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Abstract 

In the absence of pharmaceutical interventions, social distancing and lockdown have been key 

options for controlling new or reemerging respiratory infectious disease outbreaks. The timely 

implementation of these interventions is vital for effectively controlling and safeguarding the 

economy. 

Motivated by the COVID-19 pandemic, we evaluated whether, when, and to what level lockdowns 

are necessary to minimize epidemic and economic burdens of new disease outbreaks. We 

formulated the question as a sequential decision-making Markov Decision Process and solved it 

using deep Q-network algorithm. We evaluated the question under two objective functions: a 2-

objective function to minimize economic burden and hospital capacity violations, suitable for 

diseases with severe health risks but with minimal death, and a 3-objective function that 

additionally minimizes the number of deaths, suitable for diseases that have high risk of mortality. 

A key feature of the model is that we evaluated the above questions in the context of two-

geographical jurisdictions that interact through travel but make autonomous and independent 

decisions, evaluating under cross-jurisdictional cooperation and non-cooperation. 
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In the 2-objective function under cross-jurisdictional cooperation, the optimal policy was to aim 

for shutdowns at 50% and 25% per day. Though this policy avoided hospital capacity violations, 

the shutdowns extended until a large proportion of the population reached herd immunity. Delays 

in initiating this optimal policy or non-cooperation from an outside jurisdiction required shutdowns 

at a higher level of 75% per day, thus adding to economic burdens. In the 3-objective function, the 

optimal policy under cross-jurisdictional cooperation was to aim for shutdowns of up to 75% per 

day to prevent deaths by reducing infected cases. This optimal policy continued for the entire 

duration of the simulation, suggesting that, until pharmaceutical interventions such as treatment or 

vaccines become available, contact reductions through physical distancing would be necessary to 

minimize deaths. Deviating from this policy increased the number of shutdowns and led to several 

deaths. 

In summary, we present a decision-analytic methodology for identifying optimal lockdown 

strategy under the context of interactions between jurisdictions that make autonomous and 

independent decisions. The numerical analysis outcomes are intuitive and, as expected, serve as 

proof of the feasibility of such a model. Our sensitivity analysis demonstrates that the optimal 

policy exhibits robustness to minor alterations in the transmission rate, yet shows sensitivity to 

more substantial deviations. This finding underscores the dynamic nature of epidemic parameters, 

thereby emphasizing the necessity for models trained across a diverse range of values to ensure 

effective policy-making. 

Keywords: decision-making in epidemics, COVID-19, deep reinforcement learning, artificial 

intelligence in public health, non-pharmaceutical intervention, jurisdictional decision-making 
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Abbreviations: NPI: Non-pharmaceutical Interventions, MDP: Markov Decision Process, DQN: 

Deep Q-Network, RL: Reinforcement Learning, SEIRD: susceptible(S)-exposed(E)-infected(I)-

recovered(R)-dead(D), GDP: Gross Domestic Product 

1. Introduction 

Timely implementations of pharmaceutical and non-pharmaceutical interventions (NPI) 

are critical for effective control of new infectious disease outbreaks. Delay in response causes 

enormous disease and economic burdens, as seen during the COVID-19 outbreak caused by the 

SARS-Cov2 virus [1]. 

In the event of new respiratory infectious disease outbreaks, when pharmaceutical 

interventions are unavailable, NPIs are the only options, as was the case with COVID-19. Effective 

NPI options include facemask-use and social distancing [2]. Social distancing could include 

physical distancing (e.g., by 3ft or 6ft) or partial lockdowns. While facemasks and physical 

distancing could be the most economically feasible options, lockdowns may be necessary for 

highly contagious viruses such as the SARS-Cov2. While locking-down early in the pandemic 

would be suitable for reducing disease burden, it may unnecessarily add to the economic burden. 

On the other hand, delaying the lockdown or improper phasing of lockdowns can significantly 

amplify both economic and disease burdens [3].   

In this context, through timely implementation of lockdowns, governmental public health 

agencies play a key role in effective containment of new outbreaks. Furthermore, though public 

health decisions are autonomous to each jurisdiction, e.g., in the United States, local COVID-19 

prevention guidelines were determined by individual states [4], the epidemic can be influenced by 

outside jurisdictions through travel. 
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 The objective of our work is to a) Propose a reinforcement learning (RL) model designed 

specifically for the sequential analyses of epidemic decisions. b) Investigate jurisdiction-specific 

decisions within the context of multi-jurisdictional interactions, and subsequently conduct 

numerical analyses that aim to demonstrate the significance of these jurisdictional interactions. 

 A methodology that can help determine whether and when a lockdown is necessary, to what 

level, and how to phase out a lockdown would be a critical part of a pandemic preparedness plan. 

While surveillance systems to help identify new outbreaks would be a crucial part of this 

preparedness plan, because of the delay in diagnosis of cases, informing decisions only based on 

data collected through these systems will not be sufficient. Surveillance data combined with 

epidemic projections through the use of dynamic mathematical models can help identify optimal 

control policies, including whether a partial shutdown will be necessary [4, 5]. In this study, we 

formulated the question of whether and when a lockdown is necessary, to what level, and how to 

phase out a lockdown as a sequential decision-making problem using Markov decision process 

(MDP) and solved using Deep Q-network (DQN), a reinforcement learning (RL) algorithm.   

 Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) where optimal 

policies are learned through a trial-and-error learning process. This iterative cycle involves an 

agent taking action (e.g., intervention decision) based on the system's current state, causing a 

transition to a subsequent state associated with a given reward [6, 7], and as the number of 

iterations increase it learns to take decisions with the highest reward, continuing until the algorithm 

has converged to the optimal decision.  Research in RL algorithms can be broadly categorized into 

three areas: the formulation of the decision analytic algorithm as a RL problem, an algorithm for 

learning these decisions, and the data required to train the algorithm. The focus of this work is 

solely on the first component: the formulation of the decision analytic algorithm. 
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 For the second component, algorithms for learning decisions, several algorithms are 

available in the current literature. For our purpose, we utilized the Deep Q-Network (DQN), an 

off-the-shelf RL algorithm, for its capacity to handle extensive environments pertinent to COVID-

19 modeling [9]. DQN has been employed across a broad spectrum of problems. This includes, 

but is not limited to, applications such as games [10], autonomous driving [11], recommendation 

system [12], mobile robot navigation [13], computer-aided diagnosis [14], stock trading [15], and 

very recently on COVID-19 pandemic control [15, 16, 17]. 

 For the third component, in application of RL to disease epidemics, simulation models are 

widely used to generate the data to train the algorithms [12]. There are two broad categorizations 

of simulation models, agent-based and compartmental models that are typically employed. 

Generally, compartmental models are apt for rapidly spreading diseases and allow for 

heterogeneity by partitioning compartments. Alternatively, agent-based models are often more 

suitable for slower spreading diseases, where contact structures play a significant role. In this work, 

as our focus was not on the simulation model itself, we utilized a simple compartmental model 

(i.e., with no heterogeneity in demographics), but any simulation environment could be substituted 

depending on the nature of disease spread and research question.  

