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ARTICLE INFO ABSTRACT

Keywords: Given the importance that melt ponds have on the energy balance of summer sea ice, there have been several
Melt pond efforts to develop pan-Arctic datasets using satellite data. Here we intercompare three melt pond data sets that
Sea ice

rely on multi-frequency optical satellite data. Early in the melt season, the three data sets have similar spatial
patterns in melt pond fraction, but this agreement weakens as the melt season progresses despite relatively high
interannual correlations in pond fractions between the data products. Most of the data sets do not exhibit trends
towards increased melt pond fractions from 2002 to 2011 despite overall Arctic warming and earlier melt onset.
Further comparisons are made against higher resolution optical data to assess relative accuracy. These com-
parisons reveal the challenges in retrieving melt ponds from coarse resolution satellite data, and the need to
better discriminate between leads, small open water areas and melt ponds. Finally, we assess melt pond data sets
as a function of ice type and how well they correlate with surface albedo. As expected, melt pond fractions are
negatively correlated with surface albedo, though the strength of the correlation varies across products and
regions. Overall, first-year ice has larger melt pond fractions than multi-year ice.
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1. Introduction

Melt ponds are a dominant feature of Arctic sea ice in summer.
During advanced melt they can occupy up to 50 to 60% of the sea ice
area (Fetterer and Untersteiner, 1998; Eicken et al., 2004). Since the
presence of melt ponds greatly reduces the summer sea ice albedo, they
play a significant role in controlling the sea ice energy balance (Perovich
et al., 2007; Nicolaus et al., 2010). Melt ponds also allow more light to
enter the upper ocean than bare or snow-covered sea ice, enhancing
under-ice algae blooms (e.g. Horvat et al., 2017). Further, climate
models have shown that melt ponds contribute not only to the heat and
mass balances of sea ice, but also play a role in how much ice remains at
the end of summer (Flocco et al., 2010; Flocco et al., 2012; Hunke et al.,
2013). In fact, studies have found that the timing of spring melt pond
development may be important for predicting how much sea ice remains
at the end of summer (Schroder et al., 2014; Liu et al., 2015).

Given the importance of melt ponds in the Arctic climate system and
the spectral differences between snow-covered sea ice, bare ice and melt

ponds, efforts have gone into producing pan-Arctic melt pond products
from optical satellite systems. Rosel et al. (2012) utilized the Moderate
Resolution Imaging Spectroradiometer (MODIS) 8-day atmospherically
corrected surface reflectance product together with a spectral unmixing
algorithm to produce an 8-day based melt pond fraction data set for
2000-2011. In a different approach, Lee et al. (2020) applied machine
learning approaches to top-of-the-atmosphere (TOA) MODIS re-
flectances, together with normalized band differences from four MODIS
visible and near-infrared bands. This approach minimized the impact of
anisotropic reflectance and atmospheric correction effects that exist
when using MODIS atmospherically corrected data, which are not
optimized for sea ice regions. Multi-layer neural networks and multi-
nomial logistic regressions were used to retrieve melt pond fraction and
binary melt pond vs. ice classification between May and August from
2000 to present. Zege et al. (2015) used another approach and a
different satellite source: based on the physical and optical character-
istics of sea ice and melt ponds without a priori information, an iterative
process using the Newton-Raphson method was applied to Medium
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Table 1
Summary of three melt pond products.
Sensor Time span Type Algorithm Main input (i.e., band) Spatial resolution of Gridded Temporal
main input (m) resolution (km) resolution
8 May to 13 Sep. .
R2012 MODIS 2002-2012 Fraction Neural networks Band 1, 2, and 3 500 12.5 8-day
1 June to 30 Sep.
2002 . Iterative Newton-Rhapson 1,2,3,8,10,12,13, and .
72015 MERIS 1 May to 30 Sep. Fraction method 14 1000 12.5 Daily
2003-2011
. Multi-layers neural Normalized band
L2020 MODIS 1 May to 31 Aug. FI:aCthIl/ networks and logistic differences among 250 and 500 5.0 Daily
2000-Present Binary .
regression band1-4
2. Data & methods
Table 2
Modification of temporal resolution of melt pond products. 2.1. Melt pond products
Day (i.e., 8-day) Month
w1 9-16 May This study evaluates three publicly available melt pond products
w2 17-24 May Proxy of May over the 2002-2011 period that all three products are available (see
xi 2591"333’ —1 June Table 1). Melt pond fraction is defined as the fractional area of ponded
W5 1(_)717‘1 rJlleme ice within the satellite pixel. The first data product is the Rosel et al.
w6 18-25 June Proxy of June (2012) (hereafter R2012) approach, which expanded on Tschudi et al.
w7 26 June - 3 July (2008)’s earlier work that utilized atmospherically corrected MODIS
w8 4-11 July data  (i.e, MODO09A1l;  https://lpdaac.usgs.gov/products/mod
xfo ;5’;2 jﬂg Proxy of July 09a1v006/) together with spectral unmixing. To speed up the process-
Wil 28 July - 4 August ing for a large volume of MODIS data, an Artificial Neural Network
w12 5-12 August b ¢ August (ANN) approach was implemented. A disadvantage of the method,
TOXY O] ugus . . . .
wi3 13-20 August Y 8 however, is that the atmospheric correction that goes into the MODO09
wi4 21 — 28 August product is not optimized for the polar regions (i.e., unknown amounts of
aerosol optical depth, water vapor and ozone). Another issue is that the
Bidirectional Reflectance Distribution Function (BRDF) of snow/sea ice
Table 3 and melt ponds are not explicitly accounted for in this data set. Melt

Monthly mean ratio of first-year ice, Multi-year ice, and Ambiguous classes over
sea ice in May to August 2005-2011.

