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A B S T R A C T   

Given the importance that melt ponds have on the energy balance of summer sea ice, there have been several 
efforts to develop pan-Arctic datasets using satellite data. Here we intercompare three melt pond data sets that 
rely on multi-frequency optical satellite data. Early in the melt season, the three data sets have similar spatial 
patterns in melt pond fraction, but this agreement weakens as the melt season progresses despite relatively high 
interannual correlations in pond fractions between the data products. Most of the data sets do not exhibit trends 
towards increased melt pond fractions from 2002 to 2011 despite overall Arctic warming and earlier melt onset. 
Further comparisons are made against higher resolution optical data to assess relative accuracy. These com
parisons reveal the challenges in retrieving melt ponds from coarse resolution satellite data, and the need to 
better discriminate between leads, small open water areas and melt ponds. Finally, we assess melt pond data sets 
as a function of ice type and how well they correlate with surface albedo. As expected, melt pond fractions are 
negatively correlated with surface albedo, though the strength of the correlation varies across products and 
regions. Overall, first-year ice has larger melt pond fractions than multi-year ice.   

1. Introduction 

Melt ponds are a dominant feature of Arctic sea ice in summer. 
During advanced melt they can occupy up to 50 to 60% of the sea ice 
area (Fetterer and Untersteiner, 1998; Eicken et al., 2004). Since the 
presence of melt ponds greatly reduces the summer sea ice albedo, they 
play a significant role in controlling the sea ice energy balance (Perovich 
et al., 2007; Nicolaus et al., 2010). Melt ponds also allow more light to 
enter the upper ocean than bare or snow-covered sea ice, enhancing 
under-ice algae blooms (e.g. Horvat et al., 2017). Further, climate 
models have shown that melt ponds contribute not only to the heat and 
mass balances of sea ice, but also play a role in how much ice remains at 
the end of summer (Flocco et al., 2010; Flocco et al., 2012; Hunke et al., 
2013). In fact, studies have found that the timing of spring melt pond 
development may be important for predicting how much sea ice remains 
at the end of summer (Schröder et al., 2014; Liu et al., 2015). 

Given the importance of melt ponds in the Arctic climate system and 
the spectral differences between snow-covered sea ice, bare ice and melt 

ponds, efforts have gone into producing pan-Arctic melt pond products 
from optical satellite systems. Rösel et al. (2012) utilized the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 8-day atmospherically 
corrected surface reflectance product together with a spectral unmixing 
algorithm to produce an 8-day based melt pond fraction data set for 
2000–2011. In a different approach, Lee et al. (2020) applied machine 
learning approaches to top-of-the-atmosphere (TOA) MODIS re
flectances, together with normalized band differences from four MODIS 
visible and near-infrared bands. This approach minimized the impact of 
anisotropic reflectance and atmospheric correction effects that exist 
when using MODIS atmospherically corrected data, which are not 
optimized for sea ice regions. Multi-layer neural networks and multi
nomial logistic regressions were used to retrieve melt pond fraction and 
binary melt pond vs. ice classification between May and August from 
2000 to present. Zege et al. (2015) used another approach and a 
different satellite source: based on the physical and optical character
istics of sea ice and melt ponds without a priori information, an iterative 
process using the Newton-Raphson method was applied to Medium 
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Resolution Imaging Spectrometer (MERIS) reflectance data. An atmo
spheric and bi-directional reflectance distribution function (BRDF) was 
applied to correct for the anisotropic reflectance properties of sea ice 
and melt ponds. Although each algorithm aims to retrieve melt ponds 
using optical satellite data, melt pond fractions differ based on the input 
data used as well as the methods employed. Further, temporal resolution 
differs between these three data sets (i.e. daily, 8-day or monthly). It is 
likely that each melt pond product has its own advantages and disad
vantages, but a full assessment of how they compare has yet to be done. 

Here, we intercompare the above-mentioned melt pond products 
from 2002 to 2011. Clear-sky high resolution optical imagery from 
Worldview (WV) and Landsat are used as a baseline assessment of ac
curacy. Melt pond classifications derived from Planet SkySat and heli
copter imagery during the Multidisciplinary drifting Observatory for the 
Arctic Climate (MOSAiC) campaign are used as well for comparison. We 
further evaluate how well the satellite-retrieved melt pond fractions 
correspond to surface albedo and depend on sea ice type. 

A comparative analysis of the different melt pond products can 
provide a recommendation to the science community regarding which 
products are suitable for their different needs. 

2. Data & methods 

2.1. Melt pond products 

This study evaluates three publicly available melt pond products 
over the 2002–2011 period that all three products are available (see 
Table 1). Melt pond fraction is defined as the fractional area of ponded 
ice within the satellite pixel. The first data product is the Rösel et al. 
(2012) (hereafter R2012) approach, which expanded on Tschudi et al. 
(2008)’s earlier work that utilized atmospherically corrected MODIS 
data (i.e., MOD09A1; https://lpdaac.usgs.gov/products/mod 
09a1v006/) together with spectral unmixing. To speed up the process
ing for a large volume of MODIS data, an Artificial Neural Network 
(ANN) approach was implemented. A disadvantage of the method, 
however, is that the atmospheric correction that goes into the MOD09 
product is not optimized for the polar regions (i.e., unknown amounts of 
aerosol optical depth, water vapor and ozone). Another issue is that the 
Bidirectional Reflectance Distribution Function (BRDF) of snow/sea ice 
and melt ponds are not explicitly accounted for in this data set. Melt 
ponds and bare sea ice scatter light anisotropically, such that the 
assumption of a Lambertian surface can lead to unrealistic results during 
melt (e.g., Zege et al., 2015, hereafter Z2015). Both of these issues are 
problematic when training the algorithm with spectral reflectance data 
obtained in situ, which are integrated over the entire hemisphere and 
taken under specific atmospheric conditions. The R2012 melt pond data 
set is available as 8-day composites on a 12.5 km spatial resolution polar 
stereographic grid. 

