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We establish theorems on the existence and compactness 
of solutions to the σ2-Nirenberg problem on the standard 
sphere S2. A first significant ingredient, a Liouville type 
theorem for the associated fully nonlinear Möbius invariant 
elliptic equations, was established in an earlier paper of ours. 
Our proof of the existence and compactness results requires 
a number of additional crucial ingredients which we prove 
in this paper: A Liouville type theorem for the associated 
fully nonlinear Möbius invariant degenerate elliptic equations, 
a priori estimates of first and second order derivatives of 
solutions to the σ2-Nirenberg problem, and a Bôcher type 
theorem for the associated fully nonlinear Möbius invariant 
elliptic equations. Given these results, we are able to complete 
a fine analysis of a sequence of blow-up solutions to the σ2-
Nirenberg problem. In particular, we prove that there can 
be at most one blow-up point for such a blow-up sequence of 
solutions. This, together with a Kazdan-Warner type identity, 
allows us to prove L∞ a priori estimates for solutions of the 
σ2-Nirenberg problem under some simple generic hypothesis. 
The higher derivative estimates then follow from classical 
estimates of Nirenberg and Schauder. In turn, the existence 
of solutions to the σ2-Nirenberg problem is obtained by an 
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application of the by now standard degree theory for second 
order fully nonlinear elliptic operators.

© 2022 Published by Elsevier Inc.

1. Introduction

The Nirenberg problem, raised by Nirenberg in the years 1969-1970, asks to identify 
functions K on the two-sphere S2 for which there exists a metric g̃ on S2 conformal 
to the standard metric g such that K is the Gaussian curvature of g̃. Naturally, this 
problem extends to higher dimensions with the Gaussian curvature replaced by the 
scalar curvature.

There has been vast literature on the Nirenberg problem and related ones and it 
would be impossible to mention here all works in this area. One significant aspect most 
directly related to this paper is the fine analysis of blow-up (approximate) solutions or 
the compactness of the solution set. These were studied in [2,10,14,15,17,34,48,49], and 
related references. For more recent and further studies, see [43,61], and related references. 
For n ≥ 3 and k ≥ 2, the σk-Nirenberg problem was studied in [13,58,59].

In this paper, we are interested in the existence and compactness of solutions of a non-
linear version of the Nirenberg problem on the standard sphere (S2, g). This equation has 
similar structures to the σk-Yamabe and σk-Nirenberg problems in higher dimensions.

Throughout this paper, we use (S2, g) to denote the standard two sphere. On (S2, g), 
for a conformal metric gu = eug, let

Agu := −∇2
gu + 1

2du⊗ du− 1
4 |∇gu|2g + Kgg, (1.1)

where Kg ≡ 1 is the Gaussian curvature of the metric g.
For λ = (λ1, λ2) ∈ R2, let σ1(λ) := λ1 + λ2 and σ2(λ) := λ1λ2 be the elemen-

tary symmetric functions. We use λ(g−1
u Agu) to denote the eigenvalues of g−1

u Agu , and 
σk(g−1

u Agu) to denote σk(λ(g−1
u Agu)) for k = 1, 2. Note that σ1(g−1

u Agu) = 2Kgu .
We study the equation

σ2(g−1
u Agu) = K(x), λ(g−1

u Agu) ∈ Γ2 on S2, (1.2)

where

Γ2 := {(λ1,λ2) : λ1 > 0,λ2 > 0}

is the first quadrant.
For a positive function K in C2(S2) satisfying the nondegeneracy condition

|∇K|g + |∆K|g > 0 on S2, (1.3)
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we define the sets

Crit+(K) = {x ∈ S2|∇gK(x) = 0,∆gK(x) > 0},

Crit−(K) = {x ∈ S2|∇gK(x) = 0,∆gK(x) < 0}.

Set deg(∇K, Crit−(K)) := deg(∇K, O, 0), the Brouwer degree, where O is any open 
subset of S2 containing Crit−(K) and disjoint from Crit+(K). By (1.3), this is well-
defined.

For any K satisfying (1.3) and having only isolated nondegenerate critical points,

deg(∇K,Crit−(K)) =
∑

x̄∈S2,∇K(x̄)=0,∆K(x̄)<0
(−1)i(x̄)

where i(x̄) denotes the number of negative eigenvalues of ∇2K(x̄).
For an introduction to degree theories, see e.g. [63, Chapter 1].
The first main theorem in this paper is the following existence and compactness result 

for equation (1.2).

Theorem 1.1. Let (S2, g) be the standard two sphere, and let K be a positive function 
in C2(S2) satisfying the nondegeneracy condition (1.3). Then there exists a positive 
constant C depending only on K, such that

‖u‖C2(S2) ≤ C, for all C2 solutions u of equation (1.2). (1.4)

Moreover, if deg(∇K, Crit−(K)) )= 1, then (1.2) admits a solution.

Remark 1.2. See Proposition 4.5 for more detailed dependence of C on K.

Remark 1.3. If K ∈ C2,α(S2), 0 < α < 1, and O is a bounded open subset of C4,α(S2)
which contains all solutions of (1.2), then

deg(σ2(g−1
u Agu) −K,O, 0) = −1 + deg(∇K,Crit−(K)).

Here the degree on the left hand side is the degree for second order nonlinear elliptic 
operators defined in [47].

Remark 1.4. Such results for the σk-Nirenberg problem was proved in [13] on S4 for σ2; 
in [58] on Sn for σk, n ≥ 3 and n/2 ≤ k ≤ n; and in [59] on Sn for σk, 2 ≤ k < n/2 and 
for axisymmetric functions K.

The following result is a Kazdan-Warner type identity.



4 Y. Li et al. / Journal of Functional Analysis 283 (2022) 109606

Theorem 1.5. Let X be a conformal Killing vector field on (S2, g), and let gu = eug be a 
conformal metric to g on S2, where u is a smooth function on S2, then

∫

S2

X(σ2(gu−1Agu))eudVg = 0. (1.5)

Remark 1.6. In dimensions n ≥ 3, such results were proved in [35] and [69], see also [29]. 
For σ1 instead of σ2 in (1.5), it is the well-known Kazdan-Warner type identity for the 
Nirenberg problem. See [5] and [44].

Remark 1.7. Note that Theorem 1.5 can also be obtained using [24, Theorem 2.11]. In 
this case, we can check that σ2(g−1Ag) is normally conformally variational (see [24, 
Definition 2.10]) on S2.

As usual, there is a necessary condition for the existence of solutions of equation 
(1.2). We say that a function K on S2 satisfies the Kazdan-Warner type condition if 
there exists some positive C2 function f on S2 satisfying

∫

S2

X(K)fdVg = 0,

for any conformal Killing vector field X on S2.

Theorem 1.8. If K does not satisfy the Kazdan-Warner type condition, then there is no 
C2 solution to equation (1.2).

Theorem 1.8 is a corollary of Theorem 1.5.
For example, if K(x) = 2 + x3, then (1.2) has no C2 solution.
More generally, other than the σ2-equation, we are interested in equations:

f(λ(g−1
u Agu)) = K(x), λ(g−1

u Agu) ∈ Γ, on S2, (1.6)

where the definition of f and Γ are given below.
Let

Γ be an open convex symmetric cone in R2 with vertex at the origin, (1.7)

and

Γ2 ⊂ Γ ⊂ Γ1, (1.8)

where Γ1 := {(λ1, λ2) : λ1 +λ2 > 0} and Γ2 := {(λ1, λ2) : λ1 > 0, λ2 > 0}. Here, Γ being 
symmetric means that (λ1, λ2) ∈ Γ implies (λ2, λ1) ∈ Γ. Also, a function f defined on Γ
is said to be symmetric if f(λ1, λ2) ≡ f(λ2, λ1).
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It is not difficult to see that Γ satisfies (1.7) and (1.8) if and only if Γ = Γp for some 
1 ≤ p ≤ 2 where

Γp := {λ = (λ1,λ2) : λ2 > (p− 2)λ1, λ1 > (p− 2)λ2}.

Note that the above definition of Γ1 and Γ2 is consistent with earlier definitions.
Let Γ = Γp, 1 ≤ p ≤ 2, and consider

f ∈ C1(Γ) ∩ C0(Γ̄) is symmetric, (1.9)
f is homogeneous of degree 1, (1.10)

f > 0, fλi := ∂f

∂λi
> 0 in Γ, f

∣∣
∂Γ = 0, (1.11)

f is concave in Γ. (1.12)
n∑

i=1
fλi ≥ δ in Γ for some δ > 0. (1.13)

For (f, Γ) = (σ1, Γ1), problem (1.6) is the Nirenberg problem. Theorem 1.1 is for 
(f, Γ) = (σ

1
2
2 , Γ2).

In order to prove Theorem 1.1, as well as to study the more general equation (1.6), 
a number of ingredients and estimates are needed. The first analytical ingredient is a 
Liouville type theorem for σ2(λ(Au)) = 1, where

Au = −∇2u

eu
+ 1

2
du⊗ du

eu
− 1

4
|∇u|2

eu
I.

When rescaling appropriately a blow-up sequence of solutions of (1.2), we are led to an 
entire solution of σ2(λ(Au)) = 1 on R2.

Equations f(λ(Au)) = 1, which we call Möbius invariant equations, are naturally 
associated with Au. A Liouville type theorem for the Möbius invariant equations was 
established in our previous paper [52].

Other ingredients and estimates, which are described below, are also needed in ana-
lyzing a sequence of blow-up solutions and giving fine asymptotic profile of such blow-up 
solutions.

The following is a Liouville type theorem for f(λ(Au)) = 0.

Theorem 1.9. Let Γ = Γp for some 1 < p ≤ 2, and let u be a (continuous) viscosity 
solution of

λ(Au) ∈ ∂Γ in R2\{0}.

Then u is locally Lipschitz in R2\{0} and radially symmetric about the origin. Moreover, 
u(x) is monotonically nonincreasing in |x|.
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Corollary 1.10. Let Γ = Γp for some 1 < p ≤ 2, and let u be a (continuous) viscosity 
solution of

λ(Au) ∈ ∂Γ in R2.

Then u ≡ constant in R2.

In dimensions n ≥ 3, such results were proved in [50,51] for locally Lipschitz u, 
Γn ⊂ Γ ⊂ Γ1. In fact, as proved in [57], a continuous viscosity solution of such equations 
is automatically locally Lipschitz. Therefore, the results in [50,51] hold for continuous 
viscosity solutions. Note that a first such result was proved in [12] for u ∈ C1,1

loc , n = 4, 
and Γ = Γ2,

If Γ = Γ1, the equation λ(Au) ∈ ∂Γ becomes ∆u = 0. Corollary 1.10 can be viewed as 
a nonlinear extension of the classical Liouville theorem: A nonnegative harmonic function 
in R2 is a constant. However, there is no sign condition assumed on u in Corollary 1.10.

Equation λ(Au) ∈ ∂Γ is sometimes equivalently stated as f(λ(Au)) = 0 for f defined 
on Γ̄ satisfying (1.9) and (1.11). One example is Γ = Γ2, then the equation becomes 
det(Au) = 0 together with semi-positive definiteness of Au.

We then prove the following local derivatives estimates for general (f, Γ). For such 
equations, it is delicate to prove the local gradient estimates of u under the assumption 
that u is bounded from above, while it is more standard to prove the second derivatives 
estimates of u under the assumption that u is C1 bounded.

Theorem 1.11. Let Γ = Γp for some 1 < p ≤ 2, f satisfy (1.9)-(1.11) and (1.13), K be 
a C1 positive function in Br ⊂ R2, and let u ∈ C3(Br) satisfy

f(λ(Au)) = K, λ(Au) ∈ Γ in Br. (1.14)

Then

|∇u| ≤ C in Br/2,

for some constant C depending only on r, (f, Γ), and upper bounds of supBr
u and 

‖K‖C1(Br).

The above local gradient estimates do not need the concavity assumption (1.12). Note 
that if Γ = Γp for some 1 ≤ p ≤ 2 and f satisfies (1.9)-(1.11) and (1.12), then (1.13)
follows.

We also prove the local derivatives estimate for equation λ(Au) ∈ ∂Γ.

Theorem 1.12. Let Γ = Γp for some 1 < p ≤ 2, and let u be a (continuous) viscosity 
solution of λ(Au) ∈ ∂Γ in B1. Then for every 0 < ε < 1, there exists a constant C
depending only on Γ and ε, such that
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|∇u| ≤ C a.e. in B1−ε.

We then establish local C2 estimates.

Theorem 1.13. Let Γ = Γp for some 1 < p ≤ 2, f satisfy (1.9)-(1.11) and (1.12), K be 
a C2 positive function in Br ⊂ R2, and let u ∈ C4(Br) satisfy

f(λ(Au)) = K, λ(Au) ∈ Γ in Br.

