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Abstract— Passive radar has advantages over its active coun-
terpart in terms of cost and stealth. In this paper, we address
passive radar imaging problem by interferometric inversion using a
spectral estimation method with a priori information within a deep
learning (DL) framework. Cross-correlating the received signals
from different look directions mitigates the influence of shared
transmitter related phase components despite lack of a cooperative
transmitter, and permits tractable inference via interferometric
inversion. To this end, we leverage deep architectures for modeling
a priori information and for improving sample efficiency of state-of-
the-art interferometric inversion methods. Our approach comprises
of an iterative algorithm based on generalizing the power method,
and applies denoisers using plug-and-play (PnP) and regularization
by denoising (RED) techniques. We evaluate our approach using
simulated data for passive synthetic aperture radar (SAR) by using
convolutional neural networks (CNN) as denoisers, and compare
our results with state-of-the-art. The numerical experiment shows
that our method can achieve faster reconstruction and superior
image quality in sample starved regimes than the state-of-the-art
passive interferometric imaging algorithms.

Index Terms—Deep learning, interferometric imaging, plug-
and-play, denoiser.

I. INTRODUCTION

A. Problem Statement

THIS paper studies passive interferometric imaging,
which involves the recovery of a signal of interest from
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the cross-correlations of its linear measurements collected
in a spatially diverse sensing geometry. For such imaging
geometries, let k = 1, · · ·K correspond to the frequency
samples over the transmission band ω ∈ [ωc −B/2, ωc +
B/2] used in the acquisition system, whereas p, q ∈ S
index the locations of the receivers, with |S| = S. Let
akp,a

k
q ∈ CN denote the sampling vectors corresponding

to the pth and qth sensors at a given frequency ωk, and
ρ∗ ∈ CN be the ground truth/signal of interest. Consider
the measurement matrix Ak per frequency, where akp,q are
the two distinct columns such that, for k = 1, · · · ,K,
fk = (Ak)Hρ∗, with fk

p = ⟨akp,ρ∗⟩, fk
q = ⟨akq ,ρ∗⟩, (1)

as the linear measurements at each receive location. The
cross-correlated measurements from each location pair
(p, q) correspond to the interferometric measurements in
frequency domain, as:

dkpq = fk
p f

k
q = (akp)

Hρ∗(ρ∗)Hakq k = 1, · · ·K, (2)

where (·) denotes complex conjugation. Thus, interfer-
ometric inversion involves recovery of ρ∗ ∈ CN from
dkpq ∈ C, k = 1, ...,K under the quadratic model in (2).

In essence, this is equivalent to recovering ρ∗ from
the collection of rank-1, data scatter matrices

Dk := fk(fk)H = (Ak)Hρ∗(ρ∗)HAk, (3)
where fk = [fk

1 , f
k
2 , · · · fk

S ]
T , with (2) corresponding to

the upper triangular entries of Dk for each k. In this
generic form, interferometric inversion problem arises in
many applications in different disciplines. These include
radar and sonar interferometry [1]–[3], passive imaging
in acoustic, electromagnetic and geophysical applications
[4]–[7], and beamforming and sensor localization in large
area networks [8], [9] among others. In wave-based
imaging, correlations were shown to provide robustness
to statistical fluctuations in scattering media or incoherent
sources [10], [11], and with respect to phase errors in the
correlated linear transformations [12]–[14].

In this paper, we leverage interferometric inversion
for the purpose of addressing the passive radar imaging
problem. Passive radar systems do not use their own
dedicated transmitters, and instead use scattered ambient
signals originating from a source of opportunity. As a
result, passive radar systems are realizable with small
mobile receivers that operate with long acquisition modes,
providing spatial diversity and robustness in challenging
sensing environments. In the setting that illuminators are
non-cooperative, precise transmitter location and wave-
form are unavailable at the receive end to describe the
underlying forward mapping for the inversion task. To this
end, cross-correlating the measurements from different
receive locations mitigate the influence of transmitter
related terms by removal of the shared phase components.
Hence, the main motivation for interferometric processing
in passive imaging applications is to instead describe a
model {Ãk}Kk=1 that can accurately facilitate the inversion
in lieu of the ideal but only partially known {Ak}Kk=1,
having per k = 1, · · · ,K,
(Ak)Hρ∗ρ∗HAk ≈ (Ãk)Hρ∗ρ∗HÃk := f̃k(f̃k)H . (4)
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The key consideration of solving interferometric inver-
sion is in mitigating the partial loss of phase information.
Beyond the removal of undesirable phase components
within the data, correlation operation results in funda-
mental limitations in direct factorization of (4). Without
access to the full KS×KS data scatter matrix1, i.e., with
correlations only computed per fixed frequency, retrieval
of the equalized data f̃k by a rank-1 decomposition
results in k-dependent arbitrary factors of ejϕk . This is
a consequence of the quadratic nature of interferometric
data matrix via invariance to global phase multipliers.
As a result, direct factorization demands a crucial phase
synchronization step, which increases the number of un-
knowns to K + N and requires the use of underlying
common parameterization with respect to the unknown
of interest. Performance of such formulation then strongly
hinges on the accurate recovery of the phase factors. This
is undesirable as small phase errors are known to yield
drastic errors in the reconstructed imagery [14].

Ultimately, using the underlying parameterization of
the scene is necessary for the feasibility of the result-
ing interferometric inversion problem. This motivates
approaches for direct inversion from the quadratic mea-
surement model of (2) to avoid inducing phase ambiguity
over frequency samples, which form the state-of-the art.