First-year ice (%) Multi-year ice (%) Ambiguous (%)

May 74 11 15
June 64 4 32
July 63 1 36
August 51 13 36

Resolution Imaging Spectrometer (MERIS) reflectance data. An atmo-
spheric and bi-directional reflectance distribution function (BRDF) was
applied to correct for the anisotropic reflectance properties of sea ice
and melt ponds. Although each algorithm aims to retrieve melt ponds
using optical satellite data, melt pond fractions differ based on the input
data used as well as the methods employed. Further, temporal resolution
differs between these three data sets (i.e. daily, 8-day or monthly). It is
likely that each melt pond product has its own advantages and disad-
vantages, but a full assessment of how they compare has yet to be done.

Here, we intercompare the above-mentioned melt pond products
from 2002 to 2011. Clear-sky high resolution optical imagery from
Worldview (WV) and Landsat are used as a baseline assessment of ac-
curacy. Melt pond classifications derived from Planet SkySat and heli-
copter imagery during the Multidisciplinary drifting Observatory for the
Arctic Climate (MOSAIiC) campaign are used as well for comparison. We
further evaluate how well the satellite-retrieved melt pond fractions
correspond to surface albedo and depend on sea ice type.

A comparative analysis of the different melt pond products can
provide a recommendation to the science community regarding which
products are suitable for their different needs.

ponds and bare sea ice scatter light anisotropically, such that the
assumption of a Lambertian surface can lead to unrealistic results during
melt (e.g., Zege et al., 2015, hereafter Z2015). Both of these issues are
problematic when training the algorithm with spectral reflectance data
obtained in situ, which are integrated over the entire hemisphere and
taken under specific atmospheric conditions. The R2012 melt pond data
set is available as 8-day composites on a 12.5 km spatial resolution polar
stereographic grid.

The second data set (Z2015) produces melt pond fractions and
spectral sea ice albedo from MERIS Level 1B optical imagery. An
analytical iterative procedure based on the Newton-Raphson method
without a prior information on the sea ice spectral albedo was applied,
which explicitly accounts for atmospheric correction and the BRDF of
sea ice surfaces. When information on atmospheric variables, such as
aerosol optical depth are not available, default models that represent
background Arctic conditions are used. These data are available at daily
temporal resolution and are also gridded to a 12.5-km spatial resolution
polar stereographic projection.

Finally, Lee et al. (2020) (hereafter L2020) worked with calibrated
Level 1B TOA 250 and 500 m MODIS reflectances (e.g. MODO2HKM, htt
ps://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements
/products/MODO2HKM). To reduce biases from incorrect atmospheric
correction assumptions, and to minimize the BRDF effect, normalized
band ratios were used as input into machine learning algorithms. As
such the approach is not dependent on in situ data to train the algorithm.
Melt pond fraction and binary melt pond classification were retrieved by
multinomial logistic regression and multi-layer neural networks,
respectively. Furthermore, since the departure from a Lambertian sur-
face for ice and snow surfaces increases at high solar (6,) and viewing
(6,) zenith angles, pixels corresponding to 6, > 70° and 6, > 50° were
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Fig. 1. Time-series of Pan-Arctic monthly mean melt pond fractions for each data set from 2002 to 2011. Results from L2020 are given at two spatial resolutions, 5
km (dashed line) and 12.5 km (solid line). Note the different y-axis scales across panels.

Table 4

Correlation coefficients between total melt pond fractions as averaged over the
entire Arctic Ocean for each summer month from 2002 to 2011 (confidence
interval: 95%).

Correlation coefficients May June July August
R2012 vs. Z2015 0.62 0.73 0.72 0.44
R2012 vs. L2020 0.40 0.71 0.46 0.54
72015 vs. L2020 0.54 0.69 0.61 0.35

excluded. Finally, in order to avoid “false” melt pond identification once
ponds are refrozen, surface temperatures from the MOD29 (1-km Ice
Surface Temperature (IST)) product were used to eliminate refrozen
melt ponds in August. Refer to Lee et al. (2020) for further information.
While melt pond classification is based on daily 500 m TOA reflectances,
the spatial resolution of the resulting melt pond product is subsequently
degraded to 5 km for the full time-series (2000—2023). Melt ponds are
produced as daily and monthly averages and are provided on the Equal-
Area Scalable Earth (EASE)-grid.

As R2012 does not provide daily melt pond estimates, daily melt
ponds from Z2015 and L2020 are merged into 8-day melt pond com-
posites (weeks evaluated are listed in Table 2). We further composite

these into monthly means for long-term melt pond change analysis
among the three data products. To intercompare seasonal and interan-
nual variability among these data sets, all data sets are regridded to a
12.5-km EASE-grid using nearest neighbor interpolation. When
comparing against higher resolution data (e.g. WorldView and Landsat),
the native resolution of each product is used. Since each product has a
different pole hole area, the largest pole hole (from Z2015) is applied to
all products for time series comparison (Table 3 and Fig. 1). Note, the
difference in the location of the sea ice edge among the three products is
<3%. When generating monthly averaged melt pond fractions it is
important to note that cloud cover will influence the number of days that
go into the monthly average. In both the daily Z2015 and L2020 data
sets, the number of days and hence overall satellite pixels used to create
the monthly averaged pan-Arctic melt pond fraction in a given month
varies with cloud fraction. The mean daily cloud cover fractions over sea
ice areas (defined using a 15% sea ice concentration threshold) in the
72015 data set are 44, 37, 60 and 58% in May, June, July and August,
respectively, while those for L2020 in the same months are 77, 66, 78%,
and 84%. Both products typically exhibit higher cloud fraction in July
and August than in May and June (Taylor et al., 2019).
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Fig. 2. 8-day composited (2-9 June 2003) melt pond fractions from (a) R2012, (b) Z2015, (c) L2020 at 5-km spatial resolution and (d) L2020 at 12.5-km spatial
resolution. An Aqua MODIS RGB 250-m scene from 6 June 2003 is shown in (e). The blank areas represent cloud covers and ocean areas. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2.2. Higher resolution data

