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A B S T R A C T   

The goal of speech separation is to extract multiple speech sources from a single microphone recording. Recently, 
with the advancement of deep learning and availability of large datasets, speech separation has been formulated 
as a supervised learning problem. These approaches aim to learn discriminative patterns of speech, speakers, and 
background noise using a supervised learning algorithm, typically a deep neural network. A long-lasting problem 
in supervised speech separation is finding the correct label for each separated speech signal, referred to as label 
permutation ambiguity. Permutation ambiguity refers to the problem of determining the output-label assignment 
between the separated sources and the available single-speaker speech labels. Finding the best output-label 
assignment is required for calculation of separation error, which is later used for updating parameters of the 
model. Recently, Permutation Invariant Training (PIT) has been shown to be a promising solution in handling the 
label ambiguity problem. However, the overconfident choice of the output-label assignment by PIT results in a 
sub-optimal trained model. In this work, we propose a probabilistic optimization framework to address the in
efficiency of PIT in finding the best output-label assignment. Our proposed method entitled trainable Soft- 
minimum PIT is then employed on the same Long-Short Term Memory (LSTM) architecture used in Permuta
tion Invariant Training (PIT) speech separation method. The results of our experiments show that the proposed 
method outperforms conventional PIT speech separation significantly (p-value < 0.01) by +1dB in Signal to 
Distortion Ratio (SDR) and +1.5dB in Signal to Interference Ratio (SIR).   

1. Introduction 

Extracting the underlying sources from a signal mixture is a general 
problem in many applications. A classical example for such an appli
cation is to recognize or isolate what is being said by an individual 
speaker in a cocktail-party scenario in which multiple speakers are 
talking simultaneously Yousefi and Hansen (2020a). The auditory sys
tem of the human brain encounters two main challenges in the cocktail 
party scenario. First, it carries out sound segregation, which is the act of 
deriving properties of the individual sources from the mixture Carlyon 
(1992). Second, it can switch attention between different sources when 
following distinct conversations Shinn-Cunningham (2008); Koch et al. 
(2011). Humans can accomplish this in part due to bilateral hearing, as 
well as learned effective neural decoding in the auditory cortex. 

However, as shown in Fig. 1, listening and following one speaker in 
the presence of competing speakers is an easy task for the majority of 

people, a remarkable ability usually taken for granted. While extensive 
research has explored speaker recognition by machines Stöter et al. 
(2018), the current task requires expanded knowledge and capabilities. 
However, even for humans with normal hearing abilities, the capacity of 
the human auditory system to extract and separate simultaneous sources 
out of a mixture is severely compromised Stöter et al. (2018); Bronkhorst 
(2015); Yousefi and Hanse (2021). As reported in Kawashima and Sato 
(2015), humans are capable of detecting up to three simultaneous active 
speakers without using spatial information of the input mixture. Thus, 
solving the cocktail party problem for mixtures with more than three 
concurrent active speakers is a very challenging task in which even 
humans may not be able to address Kashino and Hirahara (1996). 

The cocktail party problem can be viewed as addressing blind source 
separation Qian et al. (2018), which is the task of recovering a set of 
independent sources when only their mixtures with unknown co
efficients are available. Source separation can be considered as the 
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combination of many active research threads such as: speech enhance
ment Vincent et al. (2018), speech separation Makino et al. (2007); 
Yousefi and Hansen (2021), waveform preserving estimation Tong et al. 
(1993); Sidiropoulos et al. (1998), music separation Ozerov et al. 
(2007); Luo et al. (2017), etc. Each of these research sub-communities 
make specific assumptions on the structure and properties of the 
active sources in the mixture, which results in problem-specific solutions 
to the cocktail party problem. Given the central role of overlapping 
speech detection and separation in the cocktail party scenario, in this 
study, we focus on single-channel speaker-independent speech 
separation. 

The pioneering work of separating audio signals from a mixture was 
represented by Bregman in Bregman (1990). He noted that the auditory 
system performs an Auditory Scene Analysis (ASA) on the mixture signal 
entering the ear. ASA is executed in two steps: (i) the acoustic signal is 
decomposed into a number of sensory components, and (ii) the com
ponents that are likely from the same source are combined into a single 
stream. Based on this study, Computational Auditory Scene Analysis 
(CASA) was proposed in Brown and Cooke (1994). CASA attempts to 
model different parts of the biological auditory system that encomposes 
outer ear, middle ear and inner ear. In this approach, the signal is passed 
through a set of filterbanks that mimics the sound transduction per
formed by the inner hair cells. Next, for each filterbank output, peri
odicity, frequency transition, oneset and offset are calculated. Using 
pitch tracking techniques and labeling T-F bins, CASA groups the voice 
and unvoiced segments likely belonging to the same source. Finally, 
each waveform is reconstructed based on the source-specific segments 
Brown and Cooke (1994). 

