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Abstract—Training Automatic Speech Recognition (ASR) sys-
tems with sequentially incoming data from alternate domains is
an essential milestone in order to reach human intelligibility level
in speech recognition. The main challenge of sequential learning
is that current adaptation techniques result in significant per-
formance degradation for previously-seen domains. To mitigate
the catastrophic forgetting problem, this study proposes effective
domain expansion techniques for two scenarios: 1) where only
new domain data is available, and 2) where both prior and new
domain data are available. We examine the efficacy of the ap-
proaches through experiments on adapting a model trained with
native English to different English accents. For the first scenario,
we study several existing and proposed regularization-based ap-
proaches to mitigate performance loss of initial data. The exper-
iments demonstrate the superior performance of our proposed
Soft KL-Divergence (SKLD)-Model Averaging (MA) approach. In
this approach, SKLD first alleviates the forgetting problem during
adaptation; next, MA makes the final efficient compromise between
the two domains by averaging parameters of the initial and adapted
models. For the second scenario, we explore several rehearsal-based
approaches, which leverage initial data to maintain the original
model performance. We propose Gradient Averaging (GA) as well
as an approach which operates by averaging gradients computed
for both initial and new domains. Experiments demonstrate that
GA outperforms retraining and specifically designed continual
learning approaches, such as Averaged Gradient Episodic Memory
(AGEM). Moreover, GA significantly improves computational costs
over the complete retraining approach.

Index Terms—Accented speech, continual learning, domain
expansion, end-to-end systems, model adaptation, speech re-
cognition.

I. INTRODUCTION

CURRENT state-of-the-art machine learning-based Auto-
matic Speech Recognition (ASR) systems have advanced

to near human performance in several evaluation settings [1],
[2], [3]. However, there remain technological barriers in order
to achieve flexible solutions and user satisfaction under natu-
ralistic field scenarios. A major issue for current ASR systems
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is sustained performance for alternate accents/dialects of that
language, which precludes the use of these systems by/for
specific populations [4], [5]. For example, many ASR systems
aim to achieve the best performance for English, since it is the
most spoken second language worldwide. However, English as
a language comes with many alternate accents/dialects; native
English-speaking countries (e.g., U.K., US, Canada, Australia)
have developed a diverse and expansive set of distinct dialects.
In addition, increasing worldwide communication has expanded
bilingual speakers with English as a second language, which
due to the impact of their first L1 language, speak English with
varying degrees of L1 dependent accent. The diverse number of
possible accents/dialects pose a major challenge for robust ASR
since DNN-based ASR systems are known to generalize poorly
to unseen domains [6], [7], [8].

A straightforward approach for an advanced multi-domain
ASR system accumulates the training data, including initial and
unseen domains, then re-trains the entire model using various
multi-condition training approaches [9], [10], [11]. Nonetheless,
for many realistic settings, the re-training approach is not a fea-
sible solution. First, as training data size grows, storing and re-
training on the accumulated large-scale dataset becomes practi-
cally impossible. Second, data for new domains (e.g., data for ac-
cented English) is usually smaller than initial domains (e.g., data
for native English). The resulting domain-imbalanced dataset
poses added difficulty for multi-condition training approaches.
Moreover, accessing the initial train dataset is not always fea-
sible, for example, saving user audio due to privacy or safety
concerns. In this scenario, an alternative approach is to lever-
age the pre-trained model and new datasets to perform model
adaptation. However, adaptation techniques would lead to catas-
trophic forgetting: where previously learned information is lost
by learning the new domain information. As illustrated in Fig. 1,
domain expansion approaches try to address these problems by
building an ASR system that not only performs well for new
domains, it retains performance for previously seen domains.

Domain Expansion – In our domain expansion scenario, we
have a model trained on an initial domain, a dataset for an unseen
domain, and in some scenarios, the initial dataset as well. The
goal of a domain expansion approach is to adapt the pre-trained
model such that it performs well for both initial and unseen
domains. The main challenges for domain expansion approaches
are maintaining the initial model’s functionality (input-output
mapping) and simultaneously reducing the computational cost.
Past continual learning approaches have been proposed to deal
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Fig. 1. Domain expansion vs. domain adaptation. Domain expansion enables
the model to adapt to new domains while maintaining its performance for initial
data.

with these problems, which can be divided into three categories:
architectural, regularization, and rehearsal strategies.

Architectural strategies – These methods leverage the archi-
tectures of neural networks to mitigate the forgetting problem.
Progressive neural network (PNN) [12] is a popular architectural
strategy which leverages a previously frozen trained network to
obtain an intermediate representation used as inputs into a new
smaller network. A major drawback for a PNN solution is that
if a large number of domains is required to be included, the size
of the resulting model increases linearly with the number of do-
mains [12]. In a recent study, Sadhu et al. [13] proposed a domain
expansion approach by leveraging multiple domain-specific
models trained sequentially for a DNN-HMM setting. However,
this approach requires storing and using domain-specific mod-
els; therefore, the computational cost of this approach increases
linearly as well.

Regularization strategies – Regularization approaches try to
alleviate forgetting the previously trained information by impos-
ing additional constraints on updating parameters. A straight-
forward approach is to employ weight constrained adaptation
(WCA) which penalizes deviation of the model parameters from
the initial model implemented by imposing an L2 distance be-
tween the initial and adapted weights [14]. Kirkpatrick et al. [15]
suggested that all model weights are not equally important to
maintain performance for the initial domains. Therefore, to
advance WCA, they introduced elastic weight consolidation
(EWC) approach, which selectively slows down the training
for weights that are important for previously seen domains.
Another approach for computing the importance score of model
parameters is Synaptic Intelligence (SI) [16]. SI computes
the importance of each weight based on its contribution to
the objective loss over the entire training steps. Alternative
approaches constrain the model’s outputs to maintain function-
ality (input-output mapping) of the initial model [17], [18], [19].