B. Prior Art and Motivation

Conventionally, interferometric inversion in imaging
applications has been approached by Fourier based tech-
niques, such as time or frequency difference of ar-
rival (TDOA/FDOA) backprojection [6], [15]–[20]. While
these methods are practical and computationally efficient,
their applicability is limited to scenes composed of well-
separated point targets due to underlying assumptions.
As an alternative, low rank matrix recovery (LRMR)
theory has been explored for interferometric inversion [4],
[21]. Notably, these solvers are inspired by the PhaseLift
method [22]–[24], hence suffer from the same drawbacks
in computation and memory to semi-definite program-
ming (SDP) in practice. In [4], an iterative optimization
approach to LRMR was developed for interferometric
passive imaging to circumvent the poor scaling properties
of SDP approaches. While this method is more efficient
than the SDP solvers, it still operates by squaring the num-
ber of unknowns, hence still requires significant memory
and computational resources for imaging. Additionally,
these convexified lifting based solvers require stringent
theoretical conditions on the measurement model, which
poses a major theoretical barrier for interferometric inver-
sion problems with deterministic forward models.

Motivated by the reduced computational complexity
and memory requirements of non-convex optimization
over the lifting based methods in phase retrieval litera-

1Clearly, one could compute the full scatter matrix as well. However,
this would not result in the tractable model used in (4), thus would not
be conductive to the inverse problem at hand.

ture [25], we developed the generalized Wirtinger Flow
(GWF) for interferometric inversion in [26]. Namely,
GWF provides deterministic exact recovery guarantees to
a general class of problems that are characterized over
the equivalent lifted domain by the restricted isometry
property (RIP) on the set of rank-1, positive semi-definite
(PSD) matrices, while operating solely on the original
signal domain. In [27], we established the sufficient condi-
tion of exact recovery for passive imaging on multi-static
geometry, where we determined the physical parameters
of the system to ensure exact recovery. Furthermore,
we introduced theoretical framework that facilitated a
resolution analysis and tractable sample complexity of in-
terferometric wave-based imaging under the far-field and
small scene assumptions, and showed that the GWF algo-
rithm achieves super-resolution in parameter regimes that
commonly correspond to passive settings using O(

√
N)

distinct look directions.
Despite its impact in theoretical outcomes, the GWF

approach has certain limitations. The data-rates from
correlations grow with S2 in number of look directions,
which amounts to O(N3/2) total sample complexity in
[27] for super-resolution capability, and O(N5/4) for min-
imal feasibility. Recently, a distributed analogue of GWF
was developed in [28] with tunable graph connectivity in
forming local subset of correlations within the sensor ge-
ometry, hence provides control on growth of the data-rates
for inference without sacrificing performance guarantees.
Still, even with O(N5/4) minimal sample complexity,
there exists an

√
L-factor growth in establishing the

sufficient condition, which indicates break-down of GWF
guarantees in imaging scenes beyond a critical length.
Other limitations include oversampling requirements on
K, poor scaling of the sufficient condition bounds with
respect to the imaging aperture/field of view, and slow
convergence due to the first-order nature of the algorithm
updates.

Our motivation in this paper is to address the short-
comings of GWF by leveraging a priori information in the
form of a constrained spectral estimation approach [25].
In recent years, synthetic aperture radar (SAR) imaging
task using back-scattered measurements, whose phase
information may or may not be available, have been
addressed in the literature using denoising priors under
both plug-and-play (PnP) [29]–[31] and regularization by
denoising (RED) [32], [33] mechanisms. In [34], [35],
a PnP based ADMM [36] algorithm is introduced for
spot-light mode SAR imaging. When implemented with
a deep denoiser, it is empirically observed to out-perform
the state-of-the-art under low measurements to unknown
ratios. A RED based denoising prior is applied with the
ADMM algorithm for the speckle noise removal problem
from SAR images in [37]. In [38], synthetic aperture
imaging problem using phaseless measurements is ad-
dressed by introducing a regularized WF approach under
ADMM framework that applies total variation, BM3D and
untrained deep denoiser. Although apriori information is
used during the iterative updates, [38] evaluates the initial
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Fig. 1. Passive bistatic SAR geometry.

image by the computationally intensive spectral estima-
tion step without taking such information into account.
In general, spectral methods typically form the crucial
initial step of non-convex phase retrieval techniques which
uses the spectra of the back-projection estimate in the
lifted domain [39]. Incorporating constraints that capture
image features offers to morph the signal space during
the spectral search and yield structurally sound estimates
without the need of iterative updates in GWF. As a
result, structural prior information provides the potential
to improve the computational and acquisition efficiency
of interferometric passive radar imaging by decreasing
the order of required number of look directions or the
oversampling factors in frequency [40]. To this end, we
utilize deep architectures to learn effective representations
of the signal manifold.

C. Our Approach and Contribution

Our objective in this paper is to apply deep learning
(DL) for designing an interferometric imaging algorithm
using a priori information. We are particularly interested
in deep models to capture structure in the underly-
ing scene with approximation capability beyond that is
achievable by denoising with sparsity-based functional
regularizer. For our approach, we consider regularization
within the spectral estimation framework, indirectly and
directly, by applying a denoising operator using PnP and
RED approaches within DL frameworks, respectively.

The spectral matrix estimates in practically relevant
interferometric imaging geometries may not possess the
favorable characteristics such that its leading eigenvector
retains important structural information about the un-
known. This is especially the case when operating below
the requirements identified for feasibility of the GWF the-
ory, where the standard spectral method is not guaranteed
to preserve sufficient similarity on the underlying scene
of interest. Significant difficulties in denoiser training are
posed in such problem settings, as it is challenging to
determine the statistics for noisy training images that
enables reconstruction within a few iterations to limit the
computation cost, which forms the basis of PnP and RED
frameworks. As a solution, we implement our denoiser
based algorithms by using the unrolling technique [41],
[42] with the network depth increased sequentially at each
training instance. Aside from easier denoiser training,
unrolling has the added benefit of reducing training data

requirement, which is particularly desirable for SAR to
minimize operational costs.

