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ABSTRACT

We study the problem of prescribing og-curvature for a
conformal metric on the standard sphere S™ with 2 < k < n/2
and n > 5 in axisymmetry. Compactness, non-compactness,
existence and non-existence results are proved in terms of the
behaviors of the prescribed curvature function K near the
north and the south poles. For example, consider the case
when the north and the south poles are local maximum points
of K of flatness order 8 € [2,n). We prove among other things
the following statements. (1) When 8 > n — 2k, the solution
set is compact, has a nonzero total degree counting and is
therefore non-empty. (2) When 8 = n— 2k, there is an explicit
positive constant C(K) associated with K. If C(K) > 1, the
solution set is compact with a nonzero total degree counting
and is therefore non-empty. If C(K) < 1, the solution set is
compact but the total degree counting is 0, and the solution
set is sometimes empty and sometimes non-empty. (3) When
n—22k < B < n — 2k, the solution set is compact, but the
total degree counting is zero, and the solution set is sometimes
empty and sometimes non-empty. (4) When 3 < n=2k there

2
exists K for which there exists a blow-up sequence of solutions
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with unbounded energy. In this same range of 3, there exists
also some K for which the solution set is empty.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the oj-Nirenberg problem on the n-sphere S™ (n > 3): Find a metric
conformal to the standard metric on S™ such that its oj-curvature is equal to a prescribed
positive function on S™.

Recall that, for a metric ¢ on S™, the og-curvature of g is defined as follows. Let
Ricy, R, and A, denote respectively the Ricci curvature, the scalar curvature and the
Schouten tensor of g:

_ 1 . Rg
Ag— n—9 (RZCQ—mg) .

Let A(A,) denote the eigenvalues of A, with respect to g. For 1 < k < n, the oj-curvature

of g is then the function o4 (A(Ay)) where oy is the k-elementary symmetric function,

or(A) = > A -+ A, Our equation of interest is thus
1< <ig

ok(A(Ay)) = K and A\(Ay) € T, on S™ (1.1)
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where ¢ is the unknown metric which is conformal to the standard metric, K is a pre-
scribed positive function on S™, and I'y, is the connected component of {\ € R™ : oy (\) >
0} which contains the positive cone {\ € R™ : A\y,..., A\, > 0}.

Let ¢ denote the standard metric on S™ and write the metric g as g, = vﬁé for
some positive function v. Note that

2
n—2

Ay, = Ay — v_lvgv + Qv_de ® dv —

n -2 20
m 2'U |dv|§g

2
(n—2)
Therefore, for 2 < k < n, (1.1) is a fully nonlinear elliptic equation for v. Similar
equations involving eigenvalues of the Hessian of a function were first considered in [5].

In a recent paper [22], we started our study of the o;-Nirenberg problem. We proved
an existence and compactness result in the case k > n/2 under the assumption that the
prescribed curvature function K satisfies certain non-degeneracy condition at its critical
points, which generalized a result of Chang, Han and Yang [6] for £ = 2 in dimension 4.
We refer the readers to [22] for a discussion of related works.

The compactness issue for the oj-Nirenberg problem as well as for the related -
Yamabe problem on compact manifolds when 2 < k < n/2 is a challenging open problem.
In the present paper, we study this issue in the restrictive setting of axisymmetry. Namely,
we view (S™,§) = {(2!)? + ... + (2"™1)?2 = 1} as the unit sphere embedded in R"*!
and suppose that the functions K and v depend only on § = arccosz"*!. In addition,
we assume that K has the following behaviors at the north and south pole: there exist
ai,az # 0 and (1, B2 > 1 such that if we write

K(0) = K(0) +a10”" + Ry (0) = K () + as(m — 0)°2 + Ry(6)

then

/ o /
RO RO | [Re(6)] I — B RY6)]
00 6|5 e |m — 6|P2

0. (1.2)

Our study is motivated by earlier works in the case k = 1 by Bianchi and Egnell [2],
Chen and Lin [8,9], and Li [17,18], where there is a qualitative difference in the analysis
when the exponents f;, 82 belong to (1,252), [252,n — 2), {n — 2} or (n — 2,n). To
keep things simple and without losing depth, we focus our discussion in this paragraph
to the case aj,as < 0 and B = B2 = . When n — 2 < 8 < n, the solution set
of (1.1) is compact, and the total Leray—Schauder degree of all solutions is —1. When
”T_2 < B < n—2, the solution set of (1.1) is compact, and the total Leray—Schauder degree
of all solutions is 0. When § = n — 2, the solution set of (1.1) is compact provided ¢ # 1
for certain explicit positive number ¢ depending only on aq,aq, K(0) and K (7), and the
total Leray—Schauder degree is —1 when ¢ > 1 and 0 when ¢ < 1. When 8 < "7_2, there
exist functions K for which (1.1) has a blow-up sequence of solutions with unbounded
energy.
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Table 1

A summary of results for max{ ”EM ,2} < B1,B2 < n.

Table 1(a): a1,a2 >0 Table 1(b): a1 > 0 > a2
Thm. 1.1, 1.2 Thm. 1.1, 1.2, 1.3
Compactness T Compactness T
Degree —1 Degree 0
Existence T Existence T/F

Table 1(c): a1,a2 <0

1 1 2 1 1 _ 2 1 1 2
BT E <= BT B T o BT B > noz
Thm. 1.1, 1.2 Thm. 1.1, 1.2, 1.3, 1.4 Thm. 1.1, 1.3, 1.4
Compactness T Compactness * Compactness T
Degree -1 Degree —-1/0/7 Degree 0
Existence T Existence T/F Existence T/F

T = True. F = False.
T/F = Sometimes True and Sometimes False.
* = Sometimes True. ? = Unknown.

Our present work extends the above results to the case £ > 2. When 2 < 1,832 <

n—2k there exist functions K for which (1.1) has a blow-up sequence of solutions with

unbounded energy; see Theorem 1.5. For max{ "_22k,2} < pBi1,P2 < n, our results are
summarized in Table 1. In Table 1(a), when aj,as > 0, we have that the solution set
is compact, the total degree for second order nonlinear elliptic operators is equal to —1
and (1.1) has a positive solution. In Table 1(b), when a; and ay are of different signs, the
solution set is compact, but the total degree is equal to 0. In this case sometimes (1.1)
does not have a solution and sometimes it has a solution. If K is strictly monotone, (1.1)
has no solution in view of the Kazdan—Warner-type identity. We also give examples of
Ks for which (1.1) has positive solutions. Let us describe Table 1(c) which concerns the

case a1,as < 0 in more details. The analysis is split according to how é + é compares

2

to pra; Y

e When é + é < n_22k, the solution set is compact, the total degree is equal to —1
and (1.1) has a positive solution.

e When é + é > ﬁ, the solution set is compact, the total degree is zero, and the
existence of positive solution to (1.1) depends on the particular K at hand: there are
examples of K’s which give existence as well as those which give non-existence for
(1.1).

e When % + é = n_22 -, there exist functions K for which the solution set is compact
where the total degree can be —1 or 0. Clearly, when the degree is —1, (1.1) has a

positive solution. There are examples of K’s for which (1.1) has no solution. It is not
known if the compactness of the solution set holds for every K.
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For any integer m > 0 and 0 < a < 1, let C)*(S™) and C™*(S™) denote the spaces
of C™ and C™* axisymmetric functions on S™, respectively.

In the statement of the next two theorems, let C(1y = Cy 1(B1,a1,K(0)), Cp) =
Ch k(B2,a2, K(m)) when a1, as < 0, where

1

1 21“(71)5% ’ n(n — 2k)
OB )= 5 [\a\m%m%] or ok

<fB<n,a<0,s>0.

Theorem 1.1. Let n > 5,2 <k <n/2,0<a <1, K € C>*(S™) be positive and satisfy
(1.2) for some ay,as # 0 and 2 < By, B2 < n. Assume that

(i) if B; < ”_2% for some i € {1,2}, then a; > 0, and

iy —2k
(ii) of i + ﬂ% = n_22k, "(n"Jr%) < B1,B2 <n, and ay,as < 0, then

C1)Ca) # 1. (1.3)

Then there exists a constant C > 0 such that all positive solutions of (1.1) in C2(S™)
satisfy

|| 1nU||C4,a(§n) <C.

See Remark 4.2 for detailed statement on how C depends on the function K. See
Subsection 4.2 for further compactness results involving a family of K’s.

We make a comment on condition (1.3). In the case k = 1 and 1 = o = n — 2,
a similar condition was given in [18]. The relevance of this condition in the study of
compactness issues is shown more clearly when one considers a family of K’s in (1.1).
More precisely, for any positive K € C%%(S™) satisfying (1.2) with % + é = ﬁ,
"E::Qik) < B1,82 < m, aj,az < 0 for which C(1)C(3) = 1, there exists a sequence of
positive functions {K;} C C%*%(S™) which satisfies (1.2) with 81; = B1, B2y = So,
Ca,i) — Cay, Ciy — C(2) and which converges in C?%(S™) to K such that there
exists a blow-up sequence of positive solutions to (1.1) with K replaced by K;. This is a

consequence of the homotopy invariance property of the degree and the degree counting
formula in Theorem 1.2 below. The proof is similar to that of [18, Corollary 0.24] in the
case k = 1. Our analysis also shows that such sequence of solutions blow up at both the
north and south poles; see the proof of Theorem 4.4 or Lemma 4.5.

For k = 1, analogous compactness results were proved by Li [17,18] and by Chen and
Lin [9]. Roughly speaking, compactness of the solution set was obtained in [18, Theorem
0.19] when n — 2 < (1,02 < n, in [18, Theorem 0.20] for f; = B2 = n — 2, and in [9,
Theorem 1.2] for ”T_Q < B1,P2 < n satisfying é + é # % We remark that when
k=1 and é + 5—12 = % the corresponding compactness result also holds but is not
available in the literature except for the case 1 = 2 = n — 2 mentioned above. We will
publish this result elsewhere.
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As a direct application of the above compactness result and available degree compu-
tation (see [6,17,22]), we have:

Theorem 1.2. Assume that n,k,a, K, a1, as, 1, B2 and C be as in Theorem 1.1. Then

deg (ak()\(Agv)) _K, {v € ChS™) 1 v > 0,M(Ay,) € T, | Inv]| oo sny < o}, o)
(—1 ifal,a2>0,

0 ifar <0<ag oras <0<a,

-1 ifal,a2<0andé+5—l2<ﬁ,

-1 ifal,a2<0,é+é:ﬁ, and C(l)C(g) > 1,
0 ifal,a2<0,é+é:ﬁ, and 0(1)0(2) <1,

0 ifal,a2<0andé+ﬁ—l2>ﬁ.

\

Here deg is the degree for second order nonlinear elliptic operators as defined in [10].
In particular, in the cases where the resulting degree is non-zero, (1.1) has at least one
positive solution in CH%(S™).

Our next two results concern the case the total degree is zero, i.e. when a; and ao are
of opposite signs, or a;,as < 0 but é + é > ﬁ or ﬁl—l + é = ﬁ and C(1)C(z) < 1.
In these situations, the existence of solutions depends on the particular K at hand. Our
next result shows that for any given signs of a; and as and any given values of (1, 82 > 2,

there exists K for which (1.1) has a solution.

Theorem 1.3. Assume that n > 5 and 2 < k < n/2. For any given signs €1,e2 € {—1,1}
and constants (1, P2 > 2, there exist some non-zero constants ayi,as with sign(a;) = &;
and a positive function K € C2(S")NC,(S™\{0 = 0,7}) satisfying (1.2) with the above
a;’s and (3;’s such that (1.1) has at least one positive solution in C*(S™).

On the other hand, as mentioned earlier, if K is monotone in one direction (which
implies that a; and ay are of opposite signs), (1.1) has no solution in view of the Kazdan—
Warner-type identity (see [12,26], and also Section 2). Our next result asserts that for
any 2 < 1, B2 < n satisfying é + é > ﬁ, there exists a function K with aq,as <0
for which (1.1) has no solution.

Theorem 1.4. Let n > 5 and 2 < k < 5. For any given 2 < p1, B2 < n with é +

51—2 > 2 there exists a positive function K € Clm”g_[’g](S”) NCX.(S™\ {0 =0,7}),
B = min{ S, B2} satisfying (1.2) with the above 1, B2 and some ai, az < 0 such that

(1.1) admits no positive solution in C*(S™), with or without azisymmetry.

When k = 1, a similar non-existence result of axisymmetric solutions was proved by
Bianchi and Egnell [2, Theorem 0.3] under the assumption n(n";;) < B1, B2 < n and

é + é > %, and by Chen and Lin [9, Theorem 1.3] under the assumption £y, B2 > 1
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and

1 + A > —2_. Under certain monotonicity of K, it was shown in
min{S31,n} min{Bz,n} n—2
Bianchi [1] that the axisymmetry of K implies that of solutions for the prescribed scalar
curvature equation. These results together give the counterpart of Theorem 1.4 for k = 1.

Our next theorem is a non-compactness result when 2 < 81 = 85 < ”_T%

Theorem 1.5. Let n > 5 and 2 < k < 5. For any given 2 < f; = B2 < * Qk , there exists
a positive function K € CPLA=IAl(S™)y N O (S™\ {0 = 0,7}) satzsfymg (1.2) with aq
= ay < 0 and a sequence of positive solutions {v;} C C2(S™) of (1.1) such that, for some
constant C > 0 depending only on n and 3,

2n 1
Clnlnrréaxvi > /vi"z dvg > Elnlnrréaxvi — 00.

Sn

For k = 1, the existence of blow-up sequences of solutions was proved by Chen and

Lin [8, Theorem 1.1], though without an estimate on the rate of blow-up for [, v;" n-3 dvg
as in our result above.

An ingredient in the proof of Theorems 1.1-1.5 is a fine analysis near a blow-up point
in rotational symmetry. Consider in By C R™ the equation

oA 4 ) =Kpus MA 4 )eTDy in B, (1.4)

n—2 n—2
u; Jflat U, Jflat

where u;(0) — co and Kg,. € C*%(B,) satisfies for some 2 < 3 < n the condition
Kpue(r) = Kgue(0) + ar® + R(r) (1.5)

with |R(r)| + 7| R (r)| = o(r®) as » — 0. We give in Theorem 3.1 a description of u; as a
‘sum of bubbles’ as i — co. To keep things simple in this introduction, let us state here
a consequence of it instead of the full result.

Theorem 1.6. Let n > 5 and 2 < k < §. Suppose that Kpy. € C?*%(By), 0 < a <1, is
positive, rotationally symmetric and satisfies (1.5) for some a # 0 and B > 2. Suppose
that u; € C?(By) are positive, rotationally symmetric and satisfy (1.4) and that u;(0) —
oco. Then:

2n

(i) When 252k < B3 < n, the integral fB w2 dx is bounded as i — 00.
(i) When 2 g B < nZk

C(n,k)
27|

o

KEuc(O)i 2k

li
oo InIn 1w, (0) ln 4:(0) /

for some constant C(n, k) > 0 depending only on n and k.
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We note that, when ”_T% < f < n, the sequence {u;} contains exactly one bubble,

ie. f B, u;TnQ
pending only on n and k. When g =
bubble. (See Theorem 3.1.) It is interesting to understand whether {u;} can contain two
or more bubbles.

