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Abstract

In the absence of pharmaceutical interventions, social distancing and lockdown have been key
options for controlling new or reemerging respiratory infectious disease outbreaks. The timely
implementation of these interventions is vital for effectively controlling and safeguarding the
economy.

Motivated by the COVID-19 pandemic, we evaluated whether, when, and to what level lockdowns
are necessary to minimize epidemic and economic burdens of new disease outbreaks. We
formulated the question as a sequential decision-making Markov Decision Process and solved it
using deep Q-network algorithm. We evaluated the question under two objective functions: a 2-
objective function to minimize economic burden and hospital capacity violations, suitable for
diseases with severe health risks but with minimal death, and a 3-objective function that
additionally minimizes the number of deaths, suitable for diseases that have high risk of mortality.
A key feature of the model is that we evaluated the above questions in the context of two-
geographical jurisdictions that interact through travel but make autonomous and independent

decisions, evaluating under cross-jurisdictional cooperation and non-cooperation.



In the 2-objective function under cross-jurisdictional cooperation, the optimal policy was to aim
for shutdowns at 50% and 25% per day. Though this policy avoided hospital capacity violations,
the shutdowns extended until a large proportion of the population reached herd immunity. Delays
in initiating this optimal policy or non-cooperation from an outside jurisdiction required shutdowns
at a higher level of 75% per day, thus adding to economic burdens. In the 3-objective function, the
optimal policy under cross-jurisdictional cooperation was to aim for shutdowns of up to 75% per
day to prevent deaths by reducing infected cases. This optimal policy continued for the entire
duration of the simulation, suggesting that, until pharmaceutical interventions such as treatment or
vaccines become available, contact reductions through physical distancing would be necessary to
minimize deaths. Deviating from this policy increased the number of shutdowns and led to several

deaths.

In summary, we present a decision-analytic methodology for identifying optimal lockdown
strategy under the context of interactions between jurisdictions that make autonomous and
independent decisions. The numerical analysis outcomes are intuitive and, as expected, serve as
proof of the feasibility of such a model. Our sensitivity analysis demonstrates that the optimal
policy exhibits robustness to minor alterations in the transmission rate, yet shows sensitivity to
more substantial deviations. This finding underscores the dynamic nature of epidemic parameters,
thereby emphasizing the necessity for models trained across a diverse range of values to ensure

effective policy-making.
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1. Introduction
Timely implementations of pharmaceutical and non-pharmaceutical interventions (NPI)
are critical for effective control of new infectious disease outbreaks. Delay in response causes

enormous disease and economic burdens, as seen during the COVID-19 outbreak caused by the

SARS-Cov2 virus [1].

In the event of new respiratory infectious disease outbreaks, when pharmaceutical
interventions are unavailable, NPIs are the only options, as was the case with COVID-19. Effective
NPI options include facemask-use and social distancing [2]. Social distancing could include
physical distancing (e.g., by 3ft or 6ft) or partial lockdowns. While facemasks and physical
distancing could be the most economically feasible options, lockdowns may be necessary for
highly contagious viruses such as the SARS-Cov2. While locking-down early in the pandemic
would be suitable for reducing disease burden, it may unnecessarily add to the economic burden.
On the other hand, delaying the lockdown or improper phasing of lockdowns can significantly
amplify both economic and disease burdens [3].

In this context, through timely implementation of lockdowns, governmental public health
agencies play a key role in effective containment of new outbreaks. Furthermore, though public
health decisions are autonomous to each jurisdiction, e.g., in the United States, local COVID-19
prevention guidelines were determined by individual states [4], the epidemic can be influenced by

outside jurisdictions through travel.



The objective of our work is to a) Propose a reinforcement learning (RL) model designed
specifically for the sequential analyses of epidemic decisions. b) Investigate jurisdiction-specific
decisions within the context of multi-jurisdictional interactions, and subsequently conduct
numerical analyses that aim to demonstrate the significance of these jurisdictional interactions.

A methodology that can help determine whether and when a lockdown is necessary, to what
level, and how to phase out a lockdown would be a critical part of a pandemic preparedness plan.
While surveillance systems to help identify new outbreaks would be a crucial part of this
preparedness plan, because of the delay in diagnosis of cases, informing decisions only based on
data collected through these systems will not be sufficient. Surveillance data combined with
epidemic projections through the use of dynamic mathematical models can help identify optimal
control policies, including whether a partial shutdown will be necessary [4, 5]. In this study, we
formulated the question of whether and when a lockdown is necessary, to what level, and how to
phase out a lockdown as a sequential decision-making problem using Markov decision process
(MDP) and solved using Deep Q-network (DQN), a reinforcement learning (RL) algorithm.

Reinforcement Learning (RL) is a branch of Artificial Intelligence (Al) where optimal
policies are learned through a trial-and-error learning process. This iterative cycle involves an
agent taking action (e.g., intervention decision) based on the system's current state, causing a
transition to a subsequent state associated with a given reward [6, 7], and as the number of
iterations increase it learns to take decisions with the highest reward, continuing until the algorithm
has converged to the optimal decision. Research in RL algorithms can be broadly categorized into
three areas: the formulation of the decision analytic algorithm as a RL problem, an algorithm for
learning these decisions, and the data required to train the algorithm. The focus of this work is

solely on the first component: the formulation of the decision analytic algorithm.



For the second component, algorithms for learning decisions, several algorithms are
available in the current literature. For our purpose, we utilized the Deep Q-Network (DQN), an
off-the-shelf RL algorithm, for its capacity to handle extensive environments pertinent to COVID-
19 modeling [9]. DQN has been employed across a broad spectrum of problems. This includes,
but is not limited to, applications such as games [10], autonomous driving [11], recommendation
system [12], mobile robot navigation [13], computer-aided diagnosis [14], stock trading [15], and
very recently on COVID-19 pandemic control [15, 16, 17].

