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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) has the most elevated fatality rate
among the primary types of solid malignancies, posing an urgent need for early detection of PDAC to
improve survival rates. Recent progress in medical imaging and computational algorithms provides
potential solutions, with deep learning, particularly convolutional neural networks (CNNs), showing
promise. However, progress is hindered by a lack of clinical data. This study introduces a new model,
3DGAUnet, employing generative adversarial networks (GANs) to generate realistic 3D CT images
of PDAC. In contrast to conventional 2D models, 3DGAUnet maintains contextual information
between slices, leading to substantial improvements in efficiency and accuracy. The key innovation
lies in integrating a 3D U-Net architecture into the generator, augmenting the learning of shape and
texture for PDAC tumors and pancreatic tissue. Thorough validation demonstrates the model’s
efficacy across diverse datasets, presenting a promising solution to overcome data scarcity, enhance
synthesized data quality, and advance deep learning for accurate PDAC detection, with broader
implications for other solid tumors in medical imaging.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) presents a critical global health challenge, and
early detection is crucial for improving the 5-year survival rate. Recent medical imaging and compu-
tational algorithm advances offer potential solutions for early diagnosis. Deep learning, particularly
in the form of convolutional neural networks (CNNs), has demonstrated success in medical image
analysis tasks, including classification and segmentation. However, the limited availability of clinical
data for training purposes continues to represent a significant obstacle. Data augmentation, gen-
erative adversarial networks (GANs), and cross-validation are potential techniques to address this
limitation and improve model performance, but effective solutions are still rare for 3D PDAC, where
the contrast is especially poor, owing to the high heterogeneity in both tumor and background tissues.
In this study, we developed a new GAN-based model, named 3DGAUnet, for generating realistic
3D CT images of PDAC tumors and pancreatic tissue, which can generate the inter-slice connection
data that the existing 2D CT image synthesis models lack. The transition to 3D models allowed
the preservation of contextual information from adjacent slices, improving efficiency and accuracy,
especially for the poor-contrast challenging case of PDAC. PDAC’s challenging characteristics, such
as an iso-attenuating or hypodense appearance and lack of well-defined margins, make tumor shape
and texture learning challenging. To overcome these challenges and improve the performance of 3D
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GAN models, our innovation was to develop a 3D U-Net architecture for the generator, to improve
shape and texture learning for PDAC tumors and pancreatic tissue. Thorough examination and
validation across many datasets were conducted on the developed 3D GAN model, to ascertain
the efficacy and applicability of the model in clinical contexts. Our approach offers a promising
path for tackling the urgent requirement for creative and synergistic methods to combat PDAC. The
development of this GAN-based model has the potential to alleviate data scarcity issues, elevate the
quality of synthesized data, and thereby facilitate the progression of deep learning models, to enhance
the accuracy and early detection of PDAC tumors, which could profoundly impact patient outcomes.
Furthermore, the model has the potential to be adapted to other types of solid tumors, hence making
significant contributions to the field of medical imaging in terms of image processing models.

Keywords: pancreatic cancer; generative adversarial network; 3D volume synthesis; clinical tumor;
medical imaging

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents a significant public health con-
cern, due to its delayed identification, the restricted efficacy of current chemotherapeutic
treatments, and poor overall prognosis. It has the most elevated fatality rate among the
primary types of solid malignancies. Despite extensive clinical and research endeavors
spanning decades, the one-year survival rate stands at 20%, while the five-year survival
rate remained in the single digits for a considerable time and only recently improved to
11% [1]. Despite the potential for a substantial increase in the 5-year relative survival rate
to 42% [2] if early detection at the localized stage is achieved, there is currently a lack
of definitive screening methods for reliably identifying early-stage pancreatic cancer in
asymptomatic individuals.

Computed tomography (CT) is one of the primary diagnostic imaging methods. In re-
cent years, deep-learning-based methods have increasingly been perceived as versatile
applications. They can directly integrate physical and semantic details into neural network
architectures [3–7] and are employed to solve computer vision tasks in medical imaging,
such as segmentation, registration, and classification of chest X-rays and tissue histopathol-
ogy images [8,9]. For example, convolutional neural network (CNN) models have shown
high feasibility in image classification tasks, in both natural and medical images, from 2D
models to 3D models [10–12]. Some similar studies have been applied for pancreatic cancer
classifiers to analyze and interpret features from medical imaging data [13,14].

