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Abstract 
This paper presents a robust closed-loop control approach to fluid resuscitation in patients with 
hemorrhagic blood loss.  A unique strength of the proposed approach is its robustness against 
uncertain and time-varying patient physiology and therapeutic effectiveness.  First, we adopted 
an observer-based control architecture that can fulfill set point tracking and disturbance rejection 
objectives.  Second, we determined the control gains to achieve adequate transient response 
performance using the linear quadratic regulator design.  Third, we determined the observer gains 
as a solution to a set of linear matrix inequalities so that the overall closed-loop fluid resuscitation 
control system is (i) robust against the variability in patient physiology and (ii) absolutely stable 
against unknown therapeutic effectiveness.  We demonstrated the initial proof-of-concept of the 
proposed approach by conducting rigorous in silico testing using a large number of physiologically 
plausible virtual patients, while ascertaining the absolute stability via the circle criterion analysis.  
The results suggested that the proposed approach to closed-loop control of fluid resuscitation is 
a promising option to advance automation of fluid resuscitation armed with stability against a large 
variability in patient physiology and therapeutic effectiveness as well as adequate performance in 
set point tracking and disturbance rejection. 
 
1. Introduction 
Hemorrhagic shock is accountable for approximately 40% of mortality globally (Kauvar et al., 
2006).  In the battlefield, >85% of mortality is attributed primarily to hemorrhage, 25% of which is 
preventable if timely and appropriate treatment is provided (Eastridge et al., 2011).  Hence, early 
detection of hemorrhage before its recognition via obvious symptoms and provision of life-saving 
interventions are very important in improving the mortality and morbidity of hemorrhaging patients. 
 
Fluid resuscitation is a central component of treatment for patients with hemorrhagic shock.  But, 
fluid administration is typically performed with manual patient monitoring and titration.  Hence, the 
quality of fluid resuscitation hinges upon many factors, such as the level of exhaustion, distraction, 
and inexperience of a clinician in charge of the treatment.  Hence, there has been an increasing 
interest in automating fluid resuscitation (Avital et al., 2022).  However, the majority of prior work 
has not systematically accounted for the inter- and intra-individual variability in pathophysiological 
characteristics and therapeutic effectiveness (defined as an increase in blood pressure (BP) with 
respect to an increase in blood volume (BV)) as well as possible disturbances that can occur in 
the course of fluid resuscitation (e.g. clots breaking and tourniquets slipping).  Among others, 
strict stability and robustness analysis have not been conducted in most of the existing work on 
closed-loop controlled automation of fluid resuscitation.  Such a lack of rigorous control-theoretic 
analysis may partly be attributed to the complexity of plant dynamics (i.e., a patient receiving 
resuscitation treatments).  In the absence of mathematical models suited to control design, 
closed-loop control algorithms have been developed using rule-based techniques (Chaisson et 
al., 2003; Marques et al., 2017; Patel et al., 2022) and expert knowledge (Berard et al., 2022; 



   
 

   
 

Marques et al., 2017) in much of the prior work, whose stability and robustness may not be readily 
assessed by standard control-theoretic analysis tools. 
 
Efforts to enable closed-loop control of fluid resuscitation based on control theoretic approaches 
are emerging.  A recent work presented the potential of a compartmental model-based adaptive 
control algorithm in fluid resuscitation (Gholami et al., 2018).  Although details were not provided, 
its stability and robustness characteristics were established with the Lyapunov theory.  In our own 
prior work, we developed a simple adaptive control algorithm for fluid resuscitation with Lyapunov-
based stability analysis (Alsalti et al., 2022; Jin et al., 2019).  Our results using BV and BP as 
controlled variables suggested that tracking of a treatment target is feasible with BV or BP alone, 
but accurate online estimation of parameters in the plant dynamics may require both BV and BP 
measurements. 
 
This paper presents a robust closed-loop control approach to fluid resuscitation in patients with 
hemorrhagic blood loss.  A unique strength of the proposed approach is its robustness against 
uncertain and time-varying patient physiology and therapeutic effectiveness.  First, we adopted 
an observer-based control architecture that can fulfill set point tracking and disturbance rejection 
objectives.  Second, we determined the control gains to achieve adequate transient response 
performance using the linear quadratic regulator (LQR) design.  Third, we determined the 
observer gains as a solution to a set of linear matrix inequalities (LMIs) so that the overall closed-
loop fluid resuscitation control system is (i) robust against the variability in patient physiology and 
(ii) absolutely stable against unknown therapeutic effectiveness.  We demonstrated the efficacy 
of the proposed approach by conducting in silico testing using a large number of physiologically 
plausible virtual patients, while ascertaining the absolute stability via the circle criterion analysis. 
 
This paper is organized as follows.  Section 2 describes the plant dynamics and control-oriented 
modeling.  Section 3 provides the details of control design.  Section 4 presents key results, which 
are discussed in Section 5.  Section 6 concludes the paper with possible future work. 
 
2. Plant Dynamics and Control-Oriented Modeling 
We employed a simple parameter-varying linear mathematical model of patient physiology during 
fluid resuscitation developed in our prior work (Alsalti et al., 2022) as the representation of plant 
dynamics.  The mathematical model consists of the dynamics of BV change and a time-varying 
gain representing therapeutic effectiveness (i.e., the relationship between the change in BV and 
the corresponding change in BP).  The change in BV is caused by fluid administered into and 
blood lost from the vasculature as well as the fluid exchanged between the vasculature and the 
tissues: 
 

∆𝑣̇𝑣 = 𝐽𝐽𝐹𝐹 − 𝐽𝐽𝐻𝐻 − 𝐽𝐽𝐸𝐸 (1) 
 
where 𝐽𝐽𝐹𝐹 is the rate of fluid administration, 𝐽𝐽𝐻𝐻 is the rate of blood loss,  𝐽𝐽𝐸𝐸 is the rate of fluid shift 
from the vasculature to the tissues, and ∆𝑣𝑣 = 𝑣𝑣 − 𝑣𝑣0 is the change in BV from its initial value 𝑣𝑣0.  
The rate of fluid shift 𝐽𝐽𝐸𝐸 is dependent on the body’s intrinsic compensatory response to changes 
in BV and is expressed as: 
 

𝐽𝐽𝐸𝐸 = 𝐾𝐾𝐸𝐸(∆𝑣𝑣 − 𝑟𝑟𝐹𝐹) (2) 
 



   
 

