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Abstract. In this paper, we show that Landau solutions to the Navier-Stokes system are asymptotically stable under L3-
perturbations. We give the local well-posedness of solutions to the perturbed system with the initial data in the Lg space
and the global well-posedness with the small initial data in the L2 space, together with a study of the L9 decay for all
q > 3. Moreover, we have also studied the local well-posedness, the global well-posedness and the stability in LP spaces for
3 < p<oo.
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1. Introduction

The Cauchy problem for the incompressible Navier—Stokes system in {(z,t)|z € R3,¢ > 0} with the given
initial data and the external force has the form
ug — Au+ (u-V)u+ Vp = f,
V.u=0, (1.1)
u(z,0) = uo (),
where v = (u1,u2,u3) and p denote the velocity field and pressure respectively.
Note that when we consider the construction of solutions to the Cauchy problem (1.1), there are

essentially two methods: the energy method and the perturbation theory. The energy method is based
on a-priori energy estimate

/RS lu(z, t)|*dx + /Ot /RS 2|Vu(z, s)|*drds < /RS luo(z)|*dx + /Ot /RS 2(f - u)(x, s)dxds.

The global existence of weak solutions was established by Leray [27] for the divergence-free initial data
up € L?>(R3) and f = 0. The energy method gives the existence, but the uniqueness and regularity for
solutions still remain open, see e.g. [1,5,8,16,25,26,45] and references therein.

As for the perturbation theory, we treat the nonlinear term (u - V)u as a perturbation and use the
scaling property to choose function spaces. As we know, the system (1.1) has the natural scaling

uy(z,t) = Mu(dz, \2t),  pa(z,t) = N2p(hx, A\*t).

Therefore, the space L3(R?) is a well-known simple example of the scaling-invariant space. By the
Duhamel principle, we can rewrite the solution into an integral formulation

t
u(z,t) = e®ug + / eOAP(f —u - Vu)ds, (1.2)
0
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where P denotes the Leray projector which projects on divergence-free vector fields. Solutions constructed
in this way are called mild solutions [25,26]. Usually, by the contraction mapping principle, we can obtain
the global well-posedness of mild solutions to the system (1.1) with small initial data in appropriate
scaling-invariant spaces. We refer readers to [7,8,20,22,25,26,37] for additional background and refer-
ences.

There are many results on the existence of weak solutions and the L2-decay property of weak solutions
of the Navier—Stokes system, see e.g. [20,33,39,48], also for the convection-diffusion equations [11] and
references therein. When f = 0, the L?-decay property of weak solutions to the system (1.1) can be
viewed as the global asymptotic stability in L? of the trivial solution (u,p) = (0,0). Later, Borchers
and Miyakawa [4] addressed similar questions on the global asymptotic stability of a family of stationary
solutions.

The stationary Navier-Stokes system in R? has the form

{—Av-i- (v-Vuv+Vp=f,

V-v=0. (13)

When f = (b(c)d,0,0) with b(c) = 555 (2 +6c2—3c(c2—1)In (gf})) and &, the Dirac measure,

(Ve, pe) given by the following formulas

ve (2)

N e e A e e e

) Uc(l‘) =2

xg (cxy — |x])

2| (c|z] — x1)? 2| (c|z] — 1)
|| (cla| — 1)

v3(x) =2

(1.4)

x3 (cxy — |x]) cry — |z

pe(x) =4

| (clz| — x1)% lz| (c|z| — 21)*
|| (|| — 1)

with |z| = /2% + 235 4+ 23 and a constant |¢| > 1, are distributional solutions to the system (1.3) in
R3. We note that b(c) is decreasing on (—oo, —1) and (1,00), lim._1b(c) = +o0, lim._,_1b(c) = —c0
and lim|_oob(c) = 0. The explicit stationary solutions (1.4) were discovered by Landau [24]. These
solutions have been called Landau solutions. Tian and Xin [46] proved that all (—1)—homogeneous,
axisymmetric nonzero solutions of the system (1.3) in C?(R?\{0}) are Landau solutions. Sverdk [43]
proved that Landau solutions are the only (—1)—homogeneous solutions in C?(R*\{0}). More details can
be found in [9,24,41,43,46].

Karch and Pilarczyk [18] showed that Landau solutions are asymptotically stable under any LZ2-
perturbations. The crucial role played in their paper is an application of the Hardy-type inequality

/ w - (w- Vvedr| < K(0)|V®w|3, (1.5)
R3
where the positive function K(c) = 12max; veq1,2,3y Kjx(c),
K.
|0, 08 (2)] < mgd, 4,k €{1,2,3}, ¥V x € R®\{0}. (1.6)

Moreover, K ;(c) satisfies

lim Kji(c) =+oo and lim Kji(c) =0. (1.7)

jel—1 e =00

In 2017, Karch, Pilarczyk and Schonbek [19] generalized the work of [18]. They gave a new method
to show the L?-asymptotic stability of a large class of global-in-time solutions including the Landau
solutions. Their work also generalizes results in a series of articles on the L?-asymptotic stability either of
the zero solution [3,17,35,38,39,48] or nontrivial stationary solutions [4] to the system (1.1). The above
results give the existence in the L2 space [18,19], while the uniqueness in the L? space is a major open
problem. We will consider the stability of Landau solutions to the Navier-Stokes system in L? spaces
with 3 < p < 0.
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We denote (u, p)(x,t) the solution to the Navier—Stokes system (1.1) with the given external force f =
(b(c)do0,0,0) and the initial data ug = v. +wp. By a direct calculation, functions w(x,t) = u(z,t) — v.(x)
and 7(x,t) = p(x,t) — p.(x) satisfy the following system

wy — Aw + (w - Vw + (w - V)ve + (ve - V) w + Vo =0,
Vow=0, (1.8)
w(z,0) = wo(x).

We will consider the well-posedness problem of the system (1.8) in L? spaces with 3 < p < co. We will
obtain the global well-posedness of solutions to the system (1.8) with the small initial data in the L3
space, and the local well-posedness with the general initial data in the L2 space, see Theorem 1.1. For
the initial data wy € L2 with 3 < p < oo, we get the local well-posedness results, see Theorem 1.2. In
addition, for the general initial data in L2, we have the global existence of L? + L3 weak solutions, see
Definition 1.3 and Theorem 1.5.

Karch and Pilarczyk [18] denote the linear operator £

Lu=—-Au+P((u-V)v.) +P((ve-V)u). (1.9)
For the system (1.8), we can rewrite the solution in the following formula
t
w(z,t) = e Fwy — / e~ ILPY . (w @ w)ds := a + N(w,w). (1.10)
0

Karch and Pilarczyk [18] showed that —L is the infinitesimal generator of an analytic semigroup of
bounded linear operators on L2(R3). We show that for 1 < ¢ < oo, —£ is the infinitesimal generator of
an analytic semigroup of bounded linear operators on LZ(R?), see Theorem 3.1 in Sect. 3.

1.1. L? Mild Solutions, 3 < p < oo

Let us give the following standard definition of the LP mild solution, 3 < p < oco.

Definition 1.1. Let 3 < p < oo and T > 0, a function w is a LP mild solution of the system (1.8) with the
initial data wo € LP(R3) on [0, T}, if

w e C([0,T); LE(R®)) N L# ([0, T]; L2 (R?)), (1.11)
and
w(z,t) = e Fwy — /t e~ ILPY . (w @ w)ds. (1.12)
0

This solution is global if (1.11) and (1.12) hold for any 0 < T’ < cc.

In the above, e ** denotes the analytic semigroup of bounded linear operators on L2 (R?) generated
by —L, see Lemma 2.4 and Theorem 3.1. Properties of f(; e~ =3)LPY . (w ® w)ds can be seen in Lemma
2.5.

Now, we give the following theorem which shows the well-posedness results in the L3 space and the
L7—decay rates of solutions to the system (1.8).

Theorem 1.1. There exist positive universal constants cs, €9 and C with the following properties (i) For
every |c| > c3 and wy € L3 (R?), there ewists a positive constant T depending only on wq such that the
system (1.8) has a unique L3 mild solution w on [0,T). Moreover, V(|w|?) € L2(]0, T]; L%(R?)).

(i) If in addition, ||wol|Lsmsy < €0, then the system (1.8) has a unique global L* mild solution w.
Moreover, V(|lw|2) € L2([0, 00); L2(R3)),

3 2
”wHCt(Lg)ﬂL;‘(Lg) + ||V(|w\2)||szi < C||w0||L3(R3)a (1.13)
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and
Tim [ (t) s es) = 0. (1.14)
(t4i) For any q > 3, there exists a positive constant ¢, depending only on q such that when |c| > &, the
solution in (ii) satisfies
w € L*([r,00), LL(R?)), forall T >0,

and

1
[w(t)]| paesy < (5 — a)%%*%)t%*%||wo||L3(R3), forall t>0. (1.15)
Remark 1.1. From (2.15) with p = 3, (2.42), (2.53) and (2.56) in this paper, we see a more detailed
dependence of ¢,. On the other hand, we tend to believe that ¢ can be chosen as a constant independent

of ¢, and we plan to investigate the L> decay property in our future work.