We implement our imaging networks for simulated
passive SAR dataset by using convolutional neural net-
works (CNN) architectures for denoising, and compare
performances to that of the spectral initialization ap-
proach, applied in the GWF algorithm [26]. Furthermore,
we consider its variant using sparsity prior, as well as
other state-of-the-art interferometric imaging techniques,
and numerically observe the expected benefits in reduced
sample complexity and faster convergence.

D. Organization

Rest of this paper is organized as follows: In Section
II, we present our received signal model associated with
the interferometric imaging task for passive bistatic SAR.
In Section III, we present relevant background informa-
tion, introduce our denoising prior and spectral estimation
based imaging algorithms and discuss their DL-based
implementation details. Section IV describes our observa-
tions from numerical experimentation on simulated SAR
datasets. Finally, Section V concludes our paper.

II. Received Signal Model

We consider the passive bi-static SAR imaging con-
figuration with a single stationary transmitter, and two
moving airborne receivers, whose trajectories are spatially
separated throughout the data-collection process2. This
passive SAR imaging configuration is shown in Fig. 1. We
assume that the area being imaged has a flat topography,
and the locations within the scene are characterized by
x = [x, 0] ∈ R3, where x ∈ R2 indicates a 2-D
location in ground plane. Let the stationary transmitter
be located at y ∈ R3, and let ρ : R2 7→ R be the ground
reflectivity function. Suppose the frequency samples of
the reflected wave are collected at S slow-time points
by the two receivers. We represent the locations of the
two receivers at slow time s ∈ [S] by γ1(s) ∈ R3 and
γ2(s) ∈ R3. For all s ∈ [S], the trajectories of the airborne
receivers are such that γ1(s) ̸= γ2(s). We represent the
speed of transmission through the background medium
and the fast-time frequency by c0 ∈ R+ and ω ∈ R+,
respectively, where ω ∈ [ωc − B/2, ωc + B/2]. Here, ωc

and B represent the center frequency and the transmission
bandwidth, respectively.

Under the Born and start-stop approximations, the
received signal model for the rth receiver is [4]

fr(ω, s) =

∫
ei

ω
c0

ϕr(x,y,s)Ar(x, ω, s)ρ(x)dx, (5)

where r = 1, 2 and

ϕr(x,y, s) = |x− γr(s)|+ |x− y|. (6)

2We note that our interferometric imaging approach similarly applies to
the case with multiple stationary receivers.
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The amplitude term Ar is determined by the antenna
beampatterns and geometric spreading factors. The cross-
correlated measurements from the two receivers evaluated
at each slow-time is given as

d(ω, s) = f1(ω, s)f2(ω, s). (7)

Using (5), and under small-scene and far-field assump-
tions, the cross-correlated measurements can be modelled
as [4]:

d(ω, s)

=

∫
ei

ω
c0

ϕ12(x,x
′,y,s)A12(x,x

′, ω, s)ρ(x)ρ̄(x′)dxdx′,

(8)

where

ϕ12(x,x
′,y, s) = ϕ̃1(x,y, s)− ϕ̃2(x

′,y, s), (9)

and

ϕ̃r(x,y, s) = |x− γr(s)|+ ŷ.x, (10)

with r = 1, 2 and ŷ being the unit vector in the direction
of y. A12(x,x

′, ω, s) relates to the antenna beam-patterns,
J1(x, ω), J2(x′, ω) and Jt(x, ω), as

A12(x,x
′, ω, s) ≈ J1(x, ω)J̄2(x

′, ω)C2
t

|γ1(s)||γ2(s)||y|2
. (11)

|Jt(x, ω)| ≈ Ct ∈ R
+ under the assumption that the

transmitted waveform has a flat spectrum, and −3dB
beam-width encompasses the area being imaged [4], [27],
[40].

Our objective is to recover ρ by using the data
model in (8). Towards this objective, we proceed by first
discretizing the scene into N points at {xn}Nn=1, where
xn ∈ R2, and define a corresponding ground truth image
vector ρ∗ ∈ CN as

ρ∗ =
[
ρ(x1) · · · ρ(xN )

]T
. (12)

Similarly, we consider K discrete fast-time frequency
samples, {ωk}Kk=1, sampled uniformly within the band
[ωc − B/2, ωc + B/2] to form a discretized data vector
d ∈ CM with M representing the total number of
measurements, i.e., M = SK.

Cross-correlated measurement d(ωk, s) can be rep-
resented under this modified data model using linear
sampling vector, ak,sr ∈ CN for r = 1, 2, k ∈ [K] and
s ∈ [S], as

d(ωk, s) = ⟨ak,s1 ,ρ∗⟩⟨ak,s2 ,ρ∗⟩, (13)

where

ak,sr = [ei
ωk
c0

ϕ̃r(x1,y,s)Ar(x1, ωk, s) · · ·

ei
ωk
c0

ϕ̃r(xN ,y,s)Ar(xN , ωk, s)]
H ,

with the terms from (10) and

Ar(xn, ωk, s) =
Jr(xn, ω)Ct

|γr(s)||y|
, (14)

for n ∈ [N ]. d ∈ CM relates to d(ω, s) as

d =[
d(ω1, 1) . . . d(ω1, S) d(ω2, 1) . . . d(ωK , S)

]T
.

(15)

Let F : CN×N −→ CM be a linear lifted forward
mapping operator defined such that,

d = F(ρ∗ρ∗H). (16)

Our aim is to estimate ρ∗ directly from the known cross-
correlated measurement related vector, d, and the fully-
known imaging geometry related operator F .