Then

|∇2u| ≤ C in Br/2,

for some constant C depending only on r, (f, Γ), and upper bounds of supBr
u and 

‖K‖C2(Br).

The general local gradient estimates in dimensions n ≥ 3 were derived in [51] using 
blow-up analysis and the Liouville theorem for degenerate equations together with Bern-
stein type arguments. Note that the local gradient estimates for f = σ1/k

k and Γ = Γk

were proved in [26]; see also [25,28,45,65,71] for efforts in achieving further generality. 
The local C2 estimates in dimensions n ≥ 3 were discussed in [12,18,26,45].

The following theorems are Bôcher type theorems, which characterize the asymptotic 
behavior of solutions near isolated singularities. They are for Γ = Γp, 1 < p ≤ 2. For 
1 < p < 2, the equation is λ(Au) ∈ ∂Γ. For p = 2, the equation is λ(Au) ∈ Γ̄, i.e. 
supersolutions to λ(Au) ∈ ∂Γ. Note that for p = 1, the equation λ(Au) ∈ ∂Γ is ∆u = 0, 
and additional assumption is needed for the Bôcher theorem.

Theorem 1.14. If Γ = Γ2, let u ∈ LSC(B1\{0}) ∩L∞
loc(B1\{0}) be a viscosity supersolu-

tion of λ(Au) ∈ Γ̄ in B1\{0}. Then either u can be extended to a function in C0,1
loc (B1)

or u = −4 ln |x| + C for some constant C, and Au = 0. Moreover, in the former case, 
there holds

‖w‖C0,1(B1/2) ≤ C(Γ) max
∂B3/4

w

where w = e−u/4.

Theorem 1.15. Let Γ = Γp for some 1 < p < 2, and let u ∈ C0
loc(B1\{0}) be a viscosity 

solution of λ(Au) ∈ ∂Γ in B1\{0}. Then either u can be extended to a function in 
C0,p−1

loc (B1), or

u = 4(2 − p)
p− 1 ln(r−(p−1)/(2−p) + ẘ) + a,
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where a = supB1\{0}(u(x) + 4 ln |x|) < +∞, and ẘ ∈ L∞
loc(B1) is a nonpositive function 

satisfying

min
∂Br

ẘ ≤ ẘ ≤ max
∂Br

ẘ in Br\{0}, ∀ 0 < r < 1.

Moreover, in the former case, there holds

‖w‖C0,p−1(B1/2) ≤ C(Γ) max
∂B3/4

w,

where w = exp(−p−1
4 u).

The Bôcher type theorems for equation λ(Au) ∈ ∂Γ in B1\{0} when n ≥ 3 were 
established in [53]. The behaviors of our solutions are quite different from the results in 
[53].

In the case of non-degenerate elliptic equation σk(λ(Au)) = 1 for n ≥ 3, the local 
behavior near isolated singularity was studied in [6] for k = 1 and in [36] for 2 ≤ k ≤ n. 
They proved that u(x) = u∗(|x|)(1 +O(|x|α)) where u∗ is some radially symmetric solu-
tion of f(λ(Au)) = 1 on Rn\{0} and α is some positive number. See [32] for expansions to 
arbitrary orders. See also [70] for expansions of solutions of conformal quotient equations.

Recall that when dimension n ≥ 3, the existence of solutions of the σk-Yamabe 
problem has been proved for k ≥ n/2, k = 2 or when (M, g) is locally conformally 
flat, the compactness of the set of solutions has been proved for k ≥ n/2 when the 
manifold is not conformally equivalent to the standard sphere − they were established 
in [11,22,27,31,45,54,65]. For more recent works on σk-Yamabe type problems, see for 
example [1,3,4,7–9,19–21,23,30,32,33,38–42,55,56,60,66–68] and references therein. How-
ever, there are still many challenging open problems on general compact Riemannian 
manifolds - the compactness remains open for 2 ≤ k ≤ n/2 and the existence remains 
open for 2 < k < n/2. One motivation of studying the equations in dimension two is 
to gain insights and inspirations into solving the above mentioned open problems in 
dimensions n ≥ 3.

The strategies of the proofs of our main theorems are described as follows. Liouville 
type theorem Theorem 1.9 is established using comparison principles and asymptotic 
behavior of solutions. For local gradient estimates Theorem 1.11, we first prove it using 
Bernstein type arguments assuming in addition u is also bounded from below, then 
establish the result using blow-up analysis and Theorem 1.9. Theorem 1.12 is proved in 
a similar way. Local C2 estimates Theorem 1.13 is obtained by Bernstein type arguments. 
In the proof of Bôcher type theorems Theorem 1.14 and 1.15, we first classify all the 
radially symmetric (continuous) viscosity solutions in any annulus {0 ≤ a ≤ |x| ≤ b ≤
∞}, then establish the results with the help of a comparison principle.

In the proof of existence and compactness result Theorem 1.1, we first prove the 
compactness part. Since C1 and C2 estimates are already established, the only issue 
left is a C0 estimate. We first analyze the behavior of a sequence of blow-up solutions 
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and prove that every sequence of solutions cannot blow up at more than one point with 
the help of the Liouville type theorem for σ2(λ(Au)) = 1. Then we obtain an optimal 
decay estimate, where the Bôcher type theorem is used. Next we use a Kazdan-Warner 
type identity together with the nondegeneracy condition on K and the above one point 
blow-up behavior to prove the C0 estimate. The existence part is proved thanks to the 
degree theory and compactness of solutions.

The rest of our paper is organized as follows. In Section 2, we establish the Liouville 
type theorem Theorem 1.9 and the local derivatives estimates Theorem 1.11, Theo-
rem 1.12 and Theorem 1.13. Bôcher type theorems Theorem 1.14 and Theorem 1.15 are 
proved in Section 3. The existence and compactness theorem Theorem 1.1 is proved in 
Section 4. Three calculus lemmas are given in Appendix A for readers’ convenience.
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2. Liouville type theorems and local estimates

2.1. Preliminaries

2.1.1. Viscosity solutions
In order to introduce the definition of viscosity solution, let us first define the set of 

upper semicontinuous and lower semicontinuous functions.
For any set S ⊂ R2, we use USC(S) to denote the set of functions u : S → R ∪{−∞}, 

u )= −∞ in S, satisfying

lim sup
x→x0

u(x) ≤ u(x0), ∀x0 ∈ S.

Similarly, we use LSC(S) to denote the set of functions u : S → R ∪ {+∞}, u )= +∞
in S, satisfying

lim inf
x→x0

u(x) ≥ u(x0), ∀x0 ∈ S.

Definition 2.1. Let Ω be an open subset in R2, we say u ∈ USC(Ω) is a viscosity subso-
lution of

λ(Au) ∈ ∂Γ, in Ω (2.1)
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if for any point x0 ∈ Ω, ϕ ∈ C2(Ω), (u − ϕ)(x0) = 0, u − ϕ ≤ 0 near x0, we have

λ(Aϕ(x0)) ∈ R2 \ Γ.

Similarly, we say u ∈ LSC(Ω) is a viscosity supersolution of (2.1), if for any point 
x0 ∈ Ω, ϕ ∈ C2(Ω), (u − ϕ)(x0) = 0, u − ϕ ≥ 0 near x0, we have

λ(Aϕ(x0)) ∈ Γ̄.

We say u is a viscosity solution of (2.1), if it is both a subsolution and a supersolution.

We remark that our definition is consistent with [51, Definition 1.1] and [57, Definition 
1.3].

2.1.2. Previous results
In this section, we state some previous results which we use in this paper. The first 

one is an asymptotic behavior for viscosity supersolution.

Proposition 2.2. ([52]) Let Γ = Γp for some 1 < p ≤ 2, and let u be a viscosity superso-
lution of (2.1) in R2 \Br0 for some r0 > 0. Then there exists K0 > 0, such that

inf
∂Br

u(r) + 4 ln r is monotonically nondecreasing in r for r > K0.

Consequently, lim inf
x→∞

(u(x) + 4 ln |x|) > −∞.

The above proposition can be equivalently stated as follows:

Proposition 2.2’. Let Γ = Γp for some 1 < p ≤ 2, and let u be a viscosity supersolution 
of (2.1) in Br0\{0} for some r0 > 0. Then there exists ε > 0, such that

inf
∂Br

u(r) is monotonically nonincreasing in r for 0 < r < ε.

Consequently, lim inf
x→0

u(x) > −∞.

We now state a lemma concerning comparison principle. It is a special case of Corollary 
1.9 in [57], see also [51, Proposition 1.14] for a result of this type in dimensions n ≥ 3.

Lemma 2.3. Let Ω be an open subset in R2, E ⊂ Ω be a closed set with zero Newtonian 
capacity. Let u ∈ USC(Ω̄) be viscosity subsolution of (2.1) in Ω and v ∈ LSC(Ω̄ \E) be 
viscosity supersolution of (2.1) in Ω \ E. Assume further that

inf
Ω\E

v > −∞,

and u < v on ∂Ω, then infΩ\E(v − u) > 0.
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Proof. Let w = −u, we have

Au = ew
(
∇2w + 1

2∇w ⊗∇w − 1
4 |∇w|2I

)
.

Then all the assumptions in Corollary 1.9 in [57] are satisfied. Note that we do not need 
the assumption u ≤ v in Ω \E, this can be seen in the proof of Corollary 1.9 in [57]. !

A consequence of the comparison principle is the Lipschitz regularity for viscosity so-
lution. For related arguments in higher dimensions, see [53, Lemma 3.1] and [46, Lemma 
A.2].

Lemma 2.4. Let u ∈ C0(B3) be viscosity solution of (2.1) in B3. Then u ∈ C0,1
loc (B3). 

Furthermore, there exists a constant C such that

|∇u| ≤ C
( supB2 e

u

infB2 e
u

) 1
4 in B1.

Proof. For x ∈ R2, λ > 0, let

ux,λ(y) := u(x + λ2(y − x)
|y − x|2 ) − 4 ln |y − x|

λ
, y ∈ R2\{x}. (2.2)

Let R > 0 be given by

4 ln(4R) = inf
B2

u− sup
B2

u.

By the above we have

ux,λ(y) ≤ sup
B2

u + 4 ln 4R = inf
B2

u ≤ u(y), for any |x| ≤ 1, 0 < λ ≤ R, |y| = 2,

and ux,λ = u on ∂B(x, λ).
By the conformal invariance property of Au, if λ(Au) ∈ ∂Γ, then λ(Aux,λ) ∈ ∂Γ. See 

our previous paper [52] for details.
Since λ(Aux,λ) ∈ ∂Γ in B2 \ B(x,λ) in the viscosity sense, by Lemma 2.3, for any 

0 < λ ≤ R, x ∈ B1, we have

ux,λ ≤ u, in B2 \B(x,λ).

By Lemma A.2, u is Lipschitz continuous on B1. The lemma is now proved. !
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2.2. Symmetry and Liouville type theorems for f(λ(Au)) = 0

Given the comparison principle and asymptotic behavior, Theorem 1.9 can be proved 
as in [50] or [51]. For reader’s convenience, we include the proof below.

Proof. Let ux,λ be defined by (2.2). For every x ∈ R2 \{0} and for every 0 < λ < |x|, we 
want to use comparison principle to ux,λ and u in Bλ(x) \ {x, |x|

2−λ2

|x|2 x}. We only need 

to check ux,λ is bounded below near x and |x|
2−λ2

|x|2 x.
By the asymptotic behavior Proposition 2.2,

lim inf
x→∞

(u(x) + 4 ln |x|) > −∞, lim inf
x→0

(u( x

|x|2 ) − 4 ln |x|) > −∞.

It follows that

inf
Bλ(x)\{x, |x|2−λ2

|x|2 x}
ux,λ > −∞.

By the comparison principle Lemma 2.3, we have

u(y) ≥ ux,λ(y), ∀ 0 < λ < |x|, |y − x| ≥ λ, y )= 0. (2.3)

For any unit vector e ∈ R2, a > 0, y ∈ R2 satisfying (y − ae) · e < 0, and for any 
R > a, we have, by (2.3) with x = Re and λ = R− a,

u(y) ≥ u(x + λ2(y − x)
|y − x|2 ) − 4 ln |y − x|

λ
.

Sending R to infinity, we obtain

u(y) ≥ u(y − 2(y · e− a)e), for any y ∈ R2 satisfying (y − ae) · e < 0.

This gives the radial symmetry of the function u and

u(y) = u(y1, y2) ≥ ua(y) := u(2a− y1, y2), ∀ y1 ≤ a, a > 0.