For the third component, in application of RL to disease epidemics, simulation models are
widely used to generate the data to train the algorithms [12]. There are two broad categorizations
of simulation models, agent-based and compartmental models that are typically employed.
Generally, compartmental models are apt for rapidly spreading diseases and allow for
heterogeneity by partitioning compartments. Alternatively, agent-based models are often more
suitable for slower spreading diseases, where contact structures play a significant role. In this work,
as our focus was not on the simulation model itself, we utilized a simple compartmental model
(i.e., with no heterogeneity in demographics), but any simulation environment could be substituted
depending on the nature of disease spread and research question.

As noted above, our focus is on the first component, formulation of decision analytic
algorithm (here COVID-related interventions) as a RL problem. The recent literature has seen an
influx of RL models related to this focus. There are three components to this model formulation:
the state space, the action (intervention) space, and the reward function. Amid the COVID-19
pandemic, lockdowns have become a primary intervention to curb disease spread. Consequently,
an increasing number of RL studies formulated the problem as identifying optimal lockdown

policies with the objective of minimizing COVID-19 cases while also mitigating economic



damages. For instance, Khadilkar et al. harnessed RL to automate policy learning, thereby
optimizing lockdown policies for epidemic control [18]. They denoted their state space as different
components of the compartmental model, the action space as lockdown or no lockdown, and the
reward function as the negative of the number of deaths, persons infected, and the number of days
with lockdown. Similarly, Kompella et al. [19] devised an agent-based pandemic simulator and an
RL-based methodology to optimize fine-grained mitigation policies that minimize economic
impact without overtaxing hospital capacity. They formulated their state space as the number of
people within each infection state, the action space as different stages of lockdown, and the reward
function as a combination of increasing economy while minimizing capacity violation. Further,
Arango et al. employed RL to optimize cyclic lockdowns as a temporary alternative to extended
lockdowns, aiming to minimize ICU usage overshoots and lockdown duration for socio-economic
benefit [20]. They formulated their RL components as follows: the state space being the current
number of infected persons, the action space being either non-lockdown or lockdown, and the
reward function as a combination of the economy and the number of available ICU beds.
As with our case, these studies utilized off-the-shelf learning algorithms and constructed
simulation models (either compartmental or agent-based) for training. Their contributions
primarily lie in 'formulating the epidemic decision analytic problem' as an RL problem. Our model
contributes to this existing body of work. A gap in these literature models is that they overlook
cross-jurisdictional interactions. We address this gap through novel formulation of the state space
to consider jurisdictional interactions.

We present an RL model trained using the DQN algorithm to evaluate the question of
whether a lockdown is necessary, and if so, when it should be initiated, to what level (proportion

lockdown), and how it should change over time, such that it minimizes both epidemic and



economic burdens. Though this objective is similar to other RL studies in the literature, our work
differs from previous work in two ways. First, we evaluated the question of when to initiate a
lockdown policy, which would be helpful for future outbreaks of similar epidemiology when
lockdowns are a key intervention. Second, we evaluate these decisions in the context of two-
geographical jurisdictions that make autonomous, independent decisions, cooperatively or non-
cooperatively, but populations interact in the same environment through travel. Though decisions
are made independently, because of travel between jurisdictions, the actions of one jurisdiction
can influence the epidemic in the other jurisdiction. This scenario would especially be of interest
for a jurisdiction that makes the optimal decisions but has travels coming from a jurisdiction with
bad decisions. While travel between jurisdictions would be favorable for the economy, it could
diminish the impact of its optimal actions. Therefore, taking the perspective of a jurisdiction that
makes the optimal decision, we evaluate under travel when actions of another jurisdiction
significantly add to its disease and economic burdens. This would help inform when border
closures would need to be part of an optimal lockdown strategy. And subsequently, whether
decision-making control should be given to individual jurisdictions (say county-level or state-
level) or a common entity (such as state if jurisdictions are counties, and federal if jurisdictions
are states). In this study, we assume that both jurisdictions start an outbreak at the same time, thus

our results are limited to this scope.

In highlighting the dynamic nature of infectious diseases, we underscore that a single
policy would not suffice for all disease types. Thus, our work provides a robust framework and a
powerful tool for decision analysis rather than a one-size-fits-all solution. The significance and
potential applicability of this model have been further emphasized through comprehensive

sensitivity analyses.



The rest of the paper is organized as follows. Section 2 presents the methodology, including
the simulation model, MDP formulation, and RL. In section 3, we discuss the scenarios we
analyzed in detail. Section 4 presents the results, section 4.1 includes sensitivity anaylysis, and
finally, in section 5, we conclude the study with a discussion.

2. Methodology
Our model framework includes a compartmental simulation model that simulates the epidemic
spread discussed in section 2.1 integrated with a Markov decision process (MDP) optimization

framework discussed in section 2.2 and solved using deep Q-network (DQN) discussed in section

2.3.

2.1 Simulation Model

We developed a susceptible(S)-exposed(E)-infected(I)-recovered(R)-dead(D) (SEIRD)
compartmental model based on Kermack and McKendrick [22] for simulating epidemic
projections over time (Figure 1). An individual starts in compartment S, and upon contracting the
disease moves to compartment E. A person in compartment E is in the incubation phase of the
disease (for a duration of 1/a days) and thus cannot transmit the disease. A person moves from
compartment E to compartment I, the transmissible phase of the infection. A person in
compartment I either recovers, i.e., moves to R with rate y per day, or succumbs to disease, i.e.,

moves to D with rate 6 per day.

Let
S be the number of Susceptible,
E be the number of Exposed,
I be the number of Infectious,

R be the number of Recovered,



D be the number of Dead,

N be total population,

f: transmission rate from susceptible to infected (8 = pc where p is the probability of
transmission per susceptible-infected contact and ¢ =number of contacts per person),
a: is the inverse of the average incubation period in days,

y: rate of recovery per day, and

0: rate of disease-related mortality per day.

