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Molecular features driving cellular 
complexity of human brain evolution

Emre Caglayan1,2,9, Fatma Ayhan1,2,9, Yuxiang Liu1,2, Rachael M. Vollmer1,2, Emily Oh1,2, 
Chet C. Sherwood3, Todd M. Preuss4,5, Soojin V. Yi6,7,8 ✉ & Genevieve Konopka1,2 ✉

Human-specific genomic changes contribute to the unique functionalities of the 
human brain1–5. The cellular heterogeneity of the human brain6,7 and the complex 
regulation of gene expression highlight the need to characterize human-specific 
molecular features at cellular resolution. Here we analysed single-nucleus RNA- 
sequencing and single-nucleus assay for transposase-accessible chromatin with 
sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from 
posterior cingulate cortex. We show a human-specific increase of oligodendrocyte 
progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. 
Human-specific regulatory changes were accelerated in oligodendrocyte progenitor 
cells, and we highlight key biological pathways that may be associated with the 
proportional changes. We also identify human-specific regulatory changes in 
neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two  
of the neuronal subtypes. We additionally identify hundreds of new human accelerated 
genomic regions associated with human-specific chromatin accessibility changes. 
Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically 
accessible chromatin regions of excitatory neuronal subtypes. Together, our results 
reveal several new mechanisms underlying the evolutionary innovation of human 
brain at cell-type resolution.

Phenotypic differences between humans and our closest extant rela-
tives, including chimpanzees and other great apes, are driven by a 
combination of regulatory and coding sequence changes1. These 
genomic underpinnings of human brain evolution can be explained 
by genome-wide comparisons with non-human primate species. Pre-
vious studies have profiled the transcriptome of brain tissues in bulk 
to identify human-specific gene expression changes2–4. The findings 
of these studies highlighted human-specific changes that included 
changes in synaptogenesis3,5 and myelination5,8. However, brain tissue 
has tremendous cellular heterogeneity6,9. Therefore, single-cell genom-
ics approaches are required to identify the full scope of human-specific 
gene regulatory changes. Although previous studies have explored com-
parisons of epigenome or transcriptome between humans and other 
species7,10–15, a systematic identification of human-specific epigenomic 
and transcriptomic changes at cellular resolution is lacking. To address 
this gap of knowledge and assign changes to the human lineage, here we 
profiled the transcriptomes and epigenomes of adult tissue from poste-
rior cingulate cortex from humans and chimpanzees (Pan troglodytes) 
and included rhesus macaques (Macaca mulatta) as an outgroup. Our 
single-nucleus RNA-sequencing (snRNA-seq) and single-nucleus assay 
for transposase-accessible chromatin with sequencing (snATAC-seq) 
results revealed significant changes in proportions of cells in the 

oligodendrocyte lineage, uncovering thousands of human-specific 
regulatory changes. We further assessed the association of these regu-
latory changes with the underlying human-specific substitutions, pro-
viding critical links between changes in DNA sequence and function in 
human brain evolution at cellular resolution. We also uncovered specific 
enrichment of motifs of the immediate early gene transcription factors 
(TFs) FOS and JUN in human-specific chromatin accessibility gains, 
indicating human specificity in activity-dependent gene regulation. 
These results shed light on previously unknown cellular dimensions 
of human brain evolution.

To identify molecular and cellular changes accompanying human 
brain evolution, we examined the evolution of Brodmann area 23 (BA23) 
by applying snRNA-seq and snATAC-seq approaches to the same sam-
ples. Notably, BA23 is part of the posterior cingulate cortex, a hub 
region in the default mode network16 that is involved in higher-order 
cognitive processes such as theory of mind and has been implicated 
in schizophrenia17. Despite such importance, at present there is no 
detailed study of BA23 at single-cell resolution. We detected 148,540 
nuclei using snRNA-seq (human: 41,397; chimpanzee: 53,539; macaque: 
53,604) and 73,486 nuclei using snATAC-seq (human: 28,630; chimpan-
zee: 20,703; macaque: 24,153) after quality control (Methods, Extended 
Data Fig. 1 and Supplementary Table 1). We annotated major cell types 
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(Extended Data Figs. 1 and 2) and neuronal subtypes (14 excitatory 
subtypes and 8 inhibitory subtypes; Extended Data Fig. 3) across  
species in both snRNA-seq and snATAC-seq (Methods).

Proportional changes in oligodendrocytes
Evolutionary changes can arise from proportional13 and/or gene regu-
latory2,5,10–12,18 changes of cell types. Compared to that of non-human 
primates, the human brain has prolonged myelination and altered 
gene regulation in the oligodendrocyte lineage5,8,18, indicating pos-
sible changes in human-specific cell-type abundances. Assessing the 
proportional changes of the oligodendrocyte lineage in single-cell 
genomics can be particularly challenging as glia express fewer tran-
scripts than neurons as evidenced by fewer unique molecular identi-
fiers (UMIs; Extended Data Fig. 1e) and are thus more prone to filtering 
during empty-droplet removal with a UMI cutoff. To overcome this bias, 
we used a low UMI cutoff after empty-droplet removal (Methods) and 
calculated the percentage of mature oligodendrocytes (MOLs) and 
oligodendrocyte progenitor cells (OPCs) compared to all glia. We found 
a human-specific increase in OPC abundance and a human-specific 
decrease in MOL abundance whereas the abundances of astrocytes 
and microglia were not significantly altered (Fig. 1a and Supplementary 
Table 2). To confirm this finding using an independent method that 
preserves tissue anatomy, we carried out single-molecule fluorescence 
in situ hybridization (smFISH), which validated a significant increase 
of OPC and a significant decrease of MOL populations in humans 
compared to chimpanzees (Fig. 1b–d). We then examined data from 
other cortical regions that were previously profiled. Reanalysis of a 
snRNA-seq dataset from anterior cingulate cortex11 yielded a concord-
ant result with our finding (Fig. 1e and Extended Data Fig. 4a,b). We 
further validated this with smFISH using anterior cingulate cortical 
tissue from humans and chimpanzees (Fig. 1f–h). As we quantified the 
signal from all layers of the cortex, we also divided the columnar images 
into sections, which revealed similar trends in both cortical regions 
(Extended Data Fig. 4c–f), indicating that the result is not driven by 
uneven sampling of cortical layers. In addition, we examined a bulk 
RNA-sequencing dataset of the entire oligodendrocyte lineage in the 
dorsolateral prefrontal cortex18. Using deconvolution, we found a 
higher OPC/MOL ratio in humans, regardless of which species was 
used as reference (Fig. 1i and Extended Data Fig. 4g). Reanalysis of a 
comparative dataset7 in primary motor cortex tissue yielded similarly 
increased proportions of OPCs and decreased proportions of MOLs in 
humans compared to marmosets (Fig. 1j) and a similar trend compared 
to rhesus macaques (Fig. 1k). Notably, we did not observe similar abun-
dance changes in the caudate nucleus11 or dentate gyrus19 (Extended 
Data Fig. 4h,i). Together, these results show that adult human brain 
cortical regions have proportionally more OPCs and fewer MOLs com-
pared to those of non-human primates.

Gene regulatory changes in OPCs
To understand the gene regulatory changes in the human lineage, we 
identified human-specific gene expression alterations (HS-Genes: 
HS-Up-Genes and HS-Down-Genes) and human-specific chromatin 
accessibility level alterations in cis-regulatory elements (HS-CREs: 
HS-Open-CREs and HS-Closed-CREs) per cell type (Methods, Extended 
Data Figs. 4j and 5a,b and Supplementary Tables 3 and 4). Focusing on 
the oligodendrocyte lineage, we found a greater relative abundance 
of human-specific (HS) changes compared to chimpanzee-specific 
(CS) changes in OPCs than in MOLs in both snRNA-seq and snATAC-seq 
(Fig. 2a). Applying a similar approach to the anterior cingulate cortex11 
revealed similarly accelerated evolution in OPCs (Fig. 2b), as well as a 
significant overlap with our results (Extended Data Fig. 4k,l).

Among the human-specific regulatory changes in OPCs, 
HS-Down-Genes are enriched in cytoskeletal activity (Fig. 2c and 

Supplementary Table 5), which is crucial for OPC migration and 
oligodendrocyte differentiation20. We posited that marker genes 
in committed oligodendrocyte progenitors (COPs) may also have 
been altered in human OPCs. We identified 15 COP marker genes 
that are common across all species in our dataset and in two addi-
tional human datasets21–23. Two COP markers, SH3RF3 and KIF21A, 
were HS-Down-Genes in OPCs (Fig. 2d–f). In line with the enrich-
ment of cytoskeletal genes, KIF21A encodes a kinesin motor protein 
that is involved in microtubule function, whereas SH3RF3 encodes a 
SH3-domain-containing protein with ubiquitin ligase activity, a process 
also implicated in oligodendrocyte maturation24. We also identified 
an HS-Closed-CRE in OPCs near the transcription start site (TSS) of 
SH3RF3, potentially linked to the human-specific downregulation of 
this gene (Fig. 2g). Notably, snRNA-seq profiles for the frontal cortex of 
adult mice showed that most primate COP markers exhibit upregula-
tion in COPs or newly formed oligodendrocytes compared to OPCs, 
except for Sh3rf3, indicating potential primate specificity (Fig. 2h–j). 
Together, these results highlight key regulatory changes in human 
OPCs that may underlie human-specific proportional changes in the  
oligodendrocyte lineage.