The second data set (Z2015) produces melt pond fractions and 
spectral sea ice albedo from MERIS Level 1B optical imagery. An 
analytical iterative procedure based on the Newton-Raphson method 
without a prior information on the sea ice spectral albedo was applied, 
which explicitly accounts for atmospheric correction and the BRDF of 
sea ice surfaces. When information on atmospheric variables, such as 
aerosol optical depth are not available, default models that represent 
background Arctic conditions are used. These data are available at daily 
temporal resolution and are also gridded to a 12.5-km spatial resolution 
polar stereographic projection. 

Finally, Lee et al. (2020) (hereafter L2020) worked with calibrated 
Level 1B TOA 250 and 500 m MODIS reflectances (e.g. MOD02HKM, htt 
ps://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements 
/products/MOD02HKM). To reduce biases from incorrect atmospheric 
correction assumptions, and to minimize the BRDF effect, normalized 
band ratios were used as input into machine learning algorithms. As 
such the approach is not dependent on in situ data to train the algorithm. 
Melt pond fraction and binary melt pond classification were retrieved by 
multinomial logistic regression and multi-layer neural networks, 
respectively. Furthermore, since the departure from a Lambertian sur
face for ice and snow surfaces increases at high solar (θo) and viewing 
(θv) zenith angles, pixels corresponding to θo > 70◦ and θv > 50◦ were 

Table 1 
Summary of three melt pond products.   

Sensor Time span Type Algorithm Main input (i.e., band) Spatial resolution of 
main input (m) 

Gridded 
resolution (km) 

Temporal 
resolution 

R2012 MODIS 8 May to 13 Sep. 
2002–2012 

Fraction Neural networks Band 1, 2, and 3 500 12.5 8-day 

Z2015 MERIS 

1 June to 30 Sep. 
2002 
1 May to 30 Sep. 
2003–2011 

Fraction 
Iterative Newton-Rhapson 
method 

1, 2, 3, 8, 10, 12, 13, and 
14 1000 12.5 Daily 

L2020 MODIS 
1 May to 31 Aug. 
2000-Present 

Fraction/ 
Binary 

Multi-layers neural 
networks and logistic 
regression 

Normalized band 
differences among 
band1–4 

250 and 500 5.0 Daily  

Table 2 
Modification of temporal resolution of melt pond products.   

Day (i.e., 8-day) Month 

W1 9–16 May 
Proxy of May W2 17–24 May 

W3 25 May −1 June 
W4 2–9 June 

Proxy of June 
W5 10–17 June 
W6 18–25 June 
W7 26 June - 3 July 
W8 4–11 July 

Proxy of July W9 12–19 July 
W10 20–27 July 
W11 28 July – 4 August 

Proxy of August W12 5–12 August 
W13 13–20 August 
W14  21 – 28 August  

Table 3 
Monthly mean ratio of first-year ice, Multi-year ice, and Ambiguous classes over 
sea ice in May to August 2005–2011.   

First-year ice (%) Multi-year ice (%) Ambiguous (%) 

May 74 11 15 
June 64 4 32 
July 63 1 36 
August 51 13 36  
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excluded. Finally, in order to avoid “false” melt pond identification once 
ponds are refrozen, surface temperatures from the MOD29 (1-km Ice 
Surface Temperature (IST)) product were used to eliminate refrozen 
melt ponds in August. Refer to Lee et al. (2020) for further information. 
While melt pond classification is based on daily 500 m TOA reflectances, 
the spatial resolution of the resulting melt pond product is subsequently 
degraded to 5 km for the full time-series (2000−2023). Melt ponds are 
produced as daily and monthly averages and are provided on the Equal- 
Area Scalable Earth (EASE)-grid. 

As R2012 does not provide daily melt pond estimates, daily melt 
ponds from Z2015 and L2020 are merged into 8-day melt pond com
posites (weeks evaluated are listed in Table 2). We further composite 

these into monthly means for long-term melt pond change analysis 
among the three data products. To intercompare seasonal and interan
nual variability among these data sets, all data sets are regridded to a 
12.5-km EASE-grid using nearest neighbor interpolation. When 
comparing against higher resolution data (e.g. WorldView and Landsat), 
the native resolution of each product is used. Since each product has a 
different pole hole area, the largest pole hole (from Z2015) is applied to 
all products for time series comparison (Table 3 and Fig. 1). Note, the 
difference in the location of the sea ice edge among the three products is 
<3%. When generating monthly averaged melt pond fractions it is 
important to note that cloud cover will influence the number of days that 
go into the monthly average. In both the daily Z2015 and L2020 data 
sets, the number of days and hence overall satellite pixels used to create 
the monthly averaged pan-Arctic melt pond fraction in a given month 
varies with cloud fraction. The mean daily cloud cover fractions over sea 
ice areas (defined using a 15% sea ice concentration threshold) in the 
Z2015 data set are 44, 37, 60 and 58% in May, June, July and August, 
respectively, while those for L2020 in the same months are 77, 66, 78%, 
and 84%. Both products typically exhibit higher cloud fraction in July 
and August than in May and June (Taylor et al., 2019). 

Fig. 1. Time-series of Pan-Arctic monthly mean melt pond fractions for each data set from 2002 to 2011. Results from L2020 are given at two spatial resolutions, 5 
km (dashed line) and 12.5 km (solid line). Note the different y-axis scales across panels. 

Table 4 
Correlation coefficients between total melt pond fractions as averaged over the 
entire Arctic Ocean for each summer month from 2002 to 2011 (confidence 
interval: 95%).  

Correlation coefficients May June July August 

R2012 vs. Z2015 0.62 0.73 0.72 0.44 
R2012 vs. L2020 0.40 0.71 0.46 0.54 
Z2015 vs. L2020 0.54 0.69 0.61 0.35  

S. Lee et al.                                                                                                                                                                                                                                       
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2.2. Higher resolution data 

We compare the coarser resolution melt pond datasets against those 
retrieved from five classified 2 m DigitalGlobe’s WorldView imagery 
(hereafter WV), as well as one Landsat-5 image (hereafter Landsat). Melt 
pond classification derived from WV follows the approach of Wright and 
Polashenski (2018) who developed an open-source algorithm to auto
matically classify four sea ice surface types from WV panchromatic and 
8-band multispectral data: snow/thick ice, dark/thin ice (i.e., it is not 
snow covered, and can include nilas and young ice during freeze-up), 

melt ponds/submerged ice, and ocean. While snow/thick ice, dark/ 
thin ice are combined into one ice class, melt ponds/submerged ice is 
classified as melt ponds. After classifying the WV images, the classes are 
converted to pond fraction following Lee et al. (2020). While more WV 
images would have been desirable, it is challenging to find WV scenes 
that are cloud-free and spatially and temporally coincident with the 
three melt pond products. As melt pond fractions from R2012 are only 
provided as 8-day composites, we may not expect the composite to 
match exactly with the location/date of the WV image. On the other 
hand, while melt ponds from Z2015 are from the same date, the 

