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Abstract

For a connected n-dimensional compact smooth hypersurface M without boundary embedded
in R"*! a classical result of Aleksandrov shows that it must be a sphere if it has constant
mean curvature. Li and Nirenberg studied a one-directional analog of this result: if every pair
of points (x’, a), (x’, b) € M with a < b has ordered mean curvature H(x', b) < H(x', a),
then M is symmetric about some hyperplane x;,; = ¢ under some additional conditions.
Their proof was done by the moving plane method and some variations of the Hopf Lemma.
We obtain the symmetry of M under some weaker assumptions using a variational argument,
giving a positive answer to the conjecture in [13].
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1 Introduction

Let M be a compact connected C? hypersurface without boundary embedded in R"*!. For
x € M, we denote its mean curvature by H (x) = % ! ki(x), where ki (x), ..., ky(x) are
the principal curvatures of M at x with respect to the outer normal.

It is a classical problem to study how the symmetry of a hypersurface M in R"*! is related
to its mean curvature, see e.g. Jellett [7], Liebmann [11] and Chern [3].

Hopf [6] established that an immersion of a topological 2-sphere in R? with constant
mean curvature must be a standard sphere, and raised the conjecture that the conclusion
holds for all immersed connected closed hypersurfaces in R”*! with constant mean curvature.
Aleksandrov [2] proved thatif M is an embedded connected closed hypersurface with constant
mean curvature, then M must be a standard sphere. If M is immersed instead of embedded,
then the conclusion does not hold in general. In dimensions n > 3, Hsiang [5] showed the
existence of immersions of S into R"*! with constant mean curvatures but not standard
spheres. For n = 2, Wente [16] constructed immersions of 2-dimensional tori into R3 with
constant mean curvatures. Kapouleas [8,9] showed the existence of closed two surfaces
of genus g immersed in R with constant mean curvatures, for every g > 2. The same
problem was also studied for o,,-curvatures for 2 < m < n. For every 1 < m < n,
the o,,-curvature is the m-th elementary symmetric function of the principle curvatures,
i.e. 0 (x) = Yi<iy<...<ipy<nki; (X) - - -k, (x). (In particular, o-curvature corresponds to the
mean curvature.) Ros [14,15] proved that for any 2 < m < n, if M is a closed connected
hypersurface embedded in R"t! with constant o,,-curvature, then it must be a standard
sphere.

In this paper, we study a one-directional analog related to Aleksandrov’s result [2]. Given
a special direction, e.g. the vertical direction parallel to the x,1| axis, we aim to answer the
following question: What assumption on the mean curvature would guarantee the symmetry
of M about some hyperplane x,; = ¢? Although M having constant mean curvature is
sufficient, this assumption is clearly too strong. It would be more reasonable to impose some
one-directional assumptions, such as the mean curvature being constant along each vertical
line, or an even weaker assumption that the mean curvature is ordered along each vertical
line.

In [10], Li proved that if the mean curvature H : M — Rhasa C! extension K : R**! —
R where K has a non-positive partial derivative in the x,| direction, then M is symmetric
about some hyperplane x,; = c. Li then proposed to replace the above assumption by the
following weaker and more natural assumption:

Main Assumption. Let x’ = (x, ..., x,,). Denote by G the bounded open set in R"*! bounded
by the hypersurface M. For any two points (x', a), (x’, b) € M satisfying a < b and that
{(x",0a+ (1 —6)b):0 <8 < 1}lies in G, we have

H(',b) < H(x',a). (1.1)

Li and Nirenberg showed in [12] that this assumption alone is not enough to guarantee the
symmetry of M about some hyperplane x, 11 = c. They also constructed a counterexample
[12, Section 6] where the inequality (1.1) does not imply a pairwise equality, and pointed out
that even if (1.1) is replaced by an equality, it still does not guarantee the symmetry of M,
due to the counterexample in Fig. 1.

In [13], they conjectured that the Main Assumption together with the following Condition
S should imply the symmetry.