Recovered

~
9\ Dead

Susceptible | m—) Exposed —) Infectious

Figure 1. SEIRD flow diagram for infectious diseases.

Given the short duration of the disease, we evaluate over a short analytic period of 400 days,
assuming no births or natural deaths, and thus, the population size remains constant over time (N =

S(t) + E(t) +1(t) + R(t) + D(t)). The differential equation governing the dynamics of the

disease can be written as follows:
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Population Mixing: To study the impact of travel on epidemic projections, we modified the
standard SEIRD equations to include travel between two jurisdictions (jurisdiction A and
jurisdiction B).
Let

1,5 be the travel rate from jurisdiction A to jurisdiction B,

14 be the travel rate from jurisdiction B to jurisdiction A, and

I be the number of infectious people in jurisdiction B.

Then the SEIRD model can be modified to include population mixing as follows:

E Al e e s Gl g o vz s
ROt e o MR ko ey
— a(Ey)
% = a(Ey) — vy
% =7l

Note that setting r,5 = 154 = 0 in (2) results in (1), and hence the single jurisdiction model is a
special case of the two-jurisdiction model. For empirical analyses, we used epidemiology data

from the SARS-Cov2 alpha variant (Table 1).
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Table 1. Parameters of the simulation model.

Parameter | Value Description
B 0.4482 Transmission rate [23]
a 0.1923 1/interval in days for incubation (incubation period ~ 5.2 days) [24]
y 0.1724 1/interval in days from infected to removal (infectious period ~ 5.8) [23] [24]
0 0.017 The mortality rate due to infections (in scenario 1to 5, 8 = 0) [25]

We utilized a compartmental model which could be substituted with any simulation
environment, such as agent-based modeling, depending on the nature of the disease spread. While
compartmental models are usually more apt for rapidly spreading diseases, allowing for
heterogeneity by partitioning compartments, agent-based models can be more suitable for slower
spreading diseases, where contact structures play a significant role. However, it's important to note
that our RL algorithm can be applied in either of these environments, as demonstrated in our

previous paper [21].

2.2 Markov Decision Process
We formulate the question of whether a lockdown is necessary, and if so, when it should be
initiated, to what level (proportion lockdown), and how this should change over time as an MDP,

as follows. We define the pandemic state as a multivariate parameter X =
[S—A fa la R4 DAl ¥ e R>, where S—A, E—A, IA, R—A, and 24 are the proportion of the jurisdiction A
Ng Ng Ny Ng Ng

population in the S, E, I, R, and D compartment, respectively, and add to 1.

Then, using the standard form, we can define the MDP as a 5-tuple {Q, A, P,, R,, v}, where,

e () is the state space, a set of all possible states of the pandemic, X € (),
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e A is the action space, a set of all possible actions, here choices of lockdown, a € A,
e P, is the one-step transition probability matrix from one state of pandemic to another
under action a (where P, (x'|a, x) is the transition probability from state x to x’ under
action a),
e R,is areward matrix, with each element, R,(x'|a, x), the immediate reward of
transitioning from state x to x’ under action a, and
e 1y is the discount factor.
Given the system is in state x, € {1 at time of implementation of decision, the problem is to solve
for the optimal policy (d(x,)) using the following objective function to maximize the total

expected reward over the analytic period T (for numerical analyses we assumed T = 400):

T
max _E Z YRa=a,(x |a,x)
[dy,..drleA” | &

U 3)
d(s) = arg[ max _E [Z YRq=q, (x|, x)]
t=1

dq,..dr]eAT

We next discuss the formulation of the 5-tuple {Q, A, P,, R,, v}:

State space: We formulate the state space as () = [N—,N—,N—,N—,N—], a continuous state space
A A A A A

where each element of the state space can get a value between 0 and 1, such that at each time step,

SA Eq 14 Ra |, Da
ApAg Ay A4,
Nga  Nag Naga Ng Ny

Action space: We formulated the action space (A) as a finite discrete set of interventions, A =
[a; = 75%,a, = 50%, a; = 25%, a, = 0%], corresponding to a contact rate reduction of 75%,
50%, 25%, and 0%, respectively, a factor multiplied to the transmission rate (f) in (1) and (2). For

these numerical analyses, to make it representative of the COVID-19 epidemic, we assumed

12



contact reductions are achieved through lockdowns. We assumed about 25% of the U.S. population
are essential personnel [25, 26] (34% of adults reported as essential personnel, and 78% of the
population are adults) and thus the strictest lockdown, a;, corresponds to a 75% reduction in
contact rate. Value of action a, was selected to represent no-lockdowns, and values of actions a,
and a3 were set at intermediate levels between a, and a,.

Transition probabilities: As generating the transition probability for every possible transition is
infeasible, we use our SEIRD simulation model discussed earlier to simulate each action and keep
track of each transition in the model.

Immediate rewards: Immediate reward (R, (x)) corresponds to the per time step reward (benefits
— costs) achieved by implementing an action when the system is in state x. We evaluated

immediate reward R, (x) under two objective functions:

e 2-term objective function: The objective is to minimize economic burden and hospital capacity
violation. This objective function would be most suitable for diseases that have a high risk of
hospitalization, but minimal risk of mortality.

e 3-term objective function: The objective is to minimize economic burden, hospital capacity
violation, and minimize mortalities. This objective function would be most suitable for
diseases with high risk of hospitalizations and mortality.

Mathematically, we formulated the immediate reward R, (x):

:Ra(x) = fe(a) - fh(lx,A) - n[elx,ACl]

0 results in 2 — term objective function

h tti = { . .. .
where, seting 1 1 results in 3 — term objective function ’

f.(a) is the per day monetary benefit of implementing action a,

13
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fn (Ix, A) is the per day cost of exceeding hospital capacity in jurisdiction A, when there are I, 4
number of infected persons,

6 is the mortality rate, and thus 61, 4 is the number of daily deaths in jurisdiction A when there are
I, 4 number of infected persons, and

C, is the per person mortality cost.