 As noted above, our focus is on the first component, formulation of decision analytic 

algorithm (here COVID-related interventions) as a RL problem. The recent literature has seen an 

influx of RL models related to this focus. There are three components to this model formulation: 

the state space, the action (intervention) space, and the reward function. Amid the COVID-19 

pandemic, lockdowns have become a primary intervention to curb disease spread. Consequently, 

an increasing number of RL studies formulated the problem as identifying optimal lockdown 

policies with the objective of minimizing COVID-19 cases while also mitigating economic 
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damages. For instance, Khadilkar et al. harnessed RL to automate policy learning, thereby 

optimizing lockdown policies for epidemic control [18]. They denoted their state space as different 

components of the compartmental model, the action space as lockdown or no lockdown, and the 

reward function as the negative of the number of deaths, persons infected, and the number of days 

with lockdown. Similarly, Kompella et al. [19] devised an agent-based pandemic simulator and an 

RL-based methodology to optimize fine-grained mitigation policies that minimize economic 

impact without overtaxing hospital capacity. They formulated their state space as the number of 

people within each infection state, the action space as different stages of lockdown, and the reward 

function as a combination of increasing economy while minimizing capacity violation. Further, 

Arango et al. employed RL to optimize cyclic lockdowns as a temporary alternative to extended 

lockdowns, aiming to minimize ICU usage overshoots and lockdown duration for socio-economic 

benefit [20]. They formulated their RL components as follows: the state space being the current 

number of infected persons, the action space being either non-lockdown or lockdown, and the 

reward function as a combination of the economy and the number of available ICU beds. 

As with our case, these studies utilized off-the-shelf learning algorithms and constructed 

simulation models (either compartmental or agent-based) for training. Their contributions 

primarily lie in 'formulating the epidemic decision analytic problem' as an RL problem. Our model 

contributes to this existing body of work. A gap in these literature models is that they overlook 

cross-jurisdictional interactions. We address this gap through novel formulation of the state space 

to consider jurisdictional interactions.  

We present an RL model trained using the DQN algorithm to evaluate the question of 

whether a lockdown is necessary, and if so, when it should be initiated, to what level (proportion 

lockdown), and how it should change over time, such that it minimizes both epidemic and 
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economic burdens. Though this objective is similar to other RL studies in the literature, our work 

differs from previous work in two ways. First, we evaluated the question of when to initiate a 

lockdown policy, which would be helpful for future outbreaks of similar epidemiology when 

lockdowns are a key intervention. Second, we evaluate these decisions in the context of two-

geographical jurisdictions that make autonomous, independent decisions, cooperatively or non-

cooperatively, but populations interact in the same environment through travel. Though decisions 

are made independently, because of travel between jurisdictions, the actions of one jurisdiction 

can influence the epidemic in the other jurisdiction. This scenario would especially be of interest 

for a jurisdiction that makes the optimal decisions but has travels coming from a jurisdiction with 

bad decisions. While travel between jurisdictions would be favorable for the economy, it could 

diminish the impact of its optimal actions. Therefore, taking the perspective of a jurisdiction that 

makes the optimal decision, we evaluate under travel when actions of another jurisdiction 

significantly add to its disease and economic burdens. This would help inform when border 

closures would need to be part of an optimal lockdown strategy.  And subsequently, whether 

decision-making control should be given to individual jurisdictions (say county-level or state-

level) or a common entity (such as state if jurisdictions are counties, and federal if jurisdictions 

are states). In this study, we assume that both jurisdictions start an outbreak at the same time, thus 

our results are limited to this scope.  

In highlighting the dynamic nature of infectious diseases, we underscore that a single 

policy would not suffice for all disease types. Thus, our work provides a robust framework and a 

powerful tool for decision analysis rather than a one-size-fits-all solution. The significance and 

potential applicability of this model have been further emphasized through comprehensive 

sensitivity analyses. 
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The rest of the paper is organized as follows. Section 2 presents the methodology, including 

the simulation model, MDP formulation, and RL. In section 3, we discuss the scenarios we 

analyzed in detail. Section 4 presents the results, section 4.1 includes sensitivity anaylysis, and 

finally, in section 5, we conclude the study with a discussion. 

2. Methodology 

 Our model framework includes a compartmental simulation model that simulates the epidemic 

spread discussed in section 2.1 integrated with a Markov decision process (MDP) optimization 

framework discussed in section 2.2 and solved using deep Q-network (DQN) discussed in section 

2.3.  

2.1 Simulation Model 

We developed a susceptible(S)-exposed(E)-infected(I)-recovered(R)-dead(D) (SEIRD) 

compartmental model based on Kermack and McKendrick [22] for simulating epidemic 

projections over time (Figure 1). An individual starts in compartment 𝑆𝑆, and upon contracting the 

disease moves to compartment 𝐸𝐸. A person in compartment 𝐸𝐸 is in the incubation phase of the 

disease (for a duration of 1/𝛼𝛼 days) and thus cannot transmit the disease. A person moves from 

compartment E to compartment I, the transmissible phase of the infection. A person in 

compartment 𝐼𝐼 either recovers, i.e., moves to 𝑅𝑅 with rate 𝛾𝛾 per day, or succumbs to disease, i.e., 

moves to  𝐷𝐷 with rate 𝜃𝜃 per day.  

Let 

𝑆𝑆 be the number of Susceptible, 

𝐸𝐸 be the number of Exposed, 

𝐼𝐼 be the number of Infectious, 

𝑅𝑅 be the number of Recovered, 
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𝐷𝐷 be the number of Dead, 

𝑁𝑁 be total population, 

𝛽𝛽: transmission rate from susceptible to infected (𝛽𝛽 = 𝑝𝑝𝑝𝑝 where 𝑝𝑝 is the probability of 

transmission per susceptible-infected contact and 𝑐𝑐 =number of contacts per person), 

𝛼𝛼: is the inverse of the average incubation period in days, 

𝛾𝛾: rate of recovery per day, and 

𝜃𝜃: rate of disease-related mortality per day. 

 

 

Figure 1. SEIRD flow diagram for infectious diseases. 

Given the short duration of the disease, we evaluate over a short analytic period of 400 days, 

assuming no births or natural deaths, and thus, the population size remains constant over time (𝑁𝑁 =

𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) + 𝐷𝐷(𝑡𝑡)). The differential equation governing the dynamics of the 

disease can be written as follows: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝛽𝛽
𝐼𝐼
𝑁𝑁

                𝑆𝑆(0) = 𝑆𝑆0 ≥ 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽
𝐼𝐼
𝑁𝑁
− 𝛼𝛼𝛼𝛼      𝐸𝐸(0) = 𝐸𝐸0 ≥ 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼 − 𝛾𝛾𝛾𝛾             𝐼𝐼(0) = 𝐼𝐼0 ≥ 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾                 𝑅𝑅(0) = 𝑅𝑅0 ≥ 0 

(1) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜃𝜃𝜃𝜃                 𝐷𝐷(0) = 𝐷𝐷0 ≥ 0 

 

Population Mixing: To study the impact of travel on epidemic projections, we modified the 

standard SEIRD equations to include travel between two jurisdictions (jurisdiction A and 

jurisdiction B). 

Let  

𝑟𝑟𝐴𝐴𝐴𝐴 be the travel rate from jurisdiction A to jurisdiction B, 

𝑟𝑟𝐵𝐵𝐵𝐵 be the travel rate from jurisdiction B to jurisdiction A, and 

𝐼𝐼𝐵𝐵 be the number of infectious people in jurisdiction B. 