Condition S. M stays on one side of any hyperplane parallel to the x,4 axis that is tangent
to M.
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Fig. 1 Illustration of a smooth
curve in R? that satisfies the Main
Assumption with (1.1) being an
equality for every pair of points,
but it is not symmetric about any
horizontal line. Note that it does
not satisfy Condition S or S’
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Fig.2 a Illustration of Condition S. b Illustration of Condition S’. ¢ The torus satisfies Condition S’, but not
Condition S

Note that Condition S holds for all convex M, but it does not require M being convex.
In the case when n = 1, when M is a closed C? embedded curve in the plane satisfying
both conditions above, [12, Theorem 1.4] proved the symmetry of M. In higher dimensions,
Li and Nirenberg [13, Theorem 1] established the symmetry of M under the following two
assumptions, instead of Condition S: (1) Every line parallel to the x,,41-axis that is tangent to
M has contact of finite order (note that every analytic M satisfies this property); (2) For every
point on M with a horizontal tangent, if M is viewed locally as the graph of a function defined
on the tangent plane, the function is locally concave near the contact point with respect to
the outer normal. Note that neither of Condition S or (1)+(2) implies the other. Their proof is
done by the moving plane method and some variations of the Hopf Lemma, and their result
can also be extended to more general curvature functions other than the mean curvature.

In this paper, our goal is to prove the symmetry of M under Condition S, which gives a

positive answer to the conjecture in [13]. In fact, we will replace Condition S by a slightly
weaker Condition S’:
Condition S’. There exists some constant r > 0, such that for every x = (X', X,41) €
M with a horizontal unit outer normal (denote it by v = (v’,0)), the vertical cylinder
|x’ — (&' 4+ r’)| = r has an empty intersection with G. (G is the bounded open set in R*+!
bounded by the hypersurface M.)

See Fig. 2 for an illustration of the difference between Condition S and S’. Clearly,
Condition S’ becomes more restrictive as the constant » > 0 increases. Note that in the
r — 400 limit, Condition S’ becomes Condition S.

The main theorem of this paper is as follows.

Theorem 1 Let M be a compact connected C* hypersurface without boundary embedded in
R which satisfies both the Main Assumption and Condition S°. Then M must be symmetric
about some hyperplane x,+1 = c.
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Instead of the moving plane method, our proof has a variational flavor. More precisely, we
will deform M using a C? vector field V : R"*! — R"*! and consider the one-parameter
family {M (¢)};er of hypersurfaces

M) ={x+tV(x):x e M}. (1.2)

Let S(¢) := f M) do be the surface area of M (¢). The key idea is to carefully choose some
vector field V, then use two different ways to compute the first variation of the surface area
att = 0 (i.e. computing %S (t)|r=0), and obtain a contradiction if M is not symmetric about
any x,41 = c.

In Sect.2, we first establish some preliminary properties of the hypersurface M when it
satisfies the Condition S’. In particular, we will show that its projection R on the hyperplane
Xn41 = 0 has a C'! boundary, and each vertical line with x’ € R° intersects M exactly at
two points. We then prove in Sect. 3 the symmetry of M using a variational approach. We
start with a warm-up result in Proposition 3: as we “deform” M using the constant vector
field V = e,4+1 and compute %S (t)|¢=0 in two different ways, a short argument gives that
the inequality H(x’,b) < H(x’,a) for a < b in the Main Assumption must actually be
an equality for every pair of points. Building on this result, we finally present the proof of
Theorem 1 using another carefully chosen vector field V.

Notations

For any E C R"*!, let 7 (E) denote the projection of E into the first n coordinates, that is,
7(E):={x" e R": (X, x,41) € E for some x,,1}.

In particular, let R := (M) be the projection of M on R”, which we will use extensively in
this paper. The fact that M is a compact connected closed hypersurface yields that R C R”
is bounded, closed, and connected. Throughout this paper we let R be the boundary of R
in R”.

In this proof we will work with balls in both R” and R+ To avoid confusion, we denote
by B;’“ (x) the ball in R"*! centered at x with radius r, and B! (x') the ball in R” centered
at x’ with radius r.

