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 
Abstract— Objective: To present the population-informed 

particle filter (PIPF), a novel filtering approach that incorporates 
past experiences with patients into the filtering process to provide 
reliable beliefs about a new patient’s physiological state.  Methods: 
To derive the PIPF, we formulate the filtering problem as 
recursive inference on a probabilistic graphical model, which 
includes representations for the pertinent physiological dynamics 
and the hierarchical relationship between past and present patient 
characteristics.  Then, we provide an algorithmic solution to the 
filtering problem using Sequential Monte-Carlo techniques.  To 
demonstrate the merits of the PIPF approach, we apply it to a case 
study of physiological monitoring for hemodynamic management.  
Results: The PIPF approach could provide reliable beliefs about 
the likely values and uncertainties associated with a patient’s 
unmeasured physiological variables (e.g., hematocrit and cardiac 
output), characteristics (e.g., tendency for atypical behavior), and 
events (e.g., hemorrhage) given low-information measurements.  
Conclusion: The PIPF shows promise in the presented case study, 
and may have applications to a wider range of real-time 
monitoring problems with limited measurements.  Significance: 
Forming reliable beliefs about a patient’s physiological state is an 
essential aspect of algorithmic decision-making in medical care 
settings.  Hence, the PIPF may serve as a solid basis for designing 
interpretable and context-aware physiological monitoring, 
medical decision-support, and closed-loop control algorithms.   
 

Index Terms—Particle Filter, Generative Model, Recursive 
Inference, Physiological Monitoring, Critical Care, Hemodynamic 
Management 

I. INTRODUCTION 

HYSIOLOGICAL monitoring systems are foundational tools 
for patient care that provide continuous information about a 

patient’s vital physiological variables, helping practitioners in 
deriving insight into the patient’s health condition and making 
informed therapeutic decisions [1].  The need for physiological 
monitoring also spans the non-clinical domain, where a wide 
range of monitoring products (e.g., wearables and consumer 
electronics) aim to provide users with insight into their health 
and bodily performance [2].  In addition, in recent years, there 
has been considerable research interest in the area of 
autonomous medical care systems [3]–[6], where physiological 
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decision-support and closed-loop control algorithms are built to 
assist users in making therapeutic or lifestyle decisions based 
on monitoring results.  Such a trend makes it even more 
necessary to develop high-fidelity and reliable physiological 
monitoring systems. 

As a fundamental challenge in physiological monitoring, the 
physiological variables that are relevant to decision-making are 
not always directly measurable in practice.  As a result, to be 
useful, monitoring systems must have mechanisms to 
continuously infer unmeasured physiological variables from 
measured ones.  In the context of engineering systems, filtering 
algorithms are excellent candidates for such purposes [7], [8].  
These algorithms typically leverage an underlying model of the 
studied system (which could be mechanistic or black box) to 
recursively process measurement signals and continuously infer 
unmeasured variables.  The Kalman Filter (KF) is one of the 
most well-known and widely used filtering algorithms in the 
engineering domain, which can utilize a linear model of the 
system for estimation purposes [9], [10].  The Extended Kalman 
Filter (EKF) and the Unscented Kalman Filter (UKF) are two 
extensions to the KF algorithm that use model approximation 
techniques to allow for a nonlinear model of the system to be 
used for estimation [11]–[13].  More generally, Bayesian 
filtering provides a concrete framework for reasoning about 
filtering problems, where beliefs about the possible values of a 
system’s unmeasured variables are expressed in the form of 
probability distributions [14].  In this framework, principled 
mathematical procedures exist to refine existing (i.e., prior) 
beliefs according to incoming data in order to turn them into 
updated (i.e., posterior) beliefs about unmeasured variables 
[15], [16].  However, these mathematical operations are often 
not analytically tractable, which fostered the development of a 
wide range of approximate approaches that provide solutions to 
such problems in practical applications.  These approaches can 
be divided into two broad categories in terms of their 
approximation technique.  Sequential Monte-Carlo (SMC) 
filtering approaches approximate belief distributions using 
(large) collections of weighted samples (i.e., particles), 
allowing for stochastic and/or nonlinear models to be used in 
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the filtering process with relatively high fidelity [17]–[21], 
while Variational Filtering (VF) approaches approximate belief 
distributions using tunable distribution models, allowing for the 
filtering problem to be converted into an optimization problem 
[22]–[25]. 

Despite the demonstrated success of filtering algorithms in 
estimating unmeasured variables in many engineering systems, 
unique filtering challenges still remain in the physiological 
monitoring domain, namely: the available measurements 
typically contain limited information about the unmeasured 
variables.  For instance, in the context of hemodynamic 
management for critically ill patients, beliefs about the patient’s 
blood volume/composition and cardiovascular function are 
expected to facilitate a practitioner’s (or an algorithm’s) 
decisions in administering therapy (e.g., fluid or drug 
infusions).  However, clinically available measurements are 
limited to blood pressure and (in rare cases) intermittent cardiac 
output and hematocrit correlates, which are also typically 
affected by high levels of noise and artifacts.  Moreover, a 
patient’s physiological dynamics are typically not excited by 
the therapy in clinical settings, further limiting the information 
content of the available measurements.  Such intermittent and 
low-information measurements limit the applicability of many 
established filtering algorithms (and underlying physiological 
models) to the task of characterizing patients and providing 
reliable estimates of their physiological state. 

To address this challenge, in this work, we propose the 
population-informed particle filter (PIPF), a novel filtering 
approach that leverages a generative physiological model [26] 
to incorporate past experiences with patients into the filtering 
process in order to provide reliable beliefs about a new patient’s 
physiological state.  To derive the PIPF, we formulate the 
filtering problem as recursive Bayesian inference on a 
probabilistic graphical model, which includes representations 
for the pertinent physiological dynamics and the hierarchical 
relationship between past and present patient characteristics.  
Then, we provide an algorithmic solution to the filtering 
problem based on SMC (i.e., particle-based) techniques.  To 
demonstrate the potential merits and limitations of the PIPF 
approach, we apply it to a case study of physiological 

monitoring for hemodynamic management. 
This paper is organized as follows.  Section II presents the 

algorithmic details of the PIPF approach.  Section III presents 
the application of the PIPF to physiological monitoring in the 
context of hemodynamic management.  Section IV presents and 
discusses the results.  Section V concludes the paper with 
potential future directions. 

II. POPULATION-INFORMED PARTICLE FILTERING 

In this section, we present the population-informed particle 
filter (PIPF).  First, we provide a review of relevant concepts 
from generative physiological modeling.  Based on these 
concepts, we present the population-informed filtering scheme, 
where a generative physiological model informs a recursive 
Bayesian filter.  Then, we provide an algorithmic solution to 
this problem using SMC techniques and show how this 
algorithm and methodology may be leveraged to create a robust 
model-based physiological monitoring system.  Further details 
follow. 

A. Generative Physiological Modeling 

Physiological models can serve as a concrete source of 
physiological knowledge in the design and development of 
patient monitoring algorithms.  Generative modeling is a 
promising approach to physiological modeling, where the 
inherent variability and stochasticity of a physiological system 
are fully embraced in model components that behave in 
stochastic but patterned ways.  The objective of the generative 
physiological model is therefore to reproduce and predict the 
patterned randomness that is often observed in physiological 
datasets.  As the proposed filtering approach relies heavily on 
an underlying generative model, in this section, we present a 
general family of generative models for physiological systems 
and provide an overview of procedures that can be used to 
characterize these models from data.  We refer the readers to 
our prior work [26] for complete details on this topic. 