During the development of a deep learning model for image tasks, a substantial
dataset (e.g., thousands of images) is typically needed, to ensure the model converges
without overfitting. Nevertheless, the availability of clinical information, particularly for
PDAC, is frequently constrained by the small size of the cohorts, which presents obstacles
to achieving optimal model training. Researchers have developed methods such as data
augmentation, generative adversarial networks (GAN), cross-validation, and optimiza-
tion approaches like sharp-aware minimization [15] to overcome the lack of training data.
Generative models have demonstrated efficacy in medical image synthesis, particularly in
2D imaging modalities. Recently, researchers have developed 2D-based GAN models to
generate realistic CT images of pancreatic tumors [16,17]. Nevertheless, the utilization of
3D generative models in the context of PDAC is still constrained, and directly applying
existing approaches (e.g., 3D-GAN [18]) may not lead to desirable results for synthesizing
three-dimensional CT image data specific to PDAC. PDAC tumors often exhibit subtle
imaging features, because they can be iso-attenuating or hypodense compared to the sur-
rounding pancreatic tissue, making them difficult to distinguish visually. Additionally,
PDAC tumors may lack well-defined margins, making differentiating them from normal
pancreatic parenchyma challenging. Therefore, developing efficient techniques for enhanc-
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ing 3D PDAC tumor datasets is crucial, to facilitate the progress of deep learning models in
addressing PDAC.

In this work, we develop a GAN-based tool capable of generating realistic 3D CT
images depicting PDAC tumors and pancreas tissue. To overcome these challenges and
make this 3D GAN model perform better, our innovation was to develop a 3D U-Net
architecture for the generator, to improve shape and texture learning for PDAC tumors
and pancreatic tissue. The application of 3D U-Net in medical picture auto-segmentation
showed appropriate and superior results. Notably, this is the first instance of its integration
into GAN models. This 3D GAN model generates volumetric data of PDAC tumor tissue
CT images and healthy pancreas tissue CT images separately, and a blending method was
employed to create realistic final images. Thorough examination and validation across
many datasets were conducted on the developed 3D GAN model, to ascertain the efficacy
and applicability of the model in clinical contexts. We evaluated the effectiveness of our
approach by training a 3D CNN model with synthetic image data, to predict 3D tumor
patches. A software package, 3DGAUnet, was developed to implement this 3D generative
adversarial network with a 3D U-Net-based generator for tumor CT image synthesis. This
package has the potential to be adapted to other types of solid tumors, hence making
significant contributions to the field of medical imaging in terms of image processing
models. This software package is available at https://github.com/yshi20/3DGAUnet
(accessed on 12 October 2023).

2. Materials and Methods

Figure 1a illustrates the overall workflow of our proposed method. Given a set
of PDAC CT images that can be acquired through different sources, we first conduct
data preprocessing on these raw image data to tackle data heterogeneity and generate
normalized and resampled volume data for tumor tissues and pancreas. These preprocessed
datasets are then used as the training set and fed into 3DGAUnet, the new 3D GAN model
developed in this work for tumor CT image synthesis. After the tumor and pancreas
types are learned independently via 3DGAUnet, the corresponding synthetic data can
be generated.

To effectively combine these synthetic tissues, we evaluated three blending methods
and identified the most suitable technique for PDAC tumor CT images. Given that the
pancreas is a parenchymal organ, the relative location of the tumor tissue was found to be
less significant. As a result, the focus was primarily on blending the different tissue types
seamlessly and realistically to ensure accurate and reliable results for diagnosing PDAC
tumors in CT images.

We evaluated the usability of the synthetic data by applying it in a diagnosis task.
For this purpose, we employed a 3D CNN classifier capable of taking 3D volumes as input,
which was an improvement over the traditional classification tools that only use individual
slices and overlook the inter-slice information.

By integrating the synthetic data, we addressed common challenges encountered in
real-world scenarios, such as the small size of the dataset and imbalanced data. The addition
of synthetic samples helped to improve the model’s performance and mitigate issues related
to imbalanced datasets.