When k = 1, statement (i) in Theorem 1.6 was proved by Li [17] for 8 > n — 2 and
by Chen and Lin [7] for 252 < 8 <n — 2.

The rest of the paper is structured as follows. In Section 2 we derive some useful

dx converges to C(n, k) K pgyu.(0)~ 2k for some positive constant C(n, k) de-

n—2k " we know that {u;} contains at least one

integral identities for the oj-Nirenberg problem in axisymmetry. These integral identities
contain the well-known Pohozaev identity as well as some other identities which we refer
to as mass-type identities (see subsection 2.2). In Section 3, we give a fine analysis of near
a blow-up point for the o;-Yamabe problem on Euclidean balls. In Sections 4-8, we use
the local analysis above to prove Theorems 1.1-1.5. We include also an appendix where
certain integrals used in the body of the paper are computed in terms of the gamma
function.

2. Preliminaries

In this section we give some equivalent forms of (1.1) for positive v € C?(S™) and
derive some useful integral identities, among which is the Pohozaev identity.

We let r = cot g, t = Incot % and express g, as a metric conformal to the Euclidean
metric or the round cylinder metric:

gy = 1}(9)ﬁ (d6? + sin® Oggn—1) = u(r)ﬁ (dr? 4 12ggn-1) = e 2O (dt? 4 Ggn-1).

Define Kpgyc(r) == K(0) =: K¢y ().

We will use a prime and a dot to mean differentiation with respect to r and t respec-
tively.

One can explicitly express u in terms of v as follows. Let ® : R™ — S™ be the inverse
of the stereographic projection:

) 2t 2 _q
Zziforizl,...,n, andx"“:L'
L+ [y]? ly|2 +1
Then
n—2
(—2 ) Kpye =K o® (2.1)
u = v\x), uc — o) , .
(%) 1+ [y]2 (z) E

and (1.1) is equivalent to

O'k()\(Au)> = Kgue, )\(Au) €Iy in Rn, (2.2)
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where AY is the matrix

2 n 2 n 2 n
u_ni_gv2u—‘r— i U_%du®du_ —u_fj‘dU/IQI'

i (n — 2)2 (n—2)2

Likewise, with r = |y| and ¢ = In |y|, we have

2
E=— 5 Inu—Inr, Keyi(t) = K o ®(€',0,...,0), (2.3)

n —

and (1.1) gives

FL[€] = Koy and |€] < 1 in (—o0,00), (2.4)
where
_ ) ; — %% .
Rl= g (f ) a- @@ R e ). e

The condition (1.2) is equivalent to the condition that

Koyt = Keyi(00) +2%1ae7 P 4 o(e™P17) as t — oo,
Koyt = Keyi(—00) + 272a0eP2" 4 o(e??) as t — —o0,
with the error terms being controlled up to and including first order derivatives.

We note a simple property of the equation (2.4) which we will make use of later on:
There exists a constant  depending only on n, k and an upper bound for K.,; such that,
for ¢ satisfying (2.4),

if £(t) > & and £(t) = 0, then £(t) < 0. (2.6)

2.1. Pohozaev-type identities

For ¢ € C%(R), following [25], define

e = ()i e

Then H has the property that, for —co < t; < ty < 00,

to

H(E(t2),E(t2)) — H(E(t1),E(0)) = —n / (Fulé] — DeSE dt. 2.7)

ty
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We will also consider the quantity

H(6.8) = g ()40 - €)1 = Kol (28)

As a consequence of (2.7), we have, for —oo < t; < tg < 00,

H60.£0)| = [ [~ 0l - Kope "6~ Repe e (29)

If ¢ satisfies (2.4) and &(t) — |¢t] is bounded in (—o0, 00) (e.g. if £ is related to a solution
to (1.1) via (2.1) and (2.3)), we have H(t,£,€) — 0 as t — 400 and (2.9) gives

H(t,&,€) = /Kcyl —n&(7) dT—/Kyl(T —n&(7) g, (2.10)

Equivalently, if we let u be related to £ via (2.3) and define

—1)*2k n\ o 20w prul fru k n 2n
HEuc(’f’,U,U/) = 7((71 _)2)% (k>7°n 2k "n=z [7(7 +n— 2)} — Kpye(r)r'un=z,

then
Hpue(r,u,u’) /KEUC(S )n = dS—/KEuC u(s)" "2 " ds. (2.11)

The identities (2.7), (2.9), (2.10) and (2.11) are known as Pohozaev identities for the
ok-Yamabe equation. See [3,24] for the case k = 1, [12,26] for k > 2.

2.2. Mass-type identities

More generally, one is interested in finding smooth functions B, P: R xR x (—=1,1) —
R such that

to
= /Fk[g]P(T,g,f) dr for all —oo <t; <ty < o0, (2.12)

ty

)t to

B(t,&,¢)

1
i.e.

d : :
B(1,6,6) = Fule]P(1,6.6)
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Let A(t,z,y) be such that 9, A(t, z,y) = e***(1 — y*)*"1P(t,z,y) where z and y are
dummy variables standing for & and £&. We compute, using (2.5) and then integrating by
parts,

to
/ FLle)P(r,€,€) dr
t1

to

= 2k1—1 (Z : 1) / [31,14(7'75,&:)5—1— z

1 —1 .
— e (j 2y )Awed

_ . - _ 9k . .
(1) [ [ oamed - aamedier "5 0,06 90 - )] ar

2k o, A(r, 6,61 - )] dr

t=tq

t=t;

Hence, to obtain (2.12), we impose that A satisfies the first order PDE

— 2k
2k

—O Az, y) — yOs At 2,y) + —— (1 — y2)0, At z,y) = 0in {|y| < 1}.  (2.13)

l—l—y — _
— 2k In — = const, x

—~—In(1 — y*) = const}. The general solution to (2.13) thus takes the form

The projected characteristic curves of (2.13) are given by {t +

B koo 14y k )
A(t,x,y)—G<t+n_2k1nl_y,x n—2kln(1 Y ))

for an arbitrary smooth function G : R? — R. Putting things together we have

n—2k(n k 14+¢ k 90\ [F=t2
Lok _ In(1 —
2kn (k)G<t+n—2k 1—5’5 n — 2k n(l—=¢ )>‘t:t1

to

_ Fl¢] k 1+4¢ k .
- [ e (o g -

t1

k 1+¢ k

— 2k 1_5’5 n — 2k

+é‘8mG(r+ - In(1 —5‘2))}dr. (2.14)

We have therefore proved that, for any smooth function G : R? — R, the following B
and P satisfy (2.12):

n—2k (n k 1+y k 9
Blt,a,y) = "o (k)G(H T R n(l—y )),
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1 k I+y k 9
P(t,z,y) e%x(l—yQ)k{atG<t+n—2k nl_y,m —Y> n(l—y*) )+

: k 1+y k 9
1 — In(1 — .
+§awG<t+n—2k:n1—y’x n— 2k a( y))}

n —(n—2k)x
n—2k €

Example 2.1. It is readily seen that the choice G(t,z) = in (2.14) implies

the Pohozaev identities (2.7) and (2.9).

Example 2.2. We will also use in the proof of Theorem 1.1 the choice G(t,z) =

2 e ¢ (1=2) | This gives the quantity

n—

n

m(t,€,€) = ﬁ (k) (14 £(t))re™ =" e+

and the identity, for —oo < t; <ty < 00,

mit &) = [ Bl - & 0D e T (215)

If ¢ satisfies (2.4) and &(t) + |¢| is bounded as t — —oco, we have m(t,&,€) — 0 as
t — —oo and (2.15) implies

t

n+2k€ n—2k
€

mit6.d) = [ Fle - &0 Ve e T (216)
We will refer to identities (2.15) and (2.16) as mass-type identities.

Example 2.3. For further reference, we also note that the separable ansatz P(t,x,y) =
P (t)P2(z)Ps(y) leads to the choice G(t, z) = —2e(m=20)(brte) This gives the quantity

1

myo(t,&,€) = o1,

(n) (1 o éi)—k(b-i—c)(l + é)—k(b—c)e(n—Zk)(bg—i—ct)
k

and the identity, for —oo < t; <5 < 00,

to
maelt &) =2 [ B H (14§ HO e 0 4 0)x
ty

% e((n—2k)b—2k)§+(n—2k)c7’ dr.

It is readily seen that taking b = —1 and ¢ = 0 gives the Pohozaev identities, and
taking b = —1 and ¢ = 1 gives the mass-type identities.
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3. Local blow-up analysis
Consider in By C R"™ the equation (1.4), i.e.
O’k()\(Au>) = Kgye, )\(Au) €Iy in By

where K g, € C?>%(By) satisfies (1.5) for some 2 < 3 < n. In this section, we study the
behavior of a sequence of positive rotationally symmetric solutions {u;} of (1.4) with
u;(0) — oo.

As in the previous section, we work with cylindrical coordinates. Let ¢t = Inr, £(t) =
——2-Inu(r) —Inr, and K.y (t) = Kguc(r). Then &(t) + ¢ is bounded as ¢t — —oo0,

Fk[g] = Kcyl and |£| < 1lin (—OO,II]?),
and
Koy = Keyi(—00) + 2%aePt 4 o(e?) as t — —o0, (3.1)

with the error term being controlled up to and including first order derivatives.
Throughout the section, let
1
n\ 2%
()
Note that solutions to Fj[E] = 1 and |E| < 1 in (—oo, 00) satisfying H(t, E, E) = 0 are
given by

t

=(t) = —In —° —ln<2

BT e

D=

—_ et 1(n 2"
E(t)::(f+1n)\):—lnm—ln<22 (k) >forsome)\>0.

Theorem 3.1. Let n > 5 and 2 < k < n/2. Suppose that Kgy. € C**(Bs), 0 < a < 1, is
positive, rotationally symmetric and satisfies (1.5) for some a # 0 and B > 2. Suppose

that u; € C?(Bsg) are positive, rotationally symmetric and satisfy (1.4) and that u;(0) —
0o. Lett =Inr, &(t) = ——25Inu;(r) —Inr and X; = 2732 (Z)_ﬁKEuC(O)ﬁui(O)"%.

(a) One has for some C depending only on n and K gy that

) ; 3
& > —C and |&] +|&] < C in (—oo,In 5) (3.2)
Furthermore, for every e; — 0%, R; — o0, after passing to a subsequence, one has

that & — 0 and, 0 < £ <2,

L[t~ Et + 1) - I Kipo(0)]| < el e in (oo, ). (33
o |6 = n\; 57 0 K Euc <egXetin oo,n)\i. )
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In particular, &(In42) = InR; + O(1) — oo and there exists t1; = —InA; + o(1)
such that & < 0 in (—oco,ty ;) and & > 0 in (t14,1n ];—Z)
Let

tg’i = sup {t € [751,170] : fl >0 in (tl,i;t)}-
Then, for large 1,

B
n — 2k

o = —max {1 — ,0} In\; + 0(1) >t (3'4)

é:i >0 1in (tlﬂ',tgﬂ') and

,fz(t) — E(t + ln )\z>

< O(1) in (—00,ta.:). (3.5)

Furthermore, if B < n — 2k, then a < 0.
Suppose 2 < < n—2k. Then, for large i, t2; <0, €Z<t21) =0, and &(tzz) < 0. Let

tgﬂ' = sup {t S [t27i,0] : fl <0 1n (tzﬂ',t)}.

Then
20
t3’i = —max {1 — P 2/{70} In\; + 0(1) > tgﬂ' (36)
éi <01 (tg,i,tg,i), and
- 28 .
. _= _ N < . . .
&)~ E(t+ (1 - —=) A | £001) i (ta, 1) (3.7)

| In(1—- 255

If2 < p < "’22’“, then, for large i, there exist N; = {MJ > 2 and 2N;

critical points of &;,

tl,i < tg’i < t37i < t471‘ <...< tZNi,i = 0(1)

with
o p 20 -1
taei = (1= —)(1 = =) " InAi + 0(1),
28
= (1= , 1
t25+1’l ( n—2k) ln)\Z+O( ),

such that & < 0 in (taeirtarr1i), & > 0 in (tars, tarso) and

fz(ﬂ — E(t — t2g+1,i) S O(l) n (tgg’i,t2g+2,i) fOT 1 S £ S Nz — 1.
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w;

1/C

Fig. 1. A profile of w; = r%ui vs. t = Inr with N; = 3 when 8 < "_T% The gap between the peaks
decreases exponentially to O(1) in N; steps. The pieces above the line w = 1/C are close to the standard
bubbles.

Furthermore, for every € > 0, there exists R. > % independent of i, such that, for
any £ satisfying |taey1:| > Re, we have

_ 1
Hgl(t) - ‘:'(t - t2€+1,i) - % In KEUC(O)ch[t2£+1,i_1/5:t2£+1,i+1/8] <e.

Here |O(1)| < C, independent of i and £ and €, and o(1) denotes a term which goes to 0
as 1 — 00.

A schematic sketch for the conclusion in (d) is given in Fig. 1.

Corollary 3.2. Under the hypotheses of Theorem 5.1, when [ < "_T% we have

1 20 .
/ui"_2 dx — Cln, k) Kpgyuc(0)" 2% as i — oo,
Inln A; |In(1 — —22.)|

B, n—2k

where C(n,k) > 0 depends only on n and k. Furthermore, along a subsequence, &;
converges in C% (—00,In2) to some &x € C%(—00,In2) satisfying Filéoo] = Koy and
léso| < 1 in (—00,1In2) and there exist critical points of &,

0>t0,oo>t1,oo>---_>_oo

with

2p

It <C
n—2k) O00f =

26

n — 2k

)tmo (-

>_1(1 - )_th,oo S Ca

SUCh that foo S 0 n <t2j+2,007t2j,oo); 500 Z 0 n (t2j+1,oo;t2j,oo) and

‘Eoo(t) — Z(t —t2j41,00)| < C in (t2j12,00,t2j,00) for j >0
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for some constant C' > 0. Finally, for every ¢ > 0, there exists R, > %, such that, for
any j satisfying |[t2j+1,00| > Re, we have

- 1
Hgoo(t) - ‘:(t - t2j+1700) - ﬁ In KEUC(O)H02[t2j+1,oo—1/6,t2j+1,oo+1/€] <e.

3.1. An oscillation estimate

We will make use of the following oscillation estimate for sub-solutions to the og-
equation.

Lemma 3.3. Assume that n > 5 and 2 < k < n/2. There exist large constants & > 0
and Cy > 0 depending only on n such that if € is C? and monotone in some interval
[t1,t2] C (0,00) and satisfies

0< Ful6] <1,1€| <1, and € > & in [ty ta],
then

to —t1 > |&(ta) — &(t1)| > ta — t1 — Cop. (3.8)
For future reference, we state also here an equivalent version in Euclidean setting.

Lemma 3.3’ Assume that n > 5 and 2 < k < n/2. There exist a small constant eg > 0
and a large constant C depending only on n such that if u € C*(B,, \ B,,) is positive,
rotationally symmetric,

or(AM(AY)) <1, MNAY) €Ty, in B, \ By,

n—=2 n—2

= u(r) is non-increasing (or non-decreasing, resp.), and r{* u(ry) < g, then

n—2

Ty “u(re) 1 u(rs)
1<2 2 < — < <1 ..
< <¢ (rosum st )

Proof. By considering £(t) = &(—t) instead of ¢ if necessary, it suffices to consider the
case £ is non-decreasing.