The generative model considered in this work consists of a 
hierarchy of stochastic components that reflect the 
physiological data observed in a population of patients (see Fig. 
1(a)).  At the highest level in the hierarchy, a patient generator 

 
 
Fig. 1. Schematic representations for (a) the hierarchical structure of the generative physiological model; and (b) the sequential relationship between the variables 
of interest in the population-informed filtering problem. 
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model is tasked with generating variations in patient 
characteristics, which can be formalized as: 
𝜃ଵ ~ 𝒢ଵሺ𝜙ሻ                  (1) 
𝜃௞ ~ 𝒢௞ሺ𝜃௞ିଵ,𝜙ሻ                (2) 

where 𝒢ଵ is a component that instantiates virtual patients by 
generating patient characteristics, and 𝒢௞ is a component that 
produces variations in a virtual patient’s characteristics as time 
progresses.  In this formulation, 𝜙 is the vector of parameters 
for the patient generator model, 𝜃௞ is the vector of patient 
characteristics at time 𝑘, and the symbol ~ denotes sampling.  
At the second level, a physiological dynamics model is tasked 
with generating evolutions in the states of each virtual patient, 
which can be formalized as: 
𝑥ଵ ~ ℋଵሺ𝜃ଵሻ                 (3) 
𝑥௞ ~ ℋ௞ሺ𝑥௞ିଵ,𝜃௞ିଵ,𝑢௞ିଵሻ            (4) 

where ℋ is the physiological dynamics model, 𝑥௞ represents 
the states of the virtual patient at time 𝑘, and 𝑢௞ represents the 
known inputs/therapies given to the virtual patient at time 𝑘.  
Finally, at the third level, a physiological measurement model 
generates observations from the state and/or the characteristics 
of the patient, which can be formalized as: 
𝑦௞ ~ ℳሺ𝑥௞,𝜃௞,𝑛ሻ               (5) 

where ℳ is the physiological measurement model, 𝑛 is a vector 
of parameters for this model, and 𝑦௞ is the vector of virtual 
observations generated at time 𝑘. 
 Given a dataset containing physiological data from a cohort 
of patients, we are interested in inferring the unknown 
parameters of the generative model in (1)-(5) such that the 
model captures the characteristics of the dataset.  We recently 
showed in [26] that an effective solution to this (often 
intractable) problem can be obtained using variational Bayesian 
inference methods [27], where the most-likely values and the 
uncertainties associated with the parameters of the generative 
model (i.e., 𝜙,𝑛) are computed through stochastic optimization.  
These inferred parameters can in turn be used with the 
generative model to generate virtual datasets with similar 
distribution to real data.  In other words, the resulting generative 
model is equipped with the knowledge needed to instantiate 
virtual patients, generate paths for patient characteristics, 
produce state evolutions in response to given stimuli, and 
generate realistic physiological measurements.  In this work, we 
are interested in utilizing this encoded knowledge to inform a 
filtering algorithm’s real-time perception of a patient, 
especially when only intermittent and low-information 
measurements are available from the patient.  Therefore, in the 
next section, we formulate a filtering problem where the filter 
is informed by a generative model. 

B. Population-Informed Filtering 

Filtering (as referred to in this work) is the process of forming 
and updating beliefs about the unmeasured variables of a 
dynamic system using its measured variables.  In the context of 
physiological monitoring, filtering may be used to form and 
update beliefs about the unmeasured states and characteristics 
of a patient using physiological measurements that arrive over 
time.  Filtering processes typically operate based on an 
underlying model of the studied system.  In this section, we 

formulate the problem of population-informed filtering, which 
is a filtering process that is informed by a generative 
physiological model. 

To formulate the population-informed filtering problem, we 
adopt a Bayesian view of filtering, where beliefs are 
represented by probability density functions.  In this setting, the 
objective of filtering is to obtain the following posterior 
probability density function at each time 𝑘: 

𝑝ሺ𝑥ଵ:௞,𝜃ଵ:௞|𝑦ଵ:௞,𝜙,𝑛ሻ ൌ
௣ሺ௫భ:ೖ,ఏభ:ೖ,௬భ:ೖ|థ,௡ሻ

௣ሺ௬భ:ೖ|థ,௡ሻ
      (6) 

This density represents our beliefs about the unmeasured states 
and characteristics of a patient up to time 𝑘 (denoted by 𝑥ଵ:௞ 
and 𝜃ଵ:௞ respectively), given the patient’s physiological 
measurements up to time 𝑘 (denoted by 𝑦ଵ:௞) and the 
information encoded in the parameters of the generative model 
𝜙,𝑛.  As shown on the right-hand-side of (6), it is conceptually 
possible to obtain the posterior density from the joint density 
shown in the numerator and the marginal density shown in the 
denominator.  The joint density represents the relationship 
between the measured and unmeasured variables in the filtering 
problem, while the marginal density is obtained by integrating 
the joint density over the unmeasured variables. 
 Using the generative model in (1)-(5) to inform the filtering 
process imposes a specific structure on the joint density.  This 
structure is shown in Fig. 1(b) as a graphical representation.  In 
this representation, the joint density has a hierarchical structure, 
where the patient generator parameters 𝜙 affect the patient’s 
characteristics 𝜃ଵ:௞, while the patient’s characteristics affect the 
patient’s state evolutions 𝑥ଵ:௞.  In turn, the patient’s 
characteristics, state evolutions, and measurement parameters 𝑛 
affect the generated measurements 𝑦ଵ:௞.  The graphical 
representation also shows that the joint density consists of a 
sequential structure, where variables at time 𝑘 are affected by 
variables at time 𝑘 െ 1.  This implies a recursive relationship 
between joint densities at times 𝑘 and 𝑘 െ 1, which can be 
formalized as: 
𝑝ሺ𝑥ଵ:௞,𝜃ଵ:௞,𝑦ଵ:௞|𝜙,𝑛ሻ ൌ

𝑝ሺ𝑥ଵ:௞ିଵ,𝜃ଵ:௞ିଵ,𝑦ଵ:௞ିଵ|𝜙,𝑛ሻℛ௞ିଵ:௞         (7)
 ℛ௞ିଵ:௞ ൌ
𝑝ሺ𝑦௞|𝑥௞,𝜃௞,𝑛ሻ𝑝ሺ𝑥௞|𝑥௞ିଵ,𝜃௞ିଵ,𝑢௞ିଵሻ𝑝ሺ𝜃௞|𝜃௞ିଵ,𝜙ሻ   (8) 
where ℛ௞ିଵ:௞ is the ratio between joint densities at times 𝑘 and 
𝑘 െ 1.  The first multiplicative term in the ratio is the density 
associated with generating the measurement 𝑦௞ given the 
current states 𝑥௞ and characteristics 𝜃௞; the second term is the 
density associated with generating a transition to the states 𝑥௞ 
given the previous states 𝑥௞ିଵ, characteristics 𝜃௞ିଵ, and 
inputs/therapies 𝑢௞ିଵ; and the third term is the density 
associated with generating a transition to the characteristics 𝜃௞ 
given the previous characteristics 𝜃௞ିଵ. 
 The relationship described in (7)-(8) results in an important 
recursive relationship between posterior densities at times 𝑘 and 
𝑘 െ 1.  This relationship can be written as: 
𝑝ሺ𝑥ଵ:௞,𝜃ଵ:௞|𝑦ଵ:௞,𝜙,𝑛ሻ ൌ

𝑝ሺ𝑥ଵ:௞ିଵ,𝜃ଵ:௞ିଵ|𝑦ଵ:௞ିଵ,𝜙,𝑛ሻ
ℛೖషభ:ೖ

௣ሺ௬ೖ|௬భ:ೖషభ,థ,௡ሻ
      (9) 

which suggests that it is conceptually possible to multiply the 
posterior density at time 𝑘 െ 1 by an update term (i.e., the 
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fraction on the right-hand side) to obtain the posterior density 
at time 𝑘.  In other words, performing this update recursively 
would create a recursive filtering process, where previous 
beliefs about a patient’s unmeasured states and characteristics 
can be updated according to the behavior of the generative 
model and any newly available measurements 𝑦௞.  However, 
depending on the underlying generative model, this update 
procedure may often prove analytically intractable.  In the next 
section, we adopt a Sequential Monte-Carlo (i.e., particle-
based) approach to derive a practical solution to this filtering 
problem. 

