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We study the problem of prescribing σk-curvature for a 
conformal metric on the standard sphere Sn with 2 ≤ k < n/2
and n ≥ 5 in axisymmetry. Compactness, non-compactness, 
existence and non-existence results are proved in terms of the 
behaviors of the prescribed curvature function K near the 
north and the south poles. For example, consider the case 
when the north and the south poles are local maximum points 
of K of flatness order β ∈ [2, n). We prove among other things 
the following statements. (1) When β > n − 2k, the solution 
set is compact, has a nonzero total degree counting and is 
therefore non-empty. (2) When β = n −2k, there is an explicit 
positive constant C(K) associated with K. If C(K) > 1, the 
solution set is compact with a nonzero total degree counting 
and is therefore non-empty. If C(K) < 1, the solution set is 
compact but the total degree counting is 0, and the solution 
set is sometimes empty and sometimes non-empty. (3) When 

2
n−2k ≤ β < n − 2k, the solution set is compact, but the 
total degree counting is zero, and the solution set is sometimes 
empty and sometimes non-empty. (4) When β < n−2k

2 , there 
exists K for which there exists a blow-up sequence of solutions 
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with unbounded energy. In this same range of β, there exists 
also some K for which the solution set is empty.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the σk-Nirenberg problem on the n-sphere Sn (n ≥ 3): Find a metric 
conformal to the standard metric on Sn such that its σk-curvature is equal to a prescribed 
positive function on Sn.

Recall that, for a metric g on Sn, the σk-curvature of g is defined as follows. Let 
Ricg, Rg and Ag denote respectively the Ricci curvature, the scalar curvature and the 
Schouten tensor of g:

Ag = 1
n− 2

(
Ricg −

Rg

2(n− 1)g
)
.

Let λ(Ag) denote the eigenvalues of Ag with respect to g. For 1 ≤ k ≤ n, the σk-curvature 
of g is then the function σk(λ(Ag)) where σk is the k-elementary symmetric function, 
σk(λ) =

∑
i1<···<ik

λi1 · · ·λik . Our equation of interest is thus

σk(λ(Ag)) = K and λ(Ag) ∈ Γk on Sn (1.1)
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where g is the unknown metric which is conformal to the standard metric, K is a pre-
scribed positive function on Sn, and Γk is the connected component of {λ ∈ Rn : σk(λ) >
0} which contains the positive cone {λ ∈ Rn : λ1, . . . , λn > 0}.

Let g̊ denote the standard metric on Sn and write the metric g as gv = v
4

n−2 g̊ for 
some positive function v. Note that

Agv = Ag̊ −
2

n− 2v
−1∇2

g̊v + 2n
(n− 2)2 v

−2dv ⊗ dv − 2
(n− 2)2 v

−2|dv|2g̊ g̊.

Therefore, for 2 ≤ k ≤ n, (1.1) is a fully nonlinear elliptic equation for v. Similar 
equations involving eigenvalues of the Hessian of a function were first considered in [5].

In a recent paper [22], we started our study of the σk-Nirenberg problem. We proved 
an existence and compactness result in the case k ≥ n/2 under the assumption that the 
prescribed curvature function K satisfies certain non-degeneracy condition at its critical 
points, which generalized a result of Chang, Han and Yang [6] for k = 2 in dimension 4. 
We refer the readers to [22] for a discussion of related works.

The compactness issue for the σk-Nirenberg problem as well as for the related σk-
Yamabe problem on compact manifolds when 2 ≤ k < n/2 is a challenging open problem. 
In the present paper, we study this issue in the restrictive setting of axisymmetry. Namely, 
we view (Sn, ̊g) = {(x1)2 + . . . + (xn+1)2 = 1} as the unit sphere embedded in Rn+1

and suppose that the functions K and v depend only on θ = arccosxn+1. In addition, 
we assume that K has the following behaviors at the north and south pole: there exist 
a1, a2 '= 0 and β1, β2 > 1 such that if we write

K(θ) = K(0) + a1θ
β1 + R1(θ) = K(π) + a2(π − θ)β2 + R2(θ)

then

lim
θ→0

|R1(θ)| + |θ||R′
1(θ)|

|θ|β1
= lim

θ→π

|R2(θ)| + |π − θ||R′
2(θ)|

|π − θ|β2
= 0. (1.2)

Our study is motivated by earlier works in the case k = 1 by Bianchi and Egnell [2], 
Chen and Lin [8,9], and Li [17,18], where there is a qualitative difference in the analysis 
when the exponents β1, β2 belong to (1, n−2

2 ), [n−2
2 , n − 2), {n − 2} or (n − 2, n). To 

keep things simple and without losing depth, we focus our discussion in this paragraph 
to the case a1, a2 < 0 and β1 = β2 = β. When n − 2 < β < n, the solution set 
of (1.1) is compact, and the total Leray–Schauder degree of all solutions is −1. When 
n−2

2 ≤ β < n −2, the solution set of (1.1) is compact, and the total Leray–Schauder degree 
of all solutions is 0. When β = n − 2, the solution set of (1.1) is compact provided c '= 1
for certain explicit positive number c depending only on a1, a2, K(0) and K(π), and the 
total Leray–Schauder degree is −1 when c > 1 and 0 when c < 1. When β < n−2

2 , there 
exist functions K for which (1.1) has a blow-up sequence of solutions with unbounded 
energy.
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Table 1
A summary of results for max{n−2k

2 , 2} ≤ β1, β2 < n.

Table 1(a): a1, a2 > 0 Table 1(b): a1 > 0 > a2

Thm. 1.1, 1.2

Compactness T
Degree −1
Existence T

Thm. 1.1, 1.2, 1.3

Compactness T
Degree 0
Existence T/F

Table 1(c): a1, a2 < 0

1
β1

+ 1
β2

< 2
n−2k

1
β1

+ 1
β2

= 2
n−2k

1
β1

+ 1
β2

> 2
n−2k

Thm. 1.1, 1.2 Thm. 1.1, 1.2, 1.3, 1.4 Thm. 1.1, 1.3, 1.4

Compactness T Compactness * Compactness T
Degree −1 Degree −1/0/? Degree 0
Existence T Existence T/F Existence T/F

T = True. F = False.
T/F = Sometimes True and Sometimes False.
* = Sometimes True. ? = Unknown.

Our present work extends the above results to the case k ≥ 2. When 2 ≤ β1, β2 <
n−2k

2 there exist functions K for which (1.1) has a blow-up sequence of solutions with 
unbounded energy; see Theorem 1.5. For max{n−2k

2 , 2} ≤ β1, β2 < n, our results are 
summarized in Table 1. In Table 1(a), when a1, a2 > 0, we have that the solution set 
is compact, the total degree for second order nonlinear elliptic operators is equal to −1
and (1.1) has a positive solution. In Table 1(b), when a1 and a2 are of different signs, the 
solution set is compact, but the total degree is equal to 0. In this case sometimes (1.1)
does not have a solution and sometimes it has a solution. If K is strictly monotone, (1.1)
has no solution in view of the Kazdan–Warner-type identity. We also give examples of 
K’s for which (1.1) has positive solutions. Let us describe Table 1(c) which concerns the 
case a1, a2 < 0 in more details. The analysis is split according to how 1

β1
+ 1

β2
compares 

to 2
n−2k .

• When 1
β1

+ 1
β2

< 2
n−2k , the solution set is compact, the total degree is equal to −1

and (1.1) has a positive solution.
• When 1

β1
+ 1

β2
> 2

n−2k , the solution set is compact, the total degree is zero, and the 
existence of positive solution to (1.1) depends on the particular K at hand: there are 
examples of K’s which give existence as well as those which give non-existence for 
(1.1).

• When 1
β1

+ 1
β2

= 2
n−2k , there exist functions K for which the solution set is compact 

where the total degree can be −1 or 0. Clearly, when the degree is −1, (1.1) has a 
positive solution. There are examples of K’s for which (1.1) has no solution. It is not 
known if the compactness of the solution set holds for every K.
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For any integer m ≥ 0 and 0 < α ≤ 1, let Cm
r (Sn) and Cm,α

r (Sn) denote the spaces 
of Cm and Cm,α axisymmetric functions on Sn, respectively.

In the statement of the next two theorems, let C(1) = Cn,k(β1, a1, K(0)), C(2) =
Cn,k(β2, a2, K(π)) when a1, a2 < 0, where

Cn,k(β, a, s) := 1
2

[
2Γ(n)sn−β

2k

|a|βΓ(n−β
2 )Γ(n+β

2 )

] 1
β

for n(n− 2k)
n + 2k < β < n, a < 0, s > 0.

Theorem 1.1. Let n ≥ 5, 2 ≤ k < n/2, 0 < α ≤ 1, K ∈ C2,α
r (Sn) be positive and satisfy 

(1.2) for some a1, a2 '= 0 and 2 ≤ β1, β2 < n. Assume that

(i) if βi <
n−2k

2 for some i ∈ {1, 2}, then ai > 0, and
(ii) if 1

β1
+ 1

β2
= 2

n−2k , n(n−2k)
n+2k < β1, β2 < n, and a1, a2 < 0, then

C(1)C(2) '= 1. (1.3)

Then there exists a constant C > 0 such that all positive solutions of (1.1) in C2
r (Sn)

satisfy

‖ ln v‖C4,α(Sn) < C.

See Remark 4.2 for detailed statement on how C depends on the function K. See 
Subsection 4.2 for further compactness results involving a family of K’s.

We make a comment on condition (1.3). In the case k = 1 and β1 = β2 = n − 2, 
a similar condition was given in [18]. The relevance of this condition in the study of 
compactness issues is shown more clearly when one considers a family of K’s in (1.1). 
More precisely, for any positive K ∈ C2,α

r (Sn) satisfying (1.2) with 1
β1

+ 1
β2

= 2
n−2k , 

n(n−2k)
n+2k < β1, β2 < n, a1, a2 < 0 for which C(1)C(2) = 1, there exists a sequence of 

positive functions {Ki} ⊂ C2,α
r (Sn) which satisfies (1.2) with β1,i = β1, β2,i = β2, 

C(1,i) → C(1), C(2,i) → C(2) and which converges in C2,α(Sn) to K such that there 
exists a blow-up sequence of positive solutions to (1.1) with K replaced by Ki. This is a 
consequence of the homotopy invariance property of the degree and the degree counting 
formula in Theorem 1.2 below. The proof is similar to that of [18, Corollary 0.24] in the 
case k = 1. Our analysis also shows that such sequence of solutions blow up at both the 
north and south poles; see the proof of Theorem 4.4 or Lemma 4.5.

For k = 1, analogous compactness results were proved by Li [17,18] and by Chen and 
Lin [9]. Roughly speaking, compactness of the solution set was obtained in [18, Theorem 
0.19] when n − 2 < β1, β2 < n, in [18, Theorem 0.20] for β1 = β2 = n − 2, and in [9, 
Theorem 1.2] for n−2

2 < β1, β2 < n satisfying 1
β1

+ 1
β2

'= 2
n−2 . We remark that when 

k = 1 and 1
β1

+ 1
β2

= 2
n−2 the corresponding compactness result also holds but is not 

available in the literature except for the case β1 = β2 = n − 2 mentioned above. We will 
publish this result elsewhere.
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As a direct application of the above compactness result and available degree compu-
tation (see [6,17,22]), we have:

Theorem 1.2. Assume that n, k, α, K, a1, a2, β1, β2 and C be as in Theorem 1.1. Then

deg
(
σk(λ(Agv )) −K,

{
v ∈ C4,α

r (Sn) : v > 0,λ(Agv) ∈ Γk, ‖ ln v‖C4,α(Sn) < C
}
, 0
)

=






−1 if a1, a2 > 0,
0 if a1 < 0 < a2 or a2 < 0 < a1,

−1 if a1, a2 < 0 and 1
β1

+ 1
β2

< 2
n−2k ,

−1 if a1, a2 < 0, 1
β1

+ 1
β2

= 2
n−2k , and C(1)C(2) > 1,

0 if a1, a2 < 0, 1
β1

+ 1
β2

= 2
n−2k , and C(1)C(2) < 1,

0 if a1, a2 < 0 and 1
β1

+ 1
β2

> 2
n−2k .

Here deg is the degree for second order nonlinear elliptic operators as defined in [16]. 
In particular, in the cases where the resulting degree is non-zero, (1.1) has at least one 
positive solution in C4,α

r (Sn).

Our next two results concern the case the total degree is zero, i.e. when a1 and a2 are 
of opposite signs, or a1, a2 < 0 but 1

β1
+ 1

β2
> 2

n−2k or 1
β1

+ 1
β2

= 2
n−2k and C(1)C(2) < 1. 

In these situations, the existence of solutions depends on the particular K at hand. Our 
next result shows that for any given signs of a1 and a2 and any given values of β1, β2 ≥ 2, 
there exists K for which (1.1) has a solution.

Theorem 1.3. Assume that n ≥ 5 and 2 ≤ k < n/2. For any given signs ε1, ε2 ∈ {−1, 1}
and constants β1, β2 ≥ 2, there exist some non-zero constants a1, a2 with sign(ai) = εi
and a positive function K ∈ C2

r (Sn) ∩C∞
loc(Sn \{θ = 0, π}) satisfying (1.2) with the above 

ai’s and βi’s such that (1.1) has at least one positive solution in C4
r (Sn).

On the other hand, as mentioned earlier, if K is monotone in one direction (which 
implies that a1 and a2 are of opposite signs), (1.1) has no solution in view of the Kazdan–
Warner-type identity (see [12,26], and also Section 2). Our next result asserts that for 
any 2 ≤ β1, β2 < n satisfying 1

β1
+ 1

β2
≥ 2

n−2k , there exists a function K with a1, a2 < 0
for which (1.1) has no solution.

Theorem 1.4. Let n ≥ 5 and 2 ≤ k < n
2 . For any given 2 ≤ β1, β2 < n with 1

β1
+

1
β2

≥ 2
n−2k , there exists a positive function K ∈ C [β],β−[β]

r (Sn) ∩ C∞
loc(Sn \ {θ = 0, π}), 

β = min{β1, β2} satisfying (1.2) with the above β1, β2 and some a1, a2 < 0 such that 
(1.1) admits no positive solution in C2(Sn), with or without axisymmetry.

When k = 1, a similar non-existence result of axisymmetric solutions was proved by 
Bianchi and Egnell [2, Theorem 0.3] under the assumption n(n−2)

n+2 < β1, β2 < n and 
1
β1

+ 1
β2

≥ 2
n−2 , and by Chen and Lin [9, Theorem 1.3] under the assumption β1, β2 > 1
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and 1
min{β1,n} + 1

min{β2,n} > 2
n−2 . Under certain monotonicity of K, it was shown in 

Bianchi [1] that the axisymmetry of K implies that of solutions for the prescribed scalar 
curvature equation. These results together give the counterpart of Theorem 1.4 for k = 1.

Our next theorem is a non-compactness result when 2 ≤ β1 = β2 < n−2k
2 .

Theorem 1.5. Let n ≥ 5 and 2 ≤ k < n
2 . For any given 2 ≤ β1 = β2 < n−2k

2 , there exists 
a positive function K ∈ C [β1],β1−[β1](Sn) ∩ C∞

loc(Sn \ {θ = 0, π}) satisfying (1.2) with a1
= a2 < 0 and a sequence of positive solutions {vi} ⊂ C2

r (Sn) of (1.1) such that, for some 
constant C > 0 depending only on n and β,

C ln ln max
Sn

vi ≥
∫

Sn

v
2n

n−2
i dvg̊ ≥ 1

C
ln ln max

Sn
vi → ∞.

For k = 1, the existence of blow-up sequences of solutions was proved by Chen and 

Lin [8, Theorem 1.1], though without an estimate on the rate of blow-up for 
∫
Sn v

2n
n−2
i dvg̊

as in our result above.
An ingredient in the proof of Theorems 1.1–1.5 is a fine analysis near a blow-up point 

in rotational symmetry. Consider in B2 ⊂ Rn the equation

σk(λ(A
u

4
n−2
i gflat

)) = KEuc, λ(A
u

4
n−2
i gflat

) ∈ Γk in B2, (1.4)

where ui(0) → ∞ and KEuc ∈ C2,α(B2) satisfies for some 2 ≤ β < n the condition

KEuc(r) = KEuc(0) + arβ + R(r) (1.5)

with |R(r)| + r|R′(r)| = o(rβ) as r → 0. We give in Theorem 3.1 a description of ui as a 
‘sum of bubbles’ as i → ∞. To keep things simple in this introduction, let us state here 
a consequence of it instead of the full result.

Theorem 1.6. Let n ≥ 5 and 2 ≤ k < n
2 . Suppose that KEuc ∈ C2,α(B2), 0 < α ≤ 1, is 

positive, rotationally symmetric and satisfies (1.5) for some a '= 0 and β ≥ 2. Suppose 
that ui ∈ C2(B2) are positive, rotationally symmetric and satisfy (1.4) and that ui(0) →
∞. Then:

(i) When n−2k
2 ≤ β < n, the integral 

∫
B1

u
2n

n−2
i dx is bounded as i → ∞.

(ii) When 2 ≤ β < n−2k
2 ,

lim
i→∞

1
ln ln ui(0)

∫

B1

u
2n

n−2
i dx = C(n, k)

| ln(1 − 2β
n−2k )|

KEuc(0)− n
2k

for some constant C(n, k) > 0 depending only on n and k.



8 Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198

We note that, when n−2k
2 < β < n, the sequence {ui} contains exactly one bubble, 

i.e. 
∫
B1

u
2n

n−2
i dx converges to C(n, k)KEuc(0)− n

2k for some positive constant C(n, k) de-
pending only on n and k. When β = n−2k

2 , we know that {ui} contains at least one 
bubble. (See Theorem 3.1.) It is interesting to understand whether {ui} can contain two 
or more bubbles.

When k = 1, statement (i) in Theorem 1.6 was proved by Li [17] for β ≥ n − 2 and 
by Chen and Lin [7] for n−2

2 ≤ β < n − 2.
The rest of the paper is structured as follows. In Section 2 we derive some useful 

integral identities for the σk-Nirenberg problem in axisymmetry. These integral identities 
contain the well-known Pohozaev identity as well as some other identities which we refer 
to as mass-type identities (see subsection 2.2). In Section 3, we give a fine analysis of near 
a blow-up point for the σk-Yamabe problem on Euclidean balls. In Sections 4–8, we use 
the local analysis above to prove Theorems 1.1–1.5. We include also an appendix where 
certain integrals used in the body of the paper are computed in terms of the gamma 
function.

2. Preliminaries

In this section we give some equivalent forms of (1.1) for positive v ∈ C2
r (Sn) and 

derive some useful integral identities, among which is the Pohozaev identity.
We let r = cot θ

2 , t = ln cot θ
2 and express gv as a metric conformal to the Euclidean 

metric or the round cylinder metric:

gv = v(θ) 4
n−2 (dθ2 + sin2 θg̊Sn−1) = u(r) 4

n−2 (dr2 + r2g̊Sn−1) = e−2ξ(t)(dt2 + g̊Sn−1).

Define KEuc(r) := K(θ) =: Kcyl(t).
We will use a prime and a dot to mean differentiation with respect to r and t respec-

tively.
One can explicitly express u in terms of v as follows. Let Φ : Rn → Sn be the inverse 

of the stereographic projection:

xi = 2yi
1 + |y|2 for i = 1, . . . , n, and xn+1 = |y|2 − 1

|y|2 + 1 .