The first inequality in (3.8) holds due to the fact that 5 < 1, so we only need to prove
the second inequality.

By (2.6) and the fact that Fj[¢] < 1, there exists a constant & depending only on n
and k such that, whenever £(t) > Z and £(t) = 0, it holds that £(t) < 0. Without loss of
generality, we assume that & > Z in [t1,t5]. Since £ > 0, this implies that

f(t) > (0 and §(t> < g(tg) for t € [tl,tg). (39)
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For z,y € R, let

— 1
H(x,y) = ce® 71 — y2)k — e where ¢ = o" (Z)

By (2.7) and the fact that F[¢] < 1 and € > 0 in [ty, t5], we have

CH(E.€) = —ne "S(FlE] ~ DE > 0in [11,1].

Therefore

H(E(t),&() < H(E(t2), £(t2)) < H(E(t2),0) for t € [t, ). (3.10)

By the explicit expression of H, by increasing z if necessary, we may assume that
H(-,0) is decreasing and positive in (Z,00). For z < = < a, define

n—2k

ga(x) =1— C_%eTm(ﬁ(a, 0) + e_”””)%.

Then g,(a) = 0, and by the monotonicity of H(z,0),

n—2k

ga(z) >1—c ke F “(H(z,0) + e ™))% =0 for z € [Z,a).

Using the explicit expression of H and the fact that 0 < & < 1, we can rewrite (3.10)
as

> Ge(t2) (&) in [t1,t2] provided &(t1) > Z. (3.11)

Claim. There exist constants C > 0 and &y > & depending only on n and k such that

a

d
K <a—xz+C for& <z <a. (3.12)

V9alpr)

Clearly (3.9), (3.11) and (3.12) imply, for & > & in [t1,t2], that

T

&(t2)
d
to—t1 < | ——e < E(ty) — £(t1) + C,

Ve (t2) (1)
eity V)

which gives the right half of (3.8).
Using the inequality (1 + z)% <1+ 2% for 2 > 0, we have for all z < z < a that

=

1— ga(x) _ en—k2k (x—a) (1 - C—16—2ka + C—le—ngg+(n_2k)a> %
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=

n—k2k(

< " F(ama) (1 n C—le—nx+(n—2k)a> <e ! —m+<’?—2k>a>

z—a) (1 +c ke

—2k
N G N P

In particular, we can choose &y = &y(n, k) such that, for {g <z <a—1,

n—2

1—ga(z)<e® Hlama) 4 ke 2 < oM fom ke 20 < 1,
This implies that there exists a constant C' = C(n, k,&p) such that

1

1
V9a()  /T— (1 galx))

On the other hand, by enlarging &y and C' if necessary, we have for a —1 < x < a that

<1+C( 2 (2 @) 4 =2 )y for g <z <a-1.

1

go(z)=1—¢
-y 1
>1—e® @9) <1 + ¢ lem ko (gnla—a) _ 1)) > 6(@ —x).

Combining the above estimates, we have for {§y < x < a that

a

1+O "t (u—a) —2“)}du+/

a—1

Cdu

a —

!

[ )

ga—x—i-C(n,k),
which gives the claim, and hence completes the proof. O

3.2. Proof of Statement (a) of Theorem 3.1

By first and second derivative estimates for the ox-Yamabe equation (see e.g. [11,
Theorem 1.1], [20, Theorem 1.10]), to prove (3.2), we only need to show

ui(r)rn%2 < C, (3.13)

where here and below C' denotes a constant depending only on n, k and K pgye.

The proof of (3.13) is a standard argument using the Liouville-type theorem [15,
Theorem 1.3] and the symmetry of w;.

Suppose by contradiction that (3.13) does not hold. Then, we can find y; € Bs/, such
that |y;| "2 wi(y;) — oo.

Let 7; = |yil/2, i € B, ,(y;) be a point where (r; — |y — yi) "= ui(y) attains its
maximum in By, (y;), and s; = (r; — |7; — vi|)/2 € (0,7;/2]. It is clear that
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n—2 n—2 n—2 n—2
s; % wi(yi) > 27 2 r; 7 ui(y;) = oo and max wu; <272 wi(y).
Let
. 1 _ 2 2
Ui (z) = muz (yi + ui(y;) "2 z) for |z| < s;ui(y;)»—2.

Then 4; satisfies

T (MAY (2))) = Kpue(@i +ui(§:) "7 22), MA%) € Ty in {|2] < s us(7:)7 2 }.

By first and second derivative estimates for the o;-Yamabe equation and the Liouville-
type theorem [15, Theorem 1.3], we thus have, after passing to a subsequence, that ;
converges in C? _(R™) to a limit 4. of the form

-2
A~

() = bu(as + ]z — 2T

for some positive constants a., b, and some z, € R"”.

On the other hand, the rotational symmetry of w; implies that, for every ball
B, (y) C Bs,(y:), the level set {u; = u;(y)} intersects 0B, (y) non-trivially. Applying
this to balls centered at y; + ui(gi)_%z* and sending ¢ — 0o, we obtain that the level
set {ll. = U.(2«)} intersects every spheres centered at z,. This is impossible as z, is a
strict maximum point of u,. Estimate (3.13) is proved.

Now, define

1

—u;(\ 1) f R™.
Ui(o)u()\Z z) for z €

i(z) =
By first and second derivative estimates for the oj-Yamabe equation and the Liouville-

type theorem [15, Theorem 1.3], we may assume after passing to a subsequence if
necessary that @; converges in C? _(R") to

n

Ur)=(1+7r2)" "2,

Furthermore, for every ¢; — 0T and every R; — oo, after passing to a subsequence, we
have

@i — Ullc2(Bg,) < &i-

This gives precisely estimate (3.3). The last assertion of (a) also follows.



20 Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198

3.3. Proof of Statement (b) of Theorem 3.1

Note that by (a) with e;R; — 0, we have &(t) > 0 in (t;;,In & 32). Clearly, by the
definition of g ;, if 2 ; < 0 is finite, §Z(t2 i) = 0. Furthermore, we have for ln o<t <ta,
that

&(1) > G(n(R/A) = Ry — 0(1), (3.14)

It follows from property (2.6) that & < 0 at every critical pomt of & in [ln L tg,;] for
large 7. In particular, for large i, &; is strictly increasing in [In £ SEta, ;) and, if tg i <0is
finite, then as fz(tz i) =0, 13 (t2,) < 0.

Estimate (3.5) follows from (3.3), (3.14), the monotonicity of & and Lemma 3.3.

Let us now prove (3.4) and, when 3 < n — 2k, the negativity of a. For ¢ € (In %, t2.i),
we have by the Pohozaev identity (2.10) that

t

1 _ e DRVE _ o
ok </<:) [1 —&(t) } 672k51(t)Kcyl(t) — o(n—2k)&i(t) / Keyi(T)e &(7) 7.

Recalling (1.5), we see that K., (1) = —a2%e’7L(r) for some bounded function L satis-
fying L(7) — 1 as 7 — —o0. Hence, using (3.3) with £ = 0 in the interval (—oo,In %),
(3.5) in the interval (In %’,t) and noting that &;(t) =ln\;+t4+0(1) > In R;+O(1) — oo
as 1 — oo, we have

1= +o)

‘ B nize (M e ptB2—1
= —(1+ o(1))e(n=2M& (1) \ P2 39B+ 5 (k) K Bue 0)/ T

(3.15)

Since the right hand side of (3.15) is —eo(l)ae("_%)t)\?_%_ﬁ (by (3.5)) and (3.15)
holds for all ¢ € (In };—Z,tgyi), we have that t2; = O(1) when 8 > n — 2k and to; =
—(1- m))‘i + O(1) for f < n — 2k, which gives (3.4). In addition, by considering the
sign of the left and right sides of (3.15), we have that a < 0 when g < n — 2k.

3.4. Proof of Statement (c) of Theorem 3.1

Note that when 3 < 2222 Statement (c) is contained in Statement (d). We consider
here only the case ”_T% < B < n — 2k and leave the case ”_2%
Statement (d).

We have seen that to; < 0, fz(tzl) =0 and §Z(t21) < 0.

to the proof of
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Since & > —1, we deduce from (3.5) that

25
n — 2k

(1) > Eilta) — (t— ta) > —(1 - ) InX\ —t—O(1) for t > to;.  (3.16)

As 8 > ”_2%, estimate (3.16) implies that, for every & > 0, there exists 3; = O(1) >
ta; such that & > & in (t24,13,). In view of (2.4) and (2.6), when & is sufficiently large,
the function &; in the interval (t2.i,13) has the property that, whenever fz(t) =0, it
holds that Sl(t) < 0. Note also that &(t) < 0 for t > t; and close to ta; (because
éi(t27i> = 0 and £Z<t21) < 0). These two properties imply that & < 0in (t2.i,t34). In
particular, t3; > f3,; and so t3; = O(1), which gives (3.6). Estimate (3.7) follows from
Lemma 3.3 applied in the interval (t2;,3,) and the fact that |£| < 1lin [t3,,t3.]-

3.5. Proof of Statement (d) of Theorem 3.1

Suppose 2 < 3 < ”_T% Recall from (b) that a < 0. For simplicity, we assume instead
of (3.1) that K., (t) = 1 — |ale®* in (—o0,0). The proof in the general case where K.,
satisfies only (3.1) can be done by restricting attention to a small ball By and an easy
accommodation for error terms.

Note that K., (t) = 1 — |ale® is decreasing and so by the Pohozaev identity (2.9),
the functions H(t,&;,&;) are increasing. Noting that H(t,&;,&) — 0 as t — —oo (since
&(t) + t is bounded as t — —o0), we thus have that H(t,&;,&) > 0 in (—o0,0].

Hence, by estimate (3.2) and the Pohozaev identity (2.10),

t
0< tl}r—noo sgp H(t,&,&) < tl}I_nOOC / | Kyt dT =0, (3.17)

where here and below C' denotes a constant which remains independent of i.
Recall that all solutions to Fj[E] = 1 in (—oco, c0) satisfying H(t, E, E) = 0 are of the
form

E(t) = Z(t +In\) for some A\ > 0.
This implies:

Lemma 3.4. Let &; satisfy Fil&] = K; and |§Z| < 1 in (—o0,ln2) where K; €
C?(—00,1n2) satisfies

sup (sup )(I In K ()] + | K ()] + | K;(t)]) < oo
i te(—o0,ln2

For every co € R, if s; <0, &(s;) — co, H(si,fi(si),&(si)) — 0 and, for some 0 < S; <

|si|7
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lim K;(t+ s;) =1 for all t < liminf S;,
i—00

1
then ¢y > min=Z = In <2_% (Z) 2’“) and there exists T; — oo such that, after passing to a
subsequence,

— ~ JjZ Zf Sz — 00,
(t+s) —Z+)czir 71y < 0, T = ) .
&t + 1) (t+Dlle (=T, T3) { Si if S; is bounded,

where t are one of the two solutions of Z(t) = co if co > minZ and t = 0 if cg = min Z.

In the sequel, we fix some & > min = which is larger than the constant &, in Lemma 3.3
and the constant Z in (2.6), and has the additional property that

For any C? functions &, if ¢ satisfies £(t) > & and £(t) = 0

1 . (3.18)

then 2e~(=2R)EO) <2k (Y TTH (¢, £(t),£(2)) < em(nm2REW®),

By Lemma 3.4 and in view of (3.17), there exists mo > 0 depending only on (n, K, &)

such that, for each i, the number N; of points s < —mjg such that &(s) = & and &(s) < 0

is non-zero and finite. We label these points as s1; < s2; < ... < SN, i By the same

lemma, if we let m{, > 0 be the solution to Z(—mj) = & with Z(—m}) < 0, then for every
e > 0, there exists R. > % independent of ¢ such that for any ¢ satisfying |s,,| > R.,

1 (t + se,i) — Z(t —mg) [ c21-2/c.2/¢] < € (3.19)

It is readily seen from (3.19) and (2.6) that & (&) N (—oo . 8§, T 9mg/4] comprises
of s1; < s{; <25 <85, < ... <sg,,; <sg . and§

1,055 tyN, 14 such that

st ] has critical points

|( Oo? N

S1i <ty < SY; <ta <S5 < ... <SG <tog o < Sy, <tay,_1,; < Sy,
Si < 0in (—OO,tLi) and (t2g7i,t2g+17i), and @ > 0 in (tgg_lﬂ',t%,i), forl1 </ < NZ — 1.
Furthermore, (3.7) holds.

By Statements (a) and (b), we have that a < 0, t1;, = —InX\; + 0(1), ta; = —(1 —
L )In); + O(1), and &(t2;) = =2 In A, + O(1).

To conclude, we need to show that there exists 1 < N; < N; — 1, N; = | ——5—=

such that

Inln )\, +O(1) J

|l(1 nfk

(1) tgg’i = —Qy In >\Z + O(].) for 2 S 14 S Ni7
(ii) topy1,i = —(C!g — ")/g) In\; + O(l) for1</¢<N;—1,
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< (C, independent of ¢ and ¢, ay = (1 — n_ﬁzk)(l - n%—%k)e_l and v, =

where |O(1)
2 )¢=1. Note that by applying Lemma 3.3 to the intervals [ta/;, 201 1] and

|
B B
n—2k (1 T n—2k

[t20+1.i, t2e42,i], we obtain from the above that

&i(t) = &i(tae1,i) —t+taer1,i +O(1) = —(ar —ve) In \; —t + O(1) in [tor 4, t2r41.4],
§i(t) = &iltars1,i) +t —toryr,i +O(1) = (. — ye) In Xg + ¢+ O(1) in [tagi14, toes2,4]-

In other words
&i(t) = E(t — targ1,:) + O(1) in [tar i, tortai]-

To prove (i)-(ii), we use the following lemma, which is of independent interest and
can be applied in a situation more general that what is described above. (Note that no
assumption at —oo is assumed in the lemma.) Recall that &, is a constant larger than
the constant &, in Lemma 3.3 and the constant z in (2.6), and has the property (3.18).

Lemma 3.5. Let a < 0 and 8 € (0,n — 2k) and suppose Koy € C*%(—00,In2), 0 <
a < 1, satisfies (3.1). For every given constant D > 0, there exists some large M =
M (n, Key, D, &) > 1 such that if € € C?(—o0,In2) satisfies F}[€] = Keyi(t) and |€] < 1
in (—o00,In2), and if t,. < 0 is a critical point of £ satisfying

—(n = 2k)¢(te) — D < Bt +&(ts) < =M,

then £(t.) > &, £(t.) < 0, and there exist critical points t, < tuy1 < teio <0 of & such

that €(tun) < In (275 (1)%F ) + 4, €(tra) > G0, E(ten) > 0, E(turz) < 0, € < 0 i
(tartug1), € >0 in (tuy1,teys), and

ta1 — (B + &) < M, (3.20)
tHQ—(l—nfzkﬂm+f@Qw§AL (3.21)
£() — E(t — tig1)| < M in [ta, tiyo], (3.22)
— (n = 2k)E(tis2) < B(tata + E(ti2)), (3.23)
(s Elts)) = (L= 20 b+ €(1))| < M. (3.24)

Once this lemma is proved, we can obtain the conclusion as follows. Take D = 0 and
fix M as in the lemma. First, we have for all large ¢ that

—(n = 2k)&(ta,i) < Blta; + &itas)) < —M.