C. A Sequential Monte-Carlo Solution  

To derive a practical solution to the population-informed 
filtering problem presented in (9), we adopt a Sequential 
Monte-Carlo approach [20], [21], which is a sampling-based 
approach especially suited to solving inference problems with 
substantial nonlinearities, complex/multi-modal beliefs, and 
high levels of uncertainty, most of which are likely to arise in 
physiological monitoring applications.  To perform this 
derivation, we first consider a proposal density of the following 
form: 
𝑞ሺ𝑥ଵ:௞,𝜃ଵ:௞ሻ ൌ 𝑞ሺ𝑥ଵ:௞ିଵ,𝜃ଵ:௞ିଵሻ𝑞ሺ𝑥௞,𝜃௞|𝑥௞ିଵ,𝜃௞ିଵሻ (10) 

which is designed to have a sequential structure, be easy to 
sample from, and have non-zero density wherever the posterior 
density (9) is expected to have non-zero density.  The function 
of this proposal density is to propose beliefs about the 
unmeasured variables of the filtering problem.  Multiplying and 
dividing (9) by (10) and rearranging the result yields the 
following variant of the recursive relationship between the 
posterior densities: 
 𝑝ሺ𝑥ଵ:௞,𝜃ଵ:௞|𝑦ଵ:௞,𝜙,𝑛ሻ ൌ

𝑝ሺ𝑥ଵ:௞ିଵ,𝜃ଵ:௞ିଵ|𝑦ଵ:௞ିଵ,𝜙,𝑛ሻ
ఈሺ௫ೖషభ:ೖ,ఏೖషభ:ೖሻ௤ሺ௫ೖ,ఏೖ|௫ೖషభ,ఏೖషభሻ

௣ሺ௬ೖ|௬భ:ೖషభ,థ,௡ሻ
 

                       (11) 
where 𝛼ሺ𝑥௞ିଵ:௞,𝜃௞ିଵ:௞ሻ is a weighting function defined as: 

 𝛼ሺ𝑥௞ିଵ:௞,𝜃௞ିଵ:௞ሻ ൌ
ℛೖషభ:ೖ

௤ሺ௫ೖ,ఏೖ|௫ೖషభ,ఏೖషభሻ
        (12) 

To perform the recursive filtering procedure described by (11)-
(12), we start from the process of drawing samples from the 
proposal density in (10): 
 ሾ𝑥,𝜃ሿ௞

௜  ~ 𝑞൫𝑥௞,𝜃௞|ሾ𝑥,𝜃ሿ௞ିଵ
௜ ൯           (13) 

where ሾ𝑥,𝜃ሿ௞
௜  denotes a sample (at time 𝑘 and indexed by 𝑖) 

from the proposal density, and it follows from the sequential 
structure of the proposal density that samples at time 𝑘 can be 
generated recursively using samples at time 𝑘 െ 1.  Given 𝑁 
such samples, the proposal density itself can be expressed using 
the following equation: 

 𝑞ො൫𝑥௞,𝜃௞|ሾ𝑥,𝜃ሿ௞ିଵ
௜ ൯ ൌ

ଵ

ே
∑ 𝛿ሾ𝑥,𝜃ሿ௞

௜ே
௜ୀଵ        (14) 

where 𝛿ሾ𝑥,𝜃ሿ௞
௜  denotes the Dirac’s delta function positioned at 

the sample ሾ𝑥,𝜃ሿ௞
௜ , and the equation indicates that the proposal 

density can be approximately represented by a collection of 𝑁 
samples ሾ𝑥,𝜃ሿ௞

௜  drawn from it.  Given the samples, the 
approximation in (14) can be substituted into (11) over the time 
span 1: 𝑘 to yield the following sample-based expression for the 
posterior density: 
 𝑝̂ሺ𝑥ଵ:௞,𝜃ଵ:௞|𝑦ଵ:௞,𝜙,𝑛ሻ ൌ ∑ 𝑤௞

௜ 𝛿ሾ𝑥,𝜃ሿଵ:௞
௜ே

௜ୀଵ      (15) 

where the posterior density is expressed in terms of weighted 
samples from the proposal density, and 𝑤௞

௜  denotes the weight 
for sample 𝑖 at time 𝑘.  Each sample path ሾ𝑥,𝜃ሿଵ:௞

௜  describes a 
proposed path for the patient’s states and characteristics, and 
the weight 𝑤௞

௜  represents how probable the path is (relative to 
other sample paths) according to the generative model and the 
patient’s physiological measurements up to time 𝑘.  Each 
weight at time 𝑘 can be computed recursively from its 
counterpart at time 𝑘 െ 1 using the following relationship: 

 𝑤௞
௜ ൌ

௪ೖషభ
೔ ఈሺሾ௫,ఏሿೖషభ:ೖ

೔ ሻ

∑ ௪ೖషభ
೔ ఈሺሾ௫,ఏሿೖషభ:ೖ

೔ ሻಿ
೔సభ

            (16) 

where 𝑤௞ିଵ
௜  denotes the weight for sample 𝑖 at time 𝑘 െ 1, and 

𝛼ሺሾ𝑥,𝜃ሿ௞ିଵ:௞
௜ ሻ is the weighting function described in (12), 

evaluated at sample 𝑖 for times 𝑘 and 𝑘 െ 1.  Overall, the 
relationship described in (16) allows for the efficient 
calculation of the posterior density using recursive steps, 
namely: drawing 𝑁 samples at time 𝑘 from the proposal density 
(13) using the already available 𝑁 samples from time 𝑘 െ 1; 
evaluating the weighting function (12) using each of the 𝑁 
samples at times 𝑘 and 𝑘 െ 1; and calculating the new weights 

Algorithm 1. Population-Informed Particle Filtering (PIPF) 
𝑘 ← 1        {initialize time} 

log𝑤ଵ
௜ ← logሺ1/𝑁ሻ  

{initialize 𝑁 weights, indexed by 𝑖} 

𝜃ଵ
௜  ~ 𝒢ଵሺ𝜙ሻ,  𝑥ଵ

௜  ~ ℋଵ൫𝜃ଵ
௜൯ 

{generate 𝑁 samples, indexed by 𝑖; see (1), (3)} 
 
Repeat: 

𝑘 ← 𝑘 ൅ 1   {increment time} 

𝜃௞
௜  ~ 𝒢௞൫𝜃௞ିଵ

௜ ,𝜙൯  
{generate transition to characteristic samples; see (2)} 

𝑥௞
௜  ~ ℋ௞ሺ𝑥௞ିଵ

௜ ,𝜃௞ିଵ
௜ ,𝑢௞ିଵሻ  

{generate transition to state samples; see (4)} 

log𝛼௜ ← log𝑝ሺ𝑦௞|𝑥௞
௜ ,𝜃௞

௜ ,𝑛ሻ  
{get log-likelihood of samples against data; see (12)} 
 

log𝑤ഥ௞
௜ ← log𝑤௞ିଵ

௜ ൅ log𝛼௜   
{update weights, un-normalized; see (16)} 

log𝑤ഥ௞
∗ ← max୧൫log𝑤ഥ௞

௜ ൯  
{get maximum weight} 

log𝑤௞
௜ ← log𝑤ഥ௞

௜ െ log𝑤ഥ௞
∗ െ log∑ expሺlog𝑤ഥ௞

௜ െ log𝑤ഥ௞
∗ሻ௜    

{normalize weights} 
 
ሾ𝑥,𝜃ሿ௞

௜ ← 𝒵ሺlog𝑤௞
௜ , ሾ𝑥,𝜃ሿ௞

௜ ሻ   
{resample to reset weights; see [21]} 

log𝑤௞
௜ ← log ቀ

ଵ

ே
ቁ  

{reset weights} 
 

Output: log𝑤௞
௜ , ሾ𝑥,𝜃ሿ௞

௜   
{provide up-to-date beliefs for time 𝑘} 
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using (16), thereby obtaining the most up-to-date beliefs at time 
𝑘.  Realizing this procedure in practice, however, necessitates a 
few extra steps, which are presented in more detail in the next 
section. 

