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Abstract

This paper presents a robust closed-loop control approach to fluid resuscitation in patients with
hemorrhagic blood loss. A unique strength of the proposed approach is its robustness against
uncertain and time-varying patient physiology and therapeutic effectiveness. First, we adopted
an observer-based control architecture that can fulfill set point tracking and disturbance rejection
objectives. Second, we determined the control gains to achieve adequate transient response
performance using the linear quadratic regulator design. Third, we determined the observer gains
as a solution to a set of linear matrix inequalities so that the overall closed-loop fluid resuscitation
control system is (i) robust against the variability in patient physiology and (ii) absolutely stable
against unknown therapeutic effectiveness. We demonstrated the initial proof-of-concept of the
proposed approach by conducting rigorous in silico testing using a large number of physiologically
plausible virtual patients, while ascertaining the absolute stability via the circle criterion analysis.
The results suggested that the proposed approach to closed-loop control of fluid resuscitation is
a promising option to advance automation of fluid resuscitation armed with stability against a large
variability in patient physiology and therapeutic effectiveness as well as adequate performance in
set point tracking and disturbance rejection.

1. Introduction

Hemorrhagic shock is accountable for approximately 40% of mortality globally (Kauvar et al.,
2006). In the battlefield, >85% of mortality is attributed primarily to hemorrhage, 25% of which is
preventable if timely and appropriate treatment is provided (Eastridge et al., 2011). Hence, early
detection of hemorrhage before its recognition via obvious symptoms and provision of life-saving
interventions are very important in improving the mortality and morbidity of hemorrhaging patients.

Fluid resuscitation is a central component of treatment for patients with hemorrhagic shock. But,
fluid administration is typically performed with manual patient monitoring and titration. Hence, the
quality of fluid resuscitation hinges upon many factors, such as the level of exhaustion, distraction,
and inexperience of a clinician in charge of the treatment. Hence, there has been an increasing
interest in automating fluid resuscitation (Avital et al., 2022). However, the majority of prior work
has not systematically accounted for the inter- and intra-individual variability in pathophysiological
characteristics and therapeutic effectiveness (defined as an increase in blood pressure (BP) with
respect to an increase in blood volume (BV)) as well as possible disturbances that can occur in
the course of fluid resuscitation (e.g. clots breaking and tourniquets slipping). Among others,
strict stability and robustness analysis have not been conducted in most of the existing work on
closed-loop controlled automation of fluid resuscitation. Such a lack of rigorous control-theoretic
analysis may partly be attributed to the complexity of plant dynamics (i.e., a patient receiving
resuscitation treatments). In the absence of mathematical models suited to control design,
closed-loop control algorithms have been developed using rule-based techniques (Chaisson et
al., 2003; Marques et al., 2017; Patel et al., 2022) and expert knowledge (Berard et al., 2022;



Marques et al., 2017) in much of the prior work, whose stability and robustness may not be readily
assessed by standard control-theoretic analysis tools.

Efforts to enable closed-loop control of fluid resuscitation based on control theoretic approaches
are emerging. A recent work presented the potential of a compartmental model-based adaptive
control algorithm in fluid resuscitation (Gholami et al., 2018). Although details were not provided,
its stability and robustness characteristics were established with the Lyapunov theory. In our own
prior work, we developed a simple adaptive control algorithm for fluid resuscitation with Lyapunov-
based stability analysis (Alsalti et al., 2022; Jin et al., 2019). Our results using BV and BP as
controlled variables suggested that tracking of a treatment target is feasible with BV or BP alone,
but accurate online estimation of parameters in the plant dynamics may require both BV and BP
measurements.

This paper presents a robust closed-loop control approach to fluid resuscitation in patients with
hemorrhagic blood loss. A unique strength of the proposed approach is its robustness against
uncertain and time-varying patient physiology and therapeutic effectiveness. First, we adopted
an observer-based control architecture that can fulfill set point tracking and disturbance rejection
objectives. Second, we determined the control gains to achieve adequate transient response
performance using the linear quadratic regulator (LQR) design. Third, we determined the
observer gains as a solution to a set of linear matrix inequalities (LMIs) so that the overall closed-
loop fluid resuscitation control system is (i) robust against the variability in patient physiology and
(i) absolutely stable against unknown therapeutic effectiveness. We demonstrated the efficacy
of the proposed approach by conducting in silico testing using a large number of physiologically
plausible virtual patients, while ascertaining the absolute stability via the circle criterion analysis.