   
 

where 𝐾𝐾𝐸𝐸 is a gain representing the intensity of fluid shift, and 𝑟𝑟𝐹𝐹 is hypothetical reference change 
in BV determined by fluid administered and blood lost.  Its dynamics is expressed as: 
 

𝑟𝑟𝐹̇𝐹 =
1

1 + 𝛼𝛼𝐹𝐹
𝐽𝐽𝐹𝐹 −

1
1 + 𝛼𝛼𝐻𝐻

𝐽𝐽𝐻𝐻 (3) 

 
where 𝛼𝛼𝐹𝐹 is the fraction of fluid administered which remains in the vasculature in the steady state, 
and 𝛼𝛼𝐻𝐻  is the fraction of blood lost which is restored by fluid shift from the tissues to the 
vasculature in the steady state.  An input-output relationship below can be derived by combining 
(1)-(3): 
 

∆𝑣̈𝑣 + 𝐾𝐾𝐸𝐸∆𝑣̇𝑣 = 𝐽𝐽𝐹̇𝐹 − 𝐽𝐽𝐻̇𝐻 + 𝐾𝐾𝐸𝐸 �
1

1 + 𝛼𝛼𝐹𝐹
𝐽𝐽𝐹𝐹 −

1
1 + 𝛼𝛼𝐻𝐻

𝐽𝐽𝐻𝐻� (4) 

 
Note that the parameters 𝐾𝐾𝐸𝐸, 𝛼𝛼𝐹𝐹, and 𝛼𝛼𝐻𝐻 are unknown and subject to inter-individual variability 
(and possibly, intra-individual variability as well). 
 
The change in BV (i.e., ∆𝑣𝑣) in (4) is related to the resultant change in BP as follows.  BP is given 
by the product of stroke volume (SV) and arterial elastance (AE): 
 

𝑝𝑝 = 𝑣𝑣𝑆𝑆𝐸𝐸𝐴𝐴 (5) 
 
Where 𝑝𝑝 is (mean arterial) BP, 𝑣𝑣𝑆𝑆 is stroke volume, and 𝐸𝐸𝐴𝐴 is arterial elastance.  Accordingly, the 
change in BP is expressed as: 
 

∆𝑝𝑝 = 𝑣𝑣𝑆𝑆𝐸𝐸𝐴𝐴 − 𝑣𝑣𝑠𝑠0𝐸𝐸𝐴𝐴0 = ∆𝑣𝑣𝑠𝑠𝐸𝐸𝐴𝐴 + ∆𝐸𝐸𝐴𝐴𝑣𝑣𝑠𝑠0 (6) 
 
where ∆𝑝𝑝 = 𝑝𝑝 − 𝑝𝑝0, ∆𝑣𝑣𝑠𝑠 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑠𝑠0, ∆𝐸𝐸𝐴𝐴 = 𝐸𝐸𝐴𝐴 − 𝐸𝐸𝐴𝐴0, and 𝑝𝑝0, 𝑣𝑣𝑠𝑠0, 𝐸𝐸𝐴𝐴0 are the initial values of BP, 
SV, and AE, respectively.  Our prior work illustrated that the changes in SV and AE during blood 
loss and fluid administration are qualitatively proportional and inversely proportional to the change 
in BV, respectively (Alsalti et al., 2022): 
 

∆𝑣𝑣𝑠𝑠 ≈ 𝐾𝐾𝑣𝑣𝑠𝑠∆𝑣𝑣, ∆𝐸𝐸𝐴𝐴 ≈ −𝐾𝐾𝐸𝐸𝐴𝐴∆𝑣𝑣 (7) 
 
where 𝐾𝐾𝑣𝑣𝑠𝑠 and 𝐾𝐾𝐸𝐸𝐴𝐴  are the gains representing the proportional relationships between BV versus 
SV and AE, respectively.  Combining (6) and (7) yields the following relationship between BP and 
BV: 
 

∆𝑝𝑝 = �𝐾𝐾𝑣𝑣𝑆𝑆𝐸𝐸𝐴𝐴 − 𝐾𝐾𝐸𝐸𝐴𝐴𝑣𝑣𝑆𝑆0�∆𝑣𝑣 ≜ 𝐾𝐾𝑝𝑝∆𝑣𝑣 (8) 
 
where 𝐾𝐾𝑝𝑝 is the therapeutic effectiveness pertaining to a patient, specifying how effectively a given 
increase in BV due to fluid resuscitation can increase BP.  It is unknown, because all the terms 
comprising it are unknown and cannot be measured.  In addition, its value is different in different 
patients depending on her/his physiological profile.  Further, it is time-varying due to the variability 
associated with 𝐾𝐾𝑣𝑣𝑆𝑆, 𝐾𝐾𝐸𝐸𝐴𝐴 , and 𝐸𝐸𝐴𝐴 in response to, e.g., fluid administration and blood loss. 
 



   
 

   
 

Assuming that the change in 𝐾𝐾𝑝𝑝 is slow, (4) can be written in terms of BP as follows: 
 

∆𝑝̈𝑝 + 𝐾𝐾𝐸𝐸∆𝑝̇𝑝 = 𝐾𝐾𝑝𝑝 �𝐽𝐽𝐹̇𝐹 − 𝐽𝐽𝐻̇𝐻 + 𝐾𝐾𝐸𝐸 �
1

1 + 𝛼𝛼𝐹𝐹
𝐽𝐽𝐹𝐹 −

1
1 + 𝛼𝛼𝐻𝐻

𝐽𝐽𝐻𝐻�� (9) 

 
In terms of transfer function, (9) is expressed as: 
 

𝑝𝑝(𝑠𝑠) =
𝐾𝐾𝑝𝑝

𝑠𝑠(𝑠𝑠 + 𝐾𝐾𝐸𝐸) ��𝑠𝑠 +
𝐾𝐾𝐸𝐸

1 + 𝛼𝛼𝐹𝐹
� 𝐽𝐽𝐹𝐹(𝑠𝑠)− �𝑠𝑠 +

𝐾𝐾𝐸𝐸
1 + 𝛼𝛼𝐻𝐻

� 𝐽𝐽𝐻𝐻(𝑠𝑠)� ≜ 𝐺𝐺𝑢𝑢(𝑠𝑠)𝐽𝐽𝐹𝐹(𝑠𝑠) − 𝐺𝐺𝑑𝑑(𝑠𝑠)𝐽𝐽𝐻𝐻(𝑠𝑠) (10) 

where 𝐺𝐺𝑢𝑢(𝑠𝑠) = 𝐾𝐾𝑝𝑝
𝑠𝑠(𝑠𝑠+𝐾𝐾𝐸𝐸) �𝑠𝑠 + 𝐾𝐾𝐸𝐸

1+𝛼𝛼𝐹𝐹
� and 𝐺𝐺𝑑𝑑(𝑠𝑠) = 𝐾𝐾𝑝𝑝

𝑠𝑠(𝑠𝑠+𝐾𝐾𝐸𝐸) �𝑠𝑠 + 𝐾𝐾𝐸𝐸
1+𝛼𝛼𝐻𝐻

�. 
 
