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Abstract. In this paper, we show that Landau solutions to the Navier–Stokes system are asymptotically stable under L3-
perturbations. We give the local well-posedness of solutions to the perturbed system with the initial data in the L3

σ space
and the global well-posedness with the small initial data in the L3

σ space, together with a study of the Lq decay for all
q > 3. Moreover, we have also studied the local well-posedness, the global well-posedness and the stability in Lp spaces for
3 < p < ∞.
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1. Introduction

The Cauchy problem for the incompressible Navier–Stokes system in {(x, t)|x ∈ R3, t ≥ 0} with the given
initial data and the external force has the form






ut − ∆u+ (u · ∇)u+ ∇p = f,

∇ · u = 0,
u(x, 0) = u0(x),

(1.1)

where u = (u1, u2, u3) and p denote the velocity field and pressure respectively.
Note that when we consider the construction of solutions to the Cauchy problem (1.1), there are

essentially two methods: the energy method and the perturbation theory. The energy method is based
on a-priori energy estimate

∫

R3
|u(x, t)|2dx+

∫ t

0

∫

R3
2|∇u(x, s)|2dxds ≤

∫

R3
|u0(x)|2dx+

∫ t

0

∫

R3
2(f · u)(x, s)dxds.

The global existence of weak solutions was established by Leray [27] for the divergence-free initial data
u0 ∈ L2(R3) and f = 0. The energy method gives the existence, but the uniqueness and regularity for
solutions still remain open, see e.g. [1,5,8,16,25,26,45] and references therein.

As for the perturbation theory, we treat the nonlinear term (u · ∇)u as a perturbation and use the
scaling property to choose function spaces. As we know, the system (1.1) has the natural scaling

uλ(x, t) = λu(λx,λ2t), pλ(x, t) = λ2p(λx,λ2t).

Therefore, the space L3(R3) is a well-known simple example of the scaling-invariant space. By the
Duhamel principle, we can rewrite the solution into an integral formulation

u(x, t) = et∆u0 +
∫ t

0
e(t−s)∆P(f − u · ∇u)ds, (1.2)
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where P denotes the Leray projector which projects on divergence-free vector fields. Solutions constructed
in this way are called mild solutions [25,26]. Usually, by the contraction mapping principle, we can obtain
the global well-posedness of mild solutions to the system (1.1) with small initial data in appropriate
scaling-invariant spaces. We refer readers to [7,8,20,22,25,26,37] for additional background and refer-
ences.

There are many results on the existence of weak solutions and the L2-decay property of weak solutions
of the Navier–Stokes system, see e.g. [20,33,39,48], also for the convection-diffusion equations [11] and
references therein. When f = 0, the L2-decay property of weak solutions to the system (1.1) can be
viewed as the global asymptotic stability in L2 of the trivial solution (u, p) = (0, 0). Later, Borchers
and Miyakawa [4] addressed similar questions on the global asymptotic stability of a family of stationary
solutions.

The stationary Navier–Stokes system in R3 has the form
{

−∆v + (v · ∇)v + ∇p = f,

∇ · v = 0.
(1.3)

When f = (b(c)δ0, 0, 0) with b(c) = 8πc
3(c2−1)

(
2 + 6c2 − 3c(c2 − 1) ln

(
c+1
c−1

))
and δ0 the Dirac measure,

(vc, pc) given by the following formulas

v1c (x) = 2
c|x|2 − 2x1|x|+ cx2

1

|x| (c|x| − x1)
2 , v2c (x) = 2

x2 (cx1 − |x|)
|x| (c|x| − x1)

2 ,

v3c (x) = 2
x3 (cx1 − |x|)
|x| (c|x| − x1)

2 , pc(x) = 4
cx1 − |x|

|x| (c|x| − x1)
2 ,

(1.4)

with |x| =
√
x2
1 + x2

2 + x2
3 and a constant |c| > 1, are distributional solutions to the system (1.3) in

R3. We note that b(c) is decreasing on (−∞,−1) and (1,∞), limc→1b(c) = +∞, limc→−1b(c) = −∞
and lim|c|→∞b(c) = 0. The explicit stationary solutions (1.4) were discovered by Landau [24]. These
solutions have been called Landau solutions. Tian and Xin [46] proved that all (−1)−homogeneous,
axisymmetric nonzero solutions of the system (1.3) in C2(R3\{0}) are Landau solutions. Šverák [43]
proved that Landau solutions are the only (−1)−homogeneous solutions in C2(R3\{0}). More details can
be found in [9,24,41,43,46].

Karch and Pilarczyk [18] showed that Landau solutions are asymptotically stable under any L2-
perturbations. The crucial role played in their paper is an application of the Hardy-type inequality

∣∣∣∣
∫

R3
w · (w · ∇)vcdx

∣∣∣∣ ≤ K(c)‖∇ ⊗ w‖22, (1.5)

where the positive function K(c) = 12maxj,k∈{1,2,3} Kj,k(c),

∣∣∂xjv
k
c (x)

∣∣ ≤ Kj,k(c)
|x|2 , j, k ∈ {1, 2, 3}, ∀ x ∈ R3\{0}. (1.6)

Moreover, Kj,k(c) satisfies

lim
|c|→1

Kj,k(c) = +∞ and lim
|c|→∞

Kj,k(c) = 0. (1.7)

In 2017, Karch, Pilarczyk and Schonbek [19] generalized the work of [18]. They gave a new method
to show the L2-asymptotic stability of a large class of global-in-time solutions including the Landau
solutions. Their work also generalizes results in a series of articles on the L2-asymptotic stability either of
the zero solution [3,17,35,38,39,48] or nontrivial stationary solutions [4] to the system (1.1). The above
results give the existence in the L2

σ space [18,19], while the uniqueness in the L2
σ space is a major open

problem. We will consider the stability of Landau solutions to the Navier–Stokes system in Lp
σ spaces

with 3 ≤ p < ∞.
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We denote (u, p)(x, t) the solution to the Navier–Stokes system (1.1) with the given external force f =
(b(c)δ0, 0, 0) and the initial data u0 = vc +w0. By a direct calculation, functions w(x, t) = u(x, t)− vc(x)
and π(x, t) = p(x, t) − pc(x) satisfy the following system






wt − ∆w + (w · ∇)w + (w · ∇)vc + (vc · ∇)w + ∇π = 0,
∇ · w = 0,
w(x, 0) = w0(x).

(1.8)

We will consider the well-posedness problem of the system (1.8) in Lp spaces with 3 ≤ p < ∞. We will
obtain the global well-posedness of solutions to the system (1.8) with the small initial data in the L3

σ

space, and the local well-posedness with the general initial data in the L3
σ space, see Theorem 1.1. For

the initial data w0 ∈ Lp
σ with 3 < p < ∞, we get the local well-posedness results, see Theorem 1.2. In

addition, for the general initial data in L3
σ, we have the global existence of L2 + L3 weak solutions, see

Definition 1.3 and Theorem 1.5.
Karch and Pilarczyk [18] denote the linear operator L

Lu = −∆u+ P ((u · ∇)vc) + P ((vc · ∇)u) . (1.9)

For the system (1.8), we can rewrite the solution in the following formula

w(x, t) = e−tLw0 −
∫ t

0
e−(t−s)LP∇ · (w ⊗ w)ds := a+N(w,w). (1.10)

Karch and Pilarczyk [18] showed that −L is the infinitesimal generator of an analytic semigroup of
bounded linear operators on L2

σ(R3). We show that for 1 < q < ∞, −L is the infinitesimal generator of
an analytic semigroup of bounded linear operators on Lq

σ(R3), see Theorem 3.1 in Sect. 3.

1.1. Lp Mild Solutions, 3 ≤ p < ∞

Let us give the following standard definition of the Lp mild solution, 3 ≤ p < ∞.

Definition 1.1. Let 3 ≤ p < ∞ and T > 0, a function w is a Lp mild solution of the system (1.8) with the
initial data w0 ∈ Lp

σ(R3) on [0, T ], if

w ∈ C([0, T ];Lp
σ(R3)) ∩ L

4p
3 ([0, T ];L2p

σ (R3)), (1.11)

and

w(x, t) = e−tLw0 −
∫ t

0
e−(t−s)LP∇ · (w ⊗ w)ds. (1.12)

This solution is global if (1.11) and (1.12) hold for any 0 < T < ∞.
In the above, e−tL denotes the analytic semigroup of bounded linear operators on Lp

σ(R3) generated
by −L, see Lemma 2.4 and Theorem 3.1. Properties of

∫ t
0 e−(t−s)LP∇ · (w ⊗w)ds can be seen in Lemma

2.5.
Now, we give the following theorem which shows the well-posedness results in the L3

σ space and the
Lq−decay rates of solutions to the system (1.8).

Theorem 1.1. There exist positive universal constants c3, ε0 and C with the following properties (i) For
every |c| > c3 and w0 ∈ L3

σ(R3), there exists a positive constant T depending only on w0 such that the
system (1.8) has a unique L3 mild solution w on [0, T ]. Moreover, ∇(|w| 32 ) ∈ L2([0, T ];L2(R3)).

(ii) If in addition, ‖w0‖L3(R3) < ε0, then the system (1.8) has a unique global L3 mild solution w.
Moreover, ∇(|w| 32 ) ∈ L2([0,∞);L2(R3)),

‖w‖Ct(L3
x)∩L4

t (L
6
x)

+ ‖∇(|w| 32 )‖
2
3
L2

tL
2
x

≤ C‖w0‖L3(R3), (1.13)
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and

lim
t→∞

‖w(t)‖L3(R3) = 0. (1.14)

(iii) For any q > 3, there exists a positive constant c̃q depending only on q such that when |c| > c̃q, the
solution in (ii) satisfies

w ∈ L∞([τ,∞), Lq
σ(R3)), forall τ > 0,

and

‖w(t)‖Lq(R3) ≤ (
1
3

− 1
q
)

3
2 (

1
3− 1

q )t
3
2q − 1

2 ‖w0‖L3(R3), forall t > 0. (1.15)

Remark 1.1. From (2.15) with p = 3, (2.42), (2.53) and (2.56) in this paper, we see a more detailed
dependence of c̃q. On the other hand, we tend to believe that c can be chosen as a constant independent
of q, and we plan to investigate the L∞ decay property in our future work.

Remark 1.2. It follows from Theorem 1.1 that the flow described by the Landau solution is asymptotically
stable under L3-perturbations.

Remark 1.3. For the two-dimensional Navier–Stokes system, Carlen and Loss [10] gave the decay rate
of solutions to the vorticity equation. We adapt the method in [10] to give the decay rate of solutions
to the system (1.8), and we treat the pressure term π by using the Ap weight inequalities for the Riesz
transforms [12,42].

Then, we have the following local well-posedness results with the initial data w0 ∈ Lp
σ, 3 < p < ∞.

Theorem 1.2. For p ∈ (3,∞) and w0 ∈ Lp
σ(R3), there exist two constants cp and T , where cp depends

only on p while T depends only on p and ‖w0‖Lp , such that for all |c| > cp, the system (1.8) has a unique
Lp mild solution w on [0, T ], satisfying ∇(|w| p2 ) ∈ L2

t ([0, T ];L2
x(R3)). If in addition, w0 ∈ Lp

σ ∩ L3
σ(R3),

‖w0‖L3 < ε0, where ε0 is as in Theorem 1.1, there exists a unique global Lp mild solution w to the system
(1.8), satisfying

‖w‖
Ct(L

p
x)∩L

4p
3

t (L2p
x )

+ ‖∇(|w|
p
2 )‖

2
p

L2
tL

2
x

≤ C‖w0‖Lp . (1.16)

Remark 1.4. Under conditions of Theorem 1.2, from Theorem 1.1, we have that (1.13)-(1.14) hold, and
(1.15) holds if |c| > c̃q.

Remark 1.5. Note that w0 ∈ Lp with p > 3 implies w0 ∈ L2
uloc. For the Navier–Stokes system with u0 ∈

L2
uloc, several authors [2,21,25,26] gave the local existence of the weak solution u. Moreover, the global

weak solution exists for the decaying initial data u0 ∈ E2 =
{
f ∈ L2

uloc : lim|x0|→∞ ‖f‖L2(B(x0,1)) = 0
}
.

Kown and Tsai [23] generalized the global existence for the non-decaying initial data with slowly decaying
oscillation. Very recently, J.J. Zhang and T. Zhang [49] have given the local existence of solutions to the
system (1.8) with the initial data w0 ∈ Lp

uloc, p ≥ 2. Because of these results, we plan to study the global
existence of weak solutions to the system (1.8) with the initial data w0 ∈ Lp

σ for p > 3 in our future work.