We compare the coarser resolution melt pond datasets against those
retrieved from five classified 2 m DigitalGlobe’s WorldView imagery
(hereafter WV), as well as one Landsat-5 image (hereafter Landsat). Melt
pond classification derived from WV follows the approach of Wright and
Polashenski (2018) who developed an open-source algorithm to auto-
matically classify four sea ice surface types from WV panchromatic and
8-band multispectral data: snow/thick ice, dark/thin ice (i.e., it is not
snow covered, and can include nilas and young ice during freeze-up),

melt ponds/submerged ice, and ocean. While snow/thick ice, dark/
thin ice are combined into one ice class, melt ponds/submerged ice is
classified as melt ponds. After classifying the WV images, the classes are
converted to pond fraction following Lee et al. (2020). While more WV
images would have been desirable, it is challenging to find WV scenes
that are cloud-free and spatially and temporally coincident with the
three melt pond products. As melt pond fractions from R2012 are only
provided as 8-day composites, we may not expect the composite to
match exactly with the location/date of the WV image. On the other
hand, while melt ponds from Z2015 are from the same date, the
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Fig. 3. Mean and standard deviation of melt pond fractions averaged from 2002 to 2011 for May through August from each dataset.

acquisition time is unknown. For L2020, we were able to locate WV
images that were within 20 h of the MODIS swath (see Table 4).

Since Landsat has a larger swath than WV and a spatial resolution of
~30 m, this comparison has the benefit of including a larger area than
can be achieved using WV data. The disadvantage is that there is no melt
pond classification algorithm currently available for Landsat. Never-
theless, the data are useful for a visual assessment of melt pond loca-
tions. One Landsat image from 11 July 2008 is utilized here.

Finally, we additionally include melt pond classifications around the
MOSAIC drifting station. The melt pond classification results are ob-
tained using Planet SkySat satellite and helicopter imagery with a spatial
resolution of 0.5 m and between 0.03 and 0.5 m, respectively. (Wright
et al., 2021; Niels, 2023). The SkySat imagery does not provide RGB
composite imagery. The classification algorithm for SkySat used is same
as the one employed for WV classification (Wright and Polashenski,

2018). The three-band (RGB) helicopter images are available as classi-
fied orthomosaics (Fuchs and Birnbaum, 2023). Surface type classes
including melt ponds were derived with the customized classification
tool PASTA-ice (Fuchs, 2023). It is notable that these data come from
marginal ice zone in Fram Strait characterized by high sea ice dynamics,
fragmentation, and the flooding at the edge of ice.

2.3. Albedo and sea ice type data

Surface albedo and sea ice type were additionally utilized to assess
their relationship with the pan-Arctic retrieved melt pond fractions.
Clear-sky surface albedo comes from the National Oceanic and Atmo-
spheric Administration (NOAA) Climate Data Record (CDR) of Extended
and Advanced Very High Resolution Radiometer (AVHRR) Polar Path-
finder (APP-x; Key et al., 2016). The APP-x set contains several visible-
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Fig. 4. (a) WV band 2 (i.e., blue band) on 14 June 2010. (b) WV classification results on 14 June 2010 (Wright and Polashenski, 2018). (c) melt pond fraction from
L2020 with the native resolution (i.e., 500 m) on 14 June 2010. (d) melt pond fraction from L2020 gridded into 12.5 km on 14 June 2010. (e) melt pond fraction from
R2012 8-days composite centered on 10-17 June 2010. (f) melt pond fraction from Z2015 on 14 June 2010. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

and thermal-infrared-retrieved geophysical variables from 1982 to
present. These data are available twice daily (0400 and 1400 local solar
time) at 25-km spatial resolution. Here we use the afternoon pass
(1400).

Sea ice type is derived from multi-sensor inputs, including Special
Sensor Microwave-Imager/Sounder (SSMIS), AMSR2, and ASCAT,
through the Ocean and Sea ice Satellite Application Facility (OSI SAF)
(Aaboe et al., 2021). The three ice type classes are first-year ice (FYI),
multi-year ice (MYI), and ambiguous. During summer, microwave
emission and backscatter is impacted by liquid water, resulting in more
pixels classified as ambiguous. This is problematic then in evaluating the
role of ice type on melt pond fractions. Table 3 shows monthly mean
ratio of FYI, MYI, and ambiguous classes. In particular, the ratio of
ambiguous class is >30% in June and August 2005 to 2011. When the
ratio of ambiguous classes is >50% over sea ice (defined using a 15% sea
ice concentration threshold), it is not used in comparison with melt pond
fraction. The ambiguous class is also excluded for the comparison. Sea
ice type data is available daily from 2005 to present at 10 km spatial
resolution.

In our comparisons below we create monthly averages of surface
albedo and ice type, regrid them to 12.5 km and compare against the
12.5 km gridded monthly melt pond fractions. Spatial correlations be-
tween albedo and pond fractions are provided for May to August over

the 2002 to 2011 time-period.
3. Results

Below we start with an intercomparison of the long-term monthly
melt pond fractions from each data set at 12.5-km spatial resolution
before comparing the products against higher spatial resolution data.