For a set E C RY (where we will take either d = n or d = n + 1 in the proof), we say
that its boundary 0 E satisfies the interior ball condition with radius p if for every x € 9F,
there is an open ball B, C E with radius p such that x € 9 B,. Likewise, we say d E satisfies
the exterior ball condition with radius p if for every x € dE, there is an open ball B, C E¢
with radius p such that x € 8 B,. Note that since M = 3G is a C? hypersurface embedded in
R"*1 it satisfies both the interior and exterior ball condition with radius p for some p > 0.

2 Preliminary properties of the hypersurface

In the next proposition, we will establish some preliminary properties of the hypersurface M
when it satisfies the Condition S’.

Proposition 2 Let M be a compact connected C* hypersurface without boundary embedded
in R™ which satisfies Condition S’. Then we have the following:

(a) Foreveryx = (X', X,4+1) € M, it has a horizontal outer normal if and only if X' € dR.
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Fig.3 Illustration of part (b) of T

the proof of Proposition 2 )
A Tn+1

(b) OR satisfies both the interior and exterior ball condition with radius pg for some py €
0, r] (herer > 0 is the constant in Condition S’), and has C1! regularity.
(c) M = My U M, U M, where

M = {(x', xpp1) € M : x' € 3R}, 2.1

and My, My are graphs of two functions fi, f» : R°® — R, with fi, f» € C2(R°), and
f1 > f2 in R°.

Remark Note that one can construct examples where M satisfies the assumptions of the
proposition but fi, f> are discontinuous in R up to the boundary, therefore we can only
conclude that f1, f> € C%(R°) in (c). M is measurable, since M=M \ (M1 U M>), and
both M| and M» are measurable.

Proof The proof of (a) is rather straightforward. For any X = (X, X,4+1) € M with X’ € OR,
the outer normal at x must be horizontal: if not, using the fact that M isa C 2 hypersurface
without boundary, we would have X’ € R°. The “only if” direction is a consequence of
Condition S’. Take any X € M with a horizontal outer normal (v, 0). Let U := {(x’, x,+1) :
|x" — (X’ + r?")| < r} be the interior of the vertical cylinder given by Condition S, and
note that x € dU. Condition S’ gives that 90U N G = ¢, implying that U N M = . This is
equivalent to 77 (U) N R = . Note that 77 (U) is an open ball in R” with x" on the boundary,
which implies x” € dR.

Next we prove that d R satisfies the exterior ball condition with radius r. For any ¥’ € 9R,
using that R is closed, there exists some X := (%', X,+1) € M. Denote the unit outer normal
of M at x by b := (¥, V1) (see Fig. 3 for an illustration.) Part (a) gives that v, = 0.
Let U be given as in the paragraph above, and the same argument gives that 7 (U) C R€,
where 7 (U) is an open ball in R” with radius r, with X" on the boundary. Thus R satisfies
the exterior ball condition with radius r.

To show the interior ball condition, take any X’ € dR, and let X € M be given as above.
Since M is a C? surface embedded in R”, there is some p > 0 only depending on M, such
that there exists an open ball By C G with radius p, which satisfies x € d Bz. The ball must
be tangent to M at x, thus can be written as B;“H()E — pv). Since v,4+; = 0 by (a), taking
the projection 7 yields that B;} (x’ — pv') C w(G) C R°, thus 9 R satisfies the interior ball
condition with radius p > 0. Finally, setting pg := min{r, p} > 0 gives that dR satisfies
both the interior and exterior ball conditions with radius pg, and it is well-known that this
implies R € ch! (see [1, Lemma 2.2] for a proof).
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Next we move on to (c). Let us define f; : R° — R as
fi (x/) = sup{xp41 : (X/, Xpt1) € M} for x' € R

Since M is closed, and 7 (M) = R, we know that f| is well-defined for all x’ € R®, and
(x’, f1(x")) € M for any x” € R°. Next we will show that f; € C(R°).