W =

Remark 1.2. Tt follows from Theorem 1.1 that the flow described by the Landau solution is asymptotically
stable under L3-perturbations.

Remark 1.3. For the two-dimensional Navier-Stokes system, Carlen and Loss [10] gave the decay rate
of solutions to the vorticity equation. We adapt the method in [10] to give the decay rate of solutions
to the system (1.8), and we treat the pressure term 7 by using the A, weight inequalities for the Riesz
transforms [12,42].

Then, we have the following local well-posedness results with the initial data wg € LY, 3 < p < co.

Theorem 1.2. For p € (3,00) and wy € LE(R?), there exist two constants ¢, and T, where ¢, depends
only on p while T' depends only on p and ||wo||z», such that for all |c| > ¢y, the system (1.8) has a unique
LP mild solution w on [0,T)], satisfying V(lw|?) € LZ([0,T]; L2(R®)). If in addition, wy € LE N L3 (R?),
llwollLs < €0, where €g is as in Theorem 1.1, there exists a unique global LP mild solution w to the system
(1.8), satisfying

b 2

”ch,«Lg)mLfﬁQ(Lap) FIVl)Iz s < Cllwoller- (1.16)
Remark 1.4. Under conditions of Theorem 1.2, from Theorem 1.1, we have that (1.13)-(1.14) hold, and
(1.15) holds if |c| > &,.

Remark 1.5. Note that wg € LP with p > 3 implies wg € L? For the Navier—Stokes system with ug €

uloc*
L2, ., several authors [2,21,25,26] gave the local existence of the weak solution u. Moreover, the global

weak solution exists for the decaying initial data ug € Fo = {f eL?,. : im0 —oo [| fll22(B(z0,1)) = 0}.
Kown and Tsai [23] generalized the global existence for the non-decaying initial data with slowly decaying
oscillation. Very recently, J.J. Zhang and T. Zhang [49] have given the local existence of solutions to the
system (1.8) with the initial data wg € L, ., p > 2. Because of these results, we plan to study the global
existence of weak solutions to the system (1.8) with the initial data wy € L% for p > 3 in our future work.

Remark 1.6. L. Li, Y.Y. Li and X. Yan investigated homogeneous solutions of the stationary Navier—
Stokes system with isolated singularities on the unit sphere [28-31]. For a subclass of (-1)-homogeneous
axisymmetric no-swirl solutions on the unit sphere minus north and south poles classified in [29], Y.Y. Li
and X. Yan have proved in [32] the asymptotic stability under L2-perturbations. We will focus on these
homogeneous solutions in our future work.

Results in Theorems 1.1 and 1.2 show the existence and uniqueness of the solution w to the system
(1.8) in the corresponding space. Actually the solution depends continuously on the initial data.
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Theorem 1.3. For every |c| > ¢, and ug € LE(R3) with 3 < p < oo, assume that u is the unique mild
solution to the system (1.8) on [0, Timaz). Then, for any T € (0, Tmaz), there exists € > 0 such that for
any vy € LE(R3), |lug — vol|zr < €, there exists a unique LP mild solution v on [0,T] with the initial data
V|t=0 = vo. Moreover,

lim <u—v| ap —|—HV (|u—v\%)
ug—wvg in LP CrLENLS L2P

The constant ¢, in the above theorem is the one given in Theorems 1.1 and 1.2.

’ ) = 0. (1.17)

L2.L2

Remark 1.7. Karch, Pilarczyk and Schonbek [19] showed the L2-asymptotic stability of a large class of
global-in-time solutions including the Landau solutions. Based on similar proof of Theorem 1.3, we can
obtain the L3-asymptotic stability of a class of solutions v, + w, where w is as in Theorem 1.1. More
precisely, letting V' as perturbation of v, + w, when ||yl < (46’2e320f03c ”w”iﬁdt)_l
proof of (7.5), we obtain

, using the similar

2
3 oo w 4
pon S 20IVoll e il (1.18)

3
IVlle.gnzere + ¥ (1V1F)

1.2. Weak Solution

Karch and Pilarczyk [18,19] proved the following results: for every wy € L2 (R?), there exists a global
weak solution

we Cy ([0,7], 12 () N 22 (10,7), F} (R?))
for every T" > 0 which
t
lw(®)[I5 + 2(1 - K(C))/ IV @ w(r)|3dr < [w(s)|3 (1.19)
S
for almost all s > 0, including s = 0 and all ¢ > s. The definition of the weak solution is as follows.

Definition 1.2. (L2-weak solution) For wy € L2(R?), a function w is a L?-weak solution of the system
(1.8) on [0,T7, if

i) we Cyu([0,T]; L2(R3)) N L2([0, T]; H:(R?)).

ii) Forallt >s>0,all p € C([0,00),H} (R*))NC*([0,00), L2 (R?)),

(w(t). o(t)) + / (Y, V) + (w- Ve, ) + (w - Vs 9) + (v - Vaw, 9)] dr

= (w(s), ¢(s)) + / (w, ) dr.

iii) For all ¢ € C°(R3), lim;_¢ fR3 w - pdr = fR3 wp - $(0)dx.
iv) w satisfies the energy inequality

t
/ lw[*¢(z, t)dx + 2/ |Vw|?€dads
R3 0 R3

¢
§/ |w0|2£(x70)dx+/ / (2ve @ w: Vwé
R3 o Jrs
+(0s& + AE) |w|* + (|w]? + 27 + 20, - w)(w - V)E + |w|?v, - VE)dads,
for any ¢ € [0, 7] and for all non-negative smooth functions ¢ € C°([0,T] x R3).

The following is a weak-strong uniqueness theorem that is analogous to the one for the Navier—Stokes
system (Theorem 4.4 in [47]).
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Theorem 1.4. Let |c| > 8V/2+1, wy € L2(R3). Assume that u,v are L?-weak solutions of the system (1.8)
on [0,T] with the initial data uli—o = v|i=¢ = wo. Suppose u € L*([0,T]; L1(R?)), %—i—% =1,¢,s€[2,00].
When (q,s) = (3,00), assume that ||u| L (jo,1);13 (r3)) is sufficiently small. Then u = v.

We give the following proposition for which the detailed proof can be seen in Sect. 4.

Proposition 1.1. For wy € LE(R3) N L2(R3), p > 3, |¢| > c¢,, where ¢, is in Theorem 1.2, let w be the LP
mild solution of the system (1.8) on [0,T). Then w is a L*-weak solution of the system (1.8) on [0, T].

According to (1.19), there exists tq > 0 such that w(tg) € LENL3(R?), 3 < p < 6 and ||w(to)]| s < €o-
According to Theorem 1.2, when |c| > ¢,, there exists a unique LP mild solution on [ty, 00) to the system
(1.8) with the initial data w(tg).

Corollary 1.1. Forwy € L2(R3), let w be a L*-weak solution of the system (1.8). Then for every3 < p < 6
and |c| > ¢, there exists T > 0 such that w(- 4+ T) is a LP mild solution to the system (1.8) with the
initial data w(T) € LP. N LZ(R3).

Remark 1.8. Under conditions of Corollary 1.1, we have V(jw|%) € L?([T,00); L?(R?)), and

T [u(®)] 2 = 0. (1.20)
Furthermore, for ¢ > 3, |¢| > &;, where ¢, is as in Theorem 1.1,
1 1.: 301_1
w(t)|| pemsy < (= — ) 2@~ D (¢t = VG2 ||w(T) || p2(msy, for all ¢ > T. 1.21
®) < (5~ ¢ (59)

For the general initial data wy € L3 (R?), we will give the global existence of the L? 4 L? weak solution
to the system (1.8). Inspired by the method in [6,19,40], for any wg € L3(R3), we make a decomposition

Wo = V10 + V20, (1.22)

with [|vio||zs < €0, where g¢ is as in Theorem 1.1 and voq € L? N L3(R3). According to Theorem 1.1,
there exists a unique global L? mild solution v; to the system

vy — Avy + (v1 - V)og + (v1 - V)ve + (ve - V) v + Vi =0,
Vv =0, (1.23)
v1(z,0) = v1p.
Then vy = w — v; satisfies
Opva — Avg + (v2 - V)vg + (v2 - V) (ve +v1) + (Ve +v1) - V) v2 + Vg = 0,
V -vy =0, (1.24)
va(x,0) = vag.