3. Absolutely Stable Output-Feedback Control Design 
Our objective is to design a feedback control algorithm which guarantees absolute stability against 
uncertain patient physiology (in terms of 𝐾𝐾𝐸𝐸 , 𝛼𝛼𝐹𝐹 , and 𝛼𝛼𝐻𝐻 ) and therapeutic responsiveness (in 
terms of 𝐾𝐾𝑝𝑝) as well as unknown disturbance (𝐽𝐽𝐻𝐻 due to, e.g., clots breaking and tourniquets 
slipping).  Given that the plant dynamics is linear (although it is uncertain and time-varying), we 
adopted an observer-based control architecture that can fulfill set point tracking and disturbance 
rejection objectives.  Then, we determined the control gains that can achieve adequate transient 
response performance using the LQR design.  Finally, we determined the observer gains as a 
solution to a set of LMIs so that the overall closed-loop fluid resuscitation control system is robust 
against the variability in patient physiology and absolutely stable against unknown therapeutic 
effectiveness.  Details follow. 
 
3.1. Observer-Based Integral Control Architecture 
In this paper, we adopted an observer-based integral control architecture (Nise, 2011) (Fig. 1).  
The rationale is twofold: to achieve (i) perfect tracking of constant BP setpoints and (ii) perfect 
rejection of slowly varying (e.g., constant) hemorrhage disturbance. 
 

 
Fig. 1: Observer-based integral control architecture applied to fluid resuscitation. 
 
Denoting 𝑢𝑢 = 𝐽𝐽𝐹𝐹 and 𝑑𝑑 = 𝐽𝐽𝐻𝐻 as input and disturbance, respectively, the transfer function in (10) 
can be rewritten into the following state space representation: 
 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝑢𝑢𝑢𝑢 + 𝐵𝐵𝑑𝑑𝑑𝑑, 𝑦𝑦 = Δ𝑣𝑣 = 𝐶𝐶𝐶𝐶, 𝑧𝑧 = Δ𝑝𝑝 = 𝐾𝐾𝑝𝑝𝑦𝑦 (11) 
 



   
 

   
 

where 𝑥𝑥 = �Δ𝑣𝑣𝑟𝑟𝐹𝐹
�, 𝐴𝐴 = �−𝐾𝐾𝐸𝐸 𝐾𝐾𝐸𝐸

0 0 �, 𝐵𝐵𝑢𝑢 = �
1
1

1+𝛼𝛼𝐹𝐹
�, 𝐵𝐵𝑑𝑑 = −�

1
1

1+𝛼𝛼𝐻𝐻
�, and 𝐶𝐶 = [1 0].  We consider the 

observer-based integral control law: 
 

𝑢𝑢 = 𝑢𝑢𝑐𝑐 + 𝑢𝑢𝐼𝐼 = −𝐹𝐹𝑐𝑐𝑥𝑥� + 𝐹𝐹𝐼𝐼𝑥𝑥𝑁𝑁 (12) 
 
where 𝐹𝐹𝑐𝑐 is sate feedback control gain, 𝑥𝑥� is estimated state, 𝐹𝐹𝐼𝐼 is integral control gain, and 𝑥𝑥𝑁𝑁 is 
error integral expressed as: 
 

𝑥𝑥𝑁̇𝑁 = 𝑟𝑟 − 𝑧𝑧 (13) 
 
where 𝑟𝑟 is reference command, i.e., a BP set point to be tracked.  The state is estimated using a 
Luenberger-type observer, where 𝐾𝐾𝑝𝑝���� is the nominal value of 𝐾𝐾𝑝𝑝 and 𝐹𝐹𝑜𝑜 is observer gain: 
 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝑢𝑢𝑢𝑢 + 𝐹𝐹𝑜𝑜�𝑧𝑧 − 𝐾𝐾𝑝𝑝����𝐶𝐶𝐶𝐶� (14) 
 
The control law (12) can indeed achieve perfect set point tracking and disturbance rejection 
objectives as shown here.  According to Fig. 1, BP output can be expressed as: 
 

𝑧𝑧(𝑠𝑠) = 𝐺𝐺𝑢𝑢(𝑠𝑠)[𝑢𝑢𝑐𝑐(𝑠𝑠) + 𝑢𝑢𝐼𝐼(𝑠𝑠)] + 𝐺𝐺𝑑𝑑(𝑠𝑠)𝑑𝑑(𝑠𝑠) 

= 𝐺𝐺𝑢𝑢(𝑠𝑠) �−𝐹𝐹𝑐𝑐𝑥𝑥�(𝑠𝑠) +
𝐾𝐾𝐼𝐼
𝑠𝑠 �

𝑟𝑟(𝑠𝑠) − 𝑧𝑧(𝑠𝑠)�� + 𝐺𝐺𝑑𝑑(𝑠𝑠)𝑑𝑑(𝑠𝑠) (15) 

 
where per (14), 𝑥𝑥�(𝑠𝑠) is expressed as: 
 

𝑥𝑥�(𝑠𝑠) = �𝑠𝑠𝑠𝑠 − �𝐴𝐴 − 𝐵𝐵𝐹𝐹𝑐𝑐 − 𝐾𝐾𝑝𝑝����𝐹𝐹𝑜𝑜𝐶𝐶��
−1𝐹𝐹𝑜𝑜𝑧𝑧(𝑠𝑠) ≜ 𝐺𝐺𝑜𝑜(𝑠𝑠)𝑧𝑧(𝑠𝑠) (16) 

 
Note that 𝐺𝐺𝑜𝑜(𝑠𝑠) is stable as long as the observer is designed properly.  Then, (15) reduces to the 
closed-form expression relating the output 𝑧𝑧(𝑠𝑠) to the input 𝑢𝑢(𝑠𝑠) and the disturbance 𝑑𝑑(𝑠𝑠): 
 

𝑧𝑧(𝑠𝑠) =
𝐾𝐾𝐼𝐼
𝑠𝑠 𝐺𝐺𝑢𝑢(𝑠𝑠)