Remark 1.6. L. Li, Y.Y. Li and X. Yan investigated homogeneous solutions of the stationary Navier–
Stokes system with isolated singularities on the unit sphere [28–31]. For a subclass of (-1)-homogeneous
axisymmetric no-swirl solutions on the unit sphere minus north and south poles classified in [29], Y.Y. Li
and X. Yan have proved in [32] the asymptotic stability under L2-perturbations. We will focus on these
homogeneous solutions in our future work.

Results in Theorems 1.1 and 1.2 show the existence and uniqueness of the solution w to the system
(1.8) in the corresponding space. Actually the solution depends continuously on the initial data.
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Theorem 1.3. For every |c| > cp and u0 ∈ Lp
σ(R3) with 3 ≤ p < ∞, assume that u is the unique mild

solution to the system (1.8) on [0, Tmax). Then, for any T ∈ (0, Tmax), there exists ε > 0 such that for
any v0 ∈ Lp

σ(R3), ‖u0 − v0‖Lp < ε, there exists a unique Lp mild solution v on [0, T ] with the initial data
v|t=0 = v0. Moreover,

lim
u0→v0 in Lp

(
‖u − v‖

CTLp
x∩L

4p
3

T L2p
x

+
∥∥∥∇
(
|u − v|

p
2

)∥∥∥
2
p

L2
TL2

x

)
= 0. (1.17)

The constant cp in the above theorem is the one given in Theorems 1.1 and 1.2.

Remark 1.7. Karch, Pilarczyk and Schonbek [19] showed the L2-asymptotic stability of a large class of
global-in-time solutions including the Landau solutions. Based on similar proof of Theorem 1.3, we can
obtain the L3-asymptotic stability of a class of solutions vc + w, where w is as in Theorem 1.1. More
precisely, letting V as perturbation of vc + w, when ‖V0‖L3 ≤ (4C2e2C

∫∞
0 ‖w‖4

L6dt)−1, using the similar
proof of (7.5), we obtain

‖V ‖CtL3
x∩L4

tL
6
x
+
∥∥∥∇
(
|V | 32

)∥∥∥
2
3

L2
tL

2
x

≤ 2C‖V0‖L3eC
∫∞
0 ‖w‖4

L6dt. (1.18)

1.2. Weak Solution

Karch and Pilarczyk [18,19] proved the following results: for every w0 ∈ L2
σ

(
R3
)
, there exists a global

weak solution

w ∈ Cw

(
[0, T ], L2

σ

(
R3
))

∩ L2
(
[0, T ], Ḣ1

σ

(
R3
))

for every T > 0 which

‖w(t)‖22 + 2(1 − K(c))
∫ t

s
‖∇ ⊗ w(τ)‖22dτ ! ‖w(s)‖22 (1.19)

for almost all s ≥ 0, including s = 0 and all t ≥ s. The definition of the weak solution is as follows.

Definition 1.2. (L2-weak solution) For w0 ∈ L2
σ(R3), a function w is a L2-weak solution of the system

(1.8) on [0, T ], if
i) w ∈ Cw([0, T ];L2

σ(R3)) ∩ L2([0, T ]; Ḣ1
σ(R3)).

ii) For all t ≥ s ≥ 0, all ϕ ∈ C
(
[0,∞),H1

σ

(
R3
))

∩ C1
(
[0,∞), L2

σ

(
R3
))

,

(w(t),ϕ(t)) +
∫ t

s
[(∇w,∇ϕ) + (w · ∇w,ϕ) + (w · ∇vc,ϕ) + (vc · ∇w,ϕ)] dτ

= (w(s),ϕ(s)) +
∫ t

s
(w,ϕτ ) dτ.

iii) For all φ ∈ C∞
c (R3), limt→0

∫
R3 w · φdx =

∫
R3 w0 · φ(0)dx.

iv) w satisfies the energy inequality
∫

R3
|w|2ξ(x, t)dx+ 2

∫ t

0

∫

R3
|∇w|2ξdxds

≤
∫

R3
|w0|2ξ(x, 0)dx+

∫ t

0

∫

R3
(2vc ⊗ w : ∇wξ

+(∂sξ + ∆ξ) |w|2 + (|w|2 + 2π + 2vc · w)(w · ∇)ξ + |w|2vc · ∇ξ)dxds,

for any t ∈ [0, T ] and for all non-negative smooth functions ξ ∈ C∞
c ([0, T ] × R3).

The following is a weak-strong uniqueness theorem that is analogous to the one for the Navier–Stokes
system (Theorem 4.4 in [47]).
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Theorem 1.4. Let |c| > 8
√
2+1, w0 ∈ L2

σ(R3). Assume that u, v are L2-weak solutions of the system (1.8)
on [0, T ] with the initial data u|t=0 = v|t=0 = w0. Suppose u ∈ Ls([0, T ];Lq(R3)), 3

q +
2
s = 1, q, s ∈ [2,∞].

When (q, s) = (3,∞), assume that ‖u‖L∞([0,T ];L3
σ(R3)) is sufficiently small. Then u ≡ v.

We give the following proposition for which the detailed proof can be seen in Sect. 4.

Proposition 1.1. For w0 ∈ Lp
σ(R3)∩L2

σ(R3), p ≥ 3, |c| > cp, where cp is in Theorem 1.2, let w be the Lp

mild solution of the system (1.8) on [0, T ]. Then w is a L2-weak solution of the system (1.8) on [0, T ].

According to (1.19), there exists t0 > 0 such that w(t0) ∈ Lp
σ ∩L3

σ(R3), 3 < p ≤ 6 and ‖w(t0)‖L3 < ε0.
According to Theorem 1.2, when |c| > cp, there exists a unique Lp mild solution on [t0,∞) to the system
(1.8) with the initial data w(t0).

Corollary 1.1. For w0 ∈ L2
σ(R3), let w be a L2-weak solution of the system (1.8). Then for every 3 ≤ p ≤ 6

and |c| > cp, there exists T > 0 such that w(· + T ) is a Lp mild solution to the system (1.8) with the
initial data w(T ) ∈ Lp

σ ∩ L2
σ(R3).

Remark 1.8. Under conditions of Corollary 1.1, we have ∇(|w| p2 ) ∈ L2([T,∞);L2(R3)), and

lim
t→∞

‖w(t)‖L2(R3) = 0. (1.20)

Furthermore, for q ≥ 3, |c| > c̃q, where c̃q is as in Theorem 1.1,

‖w(t)‖Lq(R3) ≤ (
1
2

− 1
q
)

3
2 (

1
2− 1

q )(t − T )
3
2 (

1
q − 1

2 )‖w(T )‖L2(R3), for all t > T. (1.21)

For the general initial data w0 ∈ L3
σ(R3), we will give the global existence of the L2+L3 weak solution

to the system (1.8). Inspired by the method in [6,19,40], for any w0 ∈ L3(R3), we make a decomposition

w0 = v10 + v20, (1.22)

with ‖v10‖L3 < ε0, where ε0 is as in Theorem 1.1 and v20 ∈ L2 ∩ L3(R3). According to Theorem 1.1,
there exists a unique global L3 mild solution v1 to the system






∂tv1 − ∆v1 + (v1 · ∇)v1 + (v1 · ∇)vc + (vc · ∇) v1 + ∇π1 = 0,
∇ · v1 = 0,
v1(x, 0) = v10.

(1.23)

Then v2 = w − v1 satisfies





∂tv2 − ∆v2 + (v2 · ∇)v2 + (v2 · ∇)(vc + v1) + ((vc + v1) · ∇) v2 + ∇π2 = 0,
∇ · v2 = 0,
v2(x, 0) = v20.

(1.24)

We can get the global existence of w by investigating the global existence of v2. From Theorem 2.7 in
[19], the system (1.24) has a weak solution

v2 ∈ Cw

(
[0, T ];L2

σ

(
R3
))

∩ L2
(
[0, T ]; Ḣ1

σ

(
R3
))

(1.25)

for each T > 0, satisfying the strong energy inequality

‖v2(t)‖22 + 2
(
1 − K sup

t>0
‖vc + v1‖L3

w

)∫ t

s
‖∇v2(τ)‖22dτ " ‖v2(s)‖22 (1.26)

for a constant K > 0, almost all s ≥ 0 and all t ≥ s, and

lim
t→∞

‖v2(t)‖2 = 0. (1.27)

In the spirit of the notion of the weak L3-solution introduced by Seregin and Šverák [40], we give the
following definition of the L2 + L3 weak solution of the system (1.8).
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Definition 1.3. Let T > 0, w0 ∈ L3
σ(R3), w0 = v10+v20. A vector field w is called a L2+L3 weak solution

to the system (1.8) in R3 × (0, T ), if w = v1 + v2 for some v1 ∈ C((0, T );L3
σ(R3)) ∩ L4((0, T );L6

σ(R3)),
and v2 ∈ Cw

(
(0, T );L2

σ

(
R3
))

∩ L2
(
(0, T ); Ḣ1

σ

(
R3
))

such that v1 is a L3 mild solution of (1.23) and v2
satisfies the following conditions:

i) v2 satisfies (1.24) in the sense of distributions,
ii)

lim
t→0

‖v2(·, t) − v20‖L2 = 0, (1.28)

iii) for all t ∈ (0, T )

1
2

∫

R3
|v2(x, t)|2dx+

∫ t

0

∫

R3
|∇v2|2(x, s)dxds

≤ 1
2

∫

R3
|v20(x)|2dx+

∫ t

0

∫

R3
v2 ⊗ (vc + v1) : ∇v2dxds, (1.29)

iv) for a.a. t ∈ (0, T ) and any non-negative function ϕ ∈ C∞
c

(
R3 × (0, T )

)
,

∫

R3
|v2(x, t)|2 ϕ(x, t)dx+ 2

∫ t

0

∫

R3
|∇v2|2 ϕdxds

≤
∫ t

0

∫

R3
(2(vc + v1) ⊗ v2 : ∇v2ϕ + (∂sϕ + ∆ϕ) |v2|2

+(|v2|2 + 2π2 + 2(vc + v1) · v2)(v2 · ∇)ϕ + |v2|2(vc + v1) · ∇ϕ)dxds. (1.30)

We say w is a global L2 + L3 weak solution to the system (1.8) if it is a L2 + L3 weak solution to
the system (1.8) in R3 × (0, T ) for all 0 < T < ∞. Hence, we give the existence of global L2 + L3 weak
solutions to the system (1.8) as follows.

Theorem 1.5. Assume that w0 ∈ L3
σ(R3) has a decomposition w0 = v10 + v20 with v10 ∈ L3

σ(R3),
‖v10‖L3(R3) < ε0 and v20 ∈ L2

σ ∩ L3
σ(R3) where ε0 is as in Theorem 1.1. Then, there exists a global

L2 + L3 weak solution w to the system (1.8) with w = v1 + v2, v1(·, 0) = v10 and v2(·, 0) = v20.

The proof of Theorem 1.5 is based on the proof of Theorem 2.1 in [19]. For the convenience of the
reader, we will give details in Sect. 5.

Remark 1.9. When the initial data w0 ∈ Lp
σ(R3), 2 < p ≤ 3, by interpolation theory, w0 has a decompo-

sition w0 = v10 + v20 with v10 ∈ L3
σ(R3), ‖v10‖L3(R3) < ε0 and v20 ∈ L2

σ where ε0 is as in Theorem 1.1.
Then, we can easily obtain the global existence of the L2 + L3 weak solution to the system (1.8).

Scheme of the proof and organization of the paper. In Sect. 2, we give the proof of Theorem 1.1. In
other words, we prove the local well-posedness of solutions to the system (1.8) with the general initial
data, and the global well-posedness of solutions to the system (1.8) with the small initial data in the L3

σ

space. Also, we investigate the decay rate of solutions to the system (1.8). In Sect. 3, some properties of
the linear operator L on Lp, 1 < p < ∞, are studied. In Sect. 4, we prove Theorem 1.4, Proposition 1.1
and illustrate Corollary 1.1 briefly. In Sect. 5, we illustrate Theorem 1.5, i.e. the global existence of the
L2 +L3 weak solution to the system (1.8). In Sects. 6 and 7, we give the proofs of Theorems 1.2 and 1.3,
respectively.