Independent Component Analysis (ICA) is another main technique 
introduced to address source separation Comon (1994). The strength of 
ICA as a separation tool resides in a realistic assumption that different 
physical processes generate unrelated signals. Therefore, when given a 
mixture of multiple speech sources, ICA identifies those unrelated sig
nals which are voice traits of different speakers Comon and Jutten 
(2010). In ICA, data vectors are represented using weighted a linear 
combination of basis functions. Higher order statistics are needed to 
derive the independent coefficients of each basis. ICA removes not only 
correlation but also higher order dependence between the estimated 
bases, which has contributed to its success in extracting individual 
sources Lee (1998). Several years later, a powerful decomposition 
method called Non-Negative Matrix Factorization (NMF) was intro
duced, which has been very effective in modeling latent structure of data 
Lee and Seung (1999). NMF finds the parts-based representation of 
non-negative data through matrix decomposition, and therefore it is 
capable of extracting underlying speech sources from a mixture Lee and 
Seung (2001). A number of techniques have been developed based on 
NMF Hoyer (2004); Ding et al. (2005). Sparse NMF and Convolutive 
NMF (CNMF) are among the most popular Yousefi and Savoji (2016). 
CNMF outperforms NMF by modeling the temporal continuity of the 
speech signal in a time span of several frames O’Grady and Pearlmutter 
(2006); Smaragdis (2006). Although both ICA and NMF are supervised 
machine learning approaches and can learn useful patterns from the 

input data, the linear structure of the trained model in both ICA and 
NMF prevents it from learning complex structure within the speech 
signal. Thus, non-linear machine learning approaches such as Deep 
Neural Networks have been of interest. 

Recently, learning-based approaches have boosted the performance 
of speech separation dramatically Wang and Chen (2018); Hershey et al. 
(2016); Yousefi and Angkititrakul (2021). Deep Clustering (DPCL) 
Hershey et al. (2016) was among the first approaches that made sig
nificant progress in extracting speech signals out of a mixture without 
prior information concerning the number of speakers. DPCL converts the 
mixture speech into an embedding space using an Recurrent Neural 
Network (RNN), with hope that T-F bins belonging to the same speaker 
establish a cluster in the embedding space. K-means clustering is used in 
the embedding space to identify these clusters. Finally, another network 
is trained based on T-F bins grouped in each cluster to estimate 
source-specific masks in order to recover the individual speech signals 
from the mixture Hershey et al. (2016). Another related technique called 
Deep Attractor Network (DANet) was introduced in Chen et al. (2017). 
Similar to DPCL, DANet projects the T-F bins of the mixture into an 
embedding space. DANet uses Expectation-Maximization (EM) to 
represent each speaker in the embedding space using a vector called an 
attarctor point such that the T-F bins belonging to that speaker are 
pulled toward the corresponding attractor point. Finally, the speech 
signals are estimated based on the grouped T-F bins around each 
attarctor point Luo et al. (2018). 

Permutation Invariant Training (PIT) Yu et al. (2017); Kolbæk et al. 
(2017) is another effective solution which performs separation in two 
steps: first, it trains a neural network to separate the specific speech 
sources, and second, it finds the best output-label assignment to mini
mize the separation error. However, since the network generates unre
liable outputs in the initial steps of training, the costs of different 
output-label permutations are close. The inefficiency of PIT in address
ing permutation ambiguity has been considered in our previous study 
Yousefi et al. (2019). Therefore, we proposed Probabilistic PIT (Prob-
PIT) which defines a log-likelihood function based on separation errors 
of all possible permutations. Unlike conventional PIT that uses one 
output-label permutation with the minimum cost, Prob-PIT uses all 
permutations by employing the soft-minimum function Yousefi et al. 
(2019). The effectiveness of Prob-PIT is achieved only when the pa
rameters of the log-likelihood cost function are tuned well for each 
dataset. This can be very tedious and may require extensive time and 
computational resources to find the best hyperparameter value. To 
address this issue in Prob-PIT, in this study, we build on our previous 
work Yousefi et al. (2019) and propose a novel trainable Probabilistic 
PIT which we call Soft-minimum PIT to resolve the label permutation 
ambiguity challenge without requiring manual tuning of the parameters 
of the log-likelihood cost function. The contributions of this study are 
threefold:  

• Proposing a novel trainable Probabilistic Permutation Invariant 
Training framework called soft-minimum PIT for single-channel su
pervised speech separation. 

Fig. 1. Speech separation performed by human auditory system. The separated speech sources still contain residual speech from interfering talker.  
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• Comparing the results of both training and tuning of the hyper
parameters of the log-likelihood cost function.  

• Comparing the results of our proposed system with the conventional 
PIT. 

The remainder of the paper is organized as follows. We present the 
problem formulation, generating overlapping speech mixtures, and 
extracting spectral features in Section 2. Details of the proposed train
able Prob-PIT are explained in Section 3. We report on the experimental 
procedures and results in Section 4. The results are discussed in Section 
5, and finally the conclusion is presented in the last section. 

2. Problem formulation 

Speech separation is extremely challenging under the single- 
microphone speaker-independent scenario, where no prior speaker in
formation is available during evaluation. In supervised approaches, 
speech separation is formulated as a linear combination of single- 
speaker speech signals: 

y[n] =
∑S

s=1
xs[n] (1)  

in which S is the total number of speakers in the mixture signal y, and xs 
is the speech signal corresponding to speaker s. While the number of 
total speakers S is assumed as available prior information, the goal of 
speech separation is to estimate the speaker-specific speech signals xs 
from the mixture y. In this study, we consider the case of two-talker 
mixed speech separation. Therefore, Eq. 1 is modified as: 

y[n] = x1[n] + x2[n] (2)  

with x1[n] and x2[n] represent the speaker-specific speech signal. Speech 
separation is generally performed in the frequency domain by trans
forming the signals using the Short-Time Fourier Transform (STFT). The 
main reason for this choice is that the speech structure such as har
monics, formants, and energy densities of are better represented in this 
domain. Therefore, speech separation is formulated as the task of 
recovering (STFT) of the source signals Xs(t, f) for each time frame t and 
frequency bin f , given the mixed speech. However, since estimating 
phase information of this STFT representation is still an open problem 