Let N; be the largest number in {2,... N, — 1} such that S(tae; + &i(tar:) < —M for

1 < /¢ < N,. Applying the lemma repeatedly with ¢, =t9,; < 0 for 1 < ¢ < N;, we have
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25
n — 2k

(toet2,i + &i(tarta2)) — (1 - )(t%,z’ +&i(toei))| < M. (3.25)

(Note that if NV; = N, — 1, the lemma also gives the existence of another local maximum
point tyy. ; € (s .,0) of &.) This implies for 2 < ¢ < N; + 1 that

28 -1 — n— 2k
bati + &i(tae)) — (1 — o+ &ilta))| < M i < M.
(tae,i + &ilt2e4)) — ( n_%) (t2,i + &ita Z:O n_% 25
Since tg ;+&i(t2,:)+ (1— ng) In \; is bounded as ¢ — oo, we thus have for 1 </ < N, +1
that
28 ¢
toei + &i(t2e, 1- il < C, 2
20 + €iltaea) + (1 = —=) c (3.26)

where C' is independent of ¢ and ¢. Returning to (3.20) and (3.21) (still with ¢, = tas),
we see that the declared properties (i) and (ii) hold.

To finish the proof, we show that N; > HT 1(n1>‘ +O(1)J . N;. (Note that tyx, s > —C

for some C' independent of i and topy2,; — t2r41, 2 m0/4 for all ¢, this estimate gives
Ny = N; + 0(1) = | 2lnditod) | )
In(1— =50

In view of (3.26) with ¢ = N; and the fact that S(tan, i + &i(tan, i) < —M, we only
need to show that ton, i + &i(tan, i) > —C for some C independent of i. By (3.25), it
suffices to show that ton, 2. + & (tan,+2,:) > —C. To this end, we may assume without
loss of generality that S(tan, 42, + &i(tan,+2,:)) < —M, as otherwise there is nothing to
prove. By the lemma, we can find critical points ton, 12 < tan, 43, < tan,+4,i < O of
¢ where &(tan,42,i) > &y > &(tan,+3,i) and £<0in (tQNi+2’i,t2_Ni+3,i).. In particular,
there exists sy, 42 € (tan,+2,i,tan,+3,i) such that &(sn,42.) = & and &(sn,+2,i) < 0.
By construction of the sequence {sy;}, we have sy, 12, > —myg. It follows that ton, 43 >

—my. Recalling (3.20) with ¢, = ton,+2,;, we thus have ton, 12, + &i(tan,+2.4) > —C as
wanted. Theorem 3.1 follows. O

Proof of Lemma 3.5. In the proof we will frequently use the function H defined in (2.8)
and the Pohozaev identity (2.9). For convenience, we write H (t) :== H(t,£(t), £(t)).

For simplicity, we consider again only the case K., (t) = 1 — |ale’t.

As in (3.2), there exists C' = C’(n, K¢y;) such that

£€>—C"and [¢] + |€] < C" in (—o0,In g)

By Lemma 3.4, there exist mo > 10mj, > 0 depending only on (n, K, &) such that
If s < —my satisfies £(s) = &, &(s) < 0 and |H(s)| < 1/myq then there
exist s > s’ > s such that £(s”) = &, £(s') =0, £(s') >0, £ <0in[s,5), (3.27)

€>0in (s,5"], 3m)y/4 < s' —s < 5m)/4and Tm)/4 < 5" — s < 9m}) /4.
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In the sequel, M is a large constant which may need to be enlarged at a few instances
in the proof but will depend only on n,a, 3, D,C’ and &.

Since —(n —2k)&(t,) — D < —M, we may take M sufficiently large so that £(t,) > &.
As £(t,) > & and £(t,) = 0, we have by (2.6) that £(t,) < 0 and ¢, is a local maximum
point of £&. We will show the existence of t.,1 by showing that £ will decrease to the
value & and appeal to (3.27).

Define

S0 = sup {t € [t.,0) : &(t) > & in [t*,t]}.

Since £(t) < 0 for t > t, and close to t,, we have by (2.6) that £ < 0 in (t,, so). Applying
Lemma 3.3, we have

E(ty) — (t— ) < E@1) < E(t) — (t—t,) 4 C for t € [t s0], (3.28)

where Cy > 0 is the constant in Lemma 3.3. Taking ¢ = sg in (3.28) and using the fact
that B(t. + £(t.)) < —M, we obtain, after possibly enlarging M, that

1 _
S0 < te +E&(te) — E(s0) + Cop < —BM—ﬁo—i-Co < -—mpy <0,

which implies that £(sg) = & and

(te +E(t) — €0 < 80 < (te + E(t)) — &0 + Co. (3.29)

To use (3.27), we need to estimate H(sg). On one hand, by (3.18) and the relation
—(n —2k)¢(te) — D < Bt + £(t)), we have

L (1) o~ (n—2kye(t L (m\ b _st.+e.
O<H(t*)§2_k(k>e (n—2k)¢( )Sg_k:<k;>e Bt AE(E)

On the other hand, we have

(3.28),(3.29) ’a’ﬁe(n+ﬁ)(éo+co)
<

eBt+E(t)
n+ 0

S0
0< —/Kcyle_"5 dr
t*

Thus, by the Pohozaev identity (2.9) and the fact that S(t. + £(t«)) < —M and by
possibly enlarging M,

S0
0 < H(sg)=H{(t.) — /Kcyle_"E dr
Ty

n+B)(E9+Co
s ( 1 <n) p , lalB el )>€5(t*+§(t*)) <« 1 (3.30)
mo

2k \ k n—+p
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Therefore, by (3.27), there exist §1 > t.y1 > 8o such that £(sy) = &, & (ta11) =0, £ <0
in [sg,txt1), £€>0in (tig1,51], 3my/4 < tuy1 — so < bmy/4 and Tm(/4 < 51 — 59 <
9Imy /4.
Clearly, (3.20) follows from (3.29) and the bound sg 4+ 3m{/4 < t.11 < so + 5my /4.
From the above, we know that £ > 0 in (t,41,s1). Define

tito = Sup {t € [s1,0) : £(t) > 0 in [sl,t]}.

Note that & > & in [s1,t.12], and so by (2.6), € > 0 in [s1,t,42). We will show that
when M is suitably large, t.;2 < 0 and hence ¢, 9 is a critical point of &.

By Lemma 3.3, (3.29) and the fact that £(s1) = & and so+7mj/4 < 51 < s9+9m) /4,
we have

E— (b +E(t) — C S EW) <t— (b +6(t)) +C in [s1,tupa],  (3.31)

where here and below C' denotes a positive constant depending only on n, a, 8, D, C", &,
Co and myg. This together with (3.20) and (3.29) gives (3.22) after possibly enlarging M.

Let us now estimate H(t.42) in terms of ¢, + &£(¢.). By the Pohozaev identity (2.9),
we have H(t.i2) = H(sg) — f;;” K e ™€ dr. Using (3.29) and the inequalities —C’ <
¢ < & in [sg,s1] and Tmgy/4 < s1 — so < 9my( /4, we have that

é Alt+e(t /Kcyle 8 dr < CePlbtEt)), (3.32)

S0

By (3.31), we have

and so, as § < n,

tego
0<— / Keyie " dr < CePltHEt)), (3.33)

S1

Putting together (3.30), (3.32) and (3.33), we thus have

1

aeﬁ(t*-l-ﬁ(t*)) < H(typo) < CePl-tE)) (3.34)
Recalling the expression of H in (2.8) and using t = t,42 in (3.31), we obtain

( -1 : 3.34
1A g <n) (=Rt Fr(p ) (D ) %e(”‘%)t*ﬂe—<"—2’“‘ﬁ)(t*+5“*))
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which, in view of the fact B(t. + £(t«)) < —M, leads to

n—2k—_

n—2k—p
2 Pt ret) O < -

—  B(n—2k)
As f < n — 2k, the right hand side of (3.35) can be made negative by enlarging M.

Recalling the definition of .2, we thus have &(t,42) = 0 and, by (2.6), &(ts42) < 0.
As E(tugs) > E(s1) = & and E(t.42) = 0 and in view of (3.18) and (3.34), we have

tyio < M +C. (3.35)

L (b 4 €(0)) ~ C S Elter) S — L (1 (1) + O,
and, in view of (3.31) with t = t,yo,
— 2k — — 2k —
P R et) ~ O < tan < 2 P e + 0

These give (3.21). They also give
232
n — 2k

(1-- fﬂzk)(t* FE(8)) = C S beya + E(tura) < (1-

(n = 2K)E(taya) + Bltaya + E(tar2)) = — (e +&(t4)) = C,

23
n — 2k

)(t* E(L)) + C.

In view of the fact that B(t. + £(t«)) < —M, by enlarging M one final time, we obtain
(3.23) and (3.24) as desired. O

4. Compactness estimates: proof of Theorem 1.1
In this section, we give the proof of Theorem 1.1 together with some extensions.
4.1. Proof of Theorem 1.1

By first and second derivative estimates for the oj-Yamabe equation (see e.g. [11,
Theorem 1.1], [20, Theorem 1.10]), it suffices to show that

v < C) for all positive C? solutions v of (1.1)

where C depends only on n, k and K. Suppose by contradiction that there exist positive
functions v; € C2(S™) satisfying (1.1) such that maxv; — oo.

Let u; : R™ — R be related to v; as in (2.1). As u; is super-harmonic and rotationally
symmetric, the maximum principle implies that u;(0) is the maximum of u; in any closed
ball centered at the origin. Recalling (2.1), we have

2 "
for all "\ {N 4.1
1—|—COSd§($,S)> or all w € STA{N}, (41)

vi(w) < vil)(
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where N and S are respectively the north and south poles of S™. In particular, v; <
2”2 v;(S) in the lower closed hemi-sphere. Likewise v; < 2”2 v;(N) in the upper closed
hemi-sphere. As maxv; — oo, this implies that

max{v;(S),v;(N)} — oo. (4.2)

Throughout the proof, C' denotes some generic positive constant which may change
from one line to another but will remain independent of 7, O(1) denotes a term which is
bounded as i — oo, and o(1) denotes a term which tends to zero as i — oc.

Step 1: We show that

n—2

Ui<.’L')dg($, {N7 S})T <C,
and
IV Inv;(x)|dg(x, {N, S})* < C for £ =1,2. (4.3)

These estimates follow from Theorem 3.1(a) and (4.1).

In the next step, let as and P2 be as given in (1.2), t = Inr, & be related to u; as in

(2.3) and A, i= 275 (1) K () u(0) 77 = 28 (1) K(S)Frvy(5) 72

Step 2: Making use of Pohozaev-type and mass-type identities, we show that if v;(S) —
00, then as < 0, and, for large 7, there exist

_(1—_B2_
§; = O\ U mme), (4.4)

282 )

v; = 60(1))\;(1in72k (45)

such that &; is strictly increasing in (In Ij—:, In ¢;), is strictly decreasing in (In d;,Inv;), has
a strict local maximum at In §;, and

B2

fl(ln52> = Y ln)\i+p2+0(1), (46)
&(t)=InX;+t+0O(1) in (In %,ln 9i), (4.8)

_ 202 o . o
&) =—(1- — 2k)ln)\z t+ O(1) in (Ind;,Inv;), (4.9)

where
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n—2%k
1 wioe (m) 2 D(2P2)p(nthz) L
N 1 [2B2+ 5 2 2 —}
Pr= o <k) Ty eelBRS) T,

1

n 2% )
g2 :=—1In [Qﬁ (:) K(S)*ﬁ]'

If 5 < n — 2k, the negativity of as, and estimates (4.4), (4.5), (4.8) and (4.9) follow
from Theorem 3.1(b) and (c¢). Using the fact that &; is now defined on all of R (rather than
(—00,1n 2) in Theorem 3.1), the same proof can be used to treat the case n—2k < g < n.
Estimate (4.6) will be obtained by using & (Ind;) = 0 in the relevant Pohozaev identity.
Estimate (4.7) will be proved using a mass-type identity. Let us now give the details.

Proof of (4.8).
By Theorem 3.1(a), for every ; — 0" and every R; — oo, after passing to a subse-

quence, we have for 0 < ¢ < 2 that

t

&i( t)+1

)\2 2t k )\z )

‘dtf[ +ln<2%(n)21’“K(S) >”<62)\€ ot n (- OO,ln&
(4.10)

Note that by (4.10), &(t) > 0 in (In &,In 4). Let

2 . 2
N :£ >0in (In )\—i,lns)} € [Ri)\; h, o).

Clearly, if d; is finite, & (Ind;) = 0. Furthermore, we have for Inf& < ¢ <Iné; that

4.10

&() > &(n(R/N)) > R, —O(1). (4.11)

It follows from property (2.6) that & < 0 at every critical pomt of & in [In 5% B n gy
for large 7. In particular, for large ¢, &; is strictly increasing in [ln L. In é;) and 'if 9; is
finite, then as &(Ind;) = 0, &(Ind;) < 0, and Ind; is a strict local maximum of &.

Estimate (4.8) follows from (4.11), the monotonicity of ¢ and Lemma 3.3.

Proof of the negativity of ay and estimates (4.4) and (4.6).
As in the proof of Theorem 3.1 (see (3.15)), we have for ¢t € (ln 2. 1nd;) that

1-07? +o)

_(1 + 0(1)>e(n—2k)5i(t)/\i—ﬁzazﬁ2252+%% (n) _lk /
0

’I’L+B2 1

k 1+ 7r2)n
Using Corollary A.2, we get

[1 . gl(t)ﬂk + 0(1) _ _(1 + 0(1))e(n—2k)§i(t)A;ﬂ2e—(n—2k)p2_ (4_12)
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Since the right hand side of (4.12) is —eo(l)age("_%)t)\?_%_ﬁ2 (by (4.8)) and (4.12)
holds for all ¢ € (In %’, Iné;), it follows that §; is finite and, in view of the definition of
8, &(Ind;) = 0. In particular, we can also take ¢t = Ind; in (4.12), yielding the assertion
ay < 0 and estimates (4.4) and (4.6).

As ag < 0, item (i) of the hypotheses of the theorem gives 5o > n_T%

Proof of estimates (4.5) and (4.9).
The proof is similar to the proof of Theorem 3.1(c). We omit the details.