Fig. 2. 8-day composited (2–9 June 2003) melt pond fractions from (a) R2012, (b) Z2015, (c) L2020 at 5-km spatial resolution and (d) L2020 at 12.5-km spatial 
resolution. An Aqua MODIS RGB 250-m scene from 6 June 2003 is shown in (e). The blank areas represent cloud covers and ocean areas. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

S. Lee et al.                                                                                                                                                                                                                                       
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acquisition time is unknown. For L2020, we were able to locate WV 
images that were within 20 h of the MODIS swath (see Table 4). 

Since Landsat has a larger swath than WV and a spatial resolution of 
~30 m, this comparison has the benefit of including a larger area than 
can be achieved using WV data. The disadvantage is that there is no melt 
pond classification algorithm currently available for Landsat. Never
theless, the data are useful for a visual assessment of melt pond loca
tions. One Landsat image from 11 July 2008 is utilized here. 

Finally, we additionally include melt pond classifications around the 
MOSAiC drifting station. The melt pond classification results are ob
tained using Planet SkySat satellite and helicopter imagery with a spatial 
resolution of 0.5 m and between 0.03 and 0.5 m, respectively. (Wright 
et al., 2021; Niels, 2023). The SkySat imagery does not provide RGB 
composite imagery. The classification algorithm for SkySat used is same 
as the one employed for WV classification (Wright and Polashenski, 

2018). The three-band (RGB) helicopter images are available as classi
fied orthomosaics (Fuchs and Birnbaum, 2023). Surface type classes 
including melt ponds were derived with the customized classification 
tool PASTA-ice (Fuchs, 2023). It is notable that these data come from 
marginal ice zone in Fram Strait characterized by high sea ice dynamics, 
fragmentation, and the flooding at the edge of ice. 

2.3. Albedo and sea ice type data 

Surface albedo and sea ice type were additionally utilized to assess 
their relationship with the pan-Arctic retrieved melt pond fractions. 
Clear-sky surface albedo comes from the National Oceanic and Atmo
spheric Administration (NOAA) Climate Data Record (CDR) of Extended 
and Advanced Very High Resolution Radiometer (AVHRR) Polar Path
finder (APP-x; Key et al., 2016). The APP-x set contains several visible- 

Fig. 3. Mean and standard deviation of melt pond fractions averaged from 2002 to 2011 for May through August from each dataset.  

S. Lee et al.                                                                                                                                                                                                                                       
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and thermal-infrared-retrieved geophysical variables from 1982 to 
present. These data are available twice daily (0400 and 1400 local solar 
time) at 25-km spatial resolution. Here we use the afternoon pass 
(1400). 

Sea ice type is derived from multi-sensor inputs, including Special 
Sensor Microwave-Imager/Sounder (SSMIS), AMSR2, and ASCAT, 
through the Ocean and Sea ice Satellite Application Facility (OSI SAF) 
(Aaboe et al., 2021). The three ice type classes are first-year ice (FYI), 
multi-year ice (MYI), and ambiguous. During summer, microwave 
emission and backscatter is impacted by liquid water, resulting in more 
pixels classified as ambiguous. This is problematic then in evaluating the 
role of ice type on melt pond fractions. Table 3 shows monthly mean 
ratio of FYI, MYI, and ambiguous classes. In particular, the ratio of 
ambiguous class is >30% in June and August 2005 to 2011. When the 
ratio of ambiguous classes is >50% over sea ice (defined using a 15% sea 
ice concentration threshold), it is not used in comparison with melt pond 
fraction. The ambiguous class is also excluded for the comparison. Sea 
ice type data is available daily from 2005 to present at 10 km spatial 
resolution. 

In our comparisons below we create monthly averages of surface 
albedo and ice type, regrid them to 12.5 km and compare against the 
12.5 km gridded monthly melt pond fractions. Spatial correlations be
tween albedo and pond fractions are provided for May to August over 

the 2002 to 2011 time-period. 

3. Results 

Below we start with an intercomparison of the long-term monthly 
melt pond fractions from each data set at 12.5-km spatial resolution 
before comparing the products against higher spatial resolution data. 

3.1. Intercomparison of melt pond fraction 

Time-series of pan-Arctic averaged monthly melt pond fractions from 
2002 to 2011 for May through August are shown in Fig. 1. All three 
products generally show similar interannual variability in pan-Arctic 
melt pond fractions, though the agreement varies between months, 
with higher agreement generally in June and July and worse agreement 
at the start and end of the melt season (e.g., May and August) (Table 4). 
For example, a high correlation (r ≥ 0.62) is found between R2012 and 
Z2015 in all months except for August when it drops to r = 0.44. Overall, 
despite Z2015 having the least amount of interannual variability, it is 
the most highly correlated product with R2012. The highest correlation 
with L2020 occurs in June, on the order of r = 0.70 for both R2012 and 
Z2015, whereas in May and August the correlations decrease to 0.54 or 
less. Good agreement between L2020 and Z2015 is also found in July (r 

Fig. 4. (a) WV band 2 (i.e., blue band) on 14 June 2010. (b) WV classification results on 14 June 2010 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 14 June 2010. (d) melt pond fraction from L2020 gridded into 12.5 km on 14 June 2010. (e) melt pond fraction from 
R2012 8-days composite centered on 10–17 June 2010. (f) melt pond fraction from Z2015 on 14 June 2010. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

S. Lee et al.                                                                                                                                                                                                                                       
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= 0.61), but not with R2012. 
In terms of long-term trends, the different retrieval methods mostly 

do not indicate a trend in pond fractions between 2002 and 2011. The 
exception is in July when mean fraction slightly increases (largest in the 
L2020 algorithm). L2020 further indicates an increase in melt pond 
fraction also in August. This increase starts in 2006, and the highest 
August melt pond fraction occurred in 2011, exceeding 40% of the sea 
ice area. The positive trends in July and August are not statistically 
significant. 