Since u = ua on y1 = a, we have ∂(u−ua)
∂y1

≤ 0 at y = (a, 0), i.e. u′(a) ≤ 0 whenever 
u is differentiable. Because u and ua satisfy the same equation in y1 < a, we have, 
by Hopf lemma, ∂(u−ua)

∂y1
< 0 at y = (a, 0), i.e. u′(a) < 0 whenever u is differentiable. 

Consequently, u′(r) < 0 a.e. as u is Lipschitz continuous by Lemma 2.4. !

2.3. Local gradient estimate

In this section, we establish Theorem 1.11 and Theorem 1.12. The proof follows the 
strategy in [51], and relies on the Liouville type theorem Theorem 1.9.
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2.3.1. Gradient estimate assuming lower bound
We first give the proof of gradient estimate for the equation f(λ(Au)) = K, assuming 

both upper bound and lower bound of u. Namely, we prove the following proposition. 
The proof is based on Bernstein type arguments.

Proposition 2.5. Let Γ = Γp for some 1 ≤ p ≤ 2, f satisfy (1.9)-(1.11) and (1.13), and K
be a C1 positive function in Br ⊂ R2. For constant −∞ < α ≤ β < ∞, let u ∈ C3(B3r)
satisfy

f(λ(Au)) = K, α ≤ u ≤ β, λ(Au) ∈ Γ in B3r. (2.4)

Then

|∇u| ≤ C in Br,

for some constant C depending only on α, β, r, ‖K‖C1 and (f, Γ).

Proof. For simplicity, write

W = Au = e−u(−∇2u + 1
2du⊗ du− |∇u|2

4 δij).

Fix some small constants ε, c1 > 0, depending only on α, β such that the function 
φ(s) := εes satisfies

φ′ ≥ c1, φ′′ − 1
2φ

′ − (φ′)2 ≥ 0, on [α,β]. (2.5)

Let ρ ≥ 0 be a smooth function taking value 1 in Br and 0 outside B2r, satisfying 
|∇ρ|2 ≤ C1ρ, where C1 depends on ρ only. Consider

G = ρeφ(u)|∇u|2.

Let G(x0) = maxB̄2r G for some x0 ∈ B̄2r. If x0 ∈ ∂B2r, then G ≡ 0. We only need to 
consider x0 ∈ B2r. After a rotation of the axis if necessary, we may assume that W (x0) is 
a diagonal matrix. In the following, we use subscripts of a function to denote derivatives. 
For example, Gi = ∂xiG, Gij = ∂xixjG. We also use the notation f i := ∂f

∂λi
. Applying 

∂xk to equation (2.4), we have

f iWii,k = Kk. (2.6)

By calculation,

Gi = 2ρeφukiuk + ρφ′eφ|∇u|2ui + eφ|∇u|2ρi = 2ρeφukiuk + (φ′ui + ρi
ρ

)G.
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At x0, we have Gi = 0, i.e.

2ukiuk = −φ′|∇u|2ui −
ρi
ρ
|∇u|2, i = 1, 2. (2.7)

Notice that Wii = e−u(−uii + 1
2u

2
i − 1

4 |∇u|2), so we have

uii = −euWii + 1
2u

2
i −

1
4 |∇u|2. (2.8)

Take second derivatives of G and evaluate at x0,

0 ≥ (Gij) =2ukijuke
φρ + 2ukiukje

φρ + 2ukiuke
φφ′ujρ + 2ukiuke

φρj

+ (φ′′uiuj + φ′uij + ρρij − ρiρj
ρ2 )ρeφ|∇u|2 + (φ′ui + ρi

ρ
)Gj .

The last term above vanishes since Gj = 0. Therefore, at x0, using formula (2.6), (2.7)
and (2.8), we obtain

0 ≥e−φf iGii

=2ρf iuiikuk + 2ρf iu2
ki + 2ρφ′f iukiukui + 2f iukiukρi + f i(φ′′u2

i

+ φ′uii + ρρii − ρ2
i

ρ2 )ρ|∇u|2

=2ρf iuk

(
− euWii + 1

2u
2
i −

1
4 |∇u|2

)

k

+ 2ρf iu2
ki − ρφ′f i

(
φ′|∇u|2u2

i + ρiui

ρ
|∇u|2

)

− f iρi

(
φ′|∇u|2ui + ρi

ρ
|∇u|2

)
+ ρφ′′|∇u|2f iu2

i + ρφ′|∇u|2f i

(
− euWii

+ 1
2u

2
i −

1
4 |∇u|2

)
+ f i|∇u|2 ρρii − ρ2

i

ρ

=2ρf i

{
− euWii,kuk − eu|∇u|2Wii −

u2
i

2 φ′|∇u|2 − uiρi
2ρ |∇u|2 + 1

4φ
′|∇u|4

+
∑

j

ujρj
4ρ |∇u|2

}
+ 2ρf iu2

ki

− ρφ′f i

(
φ′|∇u|2u2

i + ρiui

ρ
|∇u|2

)
− f iρi

(
φ′|∇u|2ui + ρi

ρ
|∇u|2

)

+ ρφ′′|∇u|2f iu2
i + ρφ′|∇u|2f i

(
− euWii + 1

2u
2
i −

1
4 |∇u|2

)
+ f i|∇u|2 ρρii − ρ2

i

ρ

=
{
− 2ρeuKkuk − 2ρeu|∇u|2f − f iuiρi|∇u|2 +

∑

j

ujρj
2 |∇u|2

∑

i

f i

− 2φ′|∇u|2f iρiui − ρeuφ′|∇u|2f + |∇u|2f i ρρii − 2ρ2
i

ρ

}
+ 2ρf iu2

ki
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+ ρφ′
∑

i

f i |∇u|4

4 + (φ′′ − (φ′)2 − 1
2φ

′)ρf i|∇u|2u2
i .

In the following, we use C2 to denote some positive constant depending only on 
α, β, r, K, and (f, Γ) that may vary from line to line. Using (1.11), (1.13) and (2.5), we 
obtain

0 ≥e−φf iGii

≥− C2|∇u|
∑

i

f i − C2|∇u|2
∑

i

f i − C2
√
ρ|∇u|3

∑

i

f i + ρφ′
∑

i

f i |∇u|4

4

+ (φ′′ − (φ′)2 − 1
2φ

′)ρf i|∇u|2u2
i

≥− C2|∇u|
∑

i

f i − C2|∇u|2
∑

i

f i − C2
√
ρ|∇u|3

∑

i

f i + c1
4 ρ

∑

i

f i|∇u|4.

Multiply by 
√
ρ, then

0 ≥ −C2
√
ρ|∇u|

∑

i

f i − C2|∇u|2√ρ
∑

i

f i − C2ρ|∇u|3
∑

i

f i + c1
4 ρ3/2

∑

i

f i|∇u|4

≥ −C2|∇u|
∑

i

f i − C2|∇u|2√ρ
∑

i

f i − C2ρ|∇u|3
∑

i

f i + c1
4 ρ3/2

∑

i

f i|∇u|4

= |∇u|(−C2 − C2
√
ρ|∇u|− C2(

√
ρ|∇u|)2 + c1

4 (√ρ|∇u|)3)
∑

i

f i.

Therefore,

−C2 − C2
√
ρ|∇u|− C2(

√
ρ|∇u|)2 + c1

4 (√ρ|∇u|)3 ≤ 0,

which implies ρ|∇u|2(x0) ≤ C2, so is G(x0). Since G(x0) is maximum, |∇u| ≤ C2 on 
B1. !

2.3.2. Gradient estimate for f(λ(Au)) = K

In this section, we prove Theorem 1.11. Now we no longer assume a lower bound for 
u.

We need to introduce some notations. Let v be a locally Lipschitz function in some 
open subset Ω of R2. For 0 < α < 1, x ∈ Ω, and 0 < δ < dist(x, ∂Ω), let

[v]α,δ(x) := sup
0<|y−x|<δ

|v(y) − v(x)|
|y − x|α ,

δ(v, x; Ω,α) :=






∞ if [v]α,dist(x,∂Ω) < 1,
µ where 0 < µ ≤ dist(x, ∂Ω) and µα[v]α,µ(x) = 1

if [v]α,dist(x,∂Ω) ≥ 1
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Now we prove Theorem 1.11:

Lemma 2.6. Under the assumption of Theorem 1.11, we have the Hölder estimates:

sup
|y|,|x|<r,|y−x|<2r

|u(y) − u(x)|
|y − x|α ≤ C(α) ∀ 0 < α < 1

Proof. Suppose the contrary, then for some 0 < α < 1, there exists, in B2, C3 functions 
{ui}, C1 functions {Ki} satisfying, for some ā > 0,

‖Ki‖C1(B2) ≤ ā, ui ≤ ā on B2,

f(λ(Aui)) = Ki, λ(Aui) ∈ Γ in B2,

but

inf
x∈B1/2

δ(ui, x) → 0,

where

δ(ui, x) := δ(ui, x;B2,α)

It follows, for some xi ∈ B1,

1 − |xi|
δ(ui, xi)

= max
|x|≤1

1 − |x|
δ(ui, x) → ∞.

Let

σi := 1 − |xi|
2 , εi := δ(ui, xi).

Then

σi

εi
→ ∞, εi → 0,

and

εi ≤ 2δ(ui, z) ∀ |z − xi| < σi.

Let

vi(y) := ui(xi + εiy) − ui(xi), |y| ≤ σi

εi
. (2.9)

By the definition of δ(ui, xi),
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[vi]α,1(0) = δ(ui, xi)α[ui]α,δ(ui,xi)(xi) = 1. (2.10)

For any β > 1 and |x| < β, we have that for large i,

|ui(z) − ui(xi + εix)| ≤|ui(z) − ui(
1
2(z + xi + εix))|

+ |ui(
1
2(z + xi + εix)) − ui(xi + εix)|,

|z − (xi + εix)| = 2|z − 1
2(z + xi + εix)| = 2|12(z + xi + εix) − (xi + εix)|,

[vi]α,1(x) = εαi [ui]α,εi(xi + εix)
≤ 2−αεαi ( sup

|z−(xi+εix)|<εi

[ui]α, εi2 (z) + [ui]α, εi2 (xi + εix))

≤ C(β)( sup
|z−(xi+εix)|<εi

δ(ui, z)α[ui]α,δ(ui,z)(z)

+ δ(ui, xi + εix)α[ui]α,δ(ui,xi+εix)(xi + εix))
≤ C(β).

This implies for any β > 1,

−C(β) ≤ vi(y) ≤ C(β), ∀ |y| ≤ β. (2.11)

By Proposition 2.5, we have, for any β > 1,

|∇vi(y)| ≤ C(β), ∀ |y| < β.

Passing to a subsequence,

vi → v in Cγ
loc(R2) for all α < γ < 1,

where v is a function in C0,1
loc (R2) satisfying [v]α,1(0) = 1. In particular, v cannot be a 

constant.
Clearly, for γi := e−ui(xi)ε−2

i → ∞, and x = xi + εiy,

f(γiλ(Avi(y))) = f(λ(Aui(x))) = Ki, |y| < σi

εi
.

Thus,

lim
i→∞

f(λ(Avi(y))) = lim
i→∞

γ−1
i Ki = 0.

By standard arguments, see e.g. [51, Theorem 1.10], v is a locally Lipschitz viscosity 
solution of λ(Av) ∈ ∂Γ in R2.

By Theorem 1.9, v is a constant. This leads to a contradiction to [v]α,1(0) = 1. The 
Hölder estimate is established. !
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Based on the Hölder estimates, we establish Theorem 1.11:

Proof. The Hölder estimate yields the Harnack inequality

sup
B2r

u ≤ C + inf
B2r

u

Consider w := u − u(0), the equation of w on B3r is

f(λ(Aw)) = eu(0)K, λ(Aw) ∈ Γ

and w satisfies

−C ≤ w ≤ C in B2r.

Since u(0) is bounded from above, using Proposition 2.5, we have

|∇u| ≤ C in Br.

Theorem 1.11 is established. !

2.3.3. Gradient estimate for f(λ(Au)) = 0
Now we prove Theorem 1.12. The proof is similar to the proof of Theorem 1.11. We 

will need Theorem 1.9 and the comparison principle Lemma 2.3 to finish the proof.
In the following, for simplicity, write δ(v, x, α) = δ(v, x; B1, α).
Now we give the proof of Theorem 1.12.

Proof. Since the equation λ(Au) ∈ ∂Γ is invariant under scaling, it suffices to consider 
ε = 15/16. We first claim that

sup
x)=y∈B1/8

|u(x) − u(y)|
|x− y|α ≤ C(Γ,α) for any 0 < α < 1

Assume otherwise the above fails. Then for some 0 < α < 1, we can find a sequence of 
positive C0,1 functions ui in B1 such that λ(Aui) but

sup
x)=y∈B1/8

|ui(x) − ui(y)|
|x− y|α → ∞.