Then

u(y) =
( 2

1 + |y|2

)n−2
2

v(x), KEuc = K ◦ Φ, (2.1)

and (1.1) is equivalent to

σk(λ(Au)) = KEuc, λ(Au) ∈ Γk in Rn, (2.2)
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where Au is the matrix

Au = − 2
n− 2u

− n+2
n−2∇2u + 2n

(n− 2)2u
− 2n

n−2 du⊗ du− 2
(n− 2)2u

− 2n
n−2 |du|2 I.

Likewise, with r = |y| and t = ln |y|, we have

ξ = − 2
n− 2 ln u− ln r, Kcyl(t) = K ◦ Φ(et, 0, . . . , 0), (2.3)

and (1.1) gives

Fk[ξ] = Kcyl and |ξ̇| < 1 in (−∞,∞), (2.4)

where

Fk[ξ] := 1
2k−1

(
n− 1
k − 1

)
e2kξ(1 − ξ̇2)k−1

(
ξ̈ + n− 2k

2k (1 − ξ̇2)
)
. (2.5)

The condition (1.2) is equivalent to the condition that

Kcyl = Kcyl(∞) + 2β1a1e
−β1t + o(e−β1t) as t → ∞,

Kcyl = Kcyl(−∞) + 2β2a2e
β2t + o(eβ2t) as t → −∞,

with the error terms being controlled up to and including first order derivatives.
We note a simple property of the equation (2.4) which we will make use of later on: 

There exists a constant x̄ depending only on n, k and an upper bound for Kcyl such that, 
for ξ satisfying (2.4),

if ξ(t) ≥ x̄ and ξ̇(t) = 0, then ξ̈(t) < 0. (2.6)

2.1. Pohozaev-type identities

For ξ ∈ C2(R), following [25], define

H̄(ξ, ξ̇) := 1
2k

(
n

k

)
e(2k−n)ξ(1 − ξ̇2)k − e−nξ.

Then H̄ has the property that, for −∞ < t1 ≤ t2 < ∞,

H̄(ξ(t2), ξ̇(t2)) − H̄(ξ(t1), ξ̇(t1)) = −n

t2∫

t1

(Fk[ξ] − 1)e−nξ ξ̇ dt. (2.7)
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We will also consider the quantity

H(t, ξ, ξ̇) := 1
2k

(
n

k

)
e(2k−n)ξ(1 − ξ̇2)k −Kcyl(t) e−nξ. (2.8)

As a consequence of (2.7), we have, for −∞ < t1 ≤ t2 < ∞,

H(t, ξ(t), ξ̇(t))
∣∣∣
t=t2

t=t1
=

t2∫

t1

[
− n(Fk[ξ] −Kcyl)e−nξ ξ̇ − K̇cyl e

−nξ
]
dt. (2.9)

If ξ satisfies (2.4) and ξ(t) − |t| is bounded in (−∞, ∞) (e.g. if ξ is related to a solution 
to (1.1) via (2.1) and (2.3)), we have H(t, ξ, ξ̇) → 0 as t → ±∞ and (2.9) gives

H(t, ξ, ξ̇) = −
t∫

−∞

K̇cyl(τ) e−nξ(τ) dτ =
∞∫

t

K̇cyl(τ) e−nξ(τ) dτ. (2.10)

Equivalently, if we let u be related to ξ via (2.3) and define

HEuc(r, u, u′) = (−1)k2k
(n− 2)2k

(
n

k

)
rn−2ku

2(n−2k)
n−2

[ru′

u

(ru′

u
+ n− 2

)]k
−KEuc(r)rnu

2n
n−2 ,

then

HEuc(r, u, u′) = −
r∫

0

K ′
Euc(s)u(s) 2n

n−2 sn ds =
∞∫

r

K ′
Euc(s)u(s) 2n

n−2 sn ds. (2.11)

The identities (2.7), (2.9), (2.10) and (2.11) are known as Pohozaev identities for the 
σk-Yamabe equation. See [3,24] for the case k = 1, [12,26] for k ≥ 2.

2.2. Mass-type identities

More generally, one is interested in finding smooth functions B, P : R ×R × (−1, 1) →
R such that

B(t, ξ, ξ̇)
∣∣∣
t=t2

t=t1
=

t2∫

t1

Fk[ξ]P (τ, ξ, ξ̇) dτ for all −∞ < t1 ≤ t2 < ∞, (2.12)

i.e.

d

dt
B(t, ξ, ξ̇) = Fk[ξ]P (t, ξ, ξ̇).
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Let A(t, x, y) be such that ∂yA(t, x, y) = e2kx(1 − y2)k−1P (t, x, y) where x and y are 
dummy variables standing for ξ and ξ̇. We compute, using (2.5) and then integrating by 
parts,

t2∫

t1

Fk[ξ]P (τ, ξ, ξ̇) dτ

= 1
2k−1

(
n− 1
k − 1

) t2∫

t1

[
∂yA(τ, ξ, ξ̇)ξ̈ + n− 2k

2k ∂yA(τ, ξ, ξ̇)(1 − ξ̇2)
]
dτ

= 1
2k−1

(
n− 1
k − 1

)
A(t, ξ, ξ̇)

∣∣∣
t=t2

t=t1

+ 1
2k−1

(
n− 1
k − 1

) t2∫

t1

[
− ∂tA(τ, ξ, ξ̇) − ∂xA(τ, ξ, ξ̇)ξ̇ + n− 2k

2k ∂yA(τ, ξ, ξ̇)(1 − ξ̇2)
]
dτ.

Hence, to obtain (2.12), we impose that A satisfies the first order PDE

−∂tA(t, x, y) − y∂xA(t, x, y) + n− 2k
2k (1 − y2)∂yA(t, x, y) = 0 in {|y| < 1}. (2.13)

The projected characteristic curves of (2.13) are given by {t + k
n−2k ln 1+y

1−y = const, x −
k

n−2k ln(1 − y2) = const}. The general solution to (2.13) thus takes the form

A(t, x, y) = G
(
t + k

n− 2k ln 1 + y

1 − y
, x− k

n− 2k ln(1 − y2)
)

for an arbitrary smooth function G : R2 → R. Putting things together we have

n− 2k
2kn

(
n

k

)
G
(
t + k

n− 2k ln 1 + ξ̇

1 − ξ̇
, ξ − k

n− 2k ln(1 − ξ̇2)
)∣∣∣

t=t2

t=t1

=
t2∫

t1

Fk[ξ]
e2kξ(1 − ξ̇2)k

{
∂tG

(
τ + k

n− 2k ln 1 + ξ̇

1 − ξ̇
, ξ − k

n− 2k ln(1 − ξ̇2)
)
+

+ ξ̇∂xG
(
τ + k

n− 2k ln 1 + ξ̇

1 − ξ̇
, ξ − k

n− 2k ln(1 − ξ̇2)
)}

dτ. (2.14)

We have therefore proved that, for any smooth function G : R2 → R, the following B
and P satisfy (2.12):

B(t, x, y) = n− 2k
2kn

(
n

k

)
G
(
t + k

n− 2k ln 1 + y

1 − y
, ξ − k

n− 2k ln(1 − y2)
)
,
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P (t, x, y) = 1
e2kx(1 − y2)k

{
∂tG

(
t + k

n− 2k ln 1 + y

1 − y
, x− k

n− 2k ln(1 − y2)
)
+

+ ξ̇∂xG
(
t + k

n− 2k ln 1 + y

1 − y
, x− k

n− 2k ln(1 − y2)
)}

.

Example 2.1. It is readily seen that the choice G(t, x) = n
n−2ke

−(n−2k)x in (2.14) implies 
the Pohozaev identities (2.7) and (2.9).

Example 2.2. We will also use in the proof of Theorem 1.1 the choice G(t, x) =
2

n−2ke
n−2k

2 (t−x). This gives the quantity

m(t, ξ, ξ̇) := 1
2k−1n

(
n

k

)
(1 + ξ̇(t))ken−2k

2 (−ξ(t)+t)

and the identity, for −∞ < t1 ≤ t2 < ∞,

m(t, ξ, ξ̇)
∣∣∣
t=t2

t=t1
=

t2∫

t1

Fk[ξ](1 − ξ̇)−(k−1)e−
n+2k

2 ξe
n−2k

2 τ dτ. (2.15)

If ξ satisfies (2.4) and ξ(t) + |t| is bounded as t → −∞, we have m(t, ξ, ξ̇) → 0 as 
t → −∞ and (2.15) implies

m(t, ξ, ξ̇) =
t∫

−∞

Fk[ξ](1 − ξ̇)−(k−1)e−
n+2k

2 ξe
n−2k

2 τ dτ. (2.16)

We will refer to identities (2.15) and (2.16) as mass-type identities.

Example 2.3. For further reference, we also note that the separable ansatz P (t, x, y) =
P1(t)P2(x)P3(y) leads to the choice G(t, x) = 2

n−2ke
(n−2k)(bx+ct). This gives the quantity

mb,c(t, ξ, ξ̇) := 1
2k−1n

(
n

k

)
(1 − ξ̇)−k(b+c)(1 + ξ̇)−k(b−c)e(n−2k)(bξ+ct)

and the identity, for −∞ < t1 ≤ t2 < ∞,

mb,c(t, ξ, ξ̇)
∣∣∣
t=t2

t=t1
= 2

t2∫

t1

Fk[ξ](1 − ξ̇)−k(b+c+1)(1 + ξ̇)−k(b−c+1)(bξ̇ + c)×

× e((n−2k)b−2k)ξ+(n−2k)cτ dτ.

It is readily seen that taking b = −1 and c = 0 gives the Pohozaev identities, and 
taking b = −1 and c = 1 gives the mass-type identities.
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3. Local blow-up analysis

Consider in B2 ⊂ Rn the equation (1.4), i.e.

σk(λ(Au)) = KEuc, λ(Au) ∈ Γk in B2

where KEuc ∈ C2,α(B2) satisfies (1.5) for some 2 ≤ β < n. In this section, we study the 
behavior of a sequence of positive rotationally symmetric solutions {ui} of (1.4) with 
ui(0) → ∞.

As in the previous section, we work with cylindrical coordinates. Let t = ln r, ξ(t) =
− 2

n−2 ln u(r) − ln r, and Kcyl(t) = KEuc(r). Then ξ(t) + t is bounded as t → −∞,

Fk[ξ] = Kcyl and |ξ̇| < 1 in (−∞, ln 2),

and

Kcyl = Kcyl(−∞) + 2βaeβt + o(eβt) as t → −∞, (3.1)

with the error term being controlled up to and including first order derivatives.
Throughout the section, let

Ξ(t) := − ln et

1 + e2t − ln
(
2 1

2

(
n

k

) 1
2k)

.

Note that solutions to Fk[E] = 1 and |Ė| < 1 in (−∞, ∞) satisfying H(t, E, Ė) ≡ 0 are 
given by

E(t) = Ξ(t + lnλ) = − ln λet

1 + λ2e2t − ln
(
2 1

2

(
n

k

) 1
2k)

for some λ > 0.

Theorem 3.1. Let n ≥ 5 and 2 ≤ k < n/2. Suppose that KEuc ∈ C2,α(B2), 0 < α ≤ 1, is 
positive, rotationally symmetric and satisfies (1.5) for some a '= 0 and β ≥ 2. Suppose 
that ui ∈ C2(B2) are positive, rotationally symmetric and satisfy (1.4) and that ui(0) →
∞. Let t = ln r, ξi(t) = − 2

n−2 ln ui(r) − ln r and λi = 2− 1
2
(n
k

)− 1
2kKEuc(0) 1

2k ui(0) 2
n−2 .

(a) One has for some C depending only on n and KEuc that

ξi ≥ −C and |ξ̇i| + |ξ̈i| ≤ C in (−∞, ln 3
2). (3.2)

Furthermore, for every εi → 0+, Ri → ∞, after passing to a subsequence, one has 
that Ri

λi
→ 0 and, 0 ≤ + ≤ 2,

∣∣∣
d)

dt)

[
ξi(t) − Ξ(t + lnλi) −

1
2k lnKEuc(0)

]∣∣∣ ≤ εiλ
)
i e

)t in (−∞, ln Ri

λi
). (3.3)
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In particular, ξi(ln Ri
λi

) = lnRi + O(1) → ∞ and there exists t1,i = − lnλi + o(1)
such that ξ̇i < 0 in (−∞, t1,i) and ξ̇i > 0 in (t1,i, ln Ri

λi
).

(b) Let

t2,i = sup
{
t ∈ [t1,i, 0] : ξ̇i > 0 in (t1,i, t)

}
.

Then, for large i,

t2,i = −max
{

1 − β

n− 2k , 0
}

lnλi + O(1) > t1,i (3.4)

ξ̇i > 0 in (t1,i, t2,i) and
∣∣∣ξi(t) − Ξ(t + lnλi)

∣∣∣ ≤ O(1) in (−∞, t2,i). (3.5)

Furthermore, if β ≤ n − 2k, then a < 0.
(c) Suppose 2 ≤ β < n −2k. Then, for large i, t2,i < 0, ξ̇i(t2,i) = 0, and ξ̈i(t2,i) < 0. Let

t3,i = sup
{
t ∈ [t2,i, 0] : ξ̇i < 0 in (t2,i, t)

}
.

Then

t3,i = −max
{

1 − 2β
n− 2k , 0

}
lnλi + O(1) > t2,i (3.6)

ξ̇i < 0 in (t2,i, t3,i), and
∣∣∣ξi(t) − Ξ

(
t + (1 − 2β

n− 2k ) lnλi

)∣∣∣ ≤ O(1) in (t2,i, t3,i). (3.7)

(d) If 2 ≤ β < n−2k
2 , then, for large i, there exist Ni =

⌊
ln lnλi+O(1)
| ln(1− 2β

n−2k )|

⌋
≥ 2 and 2Ni

critical points of ξi,

t1,i < t2,i < t3,i < t4,i < . . . < t2Ni,i = O(1)

with

t2),i = −(1 − β

n− 2k )(1 − 2β
n− 2k ))−1 lnλi + O(1),

t2)+1,i = −(1 − 2β
n− 2k )) lnλi + O(1),

such that ξ̇i < 0 in (t2),i, t2)+1,i), ξ̇i > 0 in (t2)+1,i, t2)+2,i) and
∣∣∣ξi(t) − Ξ(t− t2)+1,i)

∣∣∣ ≤ O(1) in (t2),i, t2)+2,i) for 1 ≤ + ≤ Ni − 1.
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Fig. 1. A profile of wi = r
n−2

2 ui vs. t = ln r with Ni = 3 when β < n−2k
2 . The gap between the peaks 

decreases exponentially to O(1) in Ni steps. The pieces above the line w = 1/C are close to the standard 
bubbles.

Furthermore, for every ε > 0, there exists Rε > 1
ε independent of i, such that, for 

any + satisfying |t2)+1,i| ≥ Rε, we have

‖ξi(t) − Ξ(t− t2)+1,i) −
1
2k lnKEuc(0)‖C2[t2#+1,i−1/ε,t2#+1,i+1/ε] ≤ ε.

Here |O(1)| ≤ C, independent of i and + and ε, and o(1) denotes a term which goes to 0
as i → ∞.

A schematic sketch for the conclusion in (d) is given in Fig. 1.

Corollary 3.2. Under the hypotheses of Theorem 3.1, when β < n−2k
2 we have

1
ln lnλi

∫

B1

u
2n

n−2
i dx → C(n, k)

| ln(1 − 2β
n−2k )|

KEuc(0)− n
2k as i → ∞,

where C(n, k) > 0 depends only on n and k. Furthermore, along a subsequence, ξi
converges in C2

loc(−∞, ln 2) to some ξ∞ ∈ C2(−∞, ln 2) satisfying Fk[ξ∞] = Kcyl and 
|ξ̇∞| < 1 in (−∞, ln 2) and there exist critical points of ξ∞,

0 > t0,∞ > t1,∞ > . . . → −∞

with
∣∣∣t2j,∞ − (1 − 2β

n− 2k )−jt0,∞
∣∣∣ ≤ C,

∣∣∣t2j+1,∞ − (1 − β

n− 2k )−1(1 − 2β
n− 2k )−jt0,∞

∣∣∣ ≤ C,

such that ξ̇∞ ≤ 0 in (t2j+2,∞, t2j,∞), ξ̇∞ ≥ 0 in (t2j+1,∞, t2j,∞) and
∣∣∣ξ∞(t) − Ξ(t− t2j+1,∞)

∣∣∣ ≤ C in (t2j+2,∞, t2j,∞) for j ≥ 0
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for some constant C > 0. Finally, for every ε > 0, there exists Rε > 1
ε , such that, for 

any j satisfying |t2j+1,∞| ≥ Rε, we have

‖ξ∞(t) − Ξ(t− t2j+1,∞) − 1
2k lnKEuc(0)‖C2[t2j+1,∞−1/ε,t2j+1,∞+1/ε] ≤ ε.

3.1. An oscillation estimate

We will make use of the following oscillation estimate for sub-solutions to the σk-
equation.

Lemma 3.3. Assume that n ≥ 5 and 2 ≤ k < n/2. There exist large constants ξ0 > 0
and C0 > 0 depending only on n such that if ξ is C2 and monotone in some interval 
[t1, t2] ⊂ (0, ∞) and satisfies

0 ≤ Fk[ξ] ≤ 1, |ξ̇| ≤ 1, and ξ ≥ ξ0 in [t1, t2],

then

t2 − t1 ≥ |ξ(t2) − ξ(t1)| ≥ t2 − t1 − C0. (3.8)

For future reference, we state also here an equivalent version in Euclidean setting.

Lemma 3.3’. Assume that n ≥ 5 and 2 ≤ k < n/2. There exist a small constant ε0 > 0
and a large constant C depending only on n such that if u ∈ C2(B̄r2 \ Br1) is positive, 
rotationally symmetric,

σk(λ(Au)) ≤ 1, λ(Au) ∈ Γk in Br2 \ B̄r1 ,

r
n−2

2 u(r) is non-increasing (or non-decreasing, resp.), and r
n−2

2
1 u(r1) ≤ ε0, then

1 ≤ rn−2
2 u(r2)
rn−2
1 u(r1)

≤ C
(
or 1

C
≤ u(r2)

u(r1)
≤ 1, resp.

)
.

Proof. By considering ξ̃(t) = ξ(−t) instead of ξ if necessary, it suffices to consider the 
case ξ is non-decreasing.

The first inequality in (3.8) holds due to the fact that ξ̇ ≤ 1, so we only need to prove 
the second inequality.

By (2.6) and the fact that Fk[ξ] ≤ 1, there exists a constant x̄ depending only on n
and k such that, whenever ξ(t) > x̄ and ξ̇(t) = 0, it holds that ξ̈(t) < 0. Without loss of 
generality, we assume that ξ > x̄ in [t1, t2]. Since ξ̇ ≥ 0, this implies that

ξ̇(t) > 0 and ξ(t) < ξ(t2) for t ∈ [t1, t2). (3.9)
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For x, y ∈ R, let

H̄(x, y) = c e(2k−n)x(1 − y2)k − e−nx where c = 1
2k

(
n

k

)
.