Williamson et al. (2016), the phase information is acquired from the 
overlapping speech signal, and the separation is simplified to the task of 
estimating the magnitude spectrogram of the speaker-specific speech 
signals X1 and X2 from the mixture Y as: 

Y(f , t) = X1(f , t) + X2(f , t), (3)  

where Y and X represent the magnitude spectra of y and x. The esti
mation of magnitude spectra of speech is usually achieved by training a 
model using supervised learning techniques. However, due to label 
permutation ambiguity, training a robust model for speech separation is 
challenging. Permutation ambiguity as depicted in Fig. 2, happens only 
in the model training stage and affects system performance in the testing 
phase. In Fig. 2, a single-channel mixed speech signal is processed by a 
DNN-based separation system. The goal of this separation is to extract 
speech signals corresponding to speakers A and B from the input 
mixture. Since there are only two speech sources in this mixture, the 
separation system has two outputs named o1 and o2. Each output con
tains a separated speech waveform corresponding to one of the speakers 
in the mixed speech. If the separation system is used for test, estimated 
speech signals at output 1 o1 and output 2 o2 are the separated final 
streams. However, in training, additional processing steps are required 
for updating the model parameters in each epoch. In supervised 
learning, updating parameters of the model is accomplished by 
comparing model’s output with the desired ground truth signal, which 
in this application is the single-speaker speech waveform. The more the 
model output is similar to the desired label, the less the model’s pa
rameters are updated. 

One important component in training, is backpropagation of the 
separation error which is the process of calculating the gradient of the 
error function with respect to the neural network’s weights. Therefore, 
the effectiveness of backpropagation is highly dependent on the correct 
and precise value of the separation error. At this point, this question 
rises: ”Which single-speaker speech waveform should be used as the 
desired form of each output?”. Effectively, we should find the correct 
order between the outputs and the labels. There are two possible 
solutions: 

Scenario 1:  

• Output1: is the estimated speech related to Speaker A.  
• Output2: is the estimated speech related to Speaker B. 

Fig. 2. Single-channel speaker-independent speech separation pipeline. Once the speaker-specific speech signals have been recovered at the output of the separation 
system, they should be assigned to their corresponding clean speech versions i.e. speaker A or speaker B for separation loss calculation. The permutation ambiguity 
caused by different possible output-label assignments leads to different separation errors causing gradient conflict in the training phase. 
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Scenario 2:  

• Output1: is the estimated speech related to Speaker B.  
• Output2: is the estimated speech related to Speaker A. 

As shown in Fig. 2, each scenario is a possible permutation which 
results in alternate separation errors. For two-talker speech separation, 
there are two possible output-label assignments (permutation) and 
accordingly two possible separation errors. In general, for S sources in a 
mixture, there are S! alternate possible permutations, which causes S!

different cost functions. In neural network training, it is necessary to find 
the correct separation error (correct cost function) and then perform 
back-propagation through the correct cost. The general consensus is to 
perform backpropagation through the gradients of the minimum sepa
ration error. This is the technique used in Permutation Invariant 
Training (PIT) speech separation method which has been shown to be 
effective in addressing the permutation ambiguity Yu et al. (2017). 
However, it has been discussed Yang et al. (2020); Yousefi et al. (2019) 
that the hard decision on choosing the minimum cost as the best solution 
results in training a sub-optimal separation model. To be more specific, 
the process of choosing the correct separation error is more challenging 
in the initial epochs of training, where the network is still naive and its 
outputs are not reliable. In those first epochs, costs of different permu
tations are very similar, and minimum separation error does not 
necessarily represent the correct output-label assignment. Therefore, the 
network will be trained based on a wrong decision epoch after epoch, 
which finally will contribute to a sub-optimal separation model. 

To address this problem, it is important to optimize both model pa
rameters and label assignments in the training phase. However, PIT uses 
a fixed label-assignment for every epoch and the benefit of using a 
flexible label assignment has not been explored sufficiently in the 
literature. The authors in Yang et al. (2020) have showed that label 
assignments chosen based on minimum separation error may be very 
random especially in initial epochs where network outputs show poor 
results. They studied the behavior of their network in selecting the 
output-label assignment, and discovered that the selected label assign
ments for a high percentage of training examples may be reversed in two 
consecutive epochs Yang et al. (2020). This rapid decision flip confuses 
both the network and the optimizer, which leads to updating the model 
parameters in opposite directions. These observations are detrimental in 
the training phase, which manifest the inadequacy of PIT. 

Additionally, in our previous study, we explored the distributions of 
both separation errors associated with the possible permutations in a 
two-talker speech separation scenario Yousefi et al. (2019). The Kernel 
Distribution Estimation (KDE) of both separation error 1 and separation 
error 2 were plotted which revealed the inseparability of the separation 
errors in the first epoch of training. In the calculated KDE, error1 and 
error2 are more likely to be observed in regions where their values are 
very close Yousefi et al. (2019). We showed that choosing the minimum 
cost may lead to assigning the wrong label to the network output which 
affects quality of the trained model. Therefore, we proposed Probabi
listic PIT (Prob-PIT) Yousefi et al. (2019) in which the output-label 
permutation was considered as a discrete latent random variable with 
a uniform prior distribution. Next, a log-likelihood function was defined 
based on prior distributions and separation errors of all possible per
mutations. We optimized the network parameters by maximizing the 
log-likelihood function. Unlike conventional PIT that enforces a hard 
decision by using one output-label permutation with the minimum cost, 
Prob-PIT uses all permutations by employing the soft-minimum function 
where leads to better overall separation results. To achieve a possible 
optimal possible model, in the cost function of Prob-PIT, a hyper
parameter was defined and manually tuned. However, manual tuning 
for the best value is a tedious process, which required extensive 
computational resources. Despite spending time and computational 
costs, the optimum value may not be found in challenging situations. 
Therefore, in this study we define a novel training framework in which 

the optimum value for the cost function parameter is learned from data 
during the training phase. 