Learning without forgetting (LWF), as an effective approach of
this class, proposed to sustain output stability of the previously
seen tasks in order to learn a sequence of tasks while maintaining
performance for previously seen ones [18]. In similar work,
Jung et al. [19] investigated the domain expansion problem
for image classification tasks. They leveraged an L2 distance
between the final hidden representations of initial and adapted
models to alleviate forgetting of the initial model. In our pre-
vious work [17], we examined the efficacy of WCA, EWC,
Soft KL-Divergence (SKLD), and our proposed hybrid SKLD-
EWC approach for an advanced domain expansion solution in a
DNN-HMM ASR setting. We demonstrated the effectiveness
of the proposed SKLD-EWC approach in adapting a model
trained with native English to unseen accented datasets while
sustaining initial performance. In a similar work, the EWC and
LWF approaches were leveraged to train a multi-dialect acoustic
model in a sequential transfer learning framework [20].

Rehearsal strategies – These approaches store (a subset of) the
prior training data and periodically replay them for future train-
ing. A re-training strategy can alleviate the forgetting problem,
but processing the entire initial data can be resource-intensive. To
alleviate the memory problem of full-rehearsal strategies, Hayes
et al. proposed EXSTREAM, a new partitioning-based approach
to select representative samples of the initial data [21]. Gener-
ative models have also been leveraged to alleviate the resource
costs of rehearsal approaches [22]. To advance the efficiency of
rehearsal-based approaches, some studies investigated the rela-
tive directions between gradient vectors computed for new and
initial data to solve the problem of learning the new data without
interfering in the previously learned information [23], [24],
[25]. In [24], Averaged Gradient Episodic Memory (AGEM)
was introduced, which alleviates the interference problem by
projecting gradients from new datasets onto a subspace in which
they have no information interference with gradients from initial
datasets. Mehrdad et al. proposed Orthogonal Gradient Descent
(OGD), which operates similarly to AGEM; however, instead of
storing and reusing the initial dataset samples, OGD stores the
gradients from the initial dataset [25]. With the recent progress
in the meta-learning area [26], the potential of leveraging this
framework to advance continual learning is investigated in sev-
eral studies [26], [27]. [27] advances Model-Agnostic Meta-
Learning (MAML) framework, introduced in [28], by leveraging
a replay buffer and optimizing a meta-objective that alleviates
forgetting.

This current study proposes novel advanced regularization-
based and rehearsal-based approaches to address the domain
expansion problem for an End-to-End ASR model. An overview
of domain expansion approaches developed in this study is
shown in Fig. 2. We examine the efficacy of the approaches
through experiments on adapting a model trained with native
English to two English accents/dialects: Australian English and
Indian accent. For regularization-based approaches, we inves-
tigate the efficacy of existing weight-constrained approaches
WCA, EWC, and SI in alleviating the forgetting problem in
domain expansion. Furthermore, we examine performance of
SKLD and hybrid SKLD-EWC introduced in our previous
study [17] for an End-to-End ASR model. SKLD mitigates
the forgetting problem by imposing a constraint that penalizes
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Fig. 2. Overview of regularization and rehearsal based domain expansion approaches developed in this study.

the KL-divergence between the initial model’s output and the
adapted model’s output. We also propose leveraging model
averaging (MA) as a domain expansion solution, which operates
by post-regularizing an adapted model. MA operates by first
adapting the initial model to reach an optimum loss for the
new data. Next, it averages the parameters of the initial and
adapted models to ensure compromise between the initial and
new domains. Alternatively, to improve the adaptation step,
we propose a hybrid SKLD-MA approach; where first, SKLD
regularizes the adaption and alleviates forgetting initial data.
Next, MA makes the final efficient trade-off between the two
datasets. Our experimental evaluation will demonstrate the su-
perior performance of MA and SKLD-MA compared to other
regularization-based approaches.

For rehearsal-based approaches, we first investigate the ef-
ficacy of AGEM and multi-condition training. Multi-condition
training offers reasonable performance for domain expansion,
but since it is highly resource-intensive, this approach would
be impractical for many large-scale ASR scenarios. Our exper-
iments demonstrate that the AGEM approach performs poorly
compared to other rehearsal-based approaches. By analyzing the
results, we show that the AGEM’s poor performance is mainly
due to leveraging the unreliable angle between gradients of mini-
batches and, consequently, forgetting the initial data. To improve
AGEM, we propose to increase the contribution of the initial
gradients regardless of the angle value. This resulting approach
will be shown to address the AGEM drawback and improve
domain expansion performance. We also propose gradient aver-
aging (GA), which operates by starting from the initial model;
then, in each adaptation step, it averages the gradient vectors of
initial and new data with a flexible weight. The experiments
will demonstrate superior performance of GA compared to
other domain expansion approaches, including multi-condition
training. The GA approach narrows the performance gap

between a domain expansion solution to domain-specific models
to 1.6%–2.12%. Finally, we study the impact of the initial data
buffer size on overall domain expansion performance.