By (2.7) and the fact that Fk[ξ] ≤ 1 and ξ̇ ≥ 0 in [t1, t2], we have

d

dt
H̄(ξ, ξ̇) = −ne−nξ(Fk[ξ] − 1)ξ̇ ≥ 0 in [t1, t2].

Therefore

H̄(ξ(t), ξ̇(t)) ≤ H̄(ξ(t2), ξ̇(t2)) ≤ H̄(ξ(t2), 0) for t ∈ [t1, t2]. (3.10)

By the explicit expression of H̄, by increasing x̄ if necessary, we may assume that 
H̄(·, 0) is decreasing and positive in (x̄, ∞). For x̄ ≤ x ≤ a, define

ga(x) = 1 − c−
1
k e

n−2k
k x(H̄(a, 0) + e−nx) 1

k .

Then ga(a) = 0, and by the monotonicity of H̄(x, 0),

ga(x) > 1 − c−
1
k e

n−2k
k x(H̄(x, 0) + e−nx) 1

k = 0 for x ∈ [x̄, a).

Using the explicit expression of H̄ and the fact that 0 ≤ ξ̇ ≤ 1, we can rewrite (3.10)
as

ξ̇ ≥
√

gξ(t2)(ξ) in [t1, t2] provided ξ(t1) > x̄. (3.11)

Claim. There exist constants C > 0 and ξ0 > x̄ depending only on n and k such that

a∫

x

dµ√
ga(µ)

≤ a− x + C for ξ0 ≤ x ≤ a. (3.12)

Clearly (3.9), (3.11) and (3.12) imply, for ξ ≥ ξ0 in [t1, t2], that

t2 − t1 ≤
ξ(t2)∫

ξ(t1)

dµ√
gξ(t2)(µ)

≤ ξ(t2) − ξ(t1) + C,

which gives the right half of (3.8).
Using the inequality (1 + z) 1

k ≤ 1 + z
1
k for z ≥ 0, we have for all x̄ ≤ x ≤ a that

1 − ga(x) = e
n−2k

k (x−a)
(
1 − c−1e−2ka + c−1e−nx+(n−2k)a

) 1
k
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≤ e
n−2k

k (x−a)
(
1 + c−1e−nx+(n−2k)a

) 1
k ≤ e

n−2k
k (x−a)

(
1 + c−

1
k e

−nx+(n−2k)a
k

)

= e
n−2k

k (x−a) + c−
1
k e−2x.

In particular, we can choose ξ0 = ξ0(n, k) such that, for ξ0 ≤ x ≤ a − 1,

1 − ga(x) ≤ e
n−2k

k (x−a) + c−
1
k e−2x ≤ e−

n−2k
k + c−

1
k e−2ξ0 < 1.

This implies that there exists a constant C = C(n, k, ξ0) such that

1√
ga(x)

= 1√
1 − (1 − ga(x))

≤ 1 + C(en−2k
k (x−a) + e−2x) for ξ0 ≤ x ≤ a− 1.

On the other hand, by enlarging ξ0 and C if necessary, we have for a − 1 ≤ x ≤ a that

ga(x) = 1 − e
n−2k

k (x−a)
(
1 + c−1e−2ka(en(a−x) − 1)

) 1
k

≥ 1 − e
n−2k

k (x−a)
(
1 + c−1e−2kξ0(en(a−x) − 1)

) 1
k ≥ 1

C
(a− x).

Combining the above estimates, we have for ξ0 ≤ x ≤ a that

a∫

x

dµ√
ga(µ)

≤
a−1∫

x

[
1 + C(en−2k

k (µ−a) + e−2µ)
]
dµ +

a∫

a−1

Cdµ√
a− µ

≤ a− x + C(n, k),

which gives the claim, and hence completes the proof. !

3.2. Proof of Statement (a) of Theorem 3.1

By first and second derivative estimates for the σk-Yamabe equation (see e.g. [11, 
Theorem 1.1], [20, Theorem 1.10]), to prove (3.2), we only need to show

ui(r)r
n−2

2 ≤ C, (3.13)

where here and below C denotes a constant depending only on n, k and KEuc.
The proof of (3.13) is a standard argument using the Liouville-type theorem [15, 

Theorem 1.3] and the symmetry of ui.
Suppose by contradiction that (3.13) does not hold. Then, we can find yi ∈ B3/2 such 

that |yi|
n−2

2 ui(yi) → ∞.
Let ri = |yi|/2, ȳi ∈ B̄ri(yi) be a point where (ri − |y − yi|)

n−2
2 ui(y) attains its 

maximum in B̄ri(yi), and si = (ri − |ȳi − yi|)/2 ∈ (0, ri/2]. It is clear that
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s
n−2

2
i ui(ȳi) ≥ 2−n−2

2 r
n−2

2
i ui(yi) → ∞ and max

B̄si (ȳi)
ui ≤ 2n−2

2 ui(ȳi).

Let

ûi(z) = 1
ui(ȳi)

ui

(
ȳi + ui(ȳi)−

2
n−2 z

)
for |z| ≤ si ui(ȳi)

2
n−2 .

Then ûi satisfies

σk(λ(Aûi(z))) = KEuc(ȳi + ui(ȳi)−
2

n−2 z), λ(Aûi) ∈ Γk in
{
|z| ≤ si ui(ȳi)

2
n−2

}
.

By first and second derivative estimates for the σk-Yamabe equation and the Liouville-
type theorem [15, Theorem 1.3], we thus have, after passing to a subsequence, that ûi

converges in C2
loc(Rn) to a limit û∗ of the form

û∗(z) = b∗(a∗ + |z − z∗|2)−
n−2

2

for some positive constants a∗, b∗ and some z∗ ∈ Rn.
On the other hand, the rotational symmetry of ui implies that, for every ball 

Br(y) ⊂ Bsi(ȳi), the level set {ui = ui(y)} intersects ∂Br(y) non-trivially. Applying 
this to balls centered at ȳi + ui(ȳi)−

2
n−2 z∗ and sending i → ∞, we obtain that the level 

set {û∗ = û∗(z∗)} intersects every spheres centered at z∗. This is impossible as z∗ is a 
strict maximum point of u∗. Estimate (3.13) is proved.

Now, define

ũi(z) = 1
ui(0)ui(λ−1

i z) for z ∈ Rn.

By first and second derivative estimates for the σk-Yamabe equation and the Liouville-
type theorem [15, Theorem 1.3], we may assume after passing to a subsequence if 
necessary that ũi converges in C2

loc(Rn) to

U(r) = (1 + r2)−n−2
2 .

Furthermore, for every εi → 0+ and every Ri → ∞, after passing to a subsequence, we 
have

‖ũi − U‖C2(BRi ) ≤ εi.

This gives precisely estimate (3.3). The last assertion of (a) also follows.
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3.3. Proof of Statement (b) of Theorem 3.1

Note that by (a) with εiRi → 0, we have ξ̇i(t) > 0 in (t1,i, ln Ri
λi

). Clearly, by the 
definition of t2,i, if t2,i < 0 is finite, ξ̇i(t2,i) = 0. Furthermore, we have for ln Ri

λi
< t < t2,i

that

ξi(t) ≥ ξi(ln(Ri/λi))
(3.3)
≥ lnRi −O(1). (3.14)

It follows from property (2.6) that ξ̈i < 0 at every critical point of ξi in [ln Ri
λi
, t2,i] for 

large i. In particular, for large i, ξi is strictly increasing in [ln Ri
λi
, t2,i) and, if t2,i < 0 is 

finite, then as ξ̇i(t2,i) = 0, ξ̈i(t2,i) < 0.
Estimate (3.5) follows from (3.3), (3.14), the monotonicity of ξi and Lemma 3.3.
Let us now prove (3.4) and, when β ≤ n − 2k, the negativity of a. For t ∈ (ln Ri

λi
, t2,i), 

we have by the Pohozaev identity (2.10) that

1
2k

(
n

k

)[
1 − ξ̇i(t)2

]k
− e−2kξi(t)Kcyl(t) = e(n−2k)ξi(t)

t∫

−∞

K̇cyl(τ)e−nξi(τ)dτ.

Recalling (1.5), we see that K̇cyl(τ) = −a2βeβτL(τ) for some bounded function L satis-
fying L(τ) → 1 as τ → −∞. Hence, using (3.3) with + = 0 in the interval (−∞, ln Ri

λi
), 

(3.5) in the interval (ln Ri
λi
, t) and noting that ξi(t) = lnλi+t +O(1) ≥ lnRi+O(1) → ∞

as i → ∞, we have

[
1 − ξ̇i(t)2

]k
+ o(1)

= −(1 + o(1))e(n−2k)ξi(t)λ−β2
i aβ2β+n+2k

2

(
n

k

)n−2k
2k

KEuc(0)
∞∫

0

rn+β2−1

(1 + r2)n dr.

(3.15)

Since the right hand side of (3.15) is −eO(1)ae(n−2k)tλn−2k−β
i (by (3.5)) and (3.15)

holds for all t ∈ (ln Ri
λi
, t2,i), we have that t2,i = O(1) when β ≥ n − 2k and t2,i =

−(1 − β
n−2k )λi +O(1) for β < n − 2k, which gives (3.4). In addition, by considering the 

sign of the left and right sides of (3.15), we have that a < 0 when β ≤ n − 2k.

3.4. Proof of Statement (c) of Theorem 3.1

Note that when β < n−2k
2 , Statement (c) is contained in Statement (d). We consider 

here only the case n−2k
2 ≤ β < n − 2k and leave the case β < n−2k

2 to the proof of 
Statement (d).

We have seen that t2,i < 0, ξ̇i(t2,i) = 0 and ξ̈i(t2,i) < 0.
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Since ξ̇i > −1, we deduce from (3.5) that

ξi(t) ≥ ξi(t2,i) − (t− t2,i) ≥ −
(
1 − 2β

n− 2k
)

lnλi − t−O(1) for t ≥ t2,i. (3.16)

As β ≥ n−2k
2 , estimate (3.16) implies that, for every ξ0 > 0, there exists t̃3,i = O(1) 1

t2,i such that ξi > ξ0 in (t2,i, ̃t3,i). In view of (2.4) and (2.6), when ξ0 is sufficiently large, 
the function ξ̇i in the interval (t2,i, ̃t3,i) has the property that, whenever ξ̇i(t) = 0, it 
holds that ξ̈i(t) < 0. Note also that ξ̇i(t) < 0 for t > t2,i and close to t2,i (because 
ξ̇i(t2,i) = 0 and ξ̈i(t2,i) < 0). These two properties imply that ξ̇i < 0 in (t2,i, ̃t3,i). In 
particular, t3,i ≥ t̃3,i and so t3,i = O(1), which gives (3.6). Estimate (3.7) follows from 
Lemma 3.3 applied in the interval (t2,i, ̃t3,i) and the fact that |ξ̇| < 1 in [t̃3,i, t3,i].

3.5. Proof of Statement (d) of Theorem 3.1

Suppose 2 ≤ β < n−2k
2 . Recall from (b) that a < 0. For simplicity, we assume instead 

of (3.1) that Kcyl(t) = 1 − |a|eβt in (−∞, 0). The proof in the general case where Kcyl

satisfies only (3.1) can be done by restricting attention to a small ball Bδ and an easy 
accommodation for error terms.

Note that Kcyl(t) = 1 − |a|eβt is decreasing and so by the Pohozaev identity (2.9), 
the functions H(t, ξi, ξ̇i) are increasing. Noting that H(t, ξi, ξ̇i) → 0 as t → −∞ (since 
ξi(t) + t is bounded as t → −∞), we thus have that H(t, ξi, ξ̇i) > 0 in (−∞, 0].

Hence, by estimate (3.2) and the Pohozaev identity (2.10),

0 ≤ lim
t→−∞

sup
i

H(t, ξi, ξ̇i) ≤ lim
t→−∞

C

t∫

−∞

|K̇cyl| dτ = 0, (3.17)

where here and below C denotes a constant which remains independent of i.
Recall that all solutions to Fk[E] = 1 in (−∞, ∞) satisfying H(t, E, Ė) ≡ 0 are of the 

form

E(t) = Ξ(t + lnλ) for some λ > 0.

This implies:

Lemma 3.4. Let ξi satisfy Fk[ξi] = Ki and |ξ̇i| < 1 in (−∞, ln 2) where Ki ∈
C2(−∞, ln 2) satisfies

sup
i

sup
t∈(−∞,ln 2)

(| lnKi(t)| + |K̇i(t)| + |K̈i(t)|) < ∞.

For every c0 ∈ R, if si ≤ 0, ξi(si) → c0, H(si, ξi(si), ξ̇i(si)) → 0 and, for some 0 ≤ Si ≤
|si|,
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lim
i→∞

Ki(t + si) = 1 for all t ≤ lim inf Si,

then c0 ≥ min Ξ = ln
(
2− 1

2
(n
k

) 1
2k
)

and there exists Ti → ∞ such that, after passing to a 
subsequence,

‖ξi(t + si) − Ξ(t + t̄)‖C2([−Ti,T̃i]) ≤ δi, T̃i =
{

Ti if Si → ∞,

Si if Si is bounded,

where t̄ are one of the two solutions of Ξ(t̄) = c0 if c0 > min Ξ and t̄ = 0 if c0 = min Ξ.

In the sequel, we fix some ξ̄0 > min Ξ which is larger than the constant ξ0 in Lemma 3.3
and the constant x̄ in (2.6), and has the additional property that

For any C2 functions ξ, if t satisfies ξ(t) > ξ̄0 and ξ̇(t) = 0,

then 1
2e

−(n−2k)ξ(t) ≤ 2k
(n
k

)−1
H(t, ξ(t), ξ̇(t)) ≤ e−(n−2k)ξ(t).

(3.18)

By Lemma 3.4 and in view of (3.17), there exists m0 > 0 depending only on (n, K, ξ̄0)
such that, for each i, the number Ñi of points s < −m0 such that ξi(s) = ξ̄0 and ξ̇i(s) < 0
is non-zero and finite. We label these points as s1,i < s2,i < . . . < sÑi,i

. By the same 
lemma, if we let m′

0 > 0 be the solution to Ξ(−m′
0) = ξ̄0 with Ξ̇(−m′

0) < 0, then for every 
ε > 0, there exists R̃ε >

2
ε independent of i such that for any + satisfying |s),i| > R̃ε,

‖ξi(t + s),i) − Ξ(t−m′
0)‖C2[−2/ε,2/ε] ≤ ε. (3.19)

It is readily seen from (3.19) and (2.6) that ξ−1
i (ξ̄0) ∩ (−∞, sÑi,i

+ 9m′
0/4] comprises 

of s1,i < s′′1,i < s2,i < s′′2,i < . . . < sÑi,i
< s′′

Ñi,i
, and ξi

∣∣
(−∞,s′′

Ñi,i
] has critical points 

t1,i, . . . , t2Ñi−1,i such that

s1,i < t1,i < s′′1,i < t2,i < s2,i < . . . < s′′
Ñi,i

< t2Ñi−2,i < sÑi,i
< t2Ñi−1,i < s′′

Ñi,i
,

ξ̇i < 0 in (−∞, t1,i) and (t2),i, t2)+1,i), and ξ̇i > 0 in (t2)−1,i, t2),i), for 1 ≤ + ≤ Ñi − 1. 
Furthermore, (3.7) holds.

By Statements (a) and (b), we have that a < 0, t1,i = − lnλi + o(1), t2,i = −(1 −
β

n−2k ) lnλi + O(1), and ξi(t2,i) = β
n−2k lnλi + O(1).

To conclude, we need to show that there exists 1 ≤ Ni ≤ Ñi − 1, Ni = 2 ln lnλi+O(1)
| ln(1− 2β

n−2k )|3
such that

(i) t2),i = −α) lnλi + O(1) for 2 ≤ + ≤ Ni,
(ii) t2)+1,i = −(α) − γ)) lnλi + O(1) for 1 ≤ + ≤ Ni − 1,
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where |O(1)| ≤ C, independent of i and +, α) = (1 − β
n−2k )(1 − 2β

n−2k ))−1 and γ) =
β

n−2k (1 − 2β
n−2k ))−1. Note that by applying Lemma 3.3 to the intervals [t2),i, t2)+1,i] and 

[t2)+1,i, t2)+2,i], we obtain from the above that

ξi(t) = ξi(t2)+1,i) − t + t2)+1,i + O(1) = −(α) − γ)) lnλi − t + O(1) in [t2),i, t2)+1,i],
ξi(t) = ξi(t2)+1,i) + t− t2)+1,i + O(1) = (α) − γ)) lnλi + t + O(1) in [t2)+1,i, t2)+2,i].

In other words

ξi(t) = Ξ(t− t2)+1,i) + O(1) in [t2),i, t2)+2,i].

To prove (i)-(ii), we use the following lemma, which is of independent interest and 
can be applied in a situation more general that what is described above. (Note that no 
assumption at −∞ is assumed in the lemma.) Recall that ξ̄0 is a constant larger than 
the constant ξ0 in Lemma 3.3 and the constant x̄ in (2.6), and has the property (3.18).

Lemma 3.5. Let a < 0 and β ∈ (0, n − 2k) and suppose Kcyl ∈ C2,α(−∞, ln 2), 0 <
α ≤ 1, satisfies (3.1). For every given constant D ≥ 0, there exists some large M =
M(n, Kcyl, D, ξ̄0) > 1 such that if ξ ∈ C2(−∞, ln 2) satisfies Fk[ξ] = Kcyl(t) and |ξ̇| < 1
in (−∞, ln 2), and if t∗ < 0 is a critical point of ξ satisfying

−(n− 2k)ξ(t∗) −D ≤ β(t∗ + ξ(t∗)) ≤ −M,

then ξ(t∗) > ξ̄0, ξ̈(t∗) < 0, and there exist critical points t∗ < t∗+1 < t∗+2 < 0 of ξ such 

that ξ(t∗+1) < ln
(
2− 1

2
(n
k

) 1
2k
)

+ 1
M , ξ(t∗+2) > ξ̄0, ξ̈(t∗+1) > 0, ξ̈(t∗+2) < 0, ξ̇ < 0 in 

(t∗, t∗+1), ξ̇ > 0 in (t∗+1, t∗+2), and

|t∗+1 − (t∗ + ξ(t∗))| ≤ M, (3.20)
∣∣∣t∗+2 −

(
1 − β

n− 2k
)
(t∗ + ξ(t∗))

∣∣∣ ≤ M, (3.21)

|ξ(t) − Ξ(t− t∗+1)| ≤ M in [t∗, t∗+2], (3.22)
− (n− 2k)ξ(t∗+2) ≤ β(t∗+2 + ξ(t∗+2)), (3.23)
∣∣∣(t∗+2 + ξ(t∗+2)) −

(
1 − 2β

n− 2k
)
(t∗ + ξ(t∗))

∣∣∣ ≤ M. (3.24)

Once this lemma is proved, we can obtain the conclusion as follows. Take D = 0 and 
fix M as in the lemma. First, we have for all large i that

−(n− 2k)ξi(t2,i) ≤ β(t2,i + ξi(t2,i)) ≤ −M.

