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Abstract— Objective: To present the population-informed
particle filter (PIPF), a novel filtering approach that incorporates
past experiences with patients into the filtering process to provide
reliable beliefs about a new patient’s physiological state. Methods:
To derive the PIPF, we formulate the filtering problem as
recursive inference on a probabilistic graphical model, which
includes representations for the pertinent physiological dynamics
and the hierarchical relationship between past and present patient
characteristics. Then, we provide an algorithmic solution to the
filtering problem using Sequential Monte-Carlo techniques. To
demonstrate the merits of the PIPF approach, we apply it to a case
study of physiological monitoring for hemodynamic management.
Results: The PIPF approach could provide reliable beliefs about
the likely values and uncertainties associated with a patient’s
unmeasured physiological variables (e.g., hematocrit and cardiac
output), characteristics (e.g., tendency for atypical behavior), and
events (e.g., hemorrhage) given low-information measurements.
Conclusion: The PIPF shows promise in the presented case study,
and may have applications to a wider range of real-time
monitoring problems with limited measurements. Significance:
Forming reliable beliefs about a patient’s physiological state is an
essential aspect of algorithmic decision-making in medical care
settings. Hence, the PIPF may serve as a solid basis for designing
interpretable and context-aware physiological monitoring,
medical decision-support, and closed-loop control algorithms.

Index Terms—Particle Filter, Generative Model, Recursive
Inference, Physiological Monitoring, Critical Care, Hemodynamic
Management

I. INTRODUCTION

HYSIOLOGICAL monitoring systems are foundational tools

for patient care that provide continuous information about a
patient’s vital physiological variables, helping practitioners in
deriving insight into the patient’s health condition and making
informed therapeutic decisions [1]. The need for physiological
monitoring also spans the non-clinical domain, where a wide
range of monitoring products (e.g., wearables and consumer
electronics) aim to provide users with insight into their health
and bodily performance [2]. In addition, in recent years, there
has been considerable research interest in the area of
autonomous medical care systems [3]-[6], where physiological
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decision-support and closed-loop control algorithms are built to
assist users in making therapeutic or lifestyle decisions based
on monitoring results. Such a trend makes it even more
necessary to develop high-fidelity and reliable physiological
monitoring systems.

As a fundamental challenge in physiological monitoring, the
physiological variables that are relevant to decision-making are
not always directly measurable in practice. As a result, to be
useful, monitoring systems must have mechanisms to
continuously infer unmeasured physiological variables from
measured ones. In the context of engineering systems, filtering
algorithms are excellent candidates for such purposes [7], [8].
These algorithms typically leverage an underlying model of the
studied system (which could be mechanistic or black box) to
recursively process measurement signals and continuously infer
unmeasured variables. The Kalman Filter (KF) is one of the
most well-known and widely used filtering algorithms in the
engineering domain, which can utilize a linear model of the
system for estimation purposes [9], [10]. The Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF) are two
extensions to the KF algorithm that use model approximation
techniques to allow for a nonlinear model of the system to be
used for estimation [11]-[13]. More generally, Bayesian
filtering provides a concrete framework for reasoning about
filtering problems, where beliefs about the possible values of a
system’s unmeasured variables are expressed in the form of
probability distributions [14]. In this framework, principled
mathematical procedures exist to refine existing (i.e., prior)
beliefs according to incoming data in order to turn them into
updated (i.e., posterior) beliefs about unmeasured variables
[15], [16]. However, these mathematical operations are often
not analytically tractable, which fostered the development of a
wide range of approximate approaches that provide solutions to
such problems in practical applications. These approaches can
be divided into two broad categories in terms of their
approximation technique. Sequential Monte-Carlo (SMC)
filtering approaches approximate belief distributions using
(large) collections of weighted samples (i.e., particles),
allowing for stochastic and/or nonlinear models to be used in
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Fig. 1. Schematic representations for (a) the hierarchical structure of the generative physiological model; and (b) the sequential relationship between the variables

of interest in the population-informed filtering problem.

the filtering process with relatively high fidelity [17]-[21],
while Variational Filtering (VF) approaches approximate belief
distributions using tunable distribution models, allowing for the
filtering problem to be converted into an optimization problem
[22]-[25].

Despite the demonstrated success of filtering algorithms in
estimating unmeasured variables in many engineering systems,
unique filtering challenges still remain in the physiological
monitoring domain, namely: the available measurements
typically contain limited information about the unmeasured
variables. For instance, in the context of hemodynamic
management for critically ill patients, beliefs about the patient’s
blood volume/composition and cardiovascular function are
expected to facilitate a practitioner’s (or an algorithm’s)
decisions in administering therapy (e.g., fluid or drug
infusions). However, clinically available measurements are
limited to blood pressure and (in rare cases) intermittent cardiac
output and hematocrit correlates, which are also typically
affected by high levels of noise and artifacts. Moreover, a
patient’s physiological dynamics are typically not excited by
the therapy in clinical settings, further limiting the information
content of the available measurements. Such intermittent and
low-information measurements limit the applicability of many
established filtering algorithms (and underlying physiological
models) to the task of characterizing patients and providing
reliable estimates of their physiological state.

To address this challenge, in this work, we propose the
population-informed particle filter (PIPF), a novel filtering
approach that leverages a generative physiological model [26]
to incorporate past experiences with patients into the filtering
process in order to provide reliable beliefs about a new patient’s
physiological state. To derive the PIPF, we formulate the
filtering problem as recursive Bayesian inference on a
probabilistic graphical model, which includes representations
for the pertinent physiological dynamics and the hierarchical
relationship between past and present patient characteristics.
Then, we provide an algorithmic solution to the filtering
problem based on SMC (i.e., particle-based) techniques. To
demonstrate the potential merits and limitations of the PIPF
approach, we apply it to a case study of physiological

monitoring for hemodynamic management.

This paper is organized as follows. Section II presents the
algorithmic details of the PIPF approach. Section III presents
the application of the PIPF to physiological monitoring in the
context of hemodynamic management. Section IV presents and
discusses the results. Section V concludes the paper with
potential future directions.