This paper is organized as follows. Section 2 describes the plant dynamics and control-oriented
modeling. Section 3 provides the details of control design. Section 4 presents key results, which
are discussed in Section 5. Section 6 concludes the paper with possible future work.

2. Plant Dynamics and Control-Oriented Modeling

We employed a simple parameter-varying linear mathematical model of patient physiology during
fluid resuscitation developed in our prior work (Alsalti et al., 2022) as the representation of plant
dynamics. The mathematical model consists of the dynamics of BV change and a time-varying
gain representing therapeutic effectiveness (i.e., the relationship between the change in BV and
the corresponding change in BP). The change in BV is caused by fluid administered into and
blood lost from the vasculature as well as the fluid exchanged between the vasculature and the
tissues:

Av =Jr—Ju—J& (D

where J is the rate of fluid administration, J is the rate of blood loss, Jj is the rate of fluid shift
from the vasculature to the tissues, and Av = v — v, is the change in BV from its initial value v,.
The rate of fluid shift Jz is dependent on the body’s intrinsic compensatory response to changes
in BV and is expressed as:

Jg = Kg(&Av — 1) 2)



where K is a gain representing the intensity of fluid shift, and r is hypothetical reference change
in BV determined by fluid administered and blood lost. Its dynamics is expressed as:
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where ay is the fraction of fluid administered which remains in the vasculature in the steady state,
and ay is the fraction of blood lost which is restored by fluid shift from the tissues to the
vasculature in the steady state. An input-output relationship below can be derived by combining

(1)-(3):
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Note that the parameters K, ar, and ay are unknown and subject to inter-individual variability
(and possibly, intra-individual variability as well).

The change in BV (i.e., Av) in (4) is related to the resultant change in BP as follows. BP is given
by the product of stroke volume (SV) and arterial elastance (AE):

p = vsEy (5)

Where p is (mean arterial) BP, vs is stroke volume, and E, is arterial elastance. Accordingly, the
change in BP is expressed as:

Ap = vsEy — v50Egg = AvsEy + AE, v (6)

where Ap = p — py, Avg = Vs — Vg, AE4 = E4 — Ej, and py, Vs, E4¢ are the initial values of BP,
SV, and AE, respectively. Our prior work illustrated that the changes in SV and AE during blood
loss and fluid administration are qualitatively proportional and inversely proportional to the change
in BV, respectively (Alsalti et al., 2022):

Avg = K, Av, AE, = —Kg,Av (7

where K, and Ky, are the gains representing the proportional relationships between BV versus

SV and AE, respectively. Combining (6) and (7) yields the following relationship between BP and
BV:

Ap = (KyEq — Kg,v5,)Av £ KpAv (8)

where K, is the therapeutic effectiveness pertaining to a patient, specifying how effectively a given
increase in BV due to fluid resuscitation can increase BP. It is unknown, because all the terms
comprising it are unknown and cannot be measured. In addition, its value is different in different
patients depending on her/his physiological profile. Further, itis time-varying due to the variability
associated with K,,, Kg,, and E, in response to, e.g., fluid administration and blood loss.



Assuming that the change in K, is slow, (4) can be written in terms of BP as follows:

B + Ketlp = Ko e ~J + Ks (15 Jr ~ 7o) ©)

In terms of transfer function, (9) is expressed as:

p() = P[5+ T2 ) o) = (s 1) In(9)] 2 Gu)r(®) ~ G (10)
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where G, (s) = s(s+Kg) (S + 1+ap) and Gq(s) = s(s+Kg) (s * 1+“H).

3. Absolutely Stable Output-Feedback Control Design

Our objective is to design a feedback control algorithm which guarantees absolute stability against
uncertain patient physiology (in terms of Kz, ar, and ay) and therapeutic responsiveness (in
terms of K;,) as well as unknown disturbance (/, due to, e.g., clots breaking and tourniquets
slipping). Given that the plant dynamics is linear (although it is uncertain and time-varying), we
adopted an observer-based control architecture that can fulfill set point tracking and disturbance
rejection objectives. Then, we determined the control gains that can achieve adequate transient
response performance using the LQR design. Finally, we determined the observer gains as a
solution to a set of LMIs so that the overall closed-loop fluid resuscitation control system is robust
against the variability in patient physiology and absolutely stable against unknown therapeutic
effectiveness. Details follow.