1 + 𝐺𝐺𝑢𝑢(𝑠𝑠)𝐹𝐹𝑐𝑐𝐺𝐺𝑜𝑜(𝑠𝑠) + 𝐾𝐾𝐼𝐼
𝑠𝑠 𝐺𝐺𝑢𝑢(𝑠𝑠)

𝑢𝑢(𝑠𝑠) +
𝐺𝐺𝑑𝑑(𝑠𝑠)

1 + 𝐺𝐺𝑢𝑢(𝑠𝑠)𝐹𝐹𝑐𝑐𝐺𝐺𝑜𝑜(𝑠𝑠) + 𝐾𝐾𝐼𝐼
𝑠𝑠 𝐺𝐺𝑢𝑢(𝑠𝑠)

𝑑𝑑(𝑠𝑠) (17) 

 
According to the final value theorem, the steady-state value of 𝑧𝑧(𝑠𝑠) in response to a step 𝑢𝑢(𝑠𝑠) =
𝑈𝑈
𝑠𝑠
 is given by: 

 

lim
𝑡𝑡→∞

𝑧𝑧(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠(𝑠𝑠) = lim
𝑠𝑠→0

𝐾𝐾𝐼𝐼𝑈𝑈𝐺𝐺𝑢𝑢(𝑠𝑠)

1 + 𝐺𝐺𝑢𝑢(𝑠𝑠)𝐹𝐹𝑐𝑐𝐺𝐺𝑜𝑜(𝑠𝑠) + 𝐾𝐾𝐼𝐼
𝑠𝑠 𝐺𝐺𝑢𝑢(𝑠𝑠)

= 𝑈𝑈 (18) 

 
Likewise, according to the final value theorem, the steady-state value of 𝑧𝑧(𝑠𝑠) in response to a 
step 𝑑𝑑(𝑠𝑠) = 𝐷𝐷

𝑠𝑠
 is given by: 

 



   
 

   
 

lim
𝑡𝑡→∞

𝑧𝑧(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠(𝑠𝑠) = lim
𝑠𝑠→0

𝐷𝐷𝐺𝐺𝑑𝑑(𝑠𝑠)

1 + 𝐺𝐺𝑢𝑢(𝑠𝑠)𝐹𝐹𝑐𝑐𝐺𝐺𝑜𝑜(𝑠𝑠) + 𝐾𝐾𝐼𝐼
𝑠𝑠 𝐺𝐺𝑢𝑢(𝑠𝑠)

= 0 (19) 

 
As is obvious from (18) and (19), the observer-based integral control law (12) allows for (i) perfect 
tracking of constant set points and (ii) perfect rejection of constant disturbances.  Hence, the 
control law (12) fulfills all the desired control objectives. 
 
3.2 Linear Quadratic Regulator-Based State Feedback Integral Control Design 
We used the LQR design to determine the state feedback gain 𝐹𝐹𝑐𝑐 and the integral gain 𝐹𝐹𝐼𝐼.  The 
main motivation was to pre-design the control gains so that the closed-loop fluid resuscitation 
control system with the observer (to be designed in Section 3.3 so as to make the overall closed-
loop fluid resuscitation control system absolutely stable) can achieve desired transient response 
characteristics if the observer is designed properly (i.e., so that it is fast enough relative to control 
bandwidth).  An additional motivation was to streamline the LMI solution process by reducing the 
solution space to the two-dimensional observer gain space (see Section 3.3 and Section 5 for 
details). 
 
To determine the two gains (i.e., 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼) simultaneously, we concatenated (11) and (13): 
 

� 𝑥̇𝑥𝑥𝑥𝑁̇𝑁
� = �

𝐴𝐴 01×2
−𝐾𝐾𝑝𝑝𝐶𝐶 0 � �

𝑥𝑥
𝑥𝑥𝑁𝑁� + �𝐵𝐵𝑢𝑢0 � 𝑢𝑢 + �𝐵𝐵𝑑𝑑0 � 𝑑𝑑 + �02×1

1 � 𝑟𝑟 (20) 

 
Then, we defined the following cost function for LQR-based design of 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼: 
 

𝐽𝐽 = � �𝑅𝑅𝑢𝑢2 + �
𝑥𝑥
𝑥𝑥𝑁𝑁�

𝑇𝑇
𝑄𝑄 �

𝑥𝑥
𝑥𝑥𝑁𝑁��𝑑𝑑𝑑𝑑

∞

0
(21) 

 

where 𝑅𝑅 = 1, and 𝑄𝑄 = �
0 0 0
0 0 0
0 0 𝑞𝑞

�.  The rationale is to modulate the relative importance between 

control energy (i.e., fluid use) and set point tracking (i.e., error integral 𝑥𝑥𝑁𝑁) using the parameter 𝑞𝑞.  
Note that we used an infinite time interval in calculating our cost function in (21) because it was 
relevant to the context of our problem.  Indeed, there is no a priori knowledge on when the fluid 
resuscitation treatment will end at the time it is initiated.  Hence, it is not unreasonable to consider 
the cost function over an infinite time interval.  In fact, an infinite time interval is quite customary 
when there is an interest in controlling a system “from-now-on” (Friedland, 1986). 
 
We derived 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 associated with a range of 𝑞𝑞 values by repetitively assigning a 𝑞𝑞 value in 
(21) and solving the resulting algebraic Riccati equation corresponding to (21) for a steady-state 
gain solution using the “lqr” command available in MATLAB Control System Toolbox.  Then, we 
calculated the range of rise time and settling time pertaining to each 𝑞𝑞 (or equivalently, each pair 
of 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼) by repetitively simulating a large number of physiologically plausible in silico virtual 
patients based on a detailed and sophisticated mathematical model with the full state-feedback 
control law (i.e., 𝑢𝑢 = −𝐹𝐹𝑐𝑐𝑥𝑥 + 𝐹𝐹𝐼𝐼𝑥𝑥𝑁𝑁) (see Section 3.4 for details related to virtual patient generation).  
Finally, we selected two candidate pairs of 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 associated with conservative (i.e., slow, by 
emphasizing control energy penalty via a small 𝑞𝑞) and aggressive (i.e., fast, by emphasizing set 



   
 

   
 

point tracking penalty via a large 𝑞𝑞) control for subsequent extension to observer-based control 
design and analysis of closed-loop stability, robustness, and performance.  Note that these 
candidate control gain pairs were used as two instances of the tradeoff between set point tracking 
vs control energy to demonstrate the influence of control gain on the downstream observer design, 
especially in terms of (i) LMI-feasible observer gain region and (ii) the ultimate performance of the 
closed-loop control system. 
 