2.1. 3D CT Image Data Preprocessing

We used a training dataset for the GAN model, consisting of PDAC CT images from
174 patients from two sources. One was from the University of Nebraska Medical Center
(UNMC) rapid autopsy program (RAP). This dataset has 71 de-identified patient data points,
with the tumor contour labeled by clinical professionals (UNMC IRB PROTOCOL #127-18-
EP). The other was the Medical Segmentation Decathlon pancreas training data [19], which
has 103 volumetric images with a segmentation mask of tumors and pancreas. In addition,
the training dataset consisted of 80 healthy pancreas CT images from the Cancer Imaging
Archive (TCIA) Pancreas-CT data [20].

https://github.com/yshi20/3DGAUnet
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Figure 1. An overview of our method. (a) the workflow components and (b) the architecture of
our GAN-based model, 3DGAUnet, consisting of a 3D U-Net-based generator network and a 3D
CNN-based discriminator network to generate synthetic data.

Normalization and resampling were essential for these raw image data, as the images
were obtained from various instruments with distinct configurations. By resampling all
volumetric data to 1 mm isotropic voxel spacing, each pixel in an image represents the
same physical distance along each axis. For normalization, the window level threshold
is an important measurement. In CT imagery, the Hounsfield unit (HU) is used as a
dimensionless unit to measure radio density and quantify tissues within the body. It is
calculated based on a linear transformation of X-ray’s baseline linear attenuation coefficient,
where distilled water is defined as zero HU and air is defined as −1000 HU [21]. Similar
HU values across different studies indicate the same type of tissue. However, calculating
HU values for grayscale images with different window-level settings can lead to different
visual appearances. In this study, the original images had HU values ranging from −408 to
1298. For normalization, we mapped HU values to the range of −100 to 170 for abdominal
soft tissues based on the advice of an experienced radiologist.

The original image data from UNMC had metal markers that caused extremely high
HU values and deflected the X-ray beam, causing the sounding tissue to have a higher
HU value. To counter this defect, pixels above 200 HU were replaced with the mean
HU value of the entire pancreas captured in each CT scan. Since the pancreas has an
irregular shape, the tumor region and surrounding pancreas tissues that filled a cube with
64× 64× 64 pixels were kept as the field of interest. This made the GAN model learn the
texture instead of learning the premier of the pancreas organ, which varies among different
patients. After the data preprocessing step, the training volumetric data were 32× 32× 32
for tumor tissue and 64× 64× 64 pancreas cubes in grayscale.

2.2. 3DGAUnet: 3D U-Net Based GAN Model

We devised a 3D U-Net-based GAN model, named 3DGAUnet, to synthesize 3D
pancreas tumor and tissue images. Figure 1b shows our model architecture. At a high
level, our model follows a typical GAN model that comprises two primary components,
a generator G, and a discriminator D. The generator creates synthetic samples, while the
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discriminator differentiates between synthetic and natural samples. They compete in an
adversarial game to improve the generator’s ability to generate genuine samples and the
discriminator’s ability to identify them. The aim is to produce synthetic samples that
closely approximate their natural counterparts. This process can be defined as a min-max
optimization task

minGmaxDLGAN , (1)

and LGAN is defined as

LGAN = Ex∼pdata [log D(x)] +Ez∼pz [log(1− D(G(z)))] (2)

where E is the cross-entropy of the binary classifier of the discriminator. The task of the
generator G is to minimize the generator loss to generate synthesized images that cannot
be distinguished by the discriminator D:

minGLGAN = minGEZ∼pZ [log(1− D(G(z)))] (3)

The task of the discriminator D is to better separate real images and synthesized images:

maxDLGAN = maxD {Ex∼pdata [log D(x)] +Ez∼pz [log(1− D(G(z)))]}. (4)

In our 3D GAN model, we employ a 3D U-Net-based structure for the 3D GAN
generator and a 3D CNN-based classifier as the discriminator. The 3D U-Net structure
has proven advantages for effectively capturing both global and local structures, such
as for CT image auto-segmentation for tissues like the pancreas [22]. We developed a
3D U-Net structure for 3D image synthesis, and to the best of our knowledge, this is the
first time that a 3D U-Net structure has been used for a generator in a GAN model to
tackle the challenging shape and texture learning for PDAC tumors and pancreatic tissue.
Each convolution layer in this model has a kernel size of 3× 3× 3, a stride of 2, and a
ReLU activation. The skip connections allow the low-level information to be passed to the
upsampling stacks, to avoid the vanishing gradient problem.