3. Trainable prob-PIT 

We introduce the soft-minimum Permutation Invariant Training 
method in this section. As noted in Section 2, assume X1 and X2 contain 
magnitude spectra of speaker-specific clean speech signals shown as X =

[X1, X2] and Y is the magnitude spectra of the overlapping speech as 
introduced in Eq. 2. In supervised learning, we are give pairs of mixed 
speech signal and their associated single-speaker speech signals in the 
form of (Y, X) and our task is to train a model that estimates X based on 
the mixed speech Y observation. In the following subsections, we 
describe the proposed generative speech model, the network architec
ture, and the training framework in detail. 

3.1. Model structure 

In this proposed speech separation method, we define the magnitude 
spectra of single-speaker clean speech using a generative model as: 

X = X̂ + ϵ, (4)  

in which X̂ is the estimated magnitude spectra by employing the sepa
ration system and ϵ is the separation error. For deriving X̂, we assume 
the neural network D(θ) with learnable parameters θ is employed. The 
network D(θ) takes overlapping speech observation Y as input, and es
timates two speaker-specific speech signals in its outputs O1 and O2: 

O1, O2 = D(Y, θ), (5)  

Once outputs O1 and O2 are derived, the goal of separation is accom
plished. However, to build a reliable separation model, several epochs of 
training are required. In the training phase, backpropagation is per
formed to update the network parameters θ in order to optimize for the 
separation task. Backpropagation computes the gradients of the loss 
function with respect to the network parameters θ for each example in 
the dataset (i.e. each pair of (Y,X)). As noted in Section 2, for two-talker 
overlapping speech separation, there are two possible permutations 
between outputs O1 and O2 with clean speech labels X1 and X2. These 
two possible permutations lead to two alternate separation costs as 
depicted in Fig. 3. This situation causes a gradient conflict because it is 
not clear to the optimizer which separation cost should be used for the 
gradient calculation in backpropagation. In contrast to PIT, we define a 
one-to-one permutation function Z(.) to solve the permutation ambi
guity. The function Z(.) permutes the order of the network outputs to 
match the correct order of the single-speaker speech labels. In a two- 
talker speech separation scenario, the permutation function, Z(.), can 
take two forms as follow: 

X̂ = Z(O1, O2), (6) 

As noted, the possible output-label assignment is considered as a 
latent variable with a uniform distribution. Therefore, in our task, the 
function Z(.) can take two forms: z1(.) and z2(.) such that: 

[O1, O2] = z1([O1, O2]),

[O2, O1] = z2([O1, O2]).
(7) 

In general, if there are S active speakers in the mixture audio signal, 
there are S! possible permutations between the network outputs and the 
clean speech labels. This means that the permutation function Z(.) will 
have S! possible forms, with all having the same probability of 1

S!
. Only 

one permutation (either z1 or z2) is considered as the correct response. 
Therefore, by replacing X̂ in Eq. 4 with Eq. 5 and 6, the generative model 
can be reformulated as: 

X = Z(D(Y, θ)) + ϵ, (8) 
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Here, both ϵ and the permutation function Z(.) are latent variables. ϵ 
is the estimation error which is typically modeled by a standard 
Gaussian distribution with mean zero and variance σ2. Also, depending 
on the number of active speakers in the mixture, the permutation 
function Z(.) could have different possible forms with uniform distri
bution. Eq. 8 is therefore our proposed generative model to represent 
single-speaker speech in this work. 

3.2. Model training 

In Section 3.1, we defined the proposed model pipeline. However, 
this model contains thousands of hyperparameters that must be trained 
based on extensive amounts of data. In contrast to conventional PIT, in 
our supervised training approach, we optimize the hyperparameters of 
the model by maximizing the log-likelihood function. The probability of 
estimating the speaker-specific speech signal X conditioned on the 
observation of the mixed speech signal Y, is the likelihood of the model 
which we aim to maximize. According to Bayes rule, the likelihood 
P(X|Y) can be rewritten as: 

P(X|Y) =
∑

All possible Z
P(X|Z, Y)P(Z). (9) 

Here, P(Z) is the probability of each possible permutation, which is 
set to 1

S!
for S active speaker in a mixed speech signal. Therefore, P(Z) is 

not dependent on z. P(X|Z, Y) can be derived based on the Eq. 8. The 
distribution of X is determined by the distribution of ϵ with a new mean 
as: 

P(X|Z, Y) = N
(
Z(D(Y, θ)), σ2I

)
, (10)  

where, I is the identity matrix and N is the Gaussian distribution. By 
replacing P(X|Z, Y) in Eq. 9, and inserting the Gaussian distribution 
equation, the following expression is obtained for the log-likelihood 
function : 

logP(X|Y) = log
1
S!