Let Ni be the largest number in {2, . . . , Ñi − 1} such that β(t2),i + ξi(t2),i) ≤ −M for 
1 ≤ + ≤ Ni. Applying the lemma repeatedly with t∗ = t2),i < 0 for 1 ≤ + ≤ Ni, we have
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∣∣∣(t2)+2,i + ξi(t2)+2,2)) −
(
1 − 2β

n− 2k
)
(t2),i + ξi(t2),i))

∣∣∣ ≤ M. (3.25)

(Note that if Ni = Ñi − 1, the lemma also gives the existence of another local maximum 
point t2Ñi,i

∈ (s′′
Ñi,i

, 0) of ξi.) This implies for 2 ≤ + ≤ Ni + 1 that

∣∣∣(t2),i + ξi(t2),i)) −
(
1 − 2β

n− 2k
))−1(t2,i + ξi(t2,i))

∣∣∣ ≤ M
)−2∑

j=0
(1 − 2β

n− 2k )j ≤ n− 2k
2β M.

Since t2,i+ξi(t2,i) +
(
1 − 2β

n−2k
)
lnλi is bounded as i → ∞, we thus have for 1 ≤ + ≤ Ni+1

that
∣∣∣t2),i + ξi(t2),i) +

(
1 − 2β

n− 2k
)) lnλi

∣∣∣ ≤ C, (3.26)

where C is independent of i and +. Returning to (3.20) and (3.21) (still with t∗ = t2),i), 
we see that the declared properties (i) and (ii) hold.

To finish the proof, we show that Ni ≥ 2 ln lnλi+O(1)
| ln(1− 2β

n−2k )|3 =: N̂i. (Note that t2N̂i,i
≥ −C

for some C independent of i and t2)+2,i − t2)+1,i ≥ m′
0/4 for all +, this estimate gives 

Ni = N̂i + O(1) = 2 ln lnλi+O(1)
| ln(1− 2β

n−2k )|3.)
In view of (3.26) with + = Ni and the fact that β(t2Ni,i + ξi(t2Ni,i)) ≤ −M , we only 

need to show that t2Ni,i + ξi(t2Ni,i) ≥ −C for some C independent of i. By (3.25), it 
suffices to show that t2Ni+2,i + ξi(t2Ni+2,i) ≥ −C. To this end, we may assume without 
loss of generality that β(t2Ni+2,i + ξi(t2Ni+2,i)) ≤ −M , as otherwise there is nothing to 
prove. By the lemma, we can find critical points t2Ni+2,i < t2Ni+3,i < t2Ni+4,i < 0 of 
ξ where ξ(t2Ni+2,i) > ξ̄0 > ξ(t2Ni+3,i) and ξ̇ < 0 in (t2Ni+2,i, t2Ni+3,i). In particular, 
there exists sNi+2,i ∈ (t2Ni+2,i, t2Ni+3,i) such that ξ(sNi+2,i) = ξ̄0 and ξ̇(sNi+2,i) < 0. 
By construction of the sequence {s),i}, we have sNi+2,i ≥ −m0. It follows that t2Ni+3,i ≥
−m0. Recalling (3.20) with t∗ = t2Ni+2,i, we thus have t2Ni+2,i + ξi(t2Ni+2,i) ≥ −C as 
wanted. Theorem 3.1 follows. !

Proof of Lemma 3.5. In the proof we will frequently use the function H defined in (2.8)
and the Pohozaev identity (2.9). For convenience, we write H(t) := H(t, ξ(t), ξ̇(t)).

For simplicity, we consider again only the case Kcyl(t) = 1 − |a|eβt.
As in (3.2), there exists C ′ = C ′(n, Kcyl) such that

ξ ≥ −C ′ and |ξ̇| + |ξ̈| ≤ C ′ in (−∞, ln 3
2).

By Lemma 3.4, there exist m0 > 10m′
0 > 0 depending only on (n, K, ξ̄0) such that

If s ≤ −m0 satisfies ξ(s) = ξ̄0, ξ̇(s) < 0 and |H(s)| ≤ 1/m0 then there
exist s′′ > s′ > s such that ξ(s′′) = ξ̄0, ξ̇(s′) = 0, ξ̈(s′) > 0, ξ̇ < 0 in [s, s′),
ξ̇ > 0 in (s′, s′′], 3m′

0/4 ≤ s′ − s ≤ 5m′
0/4 and 7m′

0/4 ≤ s′′ − s ≤ 9m′
0/4.

(3.27)
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In the sequel, M is a large constant which may need to be enlarged at a few instances 
in the proof but will depend only on n, a, β, D, C ′ and ξ̄0.

Since −(n − 2k)ξ(t∗) −D ≤ −M , we may take M sufficiently large so that ξ(t∗) > ξ̄0. 
As ξ(t∗) > ξ̄0 and ξ̇(t∗) = 0, we have by (2.6) that ξ̈(t∗) < 0 and t∗ is a local maximum 
point of ξ. We will show the existence of t∗+1 by showing that ξ will decrease to the 
value ξ̄0 and appeal to (3.27).

Define

s0 = sup
{
t ∈ [t∗, 0) : ξ(t) > ξ̄0 in [t∗, t]

}
.

Since ξ̇(t) < 0 for t > t∗ and close to t∗, we have by (2.6) that ξ̇ < 0 in (t∗, s0). Applying 
Lemma 3.3, we have

ξ(t∗) − (t− t∗) ≤ ξ(t) ≤ ξ(t∗) − (t− t∗) + C0 for t ∈ [t∗, s0], (3.28)

where C0 > 0 is the constant in Lemma 3.3. Taking t = s0 in (3.28) and using the fact 
that β(t∗ + ξ(t∗)) ≤ −M , we obtain, after possibly enlarging M , that

s0 ≤ t∗ + ξ(t∗) − ξ(s0) + C0 ≤ − 1
β
M − ξ̄0 + C0 ≤ −m0 < 0,

which implies that ξ(s0) = ξ̄0 and

(t∗ + ξ(t∗)) − ξ̄0 ≤ s0 ≤ (t∗ + ξ(t∗)) − ξ̄0 + C0. (3.29)

To use (3.27), we need to estimate H(s0). On one hand, by (3.18) and the relation 
−(n − 2k)ξ(t∗) −D ≤ β(t∗ + ξ(t∗)), we have

0 < H(t∗) ≤
1
2k

(
n

k

)
e−(n−2k)ξ(t∗) ≤ 1

2k
(
n

k

)
eDeβ(t∗+ξ(t∗)).

On the other hand, we have

0 < −
s0∫

t∗

K̇cyle
−nξ dτ

(3.28),(3.29)
≤ |a|βe(n+β)(ξ̄0+C0)

n + β
eβ(t∗+ξ(t∗)).

Thus, by the Pohozaev identity (2.9) and the fact that β(t∗ + ξ(t∗)) ≤ −M and by 
possibly enlarging M ,

0 < H(s0) = H(t∗) −
s0∫

t∗

K̇cyle
−nξ dτ

≤
( 1

2k
(
n

k

)
eD + |a|β e(n+β)(ξ̄0+C0)

n + β

)
eβ(t∗+ξ(t∗)) ≤ 1

m0
. (3.30)
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Therefore, by (3.27), there exist s1 > t∗+1 > s0 such that ξ(s1) = ξ̄0, ξ̇i(t∗+1) = 0, ξ̇ < 0
in [s0, t∗+1), ξ̇ > 0 in (t∗+1, s1], 3m′

0/4 ≤ t∗+1 − s0 ≤ 5m′
0/4 and 7m′

0/4 ≤ s1 − s0 ≤
9m′

0/4.
Clearly, (3.20) follows from (3.29) and the bound s0 + 3m′

0/4 < t∗+1 < s0 + 5m′
0/4.

From the above, we know that ξ̇ > 0 in (t∗+1, s1). Define

t∗+2 = sup
{
t ∈ [s1, 0) : ξ̇(t) > 0 in [s1, t]

}
.

Note that ξ ≥ ξ̄0 in [s1, t∗+2], and so by (2.6), ξ̇ > 0 in [s1, t∗+2). We will show that 
when M is suitably large, t∗+2 < 0 and hence t∗+2 is a critical point of ξ.

By Lemma 3.3, (3.29) and the fact that ξ(s1) = ξ̄0 and s0+7m′
0/4 < s1 < s0+9m′

0/4, 
we have

t− (t∗ + ξ(t∗)) − C ≤ ξ(t) ≤ t− (t∗ + ξ(t∗)) + C in [s1, t∗+2], (3.31)

where here and below C denotes a positive constant depending only on n, a, β, D, C ′, ξ̄0,

C0 and m0. This together with (3.20) and (3.29) gives (3.22) after possibly enlarging M .
Let us now estimate H(t∗+2) in terms of t∗ + ξ(t∗). By the Pohozaev identity (2.9), 

we have H(t∗+2) = H(s0) −
∫ t∗+2
s0

K̇cyle−nξ dτ . Using (3.29) and the inequalities −C ′ ≤
ξ ≤ ξ̄0 in [s0, s1] and 7m′

0/4 ≤ s1 − s0 ≤ 9m′
0/4, we have that

1
C
eβ(t∗+ξ(t∗)) ≤

s1∫

s0

K̇cyle
−nξ dτ ≤ Ceβ(t∗+ξ(t∗)). (3.32)

By (3.31), we have

1
C
e(β−n)te−n(t∗+ξ(t∗)) ≤ −K̇cyl(t)e−nξ(t) ≤ Ce(β−n)te−n(t∗+ξ(t∗)) in [s1, t∗+2],

and so, as β < n,

0 ≤ −
t∗+2∫

s1

K̇cyle
−nξ dτ ≤ Ceβ(t∗+ξ(t∗)). (3.33)

Putting together (3.30), (3.32) and (3.33), we thus have

1
C
eβ(t∗+ξ(t∗)) ≤ H(t∗+2) ≤ Ceβ(t∗+ξ(t∗)). (3.34)

Recalling the expression of H in (2.8) and using t = t∗+2 in (3.31), we obtain

1
(2.8)
≥ 2k

(
n

k

)−1
e(n−2k)ξ(t∗+2)H(t∗+2)

(3.31), (3.34)
≥ 1

C
e(n−2k)t∗+2e−(n−2k−β)(t∗+ξ(t∗)),
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which, in view of the fact β(t∗ + ξ(t∗)) ≤ −M , leads to

t∗+2 ≤ n− 2k − β

n− 2k (t∗ + ξ(t∗)) + C ≤ −n− 2k − β

β(n− 2k) M + C. (3.35)

As β < n − 2k, the right hand side of (3.35) can be made negative by enlarging M . 
Recalling the definition of t∗+2, we thus have ξ̇(t∗+2) = 0 and, by (2.6), ξ̈(t∗+2) < 0.

As ξ(t∗+2) > ξ(s1) = ξ̄0 and ξ̇(t∗+2) = 0 and in view of (3.18) and (3.34), we have

− β

n− 2k (t∗ + ξ(t∗)) − C ≤ ξ(t∗+2) ≤ − β

n− 2k (t∗ + ξ(t∗)) + C,

and, in view of (3.31) with t = t∗+2,

n− 2k − β

n− 2k (t∗ + ξ(t∗)) − C ≤ t∗+2 ≤ n− 2k − β

n− 2k (t∗ + ξ(t∗)) + C.

These give (3.21). They also give

(n− 2k)ξ(t∗+2) + β(t∗+2 + ξ(t∗+2)) ≥ − 2β2

n− 2k (t∗ + ξ(t∗)) − C,

(
1 − 2β

n− 2k
)
(t∗ + ξ(t∗)) − C ≤ t∗+2 + ξ(t∗+2) ≤

(
1 − 2β

n− 2k
)
(t∗ + ξ(t∗)) + C.

In view of the fact that β(t∗ + ξ(t∗)) ≤ −M , by enlarging M one final time, we obtain 
(3.23) and (3.24) as desired. !

4. Compactness estimates: proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1 together with some extensions.

4.1. Proof of Theorem 1.1

By first and second derivative estimates for the σk-Yamabe equation (see e.g. [11, 
Theorem 1.1], [20, Theorem 1.10]), it suffices to show that

v ≤ C1 for all positive C2
r solutions v of (1.1)

where C1 depends only on n, k and K. Suppose by contradiction that there exist positive 
functions vi ∈ C2

r (Sn) satisfying (1.1) such that max vi → ∞.
Let ui : Rn → R be related to vi as in (2.1). As ui is super-harmonic and rotationally 

symmetric, the maximum principle implies that ui(0) is the maximum of ui in any closed 
ball centered at the origin. Recalling (2.1), we have

vi(x) ≤ vi(S)
( 2

1 + cos dg̊(x, S)
)n−2

2 for all x ∈ Sn \ {N}, (4.1)
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where N and S are respectively the north and south poles of Sn. In particular, vi ≤
2n−2

2 vi(S) in the lower closed hemi-sphere. Likewise vi ≤ 2n−2
2 vi(N) in the upper closed 

hemi-sphere. As max vi → ∞, this implies that

max{vi(S), vi(N)} → ∞. (4.2)

Throughout the proof, C denotes some generic positive constant which may change 
from one line to another but will remain independent of i, O(1) denotes a term which is 
bounded as i → ∞, and o(1) denotes a term which tends to zero as i → ∞.

Step 1: We show that

vi(x)dg̊(x, {N,S})n−2
2 ≤ C,

and

|∇) ln vi(x)|dg̊(x, {N,S})) ≤ C for + = 1, 2. (4.3)

These estimates follow from Theorem 3.1(a) and (4.1).
In the next step, let a2 and β2 be as given in (1.2), t = ln r, ξi be related to ui as in 

(2.3) and λi := 2− 1
2
(n
k

)− 1
2kK(S) 1

2k ui(0) 2
n−2 = 2 1

2
(n
k

)− 1
2kK(S) 1

2k vi(S) 2
n−2 .

Step 2: Making use of Pohozaev-type and mass-type identities, we show that if vi(S) →
∞, then a2 < 0, and, for large i, there exist

δi = eO(1)λ
−(1− β2

n−2k )
i , (4.4)

νi = eO(1)λ
−(1− 2β2

n−2k )
i (4.5)

such that ξi is strictly increasing in (ln Ri
λi
, ln δi), is strictly decreasing in (ln δi, ln νi), has 

a strict local maximum at ln δi, and

ξi(ln δi) = β2
n− 2k lnλi + p2 + o(1), (4.6)

ξi(ln δi) = lnλi + ln δi + q2 + o(1), (4.7)

ξi(t) = lnλi + t + O(1) in (ln 2
λi

, ln δi), (4.8)

ξi(t) = −(1 − 2β2
n− 2k ) lnλi − t + O(1) in (ln δi, ln νi), (4.9)

where
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p2 := − 1
n− 2k ln

[
2β2+n+2k

2

(
n

k

)n−2k
2k Γ(n−β2

2 )Γ(n+β2
2 )

2Γ(n) |a2|β2K(S)− n
2k

]
,

q2 := − ln
[
2

n+2k
2(n−2k)

(
n

k

) 1
2k

K(S)− 1
2k

]
.

If β < n − 2k, the negativity of a2, and estimates (4.4), (4.5), (4.8) and (4.9) follow 
from Theorem 3.1(b) and (c). Using the fact that ξi is now defined on all of R (rather than 
(−∞, ln 2) in Theorem 3.1), the same proof can be used to treat the case n −2k ≤ β < n. 
Estimate (4.6) will be obtained by using ξ̇i(ln δi) = 0 in the relevant Pohozaev identity. 
Estimate (4.7) will be proved using a mass-type identity. Let us now give the details.

Proof of (4.8).
By Theorem 3.1(a), for every εi → 0+ and every Ri → ∞, after passing to a subse-

quence, we have for 0 ≤ + ≤ 2 that

∣∣∣
d)

dt)

[
ξi(t) + ln λiet

1 + λ2
i e

2t + ln
(
2 1

2

(
n

k

) 1
2k

K(S)− 1
2k

)]∣∣∣ ≤ εiλ
)
ie

)t in (−∞, ln Ri

λi
).

(4.10)
Note that by (4.10), ξ̇i(t) ≥ 0 in (ln 2

λi
, ln Ri

λi
). Let

δi = sup
{
s ≥ 2

λi
: ξ̇i ≥ 0 in (ln 2

λi
, ln s)

}
∈ [Riλ

−1
i ,∞].

Clearly, if δi is finite, ξ̇i(ln δi) = 0. Furthermore, we have for ln Ri
λi

< t < ln δi that

ξi(t) ≥ ξi(ln(Ri/λi))
(4.10)
≥ lnRi −O(1). (4.11)

It follows from property (2.6) that ξ̈i < 0 at every critical point of ξi in [ln Ri
λi
, ln δi]

for large i. In particular, for large i, ξi is strictly increasing in [ln Ri
λi
, ln δi) and, if δi is 

finite, then as ξ̇i(ln δi) = 0, ξ̈i(ln δi) < 0, and ln δi is a strict local maximum of ξi.
Estimate (4.8) follows from (4.11), the monotonicity of ξi and Lemma 3.3.

Proof of the negativity of a2 and estimates (4.4) and (4.6).
As in the proof of Theorem 3.1 (see (3.15)), we have for t ∈ (ln Ri

λi
, ln δi) that

[
1 − ξ̇i(t)2

]k
+ o(1)

= −(1 + o(1))e(n−2k)ξi(t)λ−β2
i a2β22β2+n+2k

2

(
n

k

)n−2k
2k

K(S)− n
2k

∞∫

0

rn+β2−1

(1 + r2)n dr.

Using Corollary A.2, we get
[
1 − ξ̇i(t)2

]k
+ o(1) = −(1 + o(1))e(n−2k)ξi(t)λ−β2

i e−(n−2k)p2 . (4.12)
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Since the right hand side of (4.12) is −eO(1)a2e(n−2k)tλn−2k−β2
i (by (4.8)) and (4.12)

holds for all t ∈ (ln Ri
λi
, ln δi), it follows that δi is finite and, in view of the definition of 

δi, ξ̇i(ln δi) = 0. In particular, we can also take t = ln δi in (4.12), yielding the assertion 
a2 < 0 and estimates (4.4) and (4.6).

As a2 < 0, item (i) of the hypotheses of the theorem gives β2 ≥ n−2k
2 .

Proof of estimates (4.5) and (4.9).
The proof is similar to the proof of Theorem 3.1(c). We omit the details.

Proof of estimate (4.7).
We start by using the mass-type identity (2.16) and the fact that ξ̇i(ln δi) = 0 to 

obtain

e
n−2k

2 (−ξi(ln δi)+ln δi) = 2k−1n

(
n

k

)−1
m(ln δi, ξi(ln δi), ξ̇i(ln δi))

= 2k−1n

(
n

k

)−1 ln δi∫

−∞

Kcyl(τ)(1 − ξ̇i)−(k−1)e−
n+2k

2 ξie
n−2k

2 τ dτ.