III. Denoising Prior and Spectral Estimation-based
Interferometric Imaging Network

A. Background on Methodology

GWF for interferometric inversion is inspired by the
non-convex phase retrieval algorithm in [25], [43]. It
uses a two-step algorithmic approach to solve quadratic
equations involving first a spectral initialization [44], and
then a simple first-order iterative refinement as follows:

ρl = ρl−1 −
µl

∥ρ0∥2
∇J (ρ)|ρ=ρl−1

. (17)

J (ρ) is the quadratic objective function associated with
the interferometric inversion problem given by

J (ρ) =
1

2M

K,S∑
k,s=1

[
(ak,s1 )HρρHak,s2 − d(ωk, s)

]2
, (18)

for the passive SAR problem described in Section II.
The key observation of [26] is that one can guarantee
sufficient accuracy of the initial spectral estimate, such
that the simple iterations converge to the true solution,
if the linear forward map in (16) satisfies the restricted
isometry property over the set of rank-1, positive semi-
definite (PSD) matrices with a restricted isometry constant
(RIC)-δ ≤ 0.214.

The spectral initialization step involves setting the
leading eigenvector of the following matrix X̂ as an initial
estimate of ρ:

X̂ := Ps(FH(d)), (19)

where PS(Z) := 0.5(Z+ ZH) for Z ∈ CN×N and

FH(d) =
1

M

K,S∑
k,s=1

d(ωk, s)a
k,s
1 (ak,s2 )H . (20)

Hence, the estimate is obtained by back-projection of data
on the lifted domain.

The main premise of this algorithmic framework is in
the well-conditioning of the normal operator FHF over
terms of the form ρρH , which is controlled by the RIC-δ
bound used in the sufficient condition of GWF. However,
this has stringent implications on the imaging geometry
and the required sample complexities for the validity of
theoretical arguments. Namely, the interferometric inver-
sion by GWF becomes ill-posed at low ratios of the
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number of measurements to the number of unknowns,
which is quite common for high dimensional imaging
problems.

One way to circumvent these shortcomings while
maintaining low computational cost is to incorporate prior
information about the unknown image class to the spectral
estimation process. This is due to loss of information at
the initialization stage since the normal operator, FHF ,
does not approximate an identity map over rank-1, PSD
matrices for finite number of measurements. We therefore
design our approach to utilize prior information about
the underlying scene of interest for attaining structurally
sound estimates directly via the spectral method. As a
consequence, we bypass the objective function based
optimization criteria of GWF, and consider the penalty for
extracting the leading eigenvector of X̂ by reformulating
the power method [45], [46] with regularization.

B. Spectral Method with Prior Information

Prior information is commonly incorporated while
solving an optimization problem by adding a suitable
regularization term, R(.) : CN 7→ R, to a data fidelity
measure associated with the underlying data model. This
leads to a modified objective function to be minimized
to estimate the unknown quantity with R(ρ) imposing
some structural prior information during the reconstruc-
tion process. In [40], we utilized a truncated power
method [46] for the initialization phase of an interfer-
ometric imaging algorithm to generate an initial image
under the assumption that the sparsity level k is known in
advance. In general, sparse leading eigenvector estimation
and the sparse principal component analysis (PCA) are
well-studied problems in the literature.

In this paper, we first cast this problem as a min-
imization task such that the power method arises as
a natural consequence of applying a proximal gradient
descent (PGD) algorithm when the regularization term
is not included during solution. With the regularization
term included, the associated PGD algorithm becomes
a realization of the power method with prior. More
specifically, following optimization problem forms the
basis of our DL based imaging approach:

ρ∗ = argmin
ρ∈CN

JS(ρ) + In(ρ) +R(ρ). (21)

The data fidelity term JS : CN 7→ R is defined as

JS(ρ) =
1

2γ

(
−βρHX̂ρ+ ρHρ

)
, (22)

where γ, β ∈ R+. In : CN 7→ R
+ is an indicator function

whose output is 0 if the corresponding input vector has
unit ℓ2 norm, and it takes large values otherwise. With
an explicitly defined regularization term, the proximal
algorithm addressing (21) involves the following set of

Fig. 2. Schematic diagram showing u1, u∗
1 and ρ∗ for N = 2.

updates at the lth iteration:

wl = ρl−1 − γ∇JS(ρ)|ρ=ρl−1
, (23)

yl = argmin
x∈CN

∥x−wl∥2 + ηR(x), (24)

ρl = yl/∥yl∥ = N (yl), (25)

where

∇JS(ρ) = (−βX̂ρ+ ρ)/γ. (26)

We observe that the update step in (23) simplifies to

wl = βX̂ρl−1, (27)

which is similar to the step applied during the power
method updates. The normalization step in (25) accounts
for the indicator function, and the proximal operator
in (24) modifies wl to a neighboring point that better cap-
tures the structural information imposed by R compared
to wl.

However, due to the difficulty in formulating an ap-
propriate R(.) in the absence of explicit prior information,
and the challenges in designing an R that leads to
preferably a closed form solution of (24), we instead
design our imaging approach following the PnP and
RED frameworks. For PnP, R(.) is not required to be
explicitly defined. Instead, under the assumption that the
residual noise after the update step in (23) have i.i.d.
Gaussian distribution, the proximal operator in (24) can
be interpreted as a denoiser for a given R. Therefore, we
can readily design a denoising prior-based power method
for interferometric imaging by rewriting (24) as follows:

zl = D(wl), (28)

where D : CN 7→ CN denotes a non-linear operator. Its
output is used to calculate the image estimate ρl by using
the normalizing operator N , i.e.,

ρl = zl/∥zl∥ = N (zl). (29)

This PnP based formulation of our power method for
interferometric imaging, presented in (23), (28) and (29),
can be represented in a single step as follows:

ρl = T (ρl−1) = N ◦ D
(
βX̂ρl−1

)
, (30)

where the combined operator T is defined as

T = N ◦ D ◦ (I − γ∇JS). (31)

We note that D captures structural information about
the unknown images similar to R. Let u1 ∈ CN denote
the leading eigenvector of X̂. This algorithm attempts to
recover u∗