3.3. Linear Matrix Inequality-Based Absolutely Stable Control Design  
Given the control gains 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 in (12) to achieve the desired transient response characteristics, 
we designed an observer to be paired with the control law which can guarantee absolute stability 
against unknown and varying patient physiology and therapeutic effectiveness.  Our approach is 
to (i) express therapeutic effectiveness as an unknown nonlinearity with known sector bounds, (ii) 
express the absolute stability requirements for the observer-based closed-loop fluid resuscitation 
control system against this sector nonlinearity as a set of LMIs, (iii) find feasible observer gains 
by solving this set of LMIs repetitively across diverse physiologically plausible plant dynamics 
parameters representing patient physiology (𝐾𝐾𝐸𝐸, 𝛼𝛼𝐹𝐹, and 𝛼𝛼𝐻𝐻), and (iv) select an observer gain that 
guarantees absolute stability against the sector-bounded therapeutic effectiveness for all sets of 
plant dynamics parameters tested and achieves adequate transient response characteristics in 
set point tracking and disturbance rejection.  Details follow.  
 
To facilitate the analysis of absolute stability associated with the overall observer-based closed-
loop fluid resuscitation control system, we expressed the entire system dynamics in terms of the 
state 𝑥𝑥, the state estimation error 𝑥𝑥�, and the error integral 𝑥𝑥𝑁𝑁, with the output 𝑧𝑧 as an external 
input to the system dynamics: 
 

�
𝑥̇𝑥
𝑥𝑥�̇
𝑥𝑥𝑁̇𝑁
� = Ω�

𝑥𝑥
𝑥𝑥�
𝑥𝑥𝑁𝑁
� +Ψ𝑑𝑑 + �

02×1
02×1

1
� 𝑟𝑟 − Σ𝑧𝑧, 𝑦𝑦 = Π �

𝑥𝑥
𝑥𝑥�
𝑥𝑥𝑁𝑁
� , 𝑧𝑧 = 𝐾𝐾𝑝𝑝𝑦𝑦 (22) 

 

where Ω = �
𝐴𝐴 − 𝐵𝐵𝑢𝑢𝐹𝐹𝑐𝑐 𝐵𝐵𝑢𝑢𝐹𝐹𝑐𝑐 𝐵𝐵𝑢𝑢𝐹𝐹𝐼𝐼
𝐹𝐹𝑜𝑜𝐾𝐾𝑝𝑝����𝐶𝐶 𝐴𝐴 − 𝐹𝐹𝑜𝑜𝐾𝐾𝑝𝑝����𝐶𝐶 02×1
01×2 01×2 0

� , Ψ = �
𝐵𝐵𝑑𝑑
𝐵𝐵𝑑𝑑
0
� , Σ = �

02×1
𝐹𝐹𝑜𝑜
1

� , and Π = [𝐶𝐶 01×2 0] .  Note 

that (22) separates the unknown therapeutic effectiveness 𝐾𝐾𝑝𝑝 from the rest of the closed-loop 
dynamics when 𝑟𝑟 = 𝑑𝑑 = 0, as shown in Fig. 2. 
 



   
 

   
 

 
Fig. 2: Closed-loop system dynamics applicable to absolute stability analysis. 
 
We assumed that 𝐾𝐾𝑝𝑝 is completely unknown, and that it can even be time-varying: 𝐾𝐾𝑝𝑝 = 𝐾𝐾𝑝𝑝(𝑡𝑡).  
However, given that 𝑧𝑧 = 𝐾𝐾𝑝𝑝𝑦𝑦, it can be sector-bounded: 
 

𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 ≤ 𝑧𝑧 = 𝐾𝐾𝑝𝑝𝑦𝑦 ≤ 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦, 0 ≤ 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 (23) 
 
In the context of fluid resuscitation, the sector bound (23) is a physiologically plausible bound 
because it implies that BP must increase when BV increases.  We specified the sector bound by 
simulating a large number of physiologically plausible in silico virtual patients and calculating the 
range of therapeutic effectiveness (i.e., Δ𝑝𝑝(𝑡𝑡)

Δ𝑣𝑣(𝑡𝑡) ,∀𝑡𝑡 ≥ 0) (see Section 3.4 for details related to virtual 
patient generation).  Now, our task is to find the observer gain 𝐹𝐹𝑜𝑜  which renders the overall 
observer-based closed-loop fluid resuscitation control system absolutely stable in the sector 
�𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚� (meaning asymptotically stable for all 𝐾𝐾𝑝𝑝 satisfying (23)).  Invoking the Lyapunov 
stability theory, consider the following positive definite (PD) function: 
 

𝑉𝑉(𝑋𝑋, 𝑡𝑡) = 𝑋𝑋𝑇𝑇𝑃𝑃𝑃𝑃 (24) 
 

where 𝑋𝑋 = �
𝑥𝑥
𝑥𝑥�
𝑥𝑥𝑁𝑁
� and 𝑃𝑃 is a symmetric PD matrix.  Taking its time derivative while assuming 𝑟𝑟 =

𝑑𝑑 = 0: 
 

𝑉̇𝑉(𝑋𝑋, 𝑡𝑡) = 𝑋𝑋𝑇𝑇(Ω𝑇𝑇𝑃𝑃 + 𝑃𝑃Ω)𝑋𝑋 − 2𝑋𝑋𝑇𝑇𝑃𝑃Σ𝐾𝐾𝑝𝑝𝑦𝑦 (25) 
 
Our goal is to find the observer gain 𝐹𝐹𝑜𝑜 and the corresponding symmetric PD matrix 𝑃𝑃 such that 
𝑉̇𝑉(𝑋𝑋, 𝑡𝑡) in (25) is negative definite (ND) for all possible 𝐾𝐾𝑝𝑝 within the sector bound (23).  Since 𝑦𝑦 =
Π𝑋𝑋, negative definiteness of (25) can be expressed as: 
 

𝑋𝑋𝑇𝑇 ��Ω − 𝐾𝐾𝑝𝑝ΣΠ�
𝑇𝑇𝑃𝑃 + 𝑃𝑃�Ω − 𝐾𝐾𝑝𝑝ΣΠ��𝑋𝑋 < −𝜖𝜖𝑋𝑋𝑇𝑇𝑋𝑋 (26) 



   
 

   
 