We modeled the monetary benefit (f,(a)) as the economic benefit,

fe(@) = t(a)M,

where, 7(a) is the monetary reduction in the economy upon implementation of action a and M is
the per day monetary value generated by the economy in a no-lockdown scenario. Here, we
assumed M = le + 11, and set t(a;) = 0.4, 7(a,) = 0.6, t(a3) = 0.8, and t(a,) = 1. Per day
monetary value of M is assumed based on US gross domestic product (GDP) per capita multiplied
by US population in 2020 [27].

We assumed that for every 1000 inhabitants, there is 1.5 hospital beds available (we used data in

the state of Utah which has the lowest number of beds per capita among US sates [27]) (Npeqs =

1.5N4

1000) and that 5% of infected people at each timestep are hospitalized [22, 28], and modeled the

per day cost of exceeding hospital capacity (fj, (Ix, A)) as

f (I ) — {16 + 11 ifs%lx,A = Nbeds
hlixa 0 otherwise

We assumed mortality rate is 0.017 corresponding to the SARS-Cov2 virus [25], and the cost per

mortality (C;) as 1e + 10.

14

)
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2.3 Deep Reinforcement Learning

We solve for the optimal sequence, level, and time of initiation of lockdowns for the
control of COVID-19 type new infectious disease outbreaks, formulated above as an MDP, using
DQN. We solve for this under varying scenarios (see Section 3). DQN is a deep reinforcement
learning algorithm suitable for continuous state and discrete action spaces [9]. Conceptually, the
algorithm works as follows. At each time step, based on the state of the pandemic, i.e., values for
[Ii—‘:, f]—i, 1%1 , ;—‘:, 11\)1_2]’ the algorithm determines what action to take, feeds it to the simulation model
to calculate the immediate reward of taking that action at that particular state. This process is
repeated for multiple iterations, and at every iteration, through training of a neural network, the
algorithm is learning to take better actions, such that, under the proper neural network architecture
and hyper-parameters, the algorithm eventually learns to identify the decision that maximizes the

objective function defined in (3). We developed the model using the stable baselines library in

Python [28]. The details of the algorithm are presented in Appendix Section A.1.

DQN configuration and hyper-parameters: To approximate the Q-function, we used a deep
learning network, a multi-layer perceptron with four layers that have 64, 128, 128, and 8 nodes,
respectively. We use y=0.95 and a learning rate of 0.001 with buffer size 100000. The rest of the
parameters are set as default by the stable baselines DQN library [27]. We trained each scenario
separately for different number of MDP iterations (referred to as episodes), each 100 times with
different random seeds.

The initial state at the beginning of each episode is set to one person exposed for
jurisdiction A and two persons exposed for jurisdiction B, and rest of the population are
susceptible. Each episode is 400 days, and at the end of each episode, the model is reset to the

initial state. We trained the model for different episodes from 2500 to 25000 (corresponding to 1M
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to 10M time-steps). At the end of the training, we identify the optimal solution as the best among
all the trained models, i.e., the model with the highest expected total reward (defined in (3)).
Similar to many optimization problems, DQN does not guarantee reaching the optimal
solution, however, by sufficiently exploring the solution space, the chance of finding an optimal
solution could be increased. Therefore, for each scenario (Section 3), we generated 100 different
runs of the algorithm, each with a different random seed, and identifying an optimal solution under

each. Similar optimal solutions in multiple runs would also suggest higher chance of optimality.

3. Analyses Scenarios

We analyzed seven scenarios. Scenario 1 to 5 correspond to the 2-term objective (that
considers impact of decisions on economy and hospital capacity violation), while scenarios 6 and
7 correspond to the 3-term objective (that consider the impact of decisions on economy, hospital
capacity violation, and disease related mortality). Scenarios 1 and 6 correspond to a single
jurisdiction while the rest of the scenarios correspond to two-jurisdictions with different travel
rates. In the two-jurisdiction scenarios, decisions are made independently, and we consider two
distinct behaviors among them. In scenarios 2 and 3, jurisdiction A implements the optimal policy
but jurisdiction B does not implement any intervention (non-cooperative behavior), while in
scenario 4 and 5, jurisdiction B follows the exact same policy as A (cooperative behavior).
However, note that, even in Scenarios 4 and 5, just as in Scenario 1 to 3, the formulation of the
DQN focused only on the epidemic state in jurisdiction A. Thus, the DQN here was still a single-
agent RL but evaluated in the context of two interacting jurisdictions making autonomous
independent decisions. We further expanded these scenarios into sub-scenarios by examining the

impact of delay in initiation of optimal policy, i.e., delaying initiation of optimal policy until day
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30, 45, 60, 75, 90, 95, 100, 105, and 110 such that each corresponds to different prevalence upon
initiation of optimal policy.

Intuitively, if the optimal policy is a lock-down, the more the delay in initiation of
lockdown, the more the epidemic burden, but less of an economic burden. On the other hand, if
the optimal policy is no-lockdown, it is equivalent to doing nothing, and so a delay in implementing
optimal policy would not have any consequences until it reaches a time where the optimal policy
shifts to a lockdown. Thus, the model technically considers the impact of delay and the tradeoff
between economy and epidemic burden into its evaluation. Hence, the resulting optimal policy
would also hold the answer to when a shutdown should be initiated. Besides, in the case of open
borders, the optimal policy also changes based on the epidemic in the jurisdictions that the
population interacts with through travel. However, the results would depend on how much weight
(costs) is given to each objective function component. These costs associated with hospital
capacity and lockdowns are likely to be subjective. For example, a jurisdiction where a significant
fraction of jobs can seamlessly transition to remote work (e.g., IT) may differently weigh each of
the four lockdown options (e.g., fewer days but maximum lockdown-level) compared to a
jurisdiction where a large fraction of the jobs require physical presence (e.g., manufacturing) (e.g.,
extend days of lockdown at low lockdown-levels on each day). On the other hand, an infectious
disease that is not deadly may be weighed lower for disease burden (hospital capacity as proxy)
than a more deadly disease. Therefore, we made ‘time to initiate’ the optimal policy as an
exogenous variable and evaluated multiple values. Details of the scenarios are discussed in Table

2.
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Table 2. Summary of the scenarios studied.