II. POPULATION-INFORMED PARTICLE FILTERING

In this section, we present the population-informed particle
filter (PIPF). First, we provide a review of relevant concepts
from generative physiological modeling. Based on these
concepts, we present the population-informed filtering scheme,
where a generative physiological model informs a recursive
Bayesian filter. Then, we provide an algorithmic solution to
this problem using SMC techniques and show how this
algorithm and methodology may be leveraged to create a robust
model-based physiological monitoring system. Further details
follow.

A. Generative Physiological Modeling

Physiological models can serve as a concrete source of
physiological knowledge in the design and development of
patient monitoring algorithms. Generative modeling is a
promising approach to physiological modeling, where the
inherent variability and stochasticity of a physiological system
are fully embraced in model components that behave in
stochastic but patterned ways. The objective of the generative
physiological model is therefore to reproduce and predict the
patterned randomness that is often observed in physiological
datasets. As the proposed filtering approach relies heavily on
an underlying generative model, in this section, we present a
general family of generative models for physiological systems
and provide an overview of procedures that can be used to
characterize these models from data. We refer the readers to
our prior work [26] for complete details on this topic.

The generative model considered in this work consists of a
hierarchy of stochastic components that reflect the
physiological data observed in a population of patients (see Fig.
1(a)). At the highest level in the hierarchy, a patient generator



model is tasked with generating variations in patient
characteristics, which can be formalized as:
01 ~ G1(¢) )
Ok ~ Gr(Ok-1,P) 2

where G; is a component that instantiates virtual patients by
generating patient characteristics, and G is a component that
produces variations in a virtual patient’s characteristics as time
progresses. In this formulation, ¢ is the vector of parameters
for the patient generator model, ) is the vector of patient
characteristics at time k, and the symbol ~ denotes sampling.
At the second level, a physiological dynamics model is tasked
with generating evolutions in the states of each virtual patient,
which can be formalized as:

x1 ~ H1(61) 3)

Xge ~ Hye(Xpe—1, Op—1, U—1) “4)
where H is the physiological dynamics model, x; represents
the states of the virtual patient at time k, and u,, represents the
known inputs/therapies given to the virtual patient at time k.
Finally, at the third level, a physiological measurement model
generates observations from the state and/or the characteristics
of the patient, which can be formalized as:

Yie ~ M (g, Oy, n) (5)
where M is the physiological measurement model, n is a vector
of parameters for this model, and y; is the vector of virtual
observations generated at time k.

Given a dataset containing physiological data from a cohort
of patients, we are interested in inferring the unknown
parameters of the generative model in (1)-(5) such that the
model captures the characteristics of the dataset. We recently
showed in [26] that an effective solution to this (often
intractable) problem can be obtained using variational Bayesian
inference methods [27], where the most-likely values and the
uncertainties associated with the parameters of the generative
model (i.e., ¢, n) are computed through stochastic optimization.
These inferred parameters can in turn be used with the
generative model to generate virtual datasets with similar
distribution to real data. In other words, the resulting generative
model is equipped with the knowledge needed to instantiate
virtual patients, generate paths for patient characteristics,
produce state evolutions in response to given stimuli, and
generate realistic physiological measurements. In this work, we
are interested in utilizing this encoded knowledge to inform a
filtering algorithm’s real-time perception of a patient,
especially when only intermittent and low-information
measurements are available from the patient. Therefore, in the
next section, we formulate a filtering problem where the filter
is informed by a generative model.

B. Population-Informed Filtering

Filtering (as referred to in this work) is the process of forming
and updating beliefs about the unmeasured variables of a
dynamic system using its measured variables. In the context of
physiological monitoring, filtering may be used to form and
update beliefs about the unmeasured states and characteristics
of a patient using physiological measurements that arrive over
time. Filtering processes typically operate based on an
underlying model of the studied system. In this section, we

formulate the problem of population-informed filtering, which
is a filtering process that is informed by a generative
physiological model.

To formulate the population-informed filtering problem, we
adopt a Bayesian view of filtering, where beliefs are
represented by probability density functions. In this setting, the
objective of filtering is to obtain the following posterior
probability density function at each time k:

) ,9 ) 0, &, — P(X1:01:0Y1:k|P1) 6
P 1k Okl Y1 §, 1) T opaalem) (6)

This density represents our beliefs about the unmeasured states
and characteristics of a patient up to time k (denoted by x;.;
and 6;., respectively), given the patient’s physiological
measurements up to time k (denoted by y;.,) and the
information encoded in the parameters of the generative model
¢, n. As shown on the right-hand-side of (6), it is conceptually
possible to obtain the posterior density from the joint density
shown in the numerator and the marginal density shown in the
denominator. The joint density represents the relationship
between the measured and unmeasured variables in the filtering
problem, while the marginal density is obtained by integrating
the joint density over the unmeasured variables.

Using the generative model in (1)-(5) to inform the filtering
process imposes a specific structure on the joint density. This
structure is shown in Fig. 1(b) as a graphical representation. In
this representation, the joint density has a hierarchical structure,
where the patient generator parameters ¢ affect the patient’s
characteristics 0,.;, while the patient’s characteristics affect the
patient’s state evolutions xij. In turn, the patient’s
characteristics, state evolutions, and measurement parameters n
affect the generated measurements y;.,. The graphical
representation also shows that the joint density consists of a
sequential structure, where variables at time k are affected by
variables at time k — 1. This implies a recursive relationship
between joint densities at times k and k — 1, which can be
formalized as:

p(xl:k’ glzk' yl:k|¢' Tl) =
p(xl:k—lﬂglzk—li y1:k—1|¢! n)‘Rk—l:k (7)

Ri-1 =
P Wil Xir O WP (| Xpe—1, Oe—1, Uge—1)P (O | Ope—1, P) (®)
where R _1., is the ratio between joint densities at times k and
k — 1. The first multiplicative term in the ratio is the density
associated with generating the measurement y, given the
current states x;, and characteristics 6y,; the second term is the
density associated with generating a transition to the states x;
given the previous states xj_,, characteristics 6_;, and
inputs/therapies uy_,; and the third term is the density
associated with generating a transition to the characteristics 8,
given the previous characteristics 6y,_.