Despite similar interannual variability, the areal coverage of melt 
ponds can differ considerably between data sets. Since L2020 relies on 
normalized band ratios between the blue and near-infrared bands, there 
is increased sensitivity to liquid water (Lee et al., 2020). This may falsely 
lead to wet snow being classified as a melt pond. The use of these two 
bands may also result in cases of thin ice and leads/cracks to be classified 
as melt ponds. Combined, this may help to explain why L2020 has 
considerably higher pond fractions in June compared to the other data 
sets as this is the time of year when melt onset starts over large parts of 
the Arctic Ocean (e.g. Stroeve et al., 2014). Interestingly, none of the 
data sets show monthly mean melt pond fractions in excess of 35% 
during the peak of the melt season in July in contrast to earlier studies 
(e.g., Romanov, 1995; Tschudi et al., 2008; Perovich et al., 2007). One 
reason could be that these studies provided melt pond fractions at higher 
spatial resolution resulting in overall higher percentage of ice area 
covered by ponds. However, regridding the L2020 data from 5 km to 
12.5 km results in slightly higher melt pond fractions between May and 

July. It is only in August that the coarser resolution data resulted in 
lower pond fractions, and only between 2005 and 2007. Thus, melt pond 
fractions retrieved at different spatial scales may not be directly 
comparable. 

In general, R2012 has the lowest melt pond fraction in most months, 
while the L2020 product has the overall highest melt pond fractions. 
May is an exception, when sometimes the Z2015 algorithm gives the 
largest overall pond fractions in several years. Confirmation of a positive 
bias in L2020 melt pond fractions in May 2009 and 2010 is seen through 
visual inspection of the level-2250-m and 500-m spatial resolution 
MODIS images (not shown). Leads and cracks between ice floes are 
easily identifiable at 500 m, and while they should be separately clas
sified as open water, it appears those are often falsely classified as melt 
ponds, especially within the marginal ice zone (MIZ). Since the L2020 
melt pond algorithm is first run on the 500-m data before spatial aver
aging to 5 km, variability in leads/cracks from year-to-year may in part 
also explain the higher interannual variability seen in the L2020 data 
set. Monthly spatial melt pond fractions from all data sets are shown in 
the supplementary material from 2002 to 2011 (Fig. S1). 

One curious deviation between products occurs later in the time- 
series when melt pond fractions from L2020 start to increase faster 
than the other data products. For example, starting in July 2009, there is 
a spike in melt pond fraction as a result of high pond fractions within the 
Chukchi and Beaufort seas (see Fig. S1) that continues in subsequent 
years. Similarly, in August 2007 there is a step-wise increase in pond 
fraction. One would expect an increase in melt pond fraction during 

Fig. 5. (a) WV band 2 (i.e., blue band) on 25 June 2010. (b) WV classification results on 25 June 2010 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 25 June 2010. (d) melt pond fraction from L2020 gridded into 12.5 km on 25 June 2010. (e) melt pond fraction from 
R2012 8-days composite centered on 18–25 June 2010. (f) melt pond fraction from Z2015 on 25 June 2010. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

S. Lee et al.                                                                                                                                                                                                                                       
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August given the delays in freeze-up across most of the Arctic (e.g. 
Stroeve and Notz, 2018). Trends in freeze-up from 2002 to 2011 are on 
the order of 1 to 4 days yr−1 each year, yet there is a discernable shift in 
later freeze-up in 2007 that could explain the observed increase in pond 
fraction. 

Further insights behind the seasonal differences are revealed by 
looking at differences in the spatial patterns. Fig. 2 shows an example of 
an 8-day composite in early June (2–9 June 2003) together with an Aqua 
MODIS RGB 250-m image (6 June 2003). R2012 and Z2015 retrieve low 
melt pond fractions in the East Siberian Sea, whereas L2020 exhibits 
pond fractions exceeding 50% in many areas. The corresponding RGB 
MODIS image shows either very thin or flooded level ice by melt water 
in this region. Note that here and throughout the paper, we use the term 
“flooding” to describe sea ice that is inundated by meltwater, rather than 
the flooding that is associated with negative freeboard and snow-ice 
formation. In regions of level first-year ice, the surface often becomes 
extensively covered by melt ponds rather than forming smaller, isolated 
ponds like those typically observed on multiyear sea ice. In some 

instances, extensive ponding over level sea ice can be difficult to discern 
from very thin ice. This highlights the challenges of visually identifying 
what constitutes a melt pond. While melt ponds are not easily identifi
able in the MODIS image, given the time of year of this image and the 
fact that the melt onset already began (spatially averaged melt onset 
date of 7 May), it is probable that there could be thin ice and/or flooding 
of the level ice by melt water that is then picked up as melt pond fraction 
using L2020. 

To further highlight spatial variability between the data sets, we 
show the mean 2002–2011 averaged melt pond fractions for each month 
together with the standard deviation in Fig. 3. On average, the 
2002–2011 mean spatial patterns in melt pond fraction are broadly 
similar in May, but this changes dramatically as the summer progresses. 
Despite some similarities in spatial patterns as to where melt ponds tend 
to be more extensive (i.e., the Beaufort, Chukchi, and East Siberian seas 
in June), the magnitudes differ substantially, especially in comparison to 
the L2020 data set. The L2020 product suggests melt ponds expand 
north of Greenland in July and across the Arctic Ocean in August, 

Fig. 6. (a) WV band 2 (i.e., blue band) on 3 July 2010. (b) WV classification results on 3 July 2010 (Wright and Polashenski, 2018). (C) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 3 July 2010. (d) melt pond fraction from L2020 gridded into 12.5 km on 3 July 2010. (e) melt pond fraction from 
R2012 8-days composite centered on 26 June ~3 July 2010. (f) melt pond fraction from Z2015 on 3 July 2010. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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reaching fractions as high as 50%, whereas the other two products show 
modest melt pond coverage in these regions during advanced melt. 
Leads and small open water area detected by the MODIS 500 m scale 
around MYI zone and central Arctic in July and August, leading to high 
L2020 melt pond fraction. High melt pond fractions near the pole in 
August have been observed during field campaigns, including during the 
year-long Multidisciplinary drifting Observatory for the Study of Arctic 
Climate (MOSAiC) expedition (e.g. see Fig. 1, Stroeve et al., 2022). 