+ log
1
̅̅̅̅̅γπ√ + log

∑

All Z
exp

(
− ‖ X − Z(D(Y, θ)) ‖2

γ

)

, (11)  

where γ = 2σ2. The log-likelihood function expressed in Eq. 11 is 
maximized in order to train the model. However, due to the logarithm 
function, this equation might be numerically unstable. Therefore, to 
ensure stability, we employ the log-sum-exp stabilization procedure: 
log

∑
iexi = maxixi + log

∑
iexi−maxixi . The following equations show the 

numerically stable form of Eq.  (11): 

logP(X|Y) =
−e(Zmin, θ)

γ
+

log

(

1 +
∑

Z∕=Zmin

exp

(
e(Zmin, θ) − e(Z, θ)

γ

))

− log
̅̅̅̅̅
γπ√

+ C,

e(Z, θ) = ‖ X − Z(D(Y, θ)) ‖2,

Zmin = argmin
Z

e(Z, θ).

(12) 

Here, e(Z, θ) is the separation error of the permutation Z, and Zmin is 
the permutation that has the minimum separation error. Noted earlier, γ 
is equal to 2σ2, and σ2 is the variance of the estimation error in the 
proposed model. Since e(Zmin) − e(z) is always negative, both exponen
tial and logarithmic functions are numerically stable. 

From Eq. 12, the model parameters θ are optimized to maximize the 
log-likelihood function logP(X|Y). This optimization is performed by 
applying the smooth minimum of the costs of all permutations with a 
smoothing factor of γ. The first part of this cost function is − e(Zmin, θ), 
which is the minimum error among all possible label permutations. This 
is the same cost that conventional PIT uses. The second part of the 
equation is the cost of all other possible permutations. Alternatively, by 
setting γ to larger values, a compromise is obtained between the cost of a 
minimum permutation versus the cost of all permutations (please refer 
to Yousefi et al. (2019) for more details). 

4. Experiments 

4.1. Dataset 

As reported in von Neumann et al. (2019), real-world recording 

Fig. 3. Speech separation network architecture. First, the mixed speech is transformed to frequency domain using STFT. Next, the magnitude spectra of mixed speech 
is fed to a two-layer LSTM network followed by two Fully Connected (FC) layers for speaker-specific mask generation. Once the speaker-specific speech signal are 
estimated, they are passed to the permutation function Z(.) for finding the best output-label assignment. Finally, the separation error is calculated based on the 
selected permutation. 
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datasets such as AMI only contain approximately 5–10% overlapping 
speech, which may not be sufficient for training a neural network model 
without overfitting the data. Therefore, we follow the same mixed 
speech generation process used in Yu et al. (2017); Hershey et al. (2016); 
Chen et al. (2017); Yousefi and Hansen (2020b). We generate over
lapping speech utterances based on the GRID corpus, which is a 
multi-speaker, sentence-based corpus used in a monaural speech sepa
ration and recognition challenge Cooke et al. (2006). This corpus con
tains 34 speakers, 16 female and 18 male speakers, each providing 1000 
sentences, which have been frequently used in several overlapping 
speech detection and separation studies Yousefi et al. (2018); Shokouhi 
and Hansen (2017); Tu et al. (2015); Yousefi et al. (2019). To generate 
mixed speech utterances, random speech recordings are selected from 
random speakers. The chosen utterances are first processed through a 
Speech Activity Detector (SAD) for removal of silence segments. Most 
recordings in the GRID corpus have almost the same duration. However, 
for utterances with different duration, longer utterances are cut so that 
their length matches the shorter utterance, then they are summed with a 
random Signal-to-Interference Ratio (SIR), which is uniformly distrib
uted between 0 to 5 dB. Each data sample in our generated corpus 
contains three waveforms, the two selected random utterances and the 
output generated mixed speech. For each dataset, we have generated 
10h of mixed data for the training set, 4h for development, and 2h 
mixtures for the test set2 Also, speakers used for generating the test set 
are separate from those used in training and development sets. 

4.2. Evaluation metrics 

Speech separation techniques are usually evaluated using the blind 
source separation evaluation (BSS-EVAL) toolbox Vincent et al. (2006); 
Wang and Chen (2018). Two of the widely used measures from this 
toolkit are Signal-to-Distortion (SDR), Signal-to-interference Ratio (SIR), 
and Signal-to-Artifact Ratio (SAR) in the estimated speech signals. SIR 
and SAR measure different types of residual noise in the estimated 
speaker-specific speech signal. SIR assesses the remaining noise due to 
the residual interference in the separated speech signal which is called 
mis-separation noise. Also, SAR measures the noise related to the 
reconstruction algorithm which includes, glitches due to the STFT phase 
estimation process. SDR measures the distortion introduced to the esti
mated signal by both mis-separation and the reconstruction algorithm. 

Both SDR, SIR, and SAR have been shown to be well correlated with 
human assessments of signal quality Fox et al. (2007). From a mathe
matical point of view, SDR is defined as the ratio of the target signal 
power to the distortion introduced by the interference, reconstruction 
noise, and all other background noise. SIR is defined as the ratio of the 
target signal power to that of the interference signal still remained in the 
separated speech. SAR is defined as the ratio of the estimated signal 
power to the reconstruction noise. In this study, we evaluate system 
performance using these two metrics Vincent et al. (2006). 