This study extends our preliminary research [17] and investi-
gates the domain expansion problem comprehensively. The core
contributions of this study are summarized as follows:

1) Propose an MA-based approach and SKLD-MA as novel
regularization-based domain expansion approaches; the
proposed approaches are shown to outperform existing
approaches in an ASR setting.

2) Adapt advanced existing continual learning approaches to
an ASR setting; evaluate and analyze their efficacy for
domain expansion.

3) Propose GA as an advanced rehearsal-based approach
that outperforms existing approaches, including multi-
condition training. A systematic investigation demon-
strates why existing approaches such as AGEM perform
poorly for ASR.

4) Investigate the impact of initial data buffer size on domain
expansion performance, providing new insights into the
problem.

The remainder of this paper is organized as follows. Details
of regularization-based and rehearsal-based approaches are pre-
sented in Sections II & III, respectively. The description of
the end-to-end model used in this study, as well as training
and evaluation settings, are provided in Section IV. Section V
details and analyzes experimental results. Finally, conclusions
are presented in Section VI.

II. REGULARIZATION-BASED DOMAIN EXPANSION

APPROACHES

This section presents details of existing and proposed
regularization-based domain expansion approaches investigated
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in this study. These approaches seek to advance domain ex-
pansion performance for scenarios where the initial training
dataset is not available. However, we assume that the initial
development set is available to tune the hyperparameters of
models and algorithms.

Problem Setup – In the domain expansion task, an initial
model Minit, trained on an initial domain Dinit is given along
with a dataset for an unseen domain Dn. The goal is to find a
new model Mn that performs well for both Dinit and Dn.

A. Weight Constrained Adaptation (WCA)

WCA was first proposed in [14] for regularized adaptation
of discriminative classifiers. In a related study [18], WCA was
employed for continual learning in a sequence of disjoint tasks.
This technique addresses the domain expansion problem by
finding a model adapted to the new domain, Dn, which is also
close to the initial model, Minit.

For a neural network architecture, there are many config-
urations of model parameters with comparable performance
[15]. Therefore, we also assume that many configurations of the
model can efficiently model our new domain Dn. Among such
configurations, an effective domain expansion solution is one
that stands closer to the initial model Minit. WCA leverages
the Euclidean distance between the learnable parameters of
Dinit and Dn to measure the similarity between these models.
This idea can be implemented by imposing an additional L2

constraint which penalizes parameter changes as follows:

JWCA(θ
n) = JCTC(θ

n) +
λw

2
||θn − θinit||2, (1)

where θinit and θn are the learnable parameters of Minit and
Mn, respectively; JCTC(θ

n) is the main optimization loss
(i.e., Connectionist Temporal Classification (CTC) loss func-
tion [29]); ||.||2 is the L2 norm; and λw is a regularization
hyper-parameter that determines the felixibilty of the parameters
to learn the desired new domain.

B. Elastic Weight Consolidation (EWC)

The WCA technique considers all weights within the model
equally. However, model weights might not be equally important
to maintain initial model performance. Therefore, WCA can
potentially result in a suboptimal solution for maintaining model
performance for the initial domain Dinit while learning the new
domainDn. EWC [15] was proposed to compute the importance
of each weight and leverage the weight importance for an ad-
vanced domain expansion solution that can better balance initial
and desired data domains.

Intuitively, after a DNN model is trained for a sufficient num-
ber of iterations, the model converges to a local minimum point
of the optimization landscape. At this point, one can estimate the
sensitivity of the loss function w.r.t. the i-th learnable weight,
θni , by studying the curvature of that loss function along the
direction of θni changes. A weight with high curvature means
small changes to that weight would significantly change the
overall loss function. EWC leverages the curvature information
in order to preserve performance of the network for previously

seen domains, while penalizing modifications to the parameters
with high curvature. Alternatively, parameters with low curva-
ture values are proper choices to be tuned with new data without
significantly affecting the model performance for the initial data
domain.

The curvature of the loss function is equivalent to the diagonal
of the Fisher information matrix F [15]. EWC therefore incor-
porates the importance of the learnable weights (curvature of
the loss function w.r.t. the weights) by imposing a constraint on
the adaptation process. Following the previous WCA approach,
EWC employs a weighted L2 norm to restrict changing of each
learnable weight proportional to its importance:

JEWC(θ
n) = JCTC(θ

n) +
λe

2

∑
i

diag{F}i(θni − θiniti )2,

(2)
where diag{F}i is the i-th element of the diagonal of the
Fisher information matrix F (representing the importance of
the i-th learnable weight); θni and θiniti are the i-th weight
of the new and initial models, respectively; and summation is
taken over all learnable weights of the network. Here, diag{F}
can be easily calculated using the variance of the first order
derivatives of the loss function w.r.t. the learnable weights (i.e.,
V ar{∂J(θ)/∂θi}) [15], [30].