Notations.
• We denote ‖ · ‖p (or ‖ · ‖Lp), ‖ · ‖Lp

tL
q
x
, ‖ · ‖Lp

TLq
x
, ‖ · ‖CtL

q
x
, ‖ · ‖CTLq

x
the norms of the Lebesgue

spaces Lp
x(R3), Lp

t ([0,∞);Lq
x(R3)), Lp

t ([0, T ];Lq
x(R3)), C([0,∞);Lq

x(R3)), Ct([0, T ];Lq
x(R3)), respectively,

with p, q ∈ [1,∞].
• C∞

0 (R3) denotes the set of smooth and compactly supported functions.
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• Cw([0, T ];Lq
x(R3)) with q ∈ [1,∞) denotes the set of weakly continuous Lq(R3)-valued functions in

t, i.e. for any t0 ∈ [0, T ] and w ∈ Lq′
(R3),

∫

R3
v(x, t) · w(x)dx →

∫

R3
v (x, t0) · w(x)dx as t → t0.

• For each space Y, we set Yσ = {u ∈ Y : div u = 0} .
• We denote ui the ith coordinate (i = 1, 2, 3) of a vector u.
• Constants independent of solutions may change from line to line and will be denoted by C.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Our method is based on the following contraction
mapping theorem (cf. [1], Theorem 1.72).

Lemma 2.1. Let E be a Banach space, N be a continuous bilinear map from E × E to E, and α be a
positive real number such that

α <
1

4‖N‖ with ‖N‖ := sup
‖u‖,‖v‖≤1

‖N(u, v)‖. (2.1)

Then for any a in a ball B(0,α) (i.e., with center 0 and radius α) in E, there exists a unique x in ball
B(0, 2α) such that

x = a+N(x, x). (2.2)

We will also use a property of Landau solution vc which can be obtained by a direct calculation.

Lemma 2.2. Let vc be the Landau solution given by (1.4), then we have

‖|x|vc‖L∞ ≤ 2
√
2

|c| − 1
:= Kc. (2.3)

The next lemma is a fundamental inequality with the singular weight in Sobolev spaces: the so-called
Hardy inequality which goes back to the pioneering work by G.H. Hardy [13,14].

Lemma 2.3. For any f in Ḣ1(R3), there holds
(∫

R3

|f(x)|2

|x|2 dx

) 1
2

≤ 2‖∇f‖L2(R3). (2.4)

To complete the proof of Theorem 1.1, we need Lemmas 2.4 and 2.5 which give the results for the
linear part a and the nonlinear part N in (1.10), respectively. The linear part a satisfies the following
Cauchy problem






at − ∆a+ (a · ∇)vc + (vc · ∇) a+ ∇π1 = 0,
∇ · a = 0,
a(x, 0) = w0(x).

(2.5)

Namely, a(x, t) satisfies
∫

R3
w0φdx+

∫ ∞

0

∫

R3

{
w (−∂tφ − ∆φ) − w ⊗ w : ∇φ − (w ⊗ vc + vc ⊗ w) : ∇φ

}
dxdt = 0, (2.6)

for all φ ∈ C∞
c ([0,∞) × R3) with ∇ · φ = 0.
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Lemma 2.4. Let p ∈ (1,∞). For every c satisfies (2.15) and (2.21), there exists a unique global-in-time
solution a(x, t) ∈ CtLp

x ∩ L
4p
3
t L2p

x to the system (2.5) with the initial data w0 ∈ Lp
σ(R3), satisfying

‖a(·, t)‖Lp ≤ ‖a(·, s)‖Lp , (2.7)

for any 0 ≤ t ≤ s < ∞,,

‖a‖
CtL

p
x∩L

4p
3

t L2p
x

+
∥∥∥∇
(
|a|

p
2

)∥∥∥
2
p

L2
tL

2
x

≤ C‖w0‖Lp , (2.8)

for a universal constant C.

Proof. By the classical approximation method, it is easy to get the global existence of solutions a. For
simplicity, we omit the detailed proof and give some a-prioi estimates for a. Suppose a is sufficiently
smooth, multiplying the equation (2.5)1 by |a|p−2a and integrate it on R3, we have

∫

R3
∂ta · (|a|p−2a)dx =

1
p

d
dt

‖a(t)‖pLp , (2.9)

and ∫

R3
−∆a · (|a|p−2a)dx = (p − 2)

∫

R3
|a|p−4

∑

i

[(∂ial)al]2 +
∫

R3
|∇a|2|a|p−2

=
4(p − 2)

p2
‖∇(|a|

p
2 )‖2L2 + ‖|∇a||a|

p−2
2 ‖2L2 . (2.10)

When p ≥ 2, we obtain
1
p

d
dt

‖a(t)‖pLp +
4(p − 2)

p2
‖∇(|a|

p
2 )‖2L2 + ‖|∇a||a|

p−2
2 ‖2L2

= −
∫

R3
div(a ⊗ vc + vc ⊗ a) · (|a|p−2a)dx −

∫

R3
∇π1 · (|a|p−2a)dx. (2.11)

Using integration by parts, Hölder’s inequality, Lemma 2.2 and the classical Hardy inequality in Lemma
2.3, we have

−
∫

R3
div(a ⊗ vc + vc ⊗ a) · (|a|p−2a)dx =

∫

R3
(a ⊗ vc + vc ⊗ a) · ∇(|a|p−2a)dx

=
∫

R3
ai(vc)j∂i(|a|p−2aj)dx

≤ C

∫

R3
|∇(|a|

p
2 )||a|

p
2 |vc|dx

≤ C ‖|x|vc‖L∞

∥∥∥∇(|a|
p
2 )
∥∥∥
L2

∥∥∥∥
|a| p2
|x|

∥∥∥∥
L2

≤ CKc

∥∥∥∇(|a|
p
2 )
∥∥∥
2

L2
. (2.12)

Thanks to the system (2.5), we get

π1 = −∆−1∂i∂j (a ⊗ vc + vc ⊗ a) .

The operator ∆−1∂i∂j is Calderón-Zygmund operator. According to Example 9.1.7 in [12], there holds
|x|p−2 ∈ Ap with 1 < p < ∞. By Hölder’s inequality, Hardy inequality in Lemma 2.3, Sobolev embedding
and boundedness of the Riesz transforms on weighted Lp spaces (see Theorem 9.4.6 in [12]), we have
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∫

R3
∇π1 · (|a|p−2a)dx ≤ C‖|x|

p−2
p (a ⊗ vc + vc ⊗ a) ‖Lp‖∇(|a|

p
2 )‖L2

∥∥∥∥∥
|a| p2 −1

|x|
p−2
p

∥∥∥∥∥
L

2p
p−2

≤ C‖|x|vc‖L∞

∥∥∥∥∥
a

|x|
2
p

∥∥∥∥∥
Lp

‖∇(|a|
p
2 )‖L2

∥∥∥∇(|a|
p
2 )
∥∥∥

p−2
p

L2

≤ CKc

∥∥∥∥∥
a

|x|
2
p

∥∥∥∥∥
Lp

‖∇(|a|
p
2 )‖

2p−2
p

L2

≤ CKc‖∇(|a|
p
2 )‖2L2 . (2.13)

Combining (2.11)-(2.13), we deduce

1
p

d
dt

‖a(t)‖pLp +
4(p − 2)

p2
‖∇(|a|

p
2 )‖2L2 ≤ CKc‖∇(|a|

p
2 )‖2L2 . (2.14)

Under the assumption,
4(p − 2)

p2
− CKc > 0, if p ≥ 2, (2.15)

we have
d
dt

‖a(t)‖pLp + C‖∇(|a|
p
2 )‖2L2 ≤ 0, (2.16)

for a positive constant C. Therefore, (2.7) holds and we have

sup
t

‖a(t)‖pLp + C‖∇(|a|
p
2 )‖2L2

tL
2
x

≤ ‖w0‖Lp . (2.17)

By the interpolation theory, we deduce

‖a‖
L∞

t Lp
x∩L

4p
3

t L2p
x

+
∥∥∥∇
(
|a|

p
2

)∥∥∥
2
p

L2
tL

2
x

≤ C‖w0‖Lp . (2.18)

When 1 < p < 2, we have
1
p

d
dt

‖a(t)‖pLp + (p − 2)
∫

R3
|a|p−4

∑

i

[(∂ial)al]2 +
∫

R3
|∇a|2|a|p−2

= −
∫

R3
div(a ⊗ vc + vc ⊗ a) · (|a|p−2a)dx −

∫

R3
∇π · (|a|p−2a)dx.

Thanks to Lemma 3.1, there holds
1
p

d
dt

‖a(t)‖pLp + (p − 1)
∫

R3
|∇a|2|a|p−2

≤
∣∣∣
∫

R3
div(a ⊗ vc + vc ⊗ a) · (|a|p−2a)dx

∣∣∣+
∣∣∣
∫

R3
∇π · (|a|p−2a)dx

∣∣∣.

Thanks to (2.12) and (2.13), there holds
1
p

d
dt

‖a(t)‖pLp + (p − 1)
∫

R3
|∇a|2|a|p−2dx ≤ CKc‖∇(|a|

p
2 )‖2L2 . (2.19)

Moreover,

CKc‖∇(|a|
p
2 )‖2L2 = CKc

p2

4

∫

R3
|a|p−4

∑

i

[(∂ial)al]2dx

≤ C(p)Kc

∫

R3
|a|p−2|∇a|2dx, (2.20)



JMFM Asymptotic stability of Landau solutions... Page 11 of 30 5

where C(p) is a constant depending on p. Under the assumption,

p − 1 − C(p)Kc > 0, if 1 < p < 2, (2.21)

we get
d
dt

‖a(t)‖pLp + C

∫

R3
|a|p−2|∇a|2dx ≤ 0, (2.22)

for a positive constant C. Hence we deduce (2.7) and (2.18), since that
∥∥∥∇
(
|a|

p
2

)∥∥∥
2

L2
x

≤ C

∫

R3
|a|p−2|∇a|2dx.

Then, we consider the continuity of the solution a over time t. Because of the translational invariance
in time, we only consider time around 0. For any sequence tn → 0, according to (2.18), there holds

‖a(tn, ·)‖Lp
x

≤ ‖w0‖Lp
x
. (2.23)

Therefore, there exists subsequence {tnj}j∈Z+ , such that tnj → 0 as j → ∞, and

a(·, tnj ) ⇀ w0(·) weakly in Lp.

Therefore, we have

‖w0‖Lp ≤ limj→∞‖a(·, tnj )‖Lp . (2.24)

By the energy inequalities (2.16) and (2.22), there holds

limj→∞‖a(·, tnj )‖Lp ≤ ‖w0‖Lp . (2.25)

From (2.24) and (2.25), we get

lim
j→∞

‖a(·, tnj )‖Lp = ‖w0‖Lp , (2.26)

and

a(·, t) → w0(·) in Lp as t → 0. (2.27)

Hence, we have a ∈ C([0,∞);Lp
x) and finish the proof of (2.8). #

Remark 2.1. Indeed, more strictly, we can prove the existence of a by the approximation theory. Assume
a0 = 0, we construct the iterative sequence {ak} as follows






∂tak − ∆ak = −(ak−1 · ∇)vc − (vc · ∇) ak−1 − ∇πk−1, for k = 1, 2, . . . ,
∇ · ak = 0,
πk−1 = (−∆)−1∂i∂j(vc ⊗ ak−1 + ak−1 ⊗ vc),
ak|t=0 = w0.

We claim that {ak} ∈ C([0,∞);Lp
x) ∩ L

4p
3
t ([0,∞);L2p

x ) and ∇(|ak|
p
2 ) ∈ L2

t ([0,∞);L2
x). By Duhamel

principle, ak also satisfy the integral formulation et∆ak −
∫ t
0 e(t−s)∆Pdiv(ak−1 ⊗ vc + vc ⊗ ak−1)ds. Since

semigroup et∆ : Lp → Lp, we have ak ∈ C([0,∞);Lp
x). By the energy estimate, we have that {ak} is

a Cauchy sequence in L
4p
3
t ([0,∞);L2p

x ). The limit of {ak} is a which satisfies Lemma 2.4. We omit the
details.