4.3. Experimental results 

For network training, a 129-dim STFT magnitude spectra is 
employed, computed over a frame size of 32ms with a 50% frame shift. 
The network architecture consists of two Long Short-Term Memory 
(LSTM) Network with 128 neurons each. The output of the last LSTM 
layer is passed to the Softmax activation function which adds a non- 
linearity to the model. Next, two different fully connected layers are 
used to estimate speaker-specific masks. Finally, by multiplying the 
estimaed masks wih the overlapping speech magnitude spectra, two 
magnitude spectra with dimension [129 * frame-number] are generated 
for the two speech sources. This architecture is one of the effective 
structures employed by conventional PIT in Yu et al. (2017). Since the 

memory cells in LSTM keep track of the speaker-specific information, 
this architecture is a suitable choice for speech separation Chen and 
Wang (2017). However, since a different dataset has been used in this 
study, we tune the hyperparameters to ensure that network has a viable 
initial setup for the speech separation task prior to experiments. The 
network is trained for 50 epochs using Adam optimization algorithm. 
Our experiments show that a dropout rate of 20%, and a learning rate of 
0.0005 reduced by 0.7 when the cross-validation loss improvement is 
less than 0.003 in two successive epochs, are the best choices for the 
hyperparameters. 

Baseline PIT– In this study, we compare our proposed method with 
PIT introduced in Yu et al. (2017). PIT minimizes the mean-square-error 
of the estimated speech signal to train the network. To do so, PIT selects 
the permutation with minimum cost throughout backpropagation. The 
cost function used in PIT is as: 

Cost(PIT)=‖ X − X̂‖2 = ‖ X − Zmin(D(Y, θ)) ‖2. (13)  

Constant γ Soft-minimum PIT– The results of our proposed approach is 
shown in Table 1. Evaluation metrics are reported for both speaker- 
specific estimated speech signals. For each reconstructed waveform, 
SDR, SIR, and SAR are reported. As mentioned in the previous section, 
PIT is considered as the baseline. As shown in Table 1, 1 ≤ γ ≤ 5 im
proves the PIT baseline, however, the choice of γ = 2 seems to be the 
best choice with the best output performance in terms of SDR and SIR. 
Larger choices of γ result in under-performing PIT, which is expected as 
the optimizer ignores the permutation with the minimum cost. 

Additionally, as mentioned in Section 3, γ is equal to γ = 2 ∗ σ2, in 
which σ is the variance of the separation error. Therefore, when γ = 2, 
the variance of the separation error is set to σ = 1 which is a reasonable 
choice for the separation cost. 

It is worth mentioning that, the core role of γ is in the training phase. 
Our motivation in defining the log-likelihood function in Eq. 12 was to 
prevent the network parameters to be trained based on an unreliable 
cost function. Therefore, the log-likelihood function uses γ to replace the 
minimum cost by the soft-minimum cost function which results in a 
smoother optimization landscape and therefore the model is less likely 
to converge to a poor local minimum. Once the model is trained, the 
separation performance is evaluated by other metrics such as SDR, SIR, 
and SAR. Thus, in the testing phase, we follow the PIT testing procedure 
and set γ to zero. 

During testing, we still need to find the correct output-label assign
ment for determining SDR, SIR, and SAR. In our proposed approach, 
there are two possible options in the testing phase: (i) choosing the 
output-label assignment with minimum separation loss, and (ii) 
choosing the output-label assignment with the permutation that maxi
mizes the log-likelihood function with the same assigned γ in the 
training phase. These two approaches are evaluated and plotted in 
Fig. 4. Here, the blue bars represent the first case in which γ is set to zero 
during the testing phase. Alternatively, the red bars represent the case in 
which γ in the testing phase is the same value as in the training set. As 
depicted in the plot, system performance is much better when γ = 0 in 
terms of SDR and SIR, This is expected as our proposed method is aimed 

Table 1 
The results of the proposed Soft-minimum PIT speech separation in terms of 
Signal to Distortion ratio (SDR), Signal to Interference Ration (SIR), and Signal 
to Artifacts Ratio (SAR) for both speakers in the mixture. γ = 2 maximizes the 
log-likelihood of he separation cost and results in the best performance.   

Speaker 1 Speaker 2 

Constant γ SDR SIR SAR SDR SIR SAR 

PIT 6.6693 8.1966 13.0914 2.9977 4.5250 10.3076 
γ = 1 6.8775 8.4905 13.0699 3.2571 4.8916 10.2669 
γ = 2 7.1894 8.9429 13.0547 3.6061 5.3652 10.2844 
γ = 3 6.9817 8.6556 13.0409 3.3853 5.0869 10.2152 
γ = 4 6.8852 8.4423 13.4668 3.1657 4.6821 10.9357  2 The corpus generated here will be shared with the speech community. 
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at modifying the training process to result in a higher quality separation 
model with improved performance. As mentioned in Section 2, choosing 
the permutation with a minimum cost in the training phase confuses the 
model and optimizer, and leads to updating the model parameters to
ward opposite directions in successive epochs. However, once the model 
is trained by maximizing the log-likelihood of all possible separation 
costs, the testing phase should be performed by selecting the permuta
tion with the minimum cost. 

Trainable γ Soft-minimum PIT– The main limitation of the soft- 
minimum PIT is finding the right value for γ. This can be exhausting 
since it requires time and computational resources which makes it a sub- 
optimal tuning process. Therefore, instead of tuning this parameter, in 
this section, γ is trained by the optimizer. 

The separation performance for the trained γ is reported in Table 2. 
The reported values for γ in the first column are the initial values for this 
trainable parameter. As reported in the table, the initial value of γ = 1 
leads to the best performance in terms of SDR and SIR. However, in 
terms of SAR, some degradation is observed for which the root cause and 
potential methods to address this bimodal performance change is still 
under investigation. In our experiments, after several epochs, γ 
converged to a number in the range [1.5 ≤ γ ≤ 2], and it was very close 
to the manually selected value reported in the previous table. Since the 
optimal value of γ for the data used is in the range of [1,2], then setting 
the initial value of γ higher than 1 makes it more challenging for the 
optimizer to converge to the optimal γ, causing an overall lower 
performance. 