We can get the global existence of w by investigating the global existence of vo. From Theorem 2.7 in
[19], the system (1.24) has a weak solution

vy € Cy ([0,T); L2 (R?)) N L2 ([O,T]; g (R3)) (1.25)
for each T' > 0, satisfying the strong energy inequality
t
a1 +2 (1 Ksuploc+ ullzy ) [ IVex(r)IBar < a3 (1.26)
> s
for a constant K > 0, almost all s > 0 and all ¢ > s, and
T [Jea(t)]}2 = 0. (1.27)

In the spirit of the notion of the weak L3-solution introduced by Seregin and Sverdk [40], we give the
following definition of the L? + L3 weak solution of the system (1.8).
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Definition 1.3. Let 7' > 0, wy € L3 (R3), wg = v109+v20. A vector field w is called a L? + L? weak solution
to the system (1.8) in R? x (0,7, if w = vy + vq for some v; € C((0,T); L3 (R3)) N L*((0,T); LS (R?)),
and vy € C,, ((0,7); L2 (R?)) N L? ((O,T); H! (R3)) such that v; is a L3 mild solution of (1.23) and v
satisfies the following conditions:
i) vy satisfies (1.24) in the sense of distributions,
lim f[oa (-, ) = o]l 2 = 0, (1.28)

iii) for all t € (0,T)

1 t
f/ |v2(x,t)|2dx+/ / | Vs ?(z, s)dzds
2 Jrs o Jrs
1 t
<= |1)20(x)|2dx+/ / V2 @ (ve + v1) : Vuadzds, (1.29)
2 Jgs o Jr3

iv) for a.a. t € (0,7) and any non-negative function ¢ € C° (R® x (0,7)),

t
/ lva (2, 1)) o(z, t)dz + 2/ Vs |? pdxds
R3

0 JR3

¢
< / / (2(ve 4+ v1) @ va : Vg + (950 + Ap) |va]?
o Jrs
+(|v2)? + 272 + 2(ve 4+ v1) - v2) (V2 - V) + |v2]? (v 4+ v1) - Vip)dxds. (1.30)

We say w is a global L? + L3 weak solution to the system (1.8) if it is a L? + L3 weak solution to
the system (1.8) in R? x (0,7 for all 0 < T' < co. Hence, we give the existence of global L% + L3 weak
solutions to the system (1.8) as follows.

Theorem 1.5. Assume that wo € L3(R3) has a decomposition wy = vig + vao with vig € L3(R3),
viollz2@ey < €0 and vag € L2 N LE(R3) where g is as in Theorem 1.1. Then, there exists a global
L? + L3 weak solution w to the system (1.8) with w = v1 + vq, v1(+,0) = v1p and va(-,0) = vag.

The proof of Theorem 1.5 is based on the proof of Theorem 2.1 in [19]. For the convenience of the
reader, we will give details in Sect. 5.

Remark 1.9. When the initial data wo € L2(R?), 2 < p < 3, by interpolation theory, wo has a decompo-
sition wo = v1g + v2o With vig € LI(R?), [lvio|| 13(rs) < €0 and vy € L2 where & is as in Theorem 1.1.
Then, we can easily obtain the global existence of the L? + L? weak solution to the system (1.8).

Scheme of the proof and organization of the paper. In Sect. 2, we give the proof of Theorem 1.1. In
other words, we prove the local well-posedness of solutions to the system (1.8) with the general initial
data, and the global well-posedness of solutions to the system (1.8) with the small initial data in the L
space. Also, we investigate the decay rate of solutions to the system (1.8). In Sect. 3, some properties of
the linear operator £ on LP, 1 < p < oo, are studied. In Sect. 4, we prove Theorem 1.4, Proposition 1.1
and illustrate Corollary 1.1 briefly. In Sect. 5, we illustrate Theorem 1.5, i.e. the global existence of the
L? + L? weak solution to the system (1.8). In Sects. 6 and 7, we give the proofs of Theorems 1.2 and 1.3,
respectively.

Notations.

e We denote |- |, (or ||~ o). I~ lzzzes I+ llzrgs |- levzes |- llopse the norms of the Lebesgue
spaces LE(R?), LY ([0, 00); L1(R®)), LY([0, T]; L1(R)), C([0, 00); LL(R®)), Cr([0, T]; L1 (R?)), respectively,
with p,q € [1, 00].

e C5°(R?) denotes the set of smooth and compactly supported functions.
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e C,([0,7]; L4(R3)) with ¢q € [1,00) denotes the set of weakly continuous L?(R?)-valued functions in
t, i.e. for any to € [0,T] and w € L7 (R?),
/ v(z,t) - w(x)de — v(x,tg) - w(x)de ast — tp.
R3 R3
e For each space Y, we set Y, = {u €Y : divu=0}.

e We denote u; the ith coordinate (i = 1,2,3) of a vector w.
e Constants independent of solutions may change from line to line and will be denoted by C.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Our method is based on the following contraction
mapping theorem (cf. [1], Theorem 1.72).

Lemma 2.1. Let F be a Banach space, N be a continuous bilinear map from E x E to E, and o be a
positive real number such that

1
a < ——— with |[N]:= sup ||N(u,v)|. (2.1)
ANl llull, o]l <1

Then for any a in a ball B(0,«) (i.e., with center 0 and radius o) in E, there exists a unique x in ball
B(0,2a) such that

z=a+ N(z,x). (2.2)
We will also use a property of Landau solution v, which can be obtained by a direct calculation.

Lemma 2.2. Let v. be the Landau solution given by (1.4), then we have

2v2

22 k. (23)

ll]vel| Lo <

The next lemma is a fundamental inequality with the singular weight in Sobolev spaces: the so-called
Hardy inequality which goes back to the pioneering work by G.H. Hardy [13,14].

Lemma 2.3. For any f in H'(R®), there holds

2 3
([, M8 )" <219l (2.4
rs |7

To complete the proof of Theorem 1.1, we need Lemmas 2.4 and 2.5 which give the results for the
linear part a and the nonlinear part N in (1.10), respectively. The linear part a satisfies the following
Cauchy problem

a; — Aa+ (a-V)ve + (ve - V)a+ Vmy =0,
V-a=0, (2.5)
a(x,0) = wo(x).

Namely, a(z,t) satisfies
/ wmbdx—!—/ / {w(=0p—A¢) —w@w: Ve — (wRve +v.@w) : Vo}drdt =0,  (2.6)
R3 0o Jmrs
for all ¢ € C°([0,00) x R?) with V- ¢ = 0.
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Lemma 2.4. Let p € (1,00). For every c satisfies (2.15) and (2.21), there exists a unique global-in-time
solution a(x,t) € CyLP N L?p L?P to the system (2.5) with the initial data wy € LP(R®), satisfying

laC,E)llze < flal-s s)llze, (2.7)
forany 0 <t <s < o0,

2
P
lall_ s, + [V (1012)],, < Cllwoller, (2.8
tlx t x tHax
for a universal constant C.

Proof. By the classical approximation method, it is easy to get the global existence of solutions a. For
simplicity, we omit the detailed proof and give some a-prioi estimates for a. Suppose a is sufficiently
smooth, multiplying the equation (2.5); by |a|P~2a and mtegrate it on R3, we have

/am|w2> a1, (2.9)
and

—Aa«MW*aMz:wp—2{/JMV4§:K&ammP+1@JVaFMW*

4(p—2) p=2
= ——=|V(la|%)|72 + [IValla| "= || (2.10)

When p > 2, we obtain

].d 2 P pP—2
a1z, i;—hwwwﬁﬁwwwwzﬁQ

= —/ div(a ® ve + v, ® a) - (|a|P"?a)dz — / V1 - (la|P~%a)dz. (2.11)
R3 R3

Using integration by parts, Holder’s inequality, Lemma 2.2 and the classical Hardy inequality in Lemma
2.3, we have

- / div(a ® ve +v. ® a) - (Ja|P~?a)dz = / (a @ve +ve®a)-V(aP2a)ds
R3 R3

— [ aitw);0i(aP 2ay)ds
R3

<C [ 19(al#) ol ez
R3

lal 2

< Clfoell = |[V(lal)

V(|al®) (2.12)

L2’
Thanks to the system (2.5), we get
T = —Aflazﬁj (a®@ve+v.®a).

The operator A~19;9; is Calderén-Zygmund operator. According to Example 9.1.7 in [12], there holds
|z|P~2 € A, with 1 < p < co. By Hoélder’s inequality, Hardy inequality in Lemma 2.3, Sobolev embedding
and boundedness of the Riesz transforms on weighted LP spaces (see Theorem 9.4.6 in [12]), we have

T Birkhauser
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p—2 p=2 P |a|%*
V- (lafP"a)dz < Cl[z] 7 (a ® ve +ve @ a) || |V ([a]2) 22 || —5=
R3 x| v || it
a P P =
P b P
< Clllzfvellz= ||—=|| IV (al2)llz2 |V(al?)|
|33|p r L
a 2p—2
< CKe|—=|| IIV(al?)ll&
|z|? p

< CK|[V(lal%)| 7.
Combining (2.11)-(2.13), we deduce

4 p—2) P P
L S, + 2229 el DIs < CRAT(alb]E

Under the assumption,
Alp—2)

= ~CK.>0, iftp>2,

we have
||a( s +ClIV(Jal®)]7: <0,
for a positive constant C. Therefore, (2.7) holds and we have
sup la(t) 1, + CIV (Jal )5 < ol
By the interpolation theory, we deduce

ol s+ ||V (0l
L LENL,3 L2

When 1 < p < 2, we have
1d
——la@®)|}, -2 PN (0 2 /V *lafP—?
pdtlla()IIL +(p )/RB |al i [(Biar)an]” + Rg\ al”|al

= —/ div(a ® v. +v. ® a) - (Ja|P~?a)dz — / V7 - (laP~2a)dx
RS RS

Thanks to Lemma 3.1, there holds
1 d
Gl +@=1) [ VaPlar—
pd -

< OH’onLp.