(4.13)

We proceed to estimate the integral on the right hand side of (4.13). The integration 
over (−∞, ln Ri

λi
) can be estimated using the continuity of K and (4.10) with εi 4 R−3

i

and Corollary A.2:

ln Ri
λi∫

−∞

Kcyl(τ)(1 − ξ̇i)−(k−1)e−
n+2k

2 ξie
n−2k

2 τ dτ

= (1 + o(1))2n−2k+4
4

(
n

k

)n+2k
4k

K(S)−n−2k
4k λ

−n−2k
2

i

∞∫

0

rn−1

(1 + r2)n+2
2

dr

= (1 + o(1)) 1
n

2n−2k+4
4

(
n

k

)n+2k
4k

K(S)−n−2k
4k λ

−n−2k
2

i . (4.14)

To estimate the integration over (ln Ri
λi
, ln δi), we need to bound (1 − ξ̇i)−(k−1). Recall 

from Step 2 that ξ̇i > 0 in (ln Ri
λi
, ln δi). Let Xi = e2ξi(1 − ξ̇2

i ) > 0, which is, up to a 
harmless multiplicative constant, the repeated eigenvalue of the Schouten tensor of gvi . 
Note that (2.4) can be recast as

Xk−1
i e2ξi ξ̈i + n− 2k

2k Xk
i = 2k−1

(
n− 1
k − 1

)−1
Kcyl.

Thus, there exists a small χ0 > 0 depending only on n, k and a positive lower bound for 
K such that ξ̈i(t) ≥ 0 whenever Xi(t) < χ0. As Ẋi = −2ξ̇i(e2ξi ξ̈i + Xi) and ξ̇i > 0 in 
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(ln Ri
λi
, ln δi), this implies that Ẋi(t) ≤ 0 whenever Xi(t) < χ0 for t ∈ (ln Ri

λi
, ln δi). On 

the other hand, since Xi(ln δi) = eO(1)λ
2β2

n−2k
i > χ0 (in view of (4.6) and ξ̇i(ln δi) = 0), 

we deduce that Xi is nowhere less than χ0 in (ln Ri
λi
, ln δi), i.e.

Xi ≥ χ0 in (ln Ri

λi
, ln δi).

It follows that 1 − ξ̇i = Xie
−2ξi

1+ξ̇i
≥ χ0

2 e−2ξi in (ln Ri
λi
, ln δi), and so, in view of (4.8),

ln δi∫

ln Ri
λi

Kcyl(τ)(1 − ξ̇i)−(k−1)e−
n+2k

2 ξie
n−2k

2 τ dτ

≤ C

ln δi∫

ln Ri
λi

e−
n−2k+4

2 ξie
n−2k

2 τ dτ ≤ CR−2
i λ

−n−2k
2

i . (4.15)

Putting (4.14) and (4.15) into (4.13) we obtain (4.7), which concludes Step 2.

Step 3: We draw a contradiction.
By (4.2), we may assume without loss of generality that vi(S) → ∞. By Step 2 and 

point (i) of the hypotheses, we have that β2 ≥ n−2k
2 . We consider the cases β2 ≥ n − 2k

and n−2k
2 ≤ β2 < n − 2k separately.

Case (a): β2 ≥ n − 2k. We will show that a1 < 0, 1
β1

+ 1
β2

= 2
n−2k and that (1.3) is 

violated, which amounts to a contradiction to our hypotheses.
We first prove that vi(N) → ∞. Indeed, by (4.9), the oscillation of ξi(t) − t in [0, ∞)

tends to infinity as i → ∞. This gives oscS̄n
+

ln vi → ∞. Now, if vi(N) was bounded, we 
would have by (4.1) that vi is uniformly bounded away from the south pole, and hence, 
by the Harnack estimate, |∇ ln vi| ≤ C on S̄n

+, which is a contradiction to the above 
estimate on the oscillation of ln vi.

The rough idea of the proof is as follows: Let λi = 2− k
2 +1(n

k

)−1/2
K(S) 1

2 vi(S) 2
n−2 → ∞

and λ̃i = 2− k
2 +1(n

k

)−1/2
K(N) 1

2 vi(N) 2
n−2 → ∞. We apply Step 2 to both the north 

and the south poles to obtain that ξi has exactly three critical points, is decreasing 
in (−∞, − lnλi + o(1)), increasing in (− lnλi + o(1), ln δi), decreasing in (ln δi, ln λ̃i +
o(1)) and increasing in (ln λ̃i + o(1), ∞), and that 1

β1
+ 1

β2
= 2

n−2k . We then show 
that the 4-vector Vi = (lnλi, ln λ̃i, ξi(ln δi), ln δi)T satisfies a linear equation of the form 
MVi = P + o(1) where the 4 × 4-matrix M and the 4-vector P are independent of i. 
It follows that P is orthogonal to the kernel of MT , which gives C(1)C(2) = 1 where 
C(1) = Cn,k(β1, a1, K(N)) and C(2) = Cn,k(β2, a2, K(S)).

Let us now give the details. Applying Step 2 to S, we have a2 < 0 and there exist 
δi and νi satisfying (4.4) and (4.5) such that ξi is strictly increasing in (ln Ri

λi
, ln δi), is 
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strictly decreasing in (ln δi, ln νi), has a strict local maximum at ln δi, and (4.6)–(4.9)
hold. Applying Step 2 to N , we have that a1 < 0, β1 ≥ n−2k

2 , and there exist

δ̃i = eO(1)λ̃
−(1− β1

n−2k )
i , (4.16)

ν̃i = eO(1)λ̃
−(1− 2β1

n−2k )
i (4.17)

such that ξi is strictly decreasing in (− ln δ̃i,− ln Ri

λ̃i
), strictly increasing in (− ln ν̃i,

− ln δ̃i), has a strict local maximum at − ln δ̃i,

ξi(− ln δ̃i) = β1
n− 2k ln λ̃i + p1 + o(1), (4.18)

ξi(− ln δ̃i) = ln λ̃i + ln δ̃i + q1 + o(1), (4.19)

ξi(t) = ln λ̃i − t + O(1) in (− ln δ̃i, ln
λ̃i

2 ), (4.20)

ξi(t) = −(1 − 2β1
n− 2k ) ln λ̃i + t + O(1) in (− ln ν̃i,− ln δ̃i), (4.21)

where

p1 := − 1
n− 2k ln

[
2β1+n+2k

2

(
n

k

)n−2k
2k Γ(n−β1

2 )Γ(n+β1
2 )

2Γ(n) |a1|β1K(N)− n
2k

]
,

q1 := − ln
[
2

n+2k
2(n−2k)

(
n

k

) 1
2k

K(N)− 1
2k

]
.

Comparing the value of ξi(0) from (4.8) and (4.21), we have

λi = eO(1)λ̃
−1+ 2β1

n−2k
i . (4.22)

This implies that β1 > n−2k
2 .

Note that, by (4.10) and the definition of δi and νi, ξi is strictly decreasing in 
(−∞, ln 1+o(1)

λi
), strictly increasing in (ln 1+o(1)

λi
, ln δi), strictly decreasing in (ln δi, ln νi), 

and has exactly two critical points in (−∞, ln νi) at ln 1+o(1)
λi

and ln δi. Now, since 
β2 ≥ n − 2k and β1 > n−2k

2 , we have by (4.4) and (4.17) that

− ln ν̃i = −(1 − 2β1
n− 2k ) ln λ̃i 4 O(1) ≤ ln δi = −(1 − β2

n− 2k ) lnλi + O(1).

Since ξi is strictly decreasing in (− ln ν̃i, − ln δ̃i) and ξ̇i(− ln δ̃i) = ξ̇i(ln δi) = 0, we have 
that ln δi = − ln δ̃i, which implies (in view of (4.4) and (4.16))

λ
−(1− β2

n−2k )
i = eO(1)λ̃

(1− β1
n−2k )

i . (4.23)
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Substituting (4.22) into (4.23), we obtain that

1
β1

+ 1
β2

= 2
n− 2k . (4.24)

Now, let Vi = (lnλi, ln λ̃i, ξi(ln δi), ln δi)T and observe that (4.6), (4.7), (4.18) and 
(4.19) give a linear system of the form

MVi = P + o(1), where M =





− β2
n−2k 0 1 0
−1 0 1 −1
0 − β1

n−2k 1 0
0 −1 1 1




and P =





p2
q2
p1
q1



 .

A straightforward computation gives that detM = β1β2
n−2k

(
− 2

n−2k + 1
β1

+ 1
β2

)
= 0, and the 

kernel of MT is generated by W0 := (n−2k
β2

, −1, n−2k
β1

, −1)T . The fact that MVi = P+o(1)
implies that P ·W0 = 0, i.e.

n− 2k
β2

p2 − q2 + n− 2k
β1

p1 − q1 = 0.

Recalling the expression of p1, p2, q1, q2, we see that this is equivalent to C(1)C(2) = 1. 
However, since (4.24) holds and a1, a2 < 0, we have by our hypotheses that (1.3) holds, 
which is contradiction to the above identity. This finishes the proof when β2 ≥ n − 2k.

Case (b): n−2k
2 ≤ β2 < n − 2k.

Take a point p on the equator of Sn. Recall that vi(S) → ∞. By Step 2, we know 
that vi(p) → 0. Let v̌i = 1

vi(p)vi. By the first and second derivatives estimates (4.3), after 
passing to a subsequence if necessary, we may assume that v̌i converges in C1,α

loc (Sn \
{S, N}) to some positive function v̌∞ ∈ C1,1

loc (Sn \ {S, N}) which satisfies

λ(Agv̌∞ ) ∈ ∂Γk in Sn \ {S,N} (4.25)

in the viscosity sense. Note that as n−2k
2 ≤ β2 < n − 2k, we have in Step 2 that δi → 0

and νi ≥ 1
C . Hence, by estimate (4.9) in Step 2, there exists ri = O(δi) → 0 such that 

1
C ≤ v̌i ≤ C in {x : ri ≤ dg̊(x, S) ≤ π/2}. It follows that

1
C

≤ v̌∞ ≤ C near S. (4.26)

We proceed according to whether vi(N) is bounded or not. Suppose first that vi(N)
is bounded. Then supSn

+
vi is also bounded (see (4.1) and the sentence following it). The 

estimates in Step 1 are thus improved to

vi(x)dg̊(x, {S})
n−2

2 ≤ C and |∇) ln vi(x)|dg̊(x, {S})) ≤ C for + = 1, 2.



34 Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198

It follows that the function v̌∞ satisfies

λ(Agv̌∞ ) ∈ ∂Γk in Sn \ {S}.

In view of the Liouville-type theorem [19, Theorem 1.3], this is impossible: No such v̌∞
can satisfy (4.26).

Finally, consider the case that N is a blow-up point. In view of Case (a) above, by 
exchanging the role of the north pole and the south pole, we may assume that n−2k

2 ≤
β1 < n − 2k. The proof of (4.26) also applies near N giving that

1
C

≤ v̌∞ ≤ C in Sn \ {S,N}.

By the classification result [21, Theorem 1.6], no axisymmetric solution v̌∞ to (4.25)
satisfies the above inequality. This finishes the proof of Theorem 1.1. !

The following remark is easily seen from the above proof:

Remark 4.1. If max(a1, a2) > 0, the constant C1 in Theorem 1.1 depends only on an 
upper bound of |a1|, |a2|, |a1|−1, |a2|−1, (n − β1)−1, (n − β2)−1, ‖ lnK‖C2,α

r (Sn), and a 
non-negative function φ : [0, π/2) → [0, ∞) such that φ(θ) → 0 as θ → 0 and

|R1(θ)| + |θ||R′
1(θ)|

|θ|β1
≤ φ(θ) and |R2(θ)| + |π − θ||R′

2(θ)|
|π − θ|β2

≤ φ(π − θ).

If 1
β1

+ 1
β2

'= 2
n−2k and a1, a2 < 0, the constant C1 depends only on an upper bound of 

|a1|, |a2|, |a1|−1, |a2|−1, (n − β1)−1, (n − β2)−1, ‖ lnK‖C2,α
r (Sn), | 1

β1
+ 1

β2
− 2

n−2k |
−1, and 

a function φ as above.
If 1

β1
+ 1

β2
= 2

n−2k and a1, a2 < 0, the constant C1 depends only on an upper bound 
of |a1|, |a2|, |a1|−1, |a2|−1, (n − β1)−1, (n − β2)−1, ‖ lnK‖C2,α

r (Sn), |C(1)C(2) − 1|−1, and 
a function φ as above.

4.2. Some extensions of Theorem 1.1

In many situations, we will often consider (1.1) in a family of equations of the form

σk(λ(Agv)) = Kµ and λ(Agv ) ∈ Γk on Sn (4.27)

where Kµ depends on a certain parameter µ in some index set I. Analogous to (1.2), we 
will assume that there exist a1,µ, a2µ '= 0 and 2 ≤ β1,µ, β2,µ < n such that if we write

Kµ(θ) = Kµ(0) + a1,µθ
β1,µ + R1,µ(θ) = Kµ(π) + a2,µ(π − θ)β2,µ + R2,µ(θ)

then
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lim
θ→0

sup
µ∈I

|R1,µ(θ)| + |θ||R′
1,µ(θ)|

|θ|β1,µ
= lim

θ→π
sup
µ∈I

|R2,µ(θ)| + |π − θ||R′
2,µ(θ)|

|π − θ|β2,µ
= 0. (4.28)

Remark 4.2. It is not hard to see from the proof of Theorem 1.1 that if each Kµ satisfies 
the hypotheses of Theorem 1.1, 1

C ≤ |a1,µ|, |a2,µ| ≤ C, |n − β1,µ|, |n − β2,µ| ≥ 1
C , | 1

β1,µ
+

1
β2,µ

− 2
n−2k | ≥

1
C , and ‖Kµ‖C2,α

r (Sn) ≤ C for some constant C, then there exists a 
constant C1 > 0 such that all positive solutions to (4.27) with µ ∈ I satisfy

‖ ln v‖C4,α(Sn) < C1.

Furthermore, if max(a1,µ, a2,µ) ≥ 1
C , the assumption that | 1

β1,µ
+ 1

β2,µ
− 2

n−2k | ≥
1
C can 

be dropped.

To prove Theorem 1.2 later on, we embed K in a family {Kµ} in two specific ways for 
which Remarks 4.1 and 4.2 do not apply. Let us now show how the proof of Theorem 1.1
can be adapted to cover those situations.

Theorem 4.3. Assume that n ≥ 5, 2 ≤ k < n/2, 0 < α < 1, K ∈ C2,α
r (Sn) is positive 

and satisfies (1.2) for some a1, a2 '= 0 and 2 ≤ β1, β2 < n. Assume further that ai > 0
if βi < n−2k

2 for some i, and max(a1, a2) > 0 if 1
β1

+ 1
β2

≥ 2
n−2k . For µ ∈ (0, 1], let 

Kµ = µK + (1 − µ)2−k
(n
k

)
. Then there exists some positive constant C1 such that all 

C2
r (Sn) positive solutions to (4.27) with 0 < µ ≤ 1 satisfy

‖ ln v‖C4,α(Sn) < C1.

Proof. The proof is almost identical to that of Theorem 1.1. We will only indicate the 
necessary changes. We suppose by contradiction that there exists µi ∈ (0, 1] and positive 
functions vi ∈ C2

r (Sn) satisfying (4.27) with µ = µi such that

max{vi(N), vi(S)} → ∞.

There is no change to Step 1.
Step 2 is modified as follows: One shows that if vi(S) → ∞, then a2 < 0, β2 ≥ n−2k

2

and, for large i, there exist δi = eO(1)µ
− 1

n−2k
i λ

−(1− β2
n−2k )

i and νi = eO(1)µ
− 2

n−2k
i λ

−(1− 2β2
n−2k )

i

such that ξi is strictly increasing in (ln Ri
λi
, ln δi), is strictly decreasing in (ln δi, ln νi), has 

a strict local maximum at ln δi, and

ξi(ln δi) = β2
n− 2k lnλi −

1
n− 2k lnµi + p2 + o(1),

ξi(t) = lnλi + t + O(1) in (ln 2
λi

, ln δi),

ξi(t) = − 2
n− 2k lnµi − (1 − 2β2

n− 2k ) lnλi − t + O(1) in (ln δi, ln νi).
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The appearance of µi in the above is due to the fact that, in the present case, one needs 
to include a multiplicative factor of µi on the right hand side of (4.12).

Step 3 is modified as follows. If n−2k
2 ≤ β2 < n − 2k, the proof remains unchanged. 

If β2 ≥ n − 2k, one still has that vi(N) → ∞ and vi(S) → 0, a1, a2 < 0, β1 ≥ n−2k
2 , 

δi = δ̃−1
i and λi = eO(1)λ̃

−(1− 2β1
n−2k )

i . Recalling that δi = eO(1)µ
− 1

n−2k
i λ

−(1− β2
n−2k )

i and 

δ̃i = eO(1)µ
− 1

n−2k
i λ̃

−(1− β1
n−2k )

i , one obtains that

λ̃
− β1+β2

n−2k + 2β1β2
n−2k

i = eO(1)µ
2

n−2
i ≤ C.

This implies 1
β1

+ 1
β2

≥ 2
n−2k . By our hypotheses on the signs of a1 and a2, we thus 

have max(a1, a2) > 0, contradicting the earlier conclusion that a1 and a2 are both 
negative. !

Theorem 4.4. Assume that n ≥ 5, 2 ≤ k < n/2, 0 < α < 1, 0 < ε0 < 1, {Kµ} is 
a bounded sequence of positive functions in C2,α

r (Sn) which satisfies (4.28) for some 
−ε−1

0 < a1,µ, a2,µ < −ε0 < 0 and n−2k
2 ≤ β1,µ, β2,µ ≤ n − ε0, 1

β1,µ
+ 1

β2,µ
→ 2

n−2k . Let 
C(1),µ = Cn,k(β1,µ, a1,µ, Kµ(0)) and C(2),µ = Cn,k(β2,µ, a2,µ, Kµ(π)) and assume further 
that either

(i) 1
β1,µ

+ 1
β2,µ

≥ 2
n−2k and C(1),µC(2),µ < 1 − ε0,

or

(ii) 1
β1,µ

+ 1
β2,µ

≤ 2
n−2k and C(1),µC(2),µ > 1 + ε0.

Then there exists a constant C1 > 0 such that all C2
r (Sn) positive solutions to (1.1)

satisfy

‖ ln v‖C4,α(Sn) < C1.

Proof. We amend the proof of Theorem 1.1, and we will indicate only the necessary 
changes. We suppose by contradiction that the conclusion fails. By passing to a subse-
quence, we may assume that there exist µi → ∞ and positive functions vi ∈ C2

r (Sn)
satisfying (4.27) with µ = µi such that

max{vi(N), vi(S)} → ∞.

Let γi = n−2k
β1,µi

+ n−2k
β2,µi

− 2. Passing again to a subsequence, we may further assume 
that γi ≥ 0 for all i or γi ≤ 0 for all i.

Steps 1 and 2 remain unchanged. In Step 3, we again have that both the north and 
the south poles are blow-up points, δi = δ̃−1

i , and
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ξi(ln δi) = β2,µi

n− 2k lnλi + p2,µi + o(1), (4.29)

ξi(ln δi) = lnλi + ln δi + q2,µ + o(1), (4.30)

ξi(− ln δ̃i) = β1,µi

n− 2k ln λ̃i + p1,µi + o(1), (4.31)

ξi(− ln δ̃i) = ln λ̃i + ln δ̃i + q1,µi + o(1), (4.32)

where

p2,µ := − 1
n− 2k ln

[
2β2,µ+n+2k

2

(
n

k

)n−2k
2k Γ(n−β2,µ

2 )Γ(n+β2,µ
2 )

2Γ(n) |a2,µ|β2,µKµ(S)− n
2k

]
,

q2,µ := − ln
[
2

n+2k
2(n−2k)

(
n

k

) 1
2k

Kµ(S)− 1
2k

]
,

p1,µ := − 1
n− 2k ln

[
2β1,µ+n+2k

2

(
n

k

)n−2k
2k Γ(n−β1,µ

2 )Γ(n+β1,µ
2 )

2Γ(n) |a1,µ|β1,µKµ(N)− n
2k

]
,

q1,µ := − ln
[
2

n+2k
2(n−2k)

(
n

k

) 1
2k

Kµ(N)− 1
2k

]
.