C. Synaptic Intelligence (SI)

EWC computes the importance of each weight based on the
curvature of loss function around that weight regardless of its
past changes and contributions to address the task objective.
However, another class of algorithms, namely synaptic intelli-
gence introduced in [16], computes the weight importance by
monitoring the changes of each weight during training. The
importance score of each weight is computed over the entire
training steps. At each training step, the contribution of each
weight θi to the objective loss is proportional to the update size
Δθi and the gradient ∂J(θ)/∂θi as follows;

J(θ +Δθ)− J(θ) ≈
∑
i

J(θ)

θi
Δθi. (3)

Therefore, the contribution of parameter θi to the total loss
over the entire training steps is computed as,

Wθi =
∑

mini−batches

−J(θ)

θi
Δθi. (4)

Since we are minimizing the total loss, a minus sign is added
to the (4). We estimate the per-parameter contributionWθi using
mini-batches which would introduce noise to the computation.
These added noises are expected to result in an overestimation
of the true value of Wθi . Following [16], the per-parameter
importances are therefore normalized before leveraging them
to regularize the adaptation process;

Sθi =
Wθi

(θiniti − θstarti )2 + ε
, (5)

where θstarti is the i-th parameter of the starting point model
for initial training. Here, ε is added for practical reasons to
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provide an upper bound on the division since θiniti − θstarti can
be very small. To leverage the resulting weight importances in
addressing domain expansion, we follow both WCA and EWC
frameworks to regularize the training as:

JSI(θ
n) = JCTC(θ

n) + λsi

∑
i

Sθi(θ
n
i − θiniti )2, (6)

where λsi determines the regularization component weight. In
this study, we tune the values of ε and λsi based on domain
expansion performance based on held-out development sets.

D. Soft KL-Divergence (SKLD)

A significant difficulty in domain expansion is to preserve the
functionality (input-output mapping) of the initial modelMinit.
Weight constrained approaches (e.g., WCA, EWC, and SI) at-
tempt to accomplish this by preserving the previously learned
information stored in the model weights. However, according to
experiments performed in [19], generally, restricting learnable
parameters is not an efficient way of preserving the functionality
of a model since applying slight changes to the parameters can
propagate through the entire network and result in significant
changes in model functionality and performance.

In another class of methods, preserving the functionality of
Minit can be accomplished by imposing constraints on the
outputs of the model [31]. By constraining the outputs of Mn

to mimic the outputs of Minit for the same inputs, it is possible
to assure that these two models are similar to each other. SKLD
implements this through two steps: (1) it takes the initial model
Minit and the data for the new domain Dn, and generates an
output of Minit (pseudo-labels) for all samples of the dataset;
(2) next, SKLD trains the new model Mn by initializing it from
Minit and leveraging the pseudo-labels to regularize the model
adaptation as follows:

JSKLD(θn) = (1− λs)JCTC(θ
n)

+ λs

∑
i∈I

JCE(Minit(xi),Mn(xi)),

JCE(Minit(xi),Mn(xi)) =
∑
c∈C

Minit
c (xi) log(Mn

c (xi)),

(7)

where I is the total number of utterances; xi is the i-th input
feature vector; Minit

c (xi) and Mn
c (xi) are the probability of

the c-th class generated by initial and new models for input
vector xi. Here, 0 ≤ λs ≤ 1 is a regularization hyper-parameter
that provides a compromise between learning the new domain
(by optimizing JCTC) and preserving the input-output mapping
of the initial model (by optimizing the cross-entropy loss JCE).
Here, λs = 0 results in the conventional transfer learning (pre-
training/fine-tuning adaptation). By increasing the value of λs,
the adapted model is more similar to the initial model at a cost of
restricting the model’s flexibility to learn new data. We tune λs

to ensure a balanced trade-off between learning a new domain
versus mitigating the forgetting effect problem. For experiments,
we tune λs to achieve the best performance for development sets
from both domains.

E. Hybrid SKLD-EWC

In previous sections, we described the SKLD and EWC ap-
proaches. In our previous work [17], we suggested that these
approaches are complementary and can be combined to form
an advanced hybrid approach, namely SKLD-EWC. The advan-
tage of EWC is to leverage the initial data in the first training
phase to compute the Fisher information matrix (that quantifies
the importance of the weights). However, after the model is
updated during adaptation, the curvature of the loss function
(consequently the Fisher matrix) changes; therefore, a fixed
initial Fisher matrix cannot reliably preserve the original model
performance. Alternatively, the advantage of SKLD is that it
is more efficient in preserving model functionality since the
efficacy of SKLD does not change during the adaptation steps.
Our proposed technique can be implemented by imposing both
SKLD and EWC constraints on the tuning loss as follows:

JSKLD−EWC(θ
n) = (1− λs)JCTC(θ

n)

+ λs

∑
i∈I

Jcross(Minit(xi),Mn(xi))

+ λe

∑
i

diag{F}i(θni − θiniti )2. (8)

This hybrid method requires two regularization parameters:
λs and λe defined for regularizing the outputs and weights,
respectively. These two parameters provide a more flexible
domain expansion technique at the expense of more difficult
hyper-parameter tuning.

F. Model Averaging (MA)

All regularization approaches aim to reach a balanced model
that performs well for both initial and new domain data. How-
ever, to achieve the best balanced performance, they have to
compromise between characteristics of both datasets. Therefore,
it is possible the model never reaches the best possible perfor-
mance for the new domain data. Alternatively, to reach the best
performance for new data, we need to tune all (a large subset
of) model parameters. However, the adapted model would then
quickly deviate from its initial point and consequently forget
the initial data conditions. In our proposed model averaging ap-
proach, we address the forgetting problem by post-regularizing
an adapted model. Model averaging is performed in two steps;
first, it adapts the initial model to reach the minimum loss for
the new data. Next, by leveraging the initial optimum model
Minit and adapted optimum model Madp, along with held-out
development datasets for both domains, it averages parameters
of the models to make a compromise between the two ends;

θni = (1− λma)θ
init
i + λmaθ

adp
i , (9)

where λma is tuned to achieve the best average performance on
the development sets. The intuition behind model averaging is to
achieve an advanced solution for the domain expansion problem
on the direct path between initial and adapted models. These
models would potentially perform superior to models achieved
in adaptation steps because; 1) the loss function between initial
and adapted models can be smooth and convex-like [32]. As
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a result, moving from the initial model towards the adapted
model on a direct path would gradually drop performance for
the initial data and gain performance for the new domain data.
Therefore, a model in the middle of the direct path would have
a balanced performance for both datasets. 2) the models on the
direct path would now possess the minimum average Euclidean
distance from the initial and adapted models. As a result, the
middle model overall performance can be better than models
with larger distances from both ends (e.g., model checkpoints
achieved during adaptation iterations). This approach is referred
to as Adaptation Model Averaging (Adaptation-MA).