For w0 ∈ Lp
σ(R3), 1 < p < ∞, and 0 ≤ t < ∞, let

T (t)w0 := a(x, t), (2.28)

where a(x, t) is the unique solution of (2.5) given by Lemma 2.4. Then T (t), 0 ≤ t < ∞, is a one parameter
family of bounded linear operators from Lp

σ(R3) into Lp
σ(R3) satisfying T (0) = I, the identity operator of

Lp
σ(R3), T (t+ s) = T (t)T (s) for every t, s ≥ 0, ‖T (t)‖ ≤ 1 for every t ≥ 0, and limt→0+ T (t)w0 = w0 in
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Lp
σ(R3). Therefore, T (t) is a strongly continuous semigroup of the contraction, see Definition 1.2.1 and

Section 1.3 in [36].
The linearized operator −L, given in (1.9), with the domain of definition

D(−L) :=
{
w0 ∈ L3

σ(R3) : lim
t→0+

T (t)w0 − w0

t
exists in Lp

σ(R3)
}
, (2.29)

is the infinitesimal generator of the semigroup T (t), see Section 1.1 of [36]. By Corollary 1.2.5 in [36],
D(−L) is dense in Lp

σ(R3) and −L is a closed linear operator in Lp
σ(R3). We also denote T (t) as e−tL.

We will prove that e−tL is an analytic semigroup in Sect. 3.
Next, we will estimate the nonlinear part N(w1, w2), where

N(w1, w2) = −
∫ t

0
e−(t−s)LP∇ · (w1 ⊗ w2)ds

for any w1, w2 ∈ L4([0, T ];L6(R3)). Denote z = N(w1, w2), it’s obvious that z satisfies the following
system






zt − ∆z + (z · ∇)vc + (vc · ∇) z + ∇π2 = −div(w1 ⊗ w2),
∇ · z = 0,
z(x, 0) = 0.

(2.30)

Lemma 2.5. For every c satisfies (2.42), there exists a unique solution z(x, t) ∈ C([0, T ], L3
σ(R3)) ∩

L4([0, T ], L6
σ(R3)) to the system (2.30) with w1, w2 ∈ L4([0, T ];L6(R3)), satisfying

‖z(t)‖C([0,T ];L3
x)∩L4

t ([0,T ];L6
x)

+
∥∥∥∇
(
|z| 32

)∥∥∥
2
3

L2
t ([0,T ];L2

x)
≤ C2‖w1‖L4

t ([0,T ];L6
x)

‖w2‖L4
t ([0,T ];L6

x)
, (2.31)

for a universal constant C2 which is independent of T .

Proof. We omit the detailed proof of the existence of the solution z since it can be obtained by the
classical approximation method. Then, we give some a-prioi estimates for z. Suppose z is sufficiently
smooth, multiplying the equation (2.30)1 by |z|z and integrating it on R3, we have

1
3
d
dt

‖z(t)‖3L3 +
8
9
‖∇(|z| 32 )‖2L2

= −
∫

R3
div(z ⊗ vc + vc ⊗ z) · (|z|z)dx −

∫

R3
div(w1 ⊗ w2) · (|z|z)dx −

∫

R3
∇π2 · (|z|z)dx.

(2.32)

The estimate for the first term on the right-hand side of (2.32) is the same as (2.12) with p = 3. Hence,
there holds

−
∫

R3
div(z ⊗ vc + vc ⊗ z) · (|z|z)dx ≤ 16

3
Kc‖∇(|z| 32 )‖2L2 . (2.33)

For the second term on the right-hand side of (2.32), by integration by parts, Hölder’s inequality and
Young’s inequality, we get

−
∫

R3
div(w1 ⊗ w2) · (|z|z)dx =

∫

R3
(w1 ⊗ w2) · ∇(|z|z)dx

≤ 4
3

∫

R3
|w1 ⊗ w2|

∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx

≤ 4
3

∥∥∥∇
(
|z| 32

)∥∥∥
L2

‖z‖
1
2
L3 ‖w1 ⊗ w2‖L3

≤ 2
15

∥∥∥∇
(
|z| 32

)∥∥∥
2

L2
+

10
3

‖z‖L3 ‖w1 ⊗ w2‖2L3

≤ 2
15

∫ T

0

∥∥∥∇
(
|z| 32

)∥∥∥
2

L2
dt+

10
3

‖z‖L∞
T L3

x
‖w1‖2L4

TL6
x
‖w2‖2L4

TL6
x
. (2.34)
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For the third term on the right-hand side of (2.32), according to the system (2.30), we obtain

π2 = −∆−1∂i∂j (z ⊗ vc + vc ⊗ z + w1 ⊗ w2) . (2.35)

Using integration by parts and Hölder’s inequality, we have the following estimate
∫

R3
∇π2 · (|z|z)dx

=
∫

R3
∆−1∂i∂j (z ⊗ vc + vc ⊗ z + w1 ⊗ w2)∇(|z|) · zdx

≤ 2
3

∫

R3

∣∣∆−1∂i∂j (z ⊗ vc + vc ⊗ z + w1 ⊗ w2)
∣∣
∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx

≤ 2
3

∫

R3

∣∣∆−1∂i∂j (z ⊗ vc + vc ⊗ z)
∣∣
∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx

+
2
3

∫

R3

∣∣∆−1∂i∂j (w1 ⊗ w2)
∣∣
∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx. (2.36)

Thanks to (2.13) with p = 3, we have
2
3

∫

R3

∣∣∆−1∂i∂j (z ⊗ vc + vc ⊗ z)
∣∣
∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx ≤ C3Kc‖∇(|z| 32 )‖2L2 . (2.37)

For the second term on the right-hand side of (2.36), by Hölder’s inequality, the property of Riesz operator
and Young’s inequality, we have

2
3

∫

R3

∣∣∆−1∂i∂j (w1 ⊗ w2)
∣∣
∣∣∣∇
(
|z| 32

)∣∣∣ |z|
1
2 dx

≤ 2
3
‖∆−1∂i∂j (w1 ⊗ w2) ‖L3‖∇(|z| 32 )‖L2‖|z| 12 ‖L6

≤ 2
3
H3‖w1 ⊗ w2‖L3‖∇(|z| 32 )‖L2‖z‖

1
2
L3

≤ 2
15

H3

∥∥∥∇
(
|z| 32

)∥∥∥
2

L2
+

10
3
H3 ‖z‖L3 ‖w1 ⊗ w2‖2L3 , (2.38)

where H3 is a constant and origins from the following inequality

‖∆−1∂i∂jf‖Lr ≤ Hr‖f‖Lr , (2.39)

for 1 < r < ∞. For the scalar Riesz transforms, Iwaniec and Martin [15] showed that the norm ‖Rl‖Lr

of the Riesz operator Rl : Lr(Rn) → Lr(Rn) is equal to
{
tan( π

2r ), if 1 < r ≤ 2,
cot( π

2r ), if 2 ≤ r < ∞.
(2.40)

Combining with (2.36), (2.37) and (2.38), we have the following estimate
∫

R3
∇π2 · (|z|z)dx ≤

(
C3Kc +

2
15

H3

)∥∥∥∇(|z| 32 )
∥∥∥
2

L2
+

10
3
H3‖z‖L3 |‖w1 ⊗ w2‖2L3 .

Therefore, we deduce

‖z‖3L∞
T L3

x
+
(
8
3

− 16Kc − 2
5

− 3C3Kc − 2
5
H3

)∥∥∥∇(|z| 32 )
∥∥∥
2

L2
TL2

x

≤ (10 + 10H3)‖z‖L∞
T L3

x
‖w1‖2L4

TL6
x
‖w2‖2L4

TL6
x
.

(2.41)

Choosing |c| big enough such that
8
3

− 16Kc − 2
5

− 3C3Kc − 2
5
H3 > 0, (2.42)
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we have

‖z‖L∞
T L3

x
+
∥∥∥∇(|z| 32 )

∥∥∥
2
3

L2
TL2

x

≤ C‖w1‖L4
TL6

x
‖w2‖L4

TL6
x
, (2.43)

for a universal constant C. By the interpolation theory, there holds

‖z(t)‖L∞
T L3

x∩L4
TL6

x
+
∥∥∥∇
(
|z| 32

)∥∥∥
2
3

L2
TL2

x

≤ C2‖w1‖L4
TL6

x
‖w2‖L4

TL6
x
, (2.44)

for a universal constant C2. By similar argument as (2.26), we can obtain the continuity of z over time
t. Combining with (2.44), we deduce (2.31). #

Proof of Theorem 1.1.. For every c satisfies (2.15) with p = 3 and (2.42), according to Lemma 2.4 with
p = 3 and Lemma 2.5, we have

‖a(t)‖L4
tL

6
x

≤ C1‖w0‖L3 , (2.45)

‖N(w1, w2)‖L4
t ([0,T ];L6

x)
≤ C2‖w1‖L4

t ([0,T ];L6
x)

‖w2‖L4
t ([0,T ];L6

x)
. (2.46)

Using Lemma 2.1 with E = L4
tL

6
x, we have that there exists T > 0 such that ‖a‖L4

TL6
x
< 1

4C2
, and the

system (1.8) exists a unique local solution w ∈ L4
TL

6
x on [0, T ]. According to Lemma 2.4 with p = 3 and

Lemma 2.5, the solution w ∈ C([0, T ];L3(R3)), ∇(|w| 32 ) ∈ L2([0, T ];L2(R3)), and (i) holds.
Also, using Lemma 2.1 with E = L4

tL
6
x, when ‖w0‖L3 < 1

4C1C2
:= ε0, there exists a global unique

solution w ∈ L4
tL

6
x and

‖w‖L4
tL

6
x

≤ C‖w0‖L3 . (2.47)

According to Lemma 2.4 with p = 3 and Lemma 2.5, the solution w ∈ C([0,∞);L3(R3)), ∇(|w| 32 ) ∈
L2([0,∞);L2(R3)).

Next, we will investigate the decay rate of the solution w, i.e. (1.15). Our method is inspired by [10].
Let T > 0 and 3 ≤ q < ∞. Denote r(t) = 1

1
T ( 1

q − 1
3 )t+

1
3
. First, we give a-prioi estimate of ‖w(·, t)‖r(t).

Claim.

d

dt
‖w(·, t)‖r(t) ≤ 3

2
1
T

(
1
3

− 1
q

)
ln

1
T

(
1
3

− 1
q

)
‖w(·, t)‖r(t), ∀ t ∈ [0, T ]. (2.48)

Then, from Gronwall inequality, we obtain

‖w(·, T )‖Lq ≤ CqT
3
2 ( 1

q − 1
3 )‖w(·, 0)‖L3 , ∀ T > 0, (2.49)

with Cq = (13 − 1
q )

3
2 (

1
3− 1

q ), and (1.15) holds.

To prove Cliam (2.48), from (1.8)1, by the direct computation, we have

r(t)2‖w(·, t)‖r(t)−1
r(t)

d
dt

‖w(·, t)‖r(t)

= ṙ(t)
∫

R3
|w(·, t)|r(t) ln

(
|w(·, t)|r(t)/‖w(·, t)‖r(t)r(t)

)
dx

+r(t)2
∫

R3
|w(·, t)|r(t)−2wi (∂j∂jwi − ∂j(wiwj + wivj + viwj) − ∂iπ) dx. (2.50)

Using integration by parts, we get

r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂j∂jwidx

= −r(t)2
∫

R3
∂j(|w(t)|r(t)−2wi)∂jwidx
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= −r(t)2
∫

R3

1
2
∂j |w(t)|r(t)−2∂j |w|2dx − r(t)2

∫

R3
|w(t)|r(t)−2|∇w|2dx

= −r(t)2
∫

R3

4(r(t) − 2)
r(t)2

∣∣∣∇(|w(·, t)|r(t)/2)
∣∣∣
2
dx − r(t)2

∫

R3
|w(t)|r(t)−2|∇w|2dx

= −4r(t)(r(t) − 2)‖∇(|w(·, t)|
r(t)
2 )‖2L2 − r(t)2

∫

R3
|w(t)|r(t)−2|∇w|2dx.

Combining with (2.50), we have

r(t)2‖w(·, t)‖r(t)−1
r(t)

d
dt

‖w(·, t)‖r(t)

= ṙ(t)
∫

R3
|w(·, t)|r(t) ln

(
|w(·, t)|r(t)/‖w(·, t)‖r(t)r(t)

)
dx − 4r(t)(r(t) − 2)‖∇(|w(·, t)|

r(t)
2 )‖2L2

−r(t)2
∫

R3
|w(·, t)|r(t)−2|∇w(·, t)|2dx

−r(t)2
∫

R3
|w(·, t)|r(t)−2wi (∂j(wiwj + wivj + viwj) + ∂iπ) dx. (2.51)

Next, we will estimate the fourth term on the right-hand side of (2.51) in the following lemma, and give
the proof in “Appendix”.