Now, adding (4.30) and (4.32) gives

2ξi(ln δi) − lnλi − ln λ̃i = q1,µi + q2,µi + o(1).

Multiplying (4.29) by n−2k
β2,µi

and (4.31) by n−2k
β1,µi

and adding the resulting identities to-
gether give

(2 + γi)ξi(ln δi) − lnλi − ln λ̃i = n− 2k
β1,µi

p1,µi + n− 2k
β2,µi

p2,µi + o(1).

Recalling that ξi(ln δi) = β2,µi
n−2k lnλi → ∞, we thus have in the case of non-negative γi’s 

that

0 ≤ lim inf
i→∞

[n− 2k
β1,µi

p1,µi + n− 2k
β2,µi

p2,µi − q1,µi − q2,µi

]
= lim inf

i→∞
ln[C(1),µi

C(2),µi
],

and in the case of non-positive γi’s that

0 ≥ lim sup
i→∞

[n− 2k
β1,µi

p1,µi + n− 2k
β2,µi

p2,µi − q1,µi − q2,µi

]
= lim sup

i→∞
ln[C(1),µi

C(2),µi
].

These contradict our hypotheses. !
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4.3. Second proof of Theorem 1.1 in the case 1
β1

+ 1
β2

= 2
n−2k

In this subsection, we give an alternative proof of Theorem 1.1 in the case 1/β1 +
1/β2 = 2/(n − 2k) and a1, a2 < 0.

By the assumptions on β1 and β2,

(n(n− 2k))/(n + 2k) < min{β1,β2} ≤ n− 2k ≤ max{β1,β2} < n.

By the first and second derivative estimates for the σk-Yamabe equation, it suffices 
to show that

v ≤ C1 for all positive C2
r solutions v of (1.1).

Suppose by contradiction that there exist positive functions vi ∈ C2
r (Sn) satisfying (1.1)

such that max vi → ∞. Let N and S denote respectively the north and south poles of 
Sn.

Throughout the proof, C denotes some generic positive constant which may change 
from one line to another but will remain independent of i,

Step 1: Making the same argument as in the beginning of the proof of Theorem 1.1, we 
can conclude that (4.2)-(4.3) still hold.

Step 2: We show that

min{vi(S), vi(N)} → ∞. (4.33)

This follows from (4.2) and the following lemma (which does not use 1/β1 + 1/β2 =
2/(n − 2k)).

Lemma 4.5. Assume that n ≥ 5, 2 ≤ k < n/2, 0 < α < 1, K ∈ C2,α
r (Sn) is positive and 

satisfies (1.2) for some a1, a2 < 0 and (n(n − 2k))/(n + 2k) < β1, β2 < n. Assume that 
{vi} ⊂ C2

r (Sn) is a sequence of positive solutions of (1.1) satisfying (4.2). Then we have 
(4.33).

Proof. Assume vi(S) → ∞. Let ui be related to vi as in (2.1). By Theorem 3.1(a), for 
every εi → 0+ and every Ri → ∞,

|ui(0)−1ui(r) − (1 + λ2
i r

2) 2−n
2 | ≤ εi in {0 ≤ r ≤ ri := λ−1

i Ri}, (4.34)

where λi = 2− 1
2
(n
k

)− 1
2kK(S) 1

2k ui(0) 2
n−2 . In particular, we can choose Ri such that 

Riui(0)−
β2

n(n−2) → 0+ and εiRn−2
i → 0+. By Theorem 3.1 (a)-(c), we have that

ui(r) = eO(1)ui(0)−1r2−n in {ri ≤ r ≤ r̄i}, (4.35)
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and

ui(r) = eO(1)ui(0)−min{ 2β2
n−2k−1,1} in {r̄i ≤ r ≤ 1}, (4.36)

where r̄i = eO(1)ui(0)− 2
n−2 max{1− β2

n−2k ,0}.
We will prove by contradiction that vi(N) → ∞. Suppose the contrary, then by (4.3)

and (4.36), for any 0 < ε < 1, we have for large i that

ui(r) ≤ Cui(0)−min{ 2β2
n−2k−1,1}r2−n, ∀ r ≥ ε. (4.37)

On one hand, the Kazdan–Warner-type identity (see (2.11)) gives

∞∫

0

rnK ′
Euc(r)u

2n
n−2
i dr = 0. (4.38)

On the other hand, by (4.37), we have for large i that

∣∣∣
∞∫

ε

rnK ′
Euc(r)u

2n
n−2
i dr

∣∣∣ ≤ C

∞∫

ε

rnu
2n

n−2
i dr ≤ C(ε)ui(0)− 2n

n−2 min{ 2β2
n−2k−1,1}.

For some ε > 0 sufficiently small so that K ′
Euc < 0 in (0, ε) (see (1.2)), we deduce from 

(4.34) that

−
ε∫

0

rnK ′
Euc(r)u

2n
n−2
i dr ≥ −

ri∫

0

rnK ′
Euc(r)u

2n
n−2
i dr

≥ C

ri∫

0

rn+β2−1u
2n

n−2
i dr = Cui(0)−

2β2
n−2 .

Multiplying the above two inequalities by ui(0)
2β2
n−2 , letting i → ∞ and using the fact 

n(n − 2k)/(n + 2k) < β2 < n, we have

lim inf
i→∞

ui(0)
2β2
n−2

(
−

∞∫

0

rnK ′
Euc(r)u

2n
n−2
i dr

)
≥ C > 0,

which is a contradiction with (4.38). !

Step 3: We show that, for a fixed x0 ∈ Sn and dg̊(x0, S) = π/2,

vi(x0)vi(S)min{β1,β2}/β1 = eO(1) (4.39)



40 Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198

and

vi(x0)vi(N)min{β1,β2}/β2 = eO(1). (4.40)

The above two estimates follow from Theorem 3.1 (a)-(c) and the facts 1/β1 + 1/β2 =
2/(n − 2k), a1, a2 < 0.

Step 4: By (4.33) and (4.39), we have that, vi(x0) = eO(1)vi(S)−
min{β1,β2}

β1 → 0. By (4.3), 
after passing to a subsequence if necessary, vi(x0)−1vi(x) converges in C1,α

loc (Sn\{N, S})
to some positive axisymmetric function G ∈ C1,1

loc (Sn\{N, S}) which satisfies

λ(AgG) ∈ ∂Γk in Sn\{N,S}.

By the classification result [21, Theorem 1.6], we have that c1 := lim
x→S

dg̊(x, S)n−2G(x) ∈
[0, ∞), c2 := lim

x→N
dg̊(x, N)n−2G(x) ∈ [0, ∞), max{c1, c2} > 0, and in the stereographic 

projection coordinates as at the beginning of Section 2,

G(x) = 22−n(1 + r2)n−2
2

(
c

n−2k
k(n−2)
1 r−

n−2k
k + c

n−2k
k(n−2)
2

) k(n−2)
n−2k

. (4.41)

By (4.39) and (4.40) and after passing to a subsequence if necessary, we have that 
vi(x0)vi(S)min{β1,β2}/β1 and vi(x0)vi(N)min{β1,β2}/β2 converge respectively to two posi-
tive constants c3 and c4. Therefore,

vi(S)min{β1,β2}/β1vi(x) → c3G(x), in C1,α
loc (Sn\{N,S}), (4.42)

and

vi(N)min{β1,β2}/β2vi(x) → c4G(x), in C1,α
loc (Sn\{N,S}).

Next we show that

c1c3 =






(
K(S)
2k(nk)

)−n−2
2k if β2 ≥ β1,

0 if β2 < β1,
(4.43)

c2c3 =





2n−2

(
− a2β2

Γ(n−β2
2 )Γ(n+β2

2 )
2Γ(n)

) n−2
n−2k

(
2kβ2(nk)

β2

K(S)2k+β2

) n−2
2k(n−2k) if β2 ≤ β1

0 if β2 > β1,
(4.44)

c2c4 =






(
K(N)
2k(nk)

)−n−2
2k if β2 ≤ β1,

0 if β2 > β1,
(4.45)

and
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c1c4 =





2n−2

(
− a1β1

Γ(n−β1
2 )Γ(n+β1

2 )
2Γ(n)

) n−2
n−2k

(
2kβ1(nk)

β1

K(N)2k+β1

) n−2
2k(n−2k) if β2 ≥ β1,

0 if β2 < β1.
(4.46)

We will only need to prove (4.43) and (4.44), since (4.45) and (4.46) follow by switching 
the roles of S and N .

Let ui be related to vi as in (2.1) and let wi = u(n−2k)/k(n−2)
i . Fix a small σ > 0 such 

that K ′
Euc(r) < 0 on [0, σ]. To prove (4.43) and (4.44), we first establish the following 

two identities.

σ
n−k
k w′

i(σ) = −n(n− 2k)
2k2

(n
k

)1/k

σ∫

0

KEuc(r)1/kr(n−k)/kw
n+2k
n−2k
i (1 − ρi(r))

1−k
k dr, (4.47)

and

E(σ, wi, w′
i)

σ(n−k)/kw′
i(σ) = − 2k2

n(n− 2k)
(KEuc(σ)(1 − ρi(σ))1/k

∫ σ
0 KEuc(r)1/kr(n−k)/kw

n+2k
n−2k
i (1 − ρi(r))

1−k
k dr

, (4.48)

where ρi(r) = KEuc(r)−1r−nwi(r)−
2nk

n−2k
∫ r
0 K ′

Euc(s)snwi(s)
2nk

n−2k ds and

E(r, wi, w
′
i) = 2k

n− 2kw
− 2n

n−2k
i

[
− wiw′

i

r
− k

n− 2k (w′
i)2

]
.

Equations (2.2) and (2.11) can be rewritten in terms of wi as




w′′

i + n−k
k

w′
i
r = −n(n−2k)

2k2(nk)
KEuc(r)w

n+2k
n−2k
i E(r, wi, w′

i)1−k in [0,∞),
E(r, wi, w′

i) > 0 in [0,∞),
(4.49)

and

E(r, wi, w
′
i)k = KEuc(r)(n

k

) (1 − ρi(r)), (4.50)

respectively. Raising (4.50) to the power of 1−k
k and then inserting it into (4.49), we have

w′′
i + n− k

k

w′
i

r
= −n(n− 2k)

2k2
(n
k

)1/kKEuc(r)1/kw
n+2k
n−2k
i (1 − ρi(r))

1−k
k .

Multiplying the above identity by r
n−k
k and then integrating it on [0, σ] give (4.47). 

Raising (4.50) to the power of 1/k, evaluating it at r = σ, and then dividing it by (4.47), 
we obtain (4.48).

Now we use identities (4.47) and (4.48) to obtain (4.43) and (4.44). By (4.42) and 
(4.41), we have
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ui(0)min{β1,β2}/β1ui(r) = (2n−2
2 vi(S))min{β1,β2}/β1(( 2

1 + r2 )n−2
2 vi(x))

= 2
n−2

2 (min{β1,β2}
β1

−1)c3(c
n−2k

k(n−2)
1 r−

n−2k
k + c

n−2k
k(n−2)
2 )

k(n−2)
n−2k + o(1)

in C1,α
loc (Rn). It follows that

wi(0)min{β1,β2}/β1 × LHS of (4.47) = −n− 2k
k

2
n−2k

2k (min{β1,β2}
β1

−1)(c1c3)
n−2k

k(n−2) + o(1),
(4.51)

and

(n− 2k)2
2k2 wi(0)min{β1,β2}/β1wi(σ) 2n

n−2k σ
n
k × LHS of (4.48)

= −n− 2k
k

2
n−2k

2k (min{β1,β2}
β1

−1)(c2c3)
n−2k

k(n−2) + o(1). (4.52)

Before estimating the left hand sides of the above identities, we will first give the 
following estimates:

I1 :=
σ∫

0

KEuc(r)1/kr(n−k)/kw
n+2k
n−2k
i (1 − ρi(r))

1−k
k dr

= (1 + o(1))2 n
2k

(
n

k

) n
2k2 k

n
K(S)−n−2k

2k2 wi(0)−1, (4.53)

and

I2 := KEuc(σ)σnwi(σ) 2nk
n−2k −

σ∫

0

K ′
Euc(s)snw

2nk
n−2k
i ds

= (1 + o(1))a2β22
n+3β2

2

(
n

k

)n+β2
2k Γ(n−β2

2 )Γ(n+β2
2 )

2Γ(n) K(S)−
n+β2

2k wi(0)−
2kβ2
n−2k .

(4.54)

Recall ri = λ−1
i Ri as in (4.34) and write I1 = I1,1+I1,2 where I1,1 and I1,2 correspond 

to the integrals over [0, ri] and [ri, σ] respectively. By (4.34), we have

I1,1 = (1 + o(1))
ri∫

0

K1/k
Euc(r)r(n−k)/kw

n+2k
n−2k
i dr

= (1 + o(1))K1/k
Euc(0)

ri∫

0

r(n−k)/kw
n+2k
n−2k
i dr
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= (1 + o(1))K1/k
Euc(0)λ−n/k

i wi(0) n+2k
n−2k

∞∫

0

s(n−k)/k(1 + s2)−n+2k
2k ds

= (1 + o(1))
(
2k
(
n

k

)) n
2k2

K(S)−n−2k
2k2 wi(0)−1

∞∫

0

s(n−k)/k(1 + s2)−n+2k
2k ds,

where, in the first equality, we have used the fact that for any 0 < r ≤ ri,

|ρi(r)|
(1.2)
≤ Cwi(r)

−2nk
n−2k

r∫

0

sβ2−1wi(s)
2nk

n−2k ds

wi(r)≥wi(ri)
≤ Cwi(ri)

−2nk
n−2k

ri∫

0

sβ2−1wi(s)
2nk

n−2k ds

(4.34)
≤ Cw

− 2nk
n−2k

i (0)(1 + λ2
i r

2
i )n

ri∫

0

sβ2−1w
2nk

n−2k
i ds

(4.34)
≤ Cwi(0)−

2kβ2
n−2kR2n

i = o(1).

Using the fact that K ′ < 0 on [ri, σ], and estimate (4.35) in the interval [ri, ̄ri] and 
estimate (4.36) in the interval [r̄i, σ], we have

I1,2
K′<0
≤

σ∫

ri

r(n−k)/kw
n+2k
n−2k
i dr

(4.35),(4.36)= o(1)wi(0)−1.

Combining the above estimates of I1,1 and I1,2 and using Corollary A.2 give (4.53).
Now we estimate (4.54). We write I2 as

I2 = KEuc(σ)σnwi(σ) 2nk
n−2k − (

ri∫

0

+
σ∫

ri

)(K ′
Euc(s)snw

2nk
n−2k
i ds) =: I2,1 + I2,2 + I2,3.

By (4.36) and the fact 1/β1 + 1/β2 = 2/(n − 2k), |I2,1| ≤ Cwi(0)−
2nk

n−2k
min{β1,β2}

β1 . By 
(1.2) and (4.34),

I2,2 = (−a2β22β2 + o(1))
ri∫

0

sn+β2−1w
2nk

n−2k
i ds

= (−a2β22β2 + o(1))λ−n−β2
i wi(0) 2nk

n−2k

∞∫

0

rn+β2−1(1 + r2)−n dr

= (−a2β22β2 + o(1))(2k
(
n

k

)
)

n+β2
2k K(S)−

n+β2
2k wi(0)−

2kβ2
n−2k

∞∫

0

rn+β2−1(1 + r2)−n.
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By (1.2), (4.35) and (4.36),

|I2,3| ≤ C(
r̄i∫

ri

+
σ∫

r̄i

)sn+β2−1w
2nk

n−2k
i

= o(1)wi(0)−
2kβ2
n−2k + O(1)wi(0)−

2nk
n−2k

min{β1,β2}
β1 = o(1)wi(0)−

2kβ2
n−2k .

Combining the above estimates of I2,1, I2,2 and I2,3 together and using Corollary A.2
give (4.54).

Now, by (4.53)

wi(0)min{ 2β2
n−2k−1,1} × RHS of (4.47) = −n(n− 2k)

2k2
(n
k

)1/kwi(0)
min{β1,β2}

β1 I1

= −(1 + o(1))n− 2k
k

(2k
(n
k

)

K(S)
)n−2k

2k2
wi(0)

min{β1,β2}
β1

−1. (4.55)

By (4.53) and (4.54),

(n− 2k)2
2k2 wi(0)min{ 2β2

n−2k−1,1}wi(σ) 2n
n−2k σ

n
k × RHS of (4.48)

= −n− 2k
n

wi(0)
min{β1,β2}

β1 (I1/k
2 /I1)

= −(1 + o(1))n− 2k
k

wi(0)
min{β1,β2}−β2

β1

(
− a2β22β2 Γ(n−β2

2 )Γ(n+β2
2 )

2Γ(n)

) 1
k (2k

(n
k

)
)

β2
2k2

K(S)
2k+β2
2k2

.

(4.56)

Inserting (4.51) and (4.55) into (4.47), passing to limit, and raising to the power of 
k(n−2)
n−2k give (4.43). Inserting (4.52) and (4.56) into (4.48), passing to limit, and raising 

to the power of k(n−2)
n−2k give (4.44).

Step 5: We make use of the Kazdan–Warner-type identity to show that

(
K(S)k+β2

K(N)k+β1

)n−2
4k (

lim
i→∞

vi(S)β2

vi(N)β1

)
=



2 β2
2 a2β2

(n
k

) β2
2k Γ(n−β2

2 )Γ(n+β2
2 )

2 β1
2 a1β1

(n
k

) β1
2k Γ(n−β1

2 )Γ(n+β1
2 )





n−2
2

. (4.57)

Indeed, the Kazdan–Warner-type identity (see (2.11)) gives
∫

Sn

〈∇K(x),∇xn+1〉v
2n

n−2
i = 0,

or equivalently,
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∫

dg̊(x,S)≤π/2

〈∇K(x),∇xn+1〉v
2n

n−2
i =

∫

dg̊(x,N)≤π/2

〈∇K(x),∇(−xn+1)〉v
2n

n−2
i . (4.58)

We will show that

LHS of (4.58) = (1 + o(1))2
n+β2

2 a2β2

(
n

k

)n+β2
2k Γ(n−β2

2 )Γ(n+β2
2 )

2Γ(n) K(S)−
k+β2

2k vi(S)−
2β2
n−2 ,

(4.59)
and

RHS of (4.58) = (1 + o(1))2
n+β1

2 a1β1

(
n

k

)n+β1
2k Γ(n−β1

2 )Γ(n+β1
2 )

2Γ(n) K(N)−
k+β1

2k vi(N)−
2β1
n−2 .