Then the SEIRD model can be modified to include population mixing as follows: 

 

 𝑑𝑑𝑆𝑆𝐴𝐴
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑆𝑆𝐴𝐴(1 − 𝑟𝑟𝐴𝐴𝐴𝐴) �
(1 − 𝑟𝑟𝐴𝐴𝐴𝐴)(𝐼𝐼𝐴𝐴) + (𝑟𝑟𝐵𝐵𝐵𝐵)(𝐼𝐼𝐵𝐵)

(1 − 𝑟𝑟𝐴𝐴𝐴𝐴)𝑁𝑁𝐴𝐴 + (𝑟𝑟𝐵𝐵𝐵𝐵)𝑁𝑁𝐵𝐵
� − 𝛽𝛽𝑆𝑆𝐴𝐴(𝑟𝑟𝐴𝐴𝐴𝐴) �

(𝑟𝑟𝐴𝐴𝐴𝐴)(𝐼𝐼𝐴𝐴) + (1 − 𝑟𝑟𝐵𝐵𝐵𝐵)(𝐼𝐼𝐵𝐵)
(𝑟𝑟𝐴𝐴𝐴𝐴)𝑁𝑁𝐴𝐴 + (1 − 𝑟𝑟𝐵𝐵𝐵𝐵)𝑁𝑁𝐵𝐵

� 

𝑑𝑑𝐸𝐸𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑆𝑆𝐴𝐴(1 − 𝑟𝑟𝐴𝐴𝐴𝐴) �
(1 − 𝑟𝑟𝐴𝐴𝐴𝐴)(𝐼𝐼𝐴𝐴) + (𝑟𝑟𝐵𝐵𝐵𝐵)(𝐼𝐼𝐵𝐵)

(1 − 𝑟𝑟𝐴𝐴𝐴𝐴)𝑁𝑁𝑖𝑖 + (𝑟𝑟𝐵𝐵𝐵𝐵)𝑁𝑁𝐵𝐵
� + 𝛽𝛽𝑆𝑆𝐴𝐴(𝑟𝑟𝐴𝐴𝐴𝐴) �

(𝑟𝑟𝐴𝐴𝐴𝐴)(𝐼𝐼𝐴𝐴) + (1 − 𝑟𝑟𝐵𝐵𝐵𝐵)(𝐼𝐼𝐵𝐵)
(𝑟𝑟𝐴𝐴𝐴𝐴)𝑁𝑁𝐴𝐴 + (1 − 𝑟𝑟𝐵𝐵𝐵𝐵)𝑁𝑁𝐵𝐵

�

−  𝛼𝛼(𝐸𝐸𝐴𝐴) 

𝑑𝑑𝐼𝐼𝐴𝐴
𝑑𝑑𝑑𝑑

=  𝛼𝛼(𝐸𝐸𝐴𝐴) − 𝛾𝛾𝐼𝐼𝐴𝐴 

𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼𝐴𝐴 

𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝜃𝜃𝐼𝐼𝐴𝐴. 

(2) 

Note that setting 𝑟𝑟𝐴𝐴𝐴𝐴 = 𝑟𝑟𝐵𝐵𝐵𝐵 = 0 in (2) results in (1), and hence the single jurisdiction model is a 

special case of the two-jurisdiction model. For empirical analyses, we used epidemiology data 

from the SARS-Cov2 alpha variant (Table 1). 
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Table 1. Parameters of the simulation model. 

Parameter Value Description 

𝛽𝛽 0.4482 Transmission rate [23] 

𝛼𝛼 0.1923 1/interval in days for incubation (incubation period ~ 5.2 days) [24] 

𝛾𝛾 0.1724 1/interval in days from infected to removal (infectious period ~ 5.8) [23] [24] 

𝜃𝜃 0.017 The mortality rate due to infections (in scenario 1 to 5, 𝜃𝜃 = 0) [25] 

 

We utilized a compartmental model which could be substituted with any simulation 

environment, such as agent-based modeling, depending on the nature of the disease spread. While 

compartmental models are usually more apt for rapidly spreading diseases, allowing for 

heterogeneity by partitioning compartments, agent-based models can be more suitable for slower 

spreading diseases, where contact structures play a significant role. However, it's important to note 

that our RL algorithm can be applied in either of these environments, as demonstrated in our 

previous paper [21]. 

2.2 Markov Decision Process 

  We formulate the question of whether a lockdown is necessary, and if so, when it should be 

initiated, to what level (proportion lockdown), and how this should change over time as an MDP, 

as follows. We define the pandemic state as a multivariate parameter 𝑋𝑋 =

�𝑆𝑆𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐼𝐼𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝑅𝑅𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐷𝐷𝐴𝐴
𝑁𝑁𝐴𝐴
� ,𝑋𝑋 ∈ ℝ5, where 𝑆𝑆𝐴𝐴

𝑁𝑁𝐴𝐴
, 𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐼𝐼𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝑅𝑅𝐴𝐴
𝑁𝑁𝐴𝐴

, and 𝐷𝐷𝐴𝐴
𝑁𝑁𝐴𝐴

 are the proportion of the jurisdiction A 

population in the S, E, I, R, and D compartment, respectively, and add to 1.  

Then, using the standard form, we can define the MDP as a 5-tuple {Ω,𝒜𝒜,𝑃𝑃𝑎𝑎,𝑅𝑅𝑎𝑎, 𝛾𝛾}, where, 

• Ω is the state space, a set of all possible states of the pandemic, 𝑋𝑋 𝜖𝜖 Ω, 
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• 𝒜𝒜 is the action space, a set of all possible actions, here choices of lockdown, 𝑎𝑎 𝜖𝜖 𝒜𝒜, 

• 𝑃𝑃𝑎𝑎 is the one-step transition probability matrix from one state of pandemic to another 

under action 𝑎𝑎 (where 𝑃𝑃𝑎𝑎(𝑥𝑥′|𝑎𝑎, 𝑥𝑥) is the transition probability from state 𝑥𝑥 to 𝑥𝑥′ under 

action 𝑎𝑎), 

• ℛ𝑎𝑎is a reward matrix, with each element,  ℛ𝑎𝑎(𝑥𝑥′|𝑎𝑎, 𝑥𝑥), the immediate reward of 

transitioning from state 𝑥𝑥 to 𝑥𝑥′ under action 𝑎𝑎, and 

• 𝛾𝛾 is the discount factor.  

