let B denote the open unit ball in R3 and let

o ={ve ' (s?): /xe”(”)dvg(m) = 0}.
S2

Notice that 0 € .% corresponds to the standard bubble on S2.
For w € % and £ € B, define 7(w, ) to be:
m(w, &) = T%_Dlt(w), where P = é—| and t = (1 — |¢])™! when ¢ # 0,
and 7(w,0) = w.
The following lemma implies that 7 gives a parametrization of C*' (S?) with param-
eters in .%y X B.
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Lemma 4.8. The map 7 : %y x B — C%*'(S2) is a C? diffeomorphism.

Next lemma gives a property of m: for every given tubular neighborhood w(N x B)
of m({0} x B), all solutions of (4.20) belong to w(N x B) provided that u is sufficiently
small.

Lemma 4.9. Let 0 < o/ < a < 1. Suppose that K € C?%(S?) satisfies the nondegeneracy
condition (1.3). If v, = mw(wy,, ;) solves (4.20) for some sequence jui; — 0%, then &,
stays in a compact subset of B and

Jim, [wp, | .07 (s2) = 0

Let . be the linearized operator of F),[7(-,£)] at w = 0, with the domain D(.Z) being
the tangent plane to % at w = w, i.e.

D(Z) = (e C*'(8%) s [ wn(a)dvy(a) =0}
S2

By implicit function theorem, .7 is represented near 0 as a graph over D(.%). It is
well-known that .Z gives an isomorphism from D(.%) to

R(ZL) = {f € C**(S?): /xf(x)dvg(x) =0}.
SZ

Let IT be a projection from €2 (S?) to R(.Z) given by

M/ (x) = f(z) — —z- / Y () dvy ().

47
SZ

The following proposition implies that for every given & € B, there exists a unique
we,, € N such that the .#y-component of F),[m(we,,&)] is zero.

Proposition 4.10. Let 0 < o/ < o < 1. Suppose that K € C**(S?) and F,, is defined by
(4.22). Then for every so € (0,1), there exists a constant pg € (0,1] and a neighborhood
N of 1 € S such that, for every u € (0, 0], and & € By, C B, there exists a unique
we,, € N depending smoothly on (&, 1) satisfying

H(Fu[ﬂ(w&uv €)]) =0.

Furthermore, there exists some C > 0 such that, for pn € (0, uo] and |€], |¢']| < so,
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1
lweulloaor s2) < CpllE = 7 llezas2)

[we o — wer ullgaar g2y < Culé =& K — —||cz o (S?)

Define

:——/ 7 (we p, €))(2) vy (2),

G:= /K o ppradvg(z), where P = % and ¢t = (1—[¢])7"

S2

Instead of solving zeros of F), in m(N x B), it suffices to solve zeros for the finite
dimensional map £ — A¢ ,. Next lemma gives the formula of deg(A¢ ,,, Bs,0).

Lemma 4.11. Let o € (0,1). Suppose that K € C%%(S?) satisfies the nondegeneracy
condition (1.3). Then there exists po € (0,1] and so € (0,1] such that for all u € (0, o]
and s € [so,1), the Brouwer degrees deg(A¢ ,,, Bs,0) and deg(G, Bs,0) are well-defined
and

deg(A¢,,., Bs,0) = deg(G, Bs,0) = —1 4 deg(V K, Crit_(K)).
The last piece is to prove that deg(Fi,0,0) is the degree of A¢ ,.

Proposition 4.12. Let o € (0,1). Suppose that K € C*(S?) satisfies the nondegeneracy
condition (1.3). Let O and Fy be as defined in (/.21) and (4.22) with o' = «. Then

deg(F1,0,0) = —1 + deg(VK, Crit_(K)).
Now we are in the position to complete the proof of Theorem 1.1.

Proof. Estimate (1.4) is given by Theorem 1.11, Theorem 1.13 and Proposition 4.5.
Under the assumption that deg(VK,Crit_(K)) # 1, we now prove the existence of
solution to (1.2).
Let K be a sequence of functions in C?*(S?) converging to K in C?. For j sufficiently
large, K; satisfies (1.3), and deg(V K}, Crit_ (kX)) # 1. By Proposition 4.12, there exists
€ C*(S?) solving (4.20). By Theorem 4.5 we have

[vjllcoszy < C.
By Theorem 1.11, Theorem 1.13 and Evans-Krylov’s theorem,
[vjllcza(sz) < C.

The proof is finished by sending j — co. O
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Appendix A. Calculus lemmas

Lemma A.1. Let a > 0 be a positive number, assume that g € [—4a,4a] satisfies, for
7| < 2a, |s| <4a, 0 <A <aand A<|s—T|,

A(s—T)
|s — 7]2

g(T+ )—4In |S;T| < g(s).

Then

sl <a

2
/

< —
9/(s)] < 2

Proof. Let h = e, then we have, for |7| < 2a, |s] <4a, 0 <A <aand A < |s— 7|,

A

A2(s—T)
s — 7|

4
h
)T+ ls — 72

( ) < h(s).

2
Apply [46, Lemma A.1] with o = 4, we have |h/(s)| < Eh(s), for |s| < a. The result

follows immediately. O

Lemma A.2. Let a > 0 be a constant and Bg, C R? be the ball of radius Sa centered at
the origin. Assume that u € C*(Bs,) satisfying

up a(y) <u(y), x € Bay, YE Bgg, 0<A<2a, A<|y—z, (A.1)

where ugz x 15 as defined in (2.2).
Then

Vu(z)] <

.zl < a.

ISR

Proof. For x € B, and e € R?, with |e| = 1, let h(s) = u(z + se). Then, by (A.1), h
2 2
satisfies the hypothesis of Lemma A.1. Thus we have |h'(0)| < . ie. |Vu(x) -e| < .

The lemma is now proved. O
Lemma A.3. Let u € C*(R?) satisfy

uz A (y) <uly), VYA>0,z€R%|y—z| >\
Then u must be constant.

Proof. Let a — oo in Lemma A.2, we have |Vu| = 0. Thus u must be constant. O
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