The discriminator is used to identify if the input image is synthesized images from the
generator’s output. It has three 3D convolutional blocks, and each block starts with a 3D
convolution with a kernel size of 2× 2× 2 and sides of 1, followed by a 3D max-pooling
layer with a pool size of 2, and batch normalization. After three 3D convolutional blocks,
this is flattened to a fully connected dense layer, and binary output is generated by the
sigmoid function.

Our approach can be used to separately train 3D models of tumors and pancreatic
healthy tissue. The training procedure was optimized with respect to discriminator loss.
A total of 500 3D tumor and pancreas volumes were synthesized. By inserting tumor tissue
into the pancreas cube, a 3D volume of the tumor with surrounding pancreas tissues could
be generated.

2.3. Blending to Create PDAC Tissues

Because the tumor and pancreas tissue volumes were generated separately, it was
essential to consider how to combine the tumor and pancreas volumes to create realistic
tumorous pancreas tissue. We experimented with and compared three blending methods
for merging the tumor and tissue volumes of a pancreas. The first method (namely Blend I)
was a straightforward copy-and-paste operation that used the tumor voxels to replace the
corresponding pancreas tissue voxels. Our second and third methods (namely Blend II and
Blend III, respectively) were inspired by DeepImageBlending, a deep learning technique
that improves Poisson image blending [23]. Deep image blending is a two-stage image
blending algorithm. First, it generates a seamless boundary for the source region, to
eliminate visible seams. Then, it refines the source region by matching styles and textures
with the target image. The algorithm uses a differentiable loss function based on the Poisson
equation and can handle various image styles, including stylized paintings. It achieves
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visually consistent blending without relying on training data. Our Blend II and Blend
III methods are the first and second stages of the tool, respectively. The motivation for
comparing the two stages was because, in a natural image blending task, the object should
look natural and share a similar style with the background image, but this might not be true
for a CT image. Unlike natural images that are acquired from light reflection from objects,
CT images are created by recording the X-ray beam attenuation from different directions,
and therefore a presumption of a similar style may not be valid. To find the best blending
method, we compared the three blending methods using visual inspection and Fréchet
inception distance (FID) values. After synthetic tumors and healthy pancreas tissues were
directly output by our 3D GAN model, they were blended to generate synthetic PDAC
tissues with the best blending method. The comparison of the blending methods will be
provided in Section 3.2.

2.4. Evaluation of Synthesized Images

The performance of our developed 3DGAUnet model was evaluated both qualitatively
and quantitatively. We visualized the generated volumes with 2D cross-slices and 3D
volume rendering for qualitative evaluation [24]. For quantitative evaluation, we used FID
values on 2D slices [25].

We propose a 3D evaluation metric, called Fréchet 3D distance (F3D), for comparing
the Fréchet distance of the activation layer from a 3D CNN network with the quality of the
3D GAN model.The distance d is calculated as

d2 = ||µ1 − µ2||2 + Tr(C1 + C2 − 2
√

C1C2), (5)

where µ1 and µ2 are the feature-wise means of the real and synthesized images, C1 and C2
are the covariance matrix of the feature vectors for the real and synthesized images, and Tr
is the trace linear algebra operation that is the sum of the elements along the main diagonal
of the square matrix.

To calculate the µ and C, we needed the feature vector from the last pooling layer out
of a pretrained neural network. The original FID used a trained Inception V3 model [26].
Our approach, instead, used a 3D CNN with 17 layers, including four 3D convolutional
blocks with a fixed random state 42, and the feature vector was the flattened layer after
the last convolutional block, having a length of 512. Samples were compared in batches,
and then the µ and C could be calculated with the matrix that consists of the feature vector
from each sample.

In addition, the quality of the images generated by our developed 3DGAUnet model
was evaluated using the squared maximum mean discrepancy (MMD2), which employs
kernel functions in the reproducing kernel Hilbert space to quantify the discrepancy be-
tween two distributions [27]. In this study, we also used pair-wise multi-scale structural
similarity (MS-SSIM) to assess the diversity of the images generated by our 3DGAUnet
model. MS-SSIM is a metric that quantifies the perceptual diversity of generated images by
calculating the mean of MS-SSIM scores for pairs of these images [28]. This measurement
allowed us to evaluate the level of variation and dissimilarity among the generated samples,
providing insights into the model’s ability to produce diverse and distinct images.