Given the system is in state 𝑥𝑥0 ∈ Ω  at time of implementation of decision, the problem is to solve 

for the optimal policy (𝒅𝒅(𝑥𝑥0)) using the following objective function to maximize the total 

expected reward over the analytic period 𝑇𝑇 (for numerical analyses we assumed 𝑇𝑇 = 400): 

max
[𝑑𝑑1,..,𝑑𝑑𝑇𝑇]𝜖𝜖𝒜𝒜𝑇𝑇

𝔼𝔼 ��𝛾𝛾ℛ𝑎𝑎=𝑑𝑑𝑡𝑡(𝑥𝑥′|𝑎𝑎,𝑥𝑥)
𝑇𝑇

𝑡𝑡=1

� 

 
𝒅𝒅(𝒔𝒔) = 𝑎𝑎𝑎𝑎𝑎𝑎 max

[𝑑𝑑1,..,𝑑𝑑𝑇𝑇]𝜖𝜖𝒜𝒜𝑇𝑇
𝔼𝔼 ��𝛾𝛾ℛ𝑎𝑎=𝑑𝑑𝑡𝑡(𝑥𝑥

′|𝑎𝑎, 𝑥𝑥)
𝑇𝑇

𝑡𝑡=1

� 

 

(3) 

We next discuss the formulation of the 5-tuple {Ω,𝒜𝒜,𝑃𝑃𝑎𝑎,ℛ𝑎𝑎, 𝛾𝛾}: 

State space: We formulate the state space as Ω = [𝑆𝑆𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐼𝐼𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝑅𝑅𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐷𝐷𝐴𝐴
𝑁𝑁𝐴𝐴

], a continuous state space 

where each element of the state space can get a value between 0 and 1, such that at each time step, 

𝑆𝑆𝐴𝐴
𝑁𝑁𝐴𝐴

+ 𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴

+ 𝐼𝐼𝐴𝐴
𝑁𝑁𝐴𝐴

+ 𝑅𝑅𝐴𝐴
𝑁𝑁𝐴𝐴

+ 𝐷𝐷𝐴𝐴
𝑁𝑁𝐴𝐴

= 1. 

Action space: We formulated the action space (𝒜𝒜) as a finite discrete set of interventions, 𝒜𝒜 =

[𝑎𝑎1 = 75%,𝑎𝑎2 = 50%,𝑎𝑎3 = 25%,𝑎𝑎4 = 0%], corresponding to a contact rate reduction of 75%, 

50%, 25%, and 0%, respectively, a factor multiplied to the transmission rate (𝛽𝛽) in (1) and (2). For 

these numerical analyses, to make it representative of the COVID-19 epidemic, we assumed 
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contact reductions are achieved through lockdowns. We assumed about 25% of the U.S. population 

are essential personnel [25, 26] (34% of adults reported as essential personnel, and 78% of the 

population are adults) and thus the strictest lockdown, 𝑎𝑎1, corresponds to a 75% reduction in 

contact rate. Value of action 𝑎𝑎4 was selected to represent no-lockdowns, and values of actions 𝑎𝑎2 

and 𝑎𝑎3 were set at intermediate levels between 𝑎𝑎1 and 𝑎𝑎4. 

Transition probabilities: As generating the transition probability for every possible transition is 

infeasible, we use our SEIRD simulation model discussed earlier to simulate each action and keep 

track of each transition in the model. 

Immediate rewards:  Immediate reward (ℛ𝑎𝑎(𝑥𝑥)) corresponds to the per time step reward (benefits 

– costs) achieved by implementing an action when the system is in state 𝑥𝑥. We evaluated 

immediate reward ℛ𝑎𝑎(𝑥𝑥) under two objective functions: 

• 2-term objective function: The objective is to minimize economic burden and hospital capacity 

violation. This objective function would be most suitable for diseases that have a high risk of 

hospitalization, but minimal risk of mortality.  

• 3-term objective function: The objective is to minimize economic burden, hospital capacity 

violation, and minimize mortalities. This objective function would be most suitable for 

diseases with high risk of hospitalizations and mortality.  

Mathematically, we formulated the immediate reward ℛ𝑎𝑎(𝑥𝑥): 

 ℛ𝑎𝑎(𝑥𝑥) = 𝑓𝑓𝑒𝑒(𝑎𝑎) − 𝑓𝑓ℎ�𝐼𝐼𝑥𝑥,𝐴𝐴� − 𝜂𝜂�𝜃𝜃𝐼𝐼𝑥𝑥,𝐴𝐴𝐶𝐶𝑙𝑙�               (4) 

where, setting 𝜂𝜂 = �0 results in 2 − term objective function
1 results in 3 − term objective function ,  

𝑓𝑓𝑒𝑒(𝑎𝑎) is the per day monetary benefit of implementing action 𝑎𝑎, 
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𝑓𝑓ℎ�𝐼𝐼𝑥𝑥,𝐴𝐴� is the per day cost of exceeding hospital capacity in jurisdiction 𝐴𝐴, when there are 𝐼𝐼𝑥𝑥,𝐴𝐴 

number of infected persons,  

𝜃𝜃 is the mortality rate, and thus 𝜃𝜃𝐼𝐼𝑥𝑥,𝐴𝐴 is the number of daily deaths in jurisdiction 𝐴𝐴 when there are 

𝐼𝐼𝑥𝑥,𝐴𝐴 number of infected persons, and 

𝐶𝐶𝑙𝑙 is the per person mortality cost.  

We modeled the monetary benefit (𝑓𝑓𝑒𝑒(𝑎𝑎)) as the economic benefit,  

                     𝑓𝑓𝑒𝑒(𝑎𝑎) = 𝜏𝜏(𝑎𝑎)𝑀𝑀, (5) 

  

where, 𝜏𝜏(𝑎𝑎) is the monetary reduction in the economy upon implementation of action 𝑎𝑎 and 𝑀𝑀 is 

the per day monetary value generated by the economy in a no-lockdown scenario. Here, we 

assumed 𝑀𝑀 = 1𝑒𝑒 + 11, and set 𝜏𝜏(𝑎𝑎1) = 0.4, 𝜏𝜏(𝑎𝑎2) = 0.6, 𝜏𝜏(𝑎𝑎3) = 0.8, and 𝜏𝜏(𝑎𝑎4) = 1. Per day 

monetary value of 𝑀𝑀 is assumed based on US gross domestic product (GDP) per capita multiplied 

by US population in 2020 [27].   

We assumed that for every 1000 inhabitants, there is 1.5 hospital beds available (we used data in 

the state of Utah which has the lowest number of beds per capita among US sates [27]) (𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

1.5𝑁𝑁𝐴𝐴
1000

) and that 5% of infected people at each timestep are hospitalized [22, 28], and modeled the 

per day cost of exceeding hospital capacity (𝑓𝑓ℎ�𝐼𝐼𝑥𝑥,𝐴𝐴�) as 

                                         𝑓𝑓ℎ�𝐼𝐼𝑥𝑥,𝐴𝐴� = �1𝑒𝑒 + 11                      if 5%𝐼𝐼𝑥𝑥,𝐴𝐴 ≥ 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
0                                             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                (6) 

  

We assumed mortality rate is 0.017 corresponding to the SARS-Cov2 virus [25], and the cost per 

mortality (𝐶𝐶𝑙𝑙) as 1𝑒𝑒 + 10. 
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2.3 Deep Reinforcement Learning 

  We solve for the optimal sequence, level, and time of initiation of lockdowns for the 

control of COVID-19 type new infectious disease outbreaks, formulated above as an MDP, using 

DQN. We solve for this under varying scenarios (see Section 3). DQN is a deep reinforcement 

learning algorithm suitable for continuous state and discrete action spaces [9]. Conceptually, the 

algorithm works as follows. At each time step, based on the state of the pandemic, i.e., values for 

[𝑆𝑆𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐼𝐼𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝑅𝑅𝐴𝐴
𝑁𝑁𝐴𝐴

, 𝐷𝐷𝐴𝐴
𝑁𝑁𝐴𝐴

], the algorithm determines what action to take, feeds it to the simulation model 

to calculate the immediate reward of taking that action at that particular state. This process is 

repeated for multiple iterations, and at every iteration, through training of a neural network, the 

algorithm is learning to take better actions, such that, under the proper neural network architecture 

and hyper-parameters, the algorithm eventually learns to identify the decision that maximizes the 

objective function defined in (3). We developed the model using the stable_baselines library in 

Python [28]. The details of the algorithm are presented in Appendix Section A.1. 