(4.60)
Inserting (4.59) and (4.60) into (4.58) gives

K(S) k+β2
2k vi(S)

2β2
n−2

K(N) k+β1
2k vi(N)

2β1
n−2

=
2 β2

2 a2β2
(n
k

) β2
2k Γ(n−β2

2 )Γ(n+β2
2 )

2 β1
2 a1β1

(n
k

) β1
2k Γ(n−β1

2 )Γ(n+β1
2 )

+ o(1).

Raising to the power of (n − 2)/2 and letting i → ∞ give (4.57).
We will only need to prove (4.59), since (4.60) follows by switching the roles of S and 

N .
Now we prove (4.59). Let ui be related to vi as in (2.1), then LHS of (4.58) =

∫ 1
0 K ′

Euc(r)rnu
2n

n−2
i . In order to estimate this integral, we divide the integral into two 

parts: I4, the integral on [0, ri], and I5, the integral on [ri, 1]. By (1.2) and (4.34),

I4
(1.2)= 2β2a2β2(1 + o(1))

ri∫

0

rn+β2−1u
2n

n−2
i dr

(4.34)= (1 + o(1))2β2a2β22
n+β2

2

(
n

k

)n+β2
2k

K(S)−
n+β2

2k ui(0)−
2β2
n−2

∞∫

0

sn+β2−1(1 + s2)−n ds

= (1 + o(1))a2β22
n+β2

2

(
n

k

)n+β2
2k

K(S)−
n+β2

2k vi(S)−
2β2
n−2

∞∫

0

sn+β2−1(1 + s2)−n ds.

By (4.35) and (4.36),

|I5| ≤ C

1∫

ri

rnu
2n

n−2
i ≤ C

[ r̄i∫

ri

rn(ui(0)(1 + λ2
i r

2)) 2n
n−2 dr + ui(0)− 2n

n−2 min{ 2β2
n−2k−1,1}

]

= o(ui(0)−
2β2
n−2 ).
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Combining the above two estimates together and using Corollary A.2 give (4.59).

Step 6: We reach a contradiction. Let c5 := lim
i→∞

(vi(S)β2/vi(N)β1). Then it is easy to 

see that

c5 = (c3/c4)
β1β2

min{β1,β2} (4.61)

If β2 ≥ β1, by (4.43), c1 > 0. Dividing (4.43) by (4.46), inserting it into the right hand 
side of (4.61) and inserting (4.57) into the left hand side of (4.61), we have

Cn,k(a1,K(N))Cn,k(a2,K(S)) = 1, (4.62)

which is a contradiction to (1.3). If β1 ≥ β2, by (4.44), c2 > 0. Dividing (4.44) by (4.45), 
inserting it into the right hand side of (4.61) and inserting (4.57) into the left hand side 
of (4.61), we have (4.62), which is again a contradiction to (1.3). !

5. The total degree: proof of Theorem 1.2

The computation of the degree is a direct adaptation of the computation in [17,22] to 
the case of axisymmetry. For completeness, we present a sketch.

Fix some 0 < α′ ≤ α < 1. By Theorem 1.1 and first and second derivative estimates 
for the σk-Yamabe equation (see [10,11], [20, Theorem 1.10], [14, Theorem 1.20], [27]), 
we can select C∗ sufficiently large such that all axisymmetric positive solutions to (1.1)
belong to the set

O =
{
ṽ ∈ C4,α′

r (Sn) : ‖ ln ṽ‖C4,α′ (Sn) < C∗,λ(Agṽ) ∈ Γk

}
.

Consider the nonlinear operator F : O → C2,α′

r (Sn) defined by

F [v] := σk(λ(Agv )) −K, ∀ v ∈ O.

By [16], the degree deg (F, O, 0) is well-defined and is independent of α′ ∈ (0, α] (see [17, 
Theorem B.1]).

If a1, a2 < 0 and 1
β1

+ 1
β2

> 2
n−2k , we have in view of the homotopy invariance property 

of the degree, the non-existence result Theorem 1.4 and Remark 4.2 that deg (F, O, 0) =
0.

If a1, a2 < 0, 1
β1

+ 1
β2

= 2
n−2k and Cn,k(β1, a1, K(0))Cn,k(β2, a2, K(π)) < 1, it follows 

the compactness estimate Theorem 4.4 and the above statement that deg (F, O, 0) = 0.
In all remaining cases, in view of the compactness estimate Theorem 4.4 and Re-

mark 4.2, we may assume without loss of generality that β1, β2 > n − 2k.
We continue by deforming K to a constant. For µ ∈ (0, 1], we let Kµ = µK + (1 −

µ)2−k
(n
k

)
and consider the equation (4.27). By Theorem 4.3, we may assume that all 

axisymmetric positive solutions to (4.27) for µ ∈ (0, 1] belong to the set O.
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Let Fµ : O → C2,α′

r (Sn) be defined by

Fµ[v] := σk(λ(Agv)) −Kµ, ∀ v ∈ O. (5.1)

Then the degree deg (Fµ, O, 0) is well-defined and is independent of µ ∈ (0, 1] and of 
α′ ∈ (0, α]. We would now like to compute this degree for small µ and some α′ ∈ (0, α), 
using the Lyapunov-Schmidt reduction.

We parametrize C4,α′

r (Sn) as S0×R where the R-factor takes into account the action 
of the Möbius group on Sn on axisymmetric functions and where the element 1 ∈ S0
corresponds to the so-called axisymmetric standard bubbles on Sn. To this end, for t ∈ R, 
let ϕt be the Möbius transformation on Sn which, under stereographic projection with 
respect to the north pole, sends y to ty. For function v defined on Sn, we let

Ttv := v ◦ ϕt|det dϕt|
n−2
2n

where dϕt denotes the Jacobian of ϕt. In particular, the pull-back metric of gv = v
4

n−2 g̊

under ϕt is given by ϕ∗
t (gv) = gTtv.

Let

S0 =
{
v ∈ C4,α′

r (Sn) :
∫

Sn

xn+1|v(x)| 2n
n−2 dvg̊(x) = 0

}
.

For w ∈ S0 and t ∈ R, let π(w, t) be defined by π(w, 0) = w and

π(w, t) = T−1
t (w).

It can be checked that the map π : S0 ×R 8→ C4,α′

r (Sn) is a C2 diffeomorphism.
As in [22], Theorem 4.3 and the Liouville-type theorem give

Lemma 5.1. Let n ≥ 5, 2 ≤ k < n/2, and 0 < α′ < α < 1. Suppose that K ∈ C2,α
r (Sn)

is as in Theorem 1.2 with β1, β2 > n − 2k. If vµj = π(wµj , tµj ) solves (4.27) for some 
sequence µj → 0+, then tµj stays in a compact interval of R and

lim
j→∞

‖wµj − 1‖C4,α′ (Sn) = 0.

The linearized operator of Fµ[π(·, t)] at w̄ ≡ 1 is readily found to be

L := Dw(Fµ ◦ π)(w, ξ)]
∣∣∣
w=w̄

= −dn,k(∆ + n) with dn,k := 22−k

n− 2
( n

k

)

and with domain D(L ) being the tangent plane to S0 at w = w̄:

D(L ) := T1(S0) =
{
η ∈ C4,α′

r (Sn) :
∫

Sn

xη(x) dvg̊(x) = 0
}
.
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It is well-known that L is an isomorphism from D(L ) to

R(L ) :=
{
f ∈ C2,α′

r (Sn) :
∫

Sn

xn+1f(x) dvg̊(x) = 0
}
.

Let Π be a projection from C2,α′

r (Sn) onto R(L ) defined by

Πf(x) = f(x) − n + 1
|Sn| x

n+1
∫

Sn

yn+1f(y) dvg̊(y).

As in [22], we have:

Proposition 5.2. Let n ≥ 5, 2 ≤ k < n/2, and 0 < α′ < α < 1. Suppose that K ∈
C2,α

r (Sn) is positive and let Fµ be defined by (5.1). Then for every s0 ≥ 1, there exists 
a constant µ0 ∈ (0, 1] and a neighborhood N of 1 in S0 such that, for every µ ∈ (0, µ0]
and 1

s0
≤ t ≤ s0, there exists a unique wt,µ ∈ N , depending smoothly on (t, µ), such 

that

Π(Fµ[π(wt,µ, ξ)]) = 0. (5.2)

Furthermore, there exists some C > 0 such that, for µ ∈ (0, µ0] and 1
s0

≤ t, t′ ≤ s0,

‖wt,µ − 1‖C4,α′ (Sn) ≤ Cµ
∥∥∥K − 2−k

(
n

k

)∥∥∥
C2,α(Sn)

,

‖wt,µ − wt′,µ‖C4,α′ (Sn) ≤ Cµ|t− t′|
∥∥∥K − 2−k

(
n

k

)∥∥∥
C2,α(Sn)

.

Note that equation (5.2) can be equivalently rewritten as

σk(λ(Agwt,µ
)) = Kµ ◦ ϕt(x) − Λt,µx

n+1 on Sn,

where Λt,µ ∈ R is given by

Λt,µ = −n + 1
|Sn|

∫

Sn

Fµ[π(wt,µ, ξ)](x)xn+1 dvg̊(x). (5.3)

Furthermore, for µ sufficiently close to 0, vµ solves (4.27) if and only if vµ = π(wtµ,µ, tµ)
and Λtµ,µ = 0 for some tµ.

Note that, in view of the Kazdan–Warner-type identity (2.11), Λt,µ can be expressed 
more directly in terms of K as

1
µ

Λt,µ

∫

Sn

|∇xn+1|2w
2n

n−2
t,µ dvg̊(x) =

∫

Sn

〈∇(K ◦ ϕt),∇xn+1〉w
2n

n−2
t,µ dvg̊(x). (5.4)
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The degree of the function t 8→ Λt,µ can be computed in the same way as in [22]:

Lemma 5.3. Let n ≥ 5, 2 ≤ k < n/2, α ∈ (0, 1) and K ∈ C2,α
+ (Sn) be as in Theo-

rem 1.2 with β1, β2 > n − 2k. Let Λt,µ be defined as in (5.3). Then there exist µ0 ∈ (0, 1]
and s0 ∈ (1, ∞) such that, for all µ ∈ (0, µ0] and s ∈ (1, s0], the Brouwer degrees 
deg (Λt,µ, [s−1, s], 0) are well-defined and

deg (Λt,µ, [s−1, s], 0) = −1
2(−1)n[sign (a1) + sign (a2)].

Proof of Theorem 1.2. As explained at the beginning of the section, we only need to 
consider the case β1, β2 > n − 2k. In this case, as in [22], there exist µ0 ∈ (0, 1] and 
s0 > 1 such that

deg (Fµ,O, 0) = (−1)ndeg (Λt,µ, [s−1, s], 0) for all µ ∈ (0, µ0], s ∈ (1, s0).

The conclusion follows from Lemma 5.3. !

6. Perturbation method: proof of Theorem 1.3

Proof of Theorem 1.3. After a renaming of K to Kµ, it suffices to exhibit a function K
satisfying (1.2) such that sign(ai) = εi and that the equation (4.27) has a solution for 
some sufficiently small µ.

Fix some s0 > 1 for the moment, and let Λt,µ be as in Proposition 5.2. Then (4.27)
has a positive solution if the map t 8→ Λt,µ has a zero in [s−1

0 , s0].
Prompted by formula (5.4) for Λt,µ and the fact that wt,µ ≈ 1 for small µ, we consider 

the function

HK(t) =
∫

Sn

〈∇(K ◦ ϕt),∇xn+1〉dvg̊(x) = n

∫

Sn

K ◦ ϕt x
n+1dvg̊(x).

Clearly, if K and s0 are such that HK(1) and HK(s0) are of opposite signs, then for 
all sufficiently small µ, Λ1,µ and Λs0,µ are also of opposite signs and the conclusion will 
follow.

We now proceed to construct K and s0. Let K#(x) = (xn+1)2m for some large m >
β1, β2. Then HK#(1) = 0 and H ′

K#
(1) > 0. In particular, there exists s0 > 1 such that 

HK#(s0) > 0.
Take a function K∗ satisfying (1.2) with sign(ai) = εi. By considering the behavior of 

HK∗(t) as t → 0, we have that HK∗ '≡ 0. Replacing K∗ with K∗ ◦ϕt for some suitable t, 
we may assume also that HK∗(1) '= 0.

Since HK#(1) = 0 and HK#(s0) > 0, there exists some γ ∈ R such that HK∗+γK#(1)
and HK∗+γK#(s0) are of opposite signs.

The desired function K then takes the form C +K∗ + γK# for some sufficiently large 
C such that K is positive. !
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7. Non-existence: proof of Theorem 1.4

Proof of Theorem 1.4. Let us first prove the non-existence of positive axisymmetric so-
lutions for some suitable K with the declared properties. The fact that this implies the 
theorem will be dealt with at the last stage.

It is more convenient to work in cylindrical coordinates. Fix 2 ≤ β1, β2 < n such 
that 1

β1
+ 1

β2
≥ 2

n−2k . For small 0 < ε 4 1 and large T ≥ 1, fix a positive function 

K̂ε,T ∈ C∞(R) such that

K̂ε,T (t) = 1 − 1
2e

β2(t+T+1) for t ≤ −T − 1, (7.1)

−2 ≤ d

dt
K̂ε,T (t) ≤ 0 for − T − 1 < t < −T, (7.2)

K̂ε,T (t) = 1 − 1
2e

−β1(t−T−1) for t ≥ T + 1, (7.3)

2 ≥ d

dt
K̂ε,T (t) ≥ 0 for T < t < T + 1, (7.4)

K̂ε,T (t) = ε for − T ≤ t ≤ T. (7.5)

Let t = ln cot θ
2 and Kε,T (θ) = K̂ε,T (t). We will show that there exists N 1 1 such that, 

whenever T ≥ N and εe(n+2k)T ≤ 1
N , there is no positive axisymmetric solution of (1.1)

with K = Kε,T .
Suppose by contradiction that there exist Ti and εi with Ti ≥ i and εie(n+2k)Ti ≤ 1

i

such that the problem (1.1) with K = Kεi,Ti has a solution vi.
Let r = et and let ui : Rn → R and ξi : R → R be related to vi as in (2.1) and (2.3). 

In particular, ξi satisfies

Fk[ξi] = K̂εi,Ti and |ξ̇i| < 1 in (−∞,∞), (7.6)

and

ξi(t) − |t| is bounded as |t| → ∞.

In the sequel, we use C to denote some positive generic constant which is always 
independent of i, O(1) to denote a term which is bounded as i → ∞, and o(1) to denote 
a term which tends to 0 as i → ∞.

Observe that the arguments in the proof of Theorem 3.1(a) give ξi(t) ≥ −C for 
|t| > Ti + 2. Since |ξ̇| < 1, this implies that, for every m ≥ 0

ξi(t) ≥ −C(m) for |t| ≥ Ti −m. (7.7)

Applying first and second derivative estimates for the σk-Yamabe equation to (7.6), we 
have, for every m > 0,
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|ξ̇i(t)| + |ξ̈i(t)| ≤ C(m) for |t| ≥ Ti −m. (7.8)

Step 1: Let Yi = e−
n−2k

2k ξi . We show that

Yi(−Ti) + 2k
n− 2k Ẏi(−Ti) = o(1)Yi(Ti), (7.9)

Yi(Ti) −
2k

n− 2k Ẏi(Ti) = o(1)Yi(−Ti). (7.10)

We start by rewriting the equation Fk[ξi] = K̂εi,Ti in the form

e2ξi
(
ξ̈i + n− 2k

2k (1 − ξ̇2
i )
)

= 2k−1
(
n− 1
k − 1

)−1 K̂εi,Ti

e2(k−1)ξi(1 − ξ̇2
i )k−1 .

We proceed by estimating the term on the denominator on the right hand side. Recall 
the function H defined in (2.8), and note that, by the Pohozaev identity (2.9) and the 
monotonicity of K̂εi,Ti in (−∞, Ti), H(t, ξi, ξ̇i) is non-decreasing in (−∞, Ti). Also, since 
|ξ̇i| < 1, ξi(t) + t is bounded as t → −∞ and k < n

2 , H(t, ξi, ξ̇i) → 0 as t → −∞. 
Therefore H(t, ξi, ξ̇i) ≥ 0, i.e.

1
2k

(
n

k

)
e2kξi(1 − ξ̇2

i )k ≥ K̂εi,Ti(t) > 0 in (−∞, Ti).

Inserting this into the previous equation, we obtain

0 ≤ e2ξ
(
ξ̈i + n− 2k

2k (1 − ξ̇2
i )
)
≤ an,kK̂

1/k
εi,Ti

, an,k =
(
n

k

) k−1
k
(
n− 1
k − 1

)−1
.

Multiplying this equation by e±
n−2k

2k t−n+2k
2k ξ, we get

0 ≤ ± d

dt

[
e

n−2k
2k (±t−ξi)(1 ± ξ̇i)

]
≤ Cε

1
k
i e

±n−2k
2k t−n+2k

2k ξi . (7.11)

Using the fact that K̂εi,Ti = εi in (−Ti, Ti), ξi(t) ≥ ξi(±Ti) − (t ∓ Ti) in (−Ti, Ti) (since 
|ξi| < 1), Ti → ∞ and εie(n+2k)Ti → 0, we can integrate (7.11) to obtain

e−
n−2k

2k ξi(Ti)(1 + ξ̇i(Ti)
)

= o(1)e−n−2k
2k ξi(−Ti) + o(1)e−n+2k

2k ξi(−Ti),

e−
n−2k

2k ξi(−Ti)(1 − ξ̇i(−Ti)
)

= o(1)e−n−2k
2k ξi(Ti) + o(1)e−n+2k

2k ξi(Ti).

In view of (7.7) and the expression of Yi, (7.9) and (7.10) follows. Step 1 is finished.
Step 2: We show that3

α− := lim sup
i→∞

ξ̇i(−Ti) < 1 and α+ = lim inf
i→0

ξ̇i(Ti) > −1.

3 In fact, it can be seen from the proof that, when β1 )= n −2k, α+ = 1, and when β2 )= n −2k, α− = −1.
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Once this is done, after passing to a subsequence, we have

Ẏi(−Ti) = −n− 2k
2k (α− + o(1))Yi(−Ti) and Ẏi(Ti) = −n− 2k

2k (α+ + o(1))Yi(Ti),

which together with (7.9) and (7.10) gives

0 < Yi(Ti) = o(1)Yi(−Ti) = o(1)Yi(Ti),

which yields a contradiction and finishes the proof of Theorem 1.4.
We will only prove that α− < 1. The proof of α+ > −1 is similar.
Let us first show that ξi(−Ti) → ∞ as i → ∞. Indeed, by (7.9), Yi(−Ti)(1 +ξ̇i(−Ti)) =

o(1). Using (7.7) and the expression of H (see (2.8)), we have that H(t, ξi, ξ̇i)
∣∣∣
t=−Ti

=

o(1). Recalling the Pohozaev identity (2.10), the fact that d
dt

˙̂Kεi,Ti ≤ − 1
C e−β2(t+Ti) in 

(−∞, −Ti) (see (7.1) and (7.2)), and ξi(t) ≤ ξi(−Ti) − (t + Ti) in (−∞, −Ti) (since 
|ξ̇i| < 1), we thus have

o(1) =
−Ti∫

−∞

| d
dt

K̂εi,Ti |e−nξidt ≥ 1
C
e−nξi(−Ti),

which gives ξi(−Ti) → ∞ as i → ∞ as wanted.
Let ξ̂i(t) := ξi(t −Ti) −ξi(−Ti). Using (7.7)–(7.8) and the fact that ξ̂i(0) = 0, we have, 

after passing to a subsequence, that ξ̂i converges in C1,α
loc (R) to a function ξ̂∞ ∈ C1,1

loc (R). 
Also, in view of (7.6), Fk[ξ̂i](t) = e−2kξi(−Ti)K̂εi,Ti(t −Ti). Hence, since ξi(−Ti) → ∞ as 
i → ∞, ξ̂∞ satisfies in the viscosity sense the equation

Fk[ξ̂∞] = 0 and | ˙̂ξ∞| ≤ 1 in (−∞,∞).