3.1. Intercomparison of melt pond fraction

Time-series of pan-Arctic averaged monthly melt pond fractions from
2002 to 2011 for May through August are shown in Fig. 1. All three
products generally show similar interannual variability in pan-Arctic
melt pond fractions, though the agreement varies between months,
with higher agreement generally in June and July and worse agreement
at the start and end of the melt season (e.g., May and August) (Table 4).
For example, a high correlation (r > 0.62) is found between R2012 and
72015 in all months except for August when it drops to r = 0.44. Overall,
despite Z2015 having the least amount of interannual variability, it is
the most highly correlated product with R2012. The highest correlation
with L2020 occurs in June, on the order of r = 0.70 for both R2012 and
72015, whereas in May and August the correlations decrease to 0.54 or
less. Good agreement between L2020 and Z2015 is also found in July (r
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= 0.61), but not with R2012.

In terms of long-term trends, the different retrieval methods mostly
do not indicate a trend in pond fractions between 2002 and 2011. The
exception is in July when mean fraction slightly increases (largest in the
L2020 algorithm). L2020 further indicates an increase in melt pond
fraction also in August. This increase starts in 2006, and the highest
August melt pond fraction occurred in 2011, exceeding 40% of the sea
ice area. The positive trends in July and August are not statistically
significant.

Despite similar interannual variability, the areal coverage of melt
ponds can differ considerably between data sets. Since L2020 relies on
normalized band ratios between the blue and near-infrared bands, there
is increased sensitivity to liquid water (Lee et al., 2020). This may falsely
lead to wet snow being classified as a melt pond. The use of these two
bands may also result in cases of thin ice and leads/cracks to be classified
as melt ponds. Combined, this may help to explain why L2020 has
considerably higher pond fractions in June compared to the other data
sets as this is the time of year when melt onset starts over large parts of
the Arctic Ocean (e.g. Stroeve et al., 2014). Interestingly, none of the
data sets show monthly mean melt pond fractions in excess of 35%
during the peak of the melt season in July in contrast to earlier studies
(e.g., Romanov, 1995; Tschudi et al., 2008; Perovich et al., 2007). One
reason could be that these studies provided melt pond fractions at higher
spatial resolution resulting in overall higher percentage of ice area
covered by ponds. However, regridding the L2020 data from 5 km to
12.5 km results in slightly higher melt pond fractions between May and

July. It is only in August that the coarser resolution data resulted in
lower pond fractions, and only between 2005 and 2007. Thus, melt pond
fractions retrieved at different spatial scales may not be directly
comparable.

In general, R2012 has the lowest melt pond fraction in most months,
while the L2020 product has the overall highest melt pond fractions.
May is an exception, when sometimes the Z2015 algorithm gives the
largest overall pond fractions in several years. Confirmation of a positive
bias in L2020 melt pond fractions in May 2009 and 2010 is seen through
visual inspection of the level-2250-m and 500-m spatial resolution
MODIS images (not shown). Leads and cracks between ice floes are
easily identifiable at 500 m, and while they should be separately clas-
sified as open water, it appears those are often falsely classified as melt
ponds, especially within the marginal ice zone (MIZ). Since the L2020
melt pond algorithm is first run on the 500-m data before spatial aver-
aging to 5 km, variability in leads/cracks from year-to-year may in part
also explain the higher interannual variability seen in the L2020 data
set. Monthly spatial melt pond fractions from all data sets are shown in
the supplementary material from 2002 to 2011 (Fig. S1).

One curious deviation between products occurs later in the time-
series when melt pond fractions from L2020 start to increase faster
than the other data products. For example, starting in July 2009, there is
a spike in melt pond fraction as a result of high pond fractions within the
Chukchi and Beaufort seas (see Fig. S1) that continues in subsequent
years. Similarly, in August 2007 there is a step-wise increase in pond
fraction. One would expect an increase in melt pond fraction during
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August given the delays in freeze-up across most of the Arctic (e.g.
Stroeve and Notz, 2018). Trends in freeze-up from 2002 to 2011 are on
the order of 1 to 4 days yr* each year, yet there is a discernable shift in
later freeze-up in 2007 that could explain the observed increase in pond
fraction.

Further insights behind the seasonal differences are revealed by
looking at differences in the spatial patterns. Fig. 2 shows an example of
an 8-day composite in early June (2-9 June 2003) together with an Aqua
MODIS RGB 250-m image (6 June 2003). R2012 and Z2015 retrieve low
melt pond fractions in the East Siberian Sea, whereas L2020 exhibits
pond fractions exceeding 50% in many areas. The corresponding RGB
MODIS image shows either very thin or flooded level ice by melt water
in this region. Note that here and throughout the paper, we use the term
“flooding” to describe sea ice that is inundated by meltwater, rather than
the flooding that is associated with negative freeboard and snow-ice
formation. In regions of level first-year ice, the surface often becomes
extensively covered by melt ponds rather than forming smaller, isolated
ponds like those typically observed on multiyear sea ice. In some

instances, extensive ponding over level sea ice can be difficult to discern
from very thin ice. This highlights the challenges of visually identifying
what constitutes a melt pond. While melt ponds are not easily identifi-
able in the MODIS image, given the time of year of this image and the
fact that the melt onset already began (spatially averaged melt onset
date of 7 May), it is probable that there could be thin ice and/or flooding
of the level ice by melt water that is then picked up as melt pond fraction
using L2020.