In all products, the standard deviation is smallest in May, with 
interannual variability limited to the MIZ, where melt first begins and 
there is high temporal variability in the timing of melt onset. However, 
as summer progresses, the standard deviation increases over a larger 
region. Regions with a high standard deviation are generally limited to 
the MIZ in R2012 and Z2015, but slightly expand to more northerly 
locations by August. Overall, Z2015 shows the least amount of inter
annual variability (seen also in Fig. 1), with Arctic-averaged standard 
deviations from May to August of 0.03, 0.05, 0.05, and 0.04, respec
tively. L2020, on the other hand, shows the largest and most widespread 
standard deviations which peak in August. Large interannual variability 
is not surprising in August as this is the time of year when melt pond 
fractions start to refreeze and thus melt pond fraction is strongly 
dependent on synoptic weather patterns that vary from year-to-year. 
The larger standard deviation in L2020 agrees with the larger interan
nual variability seen in Fig. 1 and the step-wise increase in melt pond 
fraction in recent years. 

3.2. Comparison against high-resolution images (i.e., Worldview and 
Landsat) 

It is challenging to fully assess why the three products sometimes 
provide very different melt pond fraction estimates since they use (1) 
different sensors, (2) different inputs from those sensors, (3) different 
approaches for masking out clouds, (4) different techniques of 
compositing, and (5) data with different spatial resolutions. Neverthe
less, to assess the reliability of the different products, we compare melt 
pond fractions in 2010 and 2011 against high-resolution melt pond 
fractions derived from WV and imagery from Landsat. 

We first focus on comparisons against those retrieved from WV im
agery using the Wright and Polashenski (2018) classification algorithm. 
The WV image on 14 June 2010 shows large ice floes surrounded by thin 
or brash ice, with few melt ponds and small open water areas between 
the floes (Fig. 4(a) and (b)) The WV melt pond fraction in this scene is 
9.3% (Table 4). Pond fractions from R2012 (10–17 June 2010) and 
Z2015 are in close agreement with the WV melt pond classification, 
showing few melt ponds in the vicinity of the WV image and an overall 
pond fraction below 12% over the larger area. On the other hand, both 
the 500-m and the 12.5-km spatial resolution L2020 data set produces 
relatively high melt pond fractions within the WV scene (35.2% and 
30.7%, respectively). In this instance, it appears that the thin ice areas 
are classified as melt ponds by L2020. Later in the melt season (25 June 
and 3 July 2010), WV imagery near Ellesmere Island show higher melt 
pond fractions (Figs. 5 and 6), and all three melt pond products estimate 
broadly similar pond fractions that agree with the WV classification. 
Overall, L2020 matches best with the WV data on both these dates, with 
the lowest RMSE value (see Table 5). 

Another early melt season example (4 May 2011) demonstrates the 
L2020 algorithm outperforming R2012 and Z2015. Interestingly, while 
this WV scene is quite early in the melt season given the northerly 
location (i.e., North of Ellesmere Island), the WV classification suggests 
8% of the scene contains melt ponds (Fig. 7 and Table 5). R2012 and 
Z2015 significantly underestimate the melt pond fraction, with fractions 
on the order of 0.3% and 4.7%, respectively. The temporal-resolution 
differences with the WV image may be one explanation for the low 
bias in R2012 and Z2015. On the other hand, movement of sea ice is 
limited in this region, so the temporal mismatch may not be the only 
factor. By 13 July 2011, all three data products show more advanced 
melt pond formation in agreement with the WV imagery (Fig. 8). The 
L2020 data product once again gives the highest melt pond fraction at 
34.2% and is close to the WV value of 36.9%, while R2012 and Z2015 
give pond fractions of 24.5% and 28.7%, respectively (Table 5 and 
Fig. 8). 

For comparison with WV in 2022, only L2020 data are available. The 
melt pond fraction derived from L2020 was found to be higher than the 
WV-based melt pond fraction (Figs. 9 and 10). While the image 

Table 5 
WV mean melt pond fraction and mean melt pond fraction of three melt pond products. When the pond fraction is in red, it most closely matches the WV classification.  

WV date 
and time 
(hh: 
mm) 

Time 
difference 
with L2020 
MODIS 

Image 
acquisition 
location 

WV mean melt 
pond fraction 
based on the 
classification 
(%) 

Mean melt 
pond 
fraction 
from 
L2020 
500 m in 
the grey 
box (%) 

Mean melt 
pond 
fraction 
from 
L2020 
12.5 km in 
the grey 
box (%) 

Mean melt 
pond 
fraction 
from 
R2012 in 
the grey 
box (%) 

Mean melt 
pond 
fraction 
from 
Z2015 in 
the grey 
box (%) 

RMSE 
between 
L2020 
500 m and 
WV in the 
grey box 

RMSE 
between 
L2020 
12.5 km 
and WV in 
the grey 
box 

RMSE 
between 
R2012 12 
5 km and 
WV in the 
grey box 

RMSE 
between 
Z2015 
12.5 km 
and WV in 
the grey 
box 

14 June 
2010 
00:40 

4 h 
30 mins 

East 
Siberian Sea 9.3 35.2 30.7 11.2 12.6 24.2 22.3 3.1 4.4 

25 June 
2010 
15:25 

3 h 
40 mins 

Arctic 
Archipelago 

42.9 51.2 45.3 32.7 54.7 6.5 3.4 10.5 12.2 

3 July 
2010 
03:50 

20 h 
Arctic 
Archipelago 33.6 33.7 30.5 36.7 38.6 1.3 2.7 3.5 6.5 

4 May 
2011 
12:00 

2 h 
15 mins 

North 
Ellesmere 
island 

8.0 13.7 11.2 0.3 4.7 4.7 2.5 7.9 4.2 

13 July 
2011 
22:25 

30 mins Chukchi 
Sea 

36.9 34.2 32.8 24.5 28.7 2.8 3.7 11.2 7.8 

20 June 
2022 
13:32 

9 mins 
Barents 
Sea 15.4 26.2 24.1 – – 11.9 8.6   

20 July 
2022 
08:53 

33 mins  
Kara Sea 

7 10.2 11.9 – – 3.9 4.2    
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acquisition times on 20 June and 20 July are only 9 and 33 min apart, 
respectively, a slight spatial mismatch may have led to the higher overall 
detected melt ponds in the L2020 data product, as some of the open 
water areas seen in the two data sets are not perfectly aligned. It is also 
apparent that the WV classification algorithm mis-classified some open 
water areas in the lower left-hand corner as melt ponds on 20 July 2022. 