To show f] is upper semi-continuous at any x, € R°, for any sequence of points {x/}?2, C
R° that converges to x,, we have (x, fi(x})) € M. This sequence has an accumulation point
(xg» lim sup; _, o, f1(x))), which is in M since M is closed. Thus by definition of f; we
have fi(xy) = limsup;_, ., fi(x). For the lower semi-continuity at x/, € R®, by part (a),
the outer normal at (x{, fi(x))) € M is not horizontal. Thus in a neighborhood of x,
M can be locally parametrized as the graph of (x’, g(x")) for some C? function g, where
g(x(/]) = fi (x(/)). The definition of f; yields that f|(x") > g(x’) in this neighborhood, thus
filxg) = limx/_m(/) g(x") <lim infx/_m(/) f1(x"). This finishes the proof that f1 € C(R°).

Note that

My = {(x, fix") : x" € R°}

is a subset of M, thus we have f; € C%(R°) due to M being C? and the fact that M does not
have horizontal outer normal in 7z ~! (R®). In addition, since 7 (G) = R° and G is connected
(which follows from that M is connected), we have that R° is connected, and combining this
with the continuity of f; yields that M is connected. Let M;,, := M N 7~ 1(R°). Note that
M is in fact a connected component of M;,, in view of (a).

Now let us consider the set M;, \ M. Since 7(G) = R°, each vertical line with x’ € R°
must intersect M;, at least twice, implying that w (M, \ M) still covers the whole R°. This
allows us to define f> : R° — R as

fo(x") == sup{xpqr : (X', xpq1) € Min \ M} forx’ € R°.

The same argument as f; also yields that f> € C2(R®), and My := {(x/, f>(x)) : x’ € R°}
is another connected component of M;,. It is clear that fi > f> in R°. Since M|, M» C
M = 9G, and M, lies below M, we know that G must be between M| and M, (recall that
G is connected). Thus M;, C dG cannot have any connected component below M;. As a
result, we have M;,, = M; U M,i.e. M = M UM, U M, with M given by (2.1). ]

3 Symmetry by a variational approach

Under Condition S’, we have shown in Proposition 2(c) that M can be partitioned into
M| U My UM, where My, M, are graphs of two functions f, f» € C%(R®), and f1> foin
R°. Due to the Main Assumption, we have the inequality

H', f1i(x") < HQX', fo(x)) forallx’ € R°. 3.1

As a warm-up, let us first explain how to use a variational approach to prove a weaker result:
namely, we will show that the inequality in (3.1) must actually be an equality for all x" € R°.

Proposition 3 Under the assumptions of Theorem 1, for each x’ € R°, the mean curvature
of the two intersections must be identical, i.e.

HX, i) =H, (') forallx' € R®,

where f1, f> are as given in Proposition 2(c).
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Proof Let V(x) = ¢,4+1 = (0, ...,0, 1), and consider the family of set M (¢) given by
M) ={x+tV(x):x € M}. 3.2)

Let S(t) := fM(t) do be the surface area of M(¢). On the one hand, clearly M(¢) is a
translation of M upwards by 7 units, thus the surface area S(#) remains invariant for all
t € R, implying
Tsol =0 (33)
dt =0 '
On the other hand, for any C? vector field V (x) : R*t! — R"*! (which is indeed the
case for our V since it is a constant vector field), the first variation of surface area [4, page
7] is given by

iS(t) = —/ V(x)-v(x)H(x)do (x), (3.4)
dt t=0 M

where v(x) is the unit outer normal at x for x € M. In the rest of this proof, we aim to show
that the right hand side is strictly positive if we have a strict inequality in (3.1) for some
x" € R°, leading to a contradiction with (3.3).

To see this, we break the right hand side of (3.4) into the integrals on M, M; and M ,and
recall that V = e,41. Proposition 2(a) yields that V (x) - v(x) = v,4+1(x) = 0on M , thus the
integral on M is zero. By Proposition 2(c), M; is the graph of (x’, f;(x")) fori = 1,2 and
x" € R°, where fi > f3, leading to

iS(t)
dt

2
= Z—/ entt1 - V(X)H (x)do (x)
=S
(3.5)

= _/RO(H(XI’ AN = HE, () dx!
> 0.