3.1. Observer-Based Integral Control Architecture

In this paper, we adopted an observer-based integral control architecture (Nise, 2011) (Fig. 1).
The rationale is twofold: to achieve (i) perfect tracking of constant BP setpoints and (ii) perfect
rejection of slowly varying (e.g., constant) hemorrhage disturbance.
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Fig. 1: Observer-based integral control architecture applied to fluid resuscitation.

Denoting u = Jr and d = J, as input and disturbance, respectively, the transfer function in (10)
can be rewritten into the following state space representation:

X =Ax+Byu+Bgd, y=Av=Cx, z=Ap=K,y (11)



_ 1 1
wherex=[ﬁv],A=[ K KE],Bu=[ 1 ],de—[ 1 ] and C =[1 0]. We consider the
F

0 0 1+agp 1+ay

1+agy
observer-based integral control law:

u=u,+u =—-FX+ Fxy (12)

where F, is sate feedback control gain, % is estimated state, F, is integral control gain, and x,, is
error integral expressed as:

Xy=r—2z (13)

where r is reference command, i.e., a BP set point to be tracked. The state is estimated using a
Luenberger-type observer, where K,, is the nominal value of K, and F, is observer gain:

X = A% + B,u + F,(z — K, Cx) (14)

The control law (12) can indeed achieve perfect set point tracking and disturbance rejection
objectives as shown here. According to Fig. 1, BP output can be expressed as:

6) = GuOlues) + 1 (9] + Ga(5)a()
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where per (14), x(s) is expressed as:
2(s) = [s1 — (A — BF, = K,E,C)| Foz(s) 2 Go(s)z(s) (16)

Note that G, (s) is stable as long as the observer is designed properly. Then, (15) reduces to the
closed-form expression relating the output z(s) to the input u(s) and the disturbance d(s):
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According to the final value theorem, the steady-state value of z(s) in response to a step u(s) =
% is given by:
K, UGy (s)

tlim z(t) = lin& sz(s) = lirré % =U (18)
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Likewise, according to the final value theorem, the steady-state value of z(s) in response to a
step d(s) = g is given by:
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As is obvious from (18) and (19), the observer-based integral control law (12) allows for (i) perfect
tracking of constant set points and (ii) perfect rejection of constant disturbances. Hence, the
control law (12) fulfills all the desired control objectives.

3.2 Linear Quadratic Regulator-Based State Feedback Integral Control Design

We used the LQR design to determine the state feedback gain F. and the integral gain F;,. The
main motivation was to pre-design the control gains so that the closed-loop fluid resuscitation
control system with the observer (to be designed in Section 3.3 so as to make the overall closed-
loop fluid resuscitation control system absolutely stable) can achieve desired transient response
characteristics if the observer is designed properly (i.e., so that it is fast enough relative to control
bandwidth). An additional motivation was to streamline the LMI solution process by reducing the
solution space to the two-dimensional observer gain space (see Section 3.3 and Section 5 for
details).

To determine the two gains (i.e., F. and F;) simultaneously, we concatenated (11) and (13):
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Then, we defined the following cost function for LQR-based design of F, and F;:
(R[] Q] (1)
/= 0 U XN Q XN
0 0 O
whereR =1,and Q = [0 0 0]. The rationale is to modulate the relative importance between
0 0 ¢

control energy (i.e., fluid use) and set point tracking (i.e., error integral x) using the parameter q.
Note that we used an infinite time interval in calculating our cost function in (21) because it was
relevant to the context of our problem. Indeed, there is no a priori knowledge on when the fluid
resuscitation treatment will end at the time it is initiated. Hence, it is not unreasonable to consider
the cost function over an infinite time interval. In fact, an infinite time interval is quite customary
when there is an interest in controlling a system “from-now-on” (Friedland, 1986).