Neuronal subtype specificity of evolution
We identified 14 subtypes of excitatory neurons and 8 subtypes of 
inhibitory neurons across species in both snRNA-seq and snATAC-seq 
(Extended Data Fig. 3). Unlike the results for the oligodendrocyte 
lineage, our findings showed that the neuronal subtype abundances 
were largely conserved across species (Extended Data Fig. 3b,h and 
Supplementary Table 2). The rates of gene regulatory changes were 
similar between human and chimpanzee lineages across most sub-
types (Extended Data Fig. 5c,d). However, a few neuronal subtypes 
exhibited signatures of human-specific acceleration in the epigenome 
(for example, L2-3_1) or the transcriptome (for example, L5-6 FEZF2_1; 
Extended Data Fig. 5c,d).

We observed a high heterogeneity of HS changes among neuronal 
subtypes (Extended Data Fig. 5e). As most previous comparative 
studies lacked cellular resolution at the subtype level, we assessed 
reproducibility between the previous bulk comparisons12,18 and the 
subtype-resolved comparisons. Although we found an overall enrich-
ment between the species-specific genes across different studies 
(Extended Data Fig. 6a–c), bulk studies consistently showed low overlap 
with the more subtype-specific HS changes (Extended Data Fig. 6d,e). 
Notably, when we pooled the excitatory subtypes, our power to detect 
subtype-specific HS changes were also substantially reduced (Extended 
Data Fig. 6f,g). Therefore, most neuronal HS changes are not shared by 
more than a few subtypes and are masked in bulk approaches.

Subtype-specific evolution of FOXP2
We examined human-specific expression of TFs that are altered in 
only a few subtypes and found that FOXP2, which encodes a key TF 
known for its roles in the development of cortical–striatal circuits 
related to speech and language and human brain evolution25,26, showed 
human-specific upregulation in two excitatory subtypes (Fig. 3a). This 
contrasted with the previous comparative studies of adult cortex 
that did not find a significant difference in the FOXP2 expression level 
between human and chimpanzee neurons11,12,14,18. Among these two 
subtypes, the L5-6_THEMIS_1 subtype (the most abundant THEMIS+ 
subtype, also marked by C1QL3; Extended Data Fig. 3e) exhibited low 
levels of FOXP2 expression in non-human primates (Fig. 3a). We used 
smFISH to independently validate this finding in intact tissues and 
confirmed both more FOXP2 and THEMIS co-positive cells in humans 
compared to chimpanzees (Fig. 3b,c), and more FOXP2+ puncta in 
human THEMIS+ cells but not in THEMIS− cells (Fig. 3b,d). A recent study 
found similar FOXP2 levels across species in all neuronal subtypes of 
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the dorsolateral prefrontal cortex14. Corroborating this result, we also 
found significantly lower levels of FOXP2 in the THEMIS+C1QL3+ neu-
rons of prefrontal cortex and anterior cingulate cortex in an independ-
ent dataset23 (Fig. 3e,f). These results indicate that subtype-specific 
upregulation of FOXP2 is also brain region specific. Notably, some of the 
experimentally validated FOXP2 downstream targets (VLDLR, SRPX2, 
CNTNAP2, MET and DISC1)25 are not human-specifically altered in these 
two subtypes, indicating potentially distinct FOXP2 gene regulation 
among neuronal subtypes in the cortex (Fig. 3a and Supplementary 
Table 3). Two previously identified FOXP2 targets, CNTNAP2 and MET, 
are human-specifically upregulated in layer 4 subtypes (Fig. 3a). These 
results indicate a previously unappreciated neuronal subtype hetero-
geneity of key functional regulators in human brain evolution.

 
Coevolution of chromatin and RNA
We then investigated the overall association between chromatin 
accessibility changes and gene expression changes. We found that the 
association between human-specific gene expression and chromatin 
accessibility changes was the strongest at promoters and declined 
with the distance from the TSS (Extended Data Fig. 7a). This trend was 
observed only among the gains and losses that are concordant between 
the genome and the transcriptome (HS-Up-Gene and HS-Open-CRE/
HS-Down-Gene and HS-Closed-CRE) but not in the discordant overlaps 
(for example, HS-Up-Gene and HS-Closed-CRE; Extended Data Fig. 7a). 
Overlaps for concordant, but not discordant, gains or losses were signif-
icant for nearly all subtypes (Extended Data Fig. 7b–d). Together these 
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Fig. 1 | The oligodendrocyte lineage is proportionally altered in human 
evolution. a, The fractions of OPCs and MOLs in glia from posterior cingulate 
cortex (BA23) are altered in humans. Each dot represents a sample (red: snATAC- 
seq, pink: snRNA-seq; n = 4 individuals per species per assay; P value: likelihood 
ratio test, two-sided; Methods). b–d, smFISH shows increased PDGFRA (OPCs) 
and decreased MOG (MOLs) signals in humans compared to chimpanzees (region: 
posterior cingulate cortex). DAPI, 4′,6-diamidino-2-phenylindole. b, Representative 
images. Scale bars, 100 μm. c,d, Quantification of the fraction of OPCs and MOLs. 
Each data point is the average of all sub-areas in a section (2–4 sub-areas in each of 
5 sections per individual; human: 10 sections; chimpanzee: 15 sections; Methods). 
The P value is the main effect of species from a linear mixed model (random 
effect: individual, two-sided). Error bars represent s.e.m. e, The fraction of OPCs 

or MOLs in glia based on snRNA-seq from anterior cingulate cortex (n = 4 
individuals per species, P value: Wilcoxon rank sum test, two-sided). f, as in b, but 
for anterior cingulate cortex. g,h, Quantification of the fraction of OPCs and 
MOLs as in c,d, but for anterior cingulate cortex (human: 15 sections, chimpanzee: 
15 sections; Methods). i, Deconvoluted proportions of cells from OLIG2 expressing 
bulk RNA-seq dataset for dorsolateral prefrontal cortex (reference dataset: 
human snRNA-seq from this study, n = 22 (human), 10 (chimpanzee), 10 (rhesus 
macaque) individuals; P value: Wilcoxon rank sum test, two-sided). j,k, Fraction of 
OPCs or MOLs in glia per species in the primary motor cortex. j, Human–marmoset 
comparison, k, human–rhesus macaque comparison. n = 5 (human), 4 (marmoset), 
3 (rhesus macaque) individuals. P value: Wilcoxon rank sum test, two-sided. 
Boxplots represent median and interquartile range in a,e,i–k.
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results show that HS-CREs are significantly associated with HS-Genes 
and that this association is stronger if the former is near the TSS and 
both are altered in the same direction.

To further refine associations between CREs and HS-Genes, we 
scanned the 500-kilobase (kb) vicinity of each HS-Gene for HS-CREs 
that are altered in the same direction in the same cell type. This 
analysis assigned at least one HS-CRE to 26% of HS-Genes across cell 
types (Supplementary Table 6). Focusing on the FOXP2 gene and sur-
rounding genomic regions, we identified four HS-Open-CREs in the 
L5-6_THEMIS_1 subtype. Two of these CREs are also close to another 
HS-Up-Gene (MDFIC; Fig. 3g and Supplementary Table 6). Among the 
other two, one resides within a FOXP2 intron, whereas the other one 
is about 244 kb away from the nearest FOXP2 TSS. To identify puta-
tive targets of human-specific FOXP2 upregulation, we then retained 
HS-CREs that have a FOXP2 motif and are associated with an HS-Gene in 
the same subtype. This analysis yielded 47 genes for the L5-6_THEMIS_1 
subtype and 14 genes for the L4-6_RORB_2 subtype (Extended Data 
Fig. 7e,f and Supplementary Table 6). We note that the FOXP2 upregula-
tion in L5-6_THEMIS_1 is greater than in L4-6_RORB_2 (log[fold change 
(FC)] = 0.8 and 0.4, respectively), and our analysis identified 3.35-fold 
more putative FOXP2 targets in L5-6_THEMIS_1 than in L4-6_RORB_2 
(human-specific changes are only 1.8-fold more in L5-6_THEMIS_1 than 

L4-6_RORB_2). We further highlighted 7 genes that are not altered in 
the other 12 subtypes, similar to FOXP2 itself (Extended Data Fig. 7e). 
Together, these results provide a list of potential epigenomic alterations 
associated with transcriptomic alterations in human brain evolution.

Human accelerated regions in brain
A goal of comparative genomic studies is to connect the changes at 
genomic sequences to functional changes. We therefore focused on 
human accelerated regions (HARs)27, which are genomic regions that 
have significantly accelerated sequence evolution in the human line-
age28. We found that 30% of published HARs overlapped the CREs in our 
dataset (about 2.5-fold excess compared to randomized background, 
P value < 0.05; Extended Data Fig. 8a), reaffirming the significance of 
these regions in human brain evolution10,29,30. Published HARs within 
CREs also showed modest but significant enrichment in HS-CREs in 
several cell types (Fig. 4a). However, these published HARs use sequence 
evolution without consideration of a specific tissue. Leveraging the 
snATAC-seq dataset, we reasoned that we could find many accelerated 
genomic regions by carrying out HAR analysis restricted to the CREs 
we identified (Methods). The odds ratio of published HAR and HS-CRE 
association is about 1.4, which was achieved in our analysis with an 
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unadjusted P-value cutoff of 0.001 (Fig. 4b and Supplementary Table 7). 
We note that, in contrast to previous genome-wide approaches, this 
focused approach to define HARs allows us to relax statistical criteria 
(unadjusted P < 0.001) without reducing the effect sizes observed in 
published HARs, while simultaneously enhancing validity by linking 
substitution changes to functional changes (that is, HS-CREs). We 
named these segments cortical HARs, as the cellular composition of cor-
tical brain regions is similar and we found that CREs from other cortical 
regions show a high degree of overlap with our dataset (Extended Data 
Fig. 8b). Many published HARs are also cortical HARs (Extended Data 
Fig. 8c) and we identified >3-fold more HS-CREs overlapping a cortical 
HAR than overlapping a published HAR (Extended Data Fig. 8d). Cortical 
HARs were also significantly enriched in HS-CREs from most cell types 
(Fig. 4c), and we highlight some notable examples of HS-CRE-associated 
HARs that are important for synaptic (CELF4)31 or oligodendrocyte 
(NRG3)32 function (Extended Data Fig. 8e,f). Together, these results 
demonstrate a significant association between sequence divergence 
and chromatin accessibility in human evolution and provide hundreds 

of new HARs accompanying chromatin accessibility change at cell-type 
resolution in the human brain.