The relationship described in (7)-(8) results in an important
recursive relationship between posterior densities at times k and
k — 1. This relationship can be written as:

Py Orelyre d0) =
Ri—1:k
P(x1k-1, O1:k-11YV1k—1, B 1) P ORI 1k b )

which suggests that it is conceptually possible to multiply the
posterior density at time k — 1 by an update term (i.e., the



fraction on the right-hand side) to obtain the posterior density
at time k. In other words, performing this update recursively
would create a recursive filtering process, where previous
beliefs about a patient’s unmeasured states and characteristics
can be updated according to the behavior of the generative
model and any newly available measurements y,. However,
depending on the underlying generative model, this update
procedure may often prove analytically intractable. In the next
section, we adopt a Sequential Monte-Carlo (i.e., particle-
based) approach to derive a practical solution to this filtering
problem.

C. A Sequential Monte-Carlo Solution

To derive a practical solution to the population-informed
filtering problem presented in (9), we adopt a Sequential
Monte-Carlo approach [20], [21], which is a sampling-based
approach especially suited to solving inference problems with
substantial nonlinearities, complex/multi-modal beliefs, and
high levels of uncertainty, most of which are likely to arise in
physiological monitoring applications. To perform this
derivation, we first consider a proposal density of the following
form:

q (X1 01:0) = qOe1x—1, O1-1)9 (X, O Xpe—1, O—1)  (10)
which is designed to have a sequential structure, be easy to
sample from, and have non-zero density wherever the posterior
density (9) is expected to have non-zero density. The function
of this proposal density is to propose beliefs about the
unmeasured variables of the filtering problem. Multiplying and
dividing (9) by (10) and rearranging the result yields the
following variant of the recursive relationship between the
posterior densities:

p(xl:k! glzklyl:k' ¢' Tl) =

A(Xp—1:0k—1:0) X1 Ok | X 11,01 —1)
P(X1x-1, Or-11Y1:k-1, P, ) 2oLk pk(y;l};rk_i@}fn)k Lked
(11)

where a(X_1.5) Ok—1.x) 1S a weighting function defined as:

:Rk—l:k
a(Xy_1.0,0p_q1.p) = ————=%—— 12
(Xk—1:800 Ok—1:8) 2O R hrfrn) (12)

To perform the recursive filtering procedure described by (11)-
(12), we start from the process of drawing samples from the
proposal density in (10):

[x, 61k ~ q(x, Ok |[x, 61k -1) (13)
where [x, 8]} denotes a sample (at time k and indexed by i)
from the proposal density, and it follows from the sequential
structure of the proposal density that samples at time k can be
generated recursively using samples at time kK — 1. Given N
such samples, the proposal density itself can be expressed using
the following equation:

4 (e Ol lx, 01f—y) =~ 2iL, S[x, 01 (14)
where §[x, 8]% denotes the Dirac’s delta function positioned at
the sample [x, 8], and the equation indicates that the proposal
density can be approximately represented by a collection of N
samples [x,0]% drawn from it. Given the samples, the
approximation in (14) can be substituted into (11) over the time
span 1: k to yield the following sample-based expression for the
posterior density:

ﬁ(xl:ktglzklyl:k! ¢,Tl) = §V=1W1i8[x! Q]le

(15)

Algorithm 1. Population-Informed Particle Filtering (PIPF)
{initialize time}

k<1

logw! « log(1/N)
{initialize N weights, indexed by i}

01 ~ G1(¢), xi ~H,(61)

{generate N samples, indexed by i; see (1), (3)}

Repeat:

ke<k+1 {increment time}
i i
Ok ~ gk(ek—p ¢)
{generate transition to characteristic samples; see (2)}
i i i
xp ~ My (Kpe—1, Ok—1, Upe—1)
{generate transition to state samples; see (4)}
i i pgi
loga' < logp(yi|xk, O, )
{get log-likelihood of samples against data; see (12)}

logw} « logwi_; + loga’

{update weights, un-normalized; see (16)}

log w;, « max;(logwy)

{get maximum weight}

logw/. < logwt — logw; —logY; exp(log W} — log ;)
{normalize weights}

[x,0]% « Z(logwi,[x,0]%)

{resample to reset weights; see [21]}
i 1

logw; « log (N)

{reset weights}

Output: logwi, [x, 6]
{provide up-to-date beliefs for time k|

where the posterior density is expressed in terms of weighted
samples from the proposal density, and w}. denotes the weight
for sample i at time k. Each sample path [x, 8]}, describes a
proposed path for the patient’s states and characteristics, and
the weight w}, represents how probable the path is (relative to
other sample paths) according to the generative model and the
patient’s physiological measurements up to time k. FEach
weight at time k can be computed recursively from its
counterpart at time k — 1 using the following relationship:
W1 @((%,601f—1.1)

2§\1=1W1i<—1“([x'9];;—1:k) (16)
where w}._; denotes the weight for sample i at time k — 1, and
a([x,0]%_1.4) is the weighting function described in (12),
evaluated at sample i for times k and k — 1. Overall, the
relationship described in (16) allows for the efficient
calculation of the posterior density using recursive steps,
namely: drawing N samples at time k from the proposal density
(13) using the already available N samples from time k — 1;
evaluating the weighting function (12) using each of the N
samples at times k and k — 1; and calculating the new weights

wy =



using (16), thereby obtaining the most up-to-date beliefs at time
k. Realizing this procedure in practice, however, necessitates a
few extra steps, which are presented in more detail in the next
section.