D. The Population-Informed Particle Filtering (PIPF) 
Algorithm 

As presented in Section II.C, beliefs about a patient’s 
unmeasured states and characteristics can be expressed and 
recursively updated using a collection of weighted samples (i.e., 
particles).  In this section, we leverage this principle in 
conjunction with additional weight normalization and 
resampling techniques to build a practical procedure for PIPF.  
Algorithm 1 shows an overview of this procedure.  In this 
algorithm, we use the generative physiological model in (1)-(5) 
to generate proposal samples.  As a result, the weighting 
function used in (16) reduces to 𝛼൫ሾ𝑥,𝜃ሿ௞ିଵ:௞

௜ ൯ ≜
𝑝൫𝑦௞ห𝑥௞

௜ ,𝜃௞
௜ ,𝑛൯.  The filtering procedure begins by using the 

generative model to generate (many) proposed samples for the 
patient’s baseline states and characteristics.  Then, at each time 
increment, the generative model proposes transitions to these 
states and characteristics, and the resulting samples are 
evaluated against data at the time to update the sample weights.  
The weight updates are performed in logarithmic scale and the 
weight normalizations are performed using the log-sum-exp 
trick [28] to achieve higher numerical accuracy and stability.  In 
addition, weight variability is measured at each time increment, 
and if necessary, the samples are resampled using a systematic 
resampling [21] technique (denoted by 𝒵 in Algorithm 1).  This 
technique redraws each sample with a probability proportional 
to its weight, thereby allowing for a resetting of the weights.  
Overall, at each time 𝑘, this algorithm provides up-to-date 
beliefs about a patient’s unmeasured variables in the form of a 
collection of weighted samples (i.e., particles). 

III. APPLICATION TO PHYSIOLOGICAL MONITORING FOR 

HEMODYNAMIC MANAGEMENT 

Hemodynamic management is an essential aspect of care for 
critically ill patients, where the performance of a patient’s 
cardiovascular system is monitored and, if necessary, therapies 
are administered to ensure adequate blood circulation [29], 
[30].  To demonstrate the merits and limitations of PIPF, we use 
this approach to build a monitoring algorithm for a typical 
critical care scenario where hypovolemia (i.e., low circulating 
blood volume) is treated with fluid infusions [31].  In this 
scenario, the monitoring algorithm receives a stream of blood 
pressure and fluid infusion data and processes this information 
to form real-time beliefs about a patient’s unmeasured 
physiological variables (e.g., hematocrit and cardiac output), 
characteristics (e.g., the tendency for atypical behavior), and 
events (e.g., hemorrhage).  These real-time beliefs can in turn 
inform a practitioner’s decision to administer fluids, and 
furthermore serve as a foundation for building automated 
decision-support and closed-loop control algorithms for 
hypovolemia treatment.  This section presents the details of 
applying the PIPF approach to this problem and describes the 
methods and datasets used to evaluate the results.  Further 

details follow. 

A. Generative Modeling for Hemodynamic Management 

As presented in Section II, the PIPF approach relies on a 
generative physiological model to form and update beliefs 
about the unmeasured states and characteristics of a patient.  In 
this section, we describe a generative model of the 
physiological phenomena relevant to the treatment of 
hypovolemia with fluid infusions.  This model will be used in 
subsequent sections to build a monitoring algorithm for 
hypovolemia treatment. 

1) Patient Generator Model: As presented in Section II.A, 
the generative physiological model consists of a hierarchy of 
stochastic components that reflect the physiological behaviors 
observed in a population of patients.  At the highest level in the 
hierarchy, a patient generator model 𝒢 generates virtual patients 
with a variety of characteristics.  In the context of hypovolemia 
treatment, we consider a patient generator model of the 
following form: 
 𝜃ଵ ൌ 𝜙ఓ ൅ 𝜙௅𝜖, 𝜖 ~ 𝒩ሺ0, 𝐼ሻ           (17) 
 𝜃௞ ൌ ሺ1 െ 𝜖௕ሻ𝜃௞ିଵ ൅ 𝜖௕ሺ𝜙ఓ ൅ 𝜙௅𝜖ሻ,  𝜖௕ ~ ℬሺ1, 𝛾ఏሻ, 
𝜖 ~ 𝒩ሺ0, 𝐼ሻ                   (18) 
In this model, first, the characteristics 𝜃ଵ of each virtual patient 
are instantiated in (17) by drawing samples from a full-
covariance Gaussian distribution, where 𝜙ఓ determines the 
center of the distribution, 𝜙௅ is the Cholesky decomposition of 
the distribution’s covariance matrix (i.e., 𝜙ஊ ൌ 𝜙௅𝜙௅

்), and 𝜖 is 
a sample from the standard Gaussian distribution of appropriate 
dimension.  Then, over time, each patient’s characteristics 𝜃௞ 
follow the relationship in (18), where 𝜖௕ is a sample from the 
Bernoulli distribution (denoted by ℬ), which produces 𝜖௕ ൌ 1 
with a probability of 𝛾ఏ, and 𝜖௕ ൌ 0 with a probability of 1 െ
𝛾ఏ.  The probability 𝛾ఏ (which is chosen to be small) acts as a 
forgetting factor for the characteristics of each instantiated 
virtual patient.  In other words, each virtual patient will retain 
its characteristics over time, except for a small chance of 
transitioning to different characteristics drawn from the virtual 
patient generator in (17).  For the purpose of hypovolemia 
treatment modeling, we define a vector of patient characteristics 
as follows: 
 𝜃௞ ൌ
ൣ 𝑣଴  𝐻଴  𝑄଴  𝑃௔଴  𝐾௩   𝐾௔ 𝐾௩⁄   𝐾௣  𝛼ூ  𝛼ு  𝐾௛   𝜏ோ   𝐾ோ  𝛽௩  𝐾ொ ൧

௞
                       (19) 
which contains 𝑛௣ ൌ 14 physiological parameters to be 
elaborated on later in this section.  Overall, this patient 
generator model is built to inform a PIPF-based monitoring 
algorithm about the characteristics that are likely to occur in the 
patient population (along with their probability of occurrence) 
and furthermore allow for the algorithm to adapt to potential 
changes in a patient’s characteristics over time. 

2) Physiological Dynamics Model: At the second level in 
the hierarchical model in Section II.A, a physiological 
dynamics model ℋ generates state evolutions for each virtual 
patient.  For this purpose, we utilize a dynamic model of the 
physiological phenomena relevant to hypovolemia treatment 
from our previous work [26], [32].  In this section, we present 
an overview of this model in discretized form.  The model 
consists of macro-state components that represent blood 



 6 

circulation and the mechanisms that affect blood circulation in 
the context of hypovolemia treatment. 