Proof of estimate (4.7).
We start by using the mass-type identity (2.16) and the fact that &(Ind;) = 0 to
obtain

1
e%(—ﬁi(ln di)+Inéd:) _ 2k_1n<z> m(lnd;, & (Ind;), éi(hl i)

In d;

-1
- 2’“_171(:) / Koy(T)(1 = &)~ Ve " e

(4.13)

We proceed to estimate the integral on the right hand side of (4.13). The integration
over (—oo,In £4) can be estimated using the continuity of K and (4.10) with &; < R;®
and Corollary A.2:

L2}
In

n+2k§‘ n—2k
%
€

/Kcyl(T)(l—éi)_(k_l)e_ e, 2

n+2k o0
n—2k+4 [T 4k n_ok _ n—2k pn—1
=(1+o0(1))2 + K(S)" = X, * ————dr
(o™ (1) 7 K(S) [
1 n-2kta (N nI:k n—ok _ n—2k
=(14o0(1)=2 =+ <k:) K(S)" = X, ?* . (4.14)
n

To estimate the integration over (In f—:, In §;), we need to bound (1—&;)~* =1 Recall
from Step 2 that & > 0 in (In %,ln 8;). Let X; = €26(1 — £2) > 0, which is, up to a

7

harmless multiplicative constant, the repeated eigenvalue of the Schouten tensor of g,,.
Note that (2.4) can be recast as

_ . n—2k i (n—=1\""
XPle® g + — = X7 =2 1</<,»_1) Koy

Thus, there exists a small yo > 0 depending only on n, k£ and a positive lower bound for
K such that &(t) > 0 whenever X;(t) < xo. As X; = —2£;(e26&; + X;) and & > 0 in
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(In I;—;,ln 8;), this implies that X;(t) < 0 whenever X;(t) < xo for t € (In 5% fi In ;). On

_2B2_
the other hand, since X;(Ind;) = e@MWN\"~2F > Xo (in view of (46) and &(ln 9;) = 0),
we deduce that X; is nowhere less than yq in (ln &,Ind;), i

X; > xo in (In %,lnéi).

It follows that 1 — & = - > %6_2& in (In %,ln d;), and so, in view of (4.8),

1+§z
Ind;
/Kcyz M1 = &) F e e T dr
In 5
In 5,
<C / e EEHG I g < ORIINT T (4.15)
Ry

Putting (4.14) and (4.15) into (4.13) we obtain (4.7), which concludes Step 2.

Step 3: We draw a contradiction.

By (4.2), we may assume without loss of generality that v;(.S) — co. By Step 2 and
point (i) of the hypotheses, we have that 8 > ”_T% We consider the cases 82 > n — 2k
"_2% < B2 < n — 2k separately.

and

Case (a): B3 > n — 2k. We will show that a; < 0, é + é = 2 and that (1.3) is
violated, which amounts to a contradiction to our hypotheses.

We first prove that v;(IN) — oco. Indeed, by (4.9), the oscillation of &;(t) — ¢ in [0, c0)
tends to infinity as ¢ — oo. This gives 0SCgn Inv; — co. Now, if v;(N) was bounded, we
would have by (4.1) that v; is uniformly bounded away from the south pole, and hence,
by the Harnack estimate, |VInwv;| < C on S7, which is a contradiction to the above
estimate on the oscillation of Inv;.

The rough idea of the proof is as follows: Let A; = 272 1 (%) _1/2K(S)%UZ-(S)ﬁ — 00
and \; = 2_§+1(Z)_1/2K(N)%vi(]\f)% — 00. We apply Step 2 to both the north
and the south poles to obtain that & has exactly three critical points, is decreasing
in (—oo,—In\; + o(1)), increasing in (—In\; 4+ o(1),1Ind;), decreasing in (Ind;,In\; +
o(1)) and increasing in (InX\; + o(1),00), and that ﬂ% + é = —2-. We then show
that the 4-vector V; = (In \;, In i &(Ind;),Iné;)7 satisfies a linear equation of the form
MYV; = P + o(1) where the 4 x 4-matrix M and the 4-vector P are independent of i.
It follows that P is orthogonal to the kernel of M7, which gives C1)C2) = 1 where
Cay = Cpx(B1,a1, K(N)) and Cg) = Oy 1(B2, az, K(5)).

Let us now give the details. Applying Step 2 to S, we have as < 0 and there exist
9; and v; satisfying (4.4) and (4.5) such that &; is strictly increasing in (ln &,Ind;), is
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strictly decreasing in (Ind;,Inv;), has a strict local maximum at Ind;, and (4.6)—(4.9)

hold. Applying Step 2 to N, we have that a; <0, 51 > ”’22’“, and there exist

5, = O3t (4.16)
- (1—2P1
5; = O3 ) (4.17)

such that & is strictly decreasing in (—Ind;, —In %)7 strictly increasing in (—In#;,

—In Sz), has a strict local maximum at — In Si,

s = s
&i(—Ino;) = — In\; +p1 + o(1), (4.18)
&(—1nd;) =In X +Ind; + q1 + o(1), (4.19)
&) =InX; —t+O(1) in (— lnSi,ln%), (4.20)
_ 261 5 : _ .
&) =—(1- 2k>1n>\i+t+0(1) in (—Ino;, —Ind;), (4.21)
n —
where
n—2k
1 iz (n) 70 D(252)0(240) n
e B1+ 2 2
pP1 = n— Qk h’l |:2 2 (k) 2F(TL> |CL1|/61K(N) 2k )

N = OWJ T, (4.22)

.. . —2k
This implies that 8; > *5=.

Note that, by (4.10) and the definition of §; and v;, & is strictly decreasing in
1++(1)), strictly increasing in (In H/\L,(l), In d;), strictly decreasing in (Ind;,Inv;),

and has exactly two critical points in (—oo,Iny;) at lnp%(l) and Ind;. Now, since

Ba >n — 2k and B > =25 we have by (4.4) and (4.17 that
2

253
n — 2k

(—o0,In

P2
n — 2k

)Ind; € O(1) <Ind; = —(1 — )In \; + O(1).

= (1

Since &; is strictly decreasing in (—Inz;, —In &) and 51(— In Si) = fi(ln 9;) = 0, we have
that Ind; = — In d;, which implies (in view of (4.4) and (4.16))

\~-7) _ €o<1);\§1—%), (4.23)

(3
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Substituting (4.22) into (4.23), we obtain that

N
B1 P2 n—2k

(4.24)

Now, let V; = (In);,InA;, &(Ind;), Ind;)” and observe that (4.6), (4.7), (4.18) and
(4.19) give a linear system of the form

_n€22k 0 1 0 b2
-1 0 1 -
MV; = P + o(1), where M = 3 and P = |
0 - 1 P1
0 -1 1 1 @1

T n—2k n—2k
kernel of M7 is generated by Wy := (”522’“, -1, "Efk, —1)T". The fact that MV; = P+o(1)
implies that P - Wy =0, i.e.

A straightforward computation gives that det M = 5152 (— 2 _ 4+ é + %) = 0, and the

Recalling the expression of p1,p2,q1, g2, we see that this is equivalent to C(1)C(p) = 1.
However, since (4.24) holds and aj,as < 0, we have by our hypotheses that (1.3) holds,
which is contradiction to the above identity. This finishes the proof when 5 > n — 2k.

Case (b): ”_T% < fa < n—2k.
Take a point p on the equator of S™. Recall that v;(S) — oo. By Step 2, we know

that v;(p) — 0. Let v; = %(mvi. By the first and second derivatives estimates (4.3), after

passing to a subsequence if necessary, we may assume that ©; converges in C’ZIO’E‘(S” \
{S,N'}) to some positive function Use € C1(S™ \ {S, N}) which satisfies

loc

MA,y, ) € 0Ty in S™\ {S, N} (4.25)

in the viscosity sense. Note that as ”_2% < B2 < n — 2k, we have in Step 2 that ; — 0
and v; > &. Hence, by estimate (4.9) in Step 2, there exists r; = O(d;) — 0 such that

& <0 <Cin{a:r; <dg(z,S) < m/2}. It follows that

1

ol <0 < C near S. (4.26)
We proceed according to whether v;(N) is bounded or not. Suppose first that v;(N)

is bounded. Then supg; v; is also bounded (see (4.1) and the sentence following it). The

estimates in Step 1 are thus improved to

v (z)dy(z, {S})nT_2 < O and |V Inv;(z)|dg(z, {S})" < C for £ =1,2.
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It follows that the function ¥, satisfies
)\(Ag%o) € Ol in S™\ {S}.

In view of the Liouville-type theorem [19, Theorem 1.3], this is impossible: No such U,
can satisfy (4.26).

Finally, consider the case that N is a blow-up point. In view of Case (a) above, by
exchanging the role of the north pole and the south pole, we may assume that "‘T% <
B1 < n — 2k. The proof of (4.26) also applies near N giving that

1

5 S0 <CinS"\{S,N}.

By the classification result [21, Theorem 1.6], no axisymmetric solution U, to (4.25)
satisfies the above inequality. This finishes the proof of Theorem 1.1. O

The following remark is easily seen from the above proof:

Remark 4.1. If max(a,as) > 0, the constant C in Theorem 1.1 depends only on an
upper bound of |ai|, |az|, |a1]7, a7, (n — B1) 7L (n— B2)7 L, || In K||g2.0(gny, and a
non-negative function ¢ : [0, 7/2) — [0, 00) such that ¢(f) — 0 as  — 0 and

[R1(0)] + 0] R1(0)]
|9|51

[R2(6)] + |7 — 0]|R3(6)] b(n
|m — 0|P2 -

< ¢(0) and — ).

If - 4+L 2 and a1, as < 0, the constant C; depends only on an upper bound of
pr - o2 T 2 -1 —1 1 1 2 -1
|CL1|,|CLQ|,|CL1| ,|CL2| ) (n_ﬁl) a(n_BQ) 9 ||1nK||Cf’°‘(Sn)7 |E+E_ n72k| 7and
a function ¢ as above.

If % + é = ﬁ and ay,as < 0, the constant C7 depends only on an upper bound

of |ail, |azl, |ar|~ ! Jao|™Y, (n = B1) ™", (n = B2) 71, [ In K| 2.0 (gny, [C1yC2) — 1|71, and
a function ¢ as above.

4.2. Some extensions of Theorem 1.1
In many situations, we will often consider (1.1) in a family of equations of the form
k(A (4y,)) = K, and A(A4,,) € Ty on S™ (4.27)

where K, depends on a certain parameter ;¢ in some index set /. Analogous to (1.2), we
will assume that there exist a1 ,, a2, # 0 and 2 < 3, 82, < n such that if we write

K,(0) = K,(0) + a1 ,0°+ + Ry ,(0) = K,.(7) + ag (7 — )72 + Ry ,(6)

then



Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198 35

|1 (0)] + 101155, (O)] | Ro,u(0)] + [ — 6]|R5 ,(0)]
= lim sup

00 ,er |¢9|51#‘ 0—=m el ’7T—0|”82v“

=0. (4.28)

Remark 4.2. It is not hard to see from the proof of Theorem 1.1 that if each K, satisfies
the hypotheses of Theorem 1.1, % <laiul,laz,u| <C,|n—PFul,|n— Bo,ul > %, |Bllu +

/321,u - 22| > &, and [Kullczegny < C for some constant C', then there exists a

constant C7; > 0 such that all positive solutions to (4.27) with p € I satisfy

H ln’UHC4,a(§n) < (.

Furthermore, if max(ay,,,a2,) > &, the assumption that |m + can

be dropped.

1 _ 2 ‘>
N -

1
B2 n—2k C

To prove Theorem 1.2 later on, we embed K in a family {K,} in two specific ways for
which Remarks 4.1 and 4.2 do not apply. Let us now show how the proof of Theorem 1.1
can be adapted to cover those situations.

Theorem 4.3. Assume thatn > 5,2 <k <n/2,0< a <1, K € C>%(S"™) is positive
and satisfies (1.2) for some ay,a2 # 0 and 2 < (1,52 < n. Assume further that a; > 0
if Bi < ”EZk for some i, and max(ai,as) > 0 if % + é > n_z%. For p € (0,1], let
K, =pK + (1 — p)27* (Z) Then there exists some positive constant Cy such that all

C2(S™) positive solutions to (4.27) with 0 < u < 1 satisfy

H anHC"él,a(STL) < (1.

Proof. The proof is almost identical to that of Theorem 1.1. We will only indicate the
necessary changes. We suppose by contradiction that there exists p; € (0,1] and positive
functions v; € C2(S™) satisfying (4.27) with u = p; such that

max{v;(N), v;(S)} — oo.

There is no change to Step 1.
Step 2 is modified as follows: One shows that if v;(S) — oo, then ay < 0, 53 > ”_T%

. . o), ~ =z \~ (1= 7h%) o), ez \~ (1= 7thr
and, for large i, there exist §; = e )ﬁ%' TN "= and v; = €9 )ui TR "

such that &; is strictly increasing in (In 1/\%—;, In 6;), is strictly decreasing in (Ind;,Inv;), has

7

a strict local maximum at InJ;, and

165}
In )\ —
n — 2k nAi n — 2k

&(Ing;) = In p; + pa + o(1),

2
&) =InX\+t+0O(1) in (In T,lnéi),
202

&lt)=- n — 2k

Inp; —(1— YInX; —t+ O(1) in (Ind;, Inv;).

n — 2k
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The appearance of u; in the above is due to the fact that, in the present case, one needs
to include a multiplicative factor of p; on the right hand side of (4.12).

Step 3 is modified as follows. If ”_T% < By < n — 2k, the proof remains unchanged.
If By > n — 2k, one still has that v;(N) — oo and v;(S) — 0, (11,(12 <0, [ > ”’T%,

51 5 - (-2 - ~(1- %)
6; = 0; " and \; = 9N, " Recalling that §; = 9y, "~ 2'“)\ noEk

5. — 60(1)Mfﬁ;\f(1*nflzk)

and

, one obtains that

Bi1+B2 | 28182
< +2452
n—2k n—2k __ O(l)
A = ,uz <0

This implies ,6’_11 + é > ﬁ By our hypotheses on the signs of a; and ag, we thus
have max(ai,az) > 0, contradicting the earlier conclusion that a; and as are both
negative. 0O

Theorem 4.4. Assume that n > 5,2 <k < n/2,0 < a <1,0<e <1, {K,} is
a bounded sequence of positive functions in C*“(S™) which satisﬁes (4 28) for some
g0 < arpas, < —go < 0 and 252 < /Blyu,ﬁg’u <n—eg, /31 + BQM —2—. Let
Cayp = Cn (B, 01,4, K,(0)) and 0(2 = Cpn k(B a2, Kpu(m )) and assume further

that either

(i) 5111“ + 621# > nEQk and C(l)’MC(Q)“u <1—¢g

or

(i)

< m and O(l) MC(Q) > 1+eo.

Then there exists a constant Cy > 0 such that all C2(S™) positive solutions to (1.1)
satisfy

|| 11’1’U||04,a(gn) < (.

Proof. We amend the proof of Theorem 1.1, and we will indicate only the necessary
changes. We suppose by contradiction that the conclusion fails. By passing to a subse-
quence, we may assume that there exist u; — oo and positive functions v; € C%(S™)
satisfying (4.27) with g = p; such that

max{v; (), v;(S)} — oc.

Let v; = =2k 1 n=2k _ 9 Passing again to a subsequence, we may further assume

that v, > 0 for all 1 or fyl < 0 for all 3.
Steps 1 and 2 remain unchanged. In Step 3, we again have that both the north and
the south poles are blow-up points, §; = 5; 1 and
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&(Iné;) = nﬁi‘;k In A; + pa,, +o(1), (4.29)
&(Ind;)) =In\; +1nd; + g2, + 0(1), (4.30)
&i(—nd;) = Bi“;ﬁk InA; + p1,p., +o(1), (4.31)
E(—nd;) =InX; +1nd; + q1p, +o(1), (4.32)
where
n—2k n—_PBs , n+pB2
P2 = _n—12k n [252,#@% (Z) o gér)(l;z() - )’ag’“yﬁz’“K“(S)_%]’

n 2k
Q2. = — ln[2z<7f—2z’2><7;) KM(S)—ﬁ}

no2k S n—=p, n+p1,
o e (1) IO
2I'(n) o

Prp:==""5F BI,MKM(NY%]’

n+2 2k
ql,“ = —]_n |:22(n+772kk:) <Z> KM<N)_ﬁ:|_
Now, adding (4.30) and (4.32) gives

26;(In6;) —In X, —In\; = g1, + qop, +0(1).