Lemma 2.6. ∣∣∣∣r(t)
2

∫

R3
|w(·, t)|r(t)−2wi (∂j(wiwj + wivj + viwj) + ∂iπ) dx

∣∣∣∣

≤
(
4r(t)(r(t) − 2)(µ − 1) − 2r(t)2Kc

)
‖∇(|w(t)|

r(t)
2 )‖2L2 , (2.52)

with

µ = inf
3≤r≤q

{
1 − 1

4
Cε0 − 1

2
Kc − Kc − 2CrKc − H 3r

r+1
Cε0

}
>

1
2
. (2.53)

From (2.51) and (2.52), we get

r(t)2‖w(t)‖r(t)−1
r(t)

d
dt

‖w(t)‖r(t)

≤ ṙ(t)
∫

R3
|w(t)|r(t) ln

(
|w(t)|r(t)/‖w(t)‖r(t)r(t)

)
dx

−
(
4r(t)(r(t) − 2)µ − 2r(t)2Kc

)
‖∇(|w(t)|

r(t)
2 )‖2L2 . (2.54)

Applying the sharp logarithmic Sobolev inequality in [10,34], we have

2
∫

|u|2 ln
(

|u|
‖u‖L2

)
dx+ 3(1 + ln a)‖u‖2L2 ≤ a2

π

∫
|∇u|2dx. (2.55)

Using a =
(
π 4r(t)(r(t)−2)µ−2Kcr(t)

2

ṙ(t)

) 1
2
and u = |w|

r(t)
2 , we obtain

r(t)2‖w(t)‖r(t)−1
r(t)

d
dt

‖w(t)‖r(t)

≤ −ṙ(t)
(
3 +

3
2
ln

(4πµ − 2πKc)r(t)2 − 8πµr(t)
ṙ(t)

)
‖w‖rLr

≤ r(t)2

T

(
1
q

− 1
3

)[
3 +

3
2
ln
(

−8πµ
r(t)

+ 4πµ − 2Kcπ

)
+

3
2
ln

1
T

(
1
3

− 1
q

)]
‖w‖rLr

≤ 3
2
r(t)2

T

(
1
3

− 1
q

)
ln

1
T

(
1
3

− 1
q

)
‖w‖rLr ,
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when
−8πµ
r(t)

+ 4πµ − 2Kcπ ≥ −8πµ
3

+ 4πµ − 2Kcπ =
4πµ
3

− 2Kcπ > 1, (2.56)

and Claim (2.48) holds.
Finally, we will prove (1.14). Since w0 ∈ L3 and ‖w0‖L3 < ε0, there exists a subsequence denoted by

{w0,n} such that w0,n ∈ L2 ∩ L3 and

w0,n → w0 in L3 as n → ∞.

According to Theorem 1.4, Corollary 1.1 and Remark 1.8, we have

lim
t→∞

‖wn(·, t)‖L3 = 0.

Based on similar proof of (7.5), when ‖w0,n − w0‖L3 ≤ (4C2e2C
∫ T
0 ‖w‖4

L6dt)−1, we have

‖wn − w‖L∞
t ([0,∞);L3

x)
≤ 2C‖w0,n − w0‖L3eC

∫∞
0 ‖w‖4

L6dt,

for a positive constant C. From (2.47), we have

lim
n→∞

‖wn − w‖L∞
t ([0,∞);L3

x)
= 0,

and (1.14) holds. #

Remark 2.2. To give strict proof of (1.15), we consider the approximation scheme. Using the method in
[23,25,26], the mollified system in R3 × (0,∞) is as follows






wε
t − ∆wε + (Jε (wε) · ∇)wε + (Jε(wε) · ∇)vc + (vc · ∇)Jε(wε) + ∇πε = 0,

∇ · wε = 0,
wε(x, 0) = w0(x),

(2.57)

where Jε(v) = v ∗ ηε, ε > 0, the mollifier ηε(x) = ε−3η
(
x
ε

)
with positive η ∈ C∞

c (B(0, 1)),
∫

ηdx = 1. By
the classical approximation method, the solution wε satisfies (1.15). Similar as (2.50), we have

r(t)2‖wε(·, t)‖r(t)−1
r(t)

d
dt

‖wε(·, t)‖r(t)

= ṙ(t)
∫

R3
|wε(·, t)|r(t) ln

(
|wε(·, t)|r(t)/‖wε(·, t)‖r(t)r(t)

)
dx

+r(t)2
∫

R3
|wε(·, t)|r(t)−2wε

i

(
∂j∂jw

ε
i − ∂j(Jε(wε)iwε

j + Jε(wε)ivj + viJε(wε)j) − ∂iπ
ε
)
dx.

Similar as (2.54), we have

r(t)2‖wε(t)‖r(t)−1
r(t)

d
dt

‖wε(t)‖r(t)

≤ ṙ(t)
∫

R3
|wε(t)|r(t) ln

(
|wε(t)|r(t)/‖wε(t)‖r(t)r(t)

)
dx −

(
4r(t)(r(t) − 2)µ − 2r(t)2Kc

)
‖∇(|wε(t)|

r(t)
2 )‖2L2 .

Similar to the procedure in the proof of (2.49), we obtain

‖wε(·, t)‖Lq ≤ (
1
3

− 1
q
)

3
2 (

1
3− 1

q )t
3
2 ( 1

q − 1
3 )‖wε(·, 0)‖L3 . (2.58)

By the classical compactness theory, we have that the solution w satisfies (1.15).
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3. The Linear Operator L

In this section, using the idea of Borchers and Miyakawa [3], we prove that e−tL is an analytic semigroup.
We consider the following system

{
λu − ∆u+ (u · ∇)vc + (vc · ∇)u+ ∇p = f,

∇ · u = 0.
(3.1)

For δ > 0 small, set Σδ = {λ ∈ C\{0} : | arg λ| < π
2 + δ}. It is easy to see that for λ = σ +

√
−1τ ∈ Σ, σ,

τ real, if σ < 0, then

|σ| < δ|τ |. (3.2)

Theorem 3.1. For 1 < q < ∞, there exist two positive constants δ and c̄q which depend only on q such
that for any |c| > c̄q, λ ∈ Σδ, and u ∈ C∞

c,σ(R3) satisfying the system (3.1), we have

‖u‖Lq ≤ C

|λ|‖f‖Lq , (3.3)

where C is a constant depending only on q and δ. Consequently, e−tL is an analytic semigroup of bounded
linear operators on Lq

σ(R3) in the sector {λ : | arg λ| < δ}.

The last statement in the above theorem follows from the estimate (3.3), together with the fact that
e−tL is a strongly continuous semigroup of the contraction on Lq

σ(R3) for 1 < q < ∞ which are established
in Sect. 2, see Theorem 1.5.2 in [36].

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1. The vector field u has the following property

|∇(|u|2)|2 ≤ 4|∇u|2|u|2. (3.4)

Consequently, for 1 ≤ q ≤ 2, we have
q − 2
4

∫

R3
|u|q−4|∇(|u|2)|2dx+

∫

R3
|∇u|2|u|q−2dx ≥ (q − 1)

∫

R3
|∇u|2|u|q−2dx. (3.5)

Proof. By a direct calculation, we have

|∇(|u|2)|2 =
∑

j

|∂j(|u|2)|2 =
∑

j

|∂j < u, u > |2 ≤ 4
∑

j

| < ∂ju, u > |2. (3.6)

For fixed j, using Cauchy-Schwartz inequality, we obtain

|∇(|u|2)|2 ≤ 4
∑

j

(|∂ju|2|u|2) = 4|∇u|2|u|2. (3.7)

#

Proof of Theorem 3.1. The value of δ will be chosen in the proof below. Multiplying the equation (3.1)1
by |u|q−2u, and integrating it on R3, we have

∫

R3
∇u · ∇(|u|q−2u)dx+ λ

∫

R3
|u|qdx+

∫

R3
(vc · ∇u) · (|u|q−2u)dx

+
∫

R3
(u · ∇vc) · (|u|q−2u)dx+

∫

R3
∇p · (|u|q−2u)dx =

∫

R3
f · (|u|q−2u)dx.

(3.8)

Set I1 + I2 + I3 + I4 + I5 =
∫
R3 f · (|u|q−2u)dx. For the first part, we have

I1 =
∫

R3
∂jui∂j

(
(umum)

q−2
2 ui

)
dx
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=
∫

R3
(∂jui)ui

q − 2
2

|u|q−4
[
(∂jum)um + (∂jum)um

]
dx+

∫

R3
|∇u|2|u|q−2dx.

Denote ξj = (∂jum)um = aj +
√

−1bj , then

∂j(|u|2) = (∂jum)um + (∂jum)um = 2 Re ξj = 2aj . (3.9)

Therefore, we get

I1 =
∫

R3

q − 2
2

|u|q−4ξj
[
ξj + ξj

]
+ |∇u|2|u|q−2dx

=
∫

R3

q − 2
2

|u|q−4(aj +
√

−1bj) (2aj) + |∇u|2|u|q−2dx

=
∫

R3

q − 2
4

|u|q−4|∇(|u|2)|2dx+
√

−1
∫

R3
(q − 2)|u|q−4ajbjdx+

∫

R3
|∇u|2|u|q−2dx.

For the second part I2

I2 = (σ +
√

−1τ)
∫

R3
|u|qdx. (3.10)

It is easy to see that

2
∑

j

|aj ||bj | ≤ |∇u|2|u|2. (3.11)

Then, using Lemma 3.1, we have

Re(I1 + I2) ≥ min{q − 1, 1}
∫

R3
|∇u|2|u|q−2dx+ σ

∫

R3
|u|qdx (3.12)

Im(I1 + I2) = τ

∫

R3
|u|qdx+

∫

R3
(q − 2)|u|q−4ajbjdx. (3.13)

We distinguish into two cases:
Case 1. min{q − 1, 1}

∫
R3 |∇u|2|u|q−2dx ≥ 8δ|τ |

∫
R3 |u|qdx.

Case 2. min{q − 1, 1}
∫
R3 |∇u|2|u|q−2dx < 8δ|τ |

∫
R3 |u|qdx.

In Case 1, we deduce from (3.12), using (3.2) and requiring 0 < δ ≤ 1, that

|I1 + I2| ≥ Re(I1 + I2)

≥ 1
2
min{q − 1, 1}

∫

R3
|∇u|2|u|q−2dx+ (4δ|τ |+ σ)

∫

R3
|u|qdx

≥ 1
2
min{q − 1, 1}

∫

R3
|∇u|2|u|q−2dx+ δ(|τ |+ |σ|)

∫

R3
|u|qdx. (3.14)

In Case 2, we derive from (3.11) and (3.13) that

|Im(I1 + I2)| ≥ |τ |
∫

R3
|u|qdx − |q − 2|

2

∫

R3
|∇u|2|u|q−2dx

≥ (1 − 4δ|q − 2|
min{q − 1, 1} )|τ |

∫

R3
|u|qdx

≥ |τ |
2

∫

R3
|u|qdx, (3.15)

when 8|q − 2|δ < min{q − 1, 1}, and

|I1 + I2| ≥ 1√
2
(Re(I1 + I2) + |Im(I1 + I2)|)

≥ min{q − 1, 1}√
2

∫

R3
|∇u|2|u|q−2dx+

|τ |
2 + σ
√
2

∫

R3
|u|qdx.
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≥ 1
2
min{q − 1, 1}

∫

R3
|∇u|2|u|q−2dx+

1
6
(|τ |+ |σ|)

∫

R3
|u|qdx,

when δ ≤ 1
6 . So in both cases, we have proved that

|I1 + I2| ≥ 1
2
min{q − 1, 1}

∫

R3
|∇u|2|u|q−2dx+ δ(|τ |+ |σ|)

∫

R3
|u|qdx. (3.16)

By integration by parts, Hölder’s inequality, Hardy inequality and Lemma 3.1, we have

|I3 + I4| ≤ CKc

∫

R3

|∇u|
|x| |u|q−1dx

≤ CKc

∥∥∥|∇u||u|
q−2
2

∥∥∥
L2

∥∥∥∥
|u| q2
|x|

∥∥∥∥
L2

≤ CKc

∫

R3
|∇u|2|u|q−2dx. (3.17)

According to (3.1), we obtain

p =
div
∆

f − ∂i∂j

∆
(vc ⊗ u+ u ⊗ vc)ij .