It follows that for some xi ∈ B3/4,

3/4 − |xi|
δ(ui, xi,α) >

1
2 sup

x∈B3/4

3/4 − |x|
δ(ui, x,α) → ∞.

Let σi = 3/4−|xi|
2 and εi = δ(ui, xi, α). Then
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σi

εi
→ ∞, εi → 0, and εi ≤ 4δ(ui, z,α) for any |z − xi| ≤ σi.

We now define vi(y) as in (2.9), then (2.10) holds.
For any fixed β > 1 and |y| < β, there holds, for sufficiently large i,

[vi]α,1(y) ≤ 4.

Since vi(0) = 0 by definition, we deduce from the above that (2.11) holds.
Now we can apply Lemma 2.4 to obtain

|∇vi| ≤ C(β) in Bβ/2 for all sufficiently large i.

Passing to a subsequence, we see that vi converges in C0,α′ (α < α′ < 1) on compact 
subsets of R2 to some locally Lipschitz function v∗ which satisfies λ(Av∗) ∈ ∂Γ in the 
viscosity sense. By Theorem 1.9,

v∗ ≡ v∗(0) = lim
i→∞

vi(0) = 1.

This contradicts that [vi]α,1(0) = 1, in view of convergence of vi to v∗. So we have proved 
the claim.

Because of the claim, we can find some universal constant C > 0 such that

u(0) − C ≤ u ≤ u(0) + C in B1/8

Apply Lemma 2.4 again, so we obtain the required gradient estimate in B1/16. !

2.4. Local C2 estimate

We prove Theorem 1.13 in this part, using Bernstein type arguments.

Proof. For convenience, we write u = −v. Define W = ∇2v + 1
2dv ⊗ dv − 1

4 |∇v|2δij . So 
equation (1.14) becomes

f(W ) = Ke−v.

It suffices to show ∆v is bounded. Since λ(Au) ∈ Γ ⊂ Γ1, we know 0 < tr(W ) = ∆v.
Without loss of generality, we may assume r = 1. Let Q = η(∆v + 1

2 |∇v|2) = ηH, 
where η is a cut-off function satisfying

0 ≤ η ≤ 1,
η = 1 in B1/2 and η = 0 outside B1,

|∇η| < C
√
η,

|∇2η| < C.
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Now we need to get the upper bound for H.
Suppose x0 is the maximal point of Q. At x0, we have

0 = Qi = ηiH + ηHi = ηi(∆v + 1
2 |∇v|2) + η(vkki + vkvki), (2.12)

and

Qij = ηijH + ηiHj + ηjHi + ηHij = (ηij − 2ηiηj
η

)H + ηHij .

Here we have used (2.12). We know Qij is negative semidefinite.

Hij = vkkij + vkivkj + vkvkij . (2.13)

Now by the condition fλi > 0, f ij = ∂f
∂Wij

is positive definite. So use the condition on η, 
we have

0 ≥ f ijQij = f ij((ηij − 2ηiηj
η

)H + ηHij) ≥ −C
∑

i

f iiH + ηf ijHij . (2.14)

Using (2.13), we obtain

f ijHij = f ij(vkkij + vkivkj + vkvkij) = I + II,

where I = f ijvijkk and II = f ij(vkivkj + vkvijk).
To compute I, notice that

Wij,kk = vijkk + 1
2(vikkvj + 2vikvjk + vivjkk) −

1
2(|∇2v|2 + vlvlkk)δij .

Then

I = f ij(Wij,kk − 1
2(vikkvj + 2vikvjk + vivjkk) + 1

2(|∇2v|2 + vlvlkk)δij)

= f ijWij,kk + f ij(−(vikkvj + vikvjk) + 1
2(|∇2v|2 + vlvlkk)δij).

Now use (2.12) to replace vikk and vlkk,

I = f ijWij,kk + f ij((ηi
η
Q + vkvki)vj − vikvjk + 1

2 |∇
2v|2δij −

1
2vl(

ηl
η
Q + vkvkl)δij)

= f ijWij,kk + f ij(vkvkivj − vikvjk + 1
2 |∇

2v|2δij −
1
2vlvkvklδij)

+ f ijQ(ηi
η
vj −

1
2vl

ηl
η
δij).

Using the condition on η, we obtain
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I ≥ f ijWij,kk + f ij(vkvkivj − vikvjk + 1
2 |∇

2v|2δij −
1
2vlvkvklδij) − C

∑

i

f iiHη−1/2.

For II, we use the formula

Wij,k = vijk + 1
2vikvj + 1

2vjkvi −
1
2vlvlkδij

to replace vijk, then we obtain

II = f ij(vkivkj + vkvkij)

= vkf
ijWij,k + f ij(vkivkj − vkvikvj + 1

2vkvlvlkδij).

Combine I and II, then

f ijHij ≥f ijWij,kk + vkf
ijWij,k + f ij(vkvkivj − vikvjk + 1

2 |∇
2v|2δij −

1
2vlvkvklδij)

+ f ij(vkivkj − vkvikvj + 1
2vkvlvlkδij) − C

∑

i

f iiHη−1/2

=f ijWij,kk + vkf
ijWij,k + 1

2f
ij |∇2v|2δij − C

∑

i

f iiHη−1/2.

Now multiply by η on (2.14). In the following, we use C2 to denote some positive constant 
depending only on C and |∇u|, that may vary from line to line.

0 ≥ −Cη
∑

i

f iiH + η2f ijHij

≥ η2f ijWij,kk + η2vkf
ijWij,k + 1

2η
2
∑

i

f ii|∇2v|2 − C
∑

i

f ii(Hη3/2 + ηH)

≥ η2f ijWij,kk + η2vkf
ijWij,k + 1

2η
2
∑

i

f ii|∇2v|2 − C2
∑

i

f ii(1 + η|∇2v|).

By concavity of f , (Ke−v)kk = fkk ≤ f ijWij,kk. Use the property that 
∑

fλi ≥ δ, we 
obtain

0 ≥ η2(Ke−v)kk + η2vk(Ke−v)k + 1
2η

2
∑

i

f ii|∇2v|2 − C2
∑

i

f ii(1 + η|∇2v|)

≥ 1
2η

2
∑

i

f ii|∇2v|2 − C2
∑

i

f ii(1 + η|∇2v|).

So

0 ≥ η2|∇2v|2 − C2(1 + η|∇2v|).
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This implies η|∇2v|(x0) ≤ C2, so maxB1 Q(x) = Q(x0) = η(∆v + 1
2 |∇v|2)(x0) ≤ C2. 

Therefore, ∆v ≤ C2 in B1/2. Using gradient estimate Theorem 1.11, we reach the con-
clusion. !

3. Bôcher type theorems

In this section, we prove Bôcher type theorems Theorem 1.14 and 1.15. Our proof 
uses the idea in [53], with some twists.

3.1. Classification of radially symmetric case

We will classify all the radially symmetric viscosity solutions of λ(Au) ∈ ∂Γ in annulus 
domain.

Now we state this classification theorem.

Theorem 3.1. Let Γ = Γp for some 1 ≤ p ≤ 2. Denote r = |x|. Then all radially 
symmetric (continuous) viscosity solutions of λ(Au) ∈ ∂Γ in annulus {a < |x| < b}, 
a ≥ 0 and b ≤ ∞, are classified as follows:

(a) u = C1 ln r + C2, C1, C2 ∈ R, if p = 1,
(b) u = −4 ln r + C1 or u = C1, C1 ∈ R, if 1 < p ≤ 2,
(c) u = − 4

p− 1 ln(rp−1 + C1) + C2, where C1 > 0, if 1 < p ≤ 2,

(d) u = 4(2 − p)
p− 1 ln(r−(p−1)/(2−p) − C1) + C2, where C1 > 0, if 1 < p < 2, 0 ≤ b ≤

C−(2−p)/(p−1)
1 ,
(e) u = 4(2 − p)

p− 1 ln(C1 − r−(p−1)/(2−p)) + C2, where C1 > 0, if 1 < p < 2, 

C−(2−p)/(p−1)
1 ≤ a ≤ ∞.

Remark 3.2. When n ≥ 3, any radially symmetric (continuous) viscosity solution of 
λ(Au) ∈ ∂Γk for 2 ≤ k ≤ n in an annulus {a < |x| < b} can always be extended to a 
solution in Rn\{0}. However, this does not hold for n = 2, as shown in Theorem 3.1
(d)(e).

Proof. First we assume that u is smooth.
Let u = u(r) satisfy the equation λ(Au) ∈ ∂Γ. Denote λ(Au) = (λ1, λ2), then a 

calculation gives:

λ1 := 1
4eu ((u′)2 − 4u′′),

λ2 := 1
4eu (−1

r
u′(4 + ru′)).

Take a point P ∈ (a, b). We have three cases: λ2(P ) > 0, λ2(P ) < 0, λ2(P ) = 0.
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In case 1, λ2(P ) > 0, assume there is a maximal interval (c, d) ⊂ (a, b) containing P
such that λ2 > 0 in (c, d). Since λ(Au) ∈ ∂Γ, λ1 + (2 − p)λ2 = 0 in (c, d). So we have in 
(c, d),






−1
r
u′(4 + ru′) > 0,

p− 1 − 4u′′

(u′)2 − 2 − p

r

4
u′ = 0.

The first equation implies u′ < 0.
If p = 1, u′′ + 1

r
u′ = 0, then u = C1 ln r + C2 in (c, d). The condition λ2 > 0 implies 

that −4 < C1 < 0.
If p )= 1, then let g = 4

u′ , we obtain p − 1 + g′ − (2 − p)g
r

= 0. So we can solve this 
equation and obtain g = −r − C3r2−p. Hence

u = − 4
p− 1 ln(rp−1 + C3) + C4.

Since λ2 > 0, C3 > 0.
Now we prove that (a, b) = (c, d). In fact, from the explicit form of u, we can see 

u′ )= 0 in [c, d]. If a )= c, for example, then λ2(c) = 0, i.e.

4 + cu′(c) = 0. (3.1)

If p = 1, (3.1) implies C1 = −4, contradiction;
If p )= 1, (3.1) implies C3 = 0, then u = −4 ln r + C4, by direct computation, λ2 is 

identically 0 in (c, d). This is a contradiction.
Thus, (a, b) = (c, d).
In case 2, λ2(P ) < 0, consider the maximal interval (c, d) ⊂ (a, b) containing P such 

that λ2 < 0 in (c, d). Since λ(Au) ∈ ∂Γ in (c, d), (2 − p)λ1 +λ2 = 0. Obviously p )= 2. So 
we have in (c, d),






−1
r
u′(4 + ru′) < 0,

(1 − p) − 4(2 − p) u′′

(u′)2 − 1
r

4
u′ = 0.

If p = 1, then u = C1 ln r+C2. It follows from λ2 < 0 that C1(4 +C1) > 0. So C1 > 0
or C1 < −4.

If p )= 1, then

u = 4(2 − p)
p− 1 ln |r−(p−1)/(2−p) − C5| + C6.

Since λ2 < 0, we obtain C5 > 0.
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Now we prove that (c, d) = (a, b). Otherwise, we will have λ2 = 0 on the boundary of 
(c, d), which implies:

If p = 1, u ≡ constant, and λ2 ≡ 0;
If p )= 1, C5 = 0, so u = −4 ln r + C6, and λ2 ≡ 0.
Both lead to a contradiction.
In case 3, λ2(P ) = 0, by previous arguments, we must have λ2 = 0 on (a, b). It is easy 

to see either u ≡ Const or u = C − 4 ln r. Then we can compute easily that λ1 = 0.
We have proved that all smooth solutions u must be one of (a)-(e). It is straightforward 

to check that function given by (a)-(e) satisfies the equation λ(Au) ∈ ∂Γ.
Now we consider viscosity solutions u.

Lemma 3.3. Assume Γ = Γ2. For 0 ≤ a < b ≤ ∞, let u ∈ LSC({a < |x| < b}) be radially 
symmetric and satisfy λ(Au) ∈ Γ̄ in {a < |x| < b} in the viscosity sense. Then u is 
non-increasing and u(x) + 4 ln |x| is non-decreasing in |x|, i.e. for a < c < d < b,

0 ≤ u(c) − u(d) ≤ 4(ln d− ln c).

In particular, u is locally Lipschitz in {a < |x| < b}.

Proof. If u is in C2, then

λ2 = 1
4eu (−1

r
u′(4 + ru′)) ≥ 0,

which implies u′ ≤ 0 and (u + 4 ln r)′ ≥ 0. The lemma is already proved in this case.
Now consider u ∈ LSC. Define w = e−u/2, then Au = 2wBw, where

Bw := ∇2w − 1
2w |∇w|2I.