DQN configuration and hyper-parameters: To approximate the Q-function, we used a deep 

learning network, a multi-layer perceptron with four layers that have 64, 128, 128, and 8 nodes, 

respectively. We use 𝛾𝛾=0.95 and a learning rate of 0.001 with buffer size 100000. The rest of the 

parameters are set as default by the stable_baselines DQN library [27]. We trained each scenario 

separately for different number of MDP iterations (referred to as episodes), each 100 times with 

different random seeds.  

The initial state at the beginning of each episode is set to one person exposed for 

jurisdiction 𝐴𝐴 and two persons exposed for jurisdiction 𝐵𝐵, and rest of the population are 

susceptible. Each episode is 400 days, and at the end of each episode, the model is reset to the 

initial state. We trained the model for different episodes from 2500 to 25000 (corresponding to 1M 
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to 10M time-steps). At the end of the training, we identify the optimal solution as the best among 

all the trained models, i.e., the model with the highest expected total reward (defined in (3)).  

Similar to many optimization problems, DQN does not guarantee reaching the optimal 

solution, however, by sufficiently exploring the solution space, the chance of finding an optimal 

solution could be increased. Therefore, for each scenario (Section 3), we generated 100 different 

runs of the algorithm, each with a different random seed, and identifying an optimal solution under 

each. Similar optimal solutions in multiple runs would also suggest higher chance of optimality.  

3. Analyses Scenarios  

  We analyzed seven scenarios. Scenario 1 to 5 correspond to the 2-term objective (that 

considers impact of decisions on economy and hospital capacity violation), while scenarios 6 and 

7 correspond to the 3-term objective (that consider the impact of decisions on economy, hospital 

capacity violation, and disease related mortality). Scenarios 1 and 6 correspond to a single 

jurisdiction while the rest of the scenarios correspond to two-jurisdictions with different travel 

rates. In the two-jurisdiction scenarios, decisions are made independently, and we consider two 

distinct behaviors among them. In scenarios 2 and 3, jurisdiction A implements the optimal policy 

but jurisdiction B does not implement any intervention (non-cooperative behavior), while in 

scenario 4 and 5, jurisdiction B follows the exact same policy as A (cooperative behavior). 

However, note that, even in Scenarios 4 and 5, just as in Scenario 1 to 3, the formulation of the 

DQN focused only on the epidemic state in jurisdiction A. Thus, the DQN here was still a single-

agent RL but evaluated in the context of two interacting jurisdictions making autonomous 

independent decisions.  We further expanded these scenarios into sub-scenarios by examining the 

impact of delay in initiation of optimal policy, i.e., delaying initiation of optimal policy until day 
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30, 45, 60, 75, 90, 95, 100, 105, and 110 such that each corresponds to different prevalence upon 

initiation of optimal policy. 

Intuitively, if the optimal policy is a lock-down, the more the delay in initiation of 

lockdown, the more the epidemic burden, but less of an economic burden. On the other hand, if 

the optimal policy is no-lockdown, it is equivalent to doing nothing, and so a delay in implementing 

optimal policy would not have any consequences until it reaches a time where the optimal policy 

shifts to a lockdown. Thus, the model technically considers the impact of delay and the tradeoff 

between economy and epidemic burden into its evaluation. Hence, the resulting optimal policy 

would also hold the answer to when a shutdown should be initiated. Besides, in the case of open 

borders, the optimal policy also changes based on the epidemic in the jurisdictions that the 

population interacts with through travel. However, the results would depend on how much weight 

(costs) is given to each objective function component. These costs associated with hospital 

capacity and lockdowns are likely to be subjective. For example, a jurisdiction where a significant 

fraction of jobs can seamlessly transition to remote work (e.g., IT) may differently weigh each of 

the four lockdown options (e.g., fewer days but maximum lockdown-level) compared to a 

jurisdiction where a large fraction of the jobs require physical presence (e.g., manufacturing) (e.g., 

extend days of lockdown at low lockdown-levels on each day). On the other hand, an infectious 

disease that is not deadly may be weighed lower for disease burden (hospital capacity as proxy) 

than a more deadly disease. Therefore, we made ‘time to initiate’ the optimal policy as an 

exogenous variable and evaluated multiple values. Details of the scenarios are discussed in Table 

2. 
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Table 2. Summary of the scenarios studied. 

Scenario Objective function Number of jurisdictions  Policy Travel from  𝐁𝐁 𝐭𝐭𝐭𝐭 𝐀𝐀 Initiation of optimal policy (days) 

Scenario 1 2-term Single jurisdiction, A  A optimal policy Not applicable 30, 60, 75, 90, 95, 100, 105,110 

Scenario 2 2-term Two jurisdictions, A and B  A optimal policy,  

B no intervention 

5% 30, 60, …, 110 

Scenario 3 2-term Two jurisdictions A  optimal policy,  

B no intervention 

10% 30, 60, …, 110 

Scenario 4 2-term Two jurisdictions A  optimal policy,  

B optimal policy 

5% 30, 60, …, 110 

Scenario 5 2-term Two jurisdictions A  optimal policy,  

B optimal policy 

10% 30, 60, …, 110 

Scenario 6 3-term Single jurisdiction  A  optimal policy Not applicable 30, 60, …, 110 

Scenario 7 3-term Two jurisdictions  A optimal policy,  

B no intervention 

10% 30, 60, …, 110 

 

For each scenario, 1 to 7, we present the following metrics: the frequency of occurrence of 

each action over a 400-day period, the total number of days hospitalizations exceeded hospital 

capacity (which we will refer to as “hospital capacity violation”), number of hospitalizations, and 

additionally for Scenarios 6 and 7, the number of deaths.  

We present the ‘initiation of optimal policy’ in days, which is how it was modeled, but also 

present the corresponding disease states, specifically, the observed prevalence and the actual 

prevalence. We define observed prevalence as the cumulative number of reported cases, tracked 

as part of disease surveillance, and expressed as a percentage of the total population. We define 

actual prevalence as the cumulative number of infected cases, i.e., it additionally includes those 

cases that are not yet reported and expressed as a percentage of the total population. Therefore, 

while the ‘initiation of optimal policy’ was modeled in days, the corresponding observed 

prevalence is more relevant and trackable from a public health perspective. In the case of the 
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SARS-CoV2 virus, persons in the ‘exposed’ compartment are asymptomatic, and only show 

symptoms when they transition to the ‘infectious’ compartment. Therefore, we made a simplifying 

assumption that the observed prevalence includes all cases except those in the exposed 

compartment (i.e., includes infectious + recovered + death compartments), while the actual 

prevalence also includes the exposed compartment. 