By integration by parts, we have

I5 =
∫

R3

∇div
∆

f · (|u|q−2u)dx+
∫

R3

∂i∂j

∆
(vc ⊗ u+ u ⊗ vc)ij∇ · (|u|q−2u)dx. (3.18)

By Hölder’s inequality, Hardy inequality, Sobolev embedding, the boundedness of the Riesz transforms
on weighted Lp spaces (Theorem 9.4.6 in [12]) and Lemma 3.1, we have

∣∣∣∣
∫

R3

∇div
∆

f · (|u|q−2u)dx
∣∣∣∣ ≤ C‖f‖Lq‖u‖q−1

Lq , (3.19)
∣∣∣∣
∫

R3

∂i∂j

∆
(vc ⊗ u+ u ⊗ vc)ij∇ · (|u|q−2u)dx

∣∣∣∣

≤ C‖|x|
q−2
q (u ⊗ vc + vc ⊗ u) ‖Lq‖∇(|u|

q
2 )‖L2

∥∥∥∥∥
|u| q2 −1

|x|
q−2
q

∥∥∥∥∥
L

2q
q−2

≤ C‖|x|vc‖L∞

∥∥∥∥∥
u

|x|
2
q

∥∥∥∥∥
Lq

‖∇(|u|
q
2 )‖L2

∥∥∥∇(|u|
q
2 )
∥∥∥

q−2
q

L2

≤ CKc

∥∥∥∥∥
u

|x|
2
q

∥∥∥∥∥
Lq

‖∇(|u|
q
2 )‖

2q−2
q

L2

≤ CKc‖∇(|u|
q
2 )‖2L2

≤ CKc

∫

R3
|∇u|2|u|q−2dx, (3.20)

and

|I5| ≤ C‖f‖Lq‖u‖q−1
Lq + CKc

∫

R3
|∇u|2|u|q−2dx. (3.21)

Combining with (3.8), (3.16)-(3.17), (3.21) and the condition of Kc small enough, by Hölder’s inequality,
we have

1
2
min{q − 1, 1}

∫

R3
|∇u|2|u|q−2dx+ δ(|τ |+ |σ|)

∫

R3
|u|qdx ≤ C‖f‖Lq‖u‖q−1

Lq . (3.22)

Since λ = σ +
√

−1τ , we can get (3.3) easily. #
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4. Weak–Strong Uniqueness

In this section, we will prove Theorem 1.4, Proposition 1.1 and illustrate Corollary 1.1 briefly.

Proof of of Theorem 1.4. Following the proof of Theorem 4.4 in [47], setting g = v − u, we have





∂tg − ∆g + ∇π = −((u+ g) · ∇)g − (g · ∇)u − g · ∇vc − vc · ∇g,

∇ · g = 0,
g(x, 0) = 0.

(4.1)

Using g itself as a test function and integrating this in time from 0 to t, we have
∫ |g|2

2
dx+

∫ t

0

∫
|∇g|2dxdt ≤

∫ t

0

∫
(u+ vc) · (g · ∇)gdxdt. (4.2)

Denote E(t) = ess sups<t ‖g(s)‖22 +
∫ t
0 ‖∇g‖22dτ and t0 = sup{t ∈ [0, T ] : g(s) = 0 if 0 < s < t}.

We claim that t0 = T. Using the contradiction argument, we assume that t0 < T. Since
∣∣∣∣
∫∫

uv∇wdxdt

∣∣∣∣ ≤ C‖u‖Ls
tL

q
x
‖v‖2/sL∞

t L2
x
‖v‖3/q

L2
tL

6
x
‖∇w‖L2

t,x
, (4.3)

for 3
q + 2

s = 1 with 1 ≤ q, s ≤ ∞, we get
∣∣∣∣
∫ t

t0

∫
u · (g · ∇)gdxdτ

∣∣∣∣ ≤ C‖u‖Ls
tL

q
x
E(t), (4.4)

for t ∈ [t0, T ]. By Hölder inequality, Hardy inequality and Lemma 2.2, we have
∣∣∣∣
∫ t

t0

∫
vc · (g · ∇)gdxdτ

∣∣∣∣ ≤
∫ t

t0

‖|x|vc‖L∞

∥∥∥∥
g

|x|

∥∥∥∥
L2

‖∇g‖L2dτ

≤ 2
∫ t

t0

‖|x|vc‖L∞‖∇g‖2L2dτ

≤ 2Kc‖∇g‖2L2
t,x

≤ 2KcE(t), (4.5)

for t ∈ [t0, T ]. Hence, there holds

E(t) ≤ C‖u‖Ls
t ([t0,t];L

q
x)E(t) + 2KcE(t). (4.6)

If s < ∞, we have C‖u‖Ls
t ([t0,t];L

q
x) <

1
4 for t sufficiently close to t0. If s = ∞, we need C‖u‖L∞

t ([t0,t];L3
x)

<
1
4 . When Kc <

1
4 , we have that E(s) = 0 for all s ∈ [t0, t], which makes a contradiction to the definition

of t0. Hence, t0 = T and for all t ∈ [0, T ]. #

Following is the proof of Proposition 1.1.

Proof of Proposition 1.1. For p ≥ 3, our goal is to show that the Lp mild solution w is a L2-weak solution.
The crucial part is to prove that w ∈ Cw([0, T ];L2

x)∩L2
T (Ḣ1

x). Set w = a+ z as in Sect. 2. We will prove
a ∈ Cw([0, T ];L2

x) ∩ L2
T (Ḣ1

x) and z ∈ Cw([0, T ];L2
x) ∩ L2

T (Ḣ1
x) as follows.

Multiplying 2.5)1 by a, then integrating it on R3, we have

1
2
d
dt

‖a(t)‖2L2 + ‖∇a‖2L2 = −
∫

R3
div(a ⊗ vc + vc ⊗ a) · adx. (4.7)

By similar estimate as (2.12), using integration by parts, we obtain

−
∫

R3
div(a ⊗ vc + vc ⊗ a) · adx ≤ 2Kc ‖∇a‖2L2 , (4.8)
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and
1
2
d
dt

‖a(t)‖2L2 + ‖∇a‖2L2 ≤ 2Kc‖∇a‖2L2 . (4.9)

Since |c| > cp where cp is as in Theorem 1.2, we can guarantee 1 − 2Kc > 0. Combining with similar
argument as (2.26), we have a ∈ C([0, T ];L2

x) ∩ L2
T (Ḣ1

x).
When p ∈ [3, 4], using (w1, w2) = (w,w), multiplying (2.30)1 by z and integrating it on R3, we obtain

1
2
d
dt

‖z(t)‖2L2 + ‖∇z‖2L2

= −
∫

R3
div(z ⊗ vc + vc ⊗ z) · zdx −

∫

R3
div(w ⊗ w) · zdx. (4.10)

By similar argument as (2.33), using integration by parts, we have

−
∫

R3
div(z ⊗ vc + vc ⊗ z) · zdx ≤ 2Kc‖∇z‖2L2 . (4.11)

By integration by parts, Hölder’s inequality and Cauchy inequality, we have

−
∫

R3
div(w ⊗ w) · zdx =

∫

R3
(w ⊗ w)∇zdx ≤ ‖w ⊗ w‖L2‖∇z‖L2 ≤ C‖w‖4L4 +

1
10

‖∇z‖2L2 . (4.12)

Then, from (4.10)-(4.12), we have
1
2

‖z‖2L∞
T L2

x
+ (

9
10

− 2Kc) ‖∇z‖2L2
TL2

x
≤ C‖w‖4L4

TL4
x
. (4.13)

Since the Lp mild solution w ∈ L∞
T Lp

x∩L
4p
3
T L2p

x , p ∈ [3, 4], by interpolation theory, we have w ∈ L
8p

3(4−p)
T L4

x,
and z ∈ L∞([0, T ];L2

x)∩L2
T (Ḣ1

x). Combining with similar argument as (2.26), we have z ∈ C([0, T ];L2
x)∩

L2
T (Ḣ1

x). Then, w ∈ Cw([0, T ];L2
x) ∩ L2

T (Ḣ1
x). One can easily prove that w is a L2-weak solution of the

system (1.8) on [0, T ], and omit the details.

When 4 < p ≤ 8, the Lp mild solution w ∈ L∞
T Lp

x ∩ L
4p
3
T L2p

x ⊂ L
16p

24−3p
T Lp

x ⊂ L
16
3
T L8

x ⊂ L
16
5
T L8

x, from
Lemma 6.2, we could obtain that

‖z‖
CtL

4
∩ L

16
3

t L8
x

≤ C‖w‖
L

16
5

t L8
x

‖w‖
L

16
3

t L8
x

, (4.14)

and z ∈ C([0, T ];L4
x). Combing a ∈ L∞

T Lp
x ∩ L

4p
3
T L2p

x ∩ C([0, T ];L2
x) ∩ L2

T (Ḣ1
x), we have that w ∈

C([0, T ];L4
x). From the argument in (4.13), we have that z ∈ C([0, T ];L2

x) ∩ L2
T (Ḣ1

x).
When p > 8, the Lp mild solution w ∈ L∞

T Lp
x ∩ L

4p
3
T L2p

x , from Lemma 6.2, we could obtain that

‖z‖
CtL

p
2 ∩L

2p
3

t Lp
x

≤ C‖w‖
L

2p
p−3
t Lp

x

‖w‖
L

2p
3

t Lp
x

, (4.15)

and z ∈ C([0, T ];L
p
2
x ) ∩ L

2p
3
t Lp

x. Combing a ∈ L∞
T Lp

x ∩ L
4p
3
T L2p

x ∩ C([0, T ];L2
x) ∩ L2

T (Ḣ1
x), we have that

w ∈ C([0, T ];L
p
2
x ) ∩ L

2p
3
T Lp

x. By the induction, we can get w ∈ C([0, T ];L
p

2K
x ) ∩ L

p22−K

3
T Lp21−K

x , for some
K ∈ Z+ such that 4 < p

2K ≤ 8. From the argument in the case that 4 < p ≤ 8, we have that z ∈
C([0, T ];L2

x) ∩ L2
T (Ḣ1

x).
Therefore, the Lp mild solution w ∈ Cw([0, T ];L2

x)∩L2
T (Ḣ1

x), one can easily prove that w is a L2-weak
solution of the system (1.8) on [0, T ], and omit the details.

Based on the proof of Proposition 1.1, we have the following results in the global time. For simplicity,
we omit the detailed proof.

Corollary 4.1. For p ≥ 3, T > 0, let cp and ε0 be as in Theorem 1.2, |c| > cp. For w0 ∈ Lp
σ(R3)∩L2

σ(R3)
and ‖w0‖L3(R3) < ε0, let w be a global Lp mild solution of the system (1.8). Then w is a global L2-weak
solution of the system (1.8).

Combining with Theorem 1.2 and Corollary 4.1, we deduce Corollary 1.1.
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5. Global L2 + L3 Weak Solution

In this section, we will illustrate Theorem 1.5, i.e. we will give the global existence of the L2 + L3 weak
solution to the system (1.8).

Note that when we consider the existence of the weak solution to the Navier–Stokes system, there are
essentially two methods: the energy method and the perturbation theory. The energy method gives the
global existence for any initial data v0 ∈ L2

σ(R3). We cannot use this method since the space L2 doesn’t
contain the space L3 in the whole space R3. In the perturbation theory, by the contraction mapping
theorem, there exists a unique global weak solution to the Navier–Stokes system for the small initial data
v0 ∈ L3

σ(R3). Both methods cannot give direct results on the global existence for arbitrary v0 ∈ L3
σ(R3).

Hence, many authors have developed various approaches to adapt the theory of the weak solutions so
that it could allow v0 ∈ L3

σ(R3). Calderón [6] raised a method such that the L3
σ(R3) initial data v0 can

be decomposed as

v0 = v10 + v20 , (5.1)

where v10 is small in L3
σ(R3) and v20 belongs to L2

σ ∩L3
σ(R3). Because of the smallness, the initial data v10

generates a global smooth solution v1 by the perturbation theory. Then the equation (1.24) for v2 = v−v1
can be solved by the energy method. Seregin and Šverák [40] used another method to obtain a global
weak solution for v0 ∈ L3

σ(R3). The main idea of [40] is as follows. Let v1 be the solution of the linear
version of the Navier–Stokes system, seek the solution v of the Navier–Stokes system as v = v1 + v2,
write down the equation that v2 satisfied, then get the property of v by investigating v2. It’s a general
idea that the correction term v2 might be easier to deal with than the full solution v. Related work can
be referred to [26,27,40].