L?2L2

< ‘ div(a ® v +v. ® a) - (|a|p_2a)da:‘ + ‘ / V7 - (lafP~2a)dz|.
R3 R3
Thanks to (2.12) and (2.13), there holds
1d _ P
eIz, + (p — 1)/ Valla]P~?de < CK|V(Jal%)||Z..
pdt R3

Moreover,

2
N p —4 4 2
ORI = K [ o™ Sl(Gua)afas
PE. [ lapVafs,
R3

) Birkhauser
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where C'(p) is a constant depending on p. Under the assumption,
p—1—-C(p)K. >0, ifl<p<2, (2.21)

we get
o1, +0 [ laP2(aPiz <o, (2:22)
R3

for a positive constant C. Hence we deduce (2.7) and (2.18), since that

2
|7 (a®)], < c/ laP~2|Vadz.
L2 R3
Then, we consider the continuity of the solution a over time ¢. Because of the translational invariance
in time, we only consider time around 0. For any sequence t,, — 0, according to (2.18), there holds
la(tn, )z < llwollzz- (2.23)
Therefore, there exists subsequence {¢,; };ez+, such that ¢, — 0 as j — oo, and
a(-,tn,;) = wo(-) weakly in L.

Therefore, we have

lwollLr <l la(-tn;)l|zr- (2.24)
By the energy inequalities (2.16) and (2.22), there holds

T oclla(:stny)l1e < ol (2.25)
From (2.24) and (2.25), we get

Jim la( b )lze = ol (2.26)

and

a(+,t) = wo(-) in LP as t — 0. (2.27)
Hence, we have a € C([0,00); L?) and finish the proof of (2.8). O

Remark 2.1. Indeed, more strictly, we can prove the existence of a by the approximation theory. Assume
ag = 0, we construct the iterative sequence {ay} as follows

Orar, — Aay, = —(ag—1 - V)ve — (Ve - V) ag—1 — Vmg_1, for k=1,2,...,

V- Qg = O,

Th—1 = (—A)719;0;(ve ® ag—1 + ar—1 @ V),

ak|t:0 = Wo-

4p »

We claim that {ax} € C(]0,00); LP) N L;* ([0,00); L?) and V(|ax|2) € L#([0,00); L2). By Duhamel
principle, aj, also satisfy the integral formulation e*®aj, — fot et=)APdiv(ag_1 @ ve + ve ® ag_1)ds. Since
semigroup e® : LP — LP, we have ay € C([0,00); LP). By the energy estimate, we have that {az} is

4p
a Cauchy sequence in L,* ([0,00); L2P). The limit of {a;} is a which satisfies Lemma 2.4. We omit the
details.
For wy € L2(R3), 1 < p < 0o, and 0 < t < oo, let
T(t)wo := a(z,t), (2.28)

where a(z, t) is the unique solution of (2.5) given by Lemma 2.4. Then T'(¢), 0 < t < o0, is a one parameter
family of bounded linear operators from L2 (R?) into LE(R3) satisfying T'(0) = I, the identity operator of
LP(R?), T(t + s) = T(t)T(s) for every t,s > 0, |T(t)|| < 1 for every t > 0, and lim; o, T(t)wp = wp in

T Birkhauser
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LP(R3). Therefore, T'(t) is a strongly continuous semigroup of the contraction, see Definition 1.2.1 and
Section 1.3 in [36].
The linearized operator —L, given in (1.9), with the domain of definition

T(t)wy — w
t

D(-L) := {wo € L3(R3) : lim 0 exists in L’;(R?’)}, (2.29)

t—0+

is the infinitesimal generator of the semigroup T'(t), see Section 1.1 of [36]. By Corollary 1.2.5 in [36],
D(—L) is dense in L2(R?) and —L is a closed linear operator in L2(R?). We also denote T'(t) as e~*~.
We will prove that e~*# is an analytic semigroup in Sect. 3.

Next, we will estimate the nonlinear part N (w1, ws), where

t
N(wy,we) = —/ e ILPY . () @ wo)ds
0

for any wi,we € L*([0,7]); L°(R?)). Denote z = N(wy,ws), it’s obvious that z satisfies the following
system
zt — Az+ (2 V)ve + (v - V) 2z + Vg = —div(w; ® ws),
V.z=0, (2.30)
z(z,0) = 0.
Lemma 2.5. For every c satisfies (2.42), there exists a unique solution z(z,t) € C([0,T],L3(R?)) N
LA([0,T], LS(R3)) to the system (2.30) with wy,ws € L*([0,T]; LS(R3)), satisfying
2
3

L([0,T];L2)

3
12Ol eo,77:£3)nLao,r3528) + HV (|Z|2>’ < Collwi |l paqo,m);2) lwall Lao,rpszey,  (2.31)

for a universal constant Cy which is independent of T

Proof. We omit the detailed proof of the existence of the solution z since it can be obtained by the
classical approximation method. Then, we give some a-prioi estimates for z. Suppose z is sufficiently
smooth, multiplying the equation (2.30); by |z|z and integrating it on R3, we have
1d
g&”z

=— [ div(z ®@ v + v ® 2) - (|z|2)dx — / div(w; ® we) - (|z|2)dz — / Ve - (|z|2)dx.
R3 R3 R3

8 3
7= + §IIV(|Z|2)II2L2

(2.32)

The estimate for the first term on the right-hand side of (2.32) is the same as (2.12) with p = 3. Hence,
there holds

16
—/ div(z @ ve + v ® 2) - (|2]2)dx < ?K(‘HVOZ‘%)”%Z (2.33)
R3

For the second term on the right-hand side of (2.32), by integration by parts, Hélder’s inequality and
Young’s inequality, we get

- /}R3 div(w; ® we) - (|z|2)dx = / (w1 ® we) - V(|z|2)dx

]RS

4 -

3 s

4 s s
= g Hv <|Z|2)‘ L2 HZHLs ||’lU1 ®w2||L3

2 3\ |2 10 ,
<15 HV (\zlz)‘ g Ills oy @ wallis

IN

2 (7 EAVIE 10 2 2
15 ) 19 Q) e+ 5 Ul Nenl By el - (239)

) Birkhauser
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For the third term on the right-hand side of (2.32), according to the system (2.30), we obtain
Ty = —A_laﬁj (2@ Ve + 0. @z +w; @ws) . (2.35)

Using integration by parts and Hélder’s inequality, we have the following estimate

/ Vg - (|z]2)dx
R3

= [ AT'0:0; (2@ v+ ve ® 2+ w1 @wa) V(|2]) - 2dx
R3

2
< - }A—laiaj (2@ Ve + 0. @2+ wy ®w2)’ ’V (\z|%)‘ |z|%d;v
3 Jrs

<2 \A—laiaj(z®vc+vc®z)!‘V(IzI%)IIZI%daﬁ
3 Jgs

3L |A10,0; (w; @ ws)| ‘v (|z|)’ BEES (2.36)

Thanks to (2.13) with p = 3, we have
2
S |A7190; (2 @ ve +ve @ 2)] \v (|z|)( 2|2 de < O3 KL ||V (|2]3)]2.. (2.37)
3

For the second term on the right-hand side of (2.36), by Holder’s inequality, the property of Riesz operator
and Young’s inequality, we have

2 187100, (w1 @ wy)| MERIEE

2. 3 1
<sla 19,0; (w1 @ wa) || a1V (|2]2) | L2 [l]2] 2 | e

2 3 1
< gHsllwi ® szILSIIV(IZP)IILzIIZHis

< 2|9 (12)[, + 2 Hs Nzl llwn @ wl (2.39
where Hj is a constant and origins from the following 1nequality
1AT10:0; fll- < Hellf]lr, (2.39)

for 1 < r < oo. For the scalar Riesz transforms, Iwaniec and Martin [15] showed that the norm ||R;| L
of the Riesz operator R; : L"(R™) — L"(R"™) is equal to

tan(g-),if 1 <r <2, (2.40)
cot(gr),if 2 <r < oo. '
Combining with (2.36), (2.37) and (2.38), we have the following estimate
2 s 210 )
Vrz - (|2l2)de < ( Cake+ s ) [ V(21| |+ 5 Hollzlluslwr @ ws -
R3 L2 3
Therefore, we deduce
5 8 2
N S 16K, — = —3C5K, — H Bk
< (10 + 10Hs) 12| e 3 [l 174 1o Hw2||L<;Lg-
Choosing |c| big enough such that
8 2 2
g — 16K, — g — 303KC — 5H3 > 0, (242)

T Birkhauser
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we have

2
3
Vellogrs + [F0D)|, |, < Cllwnllzg rg lwallzg re, (2.43)

5
L3L2

for a universal constant C. By the interpolation theory, there holds

2
3

3
12O lezrznsee + |V (121F)] 0, < Collwnllg pellwall oy e, (2.44)

LZ.L2

for a universal constant Cs. By similar argument as (2.26), we can obtain the continuity of z over time
t. Combining with (2.44), we deduce (2.31). O

Proof of Theorem 1.1.. For every c satisfies (2.15) with p = 3 and (2.42), according to Lemma 2.4 with
p =3 and Lemma 2.5, we have

la(®)l[zazs < Chllwolzs, (2.45)

[N (w1, w2)l| a0, 71:28) < CollwillLao,my;ee) lwallLao,y:L0)- (2.46)

Using Lemma 2.1 with F = Ly LJ, we have that there exists T > 0 such that |[al|ps s < ﬁ, and the
system (1.8) exists a unique local solution w € L$.LS on [0,T]. According to Lemma 2.4 with p = 3 and
Lemma 2.5, the solution w € C([0,T]; L3(R3)), V(|w|?) € L2([0, T]; L*(R?)), and (i) holds.