Chromatin evolution in modern humans
Comparison of the genomes of anatomically modern humans to those of 
archaic humans permits the identification of ‘modern human-specific’ 
variants with unknown functional consequences33. We thus investi-
gated the associations between modern human-specific variants and 
chromatin changes in the brain. In total, we identified 12,161 modern 
human-specific variants associated with HS-CREs (Supplementary 
Table 8), which was a significant enrichment (P = 0.007; Methods). 
Among the cell types, we found a significant enrichment only in 
upper-layer excitatory neurons (Fig. 4d).

To compare the enrichments of modern human-specific variants to 
those that are specific to the entire human lineage (henceforth termed 
human specific), we first identified about 1.5 million human-specific 
substitutions within the CREs (Supplementary Table 9). Similar to the 
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HARs, human-specific substitutions were significantly enriched in 
HS-CREs, and we noted the example of GRIK4, which encodes a gluta-
mate receptor subunit implicated in brain disease34 (Extended Data 
Fig. 8g,h). As expected, human-specific substitutions also encompassed 
about 88% of previously identified modern human-specific variants 
(Extended Data Fig. 8i). To reduce the confounding effects of sample 
sizes, we randomly downsampled human-specific substitutions to 
match the number of modern human-specific variants and calculated 
their association with HS-CREs per cell type. This analysis revealed 
greater associations between modern human-specific variants and 
upper-layer HS-CREs compared to the substitutions along the entire 
human lineage (Fig. 4e and Extended Data Fig. 8j). Gene ontology 
(GO) enrichment analysis of HS-CREs with modern human-specific 
variants revealed the ephrin receptor signalling pathway as the only 
ontological enrichment (Fig. 4f,g). These results indicate that mod-
ern human-specific variants are associated with human-specific CRE 
changes.

Activity-response elements in human CREs
TFs are key components in evolution and disease. We found enrich-
ments of diverse TF-binding motifs in HS-Open-CREs across neuronal 
subtypes (Extended Data Fig. 9a,b and Supplementary Table 10). Nota-
bly, we observed significant enrichments for FOS::JUN motifs in the 
upper-layer excitatory neurons and for FOX motifs in the lower-layer 

excitatory neurons (Fig. 5a,b). We further identified TFs that may be 
functional at these HS-CRE target sites by examining the accessibility 
of each enriched TF within each family (Fig. 5a,b and Extended Data 
Fig. 9c,d).

FOS::JUN TFs are immediately transcribed following neuronal depo-
larization and target hundreds of CREs35,36. As FOS::JUN TFs respond 
to environmental stimuli, we tested whether FOS::JUN TF enrichment 
in HS-Open-CREs is driven by environmental factors. We first investi-
gated whether greater postmortem interval (PMI) in human tissues 
compared to chimpanzee and rhesus macaque tissues, a limitation in 
many similar studies12,14,18, is driving this enrichment. To test this, we 
substituted our human snATAC-seq dataset (named PMI_24) with a 
surgical human dataset from middle temporal gyrus that has no PMI 
(PMI_0)37. We similarly found all excitatory subtypes in this dataset 
and identified HS-CREs that exhibited highly significant overlaps with 
the PMI_24 HS-CREs (Extended Data Fig. 9e–g), as well as enrichments 
of similar motifs (Extended Data Fig. 9h). Similar to the PMI_24 data-
set, HS-Open-CREs in the upper-layer excitatory neurons were highly 
enriched in FOS::JUN motifs (Extended Data Fig. 9i). These results show 
that FOS::JUN enrichments in upper-layer excitatory HS-Open-CRE are 
not driven by PMI differences.

To provide an orthogonal test for a possible environmental effect on 
FOS::JUN motif enrichments, we investigated whether HS-Open-CREs 
with FOS::JUN motifs also contain signatures of accelerated evolu-
tion. If FOS::JUN motif enrichments in HS-Open-CREs are driven by 
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environmental factors, human-specific substitutions within the 
HS-Open-CREs with FOS::JUN motif occurrences should be depleted 
compared to those within other HS-Open-CREs. Contrary to this expec-
tation, we found a significant excess of HS substitutions and accelerated 
evolution when HS-Open-CREs with FOS::JUN motifs were compared 
to the nonspecific (NS) CREs (Fig. 5c,d). FOX targets were also more 
divergent in humans compared to NS-CREs with or without FOX motifs 
(Fig. 5e,f). An example of a human-specific gain of a FOS::JUN motif 
within a HAR is shown near MTHFD2L (Fig. 5g), which encodes a key 
enzyme in the one-carbon metabolism associated with neurotransmit-
ter synthesis38. Taken together, these results do not support a possible 
environmental cause.

In summary, we have uncovered proportional and gene regulatory 
changes in human brain evolution using single-cell genomics and have 
linked human-specific DNA sequence divergence, chromatin acces-
sibility and gene expression at cellular resolution.

Discussion
In this study, we delineated epigenomic and transcriptomic features of 
human brain evolution at cell-type resolution. We found that the adult 
human cortex had an increased proportion of OPCs and a decreased 

proportion of MOLs compared to non-human primates. Focusing on 
neurons, we showed that many human-specific changes were found 
in only a few neuronal subtypes, and demonstrated human-specific 
upregulation of FOXP2 in two neuronal subtypes. We also associated 
genomic sequence changes with HS-CREs at cellular resolution and 
identified hundreds of new HARs that were associated with open chro-
matin in the adult brain. Furthermore, we identified increased FOS::JUN 
TF targets among the HS-Open-CREs in the upper-layer excitatory 
neurons, emphasizing a previously unappreciated temporal dimension 
of human-specific molecular traits.

Previous studies showed prolonged myelination in brain develop-
ment in humans compared to chimpanzees and rhesus macaques5,8. 
Correspondingly, the production of myelinating oligodendrocytes 
reaches a plateau in individuals older than about 40 years old in grey 
matter39. Notably, we observed proportionally higher OPCs in humans 
compared to chimpanzees and rhesus macaques even though individu-
als in our dataset are all in their mid to late adulthood (humanized age; 
Supplementary Table 1). We also found that COPs, cells that denote 
active oligodendrocyte generation40, are extremely rare (only 74 nuclei 
in all species), indicating low levels of oligodendrocyte generation in 
all species in our samples. We reason that the higher proportion of 
OPCs and lower proportion of MOLs can contribute to neural plasticity 
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in the human brain by altering myelination patterns. Non-canonical 
functions of OPCs such as pruning axonal branches and contributing 
to synaptic function have been described recently41, indicating that 
increased numbers of OPCs in the human brain may serve functions 
other than providing a reservoir for MOLs. We note that a recent study 
found more divergence between species for MOLs compared to OPCs 
by comparing the gene expression correlations42. The discrepancy with 
our results could be due to differences in the brain regions analysed, 
sorting strategy (NeuN-sorted versus not sorted) or analytical pipeline 
(for example, correlations versus differential gene expression (DGE)). 
We also note that our approach separates human-specific changes 
from chimpanzee-specific changes as a measure of human specificity, 
making it better tailored to highlight the changes in human lineage.

Single-cell sequencing facilitates characterization of regulatory 
changes in all cell types. However, we recently discovered that neuronal 
ambient RNAs contaminate glial cell types and require rigorous removal 
before identification of differentially expressed genes21, as such con-
tamination can skew the DGE results43. We found that a recent study14 
shows evidence of human-specific differences in the level of ambient 
RNA contamination in glial cell types, indicating the importance of 
ambient contamination removal (Extended Data Fig. 10a,b). Among 
the studies with human–chimpanzee comparisons so far11,14, to our 
knowledge, only our study has removed ambient RNA contamination. 
Following removal of ambient RNAs, we uncovered that cytoskeletal 
activity and ubiquitin ligase activity through SH3RF3 are specifically 
decreased in human OPCs (Fig. 2c–g). Both biological processes are 
linked to oligodendrocyte maturation, indicating that such functions 
might be linked to the human-specific OPC increase20,24. These results 
also suggest that an evolutionary modification in human brain may 
have been achieved through a loss of function in OPCs44.

We found a subtype- and human-specific upregulation of FOXP2 that 
may be unique to the posterior cingulate cortex. We also note that most 
FOX TF motifs are enriched in the HS-Open-CREs in THEMIS+C1QL3+ 
neurons (Fig. 5b), and although the FOXP2 motif enrichment itself 
was not significant, this could be ascribed to possible variations of 
FOXP2-binding sites in different tissues. Indeed, we previously showed 
that FOXP2 can act both as a repressor or activator through heterodi-
merization with other TFs at distinct DNA motifs45. In addition, a recent 
study identified human-specific FOXP2 upregulation in microglia14, with 
a trend similar to that in our dataset (Supplementary Table 3), suggest-
ing a previously undescribed potential role of FOXP2. These results 
provide further insights into the role of FOXP2 in human brain evolution.

Notably, association between human-specific gene expression 
changes and chromatin accessibility changes was significant only 
between the concordant changes but not between discordant changes 
(Extended Data Fig. 7). Although human-specific upregulated repres-
sors may exist, the activity of such repressors is probably manifested 
as closed accessibility of CREs via other epigenetic mechanisms46. 
Consequenctly, we may still observe a concordant change.

