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ABSTRACT

The goal of speech separation is to extract multiple speech sources from a single microphone recording. Recently,
with the advancement of deep learning and availability of large datasets, speech separation has been formulated
as a supervised learning problem. These approaches aim to learn discriminative patterns of speech, speakers, and
background noise using a supervised learning algorithm, typically a deep neural network. A long-lasting problem
in supervised speech separation is finding the correct label for each separated speech signal, referred to as label
permutation ambiguity. Permutation ambiguity refers to the problem of determining the output-label assignment
between the separated sources and the available single-speaker speech labels. Finding the best output-label
assignment is required for calculation of separation error, which is later used for updating parameters of the
model. Recently, Permutation Invariant Training (PIT) has been shown to be a promising solution in handling the
label ambiguity problem. However, the overconfident choice of the output-label assignment by PIT results in a
sub-optimal trained model. In this work, we propose a probabilistic optimization framework to address the in-
efficiency of PIT in finding the best output-label assignment. Our proposed method entitled trainable Soft-
minimum PIT is then employed on the same Long-Short Term Memory (LSTM) architecture used in Permuta-
tion Invariant Training (PIT) speech separation method. The results of our experiments show that the proposed
method outperforms conventional PIT speech separation significantly (p-value < 0.01) by +1dB in Signal to

Distortion Ratio (SDR) and +1.5dB in Signal to Interference Ratio (SIR).

1. Introduction

Extracting the underlying sources from a signal mixture is a general
problem in many applications. A classical example for such an appli-
cation is to recognize or isolate what is being said by an individual
speaker in a cocktail-party scenario in which multiple speakers are
talking simultaneously Yousefi and Hansen (2020a). The auditory sys-
tem of the human brain encounters two main challenges in the cocktail
party scenario. First, it carries out sound segregation, which is the act of
deriving properties of the individual sources from the mixture Carlyon
(1992). Second, it can switch attention between different sources when
following distinct conversations Shinn-Cunningham (2008); Koch et al.
(2011). Humans can accomplish this in part due to bilateral hearing, as
well as learned effective neural decoding in the auditory cortex.

However, as shown in Fig. 1, listening and following one speaker in
the presence of competing speakers is an easy task for the majority of
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people, a remarkable ability usually taken for granted. While extensive
research has explored speaker recognition by machines Stoter et al.
(2018), the current task requires expanded knowledge and capabilities.
However, even for humans with normal hearing abilities, the capacity of
the human auditory system to extract and separate simultaneous sources
out of a mixture is severely compromised Stoter et al. (2018); Bronkhorst
(2015); Yousefi and Hanse (2021). As reported in Kawashima and Sato
(2015), humans are capable of detecting up to three simultaneous active
speakers without using spatial information of the input mixture. Thus,
solving the cocktail party problem for mixtures with more than three
concurrent active speakers is a very challenging task in which even
humans may not be able to address Kashino and Hirahara (1996).

The cocktail party problem can be viewed as addressing blind source
separation Qian et al. (2018), which is the task of recovering a set of
independent sources when only their mixtures with unknown co-
efficients are available. Source separation can be considered as the
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combination of many active research threads such as: speech enhance-
ment Vincent et al. (2018), speech separation Makino et al. (2007);
Yousefi and Hansen (2021), waveform preserving estimation Tong et al.
(1993); Sidiropoulos et al. (1998), music separation Ozerov et al.
(2007); Luo et al. (2017), etc. Each of these research sub-communities
make specific assumptions on the structure and properties of the
active sources in the mixture, which results in problem-specific solutions
to the cocktail party problem. Given the central role of overlapping
speech detection and separation in the cocktail party scenario, in this
study, we focus on single-channel speaker-independent speech
separation.

The pioneering work of separating audio signals from a mixture was
represented by Bregman in Bregman (1990). He noted that the auditory
system performs an Auditory Scene Analysis (ASA) on the mixture signal
entering the ear. ASA is executed in two steps: (i) the acoustic signal is
decomposed into a number of sensory components, and (ii) the com-
ponents that are likely from the same source are combined into a single
stream. Based on this study, Computational Auditory Scene Analysis
(CASA) was proposed in Brown and Cooke (1994). CASA attempts to
model different parts of the biological auditory system that encomposes
outer ear, middle ear and inner ear. In this approach, the signal is passed
through a set of filterbanks that mimics the sound transduction per-
formed by the inner hair cells. Next, for each filterbank output, peri-
odicity, frequency transition, oneset and offset are calculated. Using
pitch tracking techniques and labeling T-F bins, CASA groups the voice
and unvoiced segments likely belonging to the same source. Finally,
each waveform is reconstructed based on the source-specific segments
Brown and Cooke (1994).