Inspired by above methods, we will decompose the initial data w0 = v10 + v20 and investigate the
global existence of solutions w = v1 + v2 to the system (1.8). For w0 ∈ L3

σ(R3), we have the following
decomposition

w0 = v10 + v20, (5.2)

with ‖v10‖L3 < ε0 and v20 ∈ L2
σ ∩L3

σ(R3). According to Theorem 1.1, there exists a unique global L3 mild
solution v1 to the system (1.23). The crucial part is the global existence of v2. Since v20 ∈ L2

σ ∩ L3
σ, this

is the standard reasoning based on the Galerkin method (cf. [19] Proof of Theorem 2.7). We claim there
exists a global weak solution v2 ∈ Cw

(
[0, T ];L2

σ

(
R3
))

∩ L2
(
[0, T ]; Ḣ1

σ

(
R3
))

for any T > 0. According
to Definition 1.3, there exists a global L2 + L3 weak solution to the system (1.8). Detailed proof of the
global existence of v2 can be seen below.

First, we will construct weak solutions v2 to the system (1.24). This is the standard reasoning based on
the Galerkin method (cf. [19] Proof of Theorem 2.1). Since H1

σ

(
R3
)
is separable, there exists a sequence

{gm}∞
m=1 which is free and total in H1

σ

(
R3
)
. For each m = 1, 2, . . . Define an approximate solution

wm =
∑m

i=1 dim(t)gi, which satisfies the following system of ordinary differential equations

〈w′
m(t), gj〉 + 〈∇wm(t),∇gj〉 + 〈(wm(t) · ∇)wm(t), gj〉

+ 〈(wm(t) · ∇) (vc + v1), gj〉 + 〈((vc + v1) · ∇)wm(t), gj〉 = 0 for j = 1, . . . ,m,
(5.3)

where the term corresponding to the pressure in (1.24) vanishes in (5.3) because of divgj = 0. The system
(5.3) has a unique local solution {dim(t)}mi=1 . By a-priori estimates of the sequence {wm}∞

m=1 obtained
below in (5.7), the solution dim(t) is global.

We will prove terms 〈(wm(t) · ∇) (vc + v1), gj〉 and 〈((vc + v1) · ∇)wm(t), gj〉 in (5.3) are convergent.
By Hölder and Sobolev inequalities in the Lorentz Lp,q-spaces (see [19]), we have

∣∣∣∣
∫

R3
gj(wm · ∇)(vc + v1)dx

∣∣∣∣ ≤ C‖(vc + v1)wm‖L2‖∇gj‖L2

≤ C‖vc + v1‖L3,∞‖wm‖L6,2‖∇gj‖L2
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≤ C‖vc + v1‖L3,∞‖∇wm‖L2‖∇gj‖L2 , (5.4)

and
∣∣∣∣
∫

R3
((vc + v1) · ∇)wmgjdx

∣∣∣∣ ≤ C‖vc + v1‖L3,∞‖∇wm‖L2‖∇gj‖L2 . (5.5)

Multiplying the equation (5.3) by djm and sum up equations for j = 1, 2, . . . ,m, we have

1
2
d
dt

‖wm(t)‖22 + ‖∇wm(t)‖22 + 〈(wm(t) · ∇) (vc + v1), wm(t)〉 = 0. (5.6)

Using the inequality (5.4) and integrating it from 0 to t, we obtain

‖wm(t)‖22 + 2
(
1 − K sup

t>0
‖vc + v1‖L3,∞

)∫ t

0
‖∇wm(τ)‖22 dτ ≤ ‖w0‖22 . (5.7)

Since |c| big enough such that K supt>0 ‖vc + v1‖L3,∞ < 1. Thus we obtain a subsequence, also denoted
by {wm}∞

m=1, converging to v2 ∈ Cw

(
[0, T ];L2

σ

(
R3
))

∩L2
(
[0, T ]; Ḣ1

σ

(
R3
))

. Now, repeating the classical
reasoning from [19], we obtain the existence of a weak solution in the energy space Cw

(
[0, T ];L2

σ

(
R3
))

∩
L2
(
[0, T ]; Ḣ1

σ

(
R3
))

for all T > 0 which satisfies the strong energy inequality (5.7).

Hence we get a global L2 + L3 weak solution w of the form w = v1 + v2. Moreover, we have the
asymptotic behavior of v2 and omit the proof which can be referred to [19].

6. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. Our method is based on the contraction mapping
theorem, see Lemma 2.1, Lemmas 2.4, 6.1 and 6.2.

To get an a-prioi estimate of z, in which the crucial estimate is as follows:

−
∫

R3
div(w1 ⊗ w2) · (|z|p−2z)dx =

∫

R3
(w1 ⊗ w2) · ∇(|z|p−2z)dx

≤ C

∫

R3
(w1 ⊗ w2) · ∇

(
|z|

p
2

)
|z|

p
2 −1dx

≤ C
∥∥∥∇
(
|z|

p
2

)∥∥∥
L2

∥∥∥|z|
p
2 −1
∥∥∥
L

2p
p−2

‖w1 ⊗ w2‖Lp

≤ C
∥∥∥∇
(
|z|

p
2

)∥∥∥
L2

‖z‖
p
2 −1
Lp ‖w1 ⊗ w2‖Lp

≤ ε
∥∥∥∇
(
|z|

p
2

)∥∥∥
2

L2
+ C(ε) ‖z‖p−2

Lp ‖w1 ⊗ w2‖2Lp .

We have

sup
t

‖z(t)‖Lp
x
+
∥∥∥∇(|z|

p
2 )
∥∥∥

2
p

L2
tL

2
x

≤ C‖w1‖L4
tL

2p
x

‖w2‖L4
tL

2p
x

≤ CT
p−3
2p ‖w1‖

L
4p
3

t L2p
x

‖w2‖
L

4p
3

t L2p
x

.

Hence, we have the following a-prioi estimate and more detailed proof can be referred to in the proof of
Lemma 2.5.

Lemma 6.1. Let p ∈ (3,∞), cp is as in Theorem 1.2. For every |c| > cp, there exists a Lp mild solution

z(x, t) on [0, T ] to the system (2.30) with w1, w2 ∈ L
4p
3
t ([0, T ];L2p(R3)), satisfying

‖z‖
CTLp∩L

4p
3

T L2p
x

+ ‖∇(|z|
p
2 )‖

2
p

L2
tL

2
x

≤ CT
p−3
2p ‖w1‖

L
4p
3

T L2p
x

‖w2‖
L

4p
3

T L2p
x

, (6.1)

for a constant C.
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When the initial data w0 ∈ Lp
σ ∩ L3

σ and ‖w0‖L3 < ε0, we have w ∈ CtL3 ∩ L4
tL

6
x, ∇

(
|w| p2

)
∈ L2

tL
2
x

according Theorem 1.1. By the interpolation inequality, we have w ∈ L
4p

2p−3
t L2p

x . The proof is very similar
as the proof of Lemma 2.5, in which the crucial estimate is as follows:

‖w1 ⊗ w2‖L2
tL

p
x

≤ ‖w1‖
L

4p
2p−3
t L2p

x

‖w2‖
L

4p
3

t L2p
x

. (6.2)

Hence we have the following a-prioi estimate and more detailed proof can be referred to in the proof of
Lemma 2.5.

Lemma 6.2. Let p ∈ (3,∞), cp is as in Theorem 1.2. For every |c| > cp, there exists a global-in-time Lp

mild solution z(x, t) to the system (2.30) with w1 ∈ L
4p

2p−3
t ([0,∞);L2p

x (R3)) and w2 ∈ L
4p
3
t ([0,∞);L2p

x (R3)),
satisfying

‖z‖
CtLp∩L

4p
3

t L2p
x

+ ‖∇(|z|
p
2 )‖

2
p

L2
tL

2
x

≤ C‖w1‖
L

4p
2p−3
t L2p

x

‖w2‖
L

4p
3

t L2p
x

, (6.3)

for a constant C.

Proof of Theorem 1.2. For a constant |c| > cp where cp depends only on p, according to Lemma 2.4, we
have

‖a(t)‖
L

4p
3

t L2p
x

≤ C‖w0‖Lp . (6.4)

Applying Lemma 6.1, we have

‖N(w1, w2)‖
L

4p
3

t L2p
x

≤ CT
p−3
2p ‖w1‖

L
4p
3

t L2p
x

‖w2‖
L

4p
3

t L2p
x

. (6.5)

Using Lemma 2.1 with E = L
4p
3
T L2p

x , when CT
p−3
2p ‖w0‖Lp < 1, the system (1.8) has a unique solution

w ∈ L
4p
3
T L2p

x on [0, T ].
Then we will prove the global existence of w with the initial data w0 ∈ Lp

σ ∩ L3
σ and ‖w0‖L3 < ε0.

Since ‖w0‖L3 < ε0, according to Theorem 1.1, there exists a global unique solution w ∈ CtL3
x ∩ L4

tL
6
x,

∇(|w| 32 ) ∈ L2
tL

2
x, and ‖w‖CtL3

x∩L4
tL

6
x
+ ‖∇|w| 23 ‖

2
3
L2

tL
2
x

≤ C‖w0‖L3 . By the interpolation inequality, w ∈

CtL3
x and ∇(|w| 32 ) ∈ L2

tL
2
x deduce w ∈ L

4p
2p−3
t L2p

x , and

‖w‖
L

4p
2p−3
t L2p

x

≤ C‖w0‖L3 < Cε0. (6.6)

Thanks to (2.8) and (6.3), we have

‖w‖
CtL

p
x∩L

4p
3

t L2p
x

≤ C‖w0‖Lp + C‖w‖
L

4p
2p−3
t L2p

x

‖w‖
CtL

p
x∩L

4p
3

t L2p
x

. (6.7)

Combining with (6.6) and the interpolation theory, we deduce (1.16). #

7. Proof of Theorems 1.3

In this section, we give the proof of Theorems 1.3.

Proof of Theorem 1.3. Setting Z = u − v, we have





Zt − ∆Z + div(−Z ⊗ Z + Z ⊗ u+ u ⊗ Z) + (Z · ∇)vc + (vc · ∇) z + ∇πz = 0,
∇ · Z = 0,
Z(x, 0) = Z0.

(7.1)

By the Duhamel principle, we can rewrite the solution z into an integral formulation

Z(x, t) = e−tLu0 −
∫ t

0
e−(t−s)LPdiv(−Z ⊗ Z + Z ⊗ u+ u ⊗ Z)ds. (7.2)
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By the contraction mapping theorem, it’s easy to give the existence of the solution. Next, we only give
some a-prioi estimates.

When p = 3, by Lemma 2.4 and the method in Lemma 2.5, we get

‖Z‖CTL3
x∩L4

TL6
x
+
∥∥∥∇
(
|Z| 32

)∥∥∥
2
3

L2
TL2

x

≤ C1‖Z0‖L3 + C2‖Z‖2L4
TL6

x
+ C2

(∫ T

0
(‖Z‖L6‖u‖L6)2dt

) 1
2

. (7.3)

By the interpolation inequality, Hölder’s inequality and Young’s inequality, we have
(∫ T

0
(‖Z‖L6‖u‖L6)2dt

) 1
2

≤
(∫ T

0

(
‖Z‖

1
4
L3‖Z‖

3
4
L9‖u‖L6

)2
dt

) 1
2

≤
(∫ T

0
‖Z‖

1
2
L3‖Z‖

3
2
L9‖u‖2L6dt

) 1
2

≤ ‖Z‖
3
4
L3

TL9
x

(∫ T

0
‖Z‖L3‖u‖4L6dt

) 1
4

≤ ε‖Z‖L3
TL9

x
+

27
256ε3

∫ T

0
‖Z‖L3‖u‖4L6dt.

Combining with (7.3), by Sobolev embedding Ḣ1(R3) ↪→ L6(R3), we obtain

‖Z‖CTL3
x∩L4

TL6
x
+
∥∥∥∇
(
|Z| 32

)∥∥∥
2
3

L2
TL2

x

≤ C‖Z0‖L3 + C‖Z‖2L4
TL6

x
+ Cε‖Z‖L3

TL9
x
+

C

ε3

∫ T

0
‖Z‖L3‖u‖4L6dt

≤ C‖Z0‖L3 + C‖Z‖2L4
TL6

x
+ Cε

∥∥∥∇
(
|Z| 32

)∥∥∥
2
3

L2
TL2

x

+
C

ε3

∫ T

0
‖Z‖L3‖u‖4L6dt.