Multiplying (4.29) by ";% and (4.31) by %;—ik and adding the resulting identities to-

62,#1 Mg

gether give

~ n — 2k n — 2k
(2 + 'yz)@(ln (Sl) — lIl )\z — ln /\z = 7]917[” —|— 7})27% —f- 0(1)
B, Bo,u;
Recalling that &;(Ind;) = B 244 In \; — oo, we thus have in the case of non-negative 7;’s
that
L n — 2k n — 2k o
0 < lminf [T b+ T i~ 2| = min IniCln O )

and in the case of non-positive ~;’s that

. n — 2k n — 2k .
0 > lim sup [7]917,% + ——D2u; — Qs — QQ,M} = lim sup ln[C(l),uiC(Q),ui]-
71— 00 Bl,ui 62,“1‘ 71— 00

These contradict our hypotheses. 0O
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. 1 1 _ 2
4.8. Second proof of Theorem 1.1 in the case a4t 5 = o

In this subsection, we give an alternative proof of Theorem 1.1 in the case 1/5; +
1/B2 =2/(n —2k) and ay, as < 0.
By the assumptions on £ and fs,

(n(n —2k))/(n+ 2k) < min{S, B2} < n — 2k < max{f, 52} < n.

By the first and second derivative estimates for the op-Yamabe equation, it suffices
to show that

v < O for all positive C? solutions v of (1.1).

Suppose by contradiction that there exist positive functions v; € C2(S™) satisfying (1.1)
such that maxv; — oco. Let N and S denote respectively the north and south poles of
S™.

Throughout the proof, C' denotes some generic positive constant which may change
from one line to another but will remain independent of i,

Step 1: Making the same argument as in the beginning of the proof of Theorem 1.1, we
can conclude that (4.2)-(4.3) still hold.

Step 2: We show that
min{v;(S),v;(N)} — oo. (4.33)

This follows from (4.2) and the following lemma (which does not use 1/8; + 1/52 =
2/(n — 2k)).

Lemma 4.5. Assume thatn >5,2<k<n/2,0<a <1, K € C>*(S") is positive and
satisfies (1.2) for some a1,as < 0 and (n(n —2k))/(n + 2k) < (1, B2 < n. Assume that
{v;} € C2(S™) is a sequence of positive solutions of (1.1) satisfying (4.2). Then we have

(4.33).

Proof. Assume v;(S) — oo. Let u; be related to v; as in (2.1). By Theorem 3.1(a), for
every ¢; — 07 and every R; — oo,

2—

ui(0) Lus(r) — (14 X272 2 | <g  in {0 <7 <r:=A\"R}, (4.34)

J—
where \; = 2_%(2) 2k K(S)ﬁui(O)%. In particular, we can choose R; such that

5
Riu;(0)" 72 — 0% and g;R""? — 0T. By Theorem 3.1 (a)-(c), we have that

ui(r) = ©Wus(0) T in s <r <7l (4.35)
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and

ui(r) = Wy, (0)~ R {ri <r <1}, (4.36)

_ —_2_ __B2
where 7; = e©(My, (0) 72 max{l=755.0}

We will prove by contradiction that v;(IN) — co. Suppose the contrary, then by (4.3)
and (4.36), for any 0 < & < 1, we have for large i that

u;(r) < Cu;(0)” min{ 7245 1.1} .2 "o Vr>e. (4.37)

On one hand, the Kazdan—Warner-type identity (see (2.11)) gives

oo

2n_
/7’”[(1'%0(7’)ui"_2 dr = 0. (4.38)
0

On the other hand, by (4.37), we have for large ¢ that

’/rnKlEuc( i d?“‘ < C/ n-3 dr < C(g)qu(O) n-3 mln{n 2k_1 1}

€

For some ¢ > 0 sufficiently small so that K%,. < 0in (0,¢) (see (1.2)), we deduce from
(4.34) that

289

_2n_
> C’/T"“Lﬁ?_lui"2 dr = Cu;(0)” »=2.
0

Multiplying the above two inequalities by uZ(O) , letting ¢ — oo and using the fact
n(n —2k)/(n + 2k) < 2 < n, we have
oo
2n
lim inf u;(0) BQ?( / " K e (r)u] 2 d?‘) >C >0,

71— 00

0

which is a contradiction with (4.38). O

Step 3: We show that, for a fixed z9 € S™ and dy(zo, S) = 7/2,
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and
vi(xo)vi(N)mi“{Bl”Bz}/B2 — O (4.40)

The above two estimates follow from Theorem 3.1 (a)-(c) and the facts 1/51 + 1/52 =
2/(n —2k), a1, az < 0.

min{B;,B82}
B

Step 4: By (4.33) and (4.39), we have that, v;(zq) = e?Mv;(S)~ 1 — 0. By (4.3),
after passing to a subsequence if necessary, v; (o)~ v;(z) converges in C.-%(S"\{N, S})

to some positive axisymmetric function G' € C>!(S™\{N, S}) which satisfies

A(Agg,) € Ty in S™\{N, S}.

By the classification result [21, Theorem 1.6], we have that ¢; := lirrg dy(z,S)"2G(x) €
xrT—
[0,00), co := hH]lV dg(z, N)""2G(x) € [0,00), max{ci,ca} > 0, and in the stereographic
Tr—

projection coordinates as at the beginning of Section 2,

n—2k n—2k | E(n—=2)

Gz) = 22" (1 + %)% (CWT—"E% + cW) s (4.41)

By (4.39) and (4.40) and after passing to a subsequence if necessary, we have that
i (x0)v; ()™ P1A2}/ B and v;(wg)v; (N )™481.821/ 82 converge respectively to two posi-
tive constants ¢z and c4. Therefore,

s (S)MilALB2 By (1) — e3G(x), in CL*(S"\{N,S}), (4.42)

loc

and

v (N)mBLB} B2, (1) — ¢,G(x),  in CLY(S™\{N, S}).

loc

Next we show that

E(S)\ % g S
c1C3 = (Zk(:)> 1 52 = 517 (443)
O lf 52 < /617
C2C3 = 2 ( az P2 2I'(n) ) (K(s)zlfwﬁz) if B9 < B4 (4.44)
" if BQ > /817
K(N))_nz—kz £ <
Cocy = (2k(g) if B2 < f, (.45
0 if B2 > b,

and
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" D(2SLD(L) \ B (9 ()7 \
2 2(_‘“61 20 (n) ) (WM) it B2 2 b, (4.46)

0 it By < fBy.

C1C4 =

We will only need to prove (4.43) and (4.44), since (4.45) and (4.46) follow by switching
the roles of S and N.

Let u; be related to v; as in (2.1) and let w; = ugn_2k)/k("_2). Fix a small ¢ > 0 such
that K7,.(r) < 0 on [0,0]. To prove (4.43) and (4.44), we first establish the following
two identities.

n—k n(n — 2k 7 e ni2k 1-k
o)=L / Kpue(r)! /o008 (1= pi(r) % dr, - (4.47)
2k (k) 0
and
E(o,w,wy) _ 2k (Kpuc(0)(1 = pi(0))"/* (448)

n—k)/kqy,! - — o = L
o )/ wi<0> n(n — 2k) fo KEuC(T)MkT(nfk)/kwin—gk (l—pi(T»Tk dr

where p;(r) = KEUC(T)_lr_"wi(r)_HQfgk I Kguc(s)s”wi(s)% ds and

[ —_—E

E(r,w;,w}) = Y

Equations (2.2) and (2.11) can be rewritten in terms of w; as

n+2k

n—kw;, _ n(n—2k) o _ .
iR = gy Keue (el Bl w) TR i (0,00 )
E(r,w;,w;) > 0 in[0,00),

and
K uc
E(r,w;,w))* = Ei(”u — pi(r), (4.50)

(x)
respectively. Raising (4.50) to the power of % and then inserting it into (4.49), we have

n—kw, n(n — 2k ni2k 1k
P R T e () R (1 i) T
2k (3)

Multiplying the above identity by r"% and then integrating it on [0, 0] give (4.47).
Raising (4.50) to the power of 1/k, evaluating it at » = o, and then dividing it by (4.47),
we obtain (4.48).

Now we use identities (4.47) and (4.48) to obtain (4.43) and (4.44). By (4.42) and
(4.41), we have
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2

i (0)" P Py () = (275 g ()P (=5) " ()
r

n—2k n—2k n—2k

63(01’“("—_2)7“* k —i—czk("_Q))

k(n—2)
n—2k

n—2 min{By,82}
(mintfrfo) )

—9 2

in C2%(R™). Tt follows that

n — 2k2ngk2k:(min{g;:ﬁ2} 71)((3163) kT(L';Eg) + 0(]-)’

(4.51)

w; (0)™intBrB23/Br o LHS of (4.47) = —

and

(n — 2k)?

e w; (0)™n 8182} Bryy, (o) =255 o & x LHS of (4.48)

— n—2k min{B3,82}
n 2k22_k2($_1)

- (cacs)Fm + o(1). (4.52)

Before estimating the left hand sides of the above identities, we will first give the
following estimates:

n+2k

= /KE“C(T)l/kT(n_k)/szw(l — Pi(r))% dr
0

n n # k n—2k
= (1+o(1))22 (k) ~K(S)” = wi(0)7 (4.53)
and
2nk 7 2nk
IQ = KEuc(O')O'nwi(O') n—2k — /KEUC(S)Snwian ds
0
n+pB2
n+3B82 [T 2k F(LBZ)F<—”+B2> n+pBo 2kBo
:1 1 22 2 2 KS_2 ,L'O_n—Qk.
(1+o0(1))azp2 (k 2T (n) (S)™ =& w; (0)

(4.54)

Recall r; = )\i—lRi as in (4.34) and write Iy = I1 1411 2 where I; ; and I; 5 correspond
to the integrals over [0, 7;] and [r;, o] respectively. By (4.34), we have

: n+2k
I = (1+ 0(1)) /Ké/fc(r)r(n_k)/kwi”%
0

dr

: nt2k
— (1 +o(1)K Y% (0) / Pk B gy
0
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= (L o(D)E KON () [0 0014 52)7 5 as
0

n

=“Mmﬁwﬁﬁ%wﬁﬁm®*/wwwuﬁr%%a
0

where, in the first equality, we have used the fact that for any 0 < r < r;,

r

2) B
()] 'S Cuny(r) 258 Qk/ B2 (5) 225 dis
0

T4
wz(r)zw’b(rl) —2n n
< Cwi(ri)”2—2:/3’82_1wi(3)"2§’“ ds
0

T

(4.34) _ _2nk _2nk_ (4.34)
< Cuw, ™ 2k<0)<1+A§7~§)"/ oLy ds < Cuy(0) w2 R2" = o(1).

’L

0

Using the fact that K’ < 0 on [r;,o], and estimate (4.35) in the interval [r;,7;] and
estimate (4.36) in the interval [r;, o], we have

1172 K’§<0/ (n—k) /Ky i 2kd (4.35)_;(4.36) 0(1)wi(0)_1.

T

Combining the above estimates of I; ; and I; 2 and using Corollary A.2 give (4.53).
Now we estimate (4.54). We write I3 as

IQ = KEUC(O')O'nU}i(O')%;“ - (/—F/)(K/EHC(S)SHM,ZL_% dS) = 1271 + 12,2 + 1273.

2nk_ min{B7,82}

By (4.36) and the fact 1/51 + 1/82 = 2/(n — 2k), |I21] < Cw;(0)" "2~ 5 . By
(1.2) and (4.34),

2nk
Iy o = (—a2522/82 + 0(1))/5"%321“]—@% ds

0
o
= (—azB22" + O(l))A;n_’Bzwi(O) T /T”+52_1(1 )
0

= (—a9822% + o(1))(2" <Z>>%K(S)—"¥fz w;(0)~ 7= /rnwz—l(l 42y,
0
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y (1.2), (4.35) and (4.36),

2nk
—2k

T o
|12’3| S C(/+/)Sn+ﬁ2_lwin
T4 T
2nk_ min{By,82}

2kfo
B1

0(1)’LUZ'(O>_ =2k + O(1)w;(0) »-2F

Combining the above estimates of Iy 1, Iz 2 and I5 3 together and using Corollary A.2

give (4.54).
Now, by (4.53)
wi(o)min{%_lal} X RHS Of (447) — —L_Ql/k]zwl %11#32}]1
2k2(3)
n—2k (2°(0)\ 2 mintgrse)
- ; 8
(o) (K(S)) wi(0) AT (4.55)

By (4.53) and (4.54),

- 2k 2 3 282 2n n
uwi(O)mm{n—ﬂ%_l’l}wi(a)maf x RHS of (4.48)

2k2
n — 2k min{f .82}
= ————wi(0) " (5L
L D220 (P82 \ F oy 53
_ n — 2k min{B .8} By <_a25225 22F(n) : > (Qk(k))m
=—(1+0(1)) L w; (0 ! 2k By
K(S) 2%2
(4.56)

Inserting (4.51) and (4.55) into (4.47), passing to limit, and raising to the power of
Mn=2) give (4.43). Inserting (4.52) and (4.56) into (4.48), passing to limit, and raising

n—2k
to the power of % give (4.44).
Step 5: We make use of the Kazdan—Warner-type identity to show that

B2 /23_2 n—ps n+pBs
azfa(}) > T( JT(*52) . (4.57)

K(s)k—l—ﬂz o . vi(s)ﬁ2 273 n
K(N)k+51 lim N ) T i ) 5
™) oo ui(l) 2% anfa () T (D ()

Indeed, the Kazdan—Warner-type identity (see (2.11)) gives

/(VK(x),Va:nH)vi"Tnz =0,

Sn

or equivalently,
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/ (VK (&), Vanpi o7 = / (VK (@), V(=2pi))07 2. (4.58)

dg(x,S)<m/2 dg(x,N)<m/2

We will show that

n+B8g
. vpn o (W TETEEIE) e
LHS of (4.58) = (1 + o(1))2 a252<k) Sy K w(s)
(4.59)

and

n+8] % (2B (ntb k+81 281
RHS of (1.58) = (1 + o(1))2"% alﬁl(;‘) ( 223(71() 2 ) (V)= 5y (V)

Inserting (4.59) and (4.60) into (4.58) gives

2 282 Ba n % n— n
K(S)%%(S) nmro 273 axf (k) kr( 262 )F( —262 + 0(1>
k481 261 gy n\ ot 1/ n— n
K(N) = vi(N)w=2 2% qy 8, (1) D (2520 (2

Raising to the power of (n — 2)/2 and letting i — oo give (4.57).

We will only need to prove (4.59), since (4.60) follows by switching the roles of S and
N.