Independent Component Analysis (ICA) is another main technique
introduced to address source separation Comon (1994). The strength of
ICA as a separation tool resides in a realistic assumption that different
physical processes generate unrelated signals. Therefore, when given a
mixture of multiple speech sources, ICA identifies those unrelated sig-
nals which are voice traits of different speakers Comon and Jutten
(2010). In ICA, data vectors are represented using weighted a linear
combination of basis functions. Higher order statistics are needed to
derive the independent coefficients of each basis. ICA removes not only
correlation but also higher order dependence between the estimated
bases, which has contributed to its success in extracting individual
sources Lee (1998). Several years later, a powerful decomposition
method called Non-Negative Matrix Factorization (NMF) was intro-
duced, which has been very effective in modeling latent structure of data
Lee and Seung (1999). NMF finds the parts-based representation of
non-negative data through matrix decomposition, and therefore it is
capable of extracting underlying speech sources from a mixture Lee and
Seung (2001). A number of techniques have been developed based on
NMF Hoyer (2004); Ding et al. (2005). Sparse NMF and Convolutive
NMF (CNMF) are among the most popular Yousefi and Savoji (2016).
CNMF outperforms NMF by modeling the temporal continuity of the
speech signal in a time span of several frames O’Grady and Pearlmutter
(2006); Smaragdis (2006). Although both ICA and NMF are supervised
machine learning approaches and can learn useful patterns from the
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input data, the linear structure of the trained model in both ICA and
NMF prevents it from learning complex structure within the speech
signal. Thus, non-linear machine learning approaches such as Deep
Neural Networks have been of interest.

Recently, learning-based approaches have boosted the performance
of speech separation dramatically Wang and Chen (2018); Hershey et al.
(2016); Yousefi and Angkititrakul (2021). Deep Clustering (DPCL)
Hershey et al. (2016) was among the first approaches that made sig-
nificant progress in extracting speech signals out of a mixture without
prior information concerning the number of speakers. DPCL converts the
mixture speech into an embedding space using an Recurrent Neural
Network (RNN), with hope that T-F bins belonging to the same speaker
establish a cluster in the embedding space. K-means clustering is used in
the embedding space to identify these clusters. Finally, another network
is trained based on T-F bins grouped in each cluster to estimate
source-specific masks in order to recover the individual speech signals
from the mixture Hershey et al. (2016). Another related technique called
Deep Attractor Network (DANet) was introduced in Chen et al. (2017).
Similar to DPCL, DANet projects the T-F bins of the mixture into an
embedding space. DANet uses Expectation-Maximization (EM) to
represent each speaker in the embedding space using a vector called an
attarctor point such that the T-F bins belonging to that speaker are
pulled toward the corresponding attractor point. Finally, the speech
signals are estimated based on the grouped T-F bins around each
attarctor point Luo et al. (2018).

Permutation Invariant Training (PIT) Yu et al. (2017); Kolbzk et al.
(2017) is another effective solution which performs separation in two
steps: first, it trains a neural network to separate the specific speech
sources, and second, it finds the best output-label assignment to mini-
mize the separation error. However, since the network generates unre-
liable outputs in the initial steps of training, the costs of different
output-label permutations are close. The inefficiency of PIT in address-
ing permutation ambiguity has been considered in our previous study
Yousefi et al. (2019). Therefore, we proposed Probabilistic PIT (Prob--
PIT) which defines a log-likelihood function based on separation errors
of all possible permutations. Unlike conventional PIT that uses one
output-label permutation with the minimum cost, Prob-PIT uses all
permutations by employing the soft-minimum function Yousefi et al.
(2019). The effectiveness of Prob-PIT is achieved only when the pa-
rameters of the log-likelihood cost function are tuned well for each
dataset. This can be very tedious and may require extensive time and
computational resources to find the best hyperparameter value. To
address this issue in Prob-PIT, in this study, we build on our previous
work Yousefi et al. (2019) and propose a novel trainable Probabilistic
PIT which we call Soft-minimum PIT to resolve the label permutation
ambiguity challenge without requiring manual tuning of the parameters
of the log-likelihood cost function. The contributions of this study are
threefold:

e Proposing a novel trainable Probabilistic Permutation Invariant
Training framework called soft-minimum PIT for single-channel su-
pervised speech separation.

residual interference.

—Hofr et

Fig. 1. Speech separation performed by human auditory system. The separated speech sources still contain residual speech from interfering talker.
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e Comparing the results of both training and tuning of the hyper-
parameters of the log-likelihood cost function.

e Comparing the results of our proposed system with the conventional
PIT.

The remainder of the paper is organized as follows. We present the
problem formulation, generating overlapping speech mixtures, and
extracting spectral features in Section 2. Details of the proposed train-
able Prob-PIT are explained in Section 3. We report on the experimental
procedures and results in Section 4. The results are discussed in Section
5, and finally the conclusion is presented in the last section.

2. Problem formulation

Speech separation is extremely challenging under the single-
microphone speaker-independent scenario, where no prior speaker in-
formation is available during evaluation. In supervised approaches,
speech separation is formulated as a linear combination of single-
speaker speech signals:

HM:Z)M]

in which S is the total number of speakers in the mixture signal y, and x;
is the speech signal corresponding to speaker s. While the number of
total speakers S is assumed as available prior information, the goal of
speech separation is to estimate the speaker-specific speech signals x;
from the mixture y. In this study, we consider the case of two-talker
mixed speech separation. Therefore, Eq. 1 is modified as:

@

yln] = xi[n] + xa[n] @
with x; [n] and x2[n] represent the speaker-specific speech signal. Speech
separation is generally performed in the frequency domain by trans-
forming the signals using the Short-Time Fourier Transform (STFT). The
main reason for this choice is that the speech structure such as har-
monics, formants, and energy densities of are better represented in this
domain. Therefore, speech separation is formulated as the task of
recovering (STFT) of the source signals X;(t, f) for each time frame t and
frequency bin f, given the mixed speech. However, since estimating
phase information of this STFT representation is still an open problem