2.5. 3D CNN PDAC Classifier

One of our objectives in creating synthetic data was to improve the performance of
PDAC tumor identification. Currently, the limited available data are an obstacle. To test our
developed 3D GAN model, we built and trained a 3D CNN classifier using the synthetic
data generated by our 3DGAUnet model.

We developed a 17-layer 3D CNN model [29] to test if a 3D volumetric input was
healthy pancreas tissue or had a tumor. The 3D CNN classifier has four 3D convoluted
blocks (Conv 3D), with the first block consisting of 64 filters followed by 128, 256, and
512 filters, all with a kernel size of 3× 3× 3. Each Conv3D layer is followed by a max-
pooling (MaxPool) layer with a stride of 2, ReLU activation, and batch normalization layer
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(Batch Norm). This 3D CNN model has four Con3D-MaxPool-BatchNorm blocks and is
intended to capture visual features from coarse to fine. The final output first flattens the
output of the last convolutional block and passes it to a fully dense layer with 512 neurons.
A dropout layer with a tunable dropout rate follows, to prevent overfitting. The output
is then passed to a 2-neuron dense layer with a sigmoid function for binary classification
output. Because the input dimensions are 64× 64× 64, a relatively simple task, the archi-
tecture of the classifier was designed in a simple way to avoid the overparameterization
problem, with 1,351,873 learnable parameters.

The binary classification performance was calculated from the confusion matrix. Given
that TP, TN, FP, and FN correspond to true positive, true negative, false positive, and false
negative, respectively, the results were measured using precision TP/(TP + FP), recall
TP/(TP + FN), true positive rates TPR = TP/(TP + FN), and the false positive rates
FPR = FP/(FP + TN). The area under the curve (AUC) was calculated from the receiver
operating characteristic (ROC) curve, which was plotted as true positive rates against the
false positive rates under different cutoffs or as the precision against recall.

3. Results
3.1. 3D Volumetric Tissue Data Generation

We trained our 3DGAUnet model separately using PDAC tumor and healthy pancreas
data. These are referred to as the tumor and pancreas models. The tumor model was
trained using PDAC tumor data, including 174 volumetric tumor data in Nifty format.
The pancreas model was trained using healthy tissue data, including 200 volumetric data
in Nifty format. Both input datasets resulted from the preprocessing steps outlined in
Section 2.1.

Image augmentation, including image flipping and rotation, was performed on the
training data. The augmented data for each volume were generated by rotating each
volume on three axes in 12◦, 24◦, 36◦, 48◦, and 72◦increments. All images for the tumor
model were resampled to 1 mm isotropic resolution and trimmed to 32× 32× 32 size.All
images for the pancreas model were resampled to 1 mm isotropic resolution and trimmed
to 64× 64× 64 size, with pancreas tissue filling the entire cube.

The training procedure of any GAN model is inherently unstable because of the
dynamic of optimizing two competing losses. For each model in this study, the training
process saved the model weights every 20 epochs, and the entire model was trained
for 2000 epochs. The best training duration before the model collapsed was decided
by inspecting the generator loss curve and finding the epoch before the loss drastically
increased. We trained our models with an NVIDIA RTX 3090 GPU. The optimal parameter
set was searched within a parameter space consisting of batch size and learning rate, where
the possible batch sizes included 4, 8, 16, and 32, and the possible learning rates included
0.1, 0.01, 0.001, 0.0001, and 0.00001.