1 ∈ CN , located within a small neighborhood
of u1, such that, u∗

1 ∈ Range(N ◦ D). Hence, u∗
1 can be
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interpreted as the best estimation of u1 that possesses the
structural properties encapsulated by D, i.e.,

u∗
1 = argmax

u∈Range(N◦D)

uHX̂u, (32)

and (u∗
1)

HX̂u∗
1 ≤ uH

1 X̂u1. When N = 2, we show a
visualization of u1, u∗

1 and ρ∗, with ∥ρ∗∥ = 1, in Fig. 2.
This change in the ground truth quantity from ρ∗ to u∗

1

arises from our spectral estimation based formulation, and
it reveals that for all ρ∗ from the image class of interest,
exact recovery requires D to be adequately precise for
the corresponding u∗

1 vectors to align as closely to ρ∗

as possible. For an arbitrary D, it is difficult in general
to explicitly define a corresponding regularization term
for which, the PnP algorithm presented in (30) achieves
the same minimum point as the one attained by the
algorithm described in (23) to (25). As a consequence,
ρ∗ is not necessarily a minimum point of an underlying
objective function anymore. Instead, we are interested in
the convergence of our algorithm to a set of fixed points
of the combined operator T . Let this set be denoted
by F, i.e. F = {ρ ∈ CN : ρ = T (ρ)}. On the
other hand, we represent the global solution set of the
unconstrained interferometric inversion problem by P,
i.e., P = {eiϕρ∗ : ϕ ∈ [0, 2π]}. Exact recovery for
the interferometric imaging problem using our proposed
algorithm in (30) therefore amounts to achieving optimal
conditions on the denoiser for the given data fidelity
term JS in (22), such that, the iterative updates in (30)
converge to an element of F ∩ P.

On the other hand, under the RED framework [32],
[33], the regularization term R(ρ) is defined explicitly as
a function of the denoiser as follows:

R(ρ) = 0.5ρH(ρ−D(ρ)). (33)

Therefore, we can alternatively modify the power method
for interferometric inversion by retaining the update steps
from (23) and (25), and by using the expression of R
from (33) in (24). Under the two conditions on the
denoiser defined in [32], namely, local homogeneity and
strong passivity, it is shown that the solution of the
corresponding minimization problem, i.e.,

yRED
l = argmin

x∈CN

∥x−wl∥2 +
η

2
wT

l (wl −D(wl)), (34)

can be approximated as r∞, where rj is calculated as

rj = (rj−1 + ηD(rj−1)) /(1 + η), (35)

for j ∈ {1, 2, ...,∞} and r0 is set equal to wl.
We note that our algorithm described in (30) has sim-

ilarity to the projected power method presented in [47].
However, [47] implements a projection operator P in-
stead of the denoising and the normalization step pre-
sented in (28) and (29), respectively. P is defined as
P(z) = argminw∈Range(H) ∥w − z∥2 with H being a pre-
trained variational auto-encoder whose range constitutes
a subset of the unit sphere. This minimization problem is
addressed by iterative algorithms in [47]. For example, the
Adam optimizer with 200 updates and a learning rate of

0.03 was implemented during the numerical simulations
in [47]. On the other hand, for our algorithm in (30),
D can be interpreted to be modelling a proximal op-
erator for an unknown regularization term R such that
D(z) = argminw∈CN ∥w− z∥2 +R(w). Unlike [47], our
approach in (30) does not explicitly define an associated
regularization term R for D, and does not apply any itera-
tive algorithm for denoising. Our RED based formulation,
on the other hand, implements the denoiser within the
particular definition of R from (33).

C. Deep Imaging Network

We begin by noting that the two versions of our
denoising prior based imaging algorithms can be imple-
mented with or without applying DL. However, in this pa-
per, we are aiming to introduce interferometric inversion
algorithms that perform well for imaging configurations
that do not necessarily satisfy the sufficient conditions
for exact recovery of the state-of-the-art algorithms. In
these challenging regimes, using DL can be particularly
beneficial for overcoming the lack of redundancies in the
measurements, as well as for potentially attaining im-
proved reconstruction qualities, faster convergence rates,
improved resolutions etc. compared to the state-of-the-art.

We use DL in two stages for implementing both of
our denoising prior based algorithms, presented in (30)
and in (23), (34) and (25). First, similar to the state-
of-the-art PnP and RED algorithms, we adopt DNs to
model the denoisers instead of using any pre-defined
non-linear function for this purpose. Second, to render
our algorithms suitable for the imaging configuration
described in Section II, with physical parameter values
such that u1 significantly deviates from ρ∗, we adopt the
unrolling technique [42]. Unrolling refers to the mapping
of L number of updates of an iterative algorithm to the
L stages of a recurrent neural network (RNN). Unlike
existing PnP and RED based algorithms, we apply this
technique instead of using pre-trained denoisers at the
update steps of the algorithms implemented using specific
stopping criteria. Separate denoiser training commonly
proceeds using a set of noisy images generated using
additive Gaussian distributed noise of different variances
with the clean ground truth images. However, it is difficult
in general to optimally adjust the noise levels, such that,
the average number of updates necessary for convergence
to the fixed points are as small as possible.

Furthermore, our proposed algorithms apply initial
image vectors that are not structured or derived using
any sophisticated model-based formulation. Instead, we
utilize either random initialization or some pre-defined
fixed normalized vector as the initial point in order to
reduce the associated computation cost. Depending on the
choice of the initial vector, its mapping via X̂ either may
not possess the desired i.i.d. Gaussian distributed noise or
its variance may be too large, such that, a denoiser of a
particular capacity cannot remove it sufficiently to recover
any useful structural information. In general, we can infer
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(a)

(b)
Fig. 3. Schematic diagram of imaging network designed based on (a) PnP and (b) RED algorithms.

that if the leading eigenvector u1 of X̂ significantly devi-
ates from ρ∗, then X̂ρ∗ may deviate from ρ∗ significantly
as well, and hence may not retain much of the useful
structural information present in ρ∗. Furthermore, for a
particular initial image and the denoiser architecture, the
number of iterations required for satisfying the stopping
criteria for fixed point detection can be large leading to
high computation costs. Unrolling, on the other hand,
can accommodate limited denoising network capacities
while keeping the required number of updates as small as
possible.