To further highlight spatial variability between the data sets, we
show the mean 2002-2011 averaged melt pond fractions for each month
together with the standard deviation in Fig. 3. On average, the
2002-2011 mean spatial patterns in melt pond fraction are broadly
similar in May, but this changes dramatically as the summer progresses.
Despite some similarities in spatial patterns as to where melt ponds tend
to be more extensive (i.e., the Beaufort, Chukchi, and East Siberian seas
in June), the magnitudes differ substantially, especially in comparison to
the L2020 data set. The L2020 product suggests melt ponds expand
north of Greenland in July and across the Arctic Ocean in August,
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Table 5
WV mean melt pond fraction and mean melt pond fraction of three melt pond products. When the pond fraction is in red, it most closely matches the WV classification.
WV date  Time Image WV mean melt Mean melt  Mean melt  Meanmelt Meanmelt RMSE RMSE RMSE RMSE
and time  difference acquisition pond fraction pond pond pond pond between between between between
(hh: with L2020 location based on the fraction fraction fraction fraction 12020 12020 R2012 12 72015
mm) MODIS classification from from from from 500 mand  12.5km 5 km and 12.5 km
(%) 12020 12020 R2012 in 72015 in WV in the and WV in WV in the and WV in
500 m in 12.5kmin  the grey the grey grey box the grey grey box the grey
the grey the grey box (%) box (%) box box
box (%) box (%)
14 June
2010 4h East
00:40 30 mins Siberian Sea 9.3 35.2 30.7 11.2 12.6 24.2 22.3 3.1 4.4
25 June .
2000 B Arctic 42.9 51.2 45.3 327 54.7 6.5 3.4 10.5 12.2
40 mins Archipelago
15:25
3 July Arctic
2010 20 h Archipelago 33.6 33.7 30.5 36.7 38.6 1.3 2.7 3.5 6.5
03:50
4 May 2h North
2011 15 mins Ellesmere 8.0 13.7 11.2 0.3 4.7 4.7 2.5 7.9 4.2
12:00 island
13 Jul; .
2011y 30 mins Chukehi 36.9 34.2 32.8 24.5 28.7 2.8 3.7 11.2 7.8
Sea
22:25
20 June Barents
2022 9 mins Sea 15.4 26.2 24.1 - - 119 8.6
13:32
20 July
2022 33 mins Kara Sea 7 10.2 11.9 - - 3.9 4.2
08:53

reaching fractions as high as 50%, whereas the other two products show
modest melt pond coverage in these regions during advanced melt.
Leads and small open water area detected by the MODIS 500 m scale
around MYI zone and central Arctic in July and August, leading to high
L2020 melt pond fraction. High melt pond fractions near the pole in
August have been observed during field campaigns, including during the
year-long Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAIC) expedition (e.g. see Fig. 1, Stroeve et al., 2022).

In all products, the standard deviation is smallest in May, with
interannual variability limited to the MIZ, where melt first begins and
there is high temporal variability in the timing of melt onset. However,
as summer progresses, the standard deviation increases over a larger
region. Regions with a high standard deviation are generally limited to
the MIZ in R2012 and Z2015, but slightly expand to more northerly
locations by August. Overall, Z2015 shows the least amount of inter-
annual variability (seen also in Fig. 1), with Arctic-averaged standard
deviations from May to August of 0.03, 0.05, 0.05, and 0.04, respec-
tively. L2020, on the other hand, shows the largest and most widespread
standard deviations which peak in August. Large interannual variability
is not surprising in August as this is the time of year when melt pond
fractions start to refreeze and thus melt pond fraction is strongly
dependent on synoptic weather patterns that vary from year-to-year.
The larger standard deviation in L2020 agrees with the larger interan-
nual variability seen in Fig. 1 and the step-wise increase in melt pond
fraction in recent years.

3.2. Comparison against high-resolution images (i.e., Worldview and
Landsat)

It is challenging to fully assess why the three products sometimes
provide very different melt pond fraction estimates since they use (1)
different sensors, (2) different inputs from those sensors, (3) different
approaches for masking out clouds, (4) different techniques of
compositing, and (5) data with different spatial resolutions. Neverthe-
less, to assess the reliability of the different products, we compare melt
pond fractions in 2010 and 2011 against high-resolution melt pond
fractions derived from WV and imagery from Landsat.

We first focus on comparisons against those retrieved from WV im-
agery using the Wright and Polashenski (2018) classification algorithm.
The WV image on 14 June 2010 shows large ice floes surrounded by thin
or brash ice, with few melt ponds and small open water areas between
the floes (Fig. 4(a) and (b)) The WV melt pond fraction in this scene is
9.3% (Table 4). Pond fractions from R2012 (10-17 June 2010) and
72015 are in close agreement with the WV melt pond classification,
showing few melt ponds in the vicinity of the WV image and an overall
pond fraction below 12% over the larger area. On the other hand, both
the 500-m and the 12.5-km spatial resolution L2020 data set produces
relatively high melt pond fractions within the WV scene (35.2% and
30.7%, respectively). In this instance, it appears that the thin ice areas
are classified as melt ponds by L2020. Later in the melt season (25 June
and 3 July 2010), WV imagery near Ellesmere Island show higher melt
pond fractions (Figs. 5 and 6), and all three melt pond products estimate
broadly similar pond fractions that agree with the WV classification.
Overall, L2020 matches best with the WV data on both these dates, with
the lowest RMSE value (see Table 5).