We discovered a new enrichment of FOS and JUN family motifs 
in specifically cortical upper-layer excitatory HS-Open-CREs. Late 
activity-regulated genes are known to be evolutionarily divergent38,47–49 
and exhibit high cell-type specificity50. Along with the previous studies, 
our results underscore the need for more direct experiments to under-
stand how adult human cortical cells respond to neuronal activity, and 
the underlying evolutionary trajectories. We also note that some of our 
analyses are limited to BA23 and future comparative studies from other 
brain regions are needed. Overall, our results provide a comprehensive 
roadmap for delineating functional regulatory mechanisms of human 
brain evolution at cellular resolution.
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Methods

Specific details of all analyses can be found https://github.com/konop-
kalab/Comparative_snATAC_snRNA.

Sampling strategy for snRNA-seq and snATAC-seq
All human tissue was obtained from the University of Texas Neuropsy-
chiatry Research Program (Dallas Brain Collection). Chimpanzee and 
macaque tissues were obtained from Yerkes National Primate Research 
Center. BA23 (part of the posterior cingulate cortex) was dissected 
from frozen postmortem tissue slabs. Humanized age (calculated as 
described before18) and sex were matched between species to minimize 
the effect of demographics. In total, four individuals were sequenced 
from each species (Extended Data Fig. 1a and Supplementary Table 1).

snRNA-seq library preparation
Nuclei for snRNA-seq were isolated from human, chimpanzee and 
macaque BA23 brain tissue. Briefly, the tissue was homogenized using 
a glass Dounce homogenizer in 2 ml of ice-cold lysis buffer (10 mM 
Tris-HCl, 10 mM NaCl, 3 mM MgCl2 and 0.1% Nonidet P40 Substitute) 
and was incubated on ice for 5 min. Nuclei were centrifuged at 500g 
for 5 min at 4 °C, washed with 4 ml ice-cold lysis buffer and incubated 
on ice for 5 min. Nuclei were centrifuged at 500g for 5 min at 4 °C. After 
centrifugation, the nuclei were resuspended in 500 μl of nucleus sus-
pension buffer (NSB) containing 1× PBS, 1% BSA (no. AM2618, Thermo 
Fisher Scientific) and 0.2 U μl−1 RNAse inhibitor (no. AM2694, Thermo 
Fisher Scientific). The nucleus suspension was filtered through a 70-μm 
Flowmi cell strainer (no. H13680-0070, Bel-Art). Debris was removed 
with density gradient centrifugation using Nuclei PURE 2 M sucrose 
cushion solution and Nuclei PURE sucrose cushion buffer from the 
Nuclei PURE prep isolation kit (no. NUC201-1KT, Sigma Aldrich). Nuclei 
PURE 2 M sucrose cushion solution and Nuclei PURE sucrose cushion 
buffer were first mixed in a 9:1 ratio. A 500 μl volume of the resulting 
sucrose solution was added to a 2-ml Eppendorf tube. A 900 μl volume 
of the sucrose buffer was added to 500 μl of isolated nuclei in NSB. A 
1,400 μl volume of nucleus suspension was layered to the top of the 
sucrose buffer. This gradient was centrifuged at 13,000g for 45 min at 
4 °C. The pellet of nuclei was resuspended, washed once in NSB and fil-
tered through a 70-μm Flowmi cell strainer (no. H13680-0070, Bel-Art). 
The concentration of nuclei was determined using 0.4% trypan blue 
(no. 15250061, Thermo Fisher Scientific), and was adjusted to a final 
concentration of 1,000 nuclei per microlitre with NSB.

Droplet-based snRNA-seq libraries were prepared using Chromium 
Single Cell 3′ v3.1 (1000121, 10x Genomics) according to the manufac-
turer’s protocol51. Libraries were sequenced using an Illumina NovaSeq 
6000.

snATAC-seq library preparation
For snATAC-seq, nuclei were isolated from human, chimpanzee and 
macaque BA23 tissue as previously described (https://www.protocols.
io/view/isolation-of-nuclei-from-frozen-tissue-for-atac-se-6t8herw). 
Briefly, tissue pieces neighbouring the tissue used for snRNA-seq were 
cut and homogenized using a glass Dounce homogenizer in ATAC-seq 
homogenization buffer (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 
20 mM tricine-KOH (pH 7.8), 1 mM dithiothreitol, 0.5 mM spermidine, 
0.15 mM spermine, 0.3% NP40, protease inhibitors). The nuclei were fil-
tered through a 70-μm Flowmi cell strainer (no. H13680-0070, Bel-Art) 
and were pelleted by centrifugation for 5 min at 4 °C at 350g in a 2-ml 
Eppendorf tube. The supernatant was discarded, and the nuclei were 
resuspended in 400 μl of homogenization buffer. A 400 μl volume of 
50% iodixanol solution was added to the nucleus suspension and was 
mixed by pipetting. A 600 μl volume of 30% iodixanol solution was lay-
ered under the 25% mixture. A 600 μl volume of 40% iodixanol solution 
was then layered under the 30% mixture. This gradient was then centri-
fuged for 20 min at 4 °C at 3,000g. After centrifugation, the nuclei were 

recovered at the 30%–40% interface. The nuclei were transferred to a 
new Eppendorf tube and resuspend in 200 μl ATAC-RSC-Tween buffer 
(10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20).  
The concentration of nuclei was determined using 0.4% trypan blue (no. 
15250061, Thermo Fisher Scientific). Nucleus integrity was tested by 
staining with ethidium homodimer 1 (catalogue no. E1169, Invitrogen). 
Droplet-based snATAC-seq libraries were prepared using the Chromium 
Single Cell ATAC Library kit (1000110, 10x Genomics) according to the 
manufacturer’s protocols. Libraries were sequenced using an Illumina 
NovaSeq 6000.

snRNA-seq preprocessing and annotation
Bcl files were converted to fastq using cellranger mkfastq. Barcode 
correction and reference genome alignment were carried out using 
cellranger count with default parameters (software: 10x Genomics 
Cell Ranger 3.1.0). For the alignment, the genome builds GRCh38,  
panTro5 (Pan_tro 3.0) and rheMac10 (Mmul_10) were used as reference 
genomes for humans, chimpanzees and macaques, respectively. The 
BAM output from cellranger count was further processed to keep only 
uniquely mapped reads using samtools (-q 255)52. As chimpanzee and 
macaque gene annotation files (gtf) are less accurate than those for 
humans, chimpanzee and macaque reads were then mapped to human 
coordinates using CrossMap53. featureCount was used to count reads 
mapping to gene bodies54, and umi_tools55 was used to create the count 
matrix (gene by cell barcode; per sample, the top 50,000 cell barcodes 
with the highest UMI counts were pre-filtered for faster computation).

To remove ambient RNA contamination, we used CellBender on the 
unnormalized count matrix per sample56. We note that without ambient 
RNA removal, glial cells were shown to be conspicuously contaminated 
with neuronal ambient RNAs21.

Empty-droplet-filtered output from CellBender was further pro-
cessed to retain only the protein-coding and orthologous genes 
(between Homo sapiens, P. troglodytes and M. mulatta), similar to 
the approach of ref. 18. An orthologous gene list was obtained from 
Ensembl version 103 (ref. 57). For quality control, we kept only nuclei 
with >200 UMIs and percentage of reads mapping to mitochondria of 
<5. We then clustered nuclei for further analysis. The following methods 
from Seurat v3 (ref. 58) were used to carry out and visualize clustering 
(a similar approach was followed for each new clustering procedure; 
details are available in the publicly available code): normalization 
(SCTransform), dimensionality reduction (RunPCA), batch correction 
(RunHarmony, default parameters), k-nearest neighbours (FindNeigh-
bors) on batch-corrected dimensions and cluster identification by 
shared nearest neighbours (FindClusters). Uniform manifold approxi-
mation and projection embedding was then computed for visualization 
in two-dimensional space (RunUMAP). We removed clusters with an 
unusually high number of detected genes accompanied with a high 
level of expression of at least two typically distinct marker genes as 
potential nucleus doublets. We re-clustered the nuclei and repeated 
this process if needed until no such clusters were found. We then used 
canonical marker genes (for example, GAD1 for inhibitory neurons) 
and a reference dataset6 (using label transfer; see next paragraph) to 
broadly annotate nuclei in each species. Major cell types were defined 
as: excitatory neurons, inhibitory neurons, astrocytes, oligodendro-
cytes, OPCs and microglia. After broad annotation, we extracted each 
broad category (for example, excitatory neurons) from all species and 
integrated them across species using the default approach in Seurat 
v3 across all samples (SelectIntegrationFeatures, PrepSCTIntegra-
tion, FindIntegrationAnchors). We then clustered the nuclei on the 
integrated matrix per cell type and further removed potential doublets 
with the same criteria as above. We additionally removed clusters with 
high enrichment in previously identified ambient RNA markers as pre-
viously described21.

To annotate neuronal subtypes, we used a previous study6 
as a reference to annotate our clusters through label transfer 
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(FindTransferAnchors, TransferData). We assigned each cluster an 
annotation label based on the layer and marker gene of predominant 
predicted annotations per cluster. These annotations were also veri-
fied with known marker genes that separate certain neuronal subtypes 
(Extended Data Fig. 3).