A set of 500 synthetic volumetric data were generated by the tumor and pancreas
models separately. We first conducted a qualitative comparison between the training image
sets and the synthetic image sets. We used volume rendering to visualize these datasets, to
inspect the 3D results. Figure 2a shows examples of ground truth tumor volumes, synthetic
tumors generated by the existing technique 3D-GAN [18], and synthetic tumors generated
by our 3DGAUnet. We can see that when we trained our 3DGAUnet based on the group
truth inputs, our model could generate synthetic tumors carrying realistic an anatomical
structure and texture and capturing overall shape and details. Nonetheless, 3D-GAN
either produced unsuccessful data or failed to generate meaningful results in capturing the
tumor’s geometry. Figure 2b shows examples of the group truth pancreas volumes and
synthetic pancreas volumes generated by 3D-GAN and our 3DGAUnet. By comparing the
generated pancreas volumes with real medical images, we can see that our 3DGUnet could
effectively synthesize a 3D pancreas to resemble actual anatomical structures. However, it
was hard for 3D-GAN to generate anatomically plausible results, and a certain ambient
noise was perceived in the generated volumes. We further examined the interior structures
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of the volumes generated by our 3DGUnet. Figure 3 shows the 2D slices of the ground
truth, 3D-GAN, and our 3DGAUnet images from both tumor and pancreas models. The
synthetic data produced by our 3DGAUnet model exhibited a high degree of fidelity to
the ground truth, in terms of both internal anatomical structure and texture, compared to
3D-GAN. In certain instances, 3D-GAN failed to produce meaningful outcomes.

(a) Tumor Examples (b) Pancreas Examples

Figure 2. Examples of 3D volumes obtained from the different methods. Examples of 3D volume
data of tumor (a) and pancreas (b) from the different methods. In each set of examples, the left,
middle, and right columns correspond to ground truth data, synthetic data generated by 3D-GAN,
and synthetic data generated by our 3DGAUnet, respectively. All 3D volumes are shown in vol-
ume rendering.

(a) Tumor Examples (b) Pancreas Examples

Figure 3. Examples of 2D slices in 3D volumes obtained from different methods. Examples of 2D
in 3D volumes of tumor (a) and pancreas (b) from the different resources. In each set of examples,
the left, middle, and right columns correspond to ground truth data, synthetic data generated by
3D-GAN, and synthetic data generated by our 3DGAUnet, respectively.

However, we can also observe marginal defects among pancreas generation, with tiny
tissues surrounding the main tissue generated in the center. These defects were likely due
to the irregular shape, different sizes, and direction of the pancreas, as well as the gradient
learned from the input images batches at certain locations turning into noise.

In addition, we conducted a quantitative assessment of the outcomes produced by 3D-
GAN and our 3DGAUnet models. A sample of 100 ground truth volumes and 100 synthetic
volumes was selected randomly. In order to assess the quality of synthetic volumes, certain
2D image metrics, such as slice-wise FID and slice-wise PSNR, were computed. Besides the
2D metrics, 3D metrics such as batch-wise F3D, MMD2, and SSIM were calculated on
the randomly selected volumetric data. Table 1 shows the values of 2D image metrics,
slice-wise FID, and slice-wise PSNR on the sagittal (Sag), axial (Ax), and coronal (Cor)
planes, to estimate the quality of the synthetic volumes, where scores were calculated using
the center slice from 100 synthesized volumes and 100 ground truth volumes from the
tumor model and pancreas model separately. Table 2 shows the values of the 3D volume



Cancers 2023, 15, 5496 9 of 13

metrics, batch-wise F3D, the MMD2, and the MS-SSIM. From the results, we can observe
that our 3DGAUNet outperformed 3D-GAN in all metrics, suggesting that 3DGAUNet
excelled at capturing the 3D shape and texture characteristics for both tumor and pancreas
compared to 3D-GAN. In addition, it is evident that all the quantitative metrics in the
pancreas model were better than the tumor model, especially on FID and F3D. This was
probably caused by the difference in the training tasks, where the tumor model needed to
learn both the texture and shape of the tumor, but the pancreas model was trained with
pancreas-filled cubes to mostly learn the texture of the pancreas image.

Table 1. Performance based on 2D image quality metrics.

Tissue Model FID-Sag FID-Ax FID-Cor PSNR-Sag PSNR-Ax PSNR-Cor

Tumor 3D-GAN 249.32 262.18 244.27 20.10 18.63 19.49
3DGAUNet 198.23 202.44 188.66 16.52 17.76 17.16

Pancreas 3D-GAN 293.62 342.60 335.20 18.20 16.31 14.05
3DGAUNet 287.75 435.72 327.41 12.73 7.21 9.42

Table 2. Performance based on 3D image quality metrics.