Note that, while all scenarios were modeled with the same time-points for ‘delay in 

initiation’, the epidemic projections under the different travel rates would be different and thus the 

corresponding values of observed prevalence and actual prevalence would vary by scenarios. For 

instance, 90 days of delay in scenario 1 corresponds to an observed prevalence of 1.35% and the 

actual prevalence of 2.13%, while the same days of delay in scenario 3 correspond to an observed 

prevalence of 1.9% and an actual prevalence of 3%. Therefore, we represent each sub-scenario, as 

[delay in initiation (in days), observed prevalence, and actual prevalence].  

4. Results 

 In all scenarios, as expected from the highly virulent SARS-CoV2 virus, the optimal scenarios 

involved some lockdown until a majority of the population became infected or lasted for the entire 

simulation duration. In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown 

strategy helped avoid hospital capacity violations while minimizing the economic burden from 

lockdowns by taking the least stringent lockdown. However, the optimal policy was to end 

lockdown only after a majority of the population became infected and reached herd-immunity 

levels. In the 3-objective function scenarios (Scenarios 6 and 7), the optimal lockdown strategy 

helped avoid hospital capacity violations, minimize infected cases and deaths while minimizing 

the economic burden from lockdowns by taking the least stringent lockdown. However, the 

optimal strategy here was to continue the optimal pattern of lockdowns for the remaining duration 
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of the simulation, suggesting that until a vaccine becomes available, there is a chance that the 

infection would spread.  We discuss these results in more detail below. 

With only one jurisdiction (Scenario 1), the optimal strategy was to initiate lockdown if 

the observed prevalence (proportion of the population infected) reached 2.3% (which 

corresponded to the actual prevalence of 3.6%). This can be seen in Figure 2 (first row), scenarios 

where lockdown initiated at the observed prevalence of 2.3% or below (corresponding to up to 95 

days from time of first case) had least lockdown and similar outcome of zero hospital capacity 

violations. Over the duration of 400 days, this optimal policy consisted of lockdown at 50% for 62 

days and lockdown at 25% for 46 days. Under this policy, lockdowns could be fully lifted on day 

209. In the optimal strategy, the number hospitalized per day never exceeded hospital capacity, 

i.e., zero days of hospital capacity violation. As expected from including only economy and 

hospital capacity in the objective function, given the high infectiousness of the virus and absence 

of other interventions, about 79% of the population were infected over the duration of the pandemic 

Figure 3 (first row).  
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Figure 2: 2-term objective function models for scenarios 1, 2, 3, 4, and 5. 
Left plots: Bar plots of frequency of occurrence of each action (75% (red), 50% (yellow), 25% 
(blue), and 0% (red) lockdown) over 400 days for different delay (x-axis) in initiation of optimal 
policy [delay in days, observed prevalence, and actual prevalence]. Middle plots: Number of 
available hospital beds (y-axis) against time (x-axis) under different delays in initiation of optimal 
policy. Right plots: Total number of days hospital capacity is violated (y-axis) against observed 
prevalence at time of initiation of optimal policy (x-axis). 
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Delaying implementation of optimal policy in Scenario 1, i.e., initiating lockdown after 

observed prevalence exceeded 2.3%, led to more prolonged or more stringent lockdowns and/or 

hospital capacity violations (Figure 2 first row). For example, delaying to until 3.8% observed 

prevalence led to 73 days of 50% shutdown, 27 days of 25% shutdown, and zero days of hospital 

capacity violation.  Delaying to 6.4% observed prevalence led to 6 days of 75% shutdown, 52 days 

of 50% shutdown, 36 days of 25% shutdown, and five days of hospital capacity violation. Delaying 

to until 10.46% observed prevalence led to 17 days of 75% shutdown, followed by 34 days of 50% 

shutdown, 41 days of 25% shutdown, and 16 days of hospital capacity violation. While the 1.35% 

observed prevalence occurred on day 90, the observed prevalence of 2.3%, 3.88%, 6.43%, and 

10.46% occurred on days 95, 100, 105, and 110, suggesting that because of the high infectiousness 

of the virus, a few days of delay could lead to significantly worse disease and economic burdens.  

When jurisdiction A interacted with jurisdiction B through travel, but jurisdiction B was 

non-cooperative and did not take the optimal decision as A (Scenarios 2 and 3 –with 5% and 10% 

travel, respectively), the optimal policy for A was to control for B’s non-cooperative actions 

through more stringent lockdowns than in Scenario 1 (0% travel). Even with the lower 5% travel 

(Scenario 2- Figure 2 second row) and initiating lockdowns when observed prevalence was as low 

as 0.002% (30 days delay), unlike in Scenario 1 (Figure 2 first row), the optimal lockdown 

involved 28 days of maximum 75% lockdown.  

In Scenario 2, the optimal lockdown strategy up until observed prevalence of 3.07% were 

similar with outcomes of zero days of hospital capacity violation. The optimal policy, over the 

period of 400 days, was lockdowns at the maximum-level of 75% for 37 days before transitioning 
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to the less stringent 50% and 25% levels. Delayed implementation of optimal policy until the 

observed prevalence reached 5.17% led to the need for more stringent lockdowns (41 days of the 

maximum 75%, 20 days of 50%, and 42 days of 25%) to avoid hospital capacity violation. 

Delaying implementation of optimal policy to beyond observed prevalence of 5.17% led to a 

situation where hospital capacity violations could not be avoided (Figure 2 second row). For 

example, delaying until 8.54% observed prevalence led to 58 days of 75% shutdown, and 11 days 

of hospital capacity violation. Delaying to until 13.73% observed prevalence led to 47 days of 75% 

shutdown, and 24 days of hospital capacity violation.  
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In Scenario 3 (Figure 2 third row), the optimal policy was to initiate a lockdown no later 

than an observed prevalence of 5.52%. The optimal policy, over the period of 400 days, was 

lockdowns at the maximum level of 75% for 57 days, which resulted in zero days of hospital 

capacity violation. Delaying implementation of optimal policy to after observed prevalence 

exceeded 5.52%, led to higher hospital capacity violations (Figure 2 third row). For example, 

Scenario 1 

  

Scenario 2 

  

Scenario 3 

  

Scenario 4 

  

Scenario 5 

  

 

 

  Figure 3: Percentage infectious among total population vs time for different delays in initiation of 
the optimal policy (left plots) and corresponding impact on percentage total infected over time 
(right plots) for scenarios 1, 2, 3, 4, and 5. 
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delaying until observed prevalence was 9.07% led to 24 days of 75% shutdown, followed by 45 

days of 50% shutdown, and 14 days of hospital capacity violation. Delaying until observed 

prevalence was 14.48% led to 33 days of 75% shutdown, followed by 36 days of 25% shutdown 

and 26 days of hospital capacity violation.  

When jurisdiction A interacted with B through travel but unlike the above scenarios, B was 

cooperative by taking optimal actions as A (Scenarios 4 and 5), the optimal policy was similar to 

that in Scenario 1 (single jurisdiction, 0% travel), suggesting that cooperative behavior would yield 

similar results as single jurisdiction, as expected. Note that, similarity in results between Scenarios 

4, 5, and 1 suggests that, though the DQN was trained as a single-agent RL by considering only 

the state space of jurisdiction A, this is a sufficient method here as we assumed that both 

jurisdictions start the epidemic at the same time.  