 
Since (i) 𝐾𝐾𝑝𝑝 is sector-bounded by �𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚�, and (ii) 𝑉̇𝑉(𝑋𝑋, 𝑡𝑡) is linear in 𝐾𝐾𝑝𝑝, the left-hand side 
of the inequality in (26) attains its maximum either at 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 or at 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 (Khalil, 2001).  Hence, 
the absolute stability condition is expressed as: 
 
�Ω − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ΣΠ�

𝑇𝑇𝑃𝑃 + 𝑃𝑃�Ω − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ΣΠ� < −𝜖𝜖𝜖𝜖, �Ω − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ΣΠ�
𝑇𝑇𝑃𝑃 + 𝑃𝑃�Ω − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ΣΠ� < −𝜖𝜖𝜖𝜖 

(27) 
which are LMIs in 𝑃𝑃 given 𝐹𝐹𝑜𝑜.  Hence, we created a wide range of 𝐹𝐹𝑜𝑜 in a two-dimensional space 
representing its two gain elements as candidate solutions.  For each 𝐹𝐹𝑜𝑜, we repetitively solved the 
resulting LMI problems in 𝑃𝑃 across a large number of physiologically plausible plant dynamics 
equipped with diverse parameter values representing patient physiology (𝐾𝐾𝐸𝐸, 𝛼𝛼𝐹𝐹, and 𝛼𝛼𝐻𝐻).  In 
addition, we calculated the range of rise time and steady-state error pertaining to each 𝐹𝐹𝑜𝑜 by 
repetitively simulating the observer-based closed-loop control law (12) pertaining to each 𝐹𝐹𝑜𝑜 
across a large number of physiologically plausible in silico virtual patients (see Section 3.4 for 
details related to virtual patient generation).  Finally, we selected an observer gain 𝐹𝐹𝑜𝑜 to be paired 
with the control gains 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 selected in Section 3.2 such that (i) the overall closed-loop fluid 
resuscitation control system is absolutely stable against the uncertain therapeutic effectiveness 
and (ii) the transient response achieved by the observer-based feedback control law is adequate. 
 
3.4. Circle Criterion Analysis and In Silico Evaluation 
We evaluated the observer-based closed-loop fluid resuscitation control system developed in 
Sections 3.2-3.3 by conducting (i) circle criterion analysis to evaluate its stability characteristics 
and (ii) virtual in silico simulations with a large number of physiologically plausible “virtual patients” 
to evaluate its time response performance.  Details follow. 
 
First, we ascertained the absolute stability of the observer-based closed-loop fluid resuscitation 
control system by conducting circle criterion analysis (Khalil, 2001).  According to circle criterion, 
the closed-loop fluid resuscitation control system in Fig. 2 is absolutely stable in the sector 
�𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚� if (i) Ω has no imaginary axis eigenvalues, (ii) (Ω, Σ) is controllable and (Ω,Π) is 
observable, and (iii) the Nyquist plot of the forward-path transfer function in Fig. 2 (i.e., 𝑋̇𝑋 = Ω𝑋𝑋 +
Σ𝑢𝑢, 𝑦𝑦 = Π𝑋𝑋) does not enter the disk 𝐷𝐷�𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚� (which is a disk centered on the real axis 

with intercepts at �− 1
𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚

, 0� and �− 1
𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚

, 0�) nor encircles the disk (now that it is minimum-

phase).  Due to the presence of an eigenvalue at the origin caused by the integral control, we 
used the pole shifting technique (Khalil, 2001) to Fig. 2, with which a negative feedback of 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 
was applied to the forward-path transfer function and the same 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 was subtracted from the 
output of the feedback-path nonlinearity 𝐾𝐾𝑝𝑝𝑦𝑦: 
 

𝑋𝑋�̇ = Ω�𝑋𝑋� + Ψ𝑑𝑑 + �
02×1
02×1

1
� 𝑟𝑟 − Σ𝑧𝑧̅, 𝑦𝑦 = Π𝑋𝑋�, 𝑧𝑧̅ = �𝐾𝐾𝑝𝑝 − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦 (28) 

 

where Ω� = Ω− 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚ΣΠ = �
𝐴𝐴 − 𝐵𝐵𝑢𝑢𝐹𝐹𝑐𝑐 𝐵𝐵𝑢𝑢𝐹𝐹𝑐𝑐 𝐵𝐵𝑢𝑢𝐹𝐹𝐼𝐼

𝐹𝐹𝑜𝑜�𝐾𝐾𝑝𝑝���� − 𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶 𝐴𝐴 − 𝐹𝐹𝑜𝑜𝐾𝐾𝑝𝑝����𝐶𝐶 02×1
−𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 01×2 0

�.  In the course of analysis, we 

confirmed that all the conditions for absolute stability were satisfied across all the virtual patients 



   
 

   
 

employed in the evaluation.  Then, we examined the Nyquist plots associated with all the virtual 
patients.  Note that the disk has an infinite diameter after the pole shifting, with which (iii) above 
becomes the Nyquist plot of the forward-path transfer function lying in the right side of the vertical 
line passing through �− 1

𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚−𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚
, 0�. 

 
Second, we examined the time response performance of the observer-based closed-loop fluid 
resuscitation control system by conducting a large number of realistic in silico simulations using 
physiologically plausible virtual patients.  To generate virtual patients, we used a validated high-
fidelity mathematical model that can replicate physiological responses to hemorrhage and fluid 
administration (Tivay et al., 2022; Yin et al., 2022) and a novel collective inference-enabled virtual 
patient generation method (Tivay et al., 2022).  The mathematical model is much more detailed 
and sophisticated than the time-varying linear plant dynamics in (9)-(10) and includes arterial and 
venous BV dynamics with interstitial fluid exchange as well as autonomic control of cardiac and 
vascular functions.  We created a virtual patient generator by applying the collective inference 
method to the mathematical model in conjunction with in vivo experimental data collected from a 
large number of animals used in our prior work (Tivay et al., 2022).  The virtual patient generator 
is in the form of a multivariate probability density function characterizing the parameter values in 
the mathematical model.  Then, we generated a total of 100 random samples (each of which is a 
vector of numerical values for the parameters in the mathematical model) from the virtual patient 
generator.  We used these virtual patients in calculating (i) the range of rise time and settling time 
with respect to the LQR design parameter 𝑞𝑞 in Section 3.2, (ii) the sector bound of 𝐾𝐾𝑝𝑝 in Section 
3.3, and (iii) the range of rise time and steady-state error associated with the closed-loop control 
system with respect to the observer gain 𝐹𝐹𝑜𝑜 in Section 3.3. 
 