Tissue Model F3D MMD2 MS-SSIM

Tumor 3DGAN 472.64 5571.90 0.86
3DGAUNet 271.31 5327.32 0.81

Pancreas 3DGAN 889.40 8924.39 0.83
3DGAUNet 872.33 9122.40 0.77

3.2. 3D Volumetric Data Blending

From the synthesized data, we selected 100 pairs of synthetic tumors and synthetic
pancreas tissue volumes. The paired data were used to evaluate three previously intro-
duced blending methods. Quantitative evaluation was conducted by comparing the FID
Score, while qualitative evaluation was conducted by visualizing the 2D slices. A total of
100 random abdominal CT images were cropped into 64 × 64 × 64 cubes as a negative
sample set and then used to compare the 3D metrics with the blended volumes.

Figure 4 shows the 2D slices of the blended images using the three different blending
methods. It is evident that the direct copy-and-paste approach consistently yielded the
least favorable results. The reason for this was that the tumor object was extracted with a
simple threshold of the pixel value, and therefore the boundary of the tumor tissue may not
have been as precise as needed. One can spot black pixels randomly appearing around the
boundary of the tumor tissue and pancreas tissue. Whereas Blend III was visually closer to
the ground truth tumor site and, on average, had a lower slice-wise FID score. Therefore,
we employed Blend III as the blending method for the developed 3D GAN model. Table 3
compares the slice-wise FID values among the three blending methods and clearly shows
that Blend III achieved the best slice-wise FID values.

Figure 4. Comparison of the blending methods. For a ground truth PDAC tissue data (a), the image
(b) provides a close-up view of the texture at the tumor site within the red box in (a), serving as a
visual reference. The images (c–e) show the blend of a tumor into the healthy pancreas tissue using
different blending methods. We can observe that Blend III had the best visual similarity.
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Table 3. Slice-wise FID values of blending methods.

Blending Methods FID-Sag FID-Ax FID-Cor

Blend I 42.10 40.26 32.94
Blend II 21.01 35.82 12.62
Blend III 13.21 13.88 10.06

3.3. Enhanced Training Dataset with Synthesized Data to Improve 3D PDAC Tumor Classification

We trained a 3D CNN classifier using two different dataset configurations, with or
without adding the synthetic data, and compared the performance of the binary classifica-
tion of PDAC between them. Adding synthesized data to the training data enlarged the
training data and reduced the imbalance between positive and negative categories because,
in practice, it is usually more difficult to access PDAC patient images than healthy pancreas
images. We had a total of 174 PDAC tumor images and 254 healthy pancreas tissue images
(a combination of 80 TCIA pancreas CT data and a non-tumorous portion of 174 PDAC
data), all from real-world CT scans. All the input images were 1 mm isotropic resolution
CT volume and trimmed to a size of 64× 64× 64. Out of all the data, 35 tumorous pancreas
images and 51 healthy pancreas images, i.e., 20% of all data, were saved as the test dataset.
We had two configurations for the training dataset. The first configuration (namely Config
I) only contained real data for training, i.e., 139 tumorous pancreas images and 203 healthy
pancreas images. The second configuration (namely Config II) included both the training
set from Config I and synthesized data, i.e., 114 synthetic PDAC images and 50 synthetic
healthy pancreas images. Both training datasets had the same test dataset for comparison.
Config I was a baseline for real-world imbalanced data having a smaller size, and Config
II used synthetic data to balance the entire dataset. Table 4 summarizes the training used
in the two different configurations. For data augmentation, each CT scan underwent a
random rotation along a single axis. The rotation angle was randomly selected from a
set of options: 5◦, 10◦, 20◦, and 40◦. The direction of rotation, either clockwise or coun-
terclockwise, was also randomly determined. The best parameters of each model were
found with a grid search of a parameter space consisting of batch size and learning rate,
where the batch sizes included 8, 12, and 16, and the learning rates included 0.001, 0.0001,
and 0.00001. All the models were trained with an NVIDIA RTX 3090 GPU and validated
using three-fold cross-validation.

Table 4. Dataset configurations for classifier experiments.