Another early melt season example (4 May 2011) demonstrates the
L2020 algorithm outperforming R2012 and Z2015. Interestingly, while
this WV scene is quite early in the melt season given the northerly
location (i.e., North of Ellesmere Island), the WV classification suggests
8% of the scene contains melt ponds (Fig. 7 and Table 5). R2012 and
72015 significantly underestimate the melt pond fraction, with fractions
on the order of 0.3% and 4.7%, respectively. The temporal-resolution
differences with the WV image may be one explanation for the low
bias in R2012 and Z2015. On the other hand, movement of sea ice is
limited in this region, so the temporal mismatch may not be the only
factor. By 13 July 2011, all three data products show more advanced
melt pond formation in agreement with the WV imagery (Fig. 8). The
L2020 data product once again gives the highest melt pond fraction at
34.2% and is close to the WV value of 36.9%, while R2012 and Z2015
give pond fractions of 24.5% and 28.7%, respectively (Table 5 and
Fig. 8).

For comparison with WV in 2022, only L2020 data are available. The
melt pond fraction derived from L2020 was found to be higher than the
WV-based melt pond fraction (Figs. 9 and 10). While the image
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Fig. 7. (a) WV band 2 (i.e., blue band) on 4 May 2011. (b) WV classification results on 4 May 2011 (Wright and Polashenski, 2018). (c) melt pond fraction from
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legend, the reader is referred to the web version of this article.)

acquisition times on 20 June and 20 July are only 9 and 33 min apart,
respectively, a slight spatial mismatch may have led to the higher overall
detected melt ponds in the L2020 data product, as some of the open
water areas seen in the two data sets are not perfectly aligned. It is also
apparent that the WV classification algorithm mis-classified some open
water areas in the lower left-hand corner as melt ponds on 20 July 2022.

Overall, based on the few WV comparisons performed, the R2012
agreed best with the WV data on 14 June 2010 and underestimated the
pond fractions on the other dates. Outside of 14 June 2010, L2020
provided the best agreement with WV-classified images.

We also examined a Landsat scene within the MIZ in Beaufort Sea on
11 July 2008. This scene was within 21 min of a corresponding MODIS
swath. Within this scene, L2020 once again indicates the highest melt
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pond fractions, followed by 72015, and then R2012 (Fig. 11). The
Landsat image shows clear evidence of surface flooding in the lower
center part of the image where high melt pond fractions are retrieved
using L2020. However, these comparisons come with an important
caveat as the ice is moving and thus an exact spatial match is not
possible. This is especially problematic within the MIZ where the ice can
be highly dynamic, and especially for comparisons with the R2012 al-
gorithm as it only provides 8-day composites.

Finally, we also include a comparison of melt pond classifications for
the MOSAIC expedition with the melt pond fraction obtained from
L2020 on 22 June 2020 (SkySat) and 22 July 2020 (helicopter-borne
melt pond) (Fig. 12 and Fig. 13). The temporal difference between
L2020 and Skysat/Helicopter-borne image is 28 mins and 1 h 22 mins,
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respectively. The L2020 melt pond fraction on 22 June 2020 with a
spatial resolution of 500 m and 12.5 km is found to be 15.2% and 14.7%,
respectively. In contrast, the melt pond fraction derived from SkySat is
found to be 10.1%. This pond fraction is somewhat low for the time of
year, yet the MOSAIC floe was located above 81°N and thus we could
expect lower overall melt pond fractions. In this comparison, the swath
width of the SkySat image is less than for WV and thus the 12.5-km data
product only had two pixels within the scene In terms of comparison
against helicopter-borne melt pond classification, considering the time
of year and temporal difference between the helicopter-borne image and
L2020, the fraction difference between helicopter-borne image (24.5%)
and L2020 (53.3%) is 28.8%.

Overall, it is not surprising that L2020 tends to outperform the other
two data sets in many of these intercomparisons given the data product
is produced at a higher spatial resolution. As one would expect, the
coarser the melt pond fraction data set (i.e., 12.5 km), the less the
product can capture the spatial heterogeneity of the sea ice surface.
Thus, higher-resolution products may be in better agreement with one
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another. On the other hand, L2020 tends to estimate a higher melt pond
fraction compared to the other two data products especially early in the
melt season in part because leads and small open water areas are
sometimes misclassified as melt ponds. The L2020 algorithm also tends
to map flooded level ice as melt ponds. While this perhaps is not exactly
a melt pond in the classic sense, flooded ice will have similar impacts on
the energy balance and light penetration through the ice. Thus,
depending on the application of the melt pond datasets, this information
may still be useful.

However, it is also important to note that differences in acquisition
times can also lead to biases in the comparison for the other data
products, especially during periods of fast ice drift. This is challenging to
correct for as current ice motion data products are not of sufficient
spatial and temporal resolutions to capture drift speed a few hours apart.
Thus, an accuracy assessment of the R2012 and Z2015 is more chal-
lenging to assess. While these inter-comparisons cannot conclusively
point to which melt pond product best captures the “true” melt pond
fraction, they do provide a general sense of performance and the
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Fig. 9. (a) WV band 2 (i.e., blue band) on 20 June 2022. (b) WV classification results on 20 June 2022 (Wright and Polashenski, 2018). (c) melt pond fraction from
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difficulties in mapping melt ponds at the relatively coarse spatial reso-
lution of MODIS or MERIS data.

3.3. Comparisons against albedo and sea ice type

We lastly evaluate the relationship between interannual pond frac-
tions, surface albedo and sea ice type. The surface albedo gradually
decreases over time as melt ponds develop (Polashenski et al., 2012;
Perovich and Polashenski, 2012), but even before melt ponds develop
the albedo drops as the snow melts (Curry et al., 1995). By mid-July
most snow has melted except near thicker, deformed ice where snow
drifts can persist. The APP-X minimum surface albedo of 0.1 to 0.4 in
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July coincides with peak melt pond fraction, while in August, drained or
refrozen melt ponds cause the albedo to increase towards the bare sea ice
value of 0.7 (Light et al., 2022).