Speaker A
0 dB mixed speech signal
'8 Y
Speaker B / D

Model training phase:
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Williamson et al. (2016), the phase information is acquired from the
overlapping speech signal, and the separation is simplified to the task of
estimating the magnitude spectrogram of the speaker-specific speech
signals X; and X, from the mixture Y as:

Y(fvt) :Xl(f’t) +X2(fvl)7 (3)

where Y and X represent the magnitude spectra of y and x. The esti-
mation of magnitude spectra of speech is usually achieved by training a
model using supervised learning techniques. However, due to label
permutation ambiguity, training a robust model for speech separation is
challenging. Permutation ambiguity as depicted in Fig. 2, happens only
in the model training stage and affects system performance in the testing
phase. In Fig. 2, a single-channel mixed speech signal is processed by a
DNN-based separation system. The goal of this separation is to extract
speech signals corresponding to speakers A and B from the input
mixture. Since there are only two speech sources in this mixture, the
separation system has two outputs named o0; and o,. Each output con-
tains a separated speech waveform corresponding to one of the speakers
in the mixed speech. If the separation system is used for test, estimated
speech signals at output 1 o; and output 2 o, are the separated final
streams. However, in training, additional processing steps are required
for updating the model parameters in each epoch. In supervised
learning, updating parameters of the model is accomplished by
comparing model’s output with the desired ground truth signal, which
in this application is the single-speaker speech waveform. The more the
model output is similar to the desired label, the less the model’s pa-
rameters are updated.

One important component in training, is backpropagation of the
separation error which is the process of calculating the gradient of the
error function with respect to the neural network’s weights. Therefore,
the effectiveness of backpropagation is highly dependent on the correct
and precise value of the separation error. At this point, this question
rises: "Which single-speaker speech waveform should be used as the
desired form of each output?”. Effectively, we should find the correct
order between the outputs and the labels. There are two possible
solutions:

Scenario 1:

e Outputl: is the estimated speech related to Speaker A.
e Output2: is the estimated speech related to Speaker B.

~ Output 1
DNN-based | Output W‘f"’”’"“t""'
speech separation Output 2 =

\\
s uss LU

2 i
L, :
" Backpropagation requires the o Output 1 Speaker A 4
gradients of the separation error. WhptvE (== Sy Separation '
Permutation 1< 2 = = error 1 ﬁ;
J_L Output 2 Speaker B [ﬂ :
7 N thptetiegret  mm it - ~ :
~ For calculating the separation L Permutation ambiguity: !
error, clean speech labels should Which error should be used for :
be assigned to each output backpropagation ? i
= ~2 & P |
J—L ‘ Output 1 Speaker B } LT\ 1
pprtrirh - Hpprteieh— || i ) 1
, ‘ . Separation @,/ 1
There are two possible Permutation 2 Output 2 SpeakerA ) 2 W error 2 ]
output-label assignment ‘ ’— i
htetto-qret " !
(permutations) ks e B (=Y X’ i

~

Fig. 2. Single-channel speaker-independent speech separation pipeline. Once the speaker-specific speech signals have been recovered at the output of the separation
system, they should be assigned to their corresponding clean speech versions i.e. speaker A or speaker B for separation loss calculation. The permutation ambiguity
caused by different possible output-label assignments leads to different separation errors causing gradient conflict in the training phase.
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Scenario 2:

e Outputl: is the estimated speech related to Speaker B.
e Output2: is the estimated speech related to Speaker A.

As shown in Fig. 2, each scenario is a possible permutation which
results in alternate separation errors. For two-talker speech separation,
there are two possible output-label assignments (permutation) and
accordingly two possible separation errors. In general, for S sources in a
mixture, there are S! alternate possible permutations, which causes S!
different cost functions. In neural network training, it is necessary to find
the correct separation error (correct cost function) and then perform
back-propagation through the correct cost. The general consensus is to
perform backpropagation through the gradients of the minimum sepa-
ration error. This is the technique used in Permutation Invariant
Training (PIT) speech separation method which has been shown to be
effective in addressing the permutation ambiguity Yu et al. (2017).
However, it has been discussed Yang et al. (2020); Yousefi et al. (2019)
that the hard decision on choosing the minimum cost as the best solution
results in training a sub-optimal separation model. To be more specific,
the process of choosing the correct separation error is more challenging
in the initial epochs of training, where the network is still naive and its
outputs are not reliable. In those first epochs, costs of different permu-
tations are very similar, and minimum separation error does not
necessarily represent the correct output-label assignment. Therefore, the
network will be trained based on a wrong decision epoch after epoch,
which finally will contribute to a sub-optimal separation model.

To address this problem, it is important to optimize both model pa-
rameters and label assignments in the training phase. However, PIT uses
a fixed label-assignment for every epoch and the benefit of using a
flexible label assignment has not been explored sufficiently in the
literature. The authors in Yang et al. (2020) have showed that label
assignments chosen based on minimum separation error may be very
random especially in initial epochs where network outputs show poor
results. They studied the behavior of their network in selecting the
output-label assignment, and discovered that the selected label assign-
ments for a high percentage of training examples may be reversed in two
consecutive epochs Yang et al. (2020). This rapid decision flip confuses
both the network and the optimizer, which leads to updating the model
parameters in opposite directions. These observations are detrimental in
the training phase, which manifest the inadequacy of PIT.