We note that endothelial cells were removed from the analysis as 
we did not detect a distinct cluster of endothelial cells in snATAC-seq.

snATAC-seq preprocessing and annotation
Bcl files were converted to fastq using cellranger mkfastq. Barcode 
correction and reference genome alignment were carried out using 
cellranger-atac count with default parameters (Software: 10x Genom-
ics Cell Ranger ATAC 1.1.0). For the alignment, the genome builds 
GRCh38, panTro5 (Pan_tro 3.0) and rheMac10 (Mmul_10) were used as 
reference genomes for humans, chimpanzees and macaques, respec-
tively. The BAM output from cellranger count was further processed 
to keep only uniquely mapped and properly paired reads using sam-
tools52. Read duplicates were removed using MarkDuplicates from 
Picard tools59. Peak calling was carried out using macs2 (ref. 60) with 
the following parameters: --nomodel, --keep-dup all, extsize 200, 
--shift –100 to enrich for the cut sites. To obtain peaks concordant 
across samples, peak calling was carried out by pooling all samples 
from each species, as well as from each sample. Peaks from pooled 
samples were kept for further analysis only if they overlap >50% with 
peaks per sample in 3/4 of samples. This yielded a list of consensus 
peaks for each species.

To obtain a final set of peaks from consensus peaks, chimpanzee and 
macaque peaks were converted to human coordinates using liftOver61. 
All peaks were then merged using bedtools62, resulting in merged peaks 
with a minimum distance of 200 between them (-d 200). To keep peaks 
with a reliable level of conservation across all species, merged peaks 
were reciprocally mapped to chimpanzee or macaque genomes and 
any peaks with more than twofold change in size, multi-mapped or less 
than 50% conserved (-minMatch = 0.5) were discarded in each liftOver 
operation. Merged peaks were then filtered for the peaks that recipro-
cally mapped to both chimpanzee and macaque by requiring >50% 
overlap between a peak in the merged peak set and reciprocally mapped 
peak set (bedtools intersect -f 0.5 -F 0.5). Despite being conservative, 
this approach kept >93% of the initial peaks, indicating that sequence 
identity of most open chromatin peaks is reliably conserved across 
species and allows direct comparisons between species in downstream 
analysis (for example, differential accessibility). After this stage, peaks 
were also referred to as CREs.

To obtain the peak–cell count matrix, reads were counted in each 
species’ own coordinates using custom functions on bed files. To 
keep high-quality cells, only the barcodes with >3,000 reads in 
peaks, <100,000 reads in peaks and >15% fraction of reads in peaks 
were kept for further analysis. Barcode multiplets63 were addition-
ally removed using cellranger’s, clean_barcode_multiplets_1.1.py 
tool. Resulting matrices were processed separately for each species. 
The following methods from Seurat v3 (ref. 58) were used to carry 
out and visualize each clustering procedure (details can be found 
in the publicly available code). Dimensionality reduction was car-
ried out with latent semantic indexing (using the functions RunT-
FIDF and RunSVD in Signac64). Batch correction was achieved with 
harmony on latent semantic indexing dimensions (RunHarmony65). 
Batch-corrected dimensions were then used to compute k-nearest 
neighbours (FindNeighbors) and identify clusters by shared nearest 
neighbours (FindClusters). Uniform manifold approximation and pro-
jection embedding was computed for visualization in two-dimensional  
space (RunUMAP).

To annotate snATAC-seq cells, correspondence between gene acces-
sibility and gene expression is required. To achieve this, a gene activ-
ity matrix was calculated using Cicero66 for each species. Only CREs 
with more than 1% accessibility were retained for analysis, and CREs in 

protein-coding genes (gene body + 3 kb upstream) were used to anno-
tate CREs to genes (annotate_cds_by_site), and these data were further 
processed to build the unnormalized gene activity matrix (build_gene_
activity_matrix). Both major cell types (for example, excitatory) and 
subtypes (for example, L2-3_1) in snATAC-seq were annotated through 
label transfer with the corresponding snRNA-seq dataset as reference. 
All snRNA-seq to snATAC-seq label transfers were carried out separately 
for each species. Clusters with mixed annotation accompanied with 
unusually high number of reads in peaks and mixed marker gene activity 
(typically distinct marker genes highly accessible in the same cluster) 
were removed as potential doublets. An annotation label was assigned 
per cluster depending on the dominant annotation for each cluster. All 
cell types found in snRNA-seq were distinctly found in snATAC-seq and 
thus annotated with the same names.

Cell-type-fraction comparisons
For comparison of cell-type ratios, we calculated the fraction of glial 
cell types within all glia, the fraction of excitatory subtypes within 
all excitatory cells and the fraction of inhibitory subtypes within all 
inhibitor cells for each individual in both snRNA-seq and snATAC-seq. 
To determine whether the fraction differences were significant between 
species, we calculated the P value using a log-likelihood ratio on two 
nested models:

H0: fraction ~ assay (snRNA−seq or snATAC−seq)

H1: fraction ~ assay (snRNA−seq or snATAC−seq) + species

(for example, human and chimpanzee)

,

This was carried out for each pairwise species comparison per cell 
type. The statistics are available in Supplementary Table 2.

smFISH
See Supplementary Table 1 for sample demographics. Cortical BA23 
(posterior cingulate cortex) and anterior cingulate cortex samples from 
all species were postmortem, flash-frozen tissues that were embed-
ded in OCT (optimal cutting temperature) compound. The tissue was 
sectioned at −20 °C to 20 µm on Superfrost Plus Microscope slides. 
smFISH was carried out using RNAScope Multiplex v2 Fluorescent 
assays. Protease was applied for 30 min, and all subsequent steps, 
including probe application, tyramide signal amplification, channel 
development and fluorophore application, were carried out according 
to the manufacturer’s instructions for fresh frozen tissue except with 
the addition of Sudan Black B. Sudan Black B (0.05%) was added to the 
tissue after application of DAPI to quench autofluorescence. Probes 
for MOG (human: 543181-C2, chimpanzee: 1076431-C2; Advanced 
Cell Diagnostics), PDGFRA (human: 604488, chimpanzee: 1120031; 
Advanced Cell Diagnostics), THEMIS (human: 407261; Advanced Cell 
Diagnostics) and FOXP2 (human: 551661-C2; Advanced Cell Diagnos-
tics) were incubated with the tissue and hybridized with their target 
genes. Opal fluorophores 570 (NC1601878, Akoya Biosciences, 1:750) 
and 620 (NC1612059, Akoya Biosciences, 1:750) were used to label 
the gene-specific probes after signal amplification. A 3-plex human 
(320861, Advanced Cell Diagnostics), and non-human primate (320901, 
Advanced Cell Diagnostics) positive control probe was used for each 
species alongside a primate negative control probe (320871, Advanced 
Cell Diagnostics).

To separate fluorophore signals, multispectral imaging was car-
ried out on a Zeiss LSM 880 in UT Southwestern’s Quantitative Light 
Microscopy Core. Final imaging was carried out on the Zeiss LSM 710 
and Zeiss LSM 880 confocal microscope at ×20 magnification in the 
UT Southwestern Neuroscience Microscopy Facility on chimpanzee 
and human samples.

To determine the composition of OPCs and MOLs in both BA23 
(human: n = 2, chimpanzee: n = 3) and anterior cingulate cortex (human: 
n = 3, chimpanzee: n = 3), we sampled 2–4 vertical bins (layers 1–6) of 
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cortex from each individual and evenly divided each bin from the api-
cal to basal boundary into 5 sections, and then we randomly selected 
2–4 sub-areas (456 × 456 pixels) in each section to quantify the num-
ber of cells (DAPI, 405 nm), OPCs (PDGFRA, 488 nm) and MOLs (MOG, 
555 nm) by using self-generated ImageJ Macro code and R script in 
Fiji and R, respectively (https://github.com/konopkalab/Compara-
tive_snATAC_snRNA). Maximum intensity projection images were gen-
erated from 13 slices of Z stack. OPCs were defined as PDGFRA and DAPI 
double-positive cells, whereas MOLs were defined as MOG and DAPI 
double-positive cells. Data were analysed using a linear mixed model 
with species as the fixed factor and individual as the random factor per 
comparison (lme467 package in R, with REML = F).

To compare the expression of FOXP2 in THEMIS+ neurons between 
humans (n = 3) and chimpanzees (n = 3), we quantified the fraction of 
FOXP2+ neurons in THEMIS+ neurons, and the number of fluorescent 
puncta as a proxy for FOXP2 expression levels in BA23. We sampled 2–3 
images from the deep layers of each individual, and then we randomly 
selected 2–3 sub-areas of each image to quantify the fraction of DAPI 
(405 nm), FOXP2 (488 nm) and THEMIS (555 nm) triple-positive neu-
rons in DAPI and THEMIS double-positive neurons. Data were analysed 
using a mixed linear model using species, image and sub-area as the 
fixed factors. For quantification of puncta, we used the same images 
as for quantification of fraction but selected only the cells with indi-
vidually distinguishable puncta. This resulted in the quantification of 
3–11 THEMIS+ neurons and 3–9 THEMIS− neurons per image. Data were 
analysed using a linear mixed model with species as the fixed factor 
and individual as the random factor per comparison (lme467 package 
in R, with REML = F).

snRNA-seq DGE and identification of species-specific gene 
expression
We carried out DGE analysis using two approaches: a single-cell-based 
DGE approach and a pseudobulk-based DGE approach. We retained 
the pseudobulk DGE results for all analyses as both the HS-Genes and 
CS-Genes were more reproducible with previous studies12,18 compared 
to the single-cell-based DGE method (Extended Data Fig. 10c–e).

For the pseudobulk DGE method, we aggregated all cells per cell 
type and species using sumCountsAcrossCells from scuttle68 and only 
retained the genes that were detected in all samples (UMIs > 0) of at 
least one species. DGE analysis was carried out using edgeR QLRT 
approach69 and differentially expressed genes were determined with 
FDR (<0.05) and log[FC] (log[FC] > 0.3 or log[FC] < −0.3) cutoffs. DGE 
analysis was carried out with the following covariates: humanized age, 
sex and library batch. Humanized age was calculated as described 
before by linear modelling of life traits between species70. Genes with 
species-specific expression were determined as before18. Briefly, 
HS-Genes were determined as differentially expressed genes that are 
H > C = M or H < C = M (C = M was determined if FDR > 0.1; in which,  
H represents humans, C represents chimpanzees and M represents rhe-
sus macaques). The same criteria were used for CS-Genes. Genes that are 
consistently different between macaque–human and macaque–chim-
panzee were referred to as macaque versus human–chimpanzee genes.