Hybrid SKLD Model Averaging – The proposed Adaptation-
MA tunes all model parameters to reach an optimum point for the
new data. However, it achieves an optimum point at a potential
cost of catastrophically forgetting of the initial data. Alterna-
tively, regularizing the adaptation using an approach that allevi-
ates the forgetting effects without hurting new data performance
would potentially result in an adapted model with higher overall
average performance for both domains. The resulting adapted
model can be leveraged to improve performance of the model
averaging approach. In [31], it was demonstrated that SKLD
can improve adaptation performance when the new domain data
size is small. Additionally, in our previous work [17], it was
shown that SKLD could effectively alleviate forgetting the initial
data. Therefore, we propose to leverage SKLD with a small
contribution of the pseudo-labels to regularize the adaptation
before applying model averaging. This approach is referred to
as hybrid SKLD model averaging (SKLD-MA). We hypoth-
esize that SKLD-MA would potentially perform better than
Adaptation-MA.

III. REHEARSAL-BASED DOMAIN EXPANSION APPROACHES

This section presents details for several existing and proposed
rehearsal-based domain expansion approaches. These methods
aim to leverage initial data effectively to sustain model perfor-
mance for initial data while adapting the model to new domains.
In addition, advanced rehearsal-based domain expansion ap-
proaches try to address re-training drawbacks by; 1) reducing
the computational cost of domain expansion, 2) training an ad-
vanced multi-domain model by leveraging domain-imbalanced
training data, and 3) generally requiring having access to a subset
of the initial data.

A. Averaged Gradient Episodic Memory (AGEM)

For a given model represented by θ and two random samples
of the data x = (xi, xo) and y = (yi, yo), there is an information
transfer between these samples if learning each of them reduces
the objective loss for the other. In contrast, there is an information
interference if learning one increases the loss for the other.
Therefore the goal of an ideal domain expansion approach would
be to learn the samples of the new data while ensuring minimum
(e.g., no) interference with the initial samples. The core idea for
many rehearsal-based approaches is based on the angle between
gradient vectors for initial and new data [23], [24], [25]. The
angle determines whether there is an information transfer or
interference between data samples. For example, for two random

samples x and y, information transfer occurs if:

∂J(θ, x)

∂θ
.
∂J(θ, y)

∂θ
> 0, (10)

while information interference occurs if:

∂J(θ, x)

∂θ
.
∂J(θ, y)

∂θ
< 0, (11)

where “·” is the dot product operator.
GEM [23] and AGEM [24] are effective continual learn-

ing approaches proposed to minimize information inference
while learning a sequence of tasks. These algorithms operate
by constraining the relative directions between gradient vectors
computed for current and past tasks. Adapting the original GEM
to our domain expansion setting leads to solving the following
problem:

minimizeθJ(θ,D
n)

s.t. < gnb , g
init >=

∂J(θ,Bn)

∂θ
.
∂J(θ,Dinit)

∂θ
≥ 0 (12)

where for each training step, gnb is the model gradient com-
puted with a mini-batch of the new data Bn, and ginit is the
model gradient for the entire (a subset of) initial data. Solving
this problem would ensure that every step of learning for new
data does not increase the loss function for the initial domain
data. The main drawback of GEM for scenarios where the initial
data size is enormous (e.g., domain expansion for ASR) is the
burden of computing gradients for the entire (a large subset of)
initial data at every step. The high training cost of this approach
makes it impractical for ASR settings where the data size could
be thousands of hours of data.

AGEM was proposed to mitigate the computational burden of
the original GEM. For a continual multi-task learning scenario,
AGEM leverages a batch of past task samples to represent an
average of the entire previously seen data. In [24], it was shown
that for a continual multi-task setting, AGEM performs compa-
rably to original GEM in terms of average accuracy on all tasks;
however, AGEM is about 100 times faster. Therefore, in our
study, we investigate the efficacy of AGEM as a feasible domain
expansion solution for ASR systems. The optimization problem
of AGEM is the same as (12), but for AGEM, the gradients of the
initial domain data are computed for a mini-batch. Therefore, the
condition becomes < gnb , g

init
b >= ∂J(θ,Bn)

∂θ .∂J(θ,B
init)

∂θ ≥ 0;
replacing ginit with ginitb . For the remainder of this study, we
use AGEM-Criterion to refer to gnb .g

init
b .