Scenario Objective function Number of jurisdictions Policy Travel from Bto A | Initiation of optimal policy (days)
Scenario 1 2-term Single jurisdiction, A A optimal policy Not applicable 30, 60, 75, 90, 95, 100, 105,110
Scenario 2 2-term Two jurisdictions, A and B A optimal policy, 5% 30, 60, ..., 110

B no intervention

Scenario 3 2-term Two jurisdictions A optimal policy, 10% 30, 60, ..., 110

B no intervention

Scenario 4 2-term Two jurisdictions A optimal policy, 5% 30, 60, ..., 110

B optimal policy

Scenario 5 2-term Two jurisdictions A optimal policy, 10% 30, 60, ..., 110

B optimal policy

Scenario 6 3-term Single jurisdiction A optimal policy Not applicable 30, 60, ..., 110

Scenario 7 3-term Two jurisdictions A optimal policy, 10% 30, 60, ..., 110

B no intervention

For each scenario, 1 to 7, we present the following metrics: the frequency of occurrence of
each action over a 400-day period, the total number of days hospitalizations exceeded hospital
capacity (which we will refer to as “hospital capacity violation”), number of hospitalizations, and
additionally for Scenarios 6 and 7, the number of deaths.

We present the ‘initiation of optimal policy’ in days, which is how it was modeled, but also
present the corresponding disease states, specifically, the observed prevalence and the actual
prevalence. We define observed prevalence as the cumulative number of reported cases, tracked
as part of disease surveillance, and expressed as a percentage of the total population. We define
actual prevalence as the cumulative number of infected cases, i.e., it additionally includes those
cases that are not yet reported and expressed as a percentage of the total population. Therefore,
while the ‘initiation of optimal policy’ was modeled in days, the corresponding observed

prevalence is more relevant and trackable from a public health perspective. In the case of the
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SARS-CoV2 virus, persons in the ‘exposed’ compartment are asymptomatic, and only show
symptoms when they transition to the ‘infectious’ compartment. Therefore, we made a simplifying
assumption that the observed prevalence includes all cases except those in the exposed
compartment (i.e., includes infectious + recovered + death compartments), while the actual
prevalence also includes the exposed compartment.

Note that, while all scenarios were modeled with the same time-points for ‘delay in
initiation’, the epidemic projections under the different travel rates would be different and thus the
corresponding values of observed prevalence and actual prevalence would vary by scenarios. For
instance, 90 days of delay in scenario 1 corresponds to an observed prevalence of 1.35% and the
actual prevalence of 2.13%, while the same days of delay in scenario 3 correspond to an observed
prevalence of 1.9% and an actual prevalence of 3%. Therefore, we represent each sub-scenario, as

[delay in initiation (in days), observed prevalence, and actual prevalence].

4. Results

In all scenarios, as expected from the highly virulent SARS-CoV2 virus, the optimal scenarios
involved some lockdown until a majority of the population became infected or lasted for the entire
simulation duration. In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown
strategy helped avoid hospital capacity violations while minimizing the economic burden from
lockdowns by taking the least stringent lockdown. However, the optimal policy was to end
lockdown only after a majority of the population became infected and reached herd-immunity
levels. In the 3-objective function scenarios (Scenarios 6 and 7), the optimal lockdown strategy
helped avoid hospital capacity violations, minimize infected cases and deaths while minimizing
the economic burden from lockdowns by taking the least stringent lockdown. However, the

optimal strategy here was to continue the optimal pattern of lockdowns for the remaining duration
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of the simulation, suggesting that until a vaccine becomes available, there is a chance that the
infection would spread. We discuss these results in more detail below.

With only one jurisdiction (Scenario 1), the optimal strategy was to initiate lockdown if
the observed prevalence (proportion of the population infected) reached 2.3% (which
corresponded to the actual prevalence of 3.6%). This can be seen in Figure 2 (first row), scenarios
where lockdown initiated at the observed prevalence of 2.3% or below (corresponding to up to 95
days from time of first case) had least lockdown and similar outcome of zero hospital capacity
violations. Over the duration of 400 days, this optimal policy consisted of lockdown at 50% for 62
days and lockdown at 25% for 46 days. Under this policy, lockdowns could be fully lifted on day
209. In the optimal strategy, the number hospitalized per day never exceeded hospital capacity,
i.e., zero days of hospital capacity violation. As expected from including only economy and
hospital capacity in the objective function, given the high infectiousness of the virus and absence
of other interventions, about 79% of the population were infected over the duration of the pandemic