D. The Population-Informed Particle Filtering (PIPF)
Algorithm

As presented in Section II.C, beliefs about a patient’s
unmeasured states and characteristics can be expressed and
recursively updated using a collection of weighted samples (i.e.,
particles). In this section, we leverage this principle in
conjunction with additional weight normalization and
resampling techniques to build a practical procedure for PIPF.
Algorithm 1 shows an overview of this procedure. In this
algorithm, we use the generative physiological model in (1)-(5)
to generate proposal samples. As a result, the weighting
function used in (16) reduces to a([x, 0] 1) =
p(yk|x,i€, B,i,n). The filtering procedure begins by using the
generative model to generate (many) proposed samples for the
patient’s baseline states and characteristics. Then, at each time
increment, the generative model proposes transitions to these
states and characteristics, and the resulting samples are
evaluated against data at the time to update the sample weights.
The weight updates are performed in logarithmic scale and the
weight normalizations are performed using the log-sum-exp
trick [28] to achieve higher numerical accuracy and stability. In
addition, weight variability is measured at each time increment,
and if necessary, the samples are resampled using a systematic
resampling [21] technique (denoted by Z in Algorithm 1). This
technique redraws each sample with a probability proportional
to its weight, thereby allowing for a resetting of the weights.
Overall, at each time k, this algorithm provides up-to-date
beliefs about a patient’s unmeasured variables in the form of a
collection of weighted samples (i.e., particles).

III. APPLICATION TO PHYSIOLOGICAL MONITORING FOR
HEMODYNAMIC MANAGEMENT

Hemodynamic management is an essential aspect of care for
critically ill patients, where the performance of a patient’s
cardiovascular system is monitored and, if necessary, therapies
are administered to ensure adequate blood circulation [29],
[30]. To demonstrate the merits and limitations of PIPF, we use
this approach to build a monitoring algorithm for a typical
critical care scenario where hypovolemia (i.e., low circulating
blood volume) is treated with fluid infusions [31]. In this
scenario, the monitoring algorithm receives a stream of blood
pressure and fluid infusion data and processes this information
to form real-time beliefs about a patient’s unmeasured
physiological variables (e.g., hematocrit and cardiac output),
characteristics (e.g., the tendency for atypical behavior), and
events (e.g., hemorrhage). These real-time beliefs can in turn
inform a practitioner’s decision to administer fluids, and
furthermore serve as a foundation for building automated
decision-support and closed-loop control algorithms for
hypovolemia treatment. This section presents the details of
applying the PIPF approach to this problem and describes the
methods and datasets used to evaluate the results. Further

details follow.

A. Generative Modeling for Hemodynamic Management

As presented in Section II, the PIPF approach relies on a
generative physiological model to form and update beliefs
about the unmeasured states and characteristics of a patient. In
this section, we describe a generative model of the
physiological phenomena relevant to the treatment of
hypovolemia with fluid infusions. This model will be used in
subsequent sections to build a monitoring algorithm for
hypovolemia treatment.

1) Patient Generator Model: As presented in Section II.A,
the generative physiological model consists of a hierarchy of
stochastic components that reflect the physiological behaviors
observed in a population of patients. At the highest level in the
hierarchy, a patient generator model G generates virtual patients
with a variety of characteristics. In the context of hypovolemia
treatment, we consider a patient generator model of the
following form:

0; = ¢u+¢L€9€~N(0:I) (17)
O = (1 —€)0k_1 + €,(dp + Pr€), €, ~B(L,76),
e ~N(0,1) (18)

In this model, first, the characteristics 8, of each virtual patient
are instantiated in (17) by drawing samples from a full-
covariance Gaussian distribution, where ¢, determines the
center of the distribution, ¢; is the Cholesky decomposition of
the distribution’s covariance matrix (i.e., ¢y = ¢, $7), and € is
a sample from the standard Gaussian distribution of appropriate
dimension. Then, over time, each patient’s characteristics 8,
follow the relationship in (18), where €, is a sample from the
Bernoulli distribution (denoted by B), which produces €, = 1
with a probability of yg, and €, = 0 with a probability of 1 —
¥g. The probability ¥4 (which is chosen to be small) acts as a
forgetting factor for the characteristics of each instantiated
virtual patient. In other words, each virtual patient will retain
its characteristics over time, except for a small chance of
transitioning to different characteristics drawn from the virtual
patient generator in (17). For the purpose of hypovolemia
treatment modeling, we define a vector of patient characteristics
as follows:

9k =
[Uo Hy Qo Py Ky Kq/K, K, aj ay K tp Kg By Ky ]k

(19)
which contains n, = 14 physiological parameters to be
elaborated on later in this section. Overall, this patient
generator model is built to inform a PIPF-based monitoring
algorithm about the characteristics that are likely to occur in the
patient population (along with their probability of occurrence)
and furthermore allow for the algorithm to adapt to potential
changes in a patient’s characteristics over time.

2) Physiological Dynamics Model: At the second level in
the hierarchical model in Section II.LA, a physiological
dynamics model ' generates state evolutions for each virtual
patient. For this purpose, we utilize a dynamic model of the
physiological phenomena relevant to hypovolemia treatment
from our previous work [26], [32]. In this section, we present
an overview of this model in discretized form. The model
consists of macro-state components that represent blood



circulation and the mechanisms that affect blood circulation in
the context of hypovolemia treatment.

To obtain a macro-state model of blood circulation, we
consider equations of the following form:

[va]k = [va]k—l + 6t [Q - (Pa - Pv)/R - ]H _]F]k—l

(20)
[volk = [Vplk—1 + 6t [-Q + (P, — P,)/R + Jilk—1 (21)
[Vl = [V li—1 + 6t [—JuH -1 (22)

where v, and v, denote arterial and venous blood volumes, v,
is the total red blood cell volume, 8t is the time increment
between k and k — 1 instances, @ is the cardiac output, P, and
P, denote mean arterial and venous blood pressures, R is the
systemic vascular resistance, H = v,./(v, +1v,) is the
hematocrit, Jr is the net rate of fluid exchange with the
interstitial space, J; is the rate of fluid infusion, and Jy is the
rate of blood loss. In these equations, mean arterial pressure is
related to arterial volume through P, = P,y + K, (v, — Vg9),
and mean venous pressure is related to venous volume through
P, = P,y + K, (v, — v,,0), Where P, P, are baseline (i.e., un-
perturbed) arterial and venous blood pressures, vy, Vo are
baseline arterial and venous blood volumes, and K,, K, denote
arterial and venous elastances in the patient.