The AGEM algorithm addresses the interference problem by
computing the angle between gnb and ginitb . If the angle is less
than 90◦ (i.e., AGEM-Criterion is positive), then only gnb is used
to update the model’s parameters. However, if the angle is larger
than 90◦ (i.e., AGEM-Criterion is negative), then gnb is projected
to the nearest L2-distance vector, which maintains the angle
within the bound. Mathematically, to find the projected vector,
we need to solve the following optimization problem:

minimizegn
p

1

2
||gnb − gnp ||22 s.t. gnp .g

init
b ≥ 0, (13)
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where gnp is the projected vector of gnb . In [24], it was shown that
the solution to this optimization problem is:

gnp = gnb − gnb .g
init
b

ginitb .ginitb

ginitb . (14)

Therefore, starting from the initial model Minit, AGEM lever-
ages both initial and new domain data. In each training step,
based on the AGEM-Criterion, the model’s parameters are
updated using either gnb or gnp . To analyze the computational
complexity of AGEM, if we only consider forward-backward
propagation for training, each epoch of learning using the new
data requires AGEM to process the same number of utterances
from the initial data. Therefore, the run-time complexity is
almost two times larger than an adaptation approach that only
leverages the new data. For many practical ASR settings, the
initial data size is enormous. However, unseen data is usually
significantly smaller. Therefore, the computational burden of
processing the new domain dataset twice (i.e., AGEM computa-
tional cost) is much smaller than reprocessing the entire initial
data plus new data (i.e., re-training computational cost).

B. AGEM-Gradient Averaging (AGEM-GA)

When the angle between gnb and ginitb is larger than 90◦,
AGEM adds ginitb to the final gradient with a contribution

factor of λagem = − gn
b .ginit

b

ginit
b .ginit

b

. AGEM considers the minimum

contribution of ginitb is needed to make the angle between the
projected vector and ginitb smaller than 90◦. However, since
both gnb and ginitb are computed using small mini-batches, their
directions do not accurately represent the true gradient for the
entire initial and new datasets [33]. Therefore, targeting the angle
between gnp and ginitb to be less than 90◦ can be insufficient to
guarantee sustained performance for the initial data after training
the model with gnp . To examine this hypothesis, we propose to
introduce a safety margin by adding the ginitb vector to the final
gradient vector with a contributing factor of λbase, regardless of
the AGEM-Criterion condition. However, to leverage the angle
information, we increase the contribution of ginitb by cλagem

when the AGEM-Criterion is negative as follows:

gnp =

{
gnb + λbaseg

init
b , gnb .g

init
b ≥ 0

gnb + (λbase + cλagem)ginitb , gnb .g
init
b < 0

(15)

where c controls the contribution of λagem.

C. Gradient Averaging (GA)

To study whether angle information provides sufficient ben-
eficial information for AGEM and AGEM-GA, we investigate
leveraging gradients for initial and new domain data, and en-
tirely disregard the AGEM-Criterion. In this approach, in every
training step, the final projected vector results from averag-
ing the initial gradient vector with the new gradient vector;
gnp = gnb + λbaseg

init
b . Setting λbase = 1 makes this approach

equivalent to tuning the initial modelMinit with samples drawn
from initial and new datasets with equal probability for each set.
However, λbase = 1.0 can be suboptimum. For example, since

Minit is already fitted to the initial data, setting λbase < 1.0
would give sufficient flexibility to the model to learn new data.

GA with Pseudo Labels – In our GA approach, in
each training step, for a initial data mini-batch Binit, we
leverage target labels to compute ginitb = ∂J(θ,Binit)

∂θ . Alter-
natively, since Minit is already fitted to the initial data, the
model can be leveraged to generate pseudo labels for initial
utterances. As demonstrated in [17], leveraging pseudo labels
computed by a pre-trained initial model mitigates forgetting
previously learned information. Therefore, since the purpose of
leveraging initial data is to maintain model functionality, one can
use pseudo labels as target outputs instead of the true labels (i.e.,
target transcriptions). To study the efficacy of pseudo labels, we
examine performance of GA where we compute initial gradients
using pseudo target labels, which is similar to the cross-entropy
loss used in the SKLD approach (7).

IV. EXPERIMENTAL SETUP

End-to-End LSTM-CTC Model – We evaluate the efficacy of
domain expansion techniques for a Long Short-Term Memory
(LSTM)-CTC ASR system. The acoustic model consists of two
fully connected layers to process the input features. Next, four
bidirectional LSTM (BLSTM) [34] layers are used to model
temporal relations. Finally, two fully connected layers map the
BLSTMs’ outputs to target units. The fully connected layers are
regularized by drop out. For the BLSTM layers, each layer has
512 cells for each direction. For the intermediate fully connected
layers, we use the LeakyReLU [35] activation function. The
last layer leverages a softmax activation to map the model’s
logits to a probability distribution over an output set. Overall,
the model contains about 25 million trainable parameters. The
last layer of the model consists of |S| outputs, where S =
{English characters, blank, space, “, ”, ?, !, .,′ }. The blank
unit is a special character used by CTC for computing the
loss [29].

For the inference step, we leverage two decoding approaches
to map the sequence of probabilities generated by a trained
acoustic model to a transcription; Greedy algorithm (best path
decoding) [29], and Weighted Finite-State Transducer (WFST)-
based decoding [36]. The Greedy algorithm performs decoding
through two straightforward steps. First, for each time instance,
it chooses the most probable output units. Next, it applies a
Squash function to remove repeated units. We leverage the
Greedy algorithm to compute a Character-Error-Rate (CER)
to measure the quality of the generated output for each of the
trained acoustic models. In this study, we tune the hyperparam-
eters of each approach and model (e.g., learning rate or drop
out rate) to improve CER performance on the development sets.
The performance of the final tuned model for each approach
is measured by computing Word-Error-Rate (WER) on the test
sets. To compute WER, we leverage the WFST approach to
output high-quality word sequences by integrating the lexicon
and language model efficiently.