We unroll the L updates from (30) and derive our PnP
algorithm based imaging network in Fig. 3a. It takes the
spectral matrix X̂, calculated from the cross-correlated
measurements, and the initial image ρ0 ∈ CN , with unit
ℓ2 norm, as input and generates the estimated image
ρL ∈ CN at its output. The set of denoisers, {Dl}Ll=1,
share the same DN architecture with the same set of
trainable parameters. However, these parameter values are
learned independently at the various update stages in order
to attain an optimal set of denoisers for achieving accurate
reconstruction within the fixed L updates. Similarly, for
our RED based imaging algorithm in (23), (34) and (25),
we unroll its L iterative update stages and derive the
imaging network in Fig. 3b, by considering a single
iteration of (35) for approximating (34). We set constant
η as an additional trainable parameter of the imaging
network aside from the set of denoiser parameters.

Both networks are trained by minimizing a loss func-
tion ctr(U), calculated as (1/T )

∑T
t=1 ∥ρ∗

t−ρL,t∥2, where
U denotes the set of trainable parameters of the denoisers
and η. Here, T refers to the number of training samples,
and ρ∗

t and ρL,t are the tth ground truth image and the
estimated image, respectively, from the imaging networks
in Fig. 3. During training, we gradually increase the
number of update stages, L, to utilize as few updates as
possible for imaging.

IV. Numerical Simulations

In this section, we numerically demonstrate the feasi-
bility and performance of our deep denoising prior based

Fig. 4. Data collection model for passive bistatic SAR.

imaging networks from Fig. 3, by using two simulated
passive bistatic SAR datasets. For quantitatively assessing
the estimated image quality, we use the normalized mean
squared error (MSE) as the figure of merit. It is calculated
as MSE = (1/Ts)

∑Ts

t=1 ∥ρ̂t − ρ∗
t ∥2/∥ρ∗

t ∥2, where ρ̂t

refers to an estimated image for the tth test sample and
ρ∗
t denotes the corresponding ground truth image. Aside

from feasibility verification, we have the following two
major objectives for our numerical simulations:

1) Compare the performances of our PnP and RED
based networks to the ones obtained using the
state-of-the-art GWF algorithm, TDOA approach,
as well as power method and truncated power
method generated leading eigenvector estimations,
where the later imposes sparsity constraint.

2) Numerically assess the performance of our ap-
proach in the presence of additive noise in the
cross-correlated measurements, as well as sensor
trajectory fluctuations and outliers, and empirically
validate the important intuition that the deep de-
noising prior enables improved sample complexity
and computation time compared to the state-of-the-
art GWF algorithm.

A. Dataset Description

We use two simulated image sets, each with signif-
icantly different target characteristics, and generate the
corresponding sets of passive bistatic SAR data using
MATLAB. We are imaging an area of dimension 400
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(a) (b) (c) (d)
Fig. 5. Plots of MSE values versus the number of CNN layers and the number of output channels, calculated for the test dataset with

rectangular targets using the PnP-based imaging network, are shown in (a) and (b), respectively. For the RED-based network and same dataset,
plots of MSE versus the numbers of CNN layers and output channels per convolution layer are shown in (c) and (d), respectively. Numbers of

output channels are 16 for both (a) and (c), and the numbers of convolution layers in (b) and (d) are 12 and 14, respectively.

Fig. 6. For 40× 40 pixel images and M = 2N , example reconstruction images using the power method, with and without sparsity prior,
TDOA approach, GWF algorithms using 150 updates, with or without sparsity prior, and our PnP based imaging network with 8 update stages

are shown in the second to seventh columns, consecutively. The first column shows the corresponding ground truth images.

m×400 m, and it is being reconstructed into 40 × 40
pixel and 31 × 31 pixel images for the first and the
second datasets, respectively. The first dataset includes
5, 000 training and 50 test samples, and each scene is
composed of arbitrarily located random number of point
targets. The second dataset, on the other hand, contains
10, 000 training and 50 test samples, and each scene
contains a single randomly located rectangular target of
randomly selected dimensions between 0 m to 10 m. Let
the single stationary transmitter be located at (15, 15, 3)
km, and we assume that the two receivers are traversing
the scene along a circle of radius 10 km and at 6 km height
from the ground level with its origin located at the scene
center. These receivers are deviated along their respective
trajectories by a 45 degree angle. Imaging geometry for
this passive bistatic SAR configuration is shown in Fig. 4.

B. Network Architecture and Reconstructed Images

For our imaging networks in Fig. 3, we adopt a
supervised training scheme that uses the cross-correlated
measurements and the corresponding ground truth im-
ages. Once an optimal set of denoiser parameters are
learned, we use these values for imaging from new cross-
correlated measurement vectors in the test dataset. We use
CNNs as denoisers, while implementing our imaging net-
works for both datasets, due to the superior performance
that this network architecture offers in a wide range of
image processing tasks including denoising. For the first

dataset, we use 16 layer CNNs with 3 × 3 dimensional
convolution filters at the various layers. We use 16 output
channels, and apply leaky relu(.) activation functions at
the hidden layers and relu(.) activation at the output layer.
For a scalar input b and α ∈ R+, leaky relu(.) is defined
as follows:

leaky relu(b) =

{
b b ≥ 0,

−αb b < 0.
(36)

relu(.) is an appropriate choice for the activation func-
tions at the output layer since we are assuming that
the unknown image vectors have all positive real-valued
entries. On the other hand, we apply leaky relu(.) at each
hidden layer output for activation since, unlike relu(.),
leaky relu(.) allows small negative values to propagate
through the layers.