Additionally, in our previous study, we explored the distributions of
both separation errors associated with the possible permutations in a
two-talker speech separation scenario Yousefi et al. (2019). The Kernel
Distribution Estimation (KDE) of both separation error 1 and separation
error 2 were plotted which revealed the inseparability of the separation
errors in the first epoch of training. In the calculated KDE, errorl and
error2 are more likely to be observed in regions where their values are
very close Yousefi et al. (2019). We showed that choosing the minimum
cost may lead to assigning the wrong label to the network output which
affects quality of the trained model. Therefore, we proposed Probabi-
listic PIT (Prob-PIT) Yousefi et al. (2019) in which the output-label
permutation was considered as a discrete latent random variable with
a uniform prior distribution. Next, a log-likelihood function was defined
based on prior distributions and separation errors of all possible per-
mutations. We optimized the network parameters by maximizing the
log-likelihood function. Unlike conventional PIT that enforces a hard
decision by using one output-label permutation with the minimum cost,
Prob-PIT uses all permutations by employing the soft-minimum function
where leads to better overall separation results. To achieve a possible
optimal possible model, in the cost function of Prob-PIT, a hyper-
parameter was defined and manually tuned. However, manual tuning
for the best value is a tedious process, which required extensive
computational resources. Despite spending time and computational
costs, the optimum value may not be found in challenging situations.
Therefore, in this study we define a novel training framework in which
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the optimum value for the cost function parameter is learned from data
during the training phase.

3. Trainable prob-PIT

We introduce the soft-minimum Permutation Invariant Training
method in this section. As noted in Section 2, assume X; and X, contain
magnitude spectra of speaker-specific clean speech signals shown as X =
[X1,X5] and Y is the magnitude spectra of the overlapping speech as
introduced in Eq. 2. In supervised learning, we are give pairs of mixed
speech signal and their associated single-speaker speech signals in the
form of (Y, X) and our task is to train a model that estimates X based on
the mixed speech Y observation. In the following subsections, we
describe the proposed generative speech model, the network architec-
ture, and the training framework in detail.

3.1. Model structure

In this proposed speech separation method, we define the magnitude
spectra of single-speaker clean speech using a generative model as:

X=X +e, @

in which X is the estimated magnitude spectra by employing the sepa-

ration system and e is the separation error. For deriving X, we assume
the neural network D(#) with learnable parameters 6 is employed. The
network D(6) takes overlapping speech observation Y as input, and es-
timates two speaker-specific speech signals in its outputs O; and Oa:

0,,0, =D(Y,0), 5)
Once outputs O; and O, are derived, the goal of separation is accom-
plished. However, to build a reliable separation model, several epochs of
training are required. In the training phase, backpropagation is per-
formed to update the network parameters 6 in order to optimize for the
separation task. Backpropagation computes the gradients of the loss
function with respect to the network parameters 6 for each example in
the dataset (i.e. each pair of (Y,X)). As noted in Section 2, for two-talker
overlapping speech separation, there are two possible permutations
between outputs O; and O, with clean speech labels X; and X,. These
two possible permutations lead to two alternate separation costs as
depicted in Fig. 3. This situation causes a gradient conflict because it is
not clear to the optimizer which separation cost should be used for the
gradient calculation in backpropagation. In contrast to PIT, we define a
one-to-one permutation function Z(.) to solve the permutation ambi-
guity. The function Z(.) permutes the order of the network outputs to
match the correct order of the single-speaker speech labels. In a two-
talker speech separation scenario, the permutation function, Z(.), can
take two forms as follow:

X =7(0,,0,), 6)

As noted, the possible output-label assignment is considered as a
latent variable with a uniform distribution. Therefore, in our task, the
function Z(.) can take two forms: z;(.) and 2,(.) such that:

[01,0:] = z1([01, 04)),

[02,01] = (01, 02)). )

In general, if there are S active speakers in the mixture audio signal,
there are S! possible permutations between the network outputs and the
clean speech labels. This means that the permutation function Z(.) will
have S! possible forms, with all having the same probability of . Only
one permutation (either z; or 2,) is considered as the correct response.
Therefore, by replacing X in Eq. 4 with Eq. 5 and 6, the generative model
can be reformulated as:

X =Z(D(Y,0)) +e, (8)
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Fig. 3. Speech separation network architecture. First, the mixed speech is transformed to frequency domain using STFT. Next, the magnitude spectra of mixed speech
is fed to a two-layer LSTM network followed by two Fully Connected (FC) layers for speaker-specific mask generation. Once the speaker-specific speech signal are
estimated, they are passed to the permutation function Z(.) for finding the best output-label assignment. Finally, the separation error is calculated based on the

selected permutation.

Here, both ¢ and the permutation function Z(.) are latent variables. ¢
is the estimation error which is typically modeled by a standard
Gaussian distribution with mean zero and variance ¢2. Also, depending
on the number of active speakers in the mixture, the permutation
function Z(.) could have different possible forms with uniform distri-
bution. Eq. 8 is therefore our proposed generative model to represent
single-speaker speech in this work.