Dataset & Features – To train the initial model, we leverage
the LIBRISPEECH corpus (Libri) [37]. This dataset contains
about 1000 hr of English read speech mainly recorded from
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native US English speakers. Here, the entire Libri training set
is leveraged to train the models, and the test-clean set is used
for evaluation. For unseen new data, we use Indian (IND), and
Australian (AUS) parts of the UT-CRSS-4EnglishAccent cor-
pus [6]. The data for each accent is collected from 100 speakers,
with sessions consisting of read and spontaneous speech. For
each accent, there is more than 28 h of training data, 5 h of
development, and 5 h of evaluation speech data. The relative size
of the Libri dataset (i.e., initial training data) compared to new
accented datasets (i.e., new domains) resembles real large-scale
scenarios for ASR systems. In this scenario, re-training would
be highly computational expensive compared to adapting a
pre-trained model to unseen domains.

The input features are 40-dimensional filterbank features to-
gether with their first and second-order derivatives. The features
are extracted from time windows of 25 ms with a frameshift of
10 ms. We expand each frame by stacking four frames from each
side to form 1080-dimensional feature vectors. Next, to reduce
training time, the resulting frames are downsampled by a skip
rate of two frames (i.e., for every three successive frames, one
frame will be processed).

We use the standard language model (LM) provided for Libri
to decode the initial data. Since accented datasets contain spon-
taneous utterances, we train n-gram LMs by pooling transcrip-
tions from Fisher, Switchboard, and UT-CRSS-4EnglishAccent
corpora.

Training and Evaluation Settings – Model implementation
and training are performed using PyTorch [38]. We use an Adam
optimizer [39] to train or adapt the models. To train the initial
model, the starting learning rate is 3.0× 10−4, which is halved
after every 90k iterations. For domain expansion experiments,
we use a fixed learning rate of 1.0× 10−4. Gradients are com-
puted from mini-batches of 16 utterances. For rehearsal-based
approaches, in each iteration, the model gradients are computed
for two mini-batches of the new and initial datasets. We apply
the same evaluation settings to examine regularization-based
and rehearsal-based approaches. For each domain expansion
approach, the final model (for evaluation) is selected based on
average CER performance for initial and new development sets.

We also examine performance of multi-condition training
(i.e., re-training) [40]. Here, we first pool all available training
data (i.e., initial and new datasets) and train the ASR model
using the resulting multi-condition dataset. For many continual
learning studies, re-training performance is considered a mile-
stone for domain-expansion methods [15], [16], [24]. However,
for our training scenario where initial data is much larger than
new datasets, naive multi-condition training could produce a
suboptimal performance for both datasets. We leverage domain-
specific models to set a target performance for domain expansion
approaches. We train domain-specific ASR models for each
dataset by adapting the initial model to that dataset. To improve
adaptation performance, we regularize training by imposing
the SKLD constraints [31]. Note that we leverage SKLD for
domain expansion and domain adaptation. However, for domain
adaptation, the contribution of the pseudo-labels (e.g., the value
of λs) is much smaller. The domain-specific performance repre-
sents an ideal domain expansion approach that maintains model

performance for both the initial data while achieving optimum
performance for new datasets. The average domain-specific per-
formance is reported in Tables I & II. Additionally, the relative
gap to domain-specific models is reported, referred to as gap to
domain-specifics (Gap-DS).

V. RESULTS

We conduct a series of experiments to evaluate performance
of the domain expansion methods developed in this study. In
the first set, we compare regularization-based approaches with
results summarized in Table I. In the second set of experiments,
we examine performance of rehearsal-based approaches with
results summarized in Table II.

A. Regularization-Based Domain Expansion Approaches

Catastrophic Forgetting – As shown in Table I, the initial
model performs well for the initial domain test set. However,
due to domain-mismatch, it performs poorly for unseen new
domains. Adapting the initial model to new datasets (referred to
as Adaptation in Table I) addresses mismatch, but results in cate-
gorically forgetting of the initial dataset (i.e., the adapted model
performance drops dramatically for the initial dataset). For the
Adaptation approach, we only consider model performance on
new data. However, to perform domain expansion, we need to
determine an early-stop point for the training where average
performance on the initial and new domain development sets
starts to rise. This approach is referred to as Early-Stopped Adap-
tation (ES-Adaptation) in Table I. The average performance of
ES-Adaptation is significantly better than Adaptation. However,
the relative gap to the domain-specific performance is still signif-
icant. These experiments demonstrate that an effective domain
expansion solution can not be achieved by simply adapting the
model and monitoring average performance.

Weight Constrained Approaches Results – The methods
WCA, EWC, and SI impose a constraint on each model param-
eter to limit them from deviating much from the initial solution.
First, we compare performance of WCA with ES-Adaptation
to examine whether limiting the weight changes can result in a
better solution for domain expansion. Results show that WCA
outperforms ES-Adaptation for both datasets. For AUS accent,
WCA improves WER from 8.52%→7.93%, and for IND accent,
WER improves from 10.91% → 10.5%. Next, we compare per-
formance of SI and EWC with WCA to see whether leveraging
the importance weights computed for SI (i.e.,Sθ in (5)) and EWC
(i.e., diag{F} in (2)) can result in improved domain expansion.
Compared to WCA, EWC offers a slight improvement for both
AUS and IND accents. However, SI fails to improve performance
for AUS accent. One explanation for SI’s poor performance is
that this approach computes the contribution of each parameter
based on gradients computed from mini-batches. However, as
we will also demonstrate for the AGEM approach in the next
section, the direction of these gradients can be significantly
different from the true gradient computed from the entire dataset.
Therefore, the resulting weight importance Sθ does not always
reliably represent the contribution of each parameter. Although
these approaches have performed well for small models and
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TABLE I
WERS OF REGULARIZATION-BASED DOMAIN EXPANSION METHODS ON THE INITIAL AND NEW DOMAINS