We derived F. and F, associated with a range of q values by repetitively assigning a g value in
(21) and solving the resulting algebraic Riccati equation corresponding to (21) for a steady-state
gain solution using the “Igr’ command available in MATLAB Control System Toolbox. Then, we
calculated the range of rise time and settling time pertaining to each g (or equivalently, each pair
of F. and F;) by repetitively simulating a large number of physiologically plausible in silico virtual
patients based on a detailed and sophisticated mathematical model with the full state-feedback
control law (i.e., u = —F.x + F;xy) (see Section 3.4 for details related to virtual patient generation).
Finally, we selected two candidate pairs of F. and F; associated with conservative (i.e., slow, by
emphasizing control energy penalty via a small g) and aggressive (i.e., fast, by emphasizing set



point tracking penalty via a large g) control for subsequent extension to observer-based control
design and analysis of closed-loop stability, robustness, and performance. Note that these
candidate control gain pairs were used as two instances of the tradeoff between set point tracking
vs control energy to demonstrate the influence of control gain on the downstream observer design,
especially in terms of (i) LMI-feasible observer gain region and (ii) the ultimate performance of the
closed-loop control system.

3.3. Linear Matrix Inequality-Based Absolutely Stable Control Design

Given the control gains F. and F; in (12) to achieve the desired transient response characteristics,
we designed an observer to be paired with the control law which can guarantee absolute stability
against unknown and varying patient physiology and therapeutic effectiveness. Our approach is
to (i) express therapeutic effectiveness as an unknown nonlinearity with known sector bounds, (ii)
express the absolute stability requirements for the observer-based closed-loop fluid resuscitation
control system against this sector nonlinearity as a set of LMls, (iii) find feasible observer gains
by solving this set of LMIs repetitively across diverse physiologically plausible plant dynamics
parameters representing patient physiology (K, ar, and ay), and (iv) select an observer gain that
guarantees absolute stability against the sector-bounded therapeutic effectiveness for all sets of
plant dynamics parameters tested and achieves adequate transient response characteristics in
set point tracking and disturbance rejection. Details follow.

To facilitate the analysis of absolute stability associated with the overall observer-based closed-
loop fluid resuscitation control system, we expressed the entire system dynamics in terms of the
state x, the state estimation error ¥, and the error integral x,, with the output z as an external
input to the system dynamics:

X x 02x1 X
% =Q[£]+‘Pd+ 0,1 |7 — 22, y=H[f], z = Kpy (22)
Xy XN 1 XN
A _Ech Bch_ By Fy By 02%1
where O = FRK,C A—-F,K,C Oy|, Y=|By|,2=| F, |, andl1=[C 0;x, 0]. Note
01><2 01><2 0 0 1

that (22) separates the unknown therapeutic effectiveness K, from the rest of the closed-loop
dynamics when r = d = 0, as shown in Fig. 2.
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Fig. 2: Closed-loop system dynamics applicable to absolute stability analysis.

We assumed that K, is completely unknown, and that it can even be time-varying: K,, = K, (¢).
However, given that z = K,y, it can be sector-bounded:
Kp,miny sz= pr < Kp,maxyr 0< Kp,min = Kp,max (23)
In the context of fluid resuscitation, the sector bound (23) is a physiologically plausible bound
because it implies that BP must increase when BV increases. We specified the sector bound by
simulating a large number of physiologically plausible in silico virtual patients and calculating the
Ap(t)

range of therapeutic effectiveness (i.e., 200" vt > 0) (see Section 3.4 for details related to virtual

patient generation). Now, our task is to find the observer gain F, which renders the overall
observer-based closed-loop fluid resuscitation control system absolutely stable in the sector
[Kp,min, Kp,max] (meaning asymptotically stable for all K,, satisfying (23)). Invoking the Lyapunov
stability theory, consider the following positive definite (PD) function:

VX, t) = XTPX (24)

X

where X = [f ] and P is a symmetric PD matrix. Taking its time derivative while assuming r =
XN

d=

VX, t) = XT(QTP + PQ)X — 2X"PEK, y (25)
Our goal is to find the observer gain F, and the corresponding symmetric PD matrix P such that

V(X,t) in (25) is negative definite (ND) for all possible k,, within the sector bound (23). Since y =
I[1X, negative definiteness of (25) can be expressed as:

XT[(Q = K,ZN) P + P(Q — K, 3MT)| X < —eXTX (26)