To obtain a macro-state model of blood circulation, we 
consider equations of the following form: 
ሾ𝑣௔ሿ௞ ൌ ሾ𝑣௔ሿ௞ିଵ ൅ 𝛿𝑡 ሾ𝑄 െ ሺ𝑃௔ െ 𝑃௩ሻ 𝑅⁄ െ  𝐽ு െ 𝐽ிሿ௞ିଵ  

                       (20) 
ሾ𝑣௩ሿ௞ ൌ ሾ𝑣௩ሿ௞ିଵ ൅ 𝛿𝑡 ሾെ𝑄 ൅ ሺ𝑃௔ െ 𝑃௩ሻ 𝑅⁄ ൅ 𝐽ூሿ௞ିଵ  (21) 
ሾ𝑣௥ሿ௞ ൌ ሾ𝑣௥ሿ௞ିଵ ൅ 𝛿𝑡 ሾെ𝐽ு𝐻ሿ௞ିଵ         (22) 

where 𝑣௔ and 𝑣௩ denote arterial and venous blood volumes, 𝑣௥ 
is the total red blood cell volume, 𝛿𝑡 is the time increment 
between 𝑘 and 𝑘 െ 1 instances, 𝑄 is the cardiac output, 𝑃௔ and 
𝑃௩ denote mean arterial and venous blood pressures, 𝑅 is the 
systemic vascular resistance, 𝐻 ൌ 𝑣௥ ሺ𝑣௔ ൅ 𝑣௩ሻ⁄  is the 
hematocrit, 𝐽ி is the net rate of fluid exchange with the 
interstitial space,  𝐽ூ is the rate of fluid infusion, and 𝐽ு is the 
rate of blood loss.  In these equations, mean arterial pressure is 
related to arterial volume through 𝑃௔ ൌ 𝑃௔଴ ൅ 𝐾௔ሺ𝑣௔ െ 𝑣௔଴ሻ, 
and mean venous pressure is related to venous volume through 
𝑃௩ ൌ 𝑃௩଴ ൅ 𝐾௩ሺ𝑣௩ െ 𝑣௩଴ሻ, where 𝑃௔଴, 𝑃௩଴ are baseline (i.e., un-
perturbed) arterial and venous blood pressures, 𝑣௔଴, 𝑣௩଴ are 
baseline arterial and venous blood volumes, and 𝐾௔, 𝐾௩ denote 
arterial and venous elastances in the patient. 
 To obtain a macro-state model of the mechanisms that affect 
blood circulation in the context of hypovolemia treatment, we 
consider: (i) fluid exchange with the interstitial space, (ii) 
changes in systemic vascular resistance (e.g., through 
vasoconstriction or vasodilation), and (iii) changes in cardiac 
output (e.g., through changes to heart rate and contractility).  
Fluid exchange with the interstitial space is represented by: 
 𝐽ி ൌ 𝐾௣ሺ𝑣 െ 𝑣଴ െ 𝑟ிሻ              (23) 
 ሾ𝑟ிሿ௞ ൌ ሾ𝑟ிሿ௞ିଵ ൅ 𝛿𝑡 ሾ𝐽ூ ሺ1 ൅ 𝛼ூሻ⁄ െ 𝐽ு ሺ1 ൅ 𝛼ுሻ⁄ ሿ௞ିଵ (24) 
where 𝑟ி is the steady-state change in blood volume after the 
exchange, 𝑣 ൌ 𝑣௔ ൅ 𝑣௩ is the total blood volume, 𝑣଴ ൌ 𝑣௔଴ ൅
𝑣௩଴ is the baseline total blood volume, 𝐾௣ modulates the speed 
of exchange, and 𝛼ூ, 𝛼ு determine the fraction of fluid infusion 
and blood loss that are compensated in the exchange.  Changes 
in systemic vascular resistance are represented by: 
 𝑅 ൌ 𝑅଴ ൅ 𝐾௛ሺ𝐻 െ 𝐻଴ሻ ൅ 𝑠ோ           (25) 
 ሾ𝑠ோሿ௞ ൌ ሾ𝑠ோሿ௞ିଵ ൅ 𝛿𝑡 ሾെ 𝑠ோ 𝜏ோ⁄ െ 𝐾ோሺ𝑃௔ െ 𝑃௔଴ሻ 𝜏ோ⁄ ሿ௞ିଵ 
                       (26) 
where 𝑠ோ is the change in resistance prompted by the body’s 
compensatory mechanisms, 𝐾ோ and 𝜏ோ modulate the 
characteristics of compensation, 𝑅଴ ൌ ሺ𝑃௔଴ െ 𝑃௩଴ሻ/𝑄଴ is the 
baseline resistance, 𝑄଴ is the baseline cardiac output, 𝐻଴ is the 
baseline hematocrit, and 𝐾௛ modulates the effect of blood 
dilution on resistance.  Changes in cardiac output are 
represented by: 
 𝑄 ൌ 𝑄଴ ൅ 𝛽௩ሺ𝑃௩ െ 𝑃௩଴ሻ ൅ 𝑠ொ           (27) 
 ൣ𝑠ொ൧௞ ൌ ൣ𝑠ொ൧௞ିଵ ൅ 𝛿𝑡 ൣെ𝐾ொሺ𝑄 െ 𝑄଴ሻ൧௞ିଵ      (28) 

where 𝑠ொ is the change in cardiac output prompted by the 
body’s compensatory mechanisms, 𝐾ொ modulates the 
characteristics of compensation, and 𝛽௩ modulates the effect of 
variations in mean venous pressure on cardiac output.  The 
physiological model described in (20)-(28) is intended to 
inform a PIPF-based monitoring algorithm about the 
physiological dynamics and behaviors that could occur in a 
patient, thereby giving the algorithm a basis to form and adjust 
its beliefs about the patient’s state over time. 

3) Hemorrhage Events Model: The model described in 
Section III.A.2 is built to represent the physiological response 
of a patient to fluid infusions (i.e., the rate 𝐽ூ) and hemorrhage 
(i.e., the rate 𝐽ு).  In the context of hypovolemia treatment, fluid 
infusions are typically known, as they would be administered to 
the patient by a caregiver (or an algorithm).  In contrast, the 
presence of hemorrhage may be unknown in many cases.  In 
such cases, a model should be devised to represent the 
possibility of unknown hemorrhage events.  For this purpose, 
we consider a stochastic model of the following form: 
ሾ𝐽ுሿଵ ൌ 𝜖௚,  𝜖௚ ~ 𝒫ሺ0,𝜎ு, 𝜉ுሻ         (29) 
ሾ𝐽ுሿ௞ ൌ ሺ1 െ 𝜖௕ሻሾ𝐽ுሿ௞ିଵ ൅ 𝜖௕𝜖௚, 𝜖௕ ~ ℬሺ1, 𝛾ுሻ, 
𝜖௚ ~ 𝒫ሺ0,𝜎ு, 𝜉ுሻ              (30) 

In this model, first, possible hemorrhage rates ሾ𝐽ுሿଵ are 
instantiated in (29) by drawing samples 𝜖௚ from a generalized 
Pareto distribution (denoted by 𝒫) located at zero, where 𝜎ு is 
the scale parameter and 𝜉ு is the shape parameter.  This 
distribution represents a range of possible hemorrhage rates, 
where lower hemorrhages have a higher probability of 
occurrence.  Over time, the rate of hemorrhage in a patient 
follows the relationship in (30), where 𝜖௕ is a sample from the 
Bernoulli distribution, and the probability 𝛾ு acts as a 
forgetting factor for the hemorrhage rate.  According to this 
model, the rate of hemorrhage in a patient retains its value over 
short periods of time, except for the possibility of transitioning 
to a different rate drawn from the hemorrhage model in (29).  
Overall, this model is built to inform a PIPF-based monitoring 
algorithm about the possibility of unknown hemorrhage events, 
and furthermore allow the algorithm to form beliefs about the 
presence of unknown hemorrhage in a patient over time. 