By the classification result [21, Theorem 1.6], ξ̃∞ takes the form

ξ̂∞(t) = − 2k
n− 2k ln(ae−n−2k

2k t + be
n−2k

2k t) for some a, b ≥ 0 with a + b > 0. (7.12)

Now, as ξ̇i(−Ti) → ˙̂ξ∞(0) = a−b
a+b , in order to conclude Step 2 (and therefore the proof 

of the theorem), it suffices to show that b > 0.4

Claim. The following statements hold.

(i) Either {e−n−2
2 Tivi(S)} is bounded, or e−n−2

2 Tivi(S) → ∞ and β2 ≤ n − 2k.
(ii) Either {e−n−2

2 Tivi(N)} is bounded, or e−n−2
2 Tivi(N) → ∞ and β1 ≤ n − 2k.

4 In fact, it will be seen from the proof below that, when β2 )= n − 2k, we also have a = 0.



Y.Y. Li et al. / Journal of Functional Analysis 281 (2021) 109198 53

Before proving the claim, let us remark that statement (i) implies that b > 0 (and 
hence α− < 1) as follows. (Likewise, (ii) implies that α+ > −1.) Let

ǔi(r) = e−
n−2

2 (t+ξi(t−Ti)) = e−
n−2

2 Tiui(e−Tir).

Note that ǔi satisfies σk(Aǔi(r)) = K̂εi,Ti(ln r − Ti) on Rn, and, by the claim, either 
{ǔi(0)} is bounded, or ǔi(0) → ∞ and β2 ≤ n − 2k. In the case that {ǔi(0)} is bounded, 
as ǔi(0) is the maximum of ǔi on Rn (by the super-harmonicity of ǔi), the first derivative 
estimates for the σk-Yamabe equation give that 1

C ǔi(1) ≤ ǔi(r) ≤ Cǔi(1) for r ≤ 1, i.e. 
|ξ̂i(t) + t − ξ̂i(0)| ≤ C in (−∞, 0). In particular, ξ̂∞(t) + t is bounded as t → −∞. 
Clearly this is true in (7.12) if and only if a = 0 and b > 0. In the case that ǔi(0) → ∞
and β2 < n − 2k, we have by Theorem 3.1(c) and (d) that there exists an exponent 
κ = κ(β2) > 0 such that

1
C
ǔi(1) ≤ ǔi(r) ≤ Cǔi(1) in (ǔi(0)−κ , 1).

As ǔi(0)−κ → 0, this again implies that ξ̂∞(t) + t is bounded as t → −∞ and so a = 0
and b > 0. In the case that ǔi(0) → ∞ and β2 = n − 2k, we can apply Step 2 of the 
proof of Theorem 1.1 to ξ̌i(t) := ξi(t − Ti) to obtain that ξ̂i(t) = ξ̌i(t) − ξi(−Ti) has 
a critical point at some ln δ̌i = O(1). It follows that ξ̂∞ has at least one critical point, 
which implies that a, b > 0.

It remains to prove the claim. Note that the claim clearly holds if β1, β2 ≤ n − 2k. 
Therefore, we may assume without loss of generality that β2 = max(β1, β2) > n − 2k. 
As 1

β1
+ 1

β2
≥ 2

n−2k , we have that β1 < n − 2k, and so (ii) clearly holds. In particular, 
α+ > −1. It remains to prove (i).

Assume by contradiction that (i) does not hold. Then, since β2 > n − 2k, 
e−

n−2
2 Tivi(S) → ∞ and ǔi(0) → ∞. The proof builds upon the identity

H(−Ti, ξi(−Ti), ξ̇i(−Ti)) = H(Ti, ξi(Ti), ξ̇i(Ti)), (7.13)

which holds in view of the Pohozaev identity (2.9) and (7.5).
As α+ > −1, we have ξ̇i(Ti) = α+ + o(1) > −1 + 1

C . In particular, by (7.10)

e−ξi(Ti) = o(1)e−ξi(−Ti). (7.14)

Let λi := 2− 1
2
(n
k

)− 1
2k ǔi(0) 2

n−2 = 2− 1
2
(n
k

)− 1
2k e−

n−2
2 Tiui(0) 2

n−2 → ∞. Applying Step 2 
of the proof of Theorem 1.1 (see (4.8) and (4.12)) to ξ̌i(t) := ξi(t − Ti), we obtain

H(−Ti, ξi(−Ti), ξ̇i(−Ti))
(4.12)= eO(1)λ−β2

i

(4.8)= eO(1)e−β2ξi(−Ti). (7.15)
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To estimate H(Ti, ξi(Ti), ξ̇i(Ti)), consider

ũi(r) = e−
n−2

2 (t+ξi(−t+Ti)) =
(eTi/2

r

)n−2
ui

(eTi

r

)

and let us treat separately the case {ũi(0)} is bounded and the case ũi(0) → ∞.
Let us start with the case that {ũi(0)} is bounded. As seen earlier, this implies that 

1
C ũi(1) ≤ ũi(r) ≤ Cũi(1) for r ≤ 1, and so

ξi(t + Ti) = ξi(Ti) + t + O(1) for t ≥ 0.

By the Pohozaev identity (2.10), (7.3) and (7.4),

H(Ti, ξi(Ti), ξ̇i(Ti)) =
∞∫

Ti

˙̂Kεi,Ti(t)e−nξi dt = e−nξi(Ti)+O(1).

Using (7.14) in the above gives

H(Ti, ξi(Ti), ξ̇i(Ti)) = o(1)e−nξi(−Ti),

which gives a contradiction to (7.13) and (7.15), since β2 < n.
Let us now turn to the case ũi(0) → ∞. Note that by the same argument that gives 

ξi(−Ti) → ∞, we also have that ξi(Ti) → ∞. This implies that ũi(1) = o(1). By Theo-
rem 3.1(c) and (d), we thus have β1 > n−2k

2 . Apply Step 2 of the proof of Theorem 1.1
(see (4.9) and (4.12)) to ξ̃i(t) := ξi(−t +Ti), we can find δ̃i = eO(1)λ̌

−(1− β1
n−2k )

i such that

ξi(t) = ξi(Ti) − Ti + t + O(1) in (Ti, Ti − ln δ̃i), (7.16)

H(t, ξi, ξ̇i)
∣∣∣
t=Ti−ln δ̃i

= eO(1)λ̌−β1
i = eO(1)e−β1( 2β1

n−2k−1)−1ξi(Ti). (7.17)

Using (7.3), (7.4) and (7.16) in the Pohozaev identity (2.9), we have

H(t, ξi, ξ̇i)
∣∣∣
t=Ti−ln δ̃i

t=Ti

=
Ti−ln δ̃i∫

Ti

˙̂Kεi,Ti(t)e−nξi dt = eO(1)e−nξi(Ti).

Putting this and (7.17) together and then using (7.14), we get

H(Ti, ξi(Ti), ξ̇i(Ti)) = eO(1)e−nξi(Ti) + eO(1)e−β1( 2β1
n−2k−1)−1ξi(Ti)

= o(1)e−nξi(−Ti) + o(1)e−β1( 2β1
n−2k−1)−1ξi(−Ti).

As β2 < n, this together with (7.15) and (7.13) implies that β2 > β1( 2β1
n−2k − 1)−1, which 

contradicts the hypothesis that 1
β1

+ 1
β2

≥ 2
n−2k .
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Finally, to conclude, we show that with T ≥ N and εe(n+2k)T ≤ 1
N as above, (1.1)

with K = Kε,T has no positive solution, with or without axisymmetry. This follows from 
Proposition 7.1 below. !

Proposition 7.1. Suppose K ∈ C1
r (Sn) is positive, non-constant and satisfies d

dθK(θ) ≤ 0
in (0, π/2) and d

dθK(θ) ≥ 0 in (π/2, π). Then every positive solution v ∈ C2(Sn \ {θ =
0, π}) to

σk(λ(Agv)) = K and λ(Agv ) ∈ Γk on Sn \ {θ = 0,π}

is axisymmetric.

Remark 7.2. The conclusion remains valid if K(x) is replaced by K(x)u−a for any con-
stant a ≥ 0, and/or if (σk, Γk) is replaced by more general operators (f, Γ) as in [13].

Proof. Let u : Rn \ {0} → R be related to v by (2.1). Then u is super-harmonic and 
positive in Rn \ {0}. It follows that lim infy→0 u(y) > 0 and so

lim inf
d(x,S)→0

v(x) > 0.

Likewise,

lim inf
d(x,N)→0

v(x) > 0.

Note that by [4, Theorem 1.1], it holds in the viscosity sense that

σk(λ(Agv )) ≥ K and λ(Agv) ∈ Γk on Sn. (7.18)

We can now use the method of moving spheres as in the proof of [13, Theorem 1.5]
to reach the conclusion. For readers’ convenience, we give here a sketch: For any point 
on p on the equator of Sn and any λ ∈ (0, π), let ϕp,λ : Sn → Sn be the Möbius 
transformation that reflects about the sphere ∂Bλ(p) centered at p and of radius λ and 
let vp,λ = |Jac(ϕp,λ)|n−2

2n v ◦ ϕp,λ. By the conformal invariance of the equation (1.1) and 
the monotonicity property of K with respect to θ,

σk(λ(Agvp,λ
)) = K ◦ ϕp,λ ≤ K in Sn \Bλ(p). (7.19)

Using [13, Lemmas 3.5 and 3.6], the number

λ̄p := sup
{
λ ∈ (0,π) : vp,µ ≤ v in Sn \Bλ(p)

}

is well-defined and belongs to (0, π]. One can then imitate the proof of [13, Lemma 3.3]
using (7.18), (7.19) and the strong maximum principle [4, Theorem 3.1] to show that 
λ̄p ≥ π/2. Since this holds for every p on the equator, we have that v is axisymmetric. !
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8. Non-compactness: proof of Theorem 1.5

Proof of Theorem 1.5. We will work in cylindrical coordinates. Fix 2 ≤ β < n−2k
2 . 

Consider K̂ε = 2−k
(n
k

)
+ εJ where ε is sufficiently small and J ∈ C∞(R) is a fixed even 

function satisfying

J(t) = −eβt for t ≤ −1,

J̇(t) ≤ 0 for t ≤ 0.

For j ≥ 0, let Xj denote the Banach space of functions η ∈ Cj((−∞, 0]) such that

‖η‖j := sup
t∈(−∞,0]

e−(2+β)t
j∑

)=0
| d

)

dt)
η| < ∞.

We will show that, for a suitably small but fixed ε > 0, the equation

Fk[ξ] = K̂ε, and |ξ̇| < 1 in (−∞,∞) (8.1)

has a sequence of even solutions ξi ∈ C2(R) such that

(
ξi − log cosh(t + Ti)

)∣∣∣
(−∞,0]

∈ X2 (8.2)

where Ti → ∞ as i → ∞. Once this is done, the conclusion of the theorem follows from 
Corollary 3.2.

Step 1: We prove that there exists some small ε0 > 0 such that for every 0 < ε < ε0 and 
T ≥ 1 there exists ξ = ξ(·; ε, T ) ∈ C2((−∞, 0]) which satisfies

Fk[ξ] = K̂ε, and |ξ̇| < 1 in (−∞, 0), (8.3)

ξ − log cosh(t + T ) ∈ X2 (8.4)

and the family ξ(·; ε, T ) depends continuously on (ε, T ) in the sense that (ε, T ) 8→
ξ(·; ε, T ) − log cosh(· + T ) belongs to C1((0, ε0) × [1, ∞); X2).

We claim that it is enough to find ε0 > 0 such that for every 0 < ε < ε0 and T ≥ 1
there exists ξ = ξ(·; ε, T ) ∈ C2((−∞, −T ]) such that Fk[ξ] = K̂ε in (−∞, −T ) and the 
function η(t; ε, T ) := ξ(t − T ; ε, T ) − log cosh t belongs to X2 and that (ε, T ) 8→ η(·; ε, T )
belongs to C1((0, ε0) × [1, ∞); X2). Indeed, let (−∞, Tmax) ⊂ (−∞, 0) be the maximal 
such that ξ satisfies the equation Fk[ξ] = K̂ε in (−∞, Tmax), then by the Pohozaev 
identity (2.10) and the monotonicity of K̂ε, we have
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H(t, ξ, ξ̇) = 1
2k

(
n

k

)
e(2k−n)ξ(1 − ξ̇2)k − K̂ε(t)e−nξ

= −
t∫

−∞

K̇ε(τ)e−nξ(τ) dτ > 0 for t ∈ (−∞, Tmax). (8.5)

This implies that, 1 − ξ̇2 > 0 in (−∞, Tmax) and lim supt→Tmax |ξ(t)| < ∞. Standard 
results on local existence, uniqueness and continuous dependence for ODEs imply that 
Tmax = 0 and the claim follows.

By considering ξ̃ = ξ(· − T ) and using the claim, to finish Step 1, we need to show 
the existence of some ε0 > 0 such that, for 0 < ε < ε0 and T ≥ 1, there is a solution 
ξ̃ = ξ̃(·; ε, T ) to

Fk[ξ̃] = K̂εe−βT in (−∞, 0), (8.6)
ξ̃ − log cosh t ∈ X2 (8.7)

and that the map T 8→ η(·; ε, T ) = ξ̃(·; ε, T ) −log cosh t belongs to C1((0, ε0) ×[1, ∞); X2).
Using η, we recast (8.6)–(8.7) as

A [η] = −2k−1
(
n− 1
k − 1

)−1
ε e−βT sech2t eβt

where A : X2 → X0 is given by

A [η] := 2k−1
(
n− 1
k − 1

)−1
sech2t

{
Fk[log cosh t + η] − 1

2k
(
n

k

)}

= sech2t
{
e2kη

(
1 − 2 cosh t sinh t η̇ − cosh2 t η̇2

)k−1
×

×
( n

2k + cosh2 t η̈ − n− 2k
k

cosh t sinh t η̇ − n− 2k
2k cosh2 t η̇2

)
− n

2k
}

=: P (t, η, η̇, η̈).

Note that for every η ∈ X2, P (t, η, η̇, η̈), Pη(t, η, η̇, η̈), Pη̇(t, η, η̇, η̈) and Pη̈(t, η, η̇, η̈) are 
continuous and bounded in (−∞, 0). It follows that A is C1 with derivative

DA [η][ϕ] = Pη̈(t, η, η̇, η̈)ϕ̈ + Pη̇(t, η, η̇, η̈)ϕ̇ + Pη(t, η, η̇, η̈)ϕ.

Since A [0] = 0, by the implicit function theorem (see e.g. [23, Theorem 2.7.2]), it suffices 
to check that L := DA [0] is invertible. A direct computation gives

L [ϕ] = ϕ̈− (n− 2) tanh t ϕ̇ + n sech2tϕ.

The homogeneous equation L [ϕ] = 0 has two linearly independent solutions ϕ1(t) =
tanh t and ϕ2(t) = e(n−2)|t|(1 +O(et)) as t → −∞. (For example, we can choose ϕ2(t) =
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tanh t 
∫ t
c

coshn τ
sinh2 τ dτ for some c < 0.) In particular, the only solution to L [ϕ] = 0 in X2

is the trivial element. Furthermore, for every ζ ∈ X0, the solution to L [ϕ] = ζ in X2 is 
given by

ϕ(t) = −ϕ1(t)
t∫

−∞

ζ(τ)ϕ2(τ)
coshn−2 τ

dτ + ϕ2(t)
t∫

−∞

ζ(τ)ϕ1(τ)
coshn−2 τ

dτ for t ∈ (−∞, 0].

We thus have that L is a bijection from X2 onto X0. This completes Step 1.

Step 2: Since K̂ε is even, to show the existence of even solutions to (8.1)–(8.2), it suffices 
to show that, after possibly shrinking ε0, for every ε ∈ (0, ε0) there exists a sequence 
Ti → ∞ such that the solution ξ(·; ε, Ti) obtained in Step 1 satisfies in addition that 
ξ̇(0; ε, Ti) = 0.

Claim. By shrinking ε0 if necessary, we have that if ξ̇(t; ε, T ) = 0 for some t ∈ (−∞, 0], 
ε ∈ (0, ε0) and T ≥ 1, then |ξ̈(t; ε, T )| '= 0.

Arguing by contradiction, we assume that there exist εi → 0, ξi = ξ(·; εi, Ti) and 
si ∈ (−∞, 0] such that ξ̇i(si) = 0 and ξ̈i(si) → 0. From the expression of Fk[ξi] and 
(8.3), we have that {ξi(si)} is bounded. Furthermore, the argument in Section 3.2 (see 
(3.13)), we have ξi ≥ −C in (−∞, si] for some C independent of i. Recalling (8.5), we 
have

lim
i→∞

H(si, ξi(si), ξ̇i(si)) = lim
i→∞

εiβ

si∫

−∞

eβτe−nξi(τ) dτ = 0.

By Lemma 3.4, we then have limi→∞ ξ̈i(si) = Ξ̈(0) > 0, which is a contradiction.
We now fix an arbitrary 0 < ε < ε0. Let m(T ) be the number of solutions to 

ξ̇(·; ε, T ) = 0 in (−∞, 0]. Note that by (8.4), ξ̇(t; ε, T ) '= 0 for large negative t. Thus, by 
the claim, m(T ) is finite for every T ≥ 1. Since T 8→ ξ(·; ε, T ) − log cosh(· + T ) belongs 
to C0([1, ∞); X2), we deduce again from the claim that if an interval (c, d) ⊂ [1, ∞) is 
such that ξ̇(0; ε, T ) '= 0 for T ∈ (c, d), then m(T ) is constant for T ∈ (c, d). On the other 
hand, by Theorem 3.1(d), m(T ) → ∞ as T → ∞. The conclusion is readily seen. !

Appendix A. The values of certain integrals

Lemma A.1. For 0 < b < 2a, it holds that

∞∫

0

(1 + r2)−a rb−1 dr = Γ(a− b
2 )Γ( b

2 )
2Γ(a) .
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Corollary A.2. Suppose n > 0. We have

∞∫

0

rn+β−1

(1 + r2)n dr = Γ(n−β
2 )Γ(n+β

2 )
2Γ(n) for − n < β < n,

∞∫

0

rn−1

(1 + r2)n+2
2

dr = 1
n
.

Proof. We perform the change of variable x = 1
1+r2 . Noting that r2 = 1−x

x and 2rdr =
−dx

x2 , we have

∞∫

0

(1 + r2)−a rb−1 dr = 1
2

1∫

0

xa− b
2−1(1 − x) b

2−1 dx = 1
2B(a− b

2 ,
b

2),

where B is the beta function. The conclusion follows from a well-known relation between 
beta and Gamma functions. !
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