Since (i) K, is sector-bounded by [Kp,ml-n, Kp,max], and (i) V(X, t) is linear in K,, the left-hand side
of the inequality in (26) attains its maximum either at K, ,,,;,, Or at K, 4, (Khalil, 2001). Hence,
the absolute stability condition is expressed as:

(Q = KpminZl) P+ P(Q = KpminZl) < =€, (Q = KpmaxZT) P+ P(Q = Kppax 1) < —el

(27)
which are LMIs in P given F,. Hence, we created a wide range of F, in a two-dimensional space
representing its two gain elements as candidate solutions. For each F,, we repetitively solved the
resulting LMI problems in P across a large number of physiologically plausible plant dynamics
equipped with diverse parameter values representing patient physiology (Kg, ar, and ay). In
addition, we calculated the range of rise time and steady-state error pertaining to each F, by
repetitively simulating the observer-based closed-loop control law (12) pertaining to each F,
across a large number of physiologically plausible in silico virtual patients (see Section 3.4 for
details related to virtual patient generation). Finally, we selected an observer gain F, to be paired
with the control gains F, and F; selected in Section 3.2 such that (i) the overall closed-loop fluid
resuscitation control system is absolutely stable against the uncertain therapeutic effectiveness
and (ii) the transient response achieved by the observer-based feedback control law is adequate.

3.4. Circle Criterion Analysis and In Silico Evaluation

We evaluated the observer-based closed-loop fluid resuscitation control system developed in
Sections 3.2-3.3 by conducting (i) circle criterion analysis to evaluate its stability characteristics
and (ii) virtual in silico simulations with a large number of physiologically plausible “virtual patients”
to evaluate its time response performance. Details follow.

First, we ascertained the absolute stability of the observer-based closed-loop fluid resuscitation
control system by conducting circle criterion analysis (Khalil, 2001). According to circle criterion,
the closed-loop fluid resuscitation control system in Fig. 2 is absolutely stable in the sector
[Kp,min, Kp,max] if (i) Q has no imaginary axis eigenvalues, (ii) (©,X) is controllable and (Q,1I) is
observable, and (iii) the Nyquist plot of the forward-path transfer function in Fig. 2 (i.e., X = QX +
Zu, y = I1X) does not enter the disk D(Kymin, Kpmax) (Which is a disk centered on the real axis

with intercepts at (—K ! - ,0) and <_1< ! ,0)) nor encircles the disk (now that it is minimum-
pmin pmax

phase). Due to the presence of an eigenvalue at the origin caused by the integral control, we
used the pole shifting technique (Khalil, 2001) to Fig. 2, with which a negative feedback of K}, iy

was applied to the forward-path transfer function and the same K, ,,,;,y was subtracted from the
output of the feedback-path nonlinearity K, y:

. 02><1
X=0X+W¥d+|0,|r—2z y=I%, Z=(Ky — Kpmin)y (28)
1
A—B,F, B,F. B,
where 0 = Q — Ky, pninZll = |Fy(Ky = Kpmin)C A —F,K,C 034 |. In the course of analysis, we
_Kp,minC 01><2 0

confirmed that all the conditions for absolute stability were satisfied across all the virtual patients



employed in the evaluation. Then, we examined the Nyquist plots associated with all the virtual
patients. Note that the disk has an infinite diameter after the pole shifting, with which (iii) above
becomes the Nyquist plot of the forward-path transfer function lying in the right side of the vertical
line passing through (—;,0).

p,max_Kp,min

Second, we examined the time response performance of the observer-based closed-loop fluid
resuscitation control system by conducting a large number of realistic in silico simulations using
physiologically plausible virtual patients. To generate virtual patients, we used a validated high-
fidelity mathematical model that can replicate physiological responses to hemorrhage and fluid
administration (Tivay et al., 2022; Yin et al., 2022) and a novel collective inference-enabled virtual
patient generation method (Tivay et al., 2022). The mathematical model is much more detailed
and sophisticated than the time-varying linear plant dynamics in (9)-(10) and includes arterial and
venous BV dynamics with interstitial fluid exchange as well as autonomic control of cardiac and
vascular functions. We created a virtual patient generator by applying the collective inference
method to the mathematical model in conjunction with in vivo experimental data collected from a
large number of animals used in our prior work (Tivay et al., 2022). The virtual patient generator
is in the form of a multivariate probability density function characterizing the parameter values in
the mathematical model. Then, we generated a total of 100 random samples (each of which is a
vector of numerical values for the parameters in the mathematical model) from the virtual patient
generator. We used these virtual patients in calculating (i) the range of rise time and settling time
with respect to the LQR design parameter q in Section 3.2, (i) the sector bound of K,, in Section

3.3, and (iii) the range of rise time and steady-state error associated with the closed-loop control
system with respect to the observer gain F, in Section 3.3.