Here in the second equality we used that |e,+1 - v(x)|do (x) = dx’, as well as the fact that
en+1 - v(x) is positive for x € My, and negative for x € M. The last inequality comes from
the assumption (3.1).

Note that M being a C? hypersurface implies H (x’, f;(x")) is continuous in R® for i =
1, 2. Thus if we have a strict inequality in (3.1) for some x6 € R°,itimplies H (x', fi(x")) —
H (X', f2(x")) < 0 in some open neighborhood of x), leading to a strict inequality in (3.5),
thus contradicting (3.3). As a result, the inequality in (3.1) must be an equality for all
x' € R°. O

Now we are ready to prove the main theorem.

Proof of Theorem 1 Our goal is to show that f] + f> = c¢ in R° for some constant ¢(, which
immediately implies that M is symmetric about the hyperplane x,+1 = 3.

Towards a contradiction, assume that f; 4+ f> is not a constant in R°. We will deform M
using a vector field V that is a vertical shear flow, i.e.

Vx) = V&, xp1) =0, ...,0,v(x") = v(x)epqyy forx e R

where v € C2(R") will be fixed later. We again compute % S(t)|;=o in two ways.
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On the one hand, since V (x) = v(x)e,41 is a C? vector field in R"*, the first variation
of surface area [4, page 7] and a similar argument to (3.5) again give

dSt
E()

= —/ V() -vix)H(x)do(x)
M

t=0

2
== [ v v e da )
i=1/Mi

. /R (L G ~ HE, H)d,

where v(x) is the unit outer normal at x for x € M, and in the second equality we use the
fact that e,+1 - v(x) = 0 for all x € M. By Proposition 3, the integrand on the right hand
side is zero for all x’ € R°, leading to

d
ES(Z) = 0. (3.6)

On the other hand, if f] + f> is not a constant in R, we will constructav € C 2(R”) such
that %S ()|r=0 > 0. Heuristically, we will define v = f; + f> in most of R°, and smoothly
cut it off to zero near d R as follows. For a sufficiently small § > 0 that we will fix later, let

Rs :={x’ € R : dist(x’, dR) > 8}.

Letn € C*°(R") be astandard mollifier supported in the unit ball, withn > 0, fR" n(xdx' =
1 and |Vy| < C(n). For any a > 0, denote by 14(x") := a "n(a~'x’) its dilation. For
x" e R, let

¢3(X/) = (]R25/3 * 7’)5/3)()6/)

be a “smooth cut-off function”. Clearly, ¢5 € C*°(R") is nonnegative, and satisfies ¢s = 1
in Rs, ¢s = 0in R™ \ Rs/3. In addition, Young’s inequality for convolution gives

R7 3 R C ns Cn
W w :leﬁne v R — R as
1 (x/) (fl (.x/) fg(x’))(zﬁs ( )C/) for x/ - RO ( )

0 for x’ € R€.

Note that such definition indeed leads to v € C2(R"): the smoothness of ¢s and the fact that
fi + f» € C*(R°) yield that v € C*(R®), and combining this with the fact that v = 0 in
R"™ \ Rs;3 gives that v € CZ(R"). In addition, we have v = f1+ foin R;.