Overall, based on the few WV comparisons performed, the R2012 
agreed best with the WV data on 14 June 2010 and underestimated the 
pond fractions on the other dates. Outside of 14 June 2010, L2020 
provided the best agreement with WV-classified images. 

We also examined a Landsat scene within the MIZ in Beaufort Sea on 
11 July 2008. This scene was within 21 min of a corresponding MODIS 
swath. Within this scene, L2020 once again indicates the highest melt 

pond fractions, followed by Z2015, and then R2012 (Fig. 11). The 
Landsat image shows clear evidence of surface flooding in the lower 
center part of the image where high melt pond fractions are retrieved 
using L2020. However, these comparisons come with an important 
caveat as the ice is moving and thus an exact spatial match is not 
possible. This is especially problematic within the MIZ where the ice can 
be highly dynamic, and especially for comparisons with the R2012 al
gorithm as it only provides 8-day composites. 

Finally, we also include a comparison of melt pond classifications for 
the MOSAiC expedition with the melt pond fraction obtained from 
L2020 on 22 June 2020 (SkySat) and 22 July 2020 (helicopter-borne 
melt pond) (Fig. 12 and Fig. 13). The temporal difference between 
L2020 and Skysat/Helicopter-borne image is 28 mins and 1 h 22 mins, 

Fig. 7. (a) WV band 2 (i.e., blue band) on 4 May 2011. (b) WV classification results on 4 May 2011 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 4 May 2011. (d) melt pond fraction from L2020 gridded into 12.5 km on 4 May 2011. (e) melt pond fraction from 
R2012 8-days composite centered on 9–16 May 2011. (f) melt pond fraction from Z2015 on 4 May 2011. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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respectively. The L2020 melt pond fraction on 22 June 2020 with a 
spatial resolution of 500 m and 12.5 km is found to be 15.2% and 14.7%, 
respectively. In contrast, the melt pond fraction derived from SkySat is 
found to be 10.1%. This pond fraction is somewhat low for the time of 
year, yet the MOSAiC floe was located above 81◦N and thus we could 
expect lower overall melt pond fractions. In this comparison, the swath 
width of the SkySat image is less than for WV and thus the 12.5-km data 
product only had two pixels within the scene In terms of comparison 
against helicopter-borne melt pond classification, considering the time 
of year and temporal difference between the helicopter-borne image and 
L2020, the fraction difference between helicopter-borne image (24.5%) 
and L2020 (53.3%) is 28.8%. 

Overall, it is not surprising that L2020 tends to outperform the other 
two data sets in many of these intercomparisons given the data product 
is produced at a higher spatial resolution. As one would expect, the 
coarser the melt pond fraction data set (i.e., 12.5 km), the less the 
product can capture the spatial heterogeneity of the sea ice surface. 
Thus, higher-resolution products may be in better agreement with one 

another. On the other hand, L2020 tends to estimate a higher melt pond 
fraction compared to the other two data products especially early in the 
melt season in part because leads and small open water areas are 
sometimes misclassified as melt ponds. The L2020 algorithm also tends 
to map flooded level ice as melt ponds. While this perhaps is not exactly 
a melt pond in the classic sense, flooded ice will have similar impacts on 
the energy balance and light penetration through the ice. Thus, 
depending on the application of the melt pond datasets, this information 
may still be useful. 

However, it is also important to note that differences in acquisition 
times can also lead to biases in the comparison for the other data 
products, especially during periods of fast ice drift. This is challenging to 
correct for as current ice motion data products are not of sufficient 
spatial and temporal resolutions to capture drift speed a few hours apart. 
Thus, an accuracy assessment of the R2012 and Z2015 is more chal
lenging to assess. While these inter-comparisons cannot conclusively 
point to which melt pond product best captures the “true” melt pond 
fraction, they do provide a general sense of performance and the 

Fig. 8. (a) WV band 2 (i.e., blue band) on 13 July 2011. (b) WV classification results on 13 July 2011 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 13 July 2011. (d) melt pond fraction from L2020 gridded into 12.5 km on 13 July 2011. (e) melt pond fraction from 
R2012 8-days composite centered on 12–19 July 2011. (f) melt pond fraction from Z2015 on 13 July 2011. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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difficulties in mapping melt ponds at the relatively coarse spatial reso
lution of MODIS or MERIS data. 

3.3. Comparisons against albedo and sea ice type 

We lastly evaluate the relationship between interannual pond frac
tions, surface albedo and sea ice type. The surface albedo gradually 
decreases over time as melt ponds develop (Polashenski et al., 2012; 
Perovich and Polashenski, 2012), but even before melt ponds develop 
the albedo drops as the snow melts (Curry et al., 1995). By mid-July 
most snow has melted except near thicker, deformed ice where snow 
drifts can persist. The APP-X minimum surface albedo of 0.1 to 0.4 in 

July coincides with peak melt pond fraction, while in August, drained or 
refrozen melt ponds cause the albedo to increase towards the bare sea ice 
value of 0.7 (Light et al., 2022). 

As expected, a negative correlation exists between melt pond fraction 
and surface albedo (Fig. 14). Z2015 pond fractions are highly correlated 
with surface albedo across most of the Arctic Ocean (R < −0.70) 
(Fig. 14b) whereas high correlations (R = −0.65) for R2012 are limited 
to the north of Greenland and the Canadian Arctic Archipelago 
(Fig. 14a). L2020 pond fractions are overall weaker correlated with 
surface albedo throughout the entire Arctic region (−0.83 < R < −0.3). 