In particular, with regard to (iii) above, we evaluated the performance of the observer-based
absolutely stable control approach to fluid resuscitation by simulating it in a fluid resuscitation
scenario. Each virtual patient was subject to hemorrhage of 0.5-2.5 L in BV which lowered BP in
the virtual patients to 25+/-10 mmHg level, and then received fluid administration by the control
law (12) to restore BP up to 85 mmHg. Then, 40 min after fluid resuscitation started, each virtual
patient was subject to a secondary hemorrhage of 0.5 L in BV for 10 min (to simulate disturbances
such as clots breaking and tourniquets slipping). We used the BP response during the initial 40
min to evaluate the set point tracking performance. We used the BP response after the onset of
secondary hemorrhage (i.e., 40 min onward) to evaluate the disturbance rejection performance.
To make the in silico simulation more realistic, we contaminated simulated BP by a measurement
noise in the form of a Gaussian random noise of 2 mmHg in magnitude. Then, we calculated rise
time, 2% settling time, and steady-state error (defined as the average of the error between the
BP set point (85 mmHg) and the closed-loop controlled BP response within the time window from
2% settling time to the onset of secondary hemorrhage (i.e., 40 min)) associated with the BP
response pertaining to each virtual patient and summarized them across all the virtual patients as
set point tracking metrics. In addition, we calculated percent overshoot, 5% setting time, and
steady-state error (defined as the average of the error between the BP set point (85 mmHg) and
the closed-loop controlled BP response within the time window from 5% settling time to the end
of simulation (80 min)) associated with the BP response pertaining to each virtual patient and
summarized them across all the virtual patients as disturbance rejection metrics.

4. Results



Fig. 3 shows the relationship between the range of rise time and settling time pertaining to the BP
response in 100 virtual patients under full-state feedback control vs the LQR design parameter q.
Fig. 4 shows the Nyquist plots of the forward-path transfer functions (28) in Fig. 2 associated with
100 plausible plant dynamics relative to the circle criterion condition. Fig. 5 shows (i) absolute
stability characteristics, (ii) observer bandwidth relative to control bandwidth, (iii) rise time, and (iv)
steady-state error. Each point in the absolute stability subplot shows the percentage of virtual
patients who are absolutely stable with the observer gain F, defined by the X and Y coordinates
of the point. The performance metrics are the average performance across all the virtual patients.
Fig. 6 and Fig. 7 show representative in silico simulation results of fluid resuscitation based on
the proposed control approach in BP set point tracking (Fig. 6) and hemorrhage disturbance
rejection (Fig. 7) scenarios. Table 1 summarizes the time and steady-state response performance
of conservative and aggressive observer-based control designs pertaining to set point tracking
and disturbance rejection.

20 [ SR ‘
_ _ IRise Time
S8 C—Setting Time | |
£16 Conservative Design i
v :
€14 |
— . .
a0 Aggressive Design
12 |
10}

v
w
o
)
£
|_
)
v

o |

|

| |

1077 107 10 107

g

Fig. 3: Relationship between the range of rise time and settling time pertaining to the BP response
in 100 virtual patients under full-state feedback control vs the LQR design parameter q. The
bounds indicate +/-2 standard deviations across all 100 virtual patients.
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Fig. 4: Nyquist plots of the forward-path transfer functions (28) in Fig. 2 associated with 100
plausible plant dynamics relative to the circle criterion condition. The closed-loop fluid
resuscitation control system is absolutely stable since all 100 Nyquist plots are to the right-hand
side of the red vertical line.
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Fig. 5: Absolute stability characteristics (upper left), observer bandwidth relative to control
bandwidth (upper right), rise time (lower left), and steady-state error (lower right), all with respect
to the observer gain F,. Each point in the absolute stability subplot shows the percentage of
virtual patients who are absolutely stable with the observer gain F, defined by the X and Y
coordinates of the point. The performance metrics are the average performance across all the
virtual patients. (a) Conservative control design. (b) Aggressive control design.
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Fig. 6: Representative in silico simulation results of fluid resuscitation based on the proposed

control approach in BP set point tracking.