4) Physiological Measurement Model: At the third level in 
the hierarchical model in Section II.A, a physiological 
measurement model ℳ generates observations from the 
characteristics and state evolutions generated by the first two 
levels (i.e., 𝒢 and ℋ).  In the context of hypovolemia treatment, 
mean arterial pressure measurements are typically available in 
clinical settings, while cardiac output and hematocrit 
measurements may be available only in experimental settings.  
To represent these potentially measured physiological 
variables, we consider the following model: 
ሾ𝑦ு஼்ሿ௞ ൌ ሾ𝐻ሿ௞ ൅ 𝑛ு஼்𝜖, 𝜖 ~ 𝒩ሺ0, 𝐼ሻ       (31) 
ሾ𝑦஼ைሿ௞ ൌ ሾ𝑄ሿ௞ ൅ 𝑛஼ை𝜖, 𝜖 ~ 𝒩ሺ0, 𝐼ሻ        (32) 
ሾ𝑦ெ஺௉ሿ௞ ൌ ሾ𝑃௔ሿ௞ ൅ 𝑛ெ஺௉𝜖, 𝜖 ~ 𝒩ሺ0, 𝐼ሻ       (33) 

where 𝑦ு஼், 𝑦஼ை, and 𝑦ெ஺௉ denote the generated measurements 
for hematocrit, cardiac output, and mean arterial pressure, 
respectively, and 𝑛ு஼், 𝑛஼ை, and 𝑛ெ஺௉ denote the standard 
deviation of noise acting on these measurements.  Overall, this 
measurement model is intended to inform a PIPF-based 
monitoring algorithm about the noises/artifacts that may corrupt 
each measured variable, thereby giving the algorithm a way to 
attribute such disturbances as they occur. 

B. The PIPF-Based Monitoring Algorithm 

As suggested in Section II, given a generative model of the 
relevant physiological phenomena (such as the model 
introduced in Section III.A), Algorithm 1 can be used to create 
a monitoring system for hypovolemia treatment.  The notable 
steps of this procedure are the following: 
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 To perform 𝜃ଵ
௜  ~ 𝒢ଵሺ𝜙ሻ, we use (17) to generate 𝑁 

proposed samples 𝜃ଵ
௜  representing a patient’s possible 

baseline characteristics. 
 To perform 𝑥ଵ

௜  ~ ℋଵሺ𝜃ଵ
௜ሻ, we use the generated 𝜃ଵ

௜’s to 
initialize the states of the physiological model in (20)-(22), 
(24), (26), (28) as follows: 𝑣௔ is set to 𝑣௔଴ ൌ 0.3𝑣଴, 𝑣௩ is 
set to 𝑣௩଴ ൌ 0.7𝑣଴, 𝑣௥ is set to 𝑣௥଴ ൌ 𝐻଴𝑣଴, while 𝑟ி, 𝑠ோ, 
and 𝑠ொ are set to zero.  Also, the possible hemorrhage rates 
are initialized according to (29). 

 To perform 𝜃௞
௜  ~ 𝒢௞ሺ𝜃௞ିଵ

௜ ,𝜙ሻ, we use the relationship in 
(18). 

 To perform 𝑥௞
௜  ~ ℋ௞ሺ𝑥௞ିଵ

௜ ,𝜃௞ିଵ
௜ ,𝑢௞ିଵሻ, we use the 

relationships in (20)-(28), (30). 
 To perform log𝛼௜ ← log𝑝ሺ𝑦௞|𝑥௞

௜ ,𝜃௞
௜ ,𝑛ሻ, we consider the 

measurement model in (31)-(33), which implies a 
likelihood function of the following form: 

log𝑝൫𝑦௞ห𝑥௞
௜ ,𝜃௞

௜ ,𝑛൯ ൌ ∑ ቂെ
ଵ

ଶ௡೘
మ ൫ሾ𝑦௠ሿ௞ െ ሾ𝑦௠ሿ௞

ௗ൯
ଶ
െ௠

logሺ𝑛௠ሻ െ
ଵ

ଶ
log ሺ2𝜋ሻቃ              (34) 

where the index 𝑚 enumerates the available measured variables 
at time 𝑘 (e.g., if mean arterial pressure and hematocrit 
measurements are available at time 𝑘, then 𝑚 ∈ ሼ𝑀𝐴𝑃,𝐻𝐶𝑇ሽ), 
and ሾ𝑦௠ሿ௞

ௗ denotes the measured value.  Executing Algorithm 1 
as outlined above results in a monitoring algorithm that takes in 
measurements as they become available over time, forming 
running beliefs about the physiological states (i.e., 𝑣௔, 𝑣௩, 𝑣௥, 
𝑟ி, 𝑠ோ, and 𝑠ொ), characteristics (i.e., shown in the 𝜃௞ vector in 
(19)) and events (i.e., 𝐽ு) in a patient. 

C. Physiological Data 

To demonstrate the potential merits and limitations of the 
PIPF-based monitoring algorithm, we utilize a physiological 
dataset from previous work [33]–[35], which contains time-
series measurements pertaining to hypovolemia treatment in 23 
animal (sheep) experiments.  In each experiment, the animal is 
subjected to controlled hemorrhage and subsequently 
resuscitated over time using fluid (crystalloid) infusions, which 
are administered according to the recommendations of a control 
algorithm.  Each experiment spans a course of 180 minutes, 
where the subject’s hematocrit, cardiac output, and mean 
arterial pressure are measured approximately every 5 minutes.  
This dataset is especially suited to the purpose of analyzing the 
PIPF-based monitoring algorithm, as it can be used to assess the 
algorithm’s ability to form reliable beliefs about variables that 
are often unmeasured or unknown in clinical settings (e.g., 
hematocrit, cardiac output, and hemorrhage rates) by 
processing measurements that are typically available in clinical 
settings (e.g., mean arterial pressure and infusion rates).  In the 
next section, we provide an overview of our data analysis 
procedures for this purpose. 

D. Data Analysis 

1) Problem Setting: To evaluate the PIPF algorithm in a 
scenario that resembles real-world hypovolemia treatment, we 
consider the task of monitoring each subject in our dataset as it 
undergoes controlled hemorrhage and fluid resuscitation.  In 
this scenario, the monitoring algorithm receives a stream of 

mean arterial pressure and infusion rate measurements (which 
are typically available in clinical settings) and is tasked with 
forming and updating beliefs about the subject’s states, 
characteristics, and hemorrhage events over time.  These beliefs 
are in turn evaluated against available measurements from the 
subject not shown to the monitoring algorithm (i.e., hematocrit, 
cardiac output, and hemorrhage rates) in order to assess its 
performance.  It is important to note that this problem setting is 
a purposefully challenging one, where many unmeasured 
variables are inferred from few measured variables.  This 
setting enables us to assess the merits and limitations of the 
PIPF-based monitoring algorithm especially when the clinically 
available data are limited. 

2) Algorithm Evaluation: As presented in Section II.A, 
obtaining a PIPF-based monitoring algorithm involves (i) 
training a generative physiological model on a physiological 
dataset obtained from the population, and (ii) providing this 
model to Algorithm 1.  To evaluate the performance of the 
monitoring algorithm, we follow a leave-one-out cross-
validation procedure.  For each studied subject, we exclude the 
subject from the population dataset used to train the generative 
physiological model and use the resulting model in Algorithm 
1 to obtain a PIPF-based monitoring algorithm.  Then, we test 
the resulting algorithm on the excluded subject by providing the 
subject’s mean arterial pressure and infusion rate data to the 
algorithm as a stream of measurements and assessing the 
performance of the algorithm based on the adequacy of its 
beliefs about the subject’s unseen measurements (i.e., 
hematocrit, cardiac output, and hemorrhage rates). 

To quantify the adequacy of the beliefs provided by the 
algorithm, we utilize the mean continuous ranked probability 
score (MCRPS), which is a metric suitable for comparing 
beliefs to measured values [36].  A particle-based form of this 
metric can be written as follows: 

MCRPSሺ𝐹௠,𝑦௠ሻ ൌ 𝔼௞ ቂ𝔼௭భ~ሾி೘ሿೖ|𝑧ଵ െ ሾ𝑦௠ሿ௞| െ
ଵ

ଶ
𝔼௭భ,௭మ~ሾி೘ሿೖ|𝑧ଵ െ 𝑧ଶ|ቃ              (35) 

where ሾ𝐹௠ሿ௞ denotes the belief provided by the monitoring 
algorithm about variable 𝑚 at time 𝑘, which is expressed as a 
collection of weighted points, 𝑧ଵ and 𝑧ଶ are samples from this 
belief, and ሾ𝑦௠ሿ௞ denotes the measured value for variable 𝑚 at 
time 𝑘.  Intuitively, this scoring function maximally promotes 
predictions that are sharp (i.e., certain) and accurate, and 
maximally discourages predictions that are sharp and 
inaccurate.  Smaller MCRPS scores indicate better predictions 
and, in the case of deterministic predictions, the MCRPS metric 
reduces to mean absolute error. 