3.2. Model training

In Section 3.1, we defined the proposed model pipeline. However,
this model contains thousands of hyperparameters that must be trained
based on extensive amounts of data. In contrast to conventional PIT, in
our supervised training approach, we optimize the hyperparameters of
the model by maximizing the log-likelihood function. The probability of
estimating the speaker-specific speech signal X conditioned on the
observation of the mixed speech signal Y, is the likelihood of the model
which we aim to maximize. According to Bayes rule, the likelihood
P(X]Y) can be rewritten as:

>

All possible Z

P(X|Y) = P(X|Z,Y)P(Z). )

Here, P(Z) is the probability of each possible permutation, which is
set to & for S active speaker in a mixed speech signal. Therefore, P(Z) is
not dependent on z. P(X|Z,Y) can be derived based on the Eq. 8. The
distribution of X is determined by the distribution of ¢ with a new mean
as:

P(X|Z,Y) =4 (Z(D(Y,0)), 6°1), (10)
where, [ is the identity matrix and ./" is the Gaussian distribution. By
replacing P(X|Z,Y) in Eq. 9, and inserting the Gaussian distribution

equation, the following expression is obtained for the log-likelihood

function :
( ) (11

I X —2z(D(¥,0)) |?
v

logP(X|Y) =

+ logZexp

1
log + log——
! Al Z

N
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where y = 262. The log-likelihood function expressed in Eq. 11 is
maximized in order to train the model. However, due to the logarithm
function, this equation might be numerically unstable. Therefore, to
ensure stability, we employ the log-sum-exp stabilization procedure:
log) ;€% = max;x; 4+ log) ;e ™% The following equations show the
numerically stable form of Eq. (11):

— Zminl 0
logP(X|Y) = M-‘r

log< <67(me’ 0)}/7 ez 9))) —log\ym+ C,

e(2,0) = || X - Z(D(Y,0)) |I*,

1+ Zexp

ZFZin

(12)

Zoin = argmzine(Z7 0).

Here, e(Z,0) is the separation error of the permutation Z, and Z,;, is
the permutation that has the minimum separation error. Noted earlier, y
is equal to 202, and ¢? is the variance of the estimation error in the
proposed model. Since e(Z,,,) — e(2) is always negative, both exponen-
tial and logarithmic functions are numerically stable.

From Eq. 12, the model parameters 6 are optimized to maximize the
log-likelihood function logP(X|Y). This optimization is performed by
applying the smooth minimum of the costs of all permutations with a
smoothing factor of y. The first part of this cost function is — e(Zuin,6),
which is the minimum error among all possible label permutations. This
is the same cost that conventional PIT uses. The second part of the
equation is the cost of all other possible permutations. Alternatively, by
setting y to larger values, a compromise is obtained between the cost of a
minimum permutation versus the cost of all permutations (please refer
to Yousefi et al. (2019) for more details).

4. Experiments
4.1. Dataset

As reported in von Neumann et al. (2019), real-world recording
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datasets such as AMI only contain approximately 5-10% overlapping
speech, which may not be sufficient for training a neural network model
without overfitting the data. Therefore, we follow the same mixed
speech generation process used in Yu et al. (2017); Hershey et al. (2016);
Chen et al. (2017); Yousefi and Hansen (2020b). We generate over-
lapping speech utterances based on the GRID corpus, which is a
multi-speaker, sentence-based corpus used in a monaural speech sepa-
ration and recognition challenge Cooke et al. (2006). This corpus con-
tains 34 speakers, 16 female and 18 male speakers, each providing 1000
sentences, which have been frequently used in several overlapping
speech detection and separation studies Yousefi et al. (2018); Shokouhi
and Hansen (2017); Tu et al. (2015); Yousefi et al. (2019). To generate
mixed speech utterances, random speech recordings are selected from
random speakers. The chosen utterances are first processed through a
Speech Activity Detector (SAD) for removal of silence segments. Most
recordings in the GRID corpus have almost the same duration. However,
for utterances with different duration, longer utterances are cut so that
their length matches the shorter utterance, then they are summed with a
random Signal-to-Interference Ratio (SIR), which is uniformly distrib-
uted between 0 to 5 dB. Each data sample in our generated corpus
contains three waveforms, the two selected random utterances and the
output generated mixed speech. For each dataset, we have generated
10h of mixed data for the training set, 4h for development, and 2h
mixtures for the test set” Also, speakers used for generating the test set
are separate from those used in training and development sets.

4.2. Evaluation metrics

Speech separation techniques are usually evaluated using the blind
source separation evaluation (BSS-EVAL) toolbox Vincent et al. (2006);
Wang and Chen (2018). Two of the widely used measures from this
toolkit are Signal-to-Distortion (SDR), Signal-to-interference Ratio (SIR),
and Signal-to-Artifact Ratio (SAR) in the estimated speech signals. SIR
and SAR measure different types of residual noise in the estimated
speaker-specific speech signal. SIR assesses the remaining noise due to
the residual interference in the separated speech signal which is called
mis-separation noise. Also, SAR measures the noise related to the
reconstruction algorithm which includes, glitches due to the STFT phase
estimation process. SDR measures the distortion introduced to the esti-
mated signal by both mis-separation and the reconstruction algorithm.

Both SDR, SIR, and SAR have been shown to be well correlated with
human assessments of signal quality Fox et al. (2007). From a mathe-
matical point of view, SDR is defined as the ratio of the target signal
power to the distortion introduced by the interference, reconstruction
noise, and all other background noise. SIR is defined as the ratio of the
target signal power to that of the interference signal still remained in the
separated speech. SAR is defined as the ratio of the estimated signal
power to the reconstruction noise. In this study, we evaluate system
performance using these two metrics Vincent et al. (2006).