Training Set

Config I 139 True PDAC
203 True Healthy Pancreas

Config II 139 True + 114 synthesized PDAC
203 True + 50 synthesized Healthy Pancreas

Figure 5 shows the receiver operating characteristic (ROC) and precision-recall (PR)
curves for the classification models. Config I had an ROC AUC (area under the curve)
value of 0.67 and a PR AUC value of 0.80, while Config II had an ROC AUC value of
0.79 and a PR AUC value of 0.87. Given that the model was trained on a limited dataset,
we assessed the classifier’s accuracy using three-fold cross-validation. In Configuration I,
the average accuracy was 0.57 with a standard deviation of 0.07, while in Configuration II,
the average accuracy was 0.67 with a standard deviation of 0.13. The analysis of the results
indicated that, as the training dataset was enlarged and the training data in the two classes
became more balanced, there was an observable increase in the AUC and precision–recall
metrics. This finding implies that including synthesized data to solve issues related to
training data quantity and class imbalances had a beneficial effect on the performance of
the PDAC classifier. It is worth acknowledging that, despite advancements in utilizing
large quantities and balanced training data, there is considerable room for enhancing the
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classifier’s overall performance. This might be achieved using a purpose-built 3D CNN
model or by further refining the training methodology. By leveraging synthesized data,
conducting extra research and analysis of the identification of supplementary components
could improve the performance of classifiers and yield superior outcomes.

(a) (b)

Figure 5. 3D CNN classifier performance. (a) ROC curves and (b) PR curves with two configurations
of training datasets.

4. Discussion

In this work, we developed a 3D GAN model, 3DGAUnet, for tumor CT image
synthesis; compared different blending methods for CT image synthesis; and explored the
impact of our synthesis method on a real-world 3D CNN classifier for tumor diagnosis.
3DGAUnet was specifically designed for synthesizing clinical CT images by combining the
3D U-Net architecture with GAN principles, to generate realistic 3D CT scans of clinical data.
To ensure its accuracy, we trained the model using 3D image data of both tumor tissue and
healthy pancreas tissue. The quality of the synthesized images was rigorously evaluated
using both qualitative and quantitative methods. The generated images demonstrated a
more realistic texture than general the 3D-GAN with a CNN-based generator and exhibited
the advantage of preserving spatial coherence better than 2D methods. One notable feature
of our 3DGAUnet model was its ability to learn the inter-slice gradient, contributing to the
overall realism of the generated data. The model also showcased consistent 2D FID values
across all three axes, further affirming its capability to produce high-quality 3D images.

3DGAUnet uses preprocessed, fixed-size image cubes. Preprocessing still requires
a significant amount of human labor and judgment, such as eliminating defects caused
by high-density material markers and creating standardized volumes for each training
dataset. All training datasets must also be manually annotated by medical professionals.
More automatic methods would be desirable, to reduce the large cost of acquiring data for
model training.

The blending method used in this work can insert the tumor image into the background
tissue image at a fixed location. For the use case involving mesenchymal organs, the various
locations of the tumor have distinct anatomical meanings, and the model must also acquire
this information. One possible extension would be to include a segmentation module
that can extract the features of each tissue type or organ from the original CT scans.
By adopting this approach, the necessity of taking the blending technique into account
might be eliminated, hence potentially mitigating the occurrence of faults.

The F3D score, which we implemented in this work for evaluation, is a naive extension
of the original FID metric, and the activation vectors were extracted from an untrained, cold-
started 3D CNN model. The stability of the F3D score in different image domains remains
untested. In the future, it will be necessary to have an implementation of a benchmark
dataset and rigorous testing procedures to establish a standardized measure.

The 3D CNN classifier simplifies the clinical diagnosis issue into a binary classification
challenge, because only healthy normal pancreas images and pancreas images contain a
tumor contrast. Multiple conditions may co-exist with the pancreas, such as non-cancerous
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lesions, inflammatory conditions or metastatic lesions, and vascular abnormalities. These
obstacles remain unconsidered and will increase the cost of building such a model, due to a
lack of high-quality, well-annotated data.

5. Conclusions

The 3DGAUnet model represents a significant advancement in synthesizing clinical
tumor CT images, providing realistic and spatially coherent 3D data, and it holds great
potential for improving medical image analysis and diagnosis. In the future, we will
continue to address problems associated with the topic of computer vision and cancer. We
would like to investigate reasonable usages of synthetic data and evaluations of data quality
and usability in practice; for example, their effectiveness in training reliable classification
models. We also plan to conduct reader studies involving domain experts (e.g., radiolo-
gists), to assess whether synthetic CTs can enhance diagnostic accuracy. This would offer
additional clinical validation regarding the resemblance of synthesized CTs to real-world
PDAC tumor characteristics.
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