(a) Conservative Control
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Fig. 7: Representative in silico simulation results of fluid resuscitation based on the proposed
control approach in hemorrhage disturbance rejection.

Table 1: Time and steady-state response performance of conservative and aggressive observer-

based control designs (median (IQR)).

(a) Set point tracking

Rise Time [min]

Settling Time [min]

Steady-State Error [mmHg]

Conservative Control

7.6 (7.4-7.9)

19.9 (17.7-23.2)

0.8 (0.7-0.9)

Aggressive Control

41 (4.0-4.2)

12.4 (11.5-14.4)

0.5 (0.4-0.6)

(b) Disturbance rejection

Overshoot [%]

Settling Time [min]

Steady-State Error [mmHg]

Conservative Control

6.6 (6.2-7.0)

19.1 (9.6-20.4)

2.4 (2.0-2.7)

Aggressive Control

5.0 (4.9-5.2)

2.9 (0.0-3.5)

1.7 (1.5-2.0)

5. Discussion

Fluid resuscitation is a critical component of hemorrhage treatment, but it is heavily dependent on
manual administration and re-administration of fluid by human clinicians. Hence, automation of
fluid resuscitation can make a leap in hemorrhage treatment in terms of relieving clinician burden
while maintaining therapeutic quality and efficacy. However, the vast majority of existing effort to
enable closed-loop controlled automation of fluid resuscitation is empiric and ad-hoc with a lack
of rigorous control-theoretic analysis to establish stability, robustness, and performance of closed-



loop control system against inter-/intra-individual variability in patient physiology and therapeutic
responsiveness. In this paper, we presented an absolutely stable observer-based integral control
approach to fluid resuscitation.

5.1. Absolutely Stable Observer-Based Control Design via LQR and LMI

We adopted a 3-step design procedure to realize the proposed approach. First, we designed the
control architecture relevant to achieve set point tracking and disturbance rejection objectives.
Second, we designed the state-feedback integral control gain using the LQR method. Third, we
designed the observer gain using the LMI method. In the design of absolutely stable closed-loop
control law, we embeded the unknown therapeutic effectiveness as a sector-bounded nonlinearity
in the LMIs, while we addressed the effect of physiological variability by repetitively solving the
LMIs with respect to a large number of plausible plant dynamics. In this context, the proposed
control design approach provides a probabilistic robustness against variability in both therapeutic
effectiveness and patient physiology. The 3-step control design procedure has novel advantages:
(i) it automatically embeds set point tracking and disturbance rejection capabilities in the control
system architecture; and (ii) it decouples performance and stability/robustness design from each
other by specifying the desired performance via control design while enforcing absolute stability
via observer design, and then integrating them to achieve desired stability and performance by
exploiting the separation principle.

The LQR method allowed us to determine an appropriate state-feedback control gain (both F. and
F;) with a single design parameter (i.e., g in Q in (21)) (Fig. 3). Both rise time and settling time
decreased as g was increased, which is intuitively reasonable. As an illustrative purpose, we
used the gains pertaining to ¢ = 107° and g = 10~° as conservative and aggressive control gains,
respectively.

Circle criterion analysis confirmed that the closed-loop fluid resuscitation control system designed
in this paper was absolutely stable against the variability in patient physiology and therapeutic
effectiveness. Indeed, the Nyquist plots pertaining to all the 100 virtual patients lied in the right-
hand side of the vertical line defined by the sector bound (Fig. 4). Hence, the observer design
guided by the LMIs in (27) could provide an appropriate observer gain to be paired with a pre-
designed control gain to achieve absolute stability via a simple search on the two-dimensional
observer gain space.