For the single-cell DGE method, genes were tested for DGE using 
MAST68. The same covariates were used as in the pseudobulk method, 
except for cngeneson as recommended by the MAST approach68. Genes 
with FDR < 0.05 and absolute average log (ln) FC > 0.25 were considered 
significant. Genes with species-specific expression were determined 
as described for the pseudobulk method above.

snATAC-seq differential CRE accessibility and identification of 
species-specifically accessible CREs
As for DGE, we carried out differential CRE accessibility using two 
approaches: a single-cell-based approach and a pseudobulk-based 
approach. We retained the pseudobulk method results for all analyses 
as both the HS-CREs and CS-CREs were more reproducible with the 

previous study12 compared to the single-cell based method (Extended 
Data Fig. 10f).

For the pseudobulk method, we used the edgeR QLRT approach, 
which is widely used for differential accessibility analysis71, similar 
to the DGE analysis. We aggregated all cells per cell type and spe-
cies and retained only the CREs that were detected in all samples 
(total detected reads > 3) of at least one species, and among the top 
100,000 CREs by accessibility per cell type. Differentially accessible 
CREs were determined with FDR (< 0.05) and log[FC] (log[FC] > 0.3 
or log[FC] < −0.3) cutoffs. Differentially accessible CRE analy-
sis was carried out with the following covariates: humanized age 
and sex. Species-specifically accessible CREs were determined 
in the same manner as the species-specifically expressed genes  
described above.

For the single-cell method, CRE accessibility was used as the 
response variable and logistic regression was used to fit two models 
of covariates with or without species identity per comparison. Then, 
a log-likelihood ratio test was used to determine the P value, which 
was later adjusted with FDR correction. The covariates were: human-
ized age, sex and total gene activity (as a measure of cell depth and 
quality, calculated using Cicero66). To determine an effect-size cutoff, 
we first calculated a mean accessibility ratio among tested CREs per 
pairwise comparison (MeanAccChimp/MeanAccHuman) and used this 
to normalize accessibility of one species to another. This was then used 
to compute delta accessibility (HumanAcc − ChimpAccNormalized)  
for all CREs, which followed a normal distribution around zero. This 
calculation was carried out for each pairwise comparison per cell type 
and 1.5 s.d. away from the mean was used as the cutoff. Therefore, 
only CREs with FDR < 0.05 and s.d. > 1.5 were considered significant. 
Species-specifically differential CREs were determined with the same 
criteria used for species-specifically expressed genes as described 
above.

Analysis of previously published datasets
The data for ref. 11 were analysed through publicly available fastq files 
(Gene Expression Omnibus (GEO) accession: GSE127898). Preprocess-
ing (until count matrix) was carried out in a way similar to that for our 
own dataset, including ambient RNA correction by CellBender56. As 
species were mixed in the same library, we assigned cell barcodes to 
a given species (humans, chimpanzees, bonobos, rhesus macaques) 
by counting reads with no mismatch (carried out for each species) and 
assigning the cell barcode to the species with the most counts. Our 
annotation corresponded with the original publication for >99.9% 
of the cell barcodes annotated in the original study11. We then used 
200 UMIs as the cutoff, rather than 500 UMIs in the original study, as 
we are interested in the ratios of OPCs and MOLs, and glial cells have 
an overall lower number of UMIs (Extended Data Fig. 1e). We then used 
canonical markers to identify the major cell type and define the ratio 
of OPC and MOL nuclei per sample.

The data for ref. 12 were analysed through its supplementary tables. 
The overlap of CREs was tested for statistical significance with a Fisher’s 
exact test. For overlap of species-specifically accessible CREs, we used 
the number of all CREs as the background.

The OLIG2 dataset from ref. 18 was deconvoluted using MuSiC72 as 
previously carried out73 except that the reference single-cell study was 
used from this dataset (humans, chimpanzees and macaques were used 
separately for comparisons).

The ref. 23 raw count matrix was filtered to contain only L5/6 CC 
THEMIS+ neurons from the healthy controls. L5/6 CC was further sub-
clustered and filtered to contain only C1QL3+ subclusters. We also only 
retained the orthologous protein-coding genes initially identified 
for the original comparative analyses. DGE analysis was carried out 
between posterior cingulate cortex and prefrontal cortex and between 
posterior cingulate cortex and anterior cingulate cortex using the 
pseudobulk DGE (edgeR QLRT) approach as described before.

https://github.com/konopkalab/Comparative_snATAC_snRNA
https://github.com/konopkalab/Comparative_snATAC_snRNA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127898


The data in ref. 7 were analysed for the proportional changes in the 
oligodendrocyte lineage. We obtained the metadata associated with 
the final count (NEMO identifier: dat-ek5dbmu) and computed the 
fraction of OPCs and MOLs in all glia per individual. For species with 
both single-nucleus chromatin accessibility and mRNA expression 
sequencing (SNARE-seq) and single-nucleus transcriptome (humans 
and marmosets) datasets, both datasets were used.

Epigenome–transcriptome associations
To test overlap of epigenomic and transcriptomic changes, we 
expanded the CREs on both sides of the TSS, either with increasing 
distance (Extended Data Fig. 7a) or for 500 kb to identify potential 
HS-CREs associated with HS-Genes. We used 500 kb as most physi-
cal interactions between enhancers and promoters are within 500 kb 
distance74. We determined that an HS-CRE and HS-Gene are associ-
ated if the following conditions are true: they are both found in the 
same cell type (neuronal subtypes are treated as different cell types); 
they are altered in the same direction (for example, HS-Open-CRE and 
HS-Up-Gene); the HS-CRE is within 500 kb on either side of the TSSs 
per HS-Gene.

Gene set enrichment analyses
GO enrichment for HS-Genes was carried out using the clusterProfiler 
package in R75. HS-Up-Genes and HS-Down-Genes were tested separately 
with all genes tested for differential expression used as the background. 
Background was calculated separately for each cell type. Only the GO 
enrichments with FDR < 0.05 and FC > 1.3 were considered significant.

Modern-variant-associated HS-CREs were first divided into 
HS-Open-CREs and HS-Closed-CREs. Then the nearby genes were 
annotated using annotatr76. Background genes were similarly identi-
fied by annotating all accessible CREs to their genes with annotr76. As 
for HS-Genes, GO enrichment was carried out using the clusterProfiler 
package in R. As only the L2-3_2 subtype showed enrichment, we carried 
out modern-variant GO enrichment only for this subtype.

Motif enrichment analysis
Non-redundant motifs for humans were downloaded from the JASPAR 
2018 database77. A binary CRE motif matrix (CREs in the rows, motifs 
in the columns) was created using Signac, which calculates the motif 
matrix using motifmatchr78. We then tested the enrichment of motifs 
in HS-Open-CREs per cell type using a log-likelihood ratio test on two 
nested binomial linear regression models (Evolution: HS-Open-CRE 
or not):

H0: Evolution ~ CRE length

H1: Evolution ~ CRE length + Motif occurrence

CRE length was added as a covariate as longer CREs will include more 
motifs. To avoid capturing the motifs divergent between species in 
general, and to highlight the motifs divergent only in the human evo-
lution, the background was selected as all evolutionarily divergent 
CREs for the given cell type. Motifs with FDR < 0.05 and log[FC] > 0 
were considered as significantly enriched. Motif enrichments were 
clustered and visualized using pheatmap79.

Visualization of CREs
To visualize CREs across all species, we converted raw chimpanzee 
and rhesus macaque snATAC-seq reads to human coordinates using 
CrossMap53. This was carried out separately for reads counted in each 
cell type. For more accurate comparisons of the track plots between the 
species, reads were randomly downsampled to the lowest number of 
reads detected per species for the given subtype. The reads were then 
converted to bigwig format and visualized using Integrated Genome 
Viewer80. Tracks were log transformed and are presented at the same 
scale for all comparisons.

Identification of cortical HARs
To identify HARs within the CREs in our dataset, we followed a similar 
approach to a previous study81. We first segmented each CRE into bins 
of 150 base pairs (the size of the smallest CRE in our dataset). We then 
used the following 15 primate species from a 30-species alignment from 
the University of California, Santa Cruz82: H. sapiens, P. troglodytes, 
Gorilla gorilla, Nomascus leucogenys, M. mulatta, Macaca fascicularis, 
Macaca nemestrina, Cercocebus atys, Chlorocebus sabaeus, Mandrillus 
leucophaeus, Colobus angolensis, Callithrix jacchus, Saimiri boliviensis, 
Cebus capucinus and Aotus nancymaae, and retained the CRE segments 
that have no gaps in at least 8 species and no gaps between humans, 
chimpanzees and rhesus macaques (the species used in our single-cell 
genomics experiments) using the rphast package83.

To estimate the neutral substitutions per CRE, we padded each CRE 
by 25 kb upstream and 25 kb downstream, and ran the phyloFit func-
tion with the following parameters on the phylogenetic tree of all spe-
cies: subst.mod = SSREV, EM = T, nrates = 4. To test acceleration in the 
human lineage, we then used the phyloP function on each CRE segment 
using its corresponding neutral model with the following parameters: 
method = LRT, mode = ACC, branches = hg38. The final list of HARs was 
determined using the cutoff P value < 0.001.