Also, using Lemma 2.1 with E = L{LS, when [JwoLs < g5 = €0, there exists a global unique

solution w € L{LS and
Jwllzaze < Cllwolze. (2.47)

According to Lemma 2.4 with p = 3 and Lemma 2.5, the solution w € C([0,00); L3(R3)), V(jw|2) €
L2([0,00); L*(R?)).
Next, we will investigate the decay rate of the solution w, i.e. (1.15). Our method is inspired by [10].

Let T'> 0 and 3 < ¢ < co. Denote r(t) = ﬁ First, we give a-prioi estimate of [[w(:,t)]|;)-
T \q 3 3

Claim.
d 31 /1 1 1 /1 1
L Do < 2= (2 ==)m= (== Lt v te0,T). 2.4
w0l < 37 (5- 2 g (5-1) B0l ¥ e .7 (2.48)
Then, from Gronwall inequality, we obtain
lw(, T)le < CT3E 8 (-, 0) s, ¥ T >0, (2.49)
with Cq = (5 — %)%(%_5), and (1.15) holds.

To prove Cliam (2.48), from (1.8)1, by the direct computation, we have

2 rt)—1d

O (O i )

:NUAJMJWWMOMJW@MMJW%DM
+’I’(t)2 / |U}(, t)|r(t)_2w7; (8J8Jw2 - aj(wiwj + W;V; + inj) - 817'() dx. (250)
R3
Using integration by parts, we get
r()? / (-, )"0 20,8,0,w,da

R3

. / 8, (|w(8)["O~2w,)0,wida

R3

) Birkhauser
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1 .
= =10 [ 50O 20 wPde =@ [ uor O Vel
R3

r(t ” 2 ) —

=02 [ A2 D [0l g0 e - 02 [ w2 e
R3 T(t) R3
r(t) () —

= —4r(t)(r(t) = [ V(lw(-, )] = )2 —r(t)Q/W jw(®)" 72| Vw|*dz.

Combining with (2.50), we have
r(t)?[w(- )7 Hw<~7t>||r<t>
/ (OO (Jul OO /(- )14)) do = 4r@) (@) = 2Vl (, )53
(02 [ | uC.0F O3Vl e
—r(t)? . [w (-, )" D™ w; (9 (wiw; + wiv; + viwy) + &) da. (2.51)

Next, we will estimate the fourth term on the right-hand side of (2.51) in the following lemma, and give
the proof in “Appendix”.

Lemma 2.6.
r(t)? R3 lw(-, 8)]" O 2w, (8 (wiw; + wivj + viw;) + i) d
0]
< (4rt)(r(t) = 2)(u = 1) = 2r(®)*Ke) [V (Jw(t)]72)1Z2, (2.52)
with
= inf {1 1C' 1K K.—-2C.K.— Hs- C 1 2.53
= 1 300 R Km0~ Hag O > 5 (253)
From (2.51) and (2.52), we get
d
r(e w7 ™ 3 lw @l
/ (@) (@O /lw(e)]1}) ) de
— (4r(®)(r(t) = 2)p — 2 () Ke) IV (o (1) 5. (2.54)
Applying the sharp logarithmic Sobolev inequality in [10,34], we have
2
2/|u|2 ln( [ul )dm+3(1 +1Ina)|ul7. < af/|Vu|2dx. (2.55)
l[uall 2 ™

1

Using a = (7r 4T(t)(T(t)ff()t’)‘ﬂK“T(tf ) ® and u = \uﬁ%, we obtain

1 d
r(© w17 ™ 3w @l

< (1) <3 N gl (Amp — 27K, )(t()) 87m7"(t)> lwllt

rt)? (11 3 [ —8mu 3.1/1 1

< e O (2 4 g - 2K, o= (=—=
S 7 <q 3> [3+2n<r(t) +4mp T +2nT 371 [|w]||T,
3r(t)2 /1 1\. 1 /1 1

2T (3 q> HT(:’) q) lwllz

IN
|

T Birkhauser
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when

Lvn

-8
8 |\ grp— 2K m = 5 2w > 1, (2.56)

and Claim (2.48) holds.
Finally, we will prove (1.14). Since wo € L? and |Jwg||zs < €¢, there exists a subsequence denoted by
{wo,n} such that wg, € L* N L? and

wo,n, — Wo in L? as n — oo.
According to Theorem 1.4, Corollary 1.1 and Remark 1.8, we have

t1l>Igo ||wn('7t)HL3 =0.

Based on similar proof of (7.5), when |jwg , — wol s < (402620-[5 ”w”iﬁdt)_l, we have
ln = wllzie o,00y2) < 2C]wo,n — woll e ™ Mo,
for a positive constant C. From (2.47), we have
lim{Jwn, = wl L= ((0,00);:28) = 0,

n—oo

and (1.14) holds. O

Remark 2.2. To give strict proof of (1.15), we consider the approximation scheme. Using the method in
[23,25,26], the mollified system in R? x (0, 00) is as follows

— Aw + (Je (we) - V) w + (Te(we) - V)ve + (ve - V) Te(we) + V7€ = 0,
V- w =0, (2.57)
we(x,0) = wo(x),

where J(v) = v * 7, e > 0, the mollifier n(z) = 73y (£) with positive n € C°(B(0,1)), [ndz = 1. By
the classical approximation method, the solution w® satisfies (1.15). Similar as (2.50), we have

r(t)?|w(, >||:§§ I\w5(~>t)||r<t>
/ () O (O (1) da
/ ()70 2 (900 — 05( e (w)swss + T (w)gv; + 0T (w');) = 9y ) .
Similar as (2.54), we have
R O]t M)
t) / @O (ot OO/ @715 ) de — (@@ @) - 2= 2007 Ke) [V (w0 F) 2.
Similar to the procedure in the proof of (2.49), we obtain
1

. 1 3(1_1y 3(1_1 ¢
o (Bl < (5 = O DEGH wr( 0) s (2:58)

By the classical compactness theory, we have that the solution w satisfies (1.15).

) Birkhauser
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3. The Linear Operator £

In this section, using the idea of Borchers and Miyakawa [3], we prove that e =~

We consider the following system
M= Au+ (u-V)ve+ (ve - V)u+ Vp = f,
V.u=0.

is an analytic semigroup.

(3.1)

For 6 > 0 small, set ¥5 = {\ € C\{0} : [arg \| < § +d}. It is easy to see that for A = o 4+ /—17 € X, 0,
7 real, if o < 0, then

o] < dl7]. (3.2)

Theorem 3.1. For 1 < q < oo, there exist two positive constants 6 and ¢, which depend only on q such
that for any |c| > ¢4, A € L5, and u € ngj,(]R{S) satisfymg the system (3.1), we have

||f||an (3.3)

ullLe <

[Al

where C is a constant depending only on q and §. Consequently, e
linear operators on LL(R3) in the sector {\ : |arg A\| < 4}.

£ s an analytic semigroup of bounded

The last statement in the above theorem follows from the estimate (3.3), together with the fact that

~t£ is a strongly continuous semigroup of the contraction on LZ(R?) for 1 < ¢ < oo which are established
in Sect. 2, see Theorem 1.5.2 in [36].

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1. The vector field u has the following property
[V ([ul*)]* < 4[Vul*|ul®. (3-4)
Consequently, for 1 < q < 2, we have

-2
L[l Ve [ 9Pl Rz (g 1) [ (FuPjuftde, (3.5)
R3 R3 R3
Proof. By a direct calculation, we have

IV (|jul?)]? = Z\a (Ju|?) Z|a <uu>\2<42\<auu> (3.6)

For fixed j, using Cauchy—Schwartz inequality, we obtain

V()P <4 (105u?ul®) = 4|Vl |ul*. (3.7)
j

Proof of Theorem 3.1. The value of § will be chosen in the proof below. Multiplying the equation (3.1);
by |u|9~2%, and integrating it on R?, we have

vu.vquw*‘zn)dzsm/ |u|quc—|—/ (ve - V) - (|u]?~27)da
R3 R3

R3

Ve - ([u|*a)dz (|ul%*w)dx = (Jul9 T dx
+ [ Ve (ui e+ [ Vo (s = [ f-Qurna

Set Iy + o + I3+ I, + Is = fR3 - (Ju|9=%%)dx. For the first part, we have
I = / 6]"111'6]‘ ((umﬂm)%ﬂi) dx
]R3

T Birkhauser
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:/ (ajui)mq_

Denote &; = (0jum)tm = a; + /—1b;, then
9;([u]?) = (0jum )t + (0jum )t = 2 Re &; = 2a;.