The results of our observer-based control design approach also provide a few important insights.
First, not all the control-observer gain pairs can readily satisfy absolute stability. Indeed, only a
specific region in the observer gain space was associated with absolute stability (see the region
enclosed by black dashed line in Fig. 5). In addition, the region of absolute stability was influenced
by pre-designed control gain (Fig. 5). More specifically, the region of absolute stability became
more restrictive as control gain was selected to be more aggressive (Fig. 5). It is also noted that
the selection of an observer gain needs to reconcile two competing desirables: guaranteeing
absolute stability vs achieving desired performance. Indeed, the region of absolute stability did
not in general coincide with the region of high observer bandwidth (relative to control bandwidth)
as well as small rise time and steady-state error (Fig. 5). Hence, the observer gains selected and
paired with the control gains in this paper were not associated with sufficiently fast observer error
dynamics. Regardless, the proposed approach could still result in an absolutely stable observer
gain region which could yield adequate closed-loop response characteristics to the extent where



the desired time response performance specified by control pre-design was maintained (Fig. 6
and Fig. 7).

The in silico simulation results based on 100 plausible virtual patients demonstrated satisfactory
time and steady-state response performance characteristics of the observer-based closed-loop
fluid resuscitation control system (Table 1). In both conservative and aggressive control designs,
closed-loop controlled BP responses in all 100 virtual patients could result in the intended time
response with reasonably small overshoot and steady-state error in BP set point tracking (Table
1 and Fig. 6). On the other hand, closed-loop controlled BP responses to hemorrhage disturbance
exhibited relatively (i) large overshoot in both conservative and aggressive control designs and (ii)
slow settling time in conservative control design (Table 1 and Fig. 7). These results may be
attributed to two factors. First, the control gain we designed using LQR (Section 3.2) primarily
emphasizes BP set point tracking. Hence, transient response characteristics pertaining to
hemorrhage disturbance rejection may be suboptimal. Second, our control design did not account
for the influence of actuator saturation (i.e., that fluid rate can only be positive) explicitly. As is
obvious in Fig. 7, actuator saturation appears to be the main root cause responsible for sluggish
disturbance rejection and large settling time. These limitations must be carefully investigated and
addressed in a follow-up work.

But all in all, the proposed observer-based absolutely stable integral control approach appeared
to have promise in advancing closed-loop controlled automation of fluid resuscitation.

5.2. Limitations

The control design approach presented in this paper has an important limitation that need to be
investigated in the follow-up work: (i) control gain and observer gain were designed separately,
and (ii) the LMIs (27) were not directly solved to derive the observer gain F,. First, pre-design of
control gain followed by observer gain design made it possible to separate the achievement of
performance and stability/robustness objectives. Regardless, it would be powerful if control and
observer gains could be designed simultaneously. Unfortunately, it is easy to recognize that (27)
is no longer an LMI if the control gains F, and F; are left as unknowns. In addition, it is not clear
how to incorporate desired time response performance specifications into the LMIs. Hence, pre-
designing F. and F; had a practical advantage of being able to solve (27) as LMIs using well-
established LMI solvers while enforcing desired response characteristics. Second, exhaustive
search to find the observer gains which can guarantee absolute stability over two-dimensional
space was not computationally expensive. Regardless, it would be powerful if the LMIs could be
derived by directly solving the inequalities (27) with well-established solvers. Itis possible to solve
the LMI feasibility problem for (27) to derive P and F, given F, and F;. However, restrictions must
be imposed on P if P and F, are to be uniquely determined, which inevitably put restrictions on
the solution space on P and F,. Considering all these limitations, future investigation to streamline
the systematic design of the proposed observer-based control approach may be a meaningful
contribution.

Conclusion

In this paper, we demonstrated the validity and promise of an output-feedback absolutely stable
control design for automating fluid resuscitation. In contrast to most existing closed-loop control
system for fluid resuscitation, we systematically established its stability and robustness against
unknown inter- and intra-individual variability in patient physiology and therapeutic effectiveness.



By conducting in silico evaluation with physiologically plausible virtual patients, we demonstrated
the promise of our control approach: that it can achieve robust stability and adequate response
performance. Future work to streamline the control design procedure, to simultaneously achieve
satisfactory set point tracking and disturbance rejection performance, to experimentally evaluate
the efficacy of the proposed control approach, and to explore the versatility of the proposed control
design approach in other domains of medical automation will be rewarding.
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