To obtain a macro-state model of the mechanisms that affect
blood circulation in the context of hypovolemia treatment, we
consider: (i) fluid exchange with the interstitial space, (ii)
changes in systemic vascular resistance (e.g., through
vasoconstriction or vasodilation), and (iii) changes in cardiac
output (e.g., through changes to heart rate and contractility).
Fluid exchange with the interstitial space is represented by:

Jr=Kp(v — vy —1%) (23)

[reli = [l + 066 U/ (U + ) = Ju /(1 + ap)li-1 (24)
where 77 is the steady-state change in blood volume after the
exchange, v = v, + v, is the total blood volume, vy, = v,y +
Vyo is the baseline total blood volume, K;, modulates the speed
of exchange, and a;, ay determine the fraction of fluid infusion
and blood loss that are compensated in the exchange. Changes
in systemic vascular resistance are represented by:

R =Ry + K,(H — Hy) + sg (25)

[srlk = [Srlk-1 + 0t [—sp/Tr — Kr(Pa — Pao)/Trlk-1

(26)
where sg is the change in resistance prompted by the body’s
compensatory mechanisms, Kp and Tt modulate the
characteristics of compensation, Ry = (Pgq — P,o)/Qp is the
baseline resistance, @ is the baseline cardiac output, H,, is the
baseline hematocrit, and K; modulates the effect of blood
dilution on resistance. = Changes in cardiac output are
represented by:

Q=Q0+.817(PU_P1;0)+SQ 27)

[sel, = [sel,_, +6t[-Ko(@ = Q0)], _, (28)
where sq is the change in cardiac output prompted by the
body’s compensatory mechanisms, K, modulates the
characteristics of compensation, and [3,, modulates the effect of
variations in mean venous pressure on cardiac output. The
physiological model described in (20)-(28) is intended to
inform a PIPF-based monitoring algorithm about the
physiological dynamics and behaviors that could occur in a
patient, thereby giving the algorithm a basis to form and adjust
its beliefs about the patient’s state over time.

3) Hemorrhage Events Model: The model described in
Section III.A.2 is built to represent the physiological response
of a patient to fluid infusions (i.e., the rate J;) and hemorrhage
(i.e., therate /). In the context of hypovolemia treatment, fluid
infusions are typically known, as they would be administered to
the patient by a caregiver (or an algorithm). In contrast, the
presence of hemorrhage may be unknown in many cases. In
such cases, a model should be devised to represent the
possibility of unknown hemorrhage events. For this purpose,
we consider a stochastic model of the following form:

Unli = €gs €g ~ PO, 04,¢n) (29)
Unlk = (1 = €x)Unli-1 + €veg> €, ~ B(L,vn),
€g ~P(0,0p,¢n) (30)

In this model, first, possible hemorrhage rates [Jy]; are
instantiated in (29) by drawing samples €, from a generalized
Pareto distribution (denoted by P) located at zero, where oy is
the scale parameter and & is the shape parameter. This
distribution represents a range of possible hemorrhage rates,
where lower hemorrhages have a higher probability of
occurrence. Over time, the rate of hemorrhage in a patient
follows the relationship in (30), where €, is a sample from the
Bernoulli distribution, and the probability yy acts as a
forgetting factor for the hemorrhage rate. According to this
model, the rate of hemorrhage in a patient retains its value over
short periods of time, except for the possibility of transitioning
to a different rate drawn from the hemorrhage model in (29).
Overall, this model is built to inform a PIPF-based monitoring
algorithm about the possibility of unknown hemorrhage events,
and furthermore allow the algorithm to form beliefs about the
presence of unknown hemorrhage in a patient over time.

4) Physiological Measurement Model: At the third level in
the hierarchical model in Section II.LA, a physiological
measurement model M generates observations from the
characteristics and state evolutions generated by the first two
levels (i.e., G and H). In the context of hypovolemia treatment,
mean arterial pressure measurements are typically available in
clinical settings, while cardiac output and hematocrit
measurements may be available only in experimental settings.
To represent these potentially measured physiological
variables, we consider the following model:

Wuerle = [Hlx + nycre, € ~N(0,1) (31)
colk = [Qlx + nco€, € ~ N(0,1) (32)
Wmarlk = [Palk + nyap€, € ~ N'(0,1) (33)

where Yy cr, Yeo, and Yy 4p denote the generated measurements
for hematocrit, cardiac output, and mean arterial pressure,
respectively, and nycr, neg, and ny,p denote the standard
deviation of noise acting on these measurements. Overall, this
measurement model is intended to inform a PIPF-based
monitoring algorithm about the noises/artifacts that may corrupt
each measured variable, thereby giving the algorithm a way to
attribute such disturbances as they occur.

B. The PIPF-Based Monitoring Algorithm

As suggested in Section II, given a generative model of the
relevant physiological phenomena (such as the model
introduced in Section III.A), Algorithm 1 can be used to create
a monitoring system for hypovolemia treatment. The notable
steps of this procedure are the following:



e To perform 6i ~G,(¢), we use (17) to generate N
proposed samples 6! representing a patient’s possible
baseline characteristics.

e To perform xi ~ 3;(0}), we use the generated 6:’s to
initialize the states of the physiological model in (20)-(22),
(24), (26), (28) as follows: v, is set to V4o = 0.3vg, v, is
set to v,g = 0.7v,, v, is set to v,.qg = Hyv,, while 1%, sg,
and s, are set to zero. Also, the possible hemorrhage rates
are initialized according to (29).

e To perform 6 ~ G, (6}_4, ), we use the relationship in
(18).

e To perform x}~Hy(xi_1,05_1,ux_1), we use the
relationships in (20)-(28), (30).

e To perform loga® « logp(vi|xt,8%,n), we consider the
measurement model in (31)-(33), which implies a
likelihood function of the following form:

logp(velxh, 06,1) = Zom [~ 5z (Dl = ml) -

log(ny,) — %log(Zﬂ)] (34)
where the index m enumerates the available measured variables
at time k (e.g., if mean arterial pressure and hematocrit
measurements are available at time k, then m € {MAP, HCT}),
and [y,,]¢ denotes the measured value. Executing Algorithm 1
as outlined above results in a monitoring algorithm that takes in
measurements as they become available over time, forming
running beliefs about the physiological states (i.e., v, vy, Uy,
Tr, Sg, and sy), characteristics (i.e., shown in the 8 vector in
(19)) and events (i.e., /) in a patient.