Therefore, we get
q—2, ,_ - _
h= [ Ll [+ € + Vel s
R

-2
= [ S5 g+ Vb)) (2a) + Va2

-2
:/ qT|u\q_4|V(|u|2)|2dx+\/—1/ (q—2)\u|q_4ajbjdx+/ |Vu|?|ul??dx.
R3 R3 R3

For the second part I
=(o+ \/717)/ |u|?dx.
R3
It is easy to see that

2 lasllbj] < [Vulful®.
J

Then, using Lemma 3.1, we have

Re(I; + I3) > min{q — 1, 1}/ |Vu|?u|?2dz + a/ |ul?dz
RS R3

Im(I; + I3) = T/ lul?dz +/ (g —2)|u|"*a;bjdz.
RS RS

We distinguish into two cases:
Case 1. min{q — 1,1} [os |[Vul?|u|?2dz > 86|7| [gs [ul?dz.
Case 2. min{q — 1,1} [os |[Vul?|u|?2dz < 86|7| [gs [u|?dz.
In Case 1, we deduce from (3.12), using (3.2) and requiring 0 < ¢ < 1, that

|Il + IQ| Z Re([1 + 12)

1

—min{q — 1, 1}/ |Vu|?[u|?2dx + (40]7] + 0)/ |u|?dx
2 s s

Y

Y

In Case 2, we derive from (3.11) and (3.13) that

(L + I)] > |T|/ |u|qu—u/ IVl || 2dz

> (1= 2 i [ upras
min{q — 11}

Il

> [ul?da,

2 Jgs
when 8|¢g — 2|d < min{g — 1,1}, and

1

. 7]
-1,1 S+
M/ Vul2ult2dz + 2 0/ uftdr.
\/é R3 \/5 R3

) Birkhauser
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T (Ot Vi, + (ajum)ﬂm} do + /Rg |Vul?|ul?2dz.

1
—min{q — 1, 1}/ |Vu|?Ju|92dx + 6(7| + |U|)/ |ul?dz.
2 s s

JMFM

(3.10)
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1
> min{q—l,l}/ |Vu\2|u|q_2dx+f(|7'|+|a|)/ lufda,
R3 6 R3

N =

when 6 < %. So in both cases, we have proved that
1
|1y + L] > imin{q -1, 1}/ |Vl u|92dx + 6(|7| + |o|)/ |u|?dx. (3.16)
R3 R3
By integration by parts, Holder’s inequality, Hardy inequality and Lemma 3.1, we have

\I3+I4\<CK/ IV“|| 71 dy

< CK, @
B 2] |2
< C’KC/ |Vu|?u|?2dx. (3.17)
R3
According to (3.1), we obtain
di
= 1Vf ( @ u+u® ve)ij
By integration by parts, we have
Vdi 0;0j
I; = / 1Vf - (Ju|?%7)dx Jr/ L (e @ u+u®v.);V - (Ju|?7)dz. (3.18)
R3 A R3 A

By Holder’s inequality, Hardy inequality, Sobolev embedding, the boundedness of the Riesz transforms
on weighted LP spaces (Theorem 9.4.6 in [12]) and Lemma 3.1, we have

/ lev £ (o 9 )da

/ aiaf (Ve @ U+ u @ ve)i; V - (Ju]727)dx
R3

< Ol fllzallullfa’, (3.19)

A
a=2 q |u|%_1
< Oflel%* (u @ e+ ve @) 1]V (ful£) 12
|| La-2
q—2
u q a\ || a
< Olleluel IV ()l e 2l
‘xlq La L
4. 2a=2
< O ||| 19 (i),
|w‘q La
< ORIV (Jul) 32
< CK, /R V2] 2da, (3.20)
and
5] < Uil + OK. [ 9uflufr2d (3.21)

Combining with (3.8), (3.16)-(3.17), (3.21) and the condition of K. small enough, by Hélder’s inequality,
we have

1. _ _
§m1n{q -1, 1}/3 |Vl |u|2dz + §(|7| + |o]) /3 lulde < O||f||palu)%, " (3.22)
R i
Since A\ = 0 + /—17, we can get (3.3) easily. O
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4. Weak-Strong Uniqueness

In this section, we will prove Theorem 1.4, Proposition 1.1 and illustrate Corollary 1.1 briefly.

Proof of of Theorem 1.4. Following the proof of Theorem 4.4 in [47], setting g = v — u, we have
g —Ag+Vr=—((ut+g)-V)g—(9-V)u—g-Vvc—v.- Vg,
V-g=0, (4.1)
g(xa 0) =0.

Using g itself as a test function and integrating this in time from 0 to ¢, we have

/|92|2dx+/0t/Vngxdtg/Ot/(quvc)-(gV)gdxdt- (42)

Denote E(t) = esssup,; [|g(s)[|3 + fot Vgll3dr and tq = sup{t € [0,T] : g(s) = 0if 0 < s < t}.
We claim that ty = 7. Using the contradiction argument, we assume that ¢y < 7. Since

2/s 3
‘//Wmeﬁrémwuﬂﬂﬂéwgwu%JVwmh, (4.3)
for%Jr%:lwithlgq,sgoo,weget

t
| [ o+ Dgdods| < Cllulzzas o) (4.4
to

for t € [tg, T]. By Holder inequality, Hardy inequality and Lemma 2.2, we have

t t
//%%%WWMTS/WWNW
to to

t
S2/HM%MHW%§M
to

< 2K.|[VglZ;
< 2K E(t), (4.5)

g
Il IVgllrzdr
|| L2

for ¢ € [to, T]. Hence, there holds
E(t) < Cllullps(ito,09:00) E(t) + 2K E(t). (4.6)

If s < oo, we have Cllul| s (10,4;29) < 1 for ¢ sufficiently close to to. If s = 0o, we need CllullLee (fto,0;23) <
1. When K, < %, we have that E(s) = 0 for all s € [to, ], which makes a contradiction to the definition
of to. Hence, to = T and for all ¢ € [0,T]. O

Following is the proof of Proposition 1.1.

Proof of Proposition 1.1. For p > 3, our goal is to show that the LP mild solution w is a L?-weak solution.
The crucial part is to prove that w € C, ([0, T]; L2) N L3 (H}). Set w = a + z as in Sect. 2. We will prove
a € Cyw([0,T]; L2) N LZ(H}) and 2z € C\ ([0, T]; L2) N L3(H}) as follows.

Multiplying 2.5); by a, then integrating it on R?, we have

——la@®) |32 + [|[Val3: = —/ div(a ® ve + v, ® a) - adx. (4.7)
R3
By similar estimate as (2.12), using integration by parts, we obtain

— | divie®v.+v.®a)-adr < 2K, ||VaHQLQ ) (4.8)
R3
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and
s—lla®)[|7: + IVall7: < 2K.[Va|3-. (4.9)

Since |¢| > ¢, where ¢, is as in Theorem 1.2, we can guarantee 1 — 2K, > 0. Combining with similar
argument as (2.26), we have a € C([0,7]; L2) N L2.(H}).
When p € [3,4], using (w1, w2) = (w,w), multiplying (2.30); by z and integrating it on R3, we obtain

1d
SOl + 1921
= —/ div(z®v6+vc®z)~zdx—/ div(w ® w) - zdx. (4.10)
R3 R3

By similar argument as (2.33), using integration by parts, we have
—/ div(z ® v, + v, ® 2) - zdx < 2K,.||Vz|32. (4.11)
R3
By integration by parts, Holder’s inequality and Cauchy inequality, we have

1
- div(w @ w) - zdx = / (w @ w)Vzde < ||lw @ w|2||Vz]L: < Cllw|i + EHVZH%Q (4.12)
R3 R3

Then, from (4.10)-(4.12), we have
L2 9 2
5 ||Z||L%°Lg + (TO —2K.) HVZ”L;Lg < CHwHi%Lg- (4.13)

P _8p _
Since the L? mild solution w € L%oLgﬂL;? L%, p € [3,4], by interpolation theory, we have w € L3 L1,
and z € L>([0,T); L2) N L2.(H}). Combining with similar argument as (2.26), we have z € C([0,T]; L2) N
LZ(H}). Then, w € Cy([0,T]; L2) N LA (HL). One can easily prove that w is a L?*-weak solution of the
system (1.8) on [0,7], and omit the details.

4p L6p_ 16 16
When 4 < p < 8, the LP mild solution w € LFLP N Lf‘p L? C L7'7°"LP C L LS C L L, from
Lemma 6.2, we could obtain that

el 3, < Cllol e, ol (4.14)

4p .
and z € C([0,T]; L%). Combing a € LFLE N L7 L?» N C([0,T); L2) N L2(H}), we have that w €
C([0,T]; L1). From the argument in (4.13), we have that z € C([0,77]; L2) N L2 (H]}).
4p
When p > 8, the L? mild solution w € LLE N L7 L2, from Lemma 6.2, we could obtain that

< .
L e 1 (1.15)

x

P 2p 4p
and z € C([0,T);L2) N L;* LP. Combing a € L LE N L L2P N C([0,T]; L2) N L4 (H}), we have that

w € C([O,T];Lé) N L;{Lg. By the induction, we can get w € C([0,T]; %LK) N L;QTLQQFK, for some
K € 7% such that 4 < 5% < 8. From the argument in the case that 4 < p < 8, we have that z €
C(0,T}s I2) N L3.(FT2).