Furthermore, in order to minimize the effect of parameter initiali
zation on our final separation metrics, we train each network five times 
with different initial parameters. The distributions of the final evalua
tion metrics of those five experiments are depicted in Fig. 5. In these 
plots, the boxplot and kernel distribution estimation of those five ex
periments are depicted. The boxplot is a standardized way of displaying 
the distribution of experiments based on a five number summary, which 
are the minimum, first quartile (Q1), median, third quartile (Q3), and 
maximum. Additionally, each violin-shaped object represents the kernel 
distribution estimation of the results. The more the result points are in a 

specific range, the larger the violin is for that range. Also, each blue 
circle on the blue line represents the mean of the evaluation metrics in 
the five experiments for each separation system. The black solid line is 
the mean of the performance metrics for γ = 0 as the PIT baseline. 

The first row in Fig. 5 represents the distribution estimation for the 
fist separated speaker in terms of SDR (first row, first column), and SIR 
(first row, second column). Likewise, the distribution estimation plots 
are depicted for the second speaker in the second row. As shown, the PIT 
separation method has a long and narrow violin response with high 
variance of the results. This system behavior is not desired because the 
output performance is not reliable and may tend to vary significantly. 
However, in our proposed soft-minimum PIT for both constant γ and 
Trained γ the violin plots tend to be wide and short which confirms a 
small variance in the output results. However, as mentioned before, 
since manual tuning of γ does not guarantee finding the optimal value, 
this approach is sub-optimal compared to learning γ in the training 
phase. Once the optimal value for γ is learned by the optimizer, the SDR 
of the first speaker is improved by almost +1dB compared to the base
line PIT. This is almost +13% relative improvement with lower vari
ance, revealing the superiority and reliability of the proposed approach 
compared to PIT. In terms of SIR, training γ in the proposed soft- 
minimum PIT achieves the best results with +1.5dB improvement 
compared to PIT. Similar to SDR, the variance of the output SIR is lower 
in the Trained γ scenario. Nevertheless, as depicted in the second row of 
Fig. 5, the pattern of the results is repeated for the second speaker as 
well. The output SDR and SIR for the second speaker have the same 
relative improvement in the proposed approach compared to the base
line. This is a very important accomplishment, because the second 
speaker has lower energy in the mixture (due to the lower input SDR we 
chose in the mixing process), therefore, recovering such a degraded 
signal is very challenging. Additionally, most separation systems are 
only effective in recovering the target speaker speech from the mixture 
at the expense of the remaining speaker-specific speech signals. There
fore, an effective speech separation solution should be capable of 
recovering both speakers from the mixture with the same level of 
quality. Similar to the first speaker, once soft-minimum PIT is employed 
in the training phase, the variance of the output SDR and SIR for the 
second speaker is also lowered compared to PIT. 

5. Discussion 

In general, speech separation is usually performed in two steps (i) 
separating the specific speech sources, and (ii) determining the best 
output-label assignment, allowing for assessment of separation error via 
the evaluation metrics. The second step called label permutation ambi
guity has been a long standing challenge in training neural networks for 
speech separation. Recently proposed Permutation Invariant Training 
(PIT) addressed this problem by determining the output-label 

Fig. 4. The comparison of speech separation performance for different γ values in the testing phase. As depicted in the plots, once the model is trained with the Soft- 
minimum PIT method, γ should be set to Zero in the testing phase. This is because the trained model is reliable in the testing phase and the permutation with the 
minimum loss is the correct output-label assignment. 

Table 2 
The results of the proposed Soft-minimum PIT with trained γ in terms of Signal to 
Distortion ratio (SDR), Signal to Interference Ration (SIR), and Signal to Artifacts 
Ratio (SAR) for both speakers in the mixture. The initial value of γ = 1 is the best 
option for learning its optimal value.   

Speaker 1 Speaker 2 

Initial value SDR SIR SAR SDR SIR SAR 

γ = 1 7.6471 9.8187 12.6322 4.2793 6.6073 9.6374 
γ = 2 7.2199 9.0586 12.8717 3.6579 5.5009 10.1288 
γ = 3 7.1882 8.9946 12.8792 3.6487 5.4935 10.0569 
γ = 4 7.0982 8.8117 13.1499 3.4787 5.1941 10.4676  
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assignment which minimizes the separation error. In PIT, a neural 
network is trained that separates the speaker-specific speech signals. In 
the training phase, PIT determines the best output-label assignment 
which minimizes the separation error. Next, backpropagation is per
formed based on the minimum separation error. However, studies 
Yousefi et al. (2019); Yang et al. (2020) have shown that choosing the 
minimum separation error is a hard decision imposed on the optimizer, 
especially in the initial epochs of training where network is still naive. 
Each possible output-label assignment result in a different cost function. 
In the initial epochs of the training, the value of these costs are very 
close. Therefore, the minimum separation error does not necessarily 
represent the correct output-label assignment. Additionally, in the 
beginning of the training phase, the selected label assignments may be 
reversed in two consecutive epochs which confirms the unreliability of 
the network output. If backpropagation is performed based on only the 
minimum separation error, then the rapid decision flip confuses both the 
network and optimizer, which leads to updating the model parameters 
toward opposite directions. Therefore, updating network parameters 
based on the cost of one single permutation is not an optimal solution, 
and leads to an inefficient training of the network. These observations 
are detrimental in the training phase, which manifests the inadequacy of 
PIT. 