In particular, with regard to (iii) above, we evaluated the performance of the observer-based 
absolutely stable control approach to fluid resuscitation by simulating it in a fluid resuscitation 
scenario.  Each virtual patient was subject to hemorrhage of 0.5-2.5 L in BV which lowered BP in 
the virtual patients to 25+/-10 mmHg level, and then received fluid administration by the control 
law (12) to restore BP up to 85 mmHg.  Then, 40 min after fluid resuscitation started, each virtual 
patient was subject to a secondary hemorrhage of 0.5 L in BV for 10 min (to simulate disturbances 
such as clots breaking and tourniquets slipping).  We used the BP response during the initial 40 
min to evaluate the set point tracking performance.  We used the BP response after the onset of 
secondary hemorrhage (i.e., 40 min onward) to evaluate the disturbance rejection performance.  
To make the in silico simulation more realistic, we contaminated simulated BP by a measurement 
noise in the form of a Gaussian random noise of 2 mmHg in magnitude.  Then, we calculated rise 
time, 2% settling time, and steady-state error (defined as the average of the error between the 
BP set point (85 mmHg) and the closed-loop controlled BP response within the time window from 
2% settling time to the onset of secondary hemorrhage (i.e., 40 min)) associated with the BP 
response pertaining to each virtual patient and summarized them across all the virtual patients as 
set point tracking metrics.  In addition, we calculated percent overshoot, 5% setting time, and 
steady-state error (defined as the average of the error between the BP set point (85 mmHg) and 
the closed-loop controlled BP response within the time window from 5% settling time to the end 
of simulation (80 min)) associated with the BP response pertaining to each virtual patient and 
summarized them across all the virtual patients as disturbance rejection metrics. 
 
4. Results 



   
 

   
 

Fig. 3 shows the relationship between the range of rise time and settling time pertaining to the BP 
response in 100 virtual patients under full-state feedback control vs the LQR design parameter 𝑞𝑞.  
Fig. 4 shows the Nyquist plots of the forward-path transfer functions (28) in Fig. 2 associated with 
100 plausible plant dynamics relative to the circle criterion condition.  Fig. 5 shows (i) absolute 
stability characteristics, (ii) observer bandwidth relative to control bandwidth, (iii) rise time, and (iv) 
steady-state error.  Each point in the absolute stability subplot shows the percentage of virtual 
patients who are absolutely stable with the observer gain 𝐹𝐹𝑜𝑜 defined by the X and Y coordinates 
of the point.  The performance metrics are the average performance across all the virtual patients.  
Fig. 6 and Fig. 7 show representative in silico simulation results of fluid resuscitation based on 
the proposed control approach in BP set point tracking (Fig. 6) and hemorrhage disturbance 
rejection (Fig. 7) scenarios.  Table 1 summarizes the time and steady-state response performance 
of conservative and aggressive observer-based control designs pertaining to set point tracking 
and disturbance rejection. 
 

 
Fig. 3: Relationship between the range of rise time and settling time pertaining to the BP response 
in 100 virtual patients under full-state feedback control vs the LQR design parameter 𝑞𝑞.  The 
bounds indicate +/-2 standard deviations across all 100 virtual patients. 
 



   
 

   
 

 
Fig. 4: Nyquist plots of the forward-path transfer functions (28) in Fig. 2 associated with 100 
plausible plant dynamics relative to the circle criterion condition.  The closed-loop fluid 
resuscitation control system is absolutely stable since all 100 Nyquist plots are to the right-hand 
side of the red vertical line. 
 



   
 

   
 

 
Fig. 5: Absolute stability characteristics (upper left), observer bandwidth relative to control 
bandwidth (upper right), rise time (lower left), and steady-state error (lower right), all with respect 
to the observer gain 𝐹𝐹𝑜𝑜.  Each point in the absolute stability subplot shows the percentage of 
virtual patients who are absolutely stable with the observer gain 𝐹𝐹𝑜𝑜  defined by the X and Y 
coordinates of the point.  The performance metrics are the average performance across all the 
virtual patients.  (a) Conservative control design.  (b) Aggressive control design. 
 



   
 

   
 

 

Fig. 6: Representative in silico simulation results of fluid resuscitation based on the proposed 
control approach in BP set point tracking. 
 

 



   
 

   
 

 
Fig. 7: Representative in silico simulation results of fluid resuscitation based on the proposed 
control approach in hemorrhage disturbance rejection. 
 
Table 1: Time and steady-state response performance of conservative and aggressive observer-
based control designs (median (IQR)). 
 
(a) Set point tracking 

 Rise Time [min] Settling Time [min] Steady-State Error [mmHg] 
Conservative Control 7.6 (7.4-7.9) 19.9 (17.7-23.2) 0.8 (0.7-0.9) 
Aggressive Control 4.1 (4.0-4.2) 12.4 (11.5-14.4) 0.5 (0.4-0.6) 

 
(b) Disturbance rejection 

 Overshoot [%] Settling Time [min] Steady-State Error [mmHg] 
Conservative Control 6.6 (6.2-7.0) 19.1 (9.6-20.4) 2.4 (2.0-2.7) 
Aggressive Control 5.0 (4.9-5.2) 2.9 (0.0-3.5) 1.7 (1.5-2.0) 

 
5. Discussion 
Fluid resuscitation is a critical component of hemorrhage treatment, but it is heavily dependent on 
manual administration and re-administration of fluid by human clinicians.  Hence, automation of 
fluid resuscitation can make a leap in hemorrhage treatment in terms of relieving clinician burden 
while maintaining therapeutic quality and efficacy.  However, the vast majority of existing effort to 
enable closed-loop controlled automation of fluid resuscitation is empiric and ad-hoc with a lack 
of rigorous control-theoretic analysis to establish stability, robustness, and performance of closed-



   
 

   
 

loop control system against inter-/intra-individual variability in patient physiology and therapeutic 
responsiveness.  In this paper, we presented an absolutely stable observer-based integral control 
approach to fluid resuscitation. 
 
5.1. Absolutely Stable Observer-Based Control Design via LQR and LMI 
We adopted a 3-step design procedure to realize the proposed approach.  First, we designed the 
control architecture relevant to achieve set point tracking and disturbance rejection objectives.  
Second, we designed the state-feedback integral control gain using the LQR method.  Third, we 
designed the observer gain using the LMI method.  In the design of absolutely stable closed-loop 
control law, we embeded the unknown therapeutic effectiveness as a sector-bounded nonlinearity 
in the LMIs, while we addressed the effect of physiological variability by repetitively solving the 
LMIs with respect to a large number of plausible plant dynamics.  In this context, the proposed 
control design approach provides a probabilistic robustness against variability in both therapeutic 
effectiveness and patient physiology.  The 3-step control design procedure has novel advantages: 
(i) it automatically embeds set point tracking and disturbance rejection capabilities in the control 
system architecture; and (ii) it decouples performance and stability/robustness design from each 
other by specifying the desired performance via control design while enforcing absolute stability 
via observer design, and then integrating them to achieve desired stability and performance by 
exploiting the separation principle. 
 