Therefore, the LP mild solution w € Ci, ([0, T]; L2) N L2.(H}), one can easily prove that w is a L?-weak
solution of the system (1.8) on [0,7], and omit the details.

Based on the proof of Proposition 1.1, we have the following results in the global time. For simplicity,
we omit the detailed proof.

Corollary 4.1. Forp >3, T >0, let ¢, and o be as in Theorem 1.2, |c| > ¢,. For wy € L2(R3) N L2(R3)
and ||wol| ;s gsy < €0, let w be a global LP mild solution of the system (1.8). Then w is a global L?-weak
solution of the system (1.8).

Combining with Theorem 1.2 and Corollary 4.1, we deduce Corollary 1.1.
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5. Global L? 4+ L3 Weak Solution

In this section, we will illustrate Theorem 1.5, i.e. we will give the global existence of the L? + L? weak
solution to the system (1.8).

Note that when we consider the existence of the weak solution to the Navier—Stokes system, there are
essentially two methods: the energy method and the perturbation theory. The energy method gives the
global existence for any initial data vy € L2(R3). We cannot use this method since the space L? doesn’t
contain the space L3 in the whole space R?. In the perturbation theory, by the contraction mapping
theorem, there exists a unique global weak solution to the Navier—Stokes system for the small initial data
vp € L3 (R3). Both methods cannot give direct results on the global existence for arbitrary vy € L3 (R3).

Hence, many authors have developed various approaches to adapt the theory of the weak solutions so
that it could allow vy € L3 (R?). Calderén [6] raised a method such that the L3 (R?) initial data vy can
be decomposed as

Vo :’Ué +'U8, (51)

where v} is small in L2 (R?) and v belongs to L2 N L3 (R?). Because of the smallness, the initial data vg
generates a global smooth solution v; by the perturbation theory. Then the equation (1.24) for vo = v—wv;
can be solved by the energy method. Seregin and Sverdk [40] used another method to obtain a global
weak solution for vy € L3 (R?). The main idea of [40] is as follows. Let v; be the solution of the linear
version of the Navier—Stokes system, seek the solution v of the Navier—Stokes system as v = vy + vo,
write down the equation that vy satisfied, then get the property of v by investigating vs. It’s a general
idea that the correction term wvo might be easier to deal with than the full solution v. Related work can
be referred to [26,27,40].

Inspired by above methods, we will decompose the initial data wy = v19 + vop and investigate the
global existence of solutions w = v; + v to the system (1.8). For wy € L2 (R3), we have the following
decomposition

wo = V19 + V20, (52)

with [Jv1o|zs < €0 and vag € L2NLE(R3). According to Theorem 1.1, there exists a unique global L? mild
solution v1 to the system (1.23). The crucial part is the global existence of vy. Since vgg € L2 N L3, this
is the standard reasoning based on the Galerkin method (cf. [19] Proof of Theorem 2.7). We claim there
exists a global weak solution vy € C,, ([0,T]; L2 (R?)) N L? ([O,T]; H! (R3)> for any T > 0. According
to Definition 1.3, there exists a global L? + L3 weak solution to the system (1.8). Detailed proof of the
global existence of vo can be seen below.

First, we will construct weak solutions vs to the system (1.24). This is the standard reasoning based on
the Galerkin method (cf. [19] Proof of Theorem 2.1). Since H} (R3) is separable, there exists a sequence
{gm},~_, which is free and total in H! (R3). For each m = 1,2,... Define an approximate solution
Wy, = Y ey dim (t)g;, which satisfies the following system of ordinary differential equations

(Wi (8),95) + (Vwm(t), Vg;) + (wm(t) - V) win(t), 95)

(W) - V) (Ve + 01), 95 + (Ve +v1) - V) wm(£), 9} = 0 for j = 1,...,m, (5.3)

where the term corresponding to the pressure in (1.24) vanishes in (5.3) because of divg; = 0. The system
(5.3) has a unique local solution {d;, (t)}.~, . By a-priori estimates of the sequence {w,,} ~_, obtained
below in (5.7), the solution d;n,(t) is global.

We will prove terms ((w,(t) - V) (ve + v1), g5) and (((ve +v1) - V) wi, (), g;) in (5.3) are convergent.
By Hoélder and Sobolev inequalities in the Lorentz LP*9-spaces (see [19]), we have

/ G (W, - V)(ve +v1)dz| < Cf|(ve +vi)wml 12| Vg;ll L2
RS

< Cllve + v1]| oo [[wml| o2 |V g5l L2
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< Cllve + vills. [Vwm| 22| Vgl 2, (5.4)

and

< Cllve + vl s [[Vwm [ 2[[Vg; ]| 2 (5:5)

/ ((ve + 1) - V)wpgjde
RB

Multiplying the equation (5.3) by d;,, and sum up equations for j =1,2,...,m, we have

5 77 lom@l5 + 1Vwm O3 + {(wn (t) - V) (v +v1), wa(t)) = 0. (5.6)

Using the inequality (5.4) and integrating it from 0 to ¢, we obtain

t
Jum @ +2 (1= Ksup o+ wllzsee ) [ IVl a7 < fuol. 67
0

Since |c| big enough such that K sup,q [|ve + v1|| 3. < 1. Thus we obtain a subsequence, also denoted
by {wy, }or_,, converging to vy € Cy, ([0, T); L2 (]RS)) NL? ([O, T); H} (R3)) . Now, repeating the classical
reasoning from [19], we obtain the existence of a weak solution in the energy space Cy, ([0, T]; LZ (R*)) N
L? ([07 T); H! (R3)) for all T'> 0 which satisfies the strong energy inequality (5.7).

Hence we get a global L? + L3 weak solution w of the form w = v; + vo. Moreover, we have the
asymptotic behavior of vy and omit the proof which can be referred to [19].

6. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. Our method is based on the contraction mapping
theorem, see Lemma 2.1, Lemmas 2.4, 6.1 and 6.2.
To get an a-prioi estimate of z, in which the crucial estimate is as follows:

—/ div(w; @ wy) - (|2[P~22)dx = / (w1 @ wa) - V(|2|P~22)dx
R3 R3
< c/ (w1 ®ws) -V (|2]F) [213 1da
R3

<o () 15,

<elv (1)

21
Lo 1220 " lwr @ well

2\ |2 p—2 2
<e||V (118)||, + @ 121t s & wallF,

‘We have
2
P

L1212

el g,

-
sup 2(t) 1z + | V(12D , < Cllwnllpgpze el yapze < OTS flwnll s
t

L3P

Hence, we have the following a-prioi estimate and more detailed proof can be referred to in the proof of

Lemma 2.5.

Lemma 6.1. Let p € (3,00), ¢, is as in Theorem 1.2. For every |c| > ¢,, there exists a LP mild solution
ap

z(x,t) on [0,T] to the system (2.30) with wy,ws € L ([0, T); L*(R3)), satisfying

121l : (6.1)

p. 2 p=3
IV < OT ol gl 3,

4p
CrLPNL3 L3P

for a constant C.
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When the initial data wo € L% N L3 and |Jwol|rs < eo, we have w € C,L3 N L{LS, V (|lw|?) € L2L?

according Theorem 1.1. By the interpolation inequality, we have w € L/ L?P. The proof is very similar
as the proof of Lemma 2.5, in which the crucial estimate is as follows:

lsll sp - (6.2)

fn @wlsze < ol e, ol g,

Hence we have the following a-prioi estimate and more detalled proof can be referred to in the proof of
Lemma 2.5.

Lemma 6.2. Let p € (3,00), ¢, is as in Theorem 1.2. For every |c| > ¢p, there exists a global-in-time LP

mild solution z(z,t) to the system (2.30) with w; € L2P ?([0,00); L2P(R?)) and wy € L, ki ([0, 00); L2P(R3)),
satisfying

121 + HV(\ZIZ)IILsz < C||w1|| ||w2|| ; (6.3)

% 2p 2p
CyLPNL,* L% L$

for a constant C.