Identification of modern human variants
The original publication of modern human variants lists 321,820 
human-specific substitutions that contain an ancestral allele either 
in the Altai Neanderthal or in the Altai Denisovan genome33. Since the 
original publication, two additional high-quality Neanderthal genomes 
have been reported84,85. We have therefore updated this original list 
of human-specific substitutions and retained only the substitutions 
that are different from in all reported high-quality archaic genomes  
(3 Neanderthals and 1 Denisovan). This resulted in 98,550 
human-specific substitutions. The original publication had only 
retained the substitutions that are present in >90% of present-day 
humans using the human polymorphism dataset33. Since then, the 
human polymorphism dataset expanded from 1,092 individuals from 14 
populations86 to 2,504 individuals from 26 populations87. Therefore, we 
updated this cutoff with the most recent 1000 Genomes Project Phase 
3 dataset87, which reduced the number of human-specific substitutions 
to 91,488. As we were mainly interested in assessing the modern-variant 
enrichment in HS-CREs compared to all CREs, we further filtered for 
the modern human variants overlapping the CREs in our dataset, which 
resulted in 12,161 variants. Out of 12,161 variants, 1,920 variants (15.7%) 
overlapped HS-CREs.

Identification of human-specific substitutions
Our main objective to identify human-specific substitutions was to 
compare them with the modern human variants. As modern-variant 
analysis used only chimpanzees and gorillas as outgroup species33, 
we also limited our comparison to apes. We used the 30-species 
genome-wide alignment and extracted the alignment for humans, 
chimpanzees, gorillas and gibbons. We excluded orangutans because 
the associated alignment was not based on synteny (it was based on 
reciprocal blast) and showed more missing elements in the align-
ment compared to other species. Using this four-way alignment, we 
then identified single nucleotides that are only different in humans 
and map to the CREs identified in this dataset and referred to them as 
human-specific substitutions. As for the modern human variants, we 
further filtered human-specific substitutions for presence in at least 
90% of modern-day humans according to the 1000 Genomes Project 
Phase 3 database87.

Analyses of HS-CRE enrichment in HARs and modern variants
For a full list of published HARs, we merged the bed files of a compen-
dium of HARs27 and another HAR study based on accessibility patterns 
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of chromatin81 using bedtools62. To test the overlap of all CREs with pub-
lished HARs, we generated background genomic regions of similar GC 
content and length using genNullSeqs from the gkmSVM package with 
default parameters88. We then randomly selected the same number of 
regions as the entire CRE list (n = 100) and tested for significantly higher 
overlap of HARs with the observed CREs compared to the randomized 
background using an empirical P value.

Enrichment of HARs in HS-CRE was tested by logistic regression. 
Predictor variables were CRE length and CRE evolution (HS or NS 
(non-significant)), and the response variable was whether the CRE 
contains a HAR or not. The effect of CRE evolution was tested with a 
likelihood ratio test. The test was carried out for each major cell type 
separately (excitatory neurons, inhibitory neurons, MOLs, OPCs, astro-
cytes, microglia).

To test which cell types evolved more recently after the split of mod-
ern humans from other ancient human species (Neanderthals and 
Denisovans)33, we carried out a negative binomial regression. Predictor 
variables were CRE length and CRE evolution and the response variable 
was the number of overlapping modern variants. The effect of CRE 
evolution was tested with a likelihood ratio test. The test was carried 
out for each major cell type separately (excitatory neurons, inhibitory 
neurons, MOLs, OPCs, astrocytes, microglia). We also tested the overall 
enrichment of modern variants by considering HS-CREs as a CRE that 
is an HS-CRE in at least one cell type.

Reported P values were FDR adjusted in all enrichments. CRE 
length was used as a covariate in both enrichments as larger CREs 
tend to have more variants and a better chance to overlap HARs and  
modern variants.

Analysis of surgically resected human snATAC-seq
Raw fastq files were downloaded from the GEO database (accession 
number: GSE139914, brain region: BA38, middle temporal gyrus)37. We 
pre-processed the snATAC-seq as in the original publication; however, 
instead of carrying out peak calling to generate the peak–cell matrix, 
we counted the reads in the CREs identified in our dataset for direct 
comparison of accessibility on the same CREs. We extracted the excita-
tory cells as they were annotated in the original study and annotated 
the subtypes by co-clustering with the human snATAC-seq excitatory 
subtypes in this study. We then carried out differential accessibility 
analyses as described above, this time comparing the surgical human 
tissue and chimpanzee or rhesus macaque samples per excitatory sub-
type. Motif enrichment analyses were also carried out as before on the 
HS-Open-CREs per excitatory subtype.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed data are available at National Center for Biotech-
nology Information GEO under the accession number GSE192774. Pro-
cessed data associated with ref. 7 were accessed from https://assets.
nemoarchive.org/dat-ek5dbmu. Other datasets were obtained using 
their GEO accession numbers (GSE127774, for ref. 11; GSE107638, 
GSE123936 and GSE139914, for ref. 18; GSE18653 for ref. 19).

Code availability
All analysis scripts are available at https://github.com/konopkalab/
Comparative_snATAC_snRNA.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Annotation and quality control of single-nuclei RNA-
seq and single-nuclei ATAC-seq. (a) Distribution of sex and humanized age of 
samples. (b) Broadly annotated UMAP of nuclei per species. (c) Total nuclei 
number per sample after filtering. (d) Normalized, log (ln) transformed 
expression values of major cell type markers. (e) Violin plots of number of 
detected UMIs (log10 transformed) per major cell type. (f) Percentage of cells 
contributed per individual per species per major cell type. (g) Broad annotation 
of snATAC-seq data per species. (h) Total nuclei number per sample after quality 
control. (i) Nucleosome band pattern per sample; each line represents one 
sample. First, second and third peaks represent nucleosome free, mononucleosome 
and dinucleosome fractions, respectively. ( j) Percentage of cells contributed 

per individual per species per major cell type. (k) Clarity of annotation transfer 
from snRNA-seq to snATAC-seq as displayed by Jaccard similarity index,  
which is the number of nuclei with the same final annotation and prediction 
(intersection) divided by the total number of nuclei with a given annotation or 
prediction (union). y-axis represents final annotation; x-axis represents the 
prediction which was assigned by label transfer per nucleus. Higher values 
indicate more similarity between final annotation and initial prediction.  
(l) Fraction of reads in peaks per sample (N = 9280, 5383, 5657, 4655, 5941,  
4381, 5691, 4690, 3321, 6426, 5984, 6793 left to right). Boxplots represent 
median and interquartile range.
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Extended Data Fig. 2 | Annotation of oligodendrocyte lineage cells.  
(a) UMAP visualization of integrated and annotated oligodendrocyte lineage 
nuclei in snRNA-seq. Oligodendrocyte: mature oligodendrocytes, COP: 
committer oligodendrocyte progenitor cells, OPC: oligodendrocyte progenitor 
cells. (b) Percentage of nuclei per sample for each subtype in snRNA-seq.  
(c) Normalized and scaled (z-scored) expression values of major oligodendrocyte 
lineage cell type markers. (d) UMAP visualization of annotated oligodendrocyte 
lineage nuclei in snATAC-seq per species. (e) Clarity of annotation transfer from 

snRNA-seq to snATAC-seq as displayed by Jaccard similarity index (similar to 
Extended Data Fig. 1k). (f) Percentage of cells contributed per individual per 
species per major cell type. (g-h) smFISH of PDGFRA (OPC) and MOG (MOL) in 
humans (g) and chimpanzees (h) (region: posterior cingulate cortex. Images 
span all cortical layers in both species. Scale bar is 100 μm). Similar results have 
been obtained for 4 bins across 2 humans and for 6 bins across 3 chimpanzees 
(see Extended Data Fig. 4c, d).



Extended Data Fig. 3 | Integration and annotation of neurons.  
(a) Annotated UMAP of excitatory neurons integrated across all species in 
snRNA-seq. (b) Percentage of nuclei per sample for each excitatory subtype in 
snRNA-seq. (c) Annotated snATAC-seq per species in the UMAP space. All 14 
subtypes identified in snRNA-seq are also distinctly annotated in snATAC-seq 
for all species. (d) Percentage of nuclei per sample for each excitatory subtype 
in snATAC-seq. (e) Excitatory subtype markers for validation of annotation 
(expressions are normalized and log transformed). Note that the individual 
cells are plotted for C1QL3 since the expression level is not sufficient for a violin 
plot. (f) Clarity of annotation transfer from snRNA-seq to snATAC-seq as displayed 
by Jaccard similarity index (similar to Extended Data Fig. 1k). (g) Annotated 