The LQR method allowed us to determine an appropriate state-feedback control gain (both 𝐹𝐹𝑐𝑐 and 
𝐹𝐹𝐼𝐼) with a single design parameter (i.e., 𝑞𝑞 in 𝑄𝑄 in (21)) (Fig. 3).  Both rise time and settling time 
decreased as 𝑞𝑞 was increased, which is intuitively reasonable.  As an illustrative purpose, we 
used the gains pertaining to 𝑞𝑞 = 10−6 and 𝑞𝑞 = 10−5 as conservative and aggressive control gains, 
respectively. 
 
Circle criterion analysis confirmed that the closed-loop fluid resuscitation control system designed 
in this paper was absolutely stable against the variability in patient physiology and therapeutic 
effectiveness.  Indeed, the Nyquist plots pertaining to all the 100 virtual patients lied in the right-
hand side of the vertical line defined by the sector bound (Fig. 4).  Hence, the observer design 
guided by the LMIs in (27) could provide an appropriate observer gain to be paired with a pre-
designed control gain to achieve absolute stability via a simple search on the two-dimensional 
observer gain space. 
 
The results of our observer-based control design approach also provide a few important insights.  
First, not all the control-observer gain pairs can readily satisfy absolute stability.  Indeed, only a 
specific region in the observer gain space was associated with absolute stability (see the region 
enclosed by black dashed line in Fig. 5).  In addition, the region of absolute stability was influenced 
by pre-designed control gain (Fig. 5).  More specifically, the region of absolute stability became 
more restrictive as control gain was selected to be more aggressive (Fig. 5).  It is also noted that 
the selection of an observer gain needs to reconcile two competing desirables: guaranteeing 
absolute stability vs achieving desired performance.  Indeed, the region of absolute stability did 
not in general coincide with the region of high observer bandwidth (relative to control bandwidth) 
as well as small rise time and steady-state error (Fig. 5).  Hence, the observer gains selected and 
paired with the control gains in this paper were not associated with sufficiently fast observer error 
dynamics.  Regardless, the proposed approach could still result in an absolutely stable observer 
gain region which could yield adequate closed-loop response characteristics to the extent where 



   
 

   
 

the desired time response performance specified by control pre-design was maintained (Fig. 6 
and Fig. 7). 
 
The in silico simulation results based on 100 plausible virtual patients demonstrated satisfactory 
time and steady-state response performance characteristics of the observer-based closed-loop 
fluid resuscitation control system (Table 1).  In both conservative and aggressive control designs, 
closed-loop controlled BP responses in all 100 virtual patients could result in the intended time 
response with reasonably small overshoot and steady-state error in BP set point tracking (Table 
1 and Fig. 6).  On the other hand, closed-loop controlled BP responses to hemorrhage disturbance 
exhibited relatively (i) large overshoot in both conservative and aggressive control designs and (ii) 
slow settling time in conservative control design (Table 1 and Fig. 7).  These results may be 
attributed to two factors.  First, the control gain we designed using LQR (Section 3.2) primarily 
emphasizes BP set point tracking.  Hence, transient response characteristics pertaining to 
hemorrhage disturbance rejection may be suboptimal.  Second, our control design did not account 
for the influence of actuator saturation (i.e., that fluid rate can only be positive) explicitly.  As is 
obvious in Fig. 7, actuator saturation appears to be the main root cause responsible for sluggish 
disturbance rejection and large settling time.  These limitations must be carefully investigated and 
addressed in a follow-up work. 
 
But all in all, the proposed observer-based absolutely stable integral control approach appeared 
to have promise in advancing closed-loop controlled automation of fluid resuscitation. 
 
5.2. Limitations 
The control design approach presented in this paper has an important limitation that need to be 
investigated in the follow-up work: (i) control gain and observer gain were designed separately, 
and (ii) the LMIs (27) were not directly solved to derive the observer gain 𝐹𝐹𝑜𝑜.  First, pre-design of 
control gain followed by observer gain design made it possible to separate the achievement of 
performance and stability/robustness objectives.  Regardless, it would be powerful if control and 
observer gains could be designed simultaneously.  Unfortunately, it is easy to recognize that (27) 
is no longer an LMI if the control gains 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 are left as unknowns.  In addition, it is not clear 
how to incorporate desired time response performance specifications into the LMIs.  Hence, pre-
designing 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼 had a practical advantage of being able to solve (27) as LMIs using well-
established LMI solvers while enforcing desired response characteristics.  Second, exhaustive 
search to find the observer gains which can guarantee absolute stability over two-dimensional 
space was not computationally expensive.  Regardless, it would be powerful if the LMIs could be 
derived by directly solving the inequalities (27) with well-established solvers.  It is possible to solve 
the LMI feasibility problem for (27) to derive 𝑃𝑃 and 𝐹𝐹𝑜𝑜 given 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝐼𝐼.  However, restrictions must 
be imposed on 𝑃𝑃 if 𝑃𝑃 and 𝐹𝐹𝑜𝑜 are to be uniquely determined, which inevitably put restrictions on 
the solution space on 𝑃𝑃 and 𝐹𝐹𝑜𝑜.  Considering all these limitations, future investigation to streamline 
the systematic design of the proposed observer-based control approach may be a meaningful 
contribution. 
 
Conclusion 
In this paper, we demonstrated the validity and promise of an output-feedback absolutely stable 
control design for automating fluid resuscitation.  In contrast to most existing closed-loop control 
system for fluid resuscitation, we systematically established its stability and robustness against 
unknown inter- and intra-individual variability in patient physiology and therapeutic effectiveness.  



   
 

   
 

By conducting in silico evaluation with physiologically plausible virtual patients, we demonstrated 
the promise of our control approach: that it can achieve robust stability and adequate response 
performance.  Future work to streamline the control design procedure, to simultaneously achieve 
satisfactory set point tracking and disturbance rejection performance, to experimentally evaluate 
the efficacy of the proposed control approach, and to explore the versatility of the proposed control 
design approach in other domains of medical automation will be rewarding. 
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