Let ρ ∈ C∞
c (R2) supported in B1 satisfying ρ ≥ 0 and 

∫

R2

ρ = 1. For ε > 0, let 

ρε(x) = 1
ε2
ρ(x

ε
) and let wε := w ∗ρε in {a + ε < |x| < b − ε}. Set uε = −2 lnwε. We know 

uε → u a.e. as ε → 0+.
Since λ(Au) ∈ Γ̄, we know λ(Bw) ∈ Γ̄. By the convexity of Bw in w as pointed 

out in [58, Lemma A.1], λ(Bwε) ∈ Γ̄, which implies λ(Auε) ∈ Γ̄. Hence u′
ε ≤ 0 and 

(uε + 4 ln r)′ ≥ 0. It follows that, for ∀ a < c < d < b,

0 ≤ uε(c) − uε(d) ≤ 4(ln d− ln c).

Sending ε → 0+, we obtain

0 ≤ u(c) − u(d) ≤ 4(ln d− ln c). !
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The next two corollaries concern the existence and uniqueness of radially symmetric 
viscosity solutions on any finite annulus with given boundary values, as well as their 
regularity.

Corollary 3.4. Assume Γ = Γ2. For any 0 < a < b < ∞, α, β, there exists a radially 
symmetric function u in C0({a ≤ |x| ≤ b}) satisfying

{
λ(Au) ∈ ∂Γ in {a < |x| < b},

u
∣∣
∂Ba

= α, u
∣∣
∂Bb

= β,

if and only if

0 ≤ α− β ≤ 4 ln b

a
. (3.2)

Moreover, such solution is unique, and u ∈ C∞({a ≤ |x| ≤ b}).

Proof. By Lemma 3.3, (3.2) is necessary for solvability. The uniqueness follows from 
the comparison principle Lemma 2.3. Now we prove the existence part. Without loss 
of generality, we can assume that α = 0. If β = 0 then u ≡ 0 is the solution. Now 
assume β )= 0. Then 

a

b
≤ eβ/4 < 1. It is easy to check that the solution is given by 

u = −4 ln(r + C1) + C2, where

C1 = a− beβ/4

eβ/4 − 1 ≥ 0, C2 = 4 ln a− b

eβ/4 − 1 + β.

Clearly, u ∈ C∞. !

Corollary 3.5. Assume Γ = Γp, where 1 ≤ p < 2. For any 0 < a < b < ∞, α, β ∈ R, 
there exists a unique radially symmetric function u in C0({a ≤ |x| ≤ b}) satisfying

{
λ(Au) ∈ ∂Γ in {a < |x| < b},

u
∣∣
∂Ba

= α, u
∣∣
∂Bb

= β.

Moreover, u ∈ C∞({a ≤ |x| ≤ b}).

Proof. We only need to prove the existence, the remaining is clear. When p = 1, the 
existence is obvious since u can be taken of the form C1 ln r + C2. So we only consider 
1 < p < 2. Without loss of generality, we assume α = 0.

If β = 0, then u ≡ 0 is a solution.
If β < −4 ln(b/a), take u = 4(2 − p)

p− 1 ln(r−(p−1)/(2−p) − C1) + C2 with

C1 = b−(p−1)/(2−p) − a−(p−1)/(2−p)e(β/4)∗(p−1)/(2−p)

1 − e(β/4)∗(p−1)/(2−p) ,
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then u satisfies the equation in the annulus. One can see that there is a unique C2 so 
that u satisfies the boundary conditions. By a direct computation, we can check that 
C1 > 0 and b ≤ C−(2−p)/(p−1)

1 .
If −4 ln(b/a) ≤ β < 0, take u = − 4

p− 1 ln(rp−1 + C1) + C2 with

C1 = ap−1 − eβ(p−1)/4bp−1

eβ(p−1)/4 − 1 ≥ 0,

then u satisfies the equation in the annulus. One can see that there is a unique C2 so 
that u satisfies the boundary conditions.

If β > 0, take u = 4(2 − p)
p− 1 ln(C1 − r−(p−1)/(2−p)) + C2 with

C1 = a−(p−1)/(2−p)e(β/4)∗(p−1)/(2−p) − b−(p−1)/(2−p)

e(β/4)∗(p−1)/(2−p) − 1 ,

then u satisfies the equation in the annulus. One can see that there is a unique C2 so 
that u satisfies the boundary conditions. By a direct computation, we can check that 
C1 > 0 and C−(2−p)/(p−1)

1 ≤ a. !

By now, we have proved that every radially symmetric viscosity solution of λ(Au) ∈ ∂Γ
is a smooth solution. Therefore, we have completed the proof of Theorem 3.1. !

3.2. A comparison type result

The next lemma shows that the strong maximum principle holds for radially symmet-
ric viscosity solutions of λ(Au) ∈ ∂Γ.

Lemma 3.6. Let Γ = Γp, where 1 < p ≤ 2. For 0 ≤ a < b ≤ ∞, let u ∈ C0({a < |x| < b})
and ū ∈ LSC({a < |x| < b}) be radially symmetric and satisfy respectively λ(Au) ∈ ∂Γ
and λ(Aū) ∈ Γ̄ in {a < |x| < b} in the viscosity sense. Assume that u ≤ ū in {a < |x| <
b}. Then

either u < ū in {a < |x| < b} or u ≡ ū in {a < |x| < b}

Proof. Suppose for some c, d ∈ (a, b), u(c) < ū(c) and u(d) = ū(d). We may assume that 
c < d; the other case can be proved similarly. By Theorem 3.1, u is smooth and takes 
some specific form.

We first observe that

u ≡ ū in {d ≤ |x| < b}.



Y. Li et al. / Journal of Functional Analysis 283 (2022) 109606 27

In fact, if there exists some d < r̄ < b such that u(r̄) < ū(r̄), then by comparison 
principle on {c < |x| < r̄}, we obtain, for small ε > 0, (1 + ε)u ≤ ū in {c < |x| < r̄}, 
violating u(d) = ū(d).

Fix a d̄ ∈ (d, b), and let α = 1
2 (u(c) + ū(c)).

Case (i): If Γ = Γ2, then apply Lemma 3.3 to both u and ū to get

0 ≤ u(c) − u(d̄) < α− u(d̄) < ū(c) − ū(d̄) ≤ 4 ln d̄

c

By Corollary 3.4, there exists a unique C2 radially symmetric solution v of λ(Au) ∈ ∂Γ
in {c < |x| < d̄} satisfying v(c) = α and v(d̄) = u(d̄) = ū(d̄).

Case (ii): If Γ )= Γ2, then the existence of v is given by Corollary 3.5.
By comparison principle, v ≤ ū on {c < |x| < d}. On the other hand, since u(c) < v(c)

and u(d̄) = v(d̄), we have, in view of the explicit form of radial solutions given by 
Theorem 3.1, u < v in {c < |x| < d̄}. Thus, u(d) < v(d) ≤ ū(d), contradiction. !

A consequence of the above lemma is the following comparison type result.

Corollary 3.7. Let Γ = Γp, where 1 < p ≤ 2. For 0 ≤ a < b < ∞, let u ∈ C0({a ≤ |x| ≤
b}), ū ∈ LSC({a ≤ |x| ≤ b}) be radially symmetric and satisfy respectively λ(Au) ∈ ∂Γ
and λ(Aū) ∈ Γ̄ in {a < |x| < b} in the viscosity sense. Assume that u(b) ≤ ū(b) and 
u(d) ≥ ū(d) for some a < d < b. Then

ū ≤ u in {a < |x| < d}

Moreover, if u(b) < ū(b), then ū < u in (a, d).

Proof. Assume the contrary that u(c) < ū(c) for some c ∈ (a, d). According to The-
orem 3.1, u is a smooth function. We also know that u(b) ≤ ū(b). An application of 
comparison principle yields that

ū ≥ u on B̄b\Bc

In particular, ū(d) ≥ u(d). From the boundary condition, it follows that ū(d) = u(d). 
Now by Lemma 3.6, we obtain u ≡ ū on B̄b\Bc, violating u(c) < ū(c). !

3.3. Removable singularity result

We will need the following removable singularity result.

Lemma 3.8. Let Γ = Γp, where 1 < p ≤ 2. Let u ∈ LSC(B1\{0}) be a viscosity solution 
of λ(Au) ∈ Γ̄ in B1\{0}. Then u, with u(0) = lim infx→0 u(x), is a function in LSC(B1)
satisfying λ(Au) ∈ Γ̄ in B1 in the viscosity sense.
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Proof. It is easy to see that u, with u(0) = lim infx→0 u(x) is in LSC(B1). This lemma 
is a special case of Theorem 3.7 in [57]. !

Proposition 3.9. Let Γ = Γp, where 1 < p ≤ 2. Let u ∈ LSC(B1\{0}) ∩ L∞
loc(B1\{0}) be 

a function satisfying λ(Au) ∈ Γ̄ in B1\{0} in the viscosity sense and

lim inf
|x|→0

(u(x) + 4 ln |x|) = −∞.

Then the function u with u(0) = lim inf |x|→0 u(x) is in C0,p−1
loc (B1). Moreover, set w =

exp(−p−1
4 u), then

‖w‖C0,p−1(B1/2) ≤ C(Γ) max
∂B3/4

w.

Proof. By Lemma 3.8, λ(Au) ∈ Γ̄ in viscosity sense. Let v(x) = v(|x|) = min∂B|x| u. 
Then λ(Av) ∈ Γ̄ in B1 in the viscosity sense, hence v is superharmonic. It follows that v
is nonincreasing.

By the hypothesis, lim infr→0(v(r) + 4 ln r) = −∞, hence there exists 0 < r1 < 3/4
such that

v(r1) + 4 ln r1 < v(3
4) + 4 ln 3

4 .

Thus, there exists C1 > 0 and C2 such that the function

v̂(r) = − 4
p− 1 ln(rp−1 + C1) + C2

satisfies v̂(r1) = v(r1) and v̂(3/4) = v(3/4). By Theorem 3.1, λ(Av̂) ∈ ∂Γ in B1\{0}. By 
Corollary 3.7, we have v ≤ v̂ in (0, r1). In particular, v is bounded from above at the 
origin, and

u(0) = lim inf
|x|→0

u = lim inf
r→0

v(r) < ∞.

By Lemma 3.8, λ(Au) ∈ Γ̄ in the viscosity sense. By the superharmonicity of u,

c := inf
B3/4

u = min
∂B3/4

u > −∞.

For x̄ ∈ B1/2, consider

ξx̄(x) := − 4
p− 1 ln(4p−1|x− x̄|p−1 + b) + c,

where b > 0 satisfies
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ξx̄(x̄) = − 4
p− 1 ln b + c = u(x̄). (3.3)

We will show that

u ≥ ξx̄ in B3/4. (3.4)

It is easy to see that

ξx̄(x) ≤ −4 ln(4|x− x̄|) + c ≤ c for all x ∈ ∂B3/4.

Also, since ξx̄(x̄) = u(x̄), for any ε > 0, there exists 0 < δ < 1
8 such that

ξx̄(x) − ε ≤ u in Bδ(x̄).

Since by Theorem 3.1,

λ(Aξx̄−ε) ∈ ∂Γ in B3/4\{x̄},

and

ξx̄ − ε ≤ u on ∂(B3/4\Bδ(x̄)),

we can apply comparison principle to get

ξx̄ − ε ≤ u in B3/4\Bδ(x̄).

Therefore,

ξx̄ − ε ≤ u in B3/4.

Sending ε → 0, we obtain u ≥ ξx̄ in B3/4.
Now set

w(x) = exp(−p− 1
4 u(x)),

then it follows that, using (3.3) and (3.4),

w(x) − w(x̄) ≤ 4p−1|x− x̄|p−1 max
∂B3/4

w for all x, x̄ ∈ B1/2.

Switching role of x and x̄ we obtain

|w(x) − w(x̄)| ≤ 4p−1|x− x̄|p−1 max
∂B3/4

w for all x, x̄ ∈ B1/2.

which proves the result. !
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3.4. Proof of Bôcher type theorems

3.4.1. The case Γ = Γ2: proof of Theorem 1.14

Proof. We write v(x) = v(|x|) = min∂B|x| u. Then v belongs to LSC(B1\{0}) ∩
L∞
loc(B1\{0}) and satisfies λ(Av) ∈ Γ̄ in B1\{0} in the viscosity sense.
We claim that

either v(x) = −4 ln |x| + C for some constant C or sup
B1/2\{0}

v < ∞.

Indeed, if the first alternative does not hold, we can find 0 < r1 < r2 < 1 such that

v(r1) + 4 ln r1 )= v(r2) + 4 ln r2.