Fori = 1,2, let M;(¢) be the surface {(x", x,4+1) : x’ € R°, xy41 = fi(x') + v(x)t}.
Recall that f; € C2(R°) fori =1,2 by Proposition 2(c). Since v € CZ(R™M), it follows that
the map x” — f;(x") +v(x/)t isin C2(R®) forany ¢ € R. Since M (1) = M, (t) UM, (1)U M
(here M remains unchanged in ¢ since v = 0 in a small neighborhood of d R), its surface area
at a given ¢ can be computed as

2
S(t) = Z/R \/1 + V() + v@)D2dx’ + 8,
i=1
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where § is the surface area of M. Note that S(¢) is differentiable in 7 since v is supported in
Rs/3,and || f; ||C2(R5/3) is finite for i = 1, 2. Taking its derivative in ¢ and setting ¢ = 0 yields

;. ds®

2 VK- Vei)
=22 AT YR ax
dt

_ (3.9)
=0 SRy S VT IV AP

where we use that v = 0 in R" \ Rs/3. Note that the integral in (3.9) is convergent since
_IVAEHL

NIV 6N
With v defined by (3.8), we have

Vv =¢sV(fi + f2) + (fi + f2)Vds in Rs/3.

Plugging the above into (3.9), we can decompose / into [ 51 +1 52 as follows (where we use
that supp|Vgs| C Rs/3 \ Rs):

supg» |Vv| < oo and < lin Ry3.

s (x")dx'

1= / VG-V + )
Rsy3 i V14V fi(xh]?
=:F(x")
N / VG Ve + )
Rs;3\Rs 5 VI+IVEH?

= I+ 1} (3.10)

We will show the following property for / 51.

Claim 1 If f] + f> # constin R°, then there exists some ag > 0, such that 15l > agp > 0 for
all sufficiently small § > 0.

Proof of Claim 1 For any g € R”, define A(g) := +/1 + |¢|?>. Then VA(q) = ——L—, and
y q (@) ==+v1+1ql (@) T
_3 ..
07.4,A0) = (1 + g2 @i + 1q1°8;j — qiqj) for1 <i,j <n,

where §;; = 1ifi = j,and 0if i # j. So the Hessian of A satisfies

V2A(Q) = 1 +1g)21 >0 forallg e R", G.11)

where the two inequalities are in the following sense: we say two n X n symmetric matrices
U,V satisfies U > V (or U > V) if U — V is positive definite (or positive semi-definite).
Note that (3.11) implies that A is strict convex in R”.

By the definition of F(x’) in (3.10), we have

2
F(x') =) VANV fi(x)) - (Vi + YV fo).

i=1
Denoting ¢ := V f1 and g2 := —V f>, we rewrite the above equation as
F(x') = (VA(q1(x") = VA(@@2(x) - (q1(x)) = q2(x")).
For any fixed x’, applying the mean-value theorem to the scalar-valued function g(r) :=

VA(tqr + (1 — t)q2) - (g1 — q2) for 0 < t < 1, we know there exists some ¢ € [0, 1]
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depending on x’, such that
F(x')y =g(1) — g(0) = g'(c)
= (@1 (") — (N V2 A(eqi () + (1 = )g2(x)) (1 (x) — (X)) (3.12)
> (1+ (g1 ()] + |612(x/)|)2)_%|l]1(x/) - ()%,

where we use (3.11) in the last inequality. Therefore F(x’) > 0 in R°, and the equality holds
if and only if ¢; (x") = g2(x'),i.e. V(f1 + f2)(x’) = 0.

If fi + f» # const in R°, then since fi, f» € C2(R°), there exists some ¥ € R° and
€,b1, by > 0, such that B! (x) C R; for all sufficiently small § > 0, and

IV(fi + )& = b and |V Ai(x)] + V) <by forx' € BX(%). (3.13)
By (3.12) and (3.13), for any x” € B!(X), we have
F(x') > (145372 g1(x) — q2(x)[2
= A+ b)) IV + L)L
> (1+b3)" 262,

Combining this with the fact that F(x’) > 0 in R°, we obtain a lower bound of 5] as
follows, where we use that ¢s = 1 in B/ (X) C Rs, as well as ¢5 > 0:

1 / ’ 2\—2,2 pny= .
I > F(x')dx" > (1 +b3)72b}|B(%)| =t ap > 0.
B (x)

finishing the proof of Claim 1.
In the rest of the proof, we aim to show that |/ 82| can be made arbitrarily small by setting
6 small. Clearly one can bound it as