Figure 3 (first row).
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Figure 2: 2-term objective function models for scenarios 1, 2, 3, 4, and 5.
Left plots: Bar plots of frequency of occurrence of each action (75% (red), 50% (yellow), 25%
(blue), and 0% (red) lockdown) over 400 days for different delay (x-axis) in initiation of optimal
policy [delay in days, observed prevalence, and actual prevalence]. Middle plots: Number of
available hospital beds (y-axis) against time (x-axis) under different delays in initiation of optimal
policy. Right plots: Total number of days hospital capacity is violated (y-axis) against observed
prevalence at time of initiation of optimal policy (x-axis).
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Delaying implementation of optimal policy in Scenario 1, i.e., initiating lockdown after
observed prevalence exceeded 2.3%, led to more prolonged or more stringent lockdowns and/or
hospital capacity violations (Figure 2 first row). For example, delaying to until 3.8% observed
prevalence led to 73 days of 50% shutdown, 27 days of 25% shutdown, and zero days of hospital
capacity violation. Delaying to 6.4% observed prevalence led to 6 days of 75% shutdown, 52 days
of 50% shutdown, 36 days of 25% shutdown, and five days of hospital capacity violation. Delaying
to until 10.46% observed prevalence led to 17 days of 75% shutdown, followed by 34 days of 50%
shutdown, 41 days of 25% shutdown, and 16 days of hospital capacity violation. While the 1.35%
observed prevalence occurred on day 90, the observed prevalence of 2.3%, 3.88%, 6.43%, and
10.46% occurred on days 95, 100, 105, and 110, suggesting that because of the high infectiousness
of the virus, a few days of delay could lead to significantly worse disease and economic burdens.

When jurisdiction A interacted with jurisdiction B through travel, but jurisdiction B was
non-cooperative and did not take the optimal decision as A (Scenarios 2 and 3 —with 5% and 10%
travel, respectively), the optimal policy for A was to control for B’s non-cooperative actions
through more stringent lockdowns than in Scenario 1 (0% travel). Even with the lower 5% travel
(Scenario 2- Figure 2 second row) and initiating lockdowns when observed prevalence was as low
as 0.002% (30 days delay), unlike in Scenario 1 (Figure 2 first row), the optimal lockdown

involved 28 days of maximum 75% lockdown.

In Scenario 2, the optimal lockdown strategy up until observed prevalence of 3.07% were
similar with outcomes of zero days of hospital capacity violation. The optimal policy, over the

period of 400 days, was lockdowns at the maximum-level of 75% for 37 days before transitioning
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to the less stringent 50% and 25% levels. Delayed implementation of optimal policy until the
observed prevalence reached 5.17% led to the need for more stringent lockdowns (41 days of the
maximum 75%, 20 days of 50%, and 42 days of 25%) to avoid hospital capacity violation.
Delaying implementation of optimal policy to beyond observed prevalence of 5.17% led to a
situation where hospital capacity violations could not be avoided (Figure 2 second row). For
example, delaying until 8.54% observed prevalence led to 58 days of 75% shutdown, and 11 days
of hospital capacity violation. Delaying to until 13.73% observed prevalence led to 47 days of 75%

shutdown, and 24 days of hospital capacity violation.
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Figure 3: Percentage infectious among total population vs time for different delays in initiation of
the optimal policy (left plots) and corresponding impact on percentage total infected over time
(right plots) for scenarios 1, 2, 3, 4, and 5.

In Scenario 3 (Figure 2 third row), the optimal policy was to initiate a lockdown no later
than an observed prevalence of 5.52%. The optimal policy, over the period of 400 days, was
lockdowns at the maximum level of 75% for 57 days, which resulted in zero days of hospital
capacity violation. Delaying implementation of optimal policy to after observed prevalence

exceeded 5.52%, led to higher hospital capacity violations (Figure 2 third row). For example,
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delaying until observed prevalence was 9.07% led to 24 days of 75% shutdown, followed by 45
days of 50% shutdown, and 14 days of hospital capacity violation. Delaying until observed
prevalence was 14.48% led to 33 days of 75% shutdown, followed by 36 days of 25% shutdown
and 26 days of hospital capacity violation.

When jurisdiction A interacted with B through travel but unlike the above scenarios, B was
cooperative by taking optimal actions as A (Scenarios 4 and 5), the optimal policy was similar to
that in Scenario 1 (single jurisdiction, 0% travel), suggesting that cooperative behavior would yield
similar results as single jurisdiction, as expected. Note that, similarity in results between Scenarios
4,5, and 1 suggests that, though the DQN was trained as a single-agent RL by considering only
the state space of jurisdiction A, this is a sufficient method here as we assumed that both
jurisdictions start the epidemic at the same time.

In summary, results from the above 2-objective function scenarios suggest that deviating
from the optimal policy through delays in initiating the optimal policy or through non-cooperative
behavior by an outside but interacting jurisdiction (B in this case) would require more stringent

lockdowns (red bar) to avoid hospital capacity violations.
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Figure 4: 3-term  objective function models for scenarios 6 and 7.
Left plots: Bar plots of frequency of occurrences of each action (75% (red), 50% (yellow), 25%
(blue), and 0% (red) lockdown) over 400 days for different delays (x-axis) in initiation of optimal

policy]delays in days, observed prevalence, and actual prevalence].
Middle plots: Number of available hospital beds (y-axis) against time (x-axis) under different
delays in initiation of optimal policy.

Right plots: Total number of days hospital capacity is violated (y-axis) against observed
prevalence at time of initiation of optimal policy (x-axis).

With the 3-objective function, and only one jurisdiction (Scenario 6), the optimal policy
was to initiate lockdown when observed prevalence was 0.01% (Figure 4 first row). Under this,
the optimal lockdown policy continued for the remaining duration of the simulation in order to
reduce cases and keep deaths at zero. This suggests that until pharmaceutical options are available,
preventing highly transmissible diseases such as COVID-19 would require some level of physical
distancing between contacts. Delaying the initiation of the optimal policy generated multiple
deaths even though higher number of lockdowns were initiated to control for the delays. Delaying
implementation of an optimal strategy to prevalence 10.46% (which occurred on day 110 from the
first infection) resulted in 4374 deaths, and 16 hospital capacity violations (Figure 4 first row, and

Appendix Table A2).
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Figure 5: Percentage infectious among total population vs time for different delays in initiation
of the optimal policy (left plots) and corresponding impact on percentage total infected over time
(right plots) for scenarios 6 and 7.