 In summary, results from the above 2-objective function scenarios suggest that deviating 

from the optimal policy through delays in initiating the optimal policy or through non-cooperative 

behavior by an outside but interacting jurisdiction (B in this case) would require more stringent 

lockdowns (red bar) to avoid hospital capacity violations. 
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With the 3-objective function, and only one jurisdiction (Scenario 6), the optimal policy 

was to initiate lockdown when observed prevalence was 0.01% (Figure 4 first row). Under this, 

the optimal lockdown policy continued for the remaining duration of the simulation in order to 

reduce cases and keep deaths at zero. This suggests that until pharmaceutical options are available, 

preventing highly transmissible diseases such as COVID-19 would require some level of physical 

distancing between contacts. Delaying the initiation of the optimal policy generated multiple 

deaths even though higher number of lockdowns were initiated to control for the delays. Delaying 

implementation of an optimal strategy to prevalence 10.46% (which occurred on day 110 from the 

first infection) resulted in 4374 deaths, and 16 hospital capacity violations (Figure 4 first row, and 

Appendix Table A2). 

 
 

 

 
 

 

Figure 4: 3-term objective function models for scenarios 6 and 7. 
Left plots: Bar plots of frequency of occurrences of each action (75% (red), 50% (yellow), 25% 
(blue), and 0% (red) lockdown) over 400 days for different delays (x-axis) in initiation of optimal 
policy]delays in days, observed prevalence, and actual prevalence]. 
Middle plots: Number of available hospital beds (y-axis) against time (x-axis) under different 
delays in initiation of optimal policy. 
Right plots: Total number of days hospital capacity is violated (y-axis) against observed 
prevalence at time of initiation of optimal policy (x-axis). 
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Figure 5: Percentage infectious among total population vs time for different delays in initiation 
of the optimal policy (left plots) and corresponding impact on percentage total infected over time 
(right plots) for scenarios 6 and 7. 

 

With the 3-objective function, when jurisdiction A was interacting with B through travel, 

but jurisdiction B was not implementing any interventions (Scenario 7), the optimal strategy for A 

to control for the non-cooperative behavior of B were a greater number of days and more stringent 

lockdowns. Under this, the optimal policy over the 400 days was lockdown at the highest-level of 

75% for 299 days and at 25% for an additional 47 days (Figure 4 row 2). This optimal policy 

resulted in zero days of hospital capacity violation but 1935 deaths (Figure 4 row 2). Delaying 

implementation of the optimal policy until observed prevalence reached 8.5%, led to a situation 

where the epidemic burden had already created sufficient deaths that lockdowns had a lesser 

impact and could only be implemented to reduce future deaths than to prevent deaths. The optimal 

policy in this case was 231 days of the highest-level of 75% lockdown and resulted in 4775 deaths 

and 14 days of hospital capacity violation. 

Comparing results between 2-objecive and 3-objectve functions: In the 2-term objective function, 

as the objective was to only minimize economic burden and hospital capacity violations, the 

Scenario 6 

  

Scenario 7 
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cumulative prevalence reached up to 80%, (Figure 3) i.e., the main outcome was that it reduced 

daily cases sufficient enough to keep hospitalizations below hospital capacity.  In the 3-objective 

function, as the objective additionally minimized deaths, even in the worst-case scenario the 

cumulative prevalence reached about 35% (Figure 5). However, a key consequence of this was 

that, while in the 2-objective function lockdowns could be lifted within the timeline of the 

simulation, in the 3-objective function lockdowns continued over the full duration of the 

simulation. This suggests the need for continuing shutdowns until the availability of 

pharmaceutical interventions such as treatment to prevent deaths or vaccines to prevent 

transmissions. 

Details of optimal policy of each sub-scenarios of 2-objective and 3-objective are presented in 

Appendix Table A1. 

4.1 Sensitivity Analysis 

 We conducted to analysis to show how sensitive our results are to the selected transmission 

rate (β, crucial factor in modeling the spread of infectious diseases): a) widely varying transmission 

rate values b) -8.5% to +9% change around COVID-specific values. The first to represent different 

virus strains/ viruses and the second to represent uncertainty in values for a fixed virus strain.   

We tested the sensitivity of our results for single jurisdiction (Scenario 1) to the transmission rate 

β in Table 1 using the learned model. The transmission rate was varied from 0.3 to 0.5 in 

increments of 0.1. Additionally, a more fine-grained variation in transmission rates compared to 

the baseline transmission rate (β=0.448) was also tested (β =

0.41, 0.42, 0.43, 0.45, 0.46, 0.47, 0.48, 0.49).  

 Results are robust within the values of uncertainty range (-4.06% and +0.401%, values of 

uncertainty range). However, as expected, if there are different viruses, or virus strains evolve over 
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time, as was the case with COVID, then the analyses should be redone to identify a policy specific 

to that strain.    

In the plots depicted below, the observed prevalence serves as a reference point for assessing 

the impact of delayed policy implementation. It is evident that the lower the transmission rate, the 

less restrictive the lockdown measures can be. This relationship highlights the importance of 

considering both observed prevalence and transmission rates when determining the most effective 

strategies to control the spread of infectious diseases. 

𝛽𝛽 =0.3 𝛽𝛽 =0.4 

  

𝛽𝛽 =0.41 

 

𝛽𝛽 =0.42 

 

𝛽𝛽 =0.43 

 

𝛽𝛽 =0.4482* 
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𝛽𝛽 =0.45 

 

𝛽𝛽 =0.46 

 

𝛽𝛽 =0.47 𝛽𝛽 =0.48 

  

𝛽𝛽 =0.49 𝛽𝛽 =0.5 

  

Figure 6: Sensitivity analysis on impact of transmission rate (β on optimal policy for single 

jurisdiction (Scenario 1). % Observed prevalence upon initiation of optimal policy is kept 

constant as the point of references for comparing different transmission rates. This value is 

translated into different % actual prevalence and delay (line 1 and 3 of x-axis). 

*: Basecase value for β 

The sensitivity analysis aimed to evaluate how changes in the transmission rate 

influenced the optimal policy. The results highlighted the following points: 

Optimal Policy Sensitivity: The optimal policy in general was found to be sensitive to variations 

in the transmission rate, however when more fine-grained transmission rates were tested, we 
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observed that optimal policies for β = 0.43 and 0.5 (Figure 6, third and fourth rows) are more 

consistent with the baseline value (β=0.448). But the recommended optimal policy deviates from 

baseline for transmission rates smaller or larger than the baseline value. As a result, the model is 

robust to uncertainty in transmission rate up to -4.06% and +0.401%, but higher/ lower uncertainty 

in transmission rate requires a new RL learning process to find the optimal policy and to devise an 

effective strategy to control the spread of the disease. 

Deviation from the Paper's Value: The results also showed that as the tested transmission rate 

deviated further from the value specified in the paper (0.448), the optimal policy changed more 

significantly. This highlights the fact that epidemics characterized by distinct parameters 

necessitate models trained across a corresponding spectrum of values for optimal performance. 

The specificities of the disease parameters, coupled with the non-linearity of disease progression, 

can result in drastically differing ranges of robustness for the learned models. This finding 

particularly challenges policies that exclusively depend on observed prevalence for public health 

decision-making. 

Testing fine-grained transmission rates allowed for a more nuanced understanding of how the 

optimal policy changed with varying transmission rates. This level of detail is essential for 

policymakers to consider when tailoring their strategies to specific contexts and situations. 