UMAP of inhibitory neurons integrated across all species in snRNA-seq.  
(h) Percentage of nuclei per sample for each inhibitory subtype in snRNA-seq. 
(i) Known inhibitory subtype markers for validation of annotation. Expression 
levels are normalized and log transformed. Note that the individual cells are 
plotted for NMBR, PAX6, SYT6 since the expression level is not sufficient for a 
violin plot. ( j) Annotated snATAC-seq per species in the UMAP space. All 8 
subtypes identified in snRNA-seq are also distinctly annotated in snATAC-seq 
for all species. (k) Percentage of nuclei per sample for each inhibitory subtype 
in snATAC-seq. (l) Clarity of annotation transfer from snRNA-seq to snATAC- 
seq as displayed by Jaccard similarity index (similar to Extended Data Fig. 1k).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Additional analyses on the oligodendrocyte lineage. 
(a) UMAP of MOLs and OPCs in the anterior cingulate cortex (ACC). (b) Percentage 
of cells contributed per individual per species per cell type. (c-f) Fractions of 
MOLs and OPCs in smFISH experiments per section (see Fig. 1). Stitched column 
images encompassing all layers were divided into 5 equal parts from upper 
(Section 1) to lower layers (Section 5) in all images from human and chimpanzee. 
(c-d) are data from posterior cingulate cortex (PCC), and (e-f) are data from 
ACC. Each data point is a bin that contains sections from all layers. c-d: 4 bins 
from 2 humans, 6 bins from 3 chimpanzees. e-f: 9 bins from 3 humans and 3 
chimpanzees. Data are represented as mean values +/− SEM. (g) Deconvoluted 
proportions from OLIG2+ bulk RNA-seq dataset (reference datasets: (left) 
chimpanzee, (right) rhesus macaque from this study). N = 22 (human), 10 
(chimpanzee), 10 (rhesus macaque) individuals. P-value: Wilcoxon rank sum 

test, two-sided). (h-i) Fraction of OPCs or MOLs in glia in (h) caudate nucleus 
and (i) dentate gyrus per species. Each dot represents a sample (p-value: 
Wilcoxon rank sum test, two-sided. Caudate nucleus: N = 6 per species. Dentate 
gyrus: N = 6 for human, 3 for rhesus macaque). Box plots represent median and 
interquartile range in panels g-i. ( j) Number of species-specific regulatory 
changes (PCC snRNA-seq (top), ACC snRNA-seq (middle), and PCC snATAC-seq 
(bottom, log10 transformed for better readability). (k) Distributions of UMIs 
(unique molecular identifiers) in ACC and PCC oligodendrocyte lineage nuclei 
(N = 12 individuals both for PCC and ACC). Box plots represent median and 
interquartile range. (i) Enrichment results between species-specifically 
expressed genes in ACC (x-axis) and PCC (this study, y-axis). Blue asterisk 
indicates a significant overlap(FDR < 0.05, Fisher’s exact test, one-sided).
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Extended Data Fig. 5 | Additional analyses of the regulatory changes in 
neuronal subtypes. (a-b) Number of regulatory changes that are human- 
specific, chimpanzee-specific or differential between rhesus macaque - human 
and rhesus macaque – chimpanzee in (a) snRNA-seq or (b) snATAC-seq (log10 
transformed for better readability). (c) Scatter plots of number of HS-Genes 
and CS-Genes per neuronal subtype. Dashed rectangles indicate the subtypes 
with an excess number of human-specific regulatory gene expression changes 

(Two-sided chi-square test, FDR < 0.05). Shaded area indicates 95% confidence 
interval around the best fit (R indicates Spearman’s rank correlation coefficient). 
(d) Same as (c) for HS-CREs and CS-CREs identified in snATAC-seq data.  
(e) Percentage distribution of excitatory HS-Genes that are found in only one 
subtype or shared among increasing number of subtypes (x-axis). Sum of all 
percentages equal 100. From left to right: in excitatory snRNA-seq, excitatory 
snATAC-seq, inhibitory snRNA-seq¸ inhibtory snATAC-seq.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Comparisons of neuronal expression patterns 
between this dataset and previous comparative bulk datasets.  
(a-c) Enrichments of species-specific expression patterns between this study 
and previous bulk studies between excitatory neurons (left) and inhibitory 
neurons (right). (a) Transcriptomic changes between the Kozlenkov et al. 
dataset and this dataset, (b) epigenomic changes between the Kozlenkov et al. 
dataset and this dataset, (c) transcriptomic changes between the Berto et al. 
dataset and this dataset. FDR values are from a Fisher’s exact test with multiple 
testing correction. (d-e) Subtype-specific changes are captured less in the bulk 

RNA-seq datasets. (d) Comparison of excitatory HS-Genes between a previous 
bulk analysis and this dataset. Top: odds ratio between the bulk dataset and this 
dataset with increasing subtype specificity of HS- Genes (from right to left). 
Bottom: percentage of HS- Genes that were also found in the bulk dataset.  
(e) Same comparison as (d) with HS-CREs. (f-g) Subtype-specific changes  
are captured less when the subtypes are combined within the same dataset.  
(f) Same comparison as (d) with HS-Genes but this time pseudobulk data 
results are obtained by combining the subtypes in this study. (g) Same 
comparison as (f) with HS-CREs.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Associations between HS-Genes and HS-CREs.  
(a) The specificity of association between HS-Genes and HS-CREs decreases 
with increasing distance from the transcription start site (TSS). Y-axis shows 
the odds ratio, which is defined by the ratio of HS-Genes associated with HS-
CREs divided by the ratio of not significant genes (NS-Genes) associated with 
HS-CREs. We calculated the odds ratio for increasing the distance from the TSS 
in both directions for four different associations (from left to right): HS-Open-
CRE & HS-Up-Gene, HS-Open-CRE & HS-Down-Gene, HS-Close-CRE & HS-Up-
Gene, HS-Open-CRE & HS-Down-Gene. The value for each observation was 

obtained by taking the mean across all cell types. (b-d) Enrichments between 
HS-CRE associated genes within a 10kb window from the TSS and HS-Genes per 
cell type. (e-f) Putative target genes of human-specific FOXP2 upregulation in 
(e) L5-6_THEMIS_1 and (f) L4-6_RORB_2 cells. All genes show human-specific up 
/ down regulation in their respective subtype and reside within 500kb of at 
least one human-specific chromatin accessibility change that has a FOXP2 
motif. Dark blue circles indicate the genes that are not altered in the other 12 
excitatory subtypes (similar to FOXP2 itself). Red loop in (a) indicates that 
FOXP2 itself is also identified with this analysis in the L5-6_THEMIS_1 subtype.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Further associations between human-specific 
substitutions and human-specific chromatin accessibility changes.  
(a) Pie-chart distribution of published HARs overlapping CREs in this dataset. 
(b) Ratio of non-BA23 CREs overlapping BA23 CREs (denominator: all CREs in 
BA23). Each dot represents an independent library prep. Red datasets indicate 
cortical regions, blue datasets indicate sub cortical regions. (Sample sizes; 
Superior Middle Temporal Gyri: 8, Middle Frontal Gyrus: 12, Parietal Lobe: 7, 
Hippocampus: 16, Caudate: 32, Putamen: 11, Substantia Nigra: 14. Box plots 
represent median and interquartile range). (c) Overlap between cortical HARs 
(identified in this study) and published HARs (p-value: One-sided chi-square 
test). (d) Number of HS-CREs associated with a cortical HAR or a published 
HAR. (e-f) Examples of HS-Open-CRE associated HARs. Bottom panel shows 
the multi-species alignment for CELF4 HAR. Dots represent no change from the 
human (hg38) sequence. Human-specific changes conserved in other lineages 

are highlighted in shaded blue. (g) Enrichment of human-specific substitutions 
within the HS-CREs per major cell type. Enrichment is tested by a negative 
binomial regression model with CRE length and evolution of the CRE as the 
predictor variables (HS-CRE or not HS-CRE) and number of human-specific 
substitutions as a response variable(Significance: likelihood ratio test).  
(h) Example of an HS-Open-CRE with many human specific substitutions.  
(i) Overlap of substitutions that are specific to the human lineage (in comparison 
to chimpanzee, gorilla and gibbon) and previously identified modern human 
substitutions. ( j) Log fold changes of substitution and HS-CRE association for 
substitutions on the human (blue boxplots) and modern human lineage (tile 
red dots) per cell type (except for excitatory cells). Human lineage-specific 
substitutions were randomly down sampled for 100 times to 12,161 (the number 
of modern human-specific variants) for comparison. Box plots represent 
median and interquartile range.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Supplementary motif enrichment results. 
 (a-b) Hierarchical clustering of motif enrichments (log-fold change) in HS-Open-
CREs across (a) excitatory and (b) inhibitory neuronal subtypes. Transcription 
factors (TFs) associated with each motif enrichment are displayed in rows and 
the neuronal subtypes are displayed in columns. Only the motifs enriched in at 
least one subtype are displayed. (c-d) Accessibility of (c) FOX and (d) FOS / JUN 
family TFs. Accessibility is assessed by the normalized gene activity scores 
(calculated using Cicero66) per gene per subtype. (e) Annotated UMAP of 
excitatory neurons in snRNA-seq of surgically resected samples (referred to as 
PMI0 compared to postmortem BA23 human samples that are referred to as 

PMI24 in this figure). (f) Percentage of nuclei per sample for each excitatory 
subtype in snRNA-seq. (g) Enrichments of species-specifically expressed genes 
when PMI0 or PMI24 datasets were used as the human dataset in the comparative 
analyses. (h) Pearson correlations (test for p-value is two-sided) between the 
log fold changes of HS-Open-CRE motif enrichments when PMI0 or PMI24 
datasets were used as the human dataset in the comparative analyses. (i) 
Heatmap of motif FOS / JUN motif enrichments per excitatory subtype in HS-
Open-CREs. Colors correspond to –log10(FDR); numbers correspond to log fold 
change of enrichment.



Extended Data Fig. 10 | Comparisons with external datasets. (a) Expression 
levels of three ambient RNA markers highly expressed in neurons (SYT1, SNAP25 
and NRGN21) in the Ma et al. dataset14. The dot plot is generated through the 
interactive web tool linked to the original publication. Dashed square brackets 
indicate glial cell types, which show exceptionally low levels in the human 
dataset. Note that the smallest dot shows the presence of a transcript in 40% of 
the cells. (b) Same as (a) using this PCC dataset. Neuronal ambient RNA markers 
are detected at very low levels in glial cells across species after ambient RNA 

removal. (c-e) Enrichment of HS-Genes between the previous study (y-axis) and 
the current study (x-axis) with two alternative methods. (f) Enrichment of 
HS-CREs between the previous study (y-axis) and the current study (x-axis) with 
two alternative methods. For simplicity, we combined all HS-Genes from the 
subtypes of a major cell type (e.g. all excitatory neuronal subtypes were 
combined for the excitatory cell type comparisons). P-values were computed 
using a Fisher’s exact test (one-sided) and false discovery rate (FDR) was 
calculated per panel.
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