4.3. Experimental results

For network training, a 129-dim STFT magnitude spectra is
employed, computed over a frame size of 32ms with a 50% frame shift.
The network architecture consists of two Long Short-Term Memory
(LSTM) Network with 128 neurons each. The output of the last LSTM
layer is passed to the Softmax activation function which adds a non-
linearity to the model. Next, two different fully connected layers are
used to estimate speaker-specific masks. Finally, by multiplying the
estimaed masks wih the overlapping speech magnitude spectra, two
magnitude spectra with dimension [129 * frame-number] are generated
for the two speech sources. This architecture is one of the effective
structures employed by conventional PIT in Yu et al. (2017). Since the

2 The corpus generated here will be shared with the speech community.
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memory cells in LSTM keep track of the speaker-specific information,
this architecture is a suitable choice for speech separation Chen and
Wang (2017). However, since a different dataset has been used in this
study, we tune the hyperparameters to ensure that network has a viable
initial setup for the speech separation task prior to experiments. The
network is trained for 50 epochs using Adam optimization algorithm.
Our experiments show that a dropout rate of 20%, and a learning rate of
0.0005 reduced by 0.7 when the cross-validation loss improvement is
less than 0.003 in two successive epochs, are the best choices for the
hyperparameters.

Baseline PIT- In this study, we compare our proposed method with
PIT introduced in Yu et al. (2017). PIT minimizes the mean-square-error
of the estimated speech signal to train the network. To do so, PIT selects
the permutation with minimum cost throughout backpropagation. The
cost function used in PIT is as:

Costipny=I| X = X|P" = | X = Z,uu(D(Y,6)) |[* a3)
Constant y Soft-minimum PIT- The results of our proposed approach is
shown in Table 1. Evaluation metrics are reported for both speaker-
specific estimated speech signals. For each reconstructed waveform,
SDR, SIR, and SAR are reported. As mentioned in the previous section,
PIT is considered as the baseline. As shown in Table 1, 1 <y <5 im-
proves the PIT baseline, however, the choice of y = 2 seems to be the
best choice with the best output performance in terms of SDR and SIR.
Larger choices of y result in under-performing PIT, which is expected as
the optimizer ignores the permutation with the minimum cost.

Additionally, as mentioned in Section 3, y is equal to y = 2 % ¢2, in
which ¢ is the variance of the separation error. Therefore, when y = 2,
the variance of the separation error is set to ¢ = 1 which is a reasonable
choice for the separation cost.

It is worth mentioning that, the core role of y is in the training phase.
Our motivation in defining the log-likelihood function in Eq. 12 was to
prevent the network parameters to be trained based on an unreliable
cost function. Therefore, the log-likelihood function uses y to replace the
minimum cost by the soft-minimum cost function which results in a
smoother optimization landscape and therefore the model is less likely
to converge to a poor local minimum. Once the model is trained, the
separation performance is evaluated by other metrics such as SDR, SIR,
and SAR. Thus, in the testing phase, we follow the PIT testing procedure
and set y to zero.

During testing, we still need to find the correct output-label assign-
ment for determining SDR, SIR, and SAR. In our proposed approach,
there are two possible options in the testing phase: (i) choosing the
output-label assignment with minimum separation loss, and (ii)
choosing the output-label assignment with the permutation that maxi-
mizes the log-likelihood function with the same assigned y in the
training phase. These two approaches are evaluated and plotted in
Fig. 4. Here, the blue bars represent the first case in which y is set to zero
during the testing phase. Alternatively, the red bars represent the case in
which y in the testing phase is the same value as in the training set. As
depicted in the plot, system performance is much better when y = 0 in
terms of SDR and SIR, This is expected as our proposed method is aimed

Table 1

The results of the proposed Soft-minimum PIT speech separation in terms of
Signal to Distortion ratio (SDR), Signal to Interference Ration (SIR), and Signal
to Artifacts Ratio (SAR) for both speakers in the mixture. y = 2 maximizes the
log-likelihood of he separation cost and results in the best performance.

Speaker 1 Speaker 2
Constant y SDR SIR SAR SDR SIR SAR
PIT 6.6693 8.1966 13.0914 2.9977 4.5250 10.3076
y=1 6.8775 8.4905 13.0699 3.2571 4.8916 10.2669
y=2 7.1894 8.9429 13.0547 3.6061 5.3652 10.2844
=3 6.9817 8.6556 13.0409 3.3853 5.0869 10.2152
y=4 6.8852 8.4423 13.4668 3.1657 4.6821 10.9357
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Fig. 4. The comparison of speech separation performance for different y values in the testing phase. As depicted in the plots, once the model is trained with the Soft-
minimum PIT method, y should be set to Zero in the testing phase. This is because the trained model is reliable in the testing phase and the permutation with the

minimum loss is the correct output-label assignment.

at modifying the training process to result in a higher quality separation
model with improved performance. As mentioned in Section 2, choosing
the permutation with a minimum cost in the training phase confuses the
model and optimizer, and leads to updating the model parameters to-
ward opposite directions in successive epochs. However, once the model
is trained by maximizing the log-likelihood of all possible separation
costs, the testing phase should be performed by selecting the permuta-
tion with the minimum cost.

Trainable y Soft-minimum PIT- The main limitation of the soft-
minimum PIT is finding the right value for y. This can be exhausting
since it requires time and computational resources which makes it a sub-
optimal tuning process. Therefore, instead of tuning this parameter, in
this section, y is trained by the optimizer.