Now we prove (4.59). Let u; be related to v; as in (2.1), then LHS of (4.58) =

f K, (r )r”u" "2 In order to estimate this integral, we divide the integral into two
parts: Iy, the integral on [0, 7;], and I5, the integral on [r;, 1]. By (1.2) and (4.34),

: 2n_
= 2%a50(1 4 o(1)) /TnJrBQ_luin_Q dr

n+pBo o
2k 4By
UEY (1 4 0(1))2% 0,852 (Z) K(S)™ "% ui(O)%/s"+52—1(1+sz)—”ds
n—}—kﬂg o
2 n 2 2
— (14 0(1)) (1) 7 K ws) o) s
0

By (4.35) and (4.36),

T4

15| < C/r”ui"z% < C[/ " (0)(1 + A2r2)) 722 dp + ug(0)~ 7oz min{aEe -1, 1}]

Ty

= o(u;(0)~



46 Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198

Combining the above two estimates together and using Corollary A.2 give (4.59).

Step 6: We reach a contradiction. Let cs5 := lim (v;(S)%2 /v;(IN)P1). Then it is easy to
_— 71— 00
see that

B18
cs = (c3/cq) Tnlbr BT (4.61)

If B2 > (1, by (4.43), ¢1 > 0. Dividing (4.43) by (4.46), inserting it into the right hand
side of (4.61) and inserting (4.57) into the left hand side of (4.61), we have

Ck(a1, K(N))Cp k(az, K(5)) =1, (4.62)

which is a contradiction to (1.3). If 51 > o, by (4.44), co > 0. Dividing (4.44) by (4.45),
inserting it into the right hand side of (4.61) and inserting (4.57) into the left hand side
of (4.61), we have (4.62), which is again a contradiction to (1.3). O

5. The total degree: proof of Theorem 1.2

The computation of the degree is a direct adaptation of the computation in [17,22] to
the case of axisymmetry. For completeness, we present a sketch.

Fix some 0 < o/ < o < 1. By Theorem 1.1 and first and second derivative estimates
for the oi-Yamabe equation (see [10,11], [20, Theorem 1.10], [14, Theorem 1.20], [27]),
we can select C, sufficiently large such that all axisymmetric positive solutions to (1.1)
belong to the set

0 = {@ € CH(S™) ¢ 0]l e gny < Cos AM(Ag,) € rk}.
Consider the nonlinear operator F : & — C2* (S™) defined by
Flo) == ox(M(Ay,)) — K, Yveo.

By [16], the degree deg (F, 0,0) is well-defined and is independent of o’ € (0, a] (see [17,
Theorem B.1]).

Ifa,as < 0and 51—1 + é > ﬁ, we have in view of the homotopy invariance property
of the degree, the non-existence result Theorem 1.4 and Remark 4.2 that deg (F, 0,0) =
0.

If a1,as <0, é + é = nf% and C,, (81, a1, K(0))C,, k(B2, a2, K(7)) < 1, it follows
the compactness estimate Theorem 4.4 and the above statement that deg (F, &,0) = 0.

In all remaining cases, in view of the compactness estimate Theorem 4.4 and Re-
mark 4.2, we may assume without loss of generality that (1, 82 > n — 2k.

We continue by deforming K to a constant. For u € (0,1], we let K,, = pK + (1 —
1)27% () and consider the equation (4.27). By Theorem 4.3, we may assume that all
axisymmetric positive solutions to (4.27) for u € (0, 1] belong to the set &.
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Let F,, : 0 — C>*(S™) be defined by
F,lv] =o0,(MAy,)) —Ku, YveoO. (5.1)

Then the degree deg (F), 0,0) is well-defined and is independent of 1 € (0,1] and of
o’ € (0, a]. We would now like to compute this degree for small p and some o € (0, a),
using the Lyapunov-Schmidt reduction.

We parametrize C+® (S™) as .% x R where the R-factor takes into account the action
of the Mobius group on S™ on axisymmetric functions and where the element 1 € %
corresponds to the so-called axisymmetric standard bubbles on S™. To this end, for t € R,
let ¢; be the Mobius transformation on S™ which, under stereographic projection with
respect to the north pole, sends y to ty. For function v defined on S™, we let

Tv = v o @ detdcpt\n?_;2

where dy; denotes the Jacobian of ¢;. In particular, the pull-back metric of g, = vz g

under ¢, is given by ©F(g,) = g7,0-
Let

= {v e Ch(sM) /x”+1|v(a:)|% dvg(z) = 0}.
Sn
For w € % and t € R, let w(w,t) be defined by 7(w,0) = w and

m(w,t) = T H(w).

It can be checked that the map 7 : . % x R — C4'(S™) is a C? diffeomorphism.
As in [22], Theorem 4.3 and the Liouville-type theorem give

Lemma 5.1. Let n > 5,2 < k <n/2, and 0 < o/ < a < 1. Suppose that K € C%*(S™)
is as in Theorem 1.2 with B1, B2 > n — 2k. If vy, = mw(wy,,t,,) solves (4.27) for some
sequence ji; — 0%, then tu; stays in a compact interval of R and

Jim flwy; = Hls.ar gy = 0.

The linearized operator of F),[n(-,t)] at w = 1 is readily found to be

22k /p
L =D, (F,o0 W)(w»f)]‘w:w = —dpk(A+n)  with  dp = n—2 ( k;)

and with domain D(.Z) being the tangent plane to %) at w = w:

D(2) = Ti(#) = {n e 01 (8™ : /xn(a:) dvg(z) = 0}.
J
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It is well-known that . is an isomorphism from D(.Z) to

R(Z) = {f € (S : /a;"“f(x) dvg(x) = 0}.

Nig
Let II be a projection from C2< (S™) onto R(.Z) defined by

I/ (x) = f(x) - j‘S—ﬂl+ / Y f () dvg (y).

Sn
As in [22], we have:
Proposition 5.2. Let n > 5, 2 < k < n/2, and 0 < o < a < 1. Suppose that K €
C%(S™) is positive and let F,, be defined by (5.1). Then for every so > 1, there exists
a constant po € (0,1] and a neighborhood A of 1 in .Sy such that, for every p € (0, uo)

and % <t < sg, there exists a unique wy, € A, depending smoothly on (t,u), such
that

I(E [ (we p, §)]) = 0. (5.2)

Furthermore, there exists some C > 0 such that, for u € (0, uo] and % <t t' < sp,

k(T
||wt7M — 1||C4,a/(§n) < CMHK —2 (k) ‘ C2,o¢(S’ﬂ)7

()

Note that equation (5.2) can be equivalently rewritten as

Hwt,u - wt',p,”cél,a’(gn) < C/L|t — t/|

C2,a(§n) ’

K (M4, ) = Ky 0 00(2) = Aya™! on ST,
where A; , € R is given by

Ary = —”’S—fm’l [ (w0, ©)) ()™ dug (). (5.3)
Sn

Furthermore, for u sufficiently close to 0, v, solves (4.27) if and only if v, = m(ws, ., tu)
and Ay, , = 0 for some t,,.

Note that, in view of the Kazdan—Warner-type identity (2.11), A, can be expressed
more directly in terms of K as

1 2n_ on_
;At,u / |Vx"+1]2wt’:;2dv§(x) = /(V(K oY), Vx"“)w{:f dvg(x). (5.4)
S S
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The degree of the function ¢t — A, ,, can be computed in the same way as in [22]:

Lemma 5.3. Let n > 5,2 < k < n/2, a € (0,1) and K € C7*(S") be as in Theo-
rem 1.2 with By, B2 > n—2k. Let Ay, be defined as in (5.3). Then there exist po € (0,1]
and so € (1,00) such that, for all p € (0,p0] and s € (1,so], the Brouwer degrees
deg (At,, [s71, 8],0) are well-defined and

_ 1 . .
deg (A, [s 15],0) = —5(—1)”[51gn (a1) + sign (a2)].
Proof of Theorem 1.2. As explained at the beginning of the section, we only need to
consider the case (1,82 > n — 2k. In this case, as in [22], there exist uo € (0,1] and
so > 1 such that

deg (F,, 0,0) = (—1)"deg (A¢ ., [s71, 5], 0) for all u € (0, pol, s € (1, 50).
The conclusion follows from Lemma 5.3. O
6. Perturbation method: proof of Theorem 1.3

Proof of Theorem 1.3. After a renaming of K to K,,, it suffices to exhibit a function K
satisfying (1.2) such that sign(a;) = ¢; and that the equation (4.27) has a solution for
some sufficiently small pu.

Fix some sy > 1 for the moment, and let A;, be as in Proposition 5.2. Then (4.27)
has a positive solution if the map ¢ — A; , has a zero in [361, 50].

Prompted by formula (5.4) for A; , and the fact that w; , ~ 1 for small ;, we consider
the function

Hg(t) = /(V(Kogpt),Vx”H)dvg(x) = n/Ko Oy x”“dv;,(a:).
Sn S

Clearly, if K and sg are such that Hx (1) and Hg(sg) are of opposite signs, then for
all sufficiently small p, Ay, and Ay, are also of opposite signs and the conclusion will
follow.

We now proceed to construct K and sg. Let K4 (z) = (z"™1)>™ for some large m >
B1, 2. Then Hg, (1) = 0 and Hk#(l) > 0. In particular, there exists so > 1 such that
HK# (80) > 0.

Take a function K, satisfying (1.2) with sign(a;) = ;. By considering the behavior of
Hyg (t) as t — 0, we have that Hg, # 0. Replacing K, with K, o ¢, for some suitable ¢,
we may assume also that Hg, (1) # 0.

Since Hg, (1) = 0 and Hg, (s0) > 0, there exists some v € R such that Hg, vk, (1)
and Hp, 1~k (50) are of opposite signs.

The desired function K then takes the form C'+ K, 4+ yKy for some sufficiently large
C such that K is positive. O
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7. Non-existence: proof of Theorem 1.4

Proof of Theorem 1.4. Let us first prove the non-existence of positive axisymmetric so-
lutions for some suitable K with the declared properties. The fact that this implies the
theorem will be dealt with at the last stage.

It is more convenient to work in cylindrical coordinates. Fix 2 < (1,82 < n such
that a2
K. € C*(R) such that

For small 0 < ¢ <« 1 and large T" > 1, fix a positive function

. 1
K.r(t)=1- 56’82(t+T+1) for t < —T —1, (7.1)
d
-2< d_ r(t)<0for —T-1<t<-T, (7.2)
R 1
K.rp(t)=1— 56*51@*”1) fort > T +1, (7.3)
d -
2> < Ker(t) 2 0for T<t<T+1, (7.4)
K.rp(t)=cfor —T <t<T. (7.5)

Let ¢t = Incot & and K. 7(0) = K. 7(t). We will show that there exists N > 1 such that,

nH2RT < L there is no positive axisymmetric solution of (1.1)

whenever 7' > N and ee
with K = K, 7.

Suppose by contradiction that there exist 7; and &; with 7; > i and g;e 20T <1
such that the problem (1.1) with K = K, 1, has a solution v;.

Let r = e’ and let u; : R™ — R and &; : R — R be related to v; as in (2.1) and (2.3).

In particular, &; satisfies

Filé)]) = Ko, m, and [§] < 1in (00, 00), (7.6)
and

& (t) — |t| is bounded as |t| — oo.

In the sequel, we use C' to denote some positive generic constant which is always
independent of 7, O(1) to denote a term which is bounded as i — 0o, and o(1) to denote
a term which tends to 0 as i — oo.

Observe that the arguments in the proof of Theorem 3.1(a) give & (t) > —C for
|t| > T; + 2. Since || < 1, this implies that, for every m > 0

&(t) > —C(m) for |t| > T; —m. (7.7)

Applying first and second derivative estimates for the oj-Yamabe equation to (7.6), we
have, for every m > 0,
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()] + |& ()] < C(m) for [t] > T; —m. (7.8)

Step 1: Let Y; = e~ "2 €. We show that

Vi(~T) + o Vi(-T) = o()Yi(T), (7.9)
Vi(T) — 2 V(T = o()Yi(-T). (7.10)

A

We start by rewriting the equation F[§;] = K., 1, in the form

—1 A
e <§1+ 2% (1 é-z )) 2 <I{3— 1 eZ(k—1)§i<1 —é?)k_l'

We proceed by estimating the term on the denominator on the right hand side. Recall
the function H defined in (2.8), and note that, by the Pohozaev identity (2.9) and the
monotonicity of K., 7, in (—oco,T;), H(t,&, &) is non-decreasing in (—o0, T;). Also, since
& < 1, &(t) + t is bounded as t — —oo and k < 5, H(t, &, &) — 0 as t — —oo.
Therefore H(t,§;,&;) > 0, i.e.

1 . .
% (Z) e (1 — €)% > K., 1,(t) > 0 in (—o0, Ty).

Inserting this into the previous equation, we obtain

0< 25<€"<+"_2k(1—§'2))< RV (M (Y
> € i o i N L oY) an,k = k E—1 .

:l:n—Qk:t n+2k

Multiplying this equation by et 2t t~ 2% ¢, we get

n—2k t— n+2k 51

0< i% [e"%lf'“(it—&)(l 4+ &)} < Cgi%ei 2% 2%

(7.11)

Using the fact that K., 7, = &; in (=13, T), &(t) > &(£T;) — (t £ T;) in (=T;, T;) (since
€| < 1), Ty — oo and g;e("t28)Ti 5 0, we can integrate (7.11) to obtain

e I (14 6(T) = o(1)e "3 ST yo(1)e G T

9

2k n—22k n+2k

e 5i(_Ti)(l — fl(—Tl)) =o(l)e” = &i(Ts) 4 o(1)e” 2= i(Ti)

In view of (7.7) and the expression of Y;, (7.9) and (7.10) follows. Step 1 is finished.
Step 2: We show that?

a_ :=limsup&(—T;) < 1 and oy = limiglféi(Ti) > —1.
11—

1—00

3 1In fact, it can be seen from the proof that, when 81 # n — 2k, ay = 1, and when 5 # n —2k, a_ = —1.
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Once this is done, after passing to a subsequence, we have

n — 2k . n — 2k

Yi(-T;) = — 57 (a— +0(1))Y;(—T;) and Yi(T;) = — %

(ay 4+ 0(1)Yi(T3),
which together with (7.9) and (7.10) gives
0 < Y;(T}) = o(1)Y;(=T}) = o(1)Y;(T5),

which yields a contradiction and finishes the proof of Theorem 1.4.
We will only prove that a— < 1. The proof of oy > —1 is similar.
Let us first show that & (—T}) — co as i — oo. Indeed, by (7.9), Y;(=T;)(1+&(=T3)) =

o(1). Using (7.7) and the expression of H (see (2.8)), we have that H(t,&,&)‘ .
t=—T;

0(1). Recalling the Pohozaev identity (2.10), the fact that %[A(%Ti < —Le AlHT) iy
(=00, —T;) (see (7.1) and (7.2)), and &(t) < &(=T;) — (t + T;) in (—oo, —T;) (since
€] < 1), we thus have

Y

1
dt > Ee—”&(—Ti)

—T; p
N
/’dt T le

which gives & (—=T;) — oo as i — oo as wanted.