By Lemma 3.3,

v(r2) ≤ v(r1) < 4(ln r2 − ln r1) + v(r2).

Therefore, we can find function

v̂(r) = − 4
p− 1 ln(rp−1 + C1) + C2

satisfying v̂(r1) = v(r1) and v̂(r2) = v(r2), C1 > 0. By Theorem 3.1, λ(Av̂) ∈ ∂Γ in 
B1\{0}. By Corollary 3.7, we have v ≤ v̂ in (0, r1). In particular, v is bounded near the 
origin. The claim is proved.

If the first alternative holds, we have u ≥ v in B1\{0}, ∆u ≤ 0 = ∆v in B1\{0}, and 
the set {x ∈ B1\{0} : u = v} is non-empty. By strong maximum principle, u ≡ v and 
the conclusion follows.

If the second alternative holds, then conclusion follows from Proposition 3.9. !

3.4.2. The case Γ = Γp, 1 < p < 2: proof of Theorem 1.15
Now we consider the case Γ )= Γ2. By Proposition 3.9, it suffices to assume

lim inf
|x|→0

(u(x) + 4 ln |x|) > −∞.

Lemma 3.10. Let Γ = Γp for some 1 < p < 2. Let u ∈ C0,1
loc (B1\{0}) be a viscosity 

solution of

λ(Au) ∈ ∂Γ

in B1\{0}, and u satisfy lim inf |x|→0(u(x) + 4 ln |x|) > −∞. Then
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lim
|x|→0

(u(x) + 4 ln |x|)

exists and is a finite number.

Proof. We still define that

v(r) = min
∂Br

u.

Then v is superharmonic in B1\{0}. Since {0} has zero Newtonian capacity, v is super-
harmonic in B1. In particular, v is non-increasing.

Fix some 0 < ρ1 < 1 and for 0 < ρ < ρ1, j ∈ N+, let wρ,j be the radially symmetric 
function which is of the form

wρ,j(r) = 4(2 − p)
p− 1 ln(r1− 1

2−p − aρ,j) + bρ,j

in B1\{0} such that wρ,j(ρ) = v(ρ) + 1
j and wρ,j(ρ1) = v(ρ1). After solving the equation, 

we obtain that

aρ,j = −ρ−(p−1)/(2−p) + ρ1−(p−1)/(2−p)e
p−1

4(2−p) (wρ(ρ)−wρ(ρ1))

e
p−1

4(2−p) (wρ(ρ)−wρ(ρ1)) − 1
,

bρ,j = wρ,j(ρ) −
4(2 − p)
p− 1 ln ρ−(p−1)/(2−p) − ρ−(p−1)/(2−p)

1

1 − e−
p−1

4(2−p) (wρ(ρ)−wρ(ρ1))
.

Claim: wρ,j(r) ≥ v(r) for all 0 < r < ρ.
In fact, by Theorem 3.1, we know if aρ,j ≥ 0 then λ(Awρ,j ) ∈ ∂Γ, if aρ,j < 0 then by 

direct computation, λ(Awρ,j ) ∈ R2\Γ̄. Therefore, wρ,j is a subsolution. If wρ,j(s) < v(s)
for some s < ρ, then the comparison principle implies that wρ,j(r) ≤ v(r) for s < r < ρ1, 
which implies in particular that wρ,j(ρ) ≤ v(ρ), contradicting our choice of wρ,j(ρ). The 
claim is proved.

It follows that

lim sup
r→0

(v(r) + 4 ln r) ≤ lim sup
r→0

(wρ,j(r) + 4 ln r) = bρ,j for all 0 < ρ < ρ1 and j ∈ N+.

In particular,

lim sup
r→0

(v(r) + 4 ln r) < +∞.

Since lim inf |x|→0(u(x) + 4 ln |x|) > −∞, we obtain

lim inf
ρ→0

bρ,j = lim inf
ρ→0

(v(ρ) + 1
j
− 4(2 − p)

p− 1 ln ρ−(p−1)/(2−p) − ρ−(p−1)/(2−p)
1

1 − e−
p−1

4(2−p) (wρ(ρ)−wρ(ρ1))
)
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= lim inf
ρ→0

(v(ρ) + 4 ln ρ) + 1
j
> −∞.

Therefore,

lim sup
r→0

(v(r) + 4 ln r) ≤ lim inf
ρ→0

(v(ρ) + 4 ln ρ) + 1
j
.

Send j → ∞, it follows that limr→0(v(r) + 4 ln r) exists and is finite.
We thus have

a := lim inf
|x|→0

(u(x) + 4 ln |x|) = lim
r→0

(v(r) + 4 ln r).

We next claim that

A := lim sup
|x|→0

(u(x) + 4 ln |x|) is finite.

To prove the claim, for 0 < r < 1/4, let

ur(y) = u(ry), 1
2 < |y| < 2.

Then ur satisfies λ(Aur) ∈ ∂Γ in {1/2 < |y| < 2}. Thus, by Theorem 1.12,

max
∂B1

ur ≤ C + min
∂B1

ur,

where C depends only on n. Equivalently,

max
∂Br

u ≤ C + min
∂Br

u. (3.5)

The claim follows from above.
By Proposition 2.2, we know a ≥ 0. Moreover, (3.5) implies that A ≤ a + C < ∞.
Next we show A = a. Assume by contradiction that A > a. Then for some ε > 0, we 

can find a sequence xj → 0 such that

u(xj) + 4 ln |xj | ≥ a + 2ε.

Furthermore, we can assume that

min
∂B|xj |

u + 4 ln |xj | = v(xj) + 4 ln |xj | ≤ a + ε.

Define

uj(y) = u( y

Rj
) + 4 ln 1

Rj
, |y| < Rj = |xj |−1 → ∞.
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Then we have

λ(Auj ) ∈ ∂Γ in BRj\{0},
min
∂B1

uj ≤ a + ε and max
∂B1

uj ≥ a + 2ε.

Since min∂B1 uj is bounded, we can apply Theorem 1.12 to obtain the boundedness of 
uj and |∇uj | on every compact subset of R2\{0}. By the Ascoli-Arzela theorem, after 
passing to a subsequence, uj converges uniformly on compact subset of R2\{0} to some 
locally Lipschitz function u∗. Furthermore, u∗ satisfies the equation λ(Au∗) ∈ ∂Γ in the 
viscosity sense.

By Theorem 1.9, u∗ is a radially symmetric function, i.e. u∗(y) = u∗(|y|). This results 
in a contradiction to min∂B1 uj ≤ a + ε, max∂B1 uj ≥ a + 2ε and convergence of uj to 
u∗. We conclude that A = a. !

Lemma 3.11. Let Γ = Γp for some 1 < p < 2. Let u ∈ C0,1
loc (B1\{0}) be a viscosity 

solution of

λ(Au) ∈ ∂Γ in B1\{0},

and u satisfies lim inf |x|→0(u(x) + 4 ln |x|) > −∞. Then

u = 4(2 − p)
p− 1 ln(r−(p−1)/(2−p) + ẘ) + a,

where ẘ is a nonpositive function in L∞
loc(B1), and a = supB1\{0}(u(x) +4 ln |x|) < +∞. 

Moreover,

min
∂Br

ẘ ≤ ẘ ≤ max
∂Br

ẘ in Br\{0}, ∀ 0 < r < 1. (3.6)

Proof. By Lemma 3.10, a = supB1\{0}(u(x) + 4 ln |x|) < +∞. Since u(x) + 4 ln |x| ≤ a

in B1\{0}, it follows that ẘ ≤ 0 in B1\{0}. Now we will show that

min
∂Br

ẘ ≤ ẘ ≤ max
∂Br

ẘ in Br\{0}, ∀ 0 < r < 1.

Fix 0 < r < 1, for ε > 0, set

v+
ε,r(x) = 4(2 − p)

p− 1 ln(r−(p−1)/(2−p) + max
∂Br

ẘ) + a + ε,

v−ε,r(x) = 4(2 − p)
p− 1 ln(r−(p−1)/(2−p) + min

∂Br

ẘ) + a− ε.

By Theorem 3.1, we have λ(Av+
ε,r) ∈ ∂Γ and λ(Av−

ε,r) ∈ ∂Γ in Br\{0}, and v−ε,r < u < v+
ε,r

on ∂Br. Furthermore, by Theorem 3.10, there exists δ = δ(ε, r) > 0 such that



34 Y. Li et al. / Journal of Functional Analysis 283 (2022) 109606

v−ε,r < u < v+
ε,r in Bδ\{0}.

Thus, by Proposition 2.3,

v−ε,r ≤ u ≤ v+
ε,r in Br\{0}.

Sending ε → 0, we obtain (3.6). !

Theorem 1.15 follows from Lemma 3.10 and Lemma 3.11.

4. Existence result

In this section, we prove the existence result Theorem 1.1.

4.1. Kazdan-Warner type identity

We first establish Theorem 1.5, the Kazdan-Warner type identity on (S2, g) for the 
σ2-Nirenberg problem.

Recall that

Agu := −∇2
gu + 1

2du⊗ du− 1
4 |∇gu|2g + g.

For any 2 × 2 symmetric matrix Λ, denote the k-th Newton transformation Tk(Λ) =∑k
j=0(−1)jσk−j(Λ)Λj , namely, T0 = δij , T1 = σ1(Λ)δij − Λ. Then we have

(k + 1)σk+1(Λ) = Tk(Λ)abΛb
a, for k = 0, 1. (4.1)

Proposition 4.1. Let u be a smooth function on S2. On (S2, gu) where gu = eug, we have
(i) ∇cAab = ∇bAac.
(ii) ∇aTk(gu−1Agu)ab = 0, k = 0, 1.
Here the covariant derivative is taken with respect to gu.

Proof. We prove (i) here. (ii) follows from (i) as in [64].
It suffices to show ∇1A12 = ∇2A11 and ∇2A12 = ∇1A22. We will only prove ∇1A12 =

∇2A11, and the other one is similar.
Set up local coordinates {x1, x2} such that g = eφδij , where φ(x) = ln 4

(1+|x|2)2 . 
Therefore, gu = eu+φδij .

By definition (1.1),

Aij = −uij + Γk
ijuk + 1

2uiuj −
1
4(u2

1 + u2
2)δij + eφδij (4.2)

where Γk
ij is the Christoffel symbols with respect to g.
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∇1A12 = ∂1(A12) −A(∇1e1, e2) −A(e1,∇1e2)
= ∂1(A12) − Γ̃1

11A12 − Γ̃2
11A22 − Γ̃1

12A11 − Γ̃2
12A12,

∇2A11 = ∂2(A11) − 2A(∇2e1, e1)
= ∂2(A11) − 2Γ̃1

12A11 − 2Γ̃2
12A12,

where Γ̃k
ij is the Christoffel symbols with respect to gu.

By direct computations, Γ1
11 = Γ2

12 = φ1/2, Γ2
11 = −φ2/2, Γ1

12 = Γ2
22 = φ2/2, Γ1

22 =
−φ1/2, and Γ̃k

ij is given the formula of Γk
ij with φ replaced by φ + u.

Therefore,

∇1A12 −∇2A11

=(∂1(A12) − Γ̃1
11A12 − Γ̃2

11A22 − Γ̃1
12A11 − Γ̃2

12A12) − (∂2(A11) − 2Γ̃1
12A11 − 2Γ̃2

12A12)
=∂1(A12) − ∂2(A11) − Γ̃2

11A22 + Γ̃1
12A11

=∂1(A12) − ∂2(A11) + (u2 + φ2)(A11 + A22)/2

Using (4.2) and the formula of Γk
ij , we obtain

A12 = −u12 + φ2u1/2 + φ1u2/2 + u1u2/2,
A11 = −u11 + φ1u1/2 − φ2u2/2 + u2

1/4 − u2
2/4 + eφ,

A11 + A22 = −u11 − u22 + 2eφ.

It follows that

∇1A12 −∇2A11

=(−u112 + φ12u1/2 + φ2u11/2 + φ11u2/2 + φ1u12/2 + u11u2/2 + u1u12/2)
− (−u112 + φ12u1/2 + φ1u12/2 − φ22u2/2 − φ2u22/2 + u1u12/2 − u2u22/2 + eφφ2)
+ (u2 + φ2)(−u11 − u22 + 2eφ)/2

=(1
2(φ11 + φ22) + eφ)u2 = 0. !

Proof of Theorem 1.5. We claim that

〈X,∇σ2〉 = ∇a(T a
b ∇b(divX) + 2σ2X

a), (4.3)

where T a
b denotes the components of T1.