For the second dataset, we implement the PnP based
network from Fig. 3a by using a 12-layer CNN with 3×3
convolution filter dimensions and 16 output channels at
the hidden layers. On the other hand, we implement our
RED-based network from Fig. 3b by using a similar de-
noiser architecture, except for the number of convolution
layers which is now increased to 14. For each case, we
optimized our denoiser architecture by minimizing the
MSE value over a range of the number of CNN layers
and a range of the number of output channels or filters
per layer as described for rectangular targets dataset in
Fig. 5. Similar to the PnP-based network described earlier
for the first dataset, we use the same activation functions
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Fig. 7. For 31× 31 pixel images, and using M = 1.07N and 10 dB SNR, example ground truth and reconstructed images using the power
method, power method with sparsity prior, TDOA approach, GWF algorithm, and our imaging networks based on PnP and RED algorithms

using 4 update stages are shown in the seven columns.

at the hidden and the output layers of these two networks
as well. Moreover, in all our implementations, we use
the same set of denoiser parameter values for each two
consecutive stages of our imaging networks, and use L
equal to 8 and 4, respectively, for the point targets and
the rectangular target datasets unless otherwise specified.

Example reconstruction results using our PnP based
network for the two datasets are shown in the last column
in Fig. 6 and the second last column in Fig. 7. The last col-
umn in Fig. 7 shows the estimated images using our RED
based network. Original ground truth images are shown in
the first columns in both figures. All the estimated images
in Fig. 6 are obtained using 80 slow-time and 40 fast-time
points. On the other hand, for the second dataset with
single rectangular objects, we collected the measurements
at 32 slow-time and 32 fast-time points, and considered
additive Gaussian noise on the correlated measurements
with 10 dB SNR. The second to fourth columns in
Fig. 6 and 7 display the interferometric inversion results
using the power method based spectral estimation, power
method augmented by proximal operator under sparsity
prior, TDOA approach and the GWF algorithm using 150
updates, respectively. The sixth column in Fig. 6 considers
the GWF updates with thresholding steps. We observe that
for both datasets, our proposed deep denoising prior based
imaging algorithm outperforms the state-of-the-art. Aside
from improved reconstruction quality, we observed im-
proved computation time offered by our imaging network.
For example, the GWF implementation in Fig. 7 using 150
updates takes 12.4968 s per test samples, whereas our PnP
based imaging network takes only 0.001 s.

C. Sample Complexity

We perform training and reconstructions for the
dataset with rectangular objects by applying the same
PnP based imaging network using different numbers of
measurements. The resulting MSE values versus the M/N
ratios, using training and test datasets with the cross-
correlated measurements being corrupted by additive
noise of 10 dB SNR, are displayed in Fig. 8a. We observe

that for attaining good reconstruction quality using our
PnP based network, it is important to have sufficiently
large M for a particular image dimension. However, at
each M/N value, reconstruction quality obtained using
our approach is significantly better compared to that of the
GWF algorithm. For example, at the 5 consecutive M/N
values in Fig. 8a, the MSE values obtained using the GWF
algorithm are 1.6554, 1.6752, 1.6229, 1.6099 and 1.5416,
respectively. Similarly, for the TDOA approach, these
values are 1.7255, 1.7238, 1.6987, 1.7130 and 1.6982, re-
spectively. This empirically shows that our deep denoising
and spectral estimation based approach can overcome the
strict sample complexity limitation imposed by the GWF
algorithm.

Next, we consider a high additive noise scenario with
−10 dB SNR. To counteract the more noisy measurements
compared to the previous case, we vary the M/N ratios
from 1.07 to 5 in this case. We also increase the value
of L from 4 to 6 in our PnP-based imaging network
implementation, and the corresponding MSE versus M/N
plot is shown in Fig. 8b. We observe that although the
MSE values are higher for our selected denoising network
architecture relative to the ones in Fig. 8a, our approach
is still better at mitigating the adverse effect of noisy
measurements compared to the TDOA approach and the
GWF algorithm at various M/N ratios.

D. Effect of SNR

To compare the performance of our approach with the
state-of-the-art under varying levels of additive noise, at
the relatively low M/N ratios that we are interested in,
we set M/N = 1.07 and gradually increase the SNR
level from 0 dB to 40 dB for the rectangular targets
dataset. We applied our PnP based imaging network with
L = 4 and the denoiser architecture described earlier for
this dataset, and plotted the corresponding normalized
MSE values in Fig. 8c. We observe that as expected,
higher SNR values are conducive to better reconstruction
quality by our imaging network. By comparing with the
equivalent plot obtained for the GWF algorithm, we also
observe that our approach shows better robustness to
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(a) (b) (c)
Fig. 8. Plots of MSE values versus the M/N ratios in (a) and (b) for 10 dB and −10 dB SNR values, respectively, and versus the SNR values

in (c), all calculated for the test dataset with rectangular targets.

Fig. 9. For the point target dataset with additive noise of 0 dB SNR
and M = 5N , reconstructed images using TDOA, GWF, GWF with
sparsity prior and our PnP based network with L = 8 are shown in

the second to fifth columns, respectively.

additive noise than the state-of-the-art. Next, we consider
the same three example scenarios shown in Fig. 6 for
the point target dataset, but introduce additive noise
of 0 dB SNR. Furthermore, we increase the slow-time
samples such that M = 5N . The resulting reconstructed
images using the TDOA approach, GWF algorithm, with
and without sparsity prior, and our PnP based imaging
network, with L = 8 and the denoiser model described
earlier for this dataset, are shown in Fig. 9. Similarly to
the extended target dataset, we observe that our approach
significantly out-performs the state-of-the-art under noisy
measurements.