Let &(t) := &(t—T;) —&(=T5). Usmg (7.7)~(7.8) and the fact that &(0) = 0, we have,
after passing to a subsequence, that &; converges in Cl *(R) to a function &, € C, OC( ).
Also, in view of (7.6), Fi[&](t) = e 2 (=TI K_ 1. (t —T;). Hence, since & (—T};) — oo as
17— 00, foo satisfies in the viscosity sense the equation

Frléso] = 0 and |€50| < 1 in (—00, 00).
By the classification result [21, Theorem 1.6], {5 takes the form

2k a
1
o o), e

éoo(t) = -

by be *) for some a,b > 0 with a +b > 0.  (7.12)

Now, as &(—1T;) — 500(0) = Z—;g, in order to conclude Step 2 (and therefore the proof

of the theorem), it suffices to show that b > 0.%

Claim. The following statements hold.

(i) Either {e= "2 Tiv;(S)} is bounded, or e~ "2 Tiv;(S) — 0o and Bs < n — 2k.
(ii) Either {e="2 Tiv;(N)} is bounded, or e~ "= Tiv;(N) — oo and B; < n — 2k.

4 In fact, it will be seen from the proof below that, when S # n — 2k, we also have a = 0.
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Before proving the claim, let us remark that statement (i) implies that b > 0 (and
hence a_ < 1) as follows. (Likewise, (ii) implies that ;. > —1.) Let

Ui (r) = e~ " (tH&(t=T) — eianQT"ui(e*Tir).

Note that #; satisfies o (A% (r)) = K., r,(In7 — T;) on R”, and, by the claim, either
{u;(0)} is bounded, or ;(0) — oo and B2 < n — 2k. In the case that {;(0)} is bounded,
as 4;(0) is the maximum of 7; on R™ (by the super-harmonicity of 1;), the first derivative
estimates for the oj-Yamabe equation give that Fu;(1) < @;(r) < Ct,(1) for r < 1, i.e.
1&:(t) +t — &(0)] < C in (—o0,0). In particular, £o(t) 4 ¢ is bounded as t — —oo.
Clearly this is true in (7.12) if and only if @ = 0 and b > 0. In the case that 4;(0) — oo
and 3 < n — 2k, we have by Theorem 3.1(c) and (d) that there exists an exponent
2 = (f2) > 0 such that

U;(1) < ;(r) < Cuy(1) in (4;(0)77, 1).

Ql-

As 4;(0)~* — 0, this again implies that £.o(t) + ¢ is bounded as ¢ — —oc and so a = 0
and b > 0. In the case that 4;(0) — oo and B2 = n — 2k, we can apply Step 2 of the
proof of Theorem 1.1 to &( ) := &(t — T;) to obtain that &(t) = &(t) — &(=T;) has
a critical point at some In b = O(1). It follows that §oo has at least one critical point,
which implies that a,b > 0.

It remains to prove the claim. Note that the claim clearly holds if 5y, 82 < n — 2k.
Therefore, we may assume without loss of generality that S = max(f,02) > n — 2k.

As i + é > n_22k, we have that 81 < n — 2k, and so (ii) clearly holds. In particular,

a4 > —1. It remains to prove (i).
Assume by contradiction that (i) does not hold. Then, since o > n — 2k,

e~ "7 Tiy;(S) = oo and 1;(0) — co. The proof builds upon the identity

H(-T;,&(-T0),&(-Ty)) = H(T;, &(T;), &(Ty)), (7.13)

which holds in view of the Pohozaev identity (2.9) and (7.5).
As ay > —1, we have &(T}) = aq +o(1) > —1 + & In particular, by (7.10)

e—&i(Ti) — 0(1)6_§i(_Ti)' (7‘14)
1 —L 2 1 _ 1
Let A; :=272(}) 2 u;(0)72 =272(}) e = Zul( ) "7 — oo. Applying Step 2

k
of the proof of Theorem 1.1 (see (4.8) and (4.12)) to &(t) := &(t — T}), we obtain

H(~T, &(~T0), &(~T;)) ("2 0~z (L) (0 o=ati(~T0), (7.15)
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To estimate H (T, &(T;), &(T;)), consider

T;

T;/2 _
ﬂz(r) :eian(t+£i(7t+Ti)) _ (e / )n QUi e

T r

and let us treat separately the case {@;(0)} is bounded and the case ;(0) — oc.
Let us start with the case that {u;(0)} is bounded. As seen earlier, this implies that
50i(1) < a;(r) < Ct,(1) for r < 1, and so

&+ 1) =¢&(T) +t+O(1) for t > 0.

By the Pohozaev identity (2.10), (7.3) and (7.4),

o0
H(T;, &(Th), &(T3)) = /Kai,Ti(t)en& dt = e~ & (T)HOM),
T.

7

Using (7.14) in the above gives
H(T;, 6(T;), &(T;)) = o(1)e & (=T,

which gives a contradiction to (7.13) and (7.15), since B2 < n.
Let us now turn to the case 4;(0) — co. Note that by the same argument that gives
& (=T;) — oo, we also have that & (T;) — oo. This implies that @;(1) = o(1). By Theo-

rem 3.1(c) and (d), we thus have 5, > ”_22]". Apply Step 2 of the proof of Theorem 1.1

- - v _(1—_B1_
see (4.9) and (4. to &(t) := &(—t+T;), we can find 6; = e ~ (1= 55%) such that
(see (1.9) and (4.12)) to &(t) = &(—t+T) find §; = O3,
&) =&(T) =T, +t+O(1) in (T, T; — In d;), (7.16)
H(t,&.%) = O = 0 =Ar (54 —D 7 6(T) (7.17)
’ ’ t:TZ—h’l81 v

Using (7.3), (7.4) and (7.16) in the Pohozaev identity (2.9), we have

Tifll’l 62
= / I%E, 7, (t)e " dt = eO) g=n&i(Ty)

T;

Putting this and (7.17) together and then using (7.14), we get

H(T;, 6(T3), &(Ty)) = OWen&i(T) 4 O =B (2 —1) 7 &(T:)

_ 0(1)6_n£i(_Ti) + 0(1)6*51(%*1)_1&(*%).

As By < n, this together with (7.15) and (7.13) implies that S > Bl(nz_%k —1)~%, which

contradicts the hypothesis that % + é > ﬁ
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Finally, to conclude, we show that with 7> N and ee(® 20T < % as above, (1.1)
with K = K. r has no positive solution, with or without axisymmetry. This follows from
Proposition 7.1 below. O

Proposition 7.1. Suppose K € C}(S™) is positive, non-constant and satisfies =K (0) <0

in (0,7/2) and LK(0) > 0 in (7/2,7). Then every positive solution v € C*(S™\ {0 =
0,7}) to

0k(AMAy,)) = K and AN(Ay,) €Ty, on S"\ {6 =0,7}
18 axisymmetric.

Remark 7.2. The conclusion remains valid if K(z) is replaced by K(z)u~* for any con-
stant a > 0, and/or if (oy,I'x) is replaced by more general operators (f,I') as in [13].

Proof. Let w : R™\ {0} — R be related to v by (2.1). Then w is super-harmonic and
positive in R™ \ {0}. It follows that liminf, ,ou(y) > 0 and so

lim inf v(z) > 0.
d(z,S)—0

Likewise,

liminf v(x) > 0.
d(z,N)—0

Note that by [4, Theorem 1.1], it holds in the viscosity sense that
0k(A(Ag,)) > K and A(A4,,) € 'y, on S™. (7.18)

We can now use the method of moving spheres as in the proof of [13, Theorem 1.5]
to reach the conclusion. For readers’ convenience, we give here a sketch: For any point
on p on the equator of S™ and any A € (0,7), let ¢, : S® — S™ be the Md&bius
transformation that reflects about the sphere OB (p) centered at p and of radius A and
let v, = \Jac(¢p7A)|anv o ¢p . By the conformal invariance of the equation (1.1) and
the monotonicity property of K with respect to 6,

Uk<)\(Agvp’>\>) =Ko Pp, A < K in S" \ B)\(p). (719)

Using [13, Lemmas 3.5 and 3.6], the number

A := sup {)\ € (0,m) vy, <vin S™\ BA(p)}

is well-defined and belongs to (0, 7]. One can then imitate the proof of [13, Lemma 3.3]
using (7.18), (7.19) and the strong maximum principle [4, Theorem 3.1] to show that
5\][, > /2. Since this holds for every p on the equator, we have that v is axisymmetric. O
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8. Non-compactness: proof of Theorem 1.5

Proof of Theorem 1.5. We will work in cylindrical coordinates. Fix 2 < [ < ”_T%
Consider K, =27F () +&J where ¢ is sufficiently small and J € C*°(R) is a fixed even
function satisfying

J(t) = —ePt for t < —1,

J(t) <0 for t <0.

For j > 0, let X; denote the Banach space of functions n € C7((—oc,0]) such that

J 0

d
p— —(2+P)t —nl < .
171l te(sllg,o]e ;_Oﬁldtm 00

We will show that, for a suitably small but fixed £ > 0, the equation
Fl¢] = K., and |£] < 1 in (—o0, 00) (8.1)

has a sequence of even solutions & € C?(R) such that

<§i — log cosh(t + Tz)> ‘( 0 € Xy (8.2)

where T; — oo as i — oo. Once this is done, the conclusion of the theorem follows from
Corollary 3.2.

Step 1: We prove that there exists some small g > 0 such that for every 0 < € < €9 and
T > 1 there exists £ = £(+;6,T) € C?((—o0,0]) which satisfies

Fi[¢] = K., and |£] < 1 in (=00, 0), (8.3)
¢ —logcosh(t+T) € Xy (8.4)

and the family £(;¢,T) depends continuously on (¢,7') in the sense that (¢,7) —
£(+;¢,T) —logcosh(- + T) belongs to C1((0,g0) x [1,00); X3).

We claim that it is enough to find g9 > 0 such that for every 0 < e < e¢pand T"> 1
there exists & = £(-;¢,T) € C?((—o0, —T1]) such that Fy[¢] = K. in (—oo, =T and the
function n(t;e, T) := &(t — T e,T) — log cosh t belongs to X5 and that (e,T) — n(-;e,T)
belongs to C1((0,&0) x [1,00); X3). Indeed, let (—o0, Tiax) C (—00,0) be the maximal
such that ¢ satisfies the equation Fj[¢] = K. in (—00, Tmax), then by the Pohozaev
identity (2.10) and the monotonicity of K., we have
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n

H(.6.8) = 5 ()50 - 8 - Re

= — / KE(T)e_”f(T) dr >0 for t € (—00, Tinax). (8.5)

— 00

|£(t)] < oo. Standard
results on local existence, uniqueness and continuous dependence for ODEs imply that

This implies that, 1 — £2 > 0 in (=00, Tjnayx) and limsup,_,

max

Tmax = 0 and the claim follows.
By considering § = ¢ (- — T) and using the claim, to finish Step 1, we need to show
the existence of some £y > 0 such that, for 0 < ¢ < g9 and T > 1, there is a solution

g: é(,c’f,T) to
Fk[g] = KEE—BT in (—OO7O>, (86)

& —logcosht € X5 (8.7)

and that the map T+ n(-;&,T) = £(-; ¢, T)—log cosh t belongs to C*((0, ) x [1,00); X5).
Using 7, we recast (8.6)—(8.7) as

1\ !
o[y = 2" (Z B 1) e e AT sech?t et

where &7 : Xo — X is given by

n—1

-1
1 (n
— ok—1 2 _
A n] =2 (k B 1) sech“t {Fk[logcosht + 7] o (k>}

k—1
= sechzt{em“7 (1 — 2cosht sinht7) — cosh? t7'72> X

k — 2k
cosht sinhtn — i cosh2t1'72> — %}

X <% + cosh? t7j — n-
= P(tanvﬁv 77)

Note that for every n € Xo, P(t,n,n,1), Py(t,n,0,1%), Py(t,n,n,1) and P;(t,n,n,1)) are
continuous and bounded in (—oo, 0). It follows that ./ is C! with derivative

Do n)lp] = Py(t,n,m,1)¢ + Py (t,n,n,1) + Py(t,n,1,1)p.

Since 27 [0] = 0, by the implicit function theorem (see e.g. [23, Theorem 2.7.2]), it suffices
to check that . := D&7[0] is invertible. A direct computation gives

2] = ¢ — (n —2) tanht ¢ + nsech®t p.

The homogeneous equation .Z[¢] = 0 has two linearly independent solutions ¢i(t) =
tanht and @ (t) = e~ 2 (1 +O(e?)) as t — —oo. (For example, we can choose @o(t) =
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tanht f CS?;E;L T dr for some ¢ < 0.) In particular, the only solution to Z[p] = 0 in X,
is the trivial element. Furthermore, for every ¢ € X, the solution to Z[p| = ¢ in X5 is
given by

o | [ et D tr ity [ L00)

cosh cosh” 21

— 00

dr for t € (—o0,0].

We thus have that . is a bijection from X5 onto Xy. This completes Step 1.

Step 2: Since K. is even, to show the existence of even solutions to (8.1)—(8.2), it suffices

to show that, after possibly shrinking &g, for every ¢ € (0,g¢) there exists a sequence
T; — oo such that the solution &(-;e,T;) obtained in Step 1 satisfies in addition that

Claim. By shrinking ey if necessary, we have that if £(t;e,T) = 0 for some t € (—o0, 0],
g€ (0,e0) and T > 1, then |E(t;e,T)| # 0.

Arguing by contradiction, we assume that there exist ¢, — 0, & = &(-;;,T;) and
s; € (—00,0] such that 51(32) = 0 and fz(sl) — 0. From the expression of Fj[¢;] and
(8.3), we have that {&(s;)} is bounded. Furthermore, the argument in Section 3.2 (see
(3.13)), we have & > —C in (—o0,s;] for some C' independent of i. Recalling (8.5), we
have

lim H(s;, &(s:),&i(s:)) = lim &,8 / ePTe 8T dr = 0.
71— 00 11— 00

By Lemma 3.4, we then have lim;_, &(sl) = E(O) > 0, which is a contradiction.

We now fix an arbitrary 0 < € < go. Let m(T) be the number of solutions to
£(;6,T) = 0 in (—o0, 0]. Note that by (8.4), £(t;e,T) # 0 for large negative t. Thus, by
the claim, m(7T) is finite for every 7' > 1. Since T+ &(+;¢,T) — log cosh(- + T') belongs
to C9([1,00); X3), we deduce again from the claim that if an interval (c,d) C [1,00) is
such that £(0;¢,T) # 0 for T € (¢, d), then m(T) is constant for T' € (¢, d). On the other
hand, by Theorem 3.1(d), m(T) — oo as T' — oo. The conclusion is readily seen. O

Appendix A. The values of certain integrals

Lemma A.1. For 0 < b < 2a, it holds that

Ji 2\—a ,.b—1 F(a—g)F(%)
/(1—1-7") 70 dr:—QI‘(a)
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Corollary A.2. Suppose n > 0. We have

oo

prt+B-1 (n—ﬂ)r(n+5)
_ 2 2 _
/1+r2)” r = 2T () for —n < B <n,
0
7 1
/ n+2d7“:—.
(1+172)2 n

0

Proof. We perform the change of variable x = H% Noting that r? = 1_7“ and 2rdr =
—i—”ﬁ, we have

1
1 b b
—a b 1 - a—35—171 _ s—1 —— R
/(1+7’ dr—2/ 2T (1—x)2" dx 2B(a ,2),
0

where B is the beta function. The conclusion follows from a well-known relation between
beta and Gamma functions. 0O
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