With the 3-objective function, when jurisdiction A was interacting with B through travel,
but jurisdiction B was not implementing any interventions (Scenario 7), the optimal strategy for A
to control for the non-cooperative behavior of B were a greater number of days and more stringent
lockdowns. Under this, the optimal policy over the 400 days was lockdown at the highest-level of
75% for 299 days and at 25% for an additional 47 days (Figure 4 row 2). This optimal policy
resulted in zero days of hospital capacity violation but 1935 deaths (Figure 4 row 2). Delaying
implementation of the optimal policy until observed prevalence reached 8.5%, led to a situation
where the epidemic burden had already created sufficient deaths that lockdowns had a lesser
impact and could only be implemented to reduce future deaths than to prevent deaths. The optimal
policy in this case was 231 days of the highest-level of 75% lockdown and resulted in 4775 deaths
and 14 days of hospital capacity violation.
Comparing results between 2-objecive and 3-objectve functions: In the 2-term objective function,

as the objective was to only minimize economic burden and hospital capacity violations, the
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cumulative prevalence reached up to 80%, (Figure 3) i.e., the main outcome was that it reduced
daily cases sufficient enough to keep hospitalizations below hospital capacity. In the 3-objective
function, as the objective additionally minimized deaths, even in the worst-case scenario the
cumulative prevalence reached about 35% (Figure 5). However, a key consequence of this was
that, while in the 2-objective function lockdowns could be lifted within the timeline of the
simulation, in the 3-objective function lockdowns continued over the full duration of the
simulation. This suggests the need for continuing shutdowns until the availability of
pharmaceutical interventions such as treatment to prevent deaths or vaccines to prevent
transmissions.

Details of optimal policy of each sub-scenarios of 2-objective and 3-objective are presented in

Appendix Table Al.

4.1 Sensitivity Analysis

We conducted to analysis to show how sensitive our results are to the selected transmission
rate (3, crucial factor in modeling the spread of infectious diseases): a) widely varying transmission
rate values b) -8.5% to +9% change around COVID-specific values. The first to represent different
virus strains/ viruses and the second to represent uncertainty in values for a fixed virus strain.
We tested the sensitivity of our results for single jurisdiction (Scenario 1) to the transmission rate
B in Table 1 using the learned model. The transmission rate was varied from 0.3 to 0.5 in
increments of 0.1. Additionally, a more fine-grained variation in transmission rates compared to
the baseline transmission rate (B=0.448) was also tested B =
0.41,0.42,0.43,0.45,0.46,0.47,0.48, 0.49).

Results are robust within the values of uncertainty range (-4.06% and +0.401%, values of

uncertainty range). However, as expected, if there are different viruses, or virus strains evolve over
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time, as was the case with COVID, then the analyses should be redone to identify a policy specific

to that strain.

In the plots depicted below, the observed prevalence serves as a reference point for assessing
the impact of delayed policy implementation. It is evident that the lower the transmission rate, the
less restrictive the lockdown measures can be. This relationship highlights the importance of
considering both observed prevalence and transmission rates when determining the most effective
strategies to control the spread of infectious diseases.
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Figure 6: Sensitivity analysis on impact of transmission rate (3 on optimal policy for single
jurisdiction (Scenario 1). % Observed prevalence upon initiation of optimal policy is kept
constant as the point of references for comparing different transmission rates. This value is

translated into different % actual prevalence and delay (line 1 and 3 of x-axis).

*: Basecase value for g

The sensitivity analysis aimed to evaluate how changes in the transmission rate
influenced the optimal policy. The results highlighted the following points:

Optimal Policy Sensitivity: The optimal policy in general was found to be sensitive to variations

in the transmission rate, however when more fine-grained transmission rates were tested, we
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observed that optimal policies for f = 0.43 and 0.5 (Figure 6, third and fourth rows) are more
consistent with the baseline value ($=0.448). But the recommended optimal policy deviates from
baseline for transmission rates smaller or larger than the baseline value. As a result, the model is
robust to uncertainty in transmission rate up to -4.06% and +0.401%, but higher/ lower uncertainty
in transmission rate requires a new RL learning process to find the optimal policy and to devise an
effective strategy to control the spread of the disease.

Deviation from the Paper's Value: The results also showed that as the tested transmission rate

deviated further from the value specified in the paper (0.448), the optimal policy changed more
significantly. This highlights the fact that epidemics characterized by distinct parameters
necessitate models trained across a corresponding spectrum of values for optimal performance.
The specificities of the disease parameters, coupled with the non-linearity of disease progression,
can result in drastically differing ranges of robustness for the learned models. This finding
particularly challenges policies that exclusively depend on observed prevalence for public health
decision-making.

Testing fine-grained transmission rates allowed for a more nuanced understanding of how the
optimal policy changed with varying transmission rates. This level of detail is essential for
policymakers to consider when tailoring their strategies to specific contexts and situations.

To make the comparison with basecase, we fixed the observed prevalence (values in second row

of x-axis Figure 2 left hand-side plot) as the point in time that policy makers delay the decisions.

5. Conclusion and Discussion
We formulated the question of how to control epidemics such as COVID-19 in the absence of
pharmaceutical interventions as a sequential decision-making problem formulated as a Markov

decision process (MDP) and solved using Deep Q-network (DQN), a reinforcement learning
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algorithm. We propose a methodology that can help determine whether and when a lockdown is
necessary, to what level, and how to phase out a lockdown which is a critical part of a pandemic
preparedness plan. Furthermore, we evaluated these decisions in the context of two-geographical
jurisdictions that make autonomous, independent decisions, cooperatively or non-cooperatively,
but interact in the same environment through travel. We evaluated these decisions both under a 2-
term objective function that minimized economic burden and hospital capacity violations, suitable
for diseases with high-risk of hospitalizations but low risk of mortality, and a 3-term objective
function that additionally minimized deaths. We used a SEIRD model to simulate the disease
progression and incorporated the impact of travel in the formulation of the transmission rate.