151 < |Rs;3 \ Rs| sup |(fi+ f2)Ves| sup 22: Vi ‘
2| < Y
_\'T—’ Rs/3\Rs Ry3\Rs | 7 1+ |V fi]?
=T
=T =Tz

where |R \ Rj| denotes the Lebesgue measure of R \ Rs in R”.
Ty and T are rather straightforward to control. Since R is bounded and hasa C L1 boundary
by Proposition 2(b), there exists some C1(M, n) > 0 such that

Ty < |[R\ Rs| < Ci(M,n)é$ (3.14)

for all 6 € (0, 1). To bound 7>, by the definition of ¢ and the fact that M is bounded (thus
so are f1, f2), we have

T> < sup|fi + folsup |Vs| < Co(M, n)s ™",
RD R"

where we use (3.7) in the last inequality.

It is more delicate to bound the last term 73. Note that the product 7775 is of order O (1),
thus the crude bound 73 < 2 is not sufficient. We claim that 73 is actually of order /8, since
the two terms in the sum has some nice cancellation properties:
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Fig.4 Illustration of the proof of

Claim 2 .
A Tn+1

Claim 2 Since M is a C? hypersurface embedded in R”, it satisfies the interior ball property
with radius p > 0. Then for all § > 0, we have

2

Y
im Vv1+ |Vf,-|2

where r > 0 is the constant in Condition S’.

2(p +r) 5
or

T3 :=

in R°\ Rs, (3.15)

Proof of Claim 2 Take any X’ € R°\ Rs. Fori = 1,2, let v; = (v, v”“) be the unit outer

i
normal of M at the point X; := (X', f;(X’)). By Proposition 2(a), vl.’”rl # 0. We then have
oty = (=VAGEH, 1 nt1 (V&) =1
4 =

= (v}, _ :(/, )= ———.
e JrvamE R T v a@P

Hence, one has

VAE) V(@) o
Ty = v (3.16)
TIWVITIVAGE  JirveoPE

so it suffices to bound the right hand side.

Since X" € R° \ R, there exists some x, € dR, such that [X" — x| < §. Using that R is
closed, there exists some xg := (x{), X 1y € M that projects to x;,. (If there are more than
one such points, let xo be any of them.) By Proposition 2(a), M has a horizontal outer normal

at xg, which we denote by vy = (v(), 0). See Figure 3 for an illustration of the points.

By Condition S’, the cylinder |x" — (x{, + rv})| = r has an empty intersection with G.
On the other hand, M satisfies the interior ball condition with radius o > 0, thus the balls
B; = Bg“(ii — pv;) satisfy B; C G fori = 1,2. As a result, the open ball B; must
completely lie outside the cylinder, implying that its center must have distance at least p +r
to the axis of cylinder. That is,

| — pv]) — (xh+rvp)| = p+r fori=1,2, (3.17)

where we used that x| = ¥} = x'. Since |x" — x| < & (this follows from our choice of x),
(3.17) implies that

lovi +rvyl > p+r —38.
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Taking square of both sides and using the facts that |v)| = 1 and Ivlfl < 1,forall § > 0 we
have

P> (1= ] ) +r% (1 = [v|») +2pr (1 = v} - vg) < 2(p +1)8 — 8% < 2(p +r)8.
— N ——’ N e’
>0 =0 >0
This directly leads to

,
T=vovp < 2505 fori=1,2,
r

allowing us to bound |v] — v(| as follows (where again we used that |vj| = 1 and |v]| < I:

, 2(p+r)(S

W =P =P+ 1 =20 v) <2 =20 -v) < fori =1,2.
pr
As a result, we have
2(p +r
Wb — V| < v — v+ Ivh — vhl <2 %5.

Plugging this into (3.16) finishes the proof of Claim 2.

Once we prove Claim 2, the bounds on 77, 7>, T3 yield that |182| < CWM,n, r)\/g for
all § > 0, thus by setting § € (0, 1) sufficiently small and using Claim 1, we have that
I > ap/2 > 0. This contradicts with (3.6), thus the proof is finished. O
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