C. Physiological Data

To demonstrate the potential merits and limitations of the
PIPF-based monitoring algorithm, we utilize a physiological
dataset from previous work [33]-[35], which contains time-
series measurements pertaining to hypovolemia treatment in 23
animal (sheep) experiments. In each experiment, the animal is
subjected to controlled hemorrhage and subsequently
resuscitated over time using fluid (crystalloid) infusions, which
are administered according to the recommendations of a control
algorithm. Each experiment spans a course of 180 minutes,
where the subject’s hematocrit, cardiac output, and mean
arterial pressure are measured approximately every 5 minutes.
This dataset is especially suited to the purpose of analyzing the
PIPF-based monitoring algorithm, as it can be used to assess the
algorithm’s ability to form reliable beliefs about variables that
are often unmeasured or unknown in clinical settings (e.g.,
hematocrit, cardiac output, and hemorrhage rates) by
processing measurements that are typically available in clinical
settings (e.g., mean arterial pressure and infusion rates). In the
next section, we provide an overview of our data analysis
procedures for this purpose.

D. Data Analysis

1) Problem Setting: To evaluate the PIPF algorithm in a
scenario that resembles real-world hypovolemia treatment, we
consider the task of monitoring each subject in our dataset as it
undergoes controlled hemorrhage and fluid resuscitation. In
this scenario, the monitoring algorithm receives a stream of

mean arterial pressure and infusion rate measurements (which
are typically available in clinical settings) and is tasked with
forming and updating beliefs about the subject’s states,
characteristics, and hemorrhage events over time. These beliefs
are in turn evaluated against available measurements from the
subject not shown to the monitoring algorithm (i.e., hematocrit,
cardiac output, and hemorrhage rates) in order to assess its
performance. It is important to note that this problem setting is
a purposefully challenging one, where many unmeasured
variables are inferred from few measured variables. This
setting enables us to assess the merits and limitations of the
PIPF-based monitoring algorithm especially when the clinically
available data are limited.

2) Algorithm Evaluation: As presented in Section II.A,
obtaining a PIPF-based monitoring algorithm involves (i)
training a generative physiological model on a physiological
dataset obtained from the population, and (ii) providing this
model to Algorithm 1. To evaluate the performance of the
monitoring algorithm, we follow a leave-one-out cross-
validation procedure. For each studied subject, we exclude the
subject from the population dataset used to train the generative
physiological model and use the resulting model in Algorithm
1 to obtain a PIPF-based monitoring algorithm. Then, we test
the resulting algorithm on the excluded subject by providing the
subject’s mean arterial pressure and infusion rate data to the
algorithm as a stream of measurements and assessing the
performance of the algorithm based on the adequacy of its
beliefs about the subject’s unseen measurements (i.e.,
hematocrit, cardiac output, and hemorrhage rates).

To quantify the adequacy of the beliefs provided by the
algorithm, we utilize the mean continuous ranked probability
score (MCRPS), which is a metric suitable for comparing
beliefs to measured values [36]. A particle-based form of this
metric can be written as follows:

MCRPS(Fy, ¥im) = By [Ey <, 121 — il —
%IEZ1'22~[Fm]k (33)
where [F, ], denotes the belief provided by the monitoring
algorithm about variable m at time k, which is expressed as a
collection of weighted points, z; and z, are samples from this
belief, and [y, ], denotes the measured value for variable m at
time k. Intuitively, this scoring function maximally promotes
predictions that are sharp (i.e., certain) and accurate, and
maximally discourages predictions that are sharp and
inaccurate. Smaller MCRPS scores indicate better predictions
and, in the case of deterministic predictions, the MCRPS metric
reduces to mean absolute error.

3) PIPF versus Particle Filtering (PF): To highlight the
potential advantages of the PIPF-based monitoring algorithm
with respect to a more established approach that does not
consider population-level information, we build an alternative
monitoring algorithm that operates based on the traditional
particle filtering (PF) scheme [14], [21]. This PF-based
monitoring algorithm differs from its PIPF-based counterpart in
that it does not include a patient generator model in its
underlying model.  According to PF convention, the
unmeasured variables of the problem (i.c., the subject’s states,
characteristics, and events) are instead initialized by drawing a
uniform sample of particles over a plausible range in the space

|zy — z,|
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Fig. 2. Marginalized posterior beliefs about cardiac output (CO) and hematocrit (HCT) in two representative subjects when presenting the PIPF algorithm with a
sequence of mean arterial pressure (MAP) measurements. Bolder colors represent higher belief density. Black dots show data presented to PIPF, while white dots

show data never presented to PIPF.

of unmeasured variables. In addition, to enable the PF-based
monitoring algorithm to adapt to the subject’s characteristics,
we consider a random walk model for the parameters over time
0y = 0,_1 + gppe where e~N(0,1). To compare the PIPF-
based versus PF-based monitoring algorithms, we use the
MCRPS scoring procedure described above. To test the
significance of the score differences between the two
approaches, we use the Wilcoxon signed-rank test. Overall, this
comparison study is designed primarily to highlight the
potential merits and limitations of incorporating population-
level information into the filtering process.

IV. RESULTS AND DISCUSSION

Forming reliable beliefs about a patient’s state is essential for
algorithmic decision-making in medical care settings. This task
is especially challenging when the physiological measurements
available from the patient are intermittent or contain limited
information. To address this challenge, we proposed the PIPF
scheme, where the information encoded in a generative
physiological model is leveraged to form more robust beliefs
about a patient’s state. This section presents the results of
applying the PIPF scheme to the problem of monitoring for
hypovolemia treatment and discusses the merits and limitations
of the PIPF scheme in this context.