Once the claim is true, Theorem 1.5 for k = 2 follows by integrating (4.3) over S2.
Proof of the claim:

Let φt denote the local one-parameter family of conformal diffeomorphisms of (S2, g)
generated by X. Thus for some function ut, we have φ∗

t (g) = eutg =: gt. We have the 
following properties:
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σ2(g−1Ag) ◦ φt = σ2(g−1
t Agt). (4.4)

u̇ := d

dt

∣∣∣∣
t=0

ut = divX = ∇aX
a. (4.5)

d

dt

∣∣∣∣
t=0

(g−1
t Agt)ab = −∇a

b u̇− u̇Aa
b . (4.6)

Using (4.1), (4.4), (4.5), (4.6), and Proposition 4.1,

〈X,∇σ2〉 = T b
a(−∇a

b u̇− u̇Aa
b )

= −T b
a∇a

b u̇− 2σ2u̇

= −T b
a∇a

b u̇− 2σ2∇bX
b

= −T b
a∇a

b u̇ + 2〈X,∇σ2〉 − 2∇b(σ2X
b)

= −∇b(T b
a∇au̇ + 2σ2X

b) + 2〈X,∇σ2〉.

Claim (4.3) follows. !

4.2. One point blow-up phenomena

Theorem 4.2. Let (f, Γp) satisfy (1.9)-(1.12), and 1 < p ≤ 2, {Ki} be a sequence of 
positive C2 functions on S2 satisfying for some positive constants c1 and C2, minS2 Ki ≥
c1 > 0 and sup ‖Ki‖C2(S2) ≤ C2 < ∞ for all i, and let {ui} ∈ C2 be a sequence of 
functions satisfying

f(λ(g−1
ui

Agui
)) = Ki, λ(g−1

ui
Agui

) ∈ Γp on S2,

and, with xi ∈ S2,

ui(xi) = max
S2

ui → ∞.

Then for some constant C > 0 depending only on p, c1 and C2,

ui(x) ≤ −2 ln dg(x, xi) + C for all x ∈ S2\{xi}.

Here dg(x, xi) denotes the distance between x and xi in the metric g.

We start with a lemma, see e.g. [37, page 271], [16, page 135].

Lemma 4.3. Let (N, g) be a two dimensional complete smooth Riemannian manifold with 
smooth boundary ∂N . If, for some constants c0 > α ≥ 0, Kg ≥ −α2 on N and if the 
geodesic curvature κ of ∂N with respect to its inner normal satisfies κ > c0 on ∂N , then
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dg(x, ∂N) ≤ U(α, c0) for all x ∈ N,

where dg denotes the distance function induced by g and

U(α, c0) =
{

1
c0
, if α = 0,

1
α coth−1( c0α ), if α > 0.

Proof of Theorem 4.2. The proof is analogous to the proof of [54, Lemma 3.1].

Lemma 4.4. Assume for some C1 ≥ 0, Mi → ∞ and yi ∈ S2 that

ui(yi) → ∞ and sup{ui(y) : dg(y, yi) ≤ Mie
−ui(yi)

2 } ≤ ui(yi) + C1.

Then for any 0 < µ < 1, there exists M = M(C1, µ), such that for all sufficiently large 
i,

Volgui
({y : dg(y, yi) ≤ Me−

ui(yi)
2 }) ≥ (1 − µ)Volgui

(S2).

Proof. Without loss of generality, assume f(λ(g−1Ag)) = 1 on S2, where g is the stan-
dard metric on S2.

For q ∈ R2, a > 0, c = ln 4, define

Ua,q(x) = 2 ln a

a2 + |x− q|2 + c, x ∈ R2.

Write S2 = {(z1, z2, z3) ∈ R3|z2
1 + z2

2 + z2
3 = 1}.

Let (x1, x2) ∈ R2 be the stereographic projection coordinates of z ∈ S2, i.e.

zi = 2xi

1 + |x|2 for 1 ≤ i ≤ 2, and z3 = |x|2 − 1
|x|2 + 1 .

Then

g = |dz|2 = ( 2
1 + |x|2 )2|dx|2 = eU1,0 |dx|2.

A calculation gives

(eUa,qgflat)−1AeUa,q gflat ≡ I,

and

f(λ(AeUa,q gflat)) = 1 on R2,

where gflat = |dx|2 is the standard metric on R2.
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Define a map Φi : R2 ≈ Tyi(S2, g) → S2 by:

Φi(x) = expyi
e

c−ui(yi)
2 x,

and let

ũi(x) = ui ◦ Φi(x) + c− ui(yi), x ∈ R2.

Then ũi satisfies

f(λ(Aeũi h̃i
)) = 1 and λ(Aeũi h̃i

) ∈ Γ on {|x| < πe
ui(yi)−c

2 },

where h̃i = eui(yi)−cΦ∗
i g. Now h̃i → gflat on C3

loc(R2). Furthermore, ũi(0) = c, and by 
assumption, ũi ≤ C1 +c. By local derivatives estimates Theorem 1.11 and Theorem 1.13, 
ũi is uniformly bounded in C2 on any compact set of R2. By Nirenberg’s estimate [62], 
ũi subconverges in C2,α

loc (R2) to some function ũ∗ ∈ C2(R2) which satisfies

f(λ(Aeũ∗gflat)) = 1 and λ(Aeũ∗gflat) ∈ Γ on R2.

By the Liouville theorem in our earlier paper [52], we have ũ∗ = Ua∗,x∗ for some a∗ > 0
and x∗ ∈ R2. Since ũ∗(0) = lim ũi(0) = c and ũ∗ ≤ C1 + c, we have, for some constant 
C depending only on C1,

|x∗| ≤ C and C−1 ≤ a∗ ≤ C.

In particular, for any R > 0 and µ > 0,

‖ũi − ũ∗‖C2(B̄R) ≤ µ for all sufficiently large i.

It follows that the metrics eũi h̃i converge on compact subsets to the metric eũ∗gflat. Since 
(B(0, r), eũi h̃i) is isometric to (Φi(B(0, r)), gui), for any r > 0, we obtain:

For any ε > 0, there exists R = R(ε, C1) > 0 such that
(i) |Volgui

(Φi(B(0, R))) − Vol(S2, g)| ≤ Cε2 for some C independent of i and ε,
(ii) the curvature of the hypersurface ∂Φi(B(0, R)) with respect to gui and the unit 

normal pointing away from Φi(B(0, R)) is no smaller than 1
ε .

Using (ii) and Lemma 4.3, we see that

diamgui
(S2\Φi(B(0, R))) ≤ Cε.

By Bishop’s theorem and Kgui
≥ K0 > 0, this implies

Volgui
(S2\Φi(B(0, R))) ≤ Cε2.

Lemma 4.4 is proved. !
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Now to prove Theorem 4.2, we will show that, for some constant C > 0 independent 
of i,

ui(x) ≤ −2 ln dg(x, xi) + C for all x ∈ S2\{xi}.

Suppose not, then for some x̃i ∈ S2\{xi},

ui(x̃i) + 2 ln dg(xi, x̃i) = max
S2

(ui + 2 ln dg(xi, ·)) → ∞.

Since (S2, g) is compact, this implies ui(x̃i) → ∞.
Apply Lemma 4.4 to C1 = 0, yi = xi, and Mi = δe

ui(xi)
2 with some small δ = δ(S2, g), 

we find

Volgui
({y : dg(y, xi) ≤ Me−

ui(xi)
2 }) ≥ 3

4Volgui
(S2),

where M is some universal constant.
Apply Lemma 4.4 to C1 = 2 ln 2, yi = x̃i, and Mi = 1

2d(xi, ̃xi)e
ui(x̃i)

2 , we find

Volgui
({y : dg(y, x̃i) ≤ M̃e−

ui(x̃i)
2 }) ≥ 3

4Volgui
(S2),

where M̃ is some universal constant. On the other hand, since ui(xi) ≥ ui(x̃i), and 
ui(x̃i) + 2 ln dg(xi, ̃xi) → ∞, we know the sets

{y : dg(y, xi) ≤ Me−
ui(xi)

2 } and {y : dg(y, x̃i) ≤ M̃e−
ui(x̃i)

2 }

are disjoint for sufficiently large i. This is a contradiction. !

4.3. C0 estimate

In this section, we establish the following C0 estimate.

Proposition 4.5. Assume that K satisfies the nondegeneracy condition (1.3) and v ∈ C2

satisfies equation (1.2). Then

v ≤ C,

where C depends only on an upper bound of | lnK|, a positive lower bound of 
1

‖∇2Ki‖C0(S2)
(|∇Ki| + |∆Ki|), and the modulus of continuity of 1

‖∇2Ki‖C0(S2)
∇2Ki.

Remark 4.6. The C0 estimates of the σk-Nirenberg problem under such nondegeneracy 
condition on K were obtained in [13] for σ2 on S4, in [58] for σk, n/2 ≤ k ≤ n, on Sn, 
n ≥ 3, and in [59] for σk, 2 ≤ k < n/2, on Sn for axisymmetric functions K. For such 
detailed dependence of the constant C on K in dimensions n ≥ 3, see [58] and [59].
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Proof. Suppose not, then
(i) there exist positive C2 functions Ki such that | lnKi| is uniformly bounded, 

1
‖∇2Ki‖C0(S2)

(|∇Ki| + |∆Ki|) is uniformly bounded from below by a positive constant, 
and 1

‖∇2Ki‖C0(S2)
∇2Ki is equicontinuous,

(ii) there exist C2 functions vi satisfying equation (1.2) with K replaced by Ki and a 
sequence of points {Pi} such that vi(Pi) = maxS2 vi → ∞ as i → ∞.

We assume without loss of generality that Pi = P for all i, and P is the south pole.
We claim that ‖∇2Ki‖C0(S2) is uniformly bounded. Indeed, if ‖∇2Kij‖C0(S2) is a 

subsequence going to ∞, then 1
‖∇2Kij ‖C0(S2)

Kij converges uniformly to 0. By Ascoli-
Arzela’s theorem, this sequence is precompact in C2, hence the convergence would hold in 
C2. This contradicts with the assumption that 1

‖∇2Ki‖C0(S2)
(|∇Ki| + |∆Ki|) is uniformly 

bounded from below by a positive constant.
Therefore, by (i) and the above claim, we may assume without loss of generality that 

Ki converges in C2 to some positive C2 function K∞.
Recall Theorem 4.2, there exists C > 0 such that

vi(x) ≤ C − 2 ln dg(x, P ) for all x ∈ S2\{P}.

Let Φ : R2 → S2 be the inverse of stereographic projection. P is the south pole.

xi = 2yi
1 + |y|2 , i = 1, 2,

x3 = |y|2 − 1
|y|2 + 1 .

Then we have

σ2(λ(Aui)) = Ki(Φ(y)), λ(Aui) ∈ Γ2, in R2,

where

ui(y) = vi(x) + 2 ln 1
|y|2 + 1 .

We know that 0 is a maximum point of ui, ui(0) → ∞ as i → ∞.
Let λi = exp(ui(0)/2), and define

ũi(z) = ui(λ−1
i z) − ui(0).

Then

σ2(λ(Aũi)) = Ki(Φ(λ−1
i z)), λ(Aũi) ∈ Γ2, in R2.
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Passing to a subsequence and apply Liouville type theorem, for every εi → 0+, we can 
find Ri → ∞ with Ri < ε−1

i and Ri/λi → 0 as i → ∞, such that

‖ũi(z) − 2 ln 1
|z|2 + 1‖C2(B2Ri ) < εi. (4.7)

Now we prove a lemma which gives the optimal decay estimate of ui.

Lemma 4.7. There exists a constant C independent of i such that

ui(y) ≤ C − ui(0) − 4 ln |y|. (4.8)

Proof. By Harnack inequality and the above estimate, it suffices to show

min
∂Br

ui(y) ≤ C − ui(0) − 4 ln r, ∀ r ≥ Ri/λi,

where λi and Ri is defined above.
For any r ≥ Ri/λi, define ūi(ξ) = ui(2rξ) + 2 ln r, ∀ ξ ∈ B1. Then λ(Aūi) ∈ Γ2 in B1. 

Fix some ξi such that |ξi| = 1
2λir

, then

ūi(0) + 2 ln |ξi| = −2 ln 2. (4.9)

Moreover, by (4.7),

ūi(ξi) + 2 ln |ξi| = ũi(
ξi
|ξi|

) − 2 ln 2 = −4 ln 2 + o(1).

Therefore, for some i0 independent of r,

ūi(ξi) + 2 ln |ξi| ≤ −3 ln 2 for all i ≥ i0. (4.10)

Since |ξi| ≤ 1
2Ri

≤ 1
2 , by (4.9)(4.10) and the Bôcher type theorem Theorem 1.14, for 

wi = exp(−ūi/4),

max
∂B1/2

w ≥ |wi(0) − wi(ξi)|
C|ξi|

≥ 1
C|ξi|1/2

= 1
Cwi(0) .