Proof of Theorem 1.2. For a constant |c| > ¢, where ¢, depends only on p, according to Lemma 2.4, we
have

la@®)ll s ., < Cllwol e (6.4)

L3 L%
Applying Lemma 6.1, we have

p—3
INGow w2l gy, < OTS ] g el (6.5)

sz - Lts sz Lip'

Using Lemma 2.1 with E = L} ¥ L?P, when cT' |lwolle < 1, the system (1.8) has a unique solution

ap
we LE L% on [0, T).
Then we will prove the global existence of w with the initial data wo € L2 N L3 and ||wo| s < eo.
Since ||wg||zs < €0, according to Theorem 1.1, there exists a global unique solution w € C;L3 N L} LS,
V(jw|?) € L}L2, and lwlle,Lsnice + IV]w|3 2

2
3 ||L$Lg < Cllwp]|zz- By the interpolation inequality, w €

_Ap
C,L3 and V(|w|?) € L2L2 deduce w € L7 L2, and

||U)|| e T < C”’UJQHLS < Ceg. (66)
p— LIP
Thanks to (2.8) and (6.3), we have
fol el (6.7
C,LENL? L? L3 C,LEnL L?
Combining with (6.6) and the interpolation theory, we deduce (1.16). O

7. Proof of Theorems 1.3

In this section, we give the proof of Theorems 1.3.
Proof of Theorem 1.3. Setting Z = u — v, we have

—AZ+div(-ZRZ+Z@u+u®Z)+(Z-V)v.+ (vc-V)z+Vrm, =0,
V. Z=0, (7.1)
Z(x,0) = Z,

By the Duhamel principle, we can rewrite the solution z into an integral formulation

t
Z(x,t) = e Fug — / e CIEPAiv(—Z @ Z+ Z @ u+u® Z)ds. (7.2)
0
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By the contraction mapping theorem, it’s easy to give the existence of the solution. Next, we only give
some a-prioi estimates.
When p = 3, by Lemma 2.4 and the method in Lemma 2.5, we get

[N

5 2 T
1Zllcrngengrs + [V (1218, < CillZollss + Call 213 1 + Co / (12l e llull o)t | - (7.3)
Tz 0

By the interpolation inequality, Holder’s inequality and Young’s inequality, we have

T ) % T N 3 2
| Qzhetaisae) < ([ (1215020 ulee)
T 1 3 2 2

< ([ 1zinzi oo

3 T 4
<120ys [ 120l

21 [T A
< e Zlngrs + g | 1Z0es ot

Combining with (7.3), by Sobolev embedding H*(R?) < LS(R?), we obtain

1
2

2

1
1

1Zlerssnnses + |V (1217)]], .

C T
< ClZollzs + Cl 2N L5 Lo + Cell Zllng.ro + ;3/ 1Z1 s llullzodt
0

< OZollzs + ClZEy y + e[|V (123)] ), + 5 °r 120
Taking Ce = %, using Gronwall’s inequality, we get
1Z0esssmnsis + [V (1212) |, ,, < CUZolzs + 121, pg)e o et (7.4
When || Zg||ps < (4C%e2¢ I ”“”if"dt)_l, by the continuity method, we have
1Zerssnsgss + |V (1ZR)|L, . < 2001 Zolne i it (7.5

Therefore, (1.17) holds with p = 3.
When p > 3, by Lemma 2.4 and the method in Lemma 6.1, we get

121, |V (2)]
CrLENLB L3P
2

T T
SCZO||LP+C< / <||Z||Lgp|ZLgp>2dt> +c</0 <||Z||Lgp||u||Lgp>2dt> (19

By the interpolation inequality, Holder’s inequality and Young’s inequality, we have

LZL2

2

' 2 : ’ 1 2 2
[ e @) < ([ (200 )
1
< |21 || s 120300l 20 5
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< |zl

4p
2p—3
L3

1
IIZIIE;;HUIILgp

LA L3P

< ellZllpn e + 5res

44L .

120 ] e

256 3

Combining with (7.6), using Sobolev embedding H'(R?) < L5(R?), we obtain

12, e+ |V (20))!
CrLENLJ L3

T
C
SCZo||Lp+C< / <||Z||Lgszgp>2dt> + CellZl 1 + 55

L% 12

Nl

1 4
12008 el 2 e

[N

1 4
+ 5 120 el | e

LZ L2

T
<CZ0||LP+C< / (||Z||L§PZL§P)2dt> oz |v (1z%)|?

Taking Ce = %, using Gronwall’s inequality, we have

Li”}.

2 —3
7z , HV(Z ) < (1Zllpe + T | 2|2 s Cllul|* 7
70t 7 02 = € (1200 2 75021 )

By the continuity method, when 4C2T % % | Zo|| L exp{2C||u|| "%, w5 - } < 1, we deduce

2p
T SLE

2
z e o+ [ (215)])7, <201 Z0l1is exp { Clull . 77
121, e+ [V (28], < 20020 eXp{ ey &
When || Zo||zr — 0, (7.7) implies (1.17) with p > 3. O
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8. Appendix

Proof of Lemma 2.6. Set
IT=—rt)?* | |w(t)] D 2w0; (wiw;)dz,
R3

I =—r(t)* [ fw( )"0 %w;0;(wv;)da,
R3

IV = —r(t)2 |w(-,t)|r(t)_2wi8j(viwj)dx,
RS

Vi=—r®)® | Jw O Pwdmda.
R3

Thanks to integration by parts, Holder’s inequality and Sobolev embedding H'(R?) < LS(R?) (the
best constant can be seen in [44]), we have

t 2
II = f( ) |w(.,t)|r<t>*2wjaj|w\2dg:

/ 05w Oy Pl

Combining (1.13) with ||wg||zs < ¢, there holds

11 < r(1)(r(1) ~ 20z [V (o))

According to Holder’s inequality, the Hardy inequality in Lemmas 2.2 and 2.3, we deduce

/ A (Jw(-, )" D=2 Jw|?v;dx
Y w(-, )] de

— r(B)(r(t) — 2) / ve - V(Jw(- 1)
()] "%

R3
IR
2 -
28 I

<2r(t)(r(t) — 2)K. ||V <|w(t)| B )’ 2

For the term 11, using integration by parts, we have

lzlvell o
L2

<r@r(®) - 2) |V (ko)

L (8.4)

IV = —r(t)? |w( )"0 2w i0j(viw; )dz

/ 9;(Jw(-, T(t) 2)wzvlw]dnc—i—r / |w(-, T(t) 29, jw;v;w;da.

The estimate of the first part is similar to (8.4). We have

)2/ 0;(Jw(, )"~ wiviw;de < dr(t)(r(t) - 2) i
RS

v (ju@) )]

L2’

T Birkhauser



5 Page 28 of 30 Y. Li et al. JMFM

By Lemma 2.2, Cauchy inequality and the Hardy inequality, we can estimate the second part as follows
)2/ \w(-,t)|r(t)_28jwiviwjdx
R3
2 =219 00l | 23]
<r(t)” [ fw(, 1)l |0 wil||z|v;| - da
R3 ||
>2Kc / (- O O2(0,0, Lz

]
2
S ‘rt) 2‘v ( )‘ dx + K/ | ‘rt) 2"[0( t)| N A S I8
|a:|2
r(f) 2 2 2 r(t)
< Ve, t)Pde + 20 (12K, |7 ()] LQ.

Therefore, we have

MO V(- 1) Pda

(8.5)
2 ) ||?
+ (@B - 2) + 2|V (lo) 5|
Note that the pressure m = — i L (wsw; + vsw; + w;v5), using integration by parts, we obtain
V= r(t)2/ 0 (Jw(-, )"~ )w,;rda
R3
2 r(t)—2 a 8
) . Oi(Jw(-, )] Yw; A L (vjw; + wiv; +wiw;) | da. (8.6)

This term is more complex to deal with, we will estimate it more carefully. Set

)2/ A (lw(-, )" D=2 )w; (—aiaj (viwj—l—wivj)) dz,
s A

)2/R3 ai(lw(-,t)|’“(t)_2)wi< 82 )dx.

According to [12], there holds |z|"~2 € A, with 1 < r < co. By Holder’s inequality, boundedness of the
Riesz transforms on weighted LP spaces (Theorem 9.4.6 in [12]), Lemma 2.2 and the Hardy inequality,
there holds

and

(1) r) | 0;0;
V< 2@ -2 [ |7 (lo601%)| w2 s + i) do
R3
—2 5—1 T
< 4r(@)r(0) = 2Cllal 7 (e @w) o | Tz |, 1901 e
s Lr—2
r_1
_2 w 2 T
< 4O (O = 2, lfelvelo el wllr | ]| 1901z

r

< dr(t)(r(t) = 2)Cr L IV (Jw(-,)]2)] 2

< 8r(t)(r(t) = 2)Cr K[|V (Jw (-, 8)[2)|1 72, (8.7)
where C,. is as in Theorem 9.4.6 in [12]. Thanks to [15], 99 f||pr < Hy| f||1-- Combining
with Holder’s inequality and Sobolev embedding H'(R?) < LO(R?), we have

Vo < 20 (0)(r(1) ~ DIV (ol ) o o )y || 22

]

W; W

L72
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r(t) r(t)

< 2r(t)(r(t) = 2)H o [IV(jw(, )] =)l [lw( O 7 oy llw @ wl] e
< 2()(r(t) — 2 H e [V (w5 o, Ol 5 ) o 0o
< r(O)(r(t) = 2)H e [V (o) %) L2 N, )] 2 g o, )
< Ar(8)(r(t) = 20 Hoae [V (jw(, 0] %) 3w, 1)l o
According to (1.13), when ||wgl|zs < €9, there holds
Va < 4r()(r(t) — 2)H 5. e[V ([l 0] F) 3. (8.8)
From the above estimates, we can finish the proof of Lemma 2.6. (]
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