E. Effects of Outlier and Trajectory Fluctuations

In this subsection, aside from the random additive
noise of 10 dB SNR present in the cross-correlated
measurements from the training and test datasets with
rectangular targets, we consider additional sources of
errors for the test dataset only. Our objective is to analyze
the effects of various commonly encountered sources of
errors in passive setting, including trajectory error and
multi-path interference. We first consider sinusoidal fluc-
tuations of various amplitudes on the circular trajectories
of the two receivers and plot the resulting MSE values
in Fig. 10a by using using L = 4 and the denoiser
model architectures described earlier for the PnP and
RED based networks. Moreover, we retrained these two
networks using the same training and test images, and the

same additive noise level, for a passive bistatic geometry
with straight line trajectories for the two receivers. We
then modelled the same trajectory fluctuations for both
receivers as te + ves + aes

2, with te,ve,ae ∈ R3. We
display the corresponding MSE values in the bar graph in
Fig. 10b for the following six cases of (te,ve,ae) combi-
nations: (0,0,0) m, ([0,−5, 0],0,0) m, ([0,−10, 0],0,0)
m, (0, [0, 0.05, 0.02],0) m, ([0,−5, 0], [0, 0.05, 0.02],0) m
and (0, [0, 0.05, 0.02], [0, 0.002,−0.002]) m, with 0 denot-
ing a length 3 vector of all-zeros. We observe that our
networks are susceptible to trajectory errors due the end-
to-end supervised training aspect of our implementation.
Moreover, as we are introducing these errors only in the
test dataset, our test data distributions differ from the
ones associated with the training dataset in these cases.
However, at the low M/N ratio under consideration, the
corresponding MSE values using the GWF algorithm at
the various entries of the plots in Fig. 10a and 10b
remain significantly larger than the ones for our DL-based
approach. For example, for the sinusoidal fluctuations
considered in Fig. 10a, the MSE values for the GWF
algorithm at the five entries are 1.4985, 1.6331, 1.6219,
1.6396 and 1.6302, respectively.

Next, we model any additional sources of errors, aside
from trajectory fluctuations and additive noise, as outliers
present in a random subset of the M cross-correlated mea-
surements. For these randomly selected subset of indices,
we change the magnitudes of the associated measurements
to two times the maximum of the M magnitudes. We
plot the resulting MSE values for different percentages of
outliers in Fig. 10c, and observe that the performances of
our networks deteriorate with increasing outliers levels
as expected. However, the corresponding MSE values
obtained using the GWF algorithm at the various entries
of this plot are 1.4985, 1.6341, 1.6639, 1.6798, 1.6759 and
1.6820, respectively, which are still significantly larger,
and hence indicate poorer reconstruction qualities.

We similarly analyze the effects of sinusoidal tra-
jectory errors and outliers on the point target dataset,
and present our observations in Fig. 11a and 11b. Aside
from outperforming the state-of-the-art, from the example
reconstructed images under 5% outliers and sinusoidal
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(a) (b) (c)
Fig. 10. Plots of MSE versus the amplitude of sinusoidal trajectory fluctuations in (a), various instances of linear trajectory fluctuations in (b)

and percentage of samples with outliers in (c), each calculated for the test dataset with extended rectangular targets.

(a) (b) (c)
Fig. 11. For the point target dataset with M = 2N , no additive noise and using PnP based network with L = 8, plots of MSE versus
amplitude of sinusoidal fluctuations on the circular trajectories and the percentages of samples with outliers are shown in (a) and (b),

respectively. Three ground truth images and reconstructed images under no error, 5 percentage outliers and sinusoidal trajectory error with 10 m
amplitude are shown in the four columns in (c).

trajectory fluctuations of 10 m amplitude in Fig. 11c, we
observe that despite the deviations from the corresponding
reconstructions in Fig. 6, our imaging network retains
the point target characteristics of the images under these
errors.

V. Conclusions

In this paper, we presented two deep denoising prior
based interferometric imaging networks whose architec-
tures are rooted in underlying iterative algorithms mini-
mizing either an implicit or an explicit objective function.
The data fidelity term that we used in both algorithms
leads to their interpretations as expansions of the power
method with learned prior knowledge imposed by the
denoisers. Furthermore, we adopted the unrolling tech-
nique to facilitate easier denoiser training while applying
as few iterative updates as possible and using arbitrary
initializations under challenging problem regimes. Our
numerical simulation results empirically demonstrate sev-
eral benefits offered by our approach over the state-of-
the-art including improved accuracy, computation time,
sample complexity and robustness to additive noise.

As a future work, we aim to substantiate our empirical
observations with theoretical justifications by studying the
sufficient conditions for exact recovery guarantees of our

PnP and RED based algorithms. Furthermore, determining
the valid ranges of values that such conditions impose
on important SAR imaging parameters for feasibility
is another open question to be explored in a future
work. Finally, it is important to establish the minimum
requirements on the imaging network architectures for
guaranteeing specific accuracy levels.
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alized power method for sparse principal component analysis.”
Journal of Machine Learning Research, vol. 11, no. 2, 2010.

[46] X.-T. Yuan and T. Zhang, “Truncated power method for sparse
eigenvalue problems.” Journal of Machine Learning Research,
vol. 14, no. 4, 2013.

[47] Z. Liu, J. Liu, S. Ghosh, J. Han, and J. Scarlett, “Generative prin-
cipal component analysis,” arXiv preprint arXiv:2203.09693,
2022.

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3261862

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on October 02,2023 at 02:20:50 UTC from IEEE Xplore.  Restrictions apply. 


	INTRODUCTION
	Problem Statement
	Prior Art and Motivation
	Our Approach and Contribution
	Organization

	Received Signal Model
	Denoising Prior and Spectral Estimation-based Interferometric Imaging Network
	Background on Methodology
	Spectral Method with Prior Information
	Deep Imaging Network

	Numerical Simulations
	Dataset Description
	Network Architecture and Reconstructed Images
	Sample Complexity
	Effect of SNR
	Effects of Outlier and Trajectory Fluctuations

	Conclusions
	REFERENCES