To make the comparison with basecase, we fixed the observed prevalence (values in second row 

of x-axis Figure 2 left hand-side plot) as the point in time that policy makers delay the decisions.  

5. Conclusion and Discussion 

We formulated the question of how to control epidemics such as COVID-19 in the absence of 

pharmaceutical interventions as a sequential decision-making problem formulated as a Markov 

decision process (MDP) and solved using Deep Q-network (DQN), a reinforcement learning 
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algorithm.  We propose a methodology that can help determine whether and when a lockdown is 

necessary, to what level, and how to phase out a lockdown which is a critical part of a pandemic 

preparedness plan. Furthermore, we evaluated these decisions in the context of two-geographical 

jurisdictions that make autonomous, independent decisions, cooperatively or non-cooperatively, 

but interact in the same environment through travel. We evaluated these decisions both under a 2-

term objective function that minimized economic burden and hospital capacity violations, suitable 

for diseases with high-risk of hospitalizations but low risk of mortality, and a 3-term objective 

function that additionally minimized deaths. We used a SEIRD model to simulate the disease 

progression and incorporated the impact of travel in the formulation of the transmission rate. 

In the case of a single jurisdiction, under a 2-term objective, the optimal time for initiation of 

lockdowns would be at about an observed prevalence of 3.87% and included lockdowns at a 

combination of 50% and 25% per day. Delaying decisions led to a higher number or more stringent 

lockdowns at the maximum levels of 75% per day in addition to a higher number of hospital 

capacity violations. In the case of two-jurisdictions A and B interacting through travel, if 

jurisdiction B deviated from the optimal policy, jurisdiction A would have to implement more 

stringent lockdowns to compensate for the non-cooperative behavior of B, and if there was any 

delay in this implementation also face excess hospitalizations. This suggests that, even if 

jurisdictions make decisions independently, cooperation between jurisdictions could help 

minimize lockdowns and avoid border travel restrictions, thus minimizing overall economic 

burden. In the absence of such cooperation, the trade-offs for jurisdiction A to consider would be 

between more stringent lockdowns within its jurisdiction or border closures to remove the 

interactions with jurisdiction B. The results are intuitive, what the study contributes is a 
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methodology that can be used by jurisdictions to evaluate a suitable policy, under such interactive 

environments, and the numerical analyses here serves as proof-of-concept for the method.  

In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown strategy helped 

avoid hospital capacity violations while minimizing the economic burden from lockdowns by 

taking the least stringent lockdown. However, as expected from the high transmissibility of the 

virus, the optimal policy was to end lockdowns only after a majority of the population became 

infected and reached herd-immunity levels. In the 3-objective function scenarios (Scenarios 6 and 

7), the optimal lockdown strategy helped avoid hospital capacity violations, minimized infected 

cases and deaths while minimizing the economic burden from lockdowns by taking the least 

stringent lockdown. However, the optimal strategy here was to continue the optimal pattern of 

lockdowns for the remaining duration of the simulation, suggesting that shutdowns would have to 

continue until a vaccine became available. Any deviations from this optimal policy generated more 

stringent lockdowns and/or higher cases of hospitalizations and deaths. This suggests that, in the 

absence of pharmaceutical interventions, some measures of physical distancing would be 

necessary to control the epidemic even if it creates economic burdens, as deviating from this would 

only increase future economic burdens.  

Finally, we conducted sensitivity analysis on imoact of transmission rate on our results for 

single-jurisdiction scenario, including 1) widely varying transmission rate for different virus 

strains/ viruses and 2) small changes around COVID-19 transmission rate value to represent 

uncertainty in values for a fixed virus strain. Results are robust within the values of uncertainty 

range (-4.06% and +0.401%, values of uncertainty range). However, as expected, if there are 

different viruses, or virus strains evolve over time, as was the case with COVID, then the analyses 

should be redone to identify a policy specific to that strain. 
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Some of the limitations of our model are as follows. Motivated by the COVID-19 pandemic, for 

the numerical analyses, we assumed epidemiology staging and transmissibility of the SARS-CoV 

2 virus. Thus, the specific results here are limited to diseases caused by viruses similar to that of 

SARS-CoV 2 type. The model will have to be reparametrized and evaluated for other diseases 

with vary epidemiology structures.  In our model, the impact of lockdowns on the economy is 

scaled linearly, i.e., lockdown on any day has a similar impact on the economy's monetary value. 

This impact can be formulated as a non-linear function to consider the dynamical changes over 

time. We assumed that both jurisdictions start an outbreak at the same time, thus it was sufficient 

to train the DQN as a single-jurisdiction RL with both jurisdictions implementing the same 

policy (as evident from the similarity in results between Scenario 4, 5, and 1). Thus, our results 

are limited to this scope. For evaluating decisions between two jurisdictions that start the 

outbreak at different times leading to significantly different states of the epidemic at the time of 

decision-making, other methods such as multi-agent RL maybe more relevant. The 

compartmental model utilized in this study could be replaced with any other simulation 

environment and can be enhanced to include more heterogeneity by further dividing the 

compartments. Besides, improving the performance of DQN algorithm was outside of scope of 

this model, but can be explored in future research.  

Despite these limitations, we believe that the methodology presented here can help decision 

makers in formulating a pandemic preparedness plan for future infectious disease outbreaks. The 

results generated by the numerical analyses are intuitive, which support the feasibility of 

application of AI algorithms for such analyses, as typically, given the computational complexity 

of the algorithms and problem formulation, the feasibility is not always guaranteed [29]. This study 

provides a generalized framework that can be applied to any jurisdiction or infectious disease by 
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adjusting the parameters accordingly, some examples are as follows. We interpreted the 

intervention options here to represent lockdowns and did not consider other options such as 

facemask use, self-isolation when infected, or 6 ft distancing. However, we modeled lockdowns 

by reducing transmission rate, assuming that the cost for that reduction represents economic loss. 

Interventions such as facemask use, self-isolation when infected, or 6 ft distancing are also 

modeled as reduction in transmission rates, but they may differ in governmental lockdowns in 

terms of the cost and impact, i.e., they may have a lesser impact on the economy (lower costs) but 

also achieve a smaller reduction in transmission rate. Therefore, the different levels of shutdowns 

and costs modeled here can also be interpreted as different types of interventions and the 

corresponding transmission rate, rewards, and costs informed specific to the setting. Design of the 

immediate reward is an essential step in RL models and can significantly change the optimal 

policy. Thus, this is a subjective metric that should be informed specific to the case under study. 

For example, a jurisdiction where a significant fraction of jobs can seamlessly transition to remote 

work (e.g., IT) may differently weigh each of the four lockdown options (e.g., fewer days but 

maximum lockdown-level) compared to a jurisdiction where a large fraction of the jobs require 

physical presence (e.g., manufacturing, or essential workers). On the other hand, those costs saved 

from preventing economic loss could instead be redirected to ensure safety of workers. Thus, the 

immediate reward function would be formulated to consider economic costs, epidemic costs, and 

costs for safety measures. This work offers a framework and a tool for decision analysis, with the 

significance of this aspect emphasized through our sensitivity analyses. These considerations not 

only highlight the value of our study but also indicate potential avenues for further research and 

development. 
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