A. Beliefs about Unmeasured Physiological Variables

Fig. 2 shows the beliefs formed by the PIPF-based
monitoring algorithm about hematocrit (HCT), cardiac output
(CO), and mean arterial pressure (MAP) in two representative
subjects (marked by Subject A and Subject B). These beliefs
were formed when providing the algorithm with a stream of
MAP (see in Fig. 2; right column) and infusion rate (see Fig. 3;
blue line) measurements. Fig. 5 shows (in the bottom panel)
the beliefs formed about the internal states and characteristics
of Subject A in this scenario. As it is expected from the

formulation of the PIPF algorithm, whenever a new
measurement becomes available, the algorithm adjusts its
beliefs about the subject’s physiological states and
characteristics. As a result, beliefs about the subject’s MAP
closely follow the MAP data, and the algorithm can provide
beliefs about the subject’s HCT and CO (see Fig. 2) as well as
its internal states and characteristics (see Fig. 5). These beliefs
appear consistent with the HCT and CO data unseen by the
algorithm.

These representative results also highlight two notable
behavior patterns in the beliefs generated by the PIPF algorithm
in relation to the informativeness of the data. First, CO is an
example of a variable that could be strongly informed by MAP
data because of its close physiological relationship with MAP.
Namely, the pressure in the arterial space, which has a relatively
low compliance, is strongly affected by the flow rate of blood
coming into the space. As a result, in the initial stages of the
experiment, where variations in hemorrhage and infusion
protocols (e.g., see Fig. 3) are expected to excite the subject’s
physiological dynamics, the monitoring algorithm can infer
relatively sharp beliefs about CO that are also consistent with
the corresponding CO data (see Fig. 2; center column). Second,
baseline HCT is an example of a variable that is weakly
informed by MAP data because of its distant physiological
relationship with MAP. Namely, MAP is primarily affected by
blood volume kinetics (i.e., the volume of blood that ends up in
the arterial space at each time) while baseline HCT is a measure
of blood composition. In this scenario, the monitoring
algorithm forms its beliefs about baseline HCT in large part
from the population-level information encoded in the
generative physiological model. As a result, the beliefs about
baseline HCT appear to span the range of plausible HCT values
in the population (see Fig. 2; left column). Overall, these results
suggest that the PIPF-based monitoring algorithm shows
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Fig. 4. Marginalized posterior beliefs about atypicality in two representative

subjects when presenting the PIPF algorithm with a sequence of mean arterial

pressure (MAP) measurements. Bolder colors represent higher belief density.

promise in forming beliefs about the unmeasured variables of
the physiological system by combining the information
contained in subject-specific measurements with the
population-level information encoded in the generative
physiological model.

B. Beliefs about Subject Characteristics
Fig. 5 shows (in the top panel) the posterior beliefs about the

characteristics of Subject A. These beliefs were formed when
providing the algorithm with a stream of MAP (see in Fig. 2;
top-right column) and infusion rate (see Fig. 3; top-panel; blue
line) measurements. For most characteristics, the beliefs
maintain a high entropy (i.e., large spread) throughout the
filtering process, and resemble the characteristics generated by
the generative model. However, in the initial phases of the
experiment (e.g., first 60 minutes), where the subject undergoes
significant perturbations (i.e., hemorrhage and fluid infusions),
the beliefs show some deviations from the characteristics
generated by the generative model. The high entropy of the
beliefs indicates that the characteristics of the subject are, for
the most part, only weakly identifiable from a stream of MAP
and infusion rate measurements, especially when the
perturbations do not sufficiently excite the subject’s
physiology. By design, the PIPF algorithm reverts to the
characteristics generated by the generative physiological model
in such conditions. In other words, in the absence of
informative measurements or excitations, the algorithm opts for
considering all possibilities with regards to subject
characteristics as informed by the generative physiological
model.

Despite the high entropy, the beliefs about subject
characteristics may be used to calculate useful summarized
information about the subject. The subject atypicality index
[37] is a notable example of this, which measures the presence
of atypical characteristics in a subject by comparing the
subject’s characteristics to those of the population. Fig. 4
shows the posterior beliefs about atypicality in two
representative subjects. The index values lie between zero and
one, with a value of one indicating a highly atypical subject.
For Subject A, the beliefs about atypicality show a high level of
entropy and uniformly span the range between zero and one,
which indicates that Subject A’s atypicality cannot be
established or rejected based on the given stream of MAP and
infusion rate data. For Subject B, the beliefs about atypicality
shift toward the higher end of the spectrum at two times during
the experiment (starting approximately at the 50-minute mark
for 20 minutes and at the 95-minute mark for the rest of the
experiment). Inspecting Subject B’s MAP data at those times
reveals two instances of rapid rise in pressure to values even
higher than the subject’s baseline (pre-hemorrhage) pressure,
which is not generally expected from a typical subject
undergoing hemorrhage and crystalloid resuscitation. Overall,
these results suggest that, despite the high entropy, beliefs about
a subject’s characteristics may be summarized to obtain
potentially useful information about the subject.

C. Beliefs about Physiological Events

Fig. 3 shows beliefs about hemorrhage rate in two
representative subjects when providing the monitoring
algorithm with a stream of MAP and infusion rate
measurements. In Subject A, the algorithm attributes the
subject’s sudden initial drop in MAP (see Fig. 2; top-right
panel) to the presence of hemorrhage, with beliefs about
hemorrhage rate that are consistent with hemorrhage data
unseen by the algorithm. Subsequently, the algorithm infers a
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Fig. 5. Marginalized posterior beliefs about a representative subject’s states and characteristics when presenting the PIPF algorithm with a sequence of mean arterial

pressure (MAP) measurements. Bolder colors represent higher belief density.

Table 1. Comparing cross-validation scores (based on MCRPS) between the PIPF algorithm and a conventional particle filtering (PF) approach, when presenting
the algorithms with a sequence of mean arterial pressure (MAP) measurements [Median (Q1, Q3); N=23; Lower is better]. “: p<0.05.