Times-series of monthly melt pond fraction and albedo from May to 
August for a location north of Greenland (85.383◦N, 17.475◦W) is 

Fig. 9. (a) WV band 2 (i.e., blue band) on 20 June 2022. (b) WV classification results on 20 June 2022 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 20 June 2022. (d) melt pond fraction from L2020 gridded into 12.5 km on 20 June 2022. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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shown in Fig. 14d. In general, the surface albedo decreases from May to 
July and somewhat increases in August, whereas melt pond fraction 
increases from May to July and then slightly declines in August, leading 
to inverse correlation coefficients of −0.72 (R2012), −0.80 (Z2015), 
and − 0.40 (L2020). However, sometimes melt pond fractions decline 
despite the albedo decreasing. For example, between May and June in 
2002, 2006, and 2009, the L2020 melt pond fractions decrease. A 
decrease in R2012 melt pond fraction from May to June is also seen in 
2009. A decrease in melt pond fraction can occur by rapid melt water 

drainage (Polashenski et al., 2012; Perovich and Polashenski, 2012; 
Tanaka, 2020), which is normally reflected by an increase in the surface 
albedo. Another reason could be a result of excessive cloud coverage that 
biases both the monthly melt pond estimate as well as the clear-sky al
bedo. For example, since L2020 employs a strict cloud screening process, 
the monthly mean for June 2008 is based on just three days (28–30 
June). The lack of sufficient clear-sky days also occurs in July 2004 (only 
three clear-sky days). 

Using the sea ice type masks, we find that melt pond fraction on FYI 

Fig. 10. (a) WV band 2 (i.e., blue band) on 10 July 2022. (b) WV classification results on 10 July 2022 (Wright and Polashenski, 2018). (c) melt pond fraction from 
L2020 with the native resolution (i.e., 500 m) on 10 July 2022. (d) melt pond fraction from L2020 gridded into 12.5 km on 10 July 2022. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. (a) melt pond fraction from R2012, 8-days composite centered on 4–11 July 2008; (b) melt pond fraction from Z2015 on 11 July 2008; melt pond fraction 
from L2020 on 11 July 2008 at (c) 5 km spatial resolution and (d) 500 m swath data. The black areas in (a)-(d) are regions classified as clouds. (e) sea ice con
centration from AMSR-E on 11 July 2008. (f) Landsat-5 band 1(i.e., blue band) on 11 July 2008. 

Fig. 12. (a) Melt pond classification derived by Skysat from MOSAiC expedition. (b) melt pond fraction from L2020 with the native resolution (i.e., 500 m) on 22 
June 2020. (c) melt pond fraction from L2020 gridded to 12.5 km on 22 June 2020. The time difference between Skysat and MODIS is 28 mins. 
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is typically higher than that on MYI. An exception is noted in May 2007 
and 2009. The small open water areas classified as FYI in the East Si
berian Sea in May 2007, where L2020 estimates high melt pond fraction 
(Sup. Fig. 1). Z2015 produces lower pond fractions around the Beaufort 
Sea, which is classified as MYI, resulting in lower fraction in May 2009 
than June (Sup. Fig. 1). 

From May to August, the daily mean differences in Z2015 melt pond 
fractions between FYI and MYI are 2%, 5%, 4%, and 3%. On the other 
hand, the corresponding differences in L2020 melt pond fractions are 
2%, 6%, 13%, and 17%. The melt pond fraction on FYI shows greater 
variability than on MYI. L2020 displays larger deviations within every 
month than Z2015. While melt pond fraction from Z2015 and L2020 on 
FYI is larger than on MYI in June, Webster et al (2015) demonstrates 

melt pond fraction on MYI surpasses on FYI in June around the Chukchi 
Sea (Fig. 15). 

Since monthly averages exclude the spatio-temporal variability that 
is important for initiating melt pond formation, we show examples of 
regionally averaged melt pond fractions together with albedo in Fig. 16. 
The NSIDC regional mask (https://nsidc.org/data/g02186/versions/1) 
is used for calculating regional averages for eight Arctic Ocean regions. 
Since the R2012 dataset is not available at daily resolution, it is not 
included. 

While there is an inverse relationship between melt pond fraction 
and albedo across all regions, the level of co-variation between the two 
variables differs across regions. The daily melt pond evolution from 
L2020 shows more temporal variability than Z2015, which tends to 

Fig. 13. (a) Melt pond classification of the MOSAiC Central Observatory 2 floe (expedition leg 4) (b) blue band derived by helicopter from MOSAiC expedition. (c) 
melt pond fraction from L2020 with the native resolution (i.e., 500 m) on 22 July 2020. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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gradually increase through July and then decrease in August. L2020 
generally shows similar increases and decreases yet is considerably 
noisier. While the albedo rapidly decreases after early to mid-June, the 
albedo exhibits little temporal variability. 

Next we analyzed the spatial distribution of melt ponds in compar
ison with albedo over landfast ice in the East Siberian Sea. Note however 
that the spatial distribution of melt pond fractions from each product 
can differ due to the different cloud screening processes involved in data 
product (Figs. 17 and 18). While the monthly mean melt pond fraction 
from L2020 is generally higher than that from R2012 and Z2015, the 
mean melt pond fraction from L2020 is lower in East Siberian Sea on 13 
July 2003 (Fig. 17). The intercomparison results on 17 June 2010 are 
similar to those on 13 July 2003 (Fig. 18). Although the overall melt 
pond fraction spatial distributions are similar, at 72◦N/132◦E, the L2020 
produces noticeably lower fractions than R2012, and in a region where 
the surface albedo is around 0.35. 

4. Discussion 

While we cannot clearly state which melt pond product is most ac
curate based on the above comparisons, some general statements can be 
made about how the products differ. This information may help users 
make informed decisions about which product is most suitable 
depending on the application as well as provide insights as to how the 
data providers may improve their products. This study demonstrates 
that MODIS and MERIS-derived melt pond products suffer from a loss of 
detail as compared to high-resolution imagery like WV, Landsat, and 
Skysat. While the spatial resolution of input data for the melt pond data 

products evaluated is <1-km, it is worth noting that the gridded reso
lution of L2020 is nearly twice as high as that of R2012 and Z2015. Thus, 
it is not surprising that L2020 better matches the higher resolution melt 
pond estimates. On the other hand, since sea ice is dynamic, direct 
matching of WV or Landsat with a MODIS or MERIS image complicates 
these intercomparisons. It is further difficult to find clear-sky coincident 
higher resolution images, limiting the number of intercomparisons used 
in this study. We also cannot fully assess whether the satellite-based melt 
pond products are higher or lower than in-situ observations (Webster et 
al 2022). To further address the accuracy of the individual data sets, a 
comprehensive field campaign that combines in situ data, airborne im
aging, high resolution (< 3 m) and coarse resolution (<12.5 km) satellite 
data is needed. 