3) PIPF versus Particle Filtering (PF): To highlight the 
potential advantages of the PIPF-based monitoring algorithm 
with respect to a more established approach that does not 
consider population-level information, we build an alternative 
monitoring algorithm that operates based on the traditional 
particle filtering (PF) scheme [14], [21].  This PF-based 
monitoring algorithm differs from its PIPF-based counterpart in 
that it does not include a patient generator model in its 
underlying model.  According to PF convention, the 
unmeasured variables of the problem (i.e., the subject’s states, 
characteristics, and events) are instead initialized by drawing a 
uniform sample of particles over a plausible range in the space 
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of unmeasured variables.  In addition, to enable the PF-based 
monitoring algorithm to adapt to the subject’s characteristics, 
we consider a random walk model for the parameters over time 
𝜃௞ ൌ 𝜃௞ିଵ ൅ 𝜎௉ி𝜖 where 𝜖~𝒩ሺ0, 𝐼ሻ.  To compare the PIPF-
based versus PF-based monitoring algorithms, we use the 
MCRPS scoring procedure described above.  To test the 
significance of the score differences between the two 
approaches, we use the Wilcoxon signed-rank test.  Overall, this 
comparison study is designed primarily to highlight the 
potential merits and limitations of incorporating population-
level information into the filtering process. 

IV. RESULTS AND DISCUSSION 

Forming reliable beliefs about a patient’s state is essential for 
algorithmic decision-making in medical care settings.  This task 
is especially challenging when the physiological measurements 
available from the patient are intermittent or contain limited 
information.  To address this challenge, we proposed the PIPF 
scheme, where the information encoded in a generative 
physiological model is leveraged to form more robust beliefs 
about a patient’s state.  This section presents the results of 
applying the PIPF scheme to the problem of monitoring for 
hypovolemia treatment and discusses the merits and limitations 
of the PIPF scheme in this context. 

A. Beliefs about Unmeasured Physiological Variables 

Fig. 2 shows the beliefs formed by the PIPF-based 
monitoring algorithm about hematocrit (HCT), cardiac output 
(CO), and mean arterial pressure (MAP) in two representative 
subjects (marked by Subject A and Subject B).  These beliefs 
were formed when providing the algorithm with a stream of 
MAP (see in Fig. 2; right column) and infusion rate (see Fig. 3; 
blue line) measurements.  Fig. 5 shows (in the bottom panel) 
the beliefs formed about the internal states and characteristics 
of Subject A in this scenario.  As it is expected from the 

formulation of the PIPF algorithm, whenever a new 
measurement becomes available, the algorithm adjusts its 
beliefs about the subject’s physiological states and 
characteristics.  As a result, beliefs about the subject’s MAP 
closely follow the MAP data, and the algorithm can provide 
beliefs about the subject’s HCT and CO (see Fig. 2) as well as 
its internal states and characteristics (see Fig. 5).  These beliefs 
appear consistent with the HCT and CO data unseen by the 
algorithm. 

These representative results also highlight two notable 
behavior patterns in the beliefs generated by the PIPF algorithm 
in relation to the informativeness of the data.  First, CO is an 
example of a variable that could be strongly informed by MAP 
data because of its close physiological relationship with MAP.  
Namely, the pressure in the arterial space, which has a relatively 
low compliance, is strongly affected by the flow rate of blood 
coming into the space.  As a result, in the initial stages of the 
experiment, where variations in hemorrhage and infusion 
protocols (e.g., see Fig. 3) are expected to excite the subject’s 
physiological dynamics, the monitoring algorithm can infer 
relatively sharp beliefs about CO that are also consistent with 
the corresponding CO data (see Fig. 2; center column).  Second, 
baseline HCT is an example of a variable that is weakly 
informed by MAP data because of its distant physiological 
relationship with MAP.  Namely, MAP is primarily affected by 
blood volume kinetics (i.e., the volume of blood that ends up in 
the arterial space at each time) while baseline HCT is a measure 
of blood composition.  In this scenario, the monitoring 
algorithm forms its beliefs about baseline HCT in large part 
from the population-level information encoded in the 
generative physiological model.  As a result, the beliefs about 
baseline HCT appear to span the range of plausible HCT values 
in the population (see Fig. 2; left column).  Overall, these results 
suggest that the PIPF-based monitoring algorithm shows 

 
Fig. 2. Marginalized posterior beliefs about cardiac output (CO) and hematocrit (HCT) in two representative subjects when presenting the PIPF algorithm with a 
sequence of mean arterial pressure (MAP) measurements.  Bolder colors represent higher belief density.  Black dots show data presented to PIPF, while white dots 
show data never presented to PIPF. 
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promise in forming beliefs about the unmeasured variables of 
the physiological system by combining the information 
contained in subject-specific measurements with the 
population-level information encoded in the generative 
physiological model. 

B. Beliefs about Subject Characteristics 

Fig. 5 shows (in the top panel) the posterior beliefs about the 

characteristics of Subject A.  These beliefs were formed when 
providing the algorithm with a stream of MAP (see in Fig. 2; 
top-right column) and infusion rate (see Fig. 3; top-panel; blue 
line) measurements.  For most characteristics, the beliefs 
maintain a high entropy (i.e., large spread) throughout the 
filtering process, and resemble the characteristics generated by 
the generative model.  However, in the initial phases of the 
experiment (e.g., first 60 minutes), where the subject undergoes 
significant perturbations (i.e., hemorrhage and fluid infusions), 
the beliefs show some deviations from the characteristics 
generated by the generative model.  The high entropy of the 
beliefs indicates that the characteristics of the subject are, for 
the most part, only weakly identifiable from a stream of MAP 
and infusion rate measurements, especially when the 
perturbations do not sufficiently excite the subject’s 
physiology.  By design, the PIPF algorithm reverts to the 
characteristics generated by the generative physiological model 
in such conditions.  In other words, in the absence of 
informative measurements or excitations, the algorithm opts for 
considering all possibilities with regards to subject 
characteristics as informed by the generative physiological 
model. 

Despite the high entropy, the beliefs about subject 
characteristics may be used to calculate useful summarized 
information about the subject.  The subject atypicality index 
[37] is a notable example of this, which measures the presence 
of atypical characteristics in a subject by comparing the 
subject’s characteristics to those of the population.  Fig. 4 
shows the posterior beliefs about atypicality in two 
representative subjects.  The index values lie between zero and 
one, with a value of one indicating a highly atypical subject.  
For Subject A, the beliefs about atypicality show a high level of 
entropy and uniformly span the range between zero and one, 
which indicates that Subject A’s atypicality cannot be 
established or rejected based on the given stream of MAP and 
infusion rate data.  For Subject B, the beliefs about atypicality 
shift toward the higher end of the spectrum at two times during 
the experiment (starting approximately at the 50-minute mark 
for 20 minutes and at the 95-minute mark for the rest of the 
experiment).  Inspecting Subject B’s MAP data at those times 
reveals two instances of rapid rise in pressure to values even 
higher than the subject’s baseline (pre-hemorrhage) pressure, 
which is not generally expected from a typical subject 
undergoing hemorrhage and crystalloid resuscitation.  Overall, 
these results suggest that, despite the high entropy, beliefs about 
a subject’s characteristics may be summarized to obtain 
potentially useful information about the subject. 