Method Hemorrhage Rate [mL/min] Hematocrit [%] Cardiac Output [L/min] Mean Arterial Pressure [mmHg]
PIPF 10.03" (8.29, 11.10) 2.15%(1.25,3.91) 0.52(0.35, 0.89) 3.85(3.70,4.11)
PF 20.29 (17.17,22.37) 4.97 (4.18, 6.54) 0.53(0.42,0.97) 3.81(3.67,3.89)

cessation of hemorrhage (albeit with delay) and provides
reasonable beliefs about the later instances of small
hemorrhage. In Subject B, the algorithm detects the initial
hemorrhage, but with some delay, which can be attributed to the
first few MAP measurements remaining high despite the
presence of large hemorrhage (see Fig. 2; bottom-right panel).
Subsequently, the algorithm detects one of the two smaller
hemorrhages, depending on whether they affect the MAP
measurements. Overall, these results suggest that the PIPF-
based monitoring algorithm may be utilized to form useful
beliefs about physiological events in a subject (such as
hemorrhage), when the underlying model includes components
that represent the event, and the occurrence of the event leaves
detectable effects on the measurements available from the
subject.

D. Effect of Population-Level Information

Table I compares cross-validation scores (based on MCRPS
in N=23 subjects) between the PIPF algorithm and a
conventional particle filtering (PF) algorithm described in
Section III.D.3. Comparing the scores between the two cases

reveals that the PIPF approach provides superior beliefs about
hemorrhage rate and HCT when compared to the conventional
PF algorithm, while beliefs about CO are comparable between
the two cases. The advantage of the PIPF algorithm may be
explained by inspecting the structure of the inference problem
that underlies its operation (Fig. 1(b)). In this structure, the
latent variables of the problem (i.e., 6;.x, X1.5) are informed by
a patient generator model (parameterized by ¢) that is derived
from past population-level data. In contrast, the conventional
PF algorithm relies on initialization and transition procedures
for 8,.x, x1.; that do not leverage past data (see Section II1.D.3).
As a result, the PIPF algorithm tends to exhibit superior
performance, especially for those latent variables that are
weakly informed by the available measurements. As presented
in Section IV.A, CO is a variable that is expected to be strongly
informed by MAP data due to its close physiological
relationship with MAP. As a result, both algorithms can infer
CO in large part from the information contained in MAP, giving
relatively sharp beliefs about CO that are also consistent with
the CO data. This results in comparable MCRPS scores for the



two algorithms. In contrast, hemorrhage rate and HCT are
variables that are expected to be weakly informed by MAP data
because of their more distant physiological relationship with
MAP. As a result, the PIPF algorithm forms its beliefs about
hemorrhage rate and HCT in large part from the population-
level information encoded in the generative physiological
model, while the PF algorithm does not have access to the
population-level information. This results in superior MCRPS
scores for the PIPF-based monitoring algorithm. Overall, these
results suggest that incorporating population-level information
into the filtering process (as it is done in the PIPF algorithm)
results in the formation of superior beliefs, especially for
physiological variables that are weakly informed by the
available subject-specific data.

E. Potential Applications

As presented in Section IV-A through C, the PIPF approach
generates real-time beliefs (in the form of probability
distributions) about a patient’s unmeasured physiological
variables, characteristics, and events, given a stream of
physiological measurements. These beliefs can in turn be
passed on to human users, decision-support algorithms, and/or
closed-loop control algorithms as a basis for decision-making.
The following paragraphs briefly discuss these use cases.

Utility for Users and/or Clinicians: In order to facilitate the
human user’s use and interpretation of the beliefs generated by
PIPF, the corresponding distributions may be converted into
point-estimates (e.g., by taking the central tendency of the
distribution) and credible intervals (e.g., by taking the 10-90™
percentiles of the distribution). In this way, the user would be
equipped with, respectively, a “best estimate” and a
“confidence measure” for each variable of interest, both of
which can be informative in the course of decision-making. To
illustrate this aspect, the supplementary material accompanying
this paper includes example visualizations (Fig. S1, Fig. S2, and
Fig. S3) and performance metrics (Table S-I and Table S-II) for
this human-friendly representation.

Utility for Decision/Control Algorithms: A main advantage
of PIPF lies in the fact that it uses collections of samples (i.e.,
particles) to represent beliefs. As a result, it would be possible
for a PIPF-based monitoring algorithm to form highly
expressive beliefs (i.e., beliefs with complex shape; e.g.,
asymmetric and/or multi-modal) if necessary. These sample-
based beliefs can therefore act as rich, real-time representations
of likely values and uncertainties associated with a patient’s
unmeasured physiological variables. Arguably, decision
algorithms could be designed to perform principled risk/reward
analysis on these beliefs in order to suggest/apply best courses
of action for a given patient. We believe this aspect to be a
worthwhile avenue for future work.

V. CONCLUSION

In this work, we proposed the population-informed particle
filter (PIPF), a Bayesian filtering approach that leverages a
generative physiological model to provide beliefs about a
patient’s states, characteristics, and events in the context of
physiological monitoring. Using a case study on monitoring for
hemodynamic management, we showed that the PIPF approach
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can provide reasonable beliefs (as compared to excluded data)
about the likely values and uncertainties associated with a
patient’s physiological variables (e.g., hematocrit and cardiac
output), characteristics (e.g., tendency for atypical behavior),
and events (e.g., hemorrhage). In addition, we demonstrated
that incorporating population-level information into the
filtering process (as is done in the PIPF algorithm) results in the
formation of beliefs that are superior to those provided by a
traditional particle filtering approach, especially for
physiological variables that are weakly informed by the
available patient-specific measurements. These results imply
that PIPF is a promising candidate for use in physiological
monitoring systems that are required to form beliefs about
unmeasured aspects of a patient’s physiology by processing
low-information and intermittent physiological measurements.
Therefore, future efforts should be devoted to applying and
evaluating the PIPF approach in a wider range of physiological
monitoring applications, and researching principled ways to
maximally leverage the beliefs provided by PIPF to design
next-generation physiological decision-support and closed-loop
control algorithms.
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