In contrast to PIT, we propose the Soft-minimum PIT which considers 
the output-label assignment as a latent variable with uniform distribu
tion. In Soft-minimum PIT, the network is trained by maximizing the 
log-likelihood of the prior distributions and the separation errors of all 
possible permutations. Since in the proposed method, all possible 
output-label assignment are taken into consideration in the back
propagation, the optimization landscape becomes smoother, which is in 
contrast to the hard decision of minimizing the Mean-Square-Error of 
the minimum separation cost performed in PIT. In the Soft-minimum 
PIT, the smoothness of the cost function is controlled by γ, which is 2 ∗

σ2 with σ being the variance of the separation error. In this work, we 
have explored both tuning and training γ in the proposed method to 
evaluate the separation performance. The results of our experiments on 
the simulated two-talker overlapping speech dataset shows that Soft- 
minimum PIT outperforms PIT significantly (p-value < 0.01). Also, the 
greatest improvement is achieved by training γ with other parameters of 
the network. Trained γ in the Soft-minimum PIT results in improved 
output SDR and SIR by +1dB and +1.5dB with lower variance during 
multiple repeated experimental runs with different initialization. 

The effectiveness of the proposed Soft-minimum PIT can be attrib
uted to several reasons. The core strength of Soft-minimum PIT is the 

Fig. 5. The boxplot and kernel distribution of the Baseline (PIT), Soft-minimum PIT with Constant γ, and Soft-minimum PIT with trained γ is depicted. For each 
separation system, 5 experiments have been performed. Each violin-shaped object represents the boxplot and the kernel distribution estimation of those five ex
periments. The black solid line represents the mean of the results for the PIT baseline. The blue circles on the blue line are the mean of the output evaluation metrics 
for other two separation method: Constant γ in Soft-minimum PIT and Trained γ in the Soft-minimum PIT. As shown in the figure, the proposed soft-minimum PIT in 
both scenarios outperforms PIT baseline. Additionally, the output SDR and SIR of the proposed method have a lower variance for both separated speakers. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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incorporation of all possible output-label assignments in training the 
model parameters. This is in contrast to PIT, which uses a hard decision 
in assigning the output-label permutation that minimizes the total sep
aration error. During training, the network is not able to estimate the 
speaker-specific speech signals correctly, therefore, its decision in 
assigning the correct output-label permutation is not reliable. Also, since 
in the initial epochs of training, all model parameters are randomly 
selected, so the separated speech signals at the output are far from the 
desired speech signals. Consequently, the separation error of different 
possible permutations are very similar and the correct output-label 
assignment does not necessarily have a minimum separation loss. 
Therefore, if the selected output-label permutation in PIT is not correct, 
then the model parameters are updated based on a wrong decision, 
resulting in deteriorating the training process. 

In addition, it has been shown Yang et al. (2020) that the 
output-label assignment selected in PIT tends to change in two succes
sive epochs for most of the data samples in the corpus. This uncertainty 
in finding the correct permutation causes a disorientation in the opti
mizer because the model parameters are updated in opposite directions 
for most of the initial epochs. Hence, in our Soft-minimum PIT, we 
consider the costs of all possible permutations for training the network 
in a probabilistic framework. 

Another reason for the success of our proposed approach is that the 
minimum cost function used in PIT is replaced by a soft-minimum 
function. In several applications of machine learning, it has been 
shown that replacing the minimum by the soft-minimum results in a 
smoother optimization landscape and therefore it is less likely to 
converge to a poor local minima. This can also be explained in terms of 
the decision flips that PIT experiences during training. Since in Soft- 
minimum PIT the decisions are reliable and comprehensive, then the 
optimization landscape does not have many poor local minimums. Two 
core observations in this study confirms this finding for speech separa
tion as well. First, SDR and SIR values of the soft-minimum are better 
than PIT significantly (p-value < 0.01); (2) the variance of SDR and SIR 
values are lower for both constant and trained γ. A lower variance in the 
results show a more stable system, which may be caused by a smoother 
optimization landscape. 

6. Conclusion 

In this study, we proposed Soft-minimum PIT to address label per
mutation ambiguity in speech separation. For Training single-channel 
speaker-independent speech separation models, two steps are 
required: first, estimating the speaker-specific speech signal; second, 
finding the correct output-label assignment for calculating the separa
tion error. The second step known as label permutation ambiguity has 
been a long-standing challenge in training neural networks for the task 
of speech separation. One general solution introduced in PIT proposes to 
train a neural network based on the output-label assignment with min
imum separation cost. Unfortunately, the hard choice of minimum cost 
permutation is not the best technique, especially in initial epochs of 
training where the network is still not strong enough to effectively 
separate the speech signals. In contrast to PIT, in our proposed Soft- 
minimum PIT, we consider all possible permutations as a discrete 
latent variable with a uniform prior distribution. Next, we trained the 
network by maximizing the log-likelihood function defined based on 
prior distributions and separation errors of all possible permutations. In 
our proposed approach the smoothness of the decision was controlled by 
a variable parameter that can be either tuned or trained. In this study, 
we explored both cases and results based on GRID datasets show that the 
proposed Soft-minimum PIT significantly outperforms PIT in terms of 
SDR and SIR. This solution therefore offers a viable option to effectively 
separate overlap/mixed speaker audio streams, especially in naturalistic 
audio scenarios. 
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