As expected, a negative correlation exists between melt pond fraction
and surface albedo (Fig. 14). Z2015 pond fractions are highly correlated
with surface albedo across most of the Arctic Ocean (R < —0.70)
(Fig. 14b) whereas high correlations (R = —0.65) for R2012 are limited
to the north of Greenland and the Canadian Arctic Archipelago
(Fig. 14a). L2020 pond fractions are overall weaker correlated with
surface albedo throughout the entire Arctic region (—0.83 < R < —0.3).

Times-series of monthly melt pond fraction and albedo from May to
August for a location north of Greenland (85.383°N, 17.475°W) is
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shown in Fig. 14d. In general, the surface albedo decreases from May to
July and somewhat increases in August, whereas melt pond fraction
increases from May to July and then slightly declines in August, leading
to inverse correlation coefficients of —0.72 (R2012), —0.80 (Z2015),
and — 0.40 (L2020). However, sometimes melt pond fractions decline
despite the albedo decreasing. For example, between May and June in
2002, 2006, and 2009, the L2020 melt pond fractions decrease. A
decrease in R2012 melt pond fraction from May to June is also seen in
2009. A decrease in melt pond fraction can occur by rapid melt water
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drainage (Polashenski et al., 2012; Perovich and Polashenski, 2012;
Tanaka, 2020), which is normally reflected by an increase in the surface
albedo. Another reason could be a result of excessive cloud coverage that
biases both the monthly melt pond estimate as well as the clear-sky al-
bedo. For example, since L2020 employs a strict cloud screening process,
the monthly mean for June 2008 is based on just three days (28-30
June). The lack of sufficient clear-sky days also occurs in July 2004 (only
three clear-sky days).

Using the sea ice type masks, we find that melt pond fraction on FYI
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is typically higher than that on MYI. An exception is noted in May 2007
and 2009. The small open water areas classified as FYI in the East Si-
berian Sea in May 2007, where L2020 estimates high melt pond fraction
(Sup. Fig. 1). Z2015 produces lower pond fractions around the Beaufort
Sea, which is classified as MYI, resulting in lower fraction in May 2009
than June (Sup. Fig. 1).

From May to August, the daily mean differences in Z2015 melt pond
fractions between FYI and MYI are 2%, 5%, 4%, and 3%. On the other
hand, the corresponding differences in L2020 melt pond fractions are
2%, 6%, 13%, and 17%. The melt pond fraction on FYI shows greater
variability than on MYI. L2020 displays larger deviations within every
month than Z2015. While melt pond fraction from Z2015 and L2020 on
FYI is larger than on MYI in June, Webster et al (2015) demonstrates
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melt pond fraction on MYI surpasses on FYI in June around the Chukchi
Sea (Fig. 15).

Since monthly averages exclude the spatio-temporal variability that
is important for initiating melt pond formation, we show examples of
regionally averaged melt pond fractions together with albedo in Fig. 16.
The NSIDC regional mask (https://nsidc.org/data/g02186/versions/1)
is used for calculating regional averages for eight Arctic Ocean regions.
Since the R2012 dataset is not available at daily resolution, it is not
included.

While there is an inverse relationship between melt pond fraction
and albedo across all regions, the level of co-variation between the two
variables differs across regions. The daily melt pond evolution from
L2020 shows more temporal variability than Z2015, which tends to
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Fig. 14. The correlation map between melt pond fraction and albedo from May to August from 2002 to 2011. (a) R2012 vs. albedo, (b) Z2015 vs. albedo, (c) L2020
vs. albedo, (d) the time series of R2012, Z2015, 1.2020, and albedo at North Greenland (85.383°N, 17.475°W).

gradually increase through July and then decrease in August. L2020
generally shows similar increases and decreases yet is considerably
noisier. While the albedo rapidly decreases after early to mid-June, the
albedo exhibits little temporal variability.

Next we analyzed the spatial distribution of melt ponds in compar-
ison with albedo over landfast ice in the East Siberian Sea. Note however
that the spatial distribution of melt pond fractions from each product
can differ due to the different cloud screening processes involved in data
product (Figs. 17 and 18). While the monthly mean melt pond fraction
from L2020 is generally higher than that from R2012 and Z2015, the
mean melt pond fraction from L2020 is lower in East Siberian Sea on 13
July 2003 (Fig. 17). The intercomparison results on 17 June 2010 are
similar to those on 13 July 2003 (Fig. 18). Although the overall melt
pond fraction spatial distributions are similar, at 72°N/132°E, the L2020
produces noticeably lower fractions than R2012, and in a region where
the surface albedo is around 0.35.

4. Discussion

While we cannot clearly state which melt pond product is most ac-
curate based on the above comparisons, some general statements can be
made about how the products differ. This information may help users
make informed decisions about which product is most suitable
depending on the application as well as provide insights as to how the
data providers may improve their products. This study demonstrates
that MODIS and MERIS-derived melt pond products suffer from a loss of
detail as compared to high-resolution imagery like WV, Landsat, and
Skysat. While the spatial resolution of input data for the melt pond data
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products evaluated is <1-km, it is worth noting that the gridded reso-
lution of L2020 is nearly twice as high as that of R2012 and Z2015. Thus,
it is not surprising that L2020 better matches the higher resolution melt
pond estimates. On the other hand, since sea ice is dynamic, direct
matching of WV or Landsat with a MODIS or MERIS image complicates
these intercomparisons. It is further difficult to find clear-sky coincident
higher resolution images, limiting the number of intercomparisons used
in this study. We also cannot fully assess whether the satellite-based melt
pond products are higher or lower than in-situ observations (Webster et
al 2022). To further address the accuracy of the individual data sets, a
comprehensive field campaign that combines in situ data, airborne im-
aging, high resolution (< 3 m) and coarse resolution (<12.5 km) satellite
data is needed.