In the case of a single jurisdiction, under a 2-term objective, the optimal time for initiation of
lockdowns would be at about an observed prevalence of 3.87% and included lockdowns at a
combination of 50% and 25% per day. Delaying decisions led to a higher number or more stringent
lockdowns at the maximum levels of 75% per day in addition to a higher number of hospital
capacity violations. In the case of two-jurisdictions A and B interacting through travel, if
jurisdiction B deviated from the optimal policy, jurisdiction A would have to implement more
stringent lockdowns to compensate for the non-cooperative behavior of B, and if there was any
delay in this implementation also face excess hospitalizations. This suggests that, even if
jurisdictions make decisions independently, cooperation between jurisdictions could help
minimize lockdowns and avoid border travel restrictions, thus minimizing overall economic
burden. In the absence of such cooperation, the trade-offs for jurisdiction A to consider would be
between more stringent lockdowns within its jurisdiction or border closures to remove the

interactions with jurisdiction B. The results are intuitive, what the study contributes is a
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methodology that can be used by jurisdictions to evaluate a suitable policy, under such interactive
environments, and the numerical analyses here serves as proof-of-concept for the method.

In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown strategy helped
avoid hospital capacity violations while minimizing the economic burden from lockdowns by
taking the least stringent lockdown. However, as expected from the high transmissibility of the
virus, the optimal policy was to end lockdowns only after a majority of the population became
infected and reached herd-immunity levels. In the 3-objective function scenarios (Scenarios 6 and
7), the optimal lockdown strategy helped avoid hospital capacity violations, minimized infected
cases and deaths while minimizing the economic burden from lockdowns by taking the least
stringent lockdown. However, the optimal strategy here was to continue the optimal pattern of
lockdowns for the remaining duration of the simulation, suggesting that shutdowns would have to
continue until a vaccine became available. Any deviations from this optimal policy generated more
stringent lockdowns and/or higher cases of hospitalizations and deaths. This suggests that, in the
absence of pharmaceutical interventions, some measures of physical distancing would be
necessary to control the epidemic even if it creates economic burdens, as deviating from this would
only increase future economic burdens.

Finally, we conducted sensitivity analysis on imoact of transmission rate on our results for
single-jurisdiction scenario, including 1) widely varying transmission rate for different virus
strains/ viruses and 2) small changes around COVID-19 transmission rate value to represent
uncertainty in values for a fixed virus strain. Results are robust within the values of uncertainty
range (-4.06% and +0.401%, values of uncertainty range). However, as expected, if there are
different viruses, or virus strains evolve over time, as was the case with COVID, then the analyses

should be redone to identify a policy specific to that strain.
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Some of the limitations of our model are as follows. Motivated by the COVID-19 pandemic, for
the numerical analyses, we assumed epidemiology staging and transmissibility of the SARS-CoV
2 virus. Thus, the specific results here are limited to diseases caused by viruses similar to that of
SARS-CoV 2 type. The model will have to be reparametrized and evaluated for other diseases
with vary epidemiology structures. In our model, the impact of lockdowns on the economy is
scaled linearly, i.e., lockdown on any day has a similar impact on the economy's monetary value.
This impact can be formulated as a non-linear function to consider the dynamical changes over
time. We assumed that both jurisdictions start an outbreak at the same time, thus it was sufficient
to train the DQN as a single-jurisdiction RL with both jurisdictions implementing the same
policy (as evident from the similarity in results between Scenario 4, 5, and 1). Thus, our results
are limited to this scope. For evaluating decisions between two jurisdictions that start the
outbreak at different times leading to significantly different states of the epidemic at the time of
decision-making, other methods such as multi-agent RL maybe more relevant. The
compartmental model utilized in this study could be replaced with any other simulation
environment and can be enhanced to include more heterogeneity by further dividing the
compartments. Besides, improving the performance of DQN algorithm was outside of scope of
this model, but can be explored in future research.

Despite these limitations, we believe that the methodology presented here can help decision
makers in formulating a pandemic preparedness plan for future infectious disease outbreaks. The
results generated by the numerical analyses are intuitive, which support the feasibility of
application of Al algorithms for such analyses, as typically, given the computational complexity
of the algorithms and problem formulation, the feasibility is not always guaranteed [29]. This study

provides a generalized framework that can be applied to any jurisdiction or infectious disease by
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adjusting the parameters accordingly, some examples are as follows. We interpreted the
intervention options here to represent lockdowns and did not consider other options such as
facemask use, self-isolation when infected, or 6 ft distancing. However, we modeled lockdowns
by reducing transmission rate, assuming that the cost for that reduction represents economic loss.
Interventions such as facemask use, self-isolation when infected, or 6 ft distancing are also
modeled as reduction in transmission rates, but they may differ in governmental lockdowns in
terms of the cost and impact, i.e., they may have a lesser impact on the economy (lower costs) but
also achieve a smaller reduction in transmission rate. Therefore, the different levels of shutdowns
and costs modeled here can also be interpreted as different types of interventions and the
corresponding transmission rate, rewards, and costs informed specific to the setting. Design of the
immediate reward is an essential step in RL models and can significantly change the optimal
policy. Thus, this is a subjective metric that should be informed specific to the case under study.
For example, a jurisdiction where a significant fraction of jobs can seamlessly transition to remote
work (e.g., IT) may differently weigh each of the four lockdown options (e.g., fewer days but
maximum lockdown-level) compared to a jurisdiction where a large fraction of the jobs require
physical presence (e.g., manufacturing, or essential workers). On the other hand, those costs saved
from preventing economic loss could instead be redirected to ensure safety of workers. Thus, the
immediate reward function would be formulated to consider economic costs, epidemic costs, and
costs for safety measures. This work offers a framework and a tool for decision analysis, with the
significance of this aspect emphasized through our sensitivity analyses. These considerations not
only highlight the value of our study but also indicate potential avenues for further research and

development.
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