C. Beliefs about Physiological Events 

Fig. 3 shows beliefs about hemorrhage rate in two 
representative subjects when providing the monitoring 
algorithm with a stream of MAP and infusion rate 
measurements.  In Subject A, the algorithm attributes the 
subject’s sudden initial drop in MAP (see Fig. 2; top-right 
panel) to the presence of hemorrhage, with beliefs about 
hemorrhage rate that are consistent with hemorrhage data 
unseen by the algorithm.  Subsequently, the algorithm infers a 

 
Fig. 3. Marginalized posterior beliefs about hemorrhage rate in two
representative subjects when presenting the PIPF algorithm with a sequence of
mean arterial pressure (MAP) measurements.  Bolder colors represent higher
belief density.  True hemorrhage rates (unknown to the algorithm) and infusion
rates (known to the algorithm) are provided for reference. 
 

 
Fig. 4. Marginalized posterior beliefs about atypicality in two representative
subjects when presenting the PIPF algorithm with a sequence of mean arterial
pressure (MAP) measurements.  Bolder colors represent higher belief density. 
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cessation of hemorrhage (albeit with delay) and provides 
reasonable beliefs about the later instances of small 
hemorrhage.  In Subject B, the algorithm detects the initial 
hemorrhage, but with some delay, which can be attributed to the 
first few MAP measurements remaining high despite the 
presence of large hemorrhage (see Fig. 2; bottom-right panel).  
Subsequently, the algorithm detects one of the two smaller 
hemorrhages, depending on whether they affect the MAP 
measurements.  Overall, these results suggest that the PIPF-
based monitoring algorithm may be utilized to form useful 
beliefs about physiological events in a subject (such as 
hemorrhage), when the underlying model includes components 
that represent the event, and the occurrence of the event leaves 
detectable effects on the measurements available from the 
subject. 

D. Effect of Population-Level Information 

Table I compares cross-validation scores (based on MCRPS 
in N=23 subjects) between the PIPF algorithm and a 
conventional particle filtering (PF) algorithm described in 
Section III.D.3.  Comparing the scores between the two cases 

reveals that the PIPF approach provides superior beliefs about 
hemorrhage rate and HCT when compared to the conventional 
PF algorithm, while beliefs about CO are comparable between 
the two cases.  The advantage of the PIPF algorithm may be 
explained by inspecting the structure of the inference problem 
that underlies its operation (Fig. 1(b)).  In this structure, the 
latent variables of the problem (i.e., 𝜃ଵ:௞, 𝑥ଵ:௞) are informed by 
a patient generator model (parameterized by 𝜙) that is derived 
from past population-level data.  In contrast, the conventional 
PF algorithm relies on initialization and transition procedures 
for 𝜃ଵ:௞, 𝑥ଵ:௞ that do not leverage past data (see Section III.D.3).  
As a result, the PIPF algorithm tends to exhibit superior 
performance, especially for those latent variables that are 
weakly informed by the available measurements.  As presented 
in Section IV.A, CO is a variable that is expected to be strongly 
informed by MAP data due to its close physiological 
relationship with MAP.  As a result, both algorithms can infer 
CO in large part from the information contained in MAP, giving 
relatively sharp beliefs about CO that are also consistent with 
the CO data.  This results in comparable MCRPS scores for the 

 
Fig. 5. Marginalized posterior beliefs about a representative subject’s states and characteristics when presenting the PIPF algorithm with a sequence of mean arterial 
pressure (MAP) measurements.  Bolder colors represent higher belief density. 
 
Table I. Comparing cross-validation scores (based on MCRPS) between the PIPF algorithm and a conventional particle filtering (PF) approach, when presenting 
the algorithms with a sequence of mean arterial pressure (MAP) measurements [Median (Q1, Q3); N=23; Lower is better].  *: p<0.05. 
 

Method Hemorrhage Rate [mL/min] Hematocrit [%] Cardiac Output [L/min] Mean Arterial Pressure [mmHg] 
PIPF 10.03* (8.29, 11.10) 2.15* (1.25, 3.91) 0.52 (0.35, 0.89) 3.85 (3.70, 4.11) 
PF 20.29 (17.17, 22.37) 4.97 (4.18, 6.54) 0.53 (0.42, 0.97) 3.81 (3.67, 3.89) 
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two algorithms.  In contrast, hemorrhage rate and HCT are 
variables that are expected to be weakly informed by MAP data 
because of their more distant physiological relationship with 
MAP.  As a result, the PIPF algorithm forms its beliefs about 
hemorrhage rate and HCT in large part from the population-
level information encoded in the generative physiological 
model, while the PF algorithm does not have access to the 
population-level information.  This results in superior MCRPS 
scores for the PIPF-based monitoring algorithm.  Overall, these 
results suggest that incorporating population-level information 
into the filtering process (as it is done in the PIPF algorithm) 
results in the formation of superior beliefs, especially for 
physiological variables that are weakly informed by the 
available subject-specific data.  

E. Potential Applications 

    As presented in Section IV-A through C, the PIPF approach 
generates real-time beliefs (in the form of probability 
distributions) about a patient’s unmeasured physiological 
variables, characteristics, and events, given a stream of 
physiological measurements.  These beliefs can in turn be 
passed on to human users, decision-support algorithms, and/or 
closed-loop control algorithms as a basis for decision-making.  
The following paragraphs briefly discuss these use cases. 

    Utility for Users and/or Clinicians: In order to facilitate the 
human user’s use and interpretation of the beliefs generated by 
PIPF, the corresponding distributions may be converted into 
point-estimates (e.g., by taking the central tendency of the 
distribution) and credible intervals (e.g., by taking the 10-90th 
percentiles of the distribution).  In this way, the user would be 
equipped with, respectively, a “best estimate” and a 
“confidence measure” for each variable of interest, both of 
which can be informative in the course of decision-making.  To 
illustrate this aspect, the supplementary material accompanying 
this paper includes example visualizations (Fig. S1, Fig. S2, and 
Fig. S3) and performance metrics (Table S-I and Table S-II) for 
this human-friendly representation. 

    Utility for Decision/Control Algorithms: A main advantage 
of PIPF lies in the fact that it uses collections of samples (i.e., 
particles) to represent beliefs. As a result, it would be possible 
for a PIPF-based monitoring algorithm to form highly 
expressive beliefs (i.e., beliefs with complex shape; e.g., 
asymmetric and/or multi-modal) if necessary. These sample-
based beliefs can therefore act as rich, real-time representations 
of likely values and uncertainties associated with a patient’s 
unmeasured physiological variables. Arguably, decision 
algorithms could be designed to perform principled risk/reward 
analysis on these beliefs in order to suggest/apply best courses 
of action for a given patient. We believe this aspect to be a 
worthwhile avenue for future work. 

V. CONCLUSION 

In this work, we proposed the population-informed particle 
filter (PIPF), a Bayesian filtering approach that leverages a 
generative physiological model to provide beliefs about a 
patient’s states, characteristics, and events in the context of 
physiological monitoring.  Using a case study on monitoring for 
hemodynamic management, we showed that the PIPF approach 

can provide reasonable beliefs (as compared to excluded data) 
about the likely values and uncertainties associated with a 
patient’s physiological variables (e.g., hematocrit and cardiac 
output), characteristics (e.g., tendency for atypical behavior), 
and events (e.g., hemorrhage).  In addition, we demonstrated 
that incorporating population-level information into the 
filtering process (as is done in the PIPF algorithm) results in the 
formation of beliefs that are superior to those provided by a 
traditional particle filtering approach, especially for 
physiological variables that are weakly informed by the 
available patient-specific measurements.  These results imply 
that PIPF is a promising candidate for use in physiological 
monitoring systems that are required to form beliefs about 
unmeasured aspects of a patient’s physiology by processing 
low-information and intermittent physiological measurements.  
Therefore, future efforts should be devoted to applying and 
evaluating the PIPF approach in a wider range of physiological 
monitoring applications, and researching principled ways to 
maximally leverage the beliefs provided by PIPF to design 
next-generation physiological decision-support and closed-loop 
control algorithms. 
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