The separation performance for the trained y is reported in Table 2.
The reported values for y in the first column are the initial values for this
trainable parameter. As reported in the table, the initial value of y = 1
leads to the best performance in terms of SDR and SIR. However, in
terms of SAR, some degradation is observed for which the root cause and
potential methods to address this bimodal performance change is still
under investigation. In our experiments, after several epochs, y
converged to a number in the range [1.5 < y < 2], and it was very close
to the manually selected value reported in the previous table. Since the
optimal value of y for the data used is in the range of [1,2], then setting
the initial value of y higher than 1 makes it more challenging for the
optimizer to converge to the optimal y, causing an overall lower
performance.

Furthermore, in order to minimize the effect of parameter initiali-
zation on our final separation metrics, we train each network five times
with different initial parameters. The distributions of the final evalua-
tion metrics of those five experiments are depicted in Fig. 5. In these
plots, the boxplot and kernel distribution estimation of those five ex-
periments are depicted. The boxplot is a standardized way of displaying
the distribution of experiments based on a five number summary, which
are the minimum, first quartile (Q1), median, third quartile (Q3), and
maximum. Additionally, each violin-shaped object represents the kernel
distribution estimation of the results. The more the result points are in a

Table 2

The results of the proposed Soft-minimum PIT with trained y in terms of Signal to
Distortion ratio (SDR), Signal to Interference Ration (SIR), and Signal to Artifacts
Ratio (SAR) for both speakers in the mixture. The initial value of y = 1 is the best
option for learning its optimal value.

Speaker 1 Speaker 2
Initial value SDR SIR SAR SDR SIR SAR
y=1 7.6471 9.8187 12.6322 4.2793 6.6073 9.6374
y=2 7.2199 9.0586 12.8717 3.6579 5.5009 10.1288
y=3 7.1882 8.9946 12.8792 3.6487 5.4935 10.0569
y=4 7.0982 8.8117 13.1499 3.4787 5.1941 10.4676
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specific range, the larger the violin is for that range. Also, each blue
circle on the blue line represents the mean of the evaluation metrics in
the five experiments for each separation system. The black solid line is
the mean of the performance metrics for y = 0 as the PIT baseline.

The first row in Fig. 5 represents the distribution estimation for the
fist separated speaker in terms of SDR (first row, first column), and SIR
(first row, second column). Likewise, the distribution estimation plots
are depicted for the second speaker in the second row. As shown, the PIT
separation method has a long and narrow violin response with high
variance of the results. This system behavior is not desired because the
output performance is not reliable and may tend to vary significantly.
However, in our proposed soft-minimum PIT for both constant y and
Trained y the violin plots tend to be wide and short which confirms a
small variance in the output results. However, as mentioned before,
since manual tuning of y does not guarantee finding the optimal value,
this approach is sub-optimal compared to learning y in the training
phase. Once the optimal value for y is learned by the optimizer, the SDR
of the first speaker is improved by almost +1dB compared to the base-
line PIT. This is almost +13% relative improvement with lower vari-
ance, revealing the superiority and reliability of the proposed approach
compared to PIT. In terms of SIR, training y in the proposed soft-
minimum PIT achieves the best results with +1.5dB improvement
compared to PIT. Similar to SDR, the variance of the output SIR is lower
in the Trained y scenario. Nevertheless, as depicted in the second row of
Fig. 5, the pattern of the results is repeated for the second speaker as
well. The output SDR and SIR for the second speaker have the same
relative improvement in the proposed approach compared to the base-
line. This is a very important accomplishment, because the second
speaker has lower energy in the mixture (due to the lower input SDR we
chose in the mixing process), therefore, recovering such a degraded
signal is very challenging. Additionally, most separation systems are
only effective in recovering the target speaker speech from the mixture
at the expense of the remaining speaker-specific speech signals. There-
fore, an effective speech separation solution should be capable of
recovering both speakers from the mixture with the same level of
quality. Similar to the first speaker, once soft-minimum PIT is employed
in the training phase, the variance of the output SDR and SIR for the
second speaker is also lowered compared to PIT.

5. Discussion

In general, speech separation is usually performed in two steps (i)
separating the specific speech sources, and (ii) determining the best
output-label assignment, allowing for assessment of separation error via
the evaluation metrics. The second step called label permutation ambi-
guity has been a long standing challenge in training neural networks for
speech separation. Recently proposed Permutation Invariant Training
(PIT) addressed this problem by determining the output-label
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Fig. 5. The boxplot and kernel distribution of the Baseline (PIT), Soft-minimum PIT with Constant y, and Soft-minimum PIT with trained y is depicted. For each
separation system, 5 experiments have been performed. Each violin-shaped object represents the boxplot and the kernel distribution estimation of those five ex-
periments. The black solid line represents the mean of the results for the PIT baseline. The blue circles on the blue line are the mean of the output evaluation metrics
for other two separation method: Constant y in Soft-minimum PIT and Trained y in the Soft-minimum PIT. As shown in the figure, the proposed soft-minimum PIT in
both scenarios outperforms PIT baseline. Additionally, the output SDR and SIR of the proposed method have a lower variance for both separated speakers. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