Taking Cε = 1
2 , using Gronwall’s inequality, we get

‖Z‖CTL3
x∩L4

TL6
x
+
∥∥∥∇
(
|Z| 32

)∥∥∥
2
3

L2
TL2

x

≤ C(‖Z0‖L3 + ‖Z‖2L4
TL6

x
)eC

∫ T
0 ‖u‖4

L6dt. (7.4)

When ‖Z0‖L3 ≤ (4C2e2C
∫ T
0 ‖u‖4

L6dt)−1, by the continuity method, we have

‖Z‖CTL3
x∩L4

TL6
x
+
∥∥∥∇
(
|Z| 32

)∥∥∥
2
3

L2
TL2

x

≤ 2C‖Z0‖L3eC
∫ T
0 ‖u‖4

L6dt. (7.5)

Therefore, (1.17) holds with p = 3.
When p > 3, by Lemma 2.4 and the method in Lemma 6.1, we get

‖Z‖
CTLp

x∩L
4p
3

T L2p
x

+
∥∥∥∇
(
|Z|

p
2

)∥∥∥
2
p

L2
TL2

x

≤ C‖Z0‖Lp + C

(∫ T

0
(‖Z‖L2p

x
‖Z‖L2p

x
)2dt

) 1
2

+ C

(∫ T

0
(‖Z‖L2p

x
‖u‖L2p

x
)2dt

) 1
2

. (7.6)

By the interpolation inequality, Hölder’s inequality and Young’s inequality, we have
(∫ T

0

(
‖Z‖L2p

x
‖u‖L2p

x

)2
dt

) 1
2

≤
(∫ T

0

(
‖Z‖

3
4

L3p
x

‖Z‖
1
4
Lp

x
‖u‖L2p

x

)2
dt

) 1
2

≤
∥∥∥‖Z‖

3
4

L3p
x

∥∥∥
L

4p
3

T

∥∥∥‖Z‖
1
4
Lp

x
‖u‖L2p

x

∥∥∥
L

4p
2p−3
T
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≤ ‖Z‖
3
4

Lp
TL3p

x

∥∥∥‖Z‖
1
4
Lp

x
‖u‖L2p

x

∥∥∥
L

4p
2p−3
T

≤ ε‖Z‖Lp
TL3p

x
+

27
256ε3

∥∥∥‖Z‖
1
4
Lp

x
‖u‖L2p

x

∥∥∥
4

L
4p

2p−3
T

.

Combining with (7.6), using Sobolev embedding Ḣ1(R3) ↪→ L6(R3), we obtain

‖Z‖
CTLp

x∩L
4p
3

T L2p
x

+
∥∥∥∇
(
|Z|

p
2

)∥∥∥
2
p

L2
TL2

x

≤ C‖Z0‖Lp + C

(∫ T

0
(‖Z‖L2p

x
‖Z‖L2p

x
)2dt

) 1
2

+ Cε‖Z‖Lp
TL3p

x
+

C

ε3

∥∥∥‖Z‖
1
4
Lp

x
‖u‖L2p

x

∥∥∥
4

L
4p

2p−3
T

≤ C‖Z0‖Lp + C

(∫ T

0
(‖Z‖L2p

x
‖Z‖L2p

x
)2dt

) 1
2

+ Cε
∥∥∥∇
(
|Z|

p
2

)∥∥∥
2
p

L2
TL2

x

+
C

ε3

∥∥∥‖Z‖
1
4
Lp

x
‖u‖L2p

x

∥∥∥
4

L
4p

2p−3
T

.

Taking Cε = 1
2 , using Gronwall’s inequality, we have

‖Z‖
CTLp

x∩L
4p
3

T L2p
x

+
∥∥∥∇
(
|Z|

p
2

)∥∥∥
2
p

L2
TL2

x

≤ C

(
‖Z0‖Lp + T

p−3
2p ‖Z‖2

L
4p
3

T L2p
x

)
exp

{
C‖u‖

4p
2p−3

L
4p

2p−3
T L2p

x

}
.

By the continuity method, when 4C2T
p−3
2p ‖Z0‖Lp exp{2C‖u‖

4p
2p−3

L
4p

2p−3
T L2p

x

} < 1, we deduce

‖Z‖
CTLp

x∩L
4p
3

T L2p
x

+
∥∥∥∇
(
|Z|

p
2

)∥∥∥
2
p

L2
TL2

x

≤ 2C‖Z0‖Lp exp

{
C‖u‖4

L
4p

2p−3
T L2p

x

}
. (7.7)

When ‖Z0‖Lp → 0, (7.7) implies (1.17) with p > 3. #
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8. Appendix

Proof of Lemma 2.6. Set

II = −r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂j(wiwj)dx,

III = −r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂j(wivj)dx,

IV = −r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂j(viwj)dx,

V = −r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂iπdx.

(8.1)

Thanks to integration by parts, Hölder’s inequality and Sobolev embedding Ḣ1(R3) ↪→ L6(R3) (the
best constant can be seen in [44]), we have

II = −r(t)2

2

∫

R3
|w(·, t)|r(t)−2wj∂j |w|2dx

=
r(t)2

2

∫

R3
∂j(|w(·, t)|r(t)−2)wj |w|2dx

≤ r(t)(r(t) − 2)
∫

R3

∣∣∣∇(|w(·, t)|
r(t)
2 )
∣∣∣ |w|

r(t)
2 |w|dx

≤ r(t)(r(t) − 2)
∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
L2

∥∥∥|w(t)|
r(t)
2

∥∥∥
L6

‖w(t)‖L3

≤ r(t)(r(t) − 2)
∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
2

L2
‖w(t)‖L3 . (8.2)

Combining (1.13) with ‖w0‖L3 ≤ ε0, there holds

II ≤ r(t)(r(t) − 2)Cε0
∥∥∥∇(|w(t)|

r(t)
2 )
∥∥∥
2

L2
. (8.3)

According to Hölder’s inequality, the Hardy inequality in Lemmas 2.2 and 2.3, we deduce

II =
r(t)2

2

∫

R3
∂j(|w(·, t)|r(t)−2)|w|2vjdx

= r(t)(r(t) − 2)
∫

R3
vc · ∇(|w(·, t)|

r(t)
2 )|w(·, t)|

r(t)
2 dx

≤ r(t)(r(t) − 2)
∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
L2

∥∥∥∥∥
|w(t)|

r(t)
2

|x|

∥∥∥∥∥
L2

‖|x|vc‖L∞

≤ 2r(t)(r(t) − 2)Kc

∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
2

L2
. (8.4)

For the term II, using integration by parts, we have

IV = −r(t)2
∫

R3
|w(·, t)|r(t)−2wi∂j(viwj)dx

= r(t)2
∫

R3
∂j(|w(·, t)|r(t)−2)wiviwjdx+ r(t)2

∫

R3
|w(·, t)|r(t)−2∂jwiviwjdx.

The estimate of the first part is similar to (8.4). We have

r(t)2
∫

R3
∂j(|w(·, t)|r(t)−2)wiviwjdx ≤ 4r(t)(r(t) − 2)Kc

∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
2

L2
.
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By Lemma 2.2, Cauchy inequality and the Hardy inequality, we can estimate the second part as follows

r(t)2
∫

R3
|w(·, t)|r(t)−2∂jwiviwjdx

≤ r(t)2
∫

R3
|w(·, t)|r(t)−2|∂jwi|||x|vi|

|wj |
|x| dx

≤ r(t)2Kc

∫

R3
|w(·, t)|r(t)−2|∂jwi|

|wj |
|x| dx

≤ r(t)2

2
Kc

∫

R3
|w(·, t)|r(t)−2|∇w(·, t)|2dx+

r(t)2

2
Kc

∫

R3
|w(·, t)|r(t)−2 |w(·, t)|2

|x|2 dx

≤ r(t)2

2
Kc

∫

R3
|w(·, t)|r(t)−2|∇w(·, t)|2dx+ 2r(t)2Kc

∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
2

L2
.

Therefore, we have

IV ≤r(t)2

2
Kc

∫

R3
|w(·, t)|r(t)−2|∇w(·, t)|2dx

+ (4r(t)(r(t) − 2) + 2r(t)2)Kc

∥∥∥∇
(
|w(t)|

r(t)
2

)∥∥∥
2

L2
.

(8.5)

Note that the pressure π = −∂i∂j

∆ (wiwj + viwj + wivj), using integration by parts, we obtain

V = r(t)2
∫

R3
∂i(|w(·, t)|r(t)−2)wiπdx

= r(t)2
∫

R3
∂i(|w(·, t)|r(t)−2)wi

(
−∂i∂j

∆
(viwj + wivj + wiwj)

)
dx. (8.6)

This term is more complex to deal with, we will estimate it more carefully. Set

V1 = r(t)2
∫

R3
∂i(|w(·, t)|r(t)−2)wi

(
−∂i∂j

∆
(viwj + wivj)

)
dx,

and

V2 = r(t)2
∫

R3
∂i(|w(·, t)|r(t)−2)wi

(
−∂i∂j

∆
wiwj

)
dx.

According to [12], there holds |x|r−2 ∈ Ar with 1 < r < ∞. By Hölder’s inequality, boundedness of the
Riesz transforms on weighted Lp spaces (Theorem 9.4.6 in [12]), Lemma 2.2 and the Hardy inequality,
there holds

V1 ≤ 2r(t)(r(t) − 2)
∫

R3

∣∣∣∇
(
|w(·, t)|

r(t)
2

)∣∣∣ |w(·, t)|
r(t)
2 −1

∣∣∣∣
∂i∂j

∆
(viwj + wivj)

∣∣∣∣ dx

≤ 4r(t)(r(t) − 2)Cr‖|x|
r−2
r (vc ⊗ w) ‖Lr

∥∥∥∥
w

r
2 −1

x
r−2
r

∥∥∥∥
L

2r
r−2

‖∇(|w(·, t)| r2 )‖L2

≤ 4r(t)(r(t) − 2)Cr‖|x|vc‖L∞‖|x|− 2
r w‖Lr

∥∥∥∥
w

|x| 2r

∥∥∥∥

r
2 −1

Lr

‖∇(|w(·, t)| r2 )‖L2

≤ 4r(t)(r(t) − 2)CrKc

∥∥∥∥
|w| r2
|x|

∥∥∥∥
L2

‖∇(|w(·, t)| r2 )‖L2

≤ 8r(t)(r(t) − 2)CrKc‖∇(|w(·, t)| r2 )‖2L2 , (8.7)

where Cr is as in Theorem 9.4.6 in [12]. Thanks to [15], we deduce that ‖∂i∂j

∆ f‖Lr ≤ Hr‖f‖Lr . Combining
with Hölder’s inequality and Sobolev embedding Ḣ1(R3) ↪→ L6(R3), we have

V2 ≤ 2r(t)(r(t) − 2)‖∇(|w(·, t)|
r(t)
2 )‖L2‖|w(·, t)|

r(t)
2 −1‖

L
6r

r−2

∥∥∥∥
∂i∂j

∆
wiwj

∥∥∥∥
L

3r
r+1
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≤ 2r(t)(r(t) − 2)H 3r
r+1

‖∇(|w(·, t)|
r(t)
2 )‖L2‖|w(·, t)|

r(t)
2 −1‖

L
6r

r−2
‖w ⊗ w‖

L
3r

r+1

≤ 2r(t)(r(t) − 2)H 3r
r+1

‖∇(|w(·, t)|
r(t)
2 )‖L2‖w(·, t)‖

r(t)
2 −1

L3r ‖w(·, t)‖L3r ‖w(·, t)‖L3

≤ 4r(t)(r(t) − 2)H 3r
r+1

‖∇(|w(·, t)|
r(t)
2 )‖L2‖|w(·, t)|

r(t)
2 ‖L6‖w(·, t)‖L3

≤ 4r(t)(r(t) − 2)H 3r
r+1

‖∇(|w(·, t)|
r(t)
2 )‖2L2‖w(·, t)‖L3 .

According to (1.13), when ‖w0‖L3 ≤ ε0, there holds

V2 ≤ 4r(t)(r(t) − 2)H 3r
r+1

Cε0‖∇(|w(·, t)|
r(t)
2 )‖2L2 . (8.8)

From the above estimates, we can finish the proof of Lemma 2.6. #

References

[1] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren
Math. Wiss., vol. 343. Springer-Verlag, Berlin, Heidelberg (2011)
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