Coarse resolution satellite data is the only way to observe the pan-
Arctic daily. Despite the limitations of the three satellite data products
evaluated, the seasonal evolution is broadly consistent between the data
sets. The key differences pertain to pond fractions in June and August,
when the L2020 data product consistently shows higher pond fractions
as well as higher interannual variability. It appears L2020 is more sen-
sitive to ice flooding, thin ice and leads, which may lead to an over-
estimation of melt pond fraction. On the other hand, it is unclear if
flooded ice should not also be classified as a melt pond. While L2020
produced higher melt pond fractions than R2020 and Z2015, in com-
parison with WV, melt pond fractions from L2020 in closer agreement to
those derived from WV imagery. The spatial distribution of L2020 is
more correlated than Z2015 in the spatial comparison with other melt
related variables. Although the dependence on using a normalized band
ratio between the blue and the near-infrared band may result in more
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Fig. 15. Mean melt pond fraction based on sea ice type (i.e., FYI and MYI) from 2005 to 2011.

sensitivity to liquid water in the L2020 data product, the use of band
ratios helps to reduce biases from incorrect atmospheric correction as-
sumptions and minimizes errors related to unknown BRDF distributions.
While L2020 melt pond fractions in August are larger than the other data
products despite the removal of refrozen melt ponds from the final pond
fraction estimates, this is in agreement with trends towards later freeze-
up.

It is interesting that none of the data sets show monthly mean melt
pond fractions in excess of 35% during the peak of the melt season in
July in contrast to earlier studies (e.g., Romanov, 1995; Tschudi et al.,
2001; Perovich et al., 2002). These studies provided melt pond fractions
at higher spatial resolution than those used here and thus a direct
comparison may not be validA path forward could be to blend melt pond
classification results from WV with those from MODIS/MERIS to obtain
increased spatial structure and improved information on melt pond
characteristics. L2020 melt pond fraction shows good agreement with
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WV-based classification results, yet its monthly correlation with albedo
is weaker than R2012 and Z2015. This is because km-scale albedo
cannot explain change in albedo by the spatial detail of melt pond.

Finally, it is unclear how best to classify flooded ice. Flooded ice is
common over level ice, such as first-year or landfast ice. For example, in
Dease Strait (Nunavut) one study found that as a result of delayed melt
pond formation, >95% of the level ice was flooded on the 18th of June
2014 (Diaz et al., 2018). This extensive flooding had to do with level ice
that was covered by 10 cm of new snow prior to a period of warm air
temperatures.

5. Conclusions
Given the importance melt ponds play in the Arctic climate system,

pan-Arctic melt pond products have historically been a critical data gap.
Several studies have tried to fill this data gap by developing satellite-
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Fig. 16. Daily regional mean melt pond and albedo based on NSIDC Arctic regional mask from 9 May to 31 August 2003. Grey columns indicate mean melt onset
date. Albedo evolution stages are illustrated with melt pond fractions in Central Arctic in 2003.

based melt pond products, yet they differ in method, spatial and tem-
poral resolution, resulting in stark differences in pond fraction and
interannual variability. This paper intercompares three publicly avail-
able melt pond products, Rosel et al. (2012), Lee et al. (2020) and Zege
et al. (2015).

These different products are at times in agreement, especially early
in the melt season, but they start to deviate as the melt season pro-
gresses, with the melt pond product of Lee et al. (2020) having consid-
erably larger melt pond fractions in June and August. In a sense,
increased melt pond fractions in August are in agreement with trends
towards later freeze-up (e.g. Stroeve and Notz, 2018), and thus one
would expect ponds still cover the ice in August. It is important to note
however that none of the three melt products indicate a significant
change in melt pond fractions between 2002 and 2011 except in July;
L2020 further shows positive trend in melt pond fractions in August.
However, none of the trends are statistically significant.

Comparison of the coarser resolution melt pond fraction estimates
with high resolution satellite images such as Landsat and WorldView
reveals that R2012 generally has the lowest melt pond fractions and may
be most accurate in May. However, for the other summer months this
algorithm underestimates pond fractions and we find that L2020 best
matches WV-derived pond fractions in June and July in part because of
the higher spatial resolution. However, while the higher spatial resolu-
tion data set of L2020 better captures the spatial distribution of WV-
derived pond fractions, it does at times suffer from biases as a result of
flooded ice, thin ice and/or leads misclassified as ponds. For spatial
correlation between monthly melt pond fraction and albedo, Z2015 is
the most negatively correlated, followed by R2012 and L2020. While the
melt pond fraction on FYI generally is higher than on MYI, the difference
is more pronounced in L2020 than R2012.

The purpose of this paper is to show the characteristics of current
available melt pond products and provide a recommendation to the
science community for user’s needs. For further study, Artificial
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Intelligence (AI) approaches that consider the “shape” of melt ponds
such as perimeter, fractal dimension, roundness, and convex degree
could be developed to constrain the shape of expected melt ponds and
perhaps separate out ponds over multiyear or rough ice from melt water
over level ice.
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