Coarse resolution satellite data is the only way to observe the pan- 
Arctic daily. Despite the limitations of the three satellite data products 
evaluated, the seasonal evolution is broadly consistent between the data 
sets. The key differences pertain to pond fractions in June and August, 
when the L2020 data product consistently shows higher pond fractions 
as well as higher interannual variability. It appears L2020 is more sen
sitive to ice flooding, thin ice and leads, which may lead to an over
estimation of melt pond fraction. On the other hand, it is unclear if 
flooded ice should not also be classified as a melt pond. While L2020 
produced higher melt pond fractions than R2020 and Z2015, in com
parison with WV, melt pond fractions from L2020 in closer agreement to 
those derived from WV imagery. The spatial distribution of L2020 is 
more correlated than Z2015 in the spatial comparison with other melt 
related variables. Although the dependence on using a normalized band 
ratio between the blue and the near-infrared band may result in more 

Fig. 14. The correlation map between melt pond fraction and albedo from May to August from 2002 to 2011. (a) R2012 vs. albedo, (b) Z2015 vs. albedo, (c) L2020 
vs. albedo, (d) the time series of R2012, Z2015, L2020, and albedo at North Greenland (85.383◦N, 17.475◦W). 
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sensitivity to liquid water in the L2020 data product, the use of band 
ratios helps to reduce biases from incorrect atmospheric correction as
sumptions and minimizes errors related to unknown BRDF distributions. 
While L2020 melt pond fractions in August are larger than the other data 
products despite the removal of refrozen melt ponds from the final pond 
fraction estimates, this is in agreement with trends towards later freeze- 
up. 

It is interesting that none of the data sets show monthly mean melt 
pond fractions in excess of 35% during the peak of the melt season in 
July in contrast to earlier studies (e.g., Romanov, 1995; Tschudi et al., 
2001; Perovich et al., 2002). These studies provided melt pond fractions 
at higher spatial resolution than those used here and thus a direct 
comparison may not be validA path forward could be to blend melt pond 
classification results from WV with those from MODIS/MERIS to obtain 
increased spatial structure and improved information on melt pond 
characteristics. L2020 melt pond fraction shows good agreement with 

WV-based classification results, yet its monthly correlation with albedo 
is weaker than R2012 and Z2015. This is because km-scale albedo 
cannot explain change in albedo by the spatial detail of melt pond. 

Finally, it is unclear how best to classify flooded ice. Flooded ice is 
common over level ice, such as first-year or landfast ice. For example, in 
Dease Strait (Nunavut) one study found that as a result of delayed melt 
pond formation, >95% of the level ice was flooded on the 18th of June 
2014 (Diaz et al., 2018). This extensive flooding had to do with level ice 
that was covered by 10 cm of new snow prior to a period of warm air 
temperatures. 

5. Conclusions 

Given the importance melt ponds play in the Arctic climate system, 
pan-Arctic melt pond products have historically been a critical data gap. 
Several studies have tried to fill this data gap by developing satellite- 

Fig. 15. Mean melt pond fraction based on sea ice type (i.e., FYI and MYI) from 2005 to 2011.  
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based melt pond products, yet they differ in method, spatial and tem
poral resolution, resulting in stark differences in pond fraction and 
interannual variability. This paper intercompares three publicly avail
able melt pond products, Rösel et al. (2012), Lee et al. (2020) and Zege 
et al. (2015). 

These different products are at times in agreement, especially early 
in the melt season, but they start to deviate as the melt season pro
gresses, with the melt pond product of Lee et al. (2020) having consid
erably larger melt pond fractions in June and August. In a sense, 
increased melt pond fractions in August are in agreement with trends 
towards later freeze-up (e.g. Stroeve and Notz, 2018), and thus one 
would expect ponds still cover the ice in August. It is important to note 
however that none of the three melt products indicate a significant 
change in melt pond fractions between 2002 and 2011 except in July; 
L2020 further shows positive trend in melt pond fractions in August. 
However, none of the trends are statistically significant. 

Comparison of the coarser resolution melt pond fraction estimates 
with high resolution satellite images such as Landsat and WorldView 
reveals that R2012 generally has the lowest melt pond fractions and may 
be most accurate in May. However, for the other summer months this 
algorithm underestimates pond fractions and we find that L2020 best 
matches WV-derived pond fractions in June and July in part because of 
the higher spatial resolution. However, while the higher spatial resolu
tion data set of L2020 better captures the spatial distribution of WV- 
derived pond fractions, it does at times suffer from biases as a result of 
flooded ice, thin ice and/or leads misclassified as ponds. For spatial 
correlation between monthly melt pond fraction and albedo, Z2015 is 
the most negatively correlated, followed by R2012 and L2020. While the 
melt pond fraction on FYI generally is higher than on MYI, the difference 
is more pronounced in L2020 than R2012. 

The purpose of this paper is to show the characteristics of current 
available melt pond products and provide a recommendation to the 
science community for user’s needs. For further study, Artificial 

Intelligence (AI) approaches that consider the “shape” of melt ponds 
such as perimeter, fractal dimension, roundness, and convex degree 
could be developed to constrain the shape of expected melt ponds and 
perhaps separate out ponds over multiyear or rough ice from melt water 
over level ice. 
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Fig. 16. Daily regional mean melt pond and albedo based on NSIDC Arctic regional mask from 9 May to 31 August 2003. Grey columns indicate mean melt onset 
date. Albedo evolution stages are illustrated with melt pond fractions in Central Arctic in 2003. 
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Fig. 17. Spatial comparison against albedo on 13 July 2003 around East Siberian Sea. 8-day composited (12–19 July 2003) melt pond fraction from R2012 at 12.5 
km spatial resolution. 
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PANGAEA (https://doi.org/10.1594/PANGAEA.949167). 
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