Back to ui, then we obtain (4.8). !

Now return to the proof of C0 estimate. Let

K̃i = 1
‖∇2Ki‖C0(S2)

(Ki ◦ Φ −Ki(P )).

By Kazdan-Warner type identity (1.5),
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0 = 1
‖∇2Ki‖C0(S2)

∫

R2

∂lσ2(λ(Aui))euidy =
∫

R2

∂lK̃ie
uidy, l = 1, 2, (4.11)

and

0 = 1
‖∇2Ki‖C0(S2)

2∑

l=1

∫

R2

yl∂lσ2(λ(Aui))euidy =
∫

R2

y ·∇K̃ie
uidy. (4.12)

Fix some r0 > 0. Note that (i) implies that K̃i is precompact in C2, and it follows that 
|∇K̃i(y)| = O(1)

1+|y|2 on R2. Thus by (4.8) and (4.11),

0 =
∫

|y|≤r0

∂lK̃ie
uidy + O(λ−2

i ), l = 1, 2. (4.13)

By (4.8) and (4.7), if q : R2\{0} → R is a homogeneous function of degree d ∈ [0, 2), 
then

lim
i→∞

λd
i

∫

|y|≤r0

q(y)eui(y)dy =
∫

R2

q(z)
(1 + |z|2)2 dz. (4.14)

Using Taylor’s theorem, we write

∂lK̃i(y) = ∂lK̃i(0) +
2∑

p=1
∂p∂lK̃i(0)yp + or0(1)|y| for y ≤ |r0|,

where or0(1) → 0 as r0 → 0. Plugging this into (4.13), using also (4.14),

0 = M (i)∂lK̃i(0) + M (i)
2∑

p=1
∂p∂lK̃i(0)µ(i)

p + or0(1)λ−1
i , l = 1, 2, (4.15)

where M (i) and µ(i)
p are given by

M (i) =
∫

|y|≤r0

euidy ≥ C,

µ(i)
p = 1

M (i)

∫

|y|≤r0

ype
uidy = o(1)

λi
. (4.16)

Therefore, we have

|∇Ki(0)| = or0(1)
λi

as i → ∞. (4.17)



Y. Li et al. / Journal of Functional Analysis 283 (2022) 109606 43

For (4.12), by the same argument, we have

0 = M (i)
2∑

l=1
∂lK̃i(0)µ(i)

l + M (i)
2∑

l,p=1
∂p∂lK̃i(0)µ(i)

lp + or0(1)λ−2
i , l = 1, 2, (4.18)

where

µ(i)
lp = 1

M (i)

∫

|y|≤r0

ylype
uidy = o(1)

λi
= O(1)δlp + o(1)

λ2
i

. (4.19)

Combine (4.15) and (4.18) we obtain

2∑

l,p=1
∂p∂lK̃i(0)(µ(i)

lp − µ(i)
l µ(i)

p ) = or0(1)λ−2
i .

By (4.16) and (4.19), we obtain

∆gR2 K̃i(0) = or0(1) as i → ∞.

This together with (4.17) implies 1
‖∇2Ki‖C0(S2)

(|∇Ki| + |∆Ki|)(0) converges to 0 as i →
∞, which is a contradiction to (i). !

Now evaluate equation (1.2) at a maximum point x̄ of u. In the following, we use C̃ to 
denote some positive constant depending only on an upper bound of K that may vary 
from line to line.

C̃ ≥ K(x̄) = σ2(g−1
u Agu)(x̄) ≥ σ2(e−ug−1Ag)(x̄) = e−2u(x̄).

Hence

max
S2

u ≥ −C̃.

By the gradient estimate Theorem 1.11, |∇u| ≤ C where C depends only on maxS2 u

and ‖K‖C1(S2), so

min
S2

u ≥ −C.

The C0 estimate is now proved.
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4.4. Degree theory

In this section, we prove Theorem 1.1 using degree theories. The proof is by now 
standard, so we skip some computations here. For details, see [57].

Fix some 0 < α′ ≤ α < 1. We first assume K ∈ C2,α(S2), and the case K ∈ C2(S2)
can be obtained by approximation.

For µ ∈ [0, 1], denote Kµ = µK + (1 − µ)/4. Consider the equation

σ2(λ(Agv )) = Kµ, λ(Agv) ∈ Γ2 on S2. (4.20)

By Theorem 1.11, Theorem 1.13 and Proposition 4.5, we can choose C1 sufficiently large 
such that all solutions to (4.20) belong to the set

O = {ṽ ∈ C4,α′(S2) : ‖ṽ‖C4,α′ (S2) < C1,λ(Agṽ) ∈ Γ2}. (4.21)

Consider the operator Fµ : O → C2,α′(S2) defined by

Fµ[v] := σ2(λ(Agv )) −Kµ, ∀v ∈ O. (4.22)

By [47], the degree deg(Fµ, O, 0) is well-defined and independent of µ ∈ (0, 1]. By [48, 
Theorem B.1], it is also independent of α′ ∈ (0, α]. Therefore, it suffices to compute the 
degree for small µ and some α′ ∈ (0, α).

For P ∈ S2 and 1 ≤ t < ∞, we can define a Möbius transformation on S2 by sending 
y to ty where y is the stereographic projection coordinates of points and the projection 
is performed with P as the north pole to the equatorial plane of S2.

For any Möbius transformation ϕ : S2 → S2 and a function v defined on S2, denote

Tϕ(v) := v ◦ ϕ + 4 ln |Jϕ|

where Jϕ denotes the Jacobian of ϕ.
Let B denote the open unit ball in R3 and let

S0 = {v ∈ C4,α′(S2) :
∫

S2

xev(x)dvg(x) = 0}.

Notice that 0 ∈ S0 corresponds to the standard bubble on S2.
For w ∈ S0 and ξ ∈ B, define π(w, ξ) to be:

π(w, ξ) = Tϕ−1
P,t

(w), where P = ξ

|ξ| and t = (1 − |ξ|)−1 when ξ )= 0,

and π(w, 0) = w.
The following lemma implies that π gives a parametrization of C4,α′(S2) with param-

eters in S0 ×B.
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Lemma 4.8. The map π : S0 ×B → C4,α′(S2) is a C2 diffeomorphism.

Next lemma gives a property of π: for every given tubular neighborhood π(N × B)
of π({0} ×B), all solutions of (4.20) belong to π(N ×B) provided that µ is sufficiently 
small.

Lemma 4.9. Let 0 < α′ < α < 1. Suppose that K ∈ C2,α(S2) satisfies the nondegeneracy 
condition (1.3). If vµj = π(wµj , ξµj ) solves (4.20) for some sequence µj → 0+, then ξµj

stays in a compact subset of B and

lim
j→∞

‖wµj‖C4,α′ (S2) = 0.

Let L be the linearized operator of Fµ[π(·, ξ)] at w̄ ≡ 0, with the domain D(L ) being 
the tangent plane to S0 at w = w̄, i.e.

D(L ) = {η ∈ C4,α′(S2) :
∫

S2

xη(x)dvg(x) = 0}.

By implicit function theorem, S0 is represented near 0 as a graph over D(L ). It is 
well-known that L gives an isomorphism from D(L ) to

R(L ) := {f ∈ C2,α′(S2) :
∫

S2

xf(x)dvg(x) = 0}.

Let Π be a projection from C2,α′(S2) to R(L ) given by

Πf(x) = f(x) − 3
4πx ·

∫

S2

yf(y)dvg(y).

The following proposition implies that for every given ξ ∈ B, there exists a unique 
wξ,µ ∈ N such that the S0-component of Fµ[π(wξ,µ, ξ)] is zero.

Proposition 4.10. Let 0 < α′ < α < 1. Suppose that K ∈ C2,α(S2) and Fµ is defined by 
(4.22). Then for every s0 ∈ (0, 1), there exists a constant µ0 ∈ (0, 1] and a neighborhood 
N of 1 ∈ S0 such that, for every µ ∈ (0, µ0], and ξ ∈ B̄s0 ⊂ B, there exists a unique 
wξ,µ ∈ N depending smoothly on (ξ, µ) satisfying

Π(Fµ[π(wξ,µ, ξ)]) = 0.

Furthermore, there exists some C > 0 such that, for µ ∈ (0, µ0] and |ξ|, |ξ′| ≤ s0,
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‖wξ,µ‖C4,α′ (S2) ≤ Cµ‖K − 1
4‖C2,α(S2)

‖wξ,µ − wξ′,µ‖C4,α′ (S2) ≤ Cµ|ξ − ξ′|‖K − 1
4‖C2,α(S2)

Define

Λξ,µ := − 3
4π

∫

S2

Fµ[π(wξ,µ, ξ)](x)xdvg(x),

G :=
∫

S2

K ◦ ϕP,txdvg(x), where P = ξ

|ξ| and t = (1 − |ξ|)−1.

Instead of solving zeros of Fµ in π(N × B), it suffices to solve zeros for the finite 
dimensional map ξ → Λξ,µ. Next lemma gives the formula of deg(Λξ,µ, Bs, 0).

Lemma 4.11. Let α ∈ (0, 1). Suppose that K ∈ C2,α(S2) satisfies the nondegeneracy 
condition (1.3). Then there exists µ0 ∈ (0, 1] and s0 ∈ (0, 1] such that for all µ ∈ (0, µ0]
and s ∈ [s0, 1), the Brouwer degrees deg(Λξ,µ, Bs, 0) and deg(G, Bs, 0) are well-defined 
and

deg(Λξ,µ, Bs, 0) = deg(G,Bs, 0) = −1 + deg(∇K,Crit−(K)).

The last piece is to prove that deg(F1, O, 0) is the degree of Λξ,µ.

Proposition 4.12. Let α ∈ (0, 1). Suppose that K ∈ C2,α(S2) satisfies the nondegeneracy 
condition (1.3). Let O and F1 be as defined in (4.21) and (4.22) with α′ = α. Then

deg(F1,O, 0) = −1 + deg(∇K,Crit−(K)).

Now we are in the position to complete the proof of Theorem 1.1.

Proof. Estimate (1.4) is given by Theorem 1.11, Theorem 1.13 and Proposition 4.5. 
Under the assumption that deg(∇K, Crit−(K)) )= 1, we now prove the existence of 
solution to (1.2).

Let Kj be a sequence of functions in C2,α(S2) converging to K in C2. For j sufficiently 
large, Kj satisfies (1.3), and deg(∇Kj , Crit−(Kj)) )= 1. By Proposition 4.12, there exists 
vj ∈ C4,α(S2) solving (4.20). By Theorem 4.5 we have

‖vj‖C0(S2) ≤ C.

By Theorem 1.11, Theorem 1.13 and Evans-Krylov’s theorem,

‖vj‖C2,α(S2) ≤ C.

The proof is finished by sending j → ∞. !
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Appendix A. Calculus lemmas

Lemma A.1. Let a > 0 be a positive number, assume that g ∈ [−4a, 4a] satisfies, for 
|τ | < 2a, |s| ≤ 4a, 0 < λ < a and λ < |s − τ |,

g(τ + λ2(s− τ)
|s− τ |2 ) − 4 ln |s− τ |

λ
≤ g(s).

Then

|g′(s)| ≤ 2
a
, |s| ≤ a.

Proof. Let h = eg, then we have, for |τ | < 2a, |s| ≤ 4a, 0 < λ < a and λ < |s − τ |,

( λ

|s− τ | )
4h(τ + λ2(s− τ)

|s− τ |2 ) ≤ h(s).

Apply [46, Lemma A.1] with α = 4, we have |h′(s)| ≤ 2
a
h(s), for |s| ≤ a. The result 

follows immediately. !

Lemma A.2. Let a > 0 be a constant and B8a ⊂ R2 be the ball of radius 8a centered at 
the origin. Assume that u ∈ C1(B8a) satisfying

ux,λ(y) ≤ u(y), x ∈ B4a, y ∈ B8a, 0 < λ < 2a, λ < |y − x|, (A.1)

where ux,λ is as defined in (2.2).
Then

|∇u(x)| ≤ 2
a
, |x| < a.

Proof. For x ∈ Ba and e ∈ R2, with |e| = 1, let h(s) = u(x + se). Then, by (A.1), h
satisfies the hypothesis of Lemma A.1. Thus we have |h′(0)| ≤ 2

a
, i.e. |∇u(x) · e| ≤ 2

a
. 

The lemma is now proved. !

Lemma A.3. Let u ∈ C1(R2) satisfy

ux,λ(y) ≤ u(y), ∀λ > 0, x ∈ R2, |y − x| ≥ λ.

Then u must be constant.

Proof. Let a → ∞ in Lemma A.2, we have |∇u| = 0. Thus u must be constant. !
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