assignment which minimizes the separation error. In PIT, a neural
network is trained that separates the speaker-specific speech signals. In
the training phase, PIT determines the best output-label assignment
which minimizes the separation error. Next, backpropagation is per-
formed based on the minimum separation error. However, studies
Yousefi et al. (2019); Yang et al. (2020) have shown that choosing the
minimum separation error is a hard decision imposed on the optimizer,
especially in the initial epochs of training where network is still naive.
Each possible output-label assignment result in a different cost function.
In the initial epochs of the training, the value of these costs are very
close. Therefore, the minimum separation error does not necessarily
represent the correct output-label assignment. Additionally, in the
beginning of the training phase, the selected label assignments may be
reversed in two consecutive epochs which confirms the unreliability of
the network output. If backpropagation is performed based on only the
minimum separation error, then the rapid decision flip confuses both the
network and optimizer, which leads to updating the model parameters
toward opposite directions. Therefore, updating network parameters
based on the cost of one single permutation is not an optimal solution,
and leads to an inefficient training of the network. These observations
are detrimental in the training phase, which manifests the inadequacy of
PIT.
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In contrast to PIT, we propose the Soft-minimum PIT which considers
the output-label assignment as a latent variable with uniform distribu-
tion. In Soft-minimum PIT, the network is trained by maximizing the
log-likelihood of the prior distributions and the separation errors of all
possible permutations. Since in the proposed method, all possible
output-label assignment are taken into consideration in the back-
propagation, the optimization landscape becomes smoother, which is in
contrast to the hard decision of minimizing the Mean-Square-Error of
the minimum separation cost performed in PIT. In the Soft-minimum
PIT, the smoothness of the cost function is controlled by y, which is 2
62 with ¢ being the variance of the separation error. In this work, we
have explored both tuning and training y in the proposed method to
evaluate the separation performance. The results of our experiments on
the simulated two-talker overlapping speech dataset shows that Soft-
minimum PIT outperforms PIT significantly (p-value < 0.01). Also, the
greatest improvement is achieved by training y with other parameters of
the network. Trained y in the Soft-minimum PIT results in improved
output SDR and SIR by +1dB and +1.5dB with lower variance during
multiple repeated experimental runs with different initialization.

The effectiveness of the proposed Soft-minimum PIT can be attrib-
uted to several reasons. The core strength of Soft-minimum PIT is the
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incorporation of all possible output-label assignments in training the
model parameters. This is in contrast to PIT, which uses a hard decision
in assigning the output-label permutation that minimizes the total sep-
aration error. During training, the network is not able to estimate the
speaker-specific speech signals correctly, therefore, its decision in
assigning the correct output-label permutation is not reliable. Also, since
in the initial epochs of training, all model parameters are randomly
selected, so the separated speech signals at the output are far from the
desired speech signals. Consequently, the separation error of different
possible permutations are very similar and the correct output-label
assignment does not necessarily have a minimum separation loss.
Therefore, if the selected output-label permutation in PIT is not correct,
then the model parameters are updated based on a wrong decision,
resulting in deteriorating the training process.

In addition, it has been shown Yang et al. (2020) that the
output-label assignment selected in PIT tends to change in two succes-
sive epochs for most of the data samples in the corpus. This uncertainty
in finding the correct permutation causes a disorientation in the opti-
mizer because the model parameters are updated in opposite directions
for most of the initial epochs. Hence, in our Soft-minimum PIT, we
consider the costs of all possible permutations for training the network
in a probabilistic framework.

Another reason for the success of our proposed approach is that the
minimum cost function used in PIT is replaced by a soft-minimum
function. In several applications of machine learning, it has been
shown that replacing the minimum by the soft-minimum results in a
smoother optimization landscape and therefore it is less likely to
converge to a poor local minima. This can also be explained in terms of
the decision flips that PIT experiences during training. Since in Soft-
minimum PIT the decisions are reliable and comprehensive, then the
optimization landscape does not have many poor local minimums. Two
core observations in this study confirms this finding for speech separa-
tion as well. First, SDR and SIR values of the soft-minimum are better
than PIT significantly (p-value < 0.01); (2) the variance of SDR and SIR
values are lower for both constant and trained y. A lower variance in the
results show a more stable system, which may be caused by a smoother
optimization landscape.

6. Conclusion

In this study, we proposed Soft-minimum PIT to address label per-
mutation ambiguity in speech separation. For Training single-channel
speaker-independent speech separation models, two steps are
required: first, estimating the speaker-specific speech signal; second,
finding the correct output-label assignment for calculating the separa-
tion error. The second step known as label permutation ambiguity has
been a long-standing challenge in training neural networks for the task
of speech separation. One general solution introduced in PIT proposes to
train a neural network based on the output-label assignment with min-
imum separation cost. Unfortunately, the hard choice of minimum cost
permutation is not the best technique, especially in initial epochs of
training where the network is still not strong enough to effectively
separate the speech signals. In contrast to PIT, in our proposed Soft-
minimum PIT, we consider all possible permutations as a discrete
latent variable with a uniform prior distribution. Next, we trained the
network by maximizing the log-likelihood function defined based on
prior distributions and separation errors of all possible permutations. In
our proposed approach the smoothness of the decision was controlled by
a variable parameter that can be either tuned or trained. In this study,
we explored both cases and results based on GRID datasets show that the
proposed Soft-minimum PIT significantly outperforms PIT in terms of
SDR and SIR. This solution therefore offers a viable option to effectively
separate overlap/mixed speaker audio streams, especially in naturalistic
audio scenarios.
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