TABLE II
WERS OF REHEARSAL-BASED DOMAIN EXPANSION METHODS ON THE INITIAL AND NEW DOMAINS

simple image recognition tasks [15], [16], this study as well
previous studies for speech recognition [17], [20] show that these
approaches do not offer the same performance benefits where
tasks and models become complicated (e.g., RNN models for
ASR).

SKLD Results – Compared to the weight constrained-based
approaches (i.e., WCA, EWC, and SI), SKLD offers the same or
better performance for new datasets. Experiments demonstrate
superior performance of hybrid SKLD-EWC, which benefits
from curvature information of the model and maintains model
functionality using SKLD. Compared to ES-Adaptation (the
baseline approach for regularization-based approaches), SKLD-
EWC improves relative average WER by 8.3%–12.2%, and
the relative gap to the domain-specific performance is reduced
from 28.6% → 17.9% for IND, and 37.42% → 20.6% for AUS
datasets.

Model Averaging (MA) Results – We first examine perfor-
mance of the average model along the linear path connecting
the initial model Mo (corresponding to the Initial model in

Table I) and the adapted model Madp (corresponding to the
Adaptation approach in Table I). By taking a linear average using
(9), we create new models that have not been reached during
regular adaptation steps. As demonstrated in Fig. 3, starting
from the initial model and shifting towards the adapted model
along the linear path, performance of the resulting model drops
smoothly for the initial data. However, we do not observe any
performance spikes along this path. Furthermore, we observe
the same trend for new data, where performance of the average
model improves smoothly by increasing the contribution of the
adapted model. These experiments support the hypothesis that
for our settings, the objective loss along the linear path between
initial and adapted models is smooth and convex-like for both
datasets.

To investigate model averaging (MA) for domain expansion,
we first examine performance of Adaptation Model Averaging.
The results demonstrate the efficacy of this approach in proving
a trade-off between retaining the initial model and learning
new domains. However, as shown in Fig. 3, since the adapted
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Fig. 3. Examining word error rate (WER) along a linear path connecting the
initial model Mo and adapted model Madp. WERs are computed for held-out
development sets of the Libri dataset (Initial Dataset) and Indian accent dataset
(New Dataset). λma = 0 results in the initial model, which performs poorly for
the new dataset. By increasing λma, the WER improves for the new dataset,
and it drops for the initial data. For 0.5 < λma < 0.6, we reach a performance
balance for both domains.

model catastrophically forgets the initial data, performance of
the average model for the initial data drops quickly as the model
shifts toward the adapted model. Therefore, the final average
model reaches a suboptimal performance. The results demon-
strate that the hybrid SKLD-MA addresses this problem and
outperforms other regularization-based approaches. Comparing
performance of Adaptation-MA with SKLD-MA shows that
SKLD regularization is a critical component because it alleviates
cartographic forgetting without impacting performance on new
data. Note that we leverage the SKLD constraint with varying
contributions along different settings. For example, for SKLD-
MA, we set λs = 0.9 to regularize the adaptation. However,
for SKLD domain expansion, the optimum value of λs is in
the range of [0.6,0.7]. Compared to ES-Adaptation, SKLD-MA
improves the relative average WER by 11.8%-16.25%. The
relative performance gap between domain-specific models and
the SKLD-MA is narrowed to 15.16% for AUS and 13.44% for
IND datasets.

B. Rehearsal-Based Domain Expansion Approaches

In this section, we evaluate and compare performance of
rehearsal-based approaches. For results provided in Table II,
all domain expansion approaches leverage the entire initial and
new training datasets.

AGEM Results – Results show that AGEM significantly un-
derperforms other domain expansion approaches. By analyzing
results in Table II, the poor performance is mainly due to forget-
ting the initial domain data. Therefore, as we hypothesized, the
assumption of making the angle between the gradient vectors
less than 90◦ might not be sufficient to alleviate forgetting of
the initial domain. To further analyze the problem, we examine
the AGEM-Criterion. To this end, in each training step, for a
mini-batch of the new data, we compute AGEM-Criterion for ten
different mini-batches of the initial data. As shown in Fig. 4, in
every training step, depending on each mini-batch for which the
initial gradients are computed, the AGEM-Criterion fluctuates

Fig. 4. Examining the range of AGEM-Criterion values in each training step.
To analyze the AGEM approach, in each training step, for a mini-batch of new
data, AGEM-Criterion is computed for ten different mini-batches of initial
data. This figure presents the resulting AGEM-Criterion distribution for 20
training steps using a Box and Whisker plot. Key observation: AGEM-Criterion
fluctuates between positive and negative values; therefore, it is not a reliable
criterion.

greatly between positive and negative values. The gradients of
the initial data have varying directions because the model is
already fitted to the initial dataset. Consequently, some gradients
are too small, with potential unreliable directions. In addition,
it is known that gradients computed for a mini-batch do not
accurately represent overall true gradients for the entire dataset,
and their directions change for different mini-batches [33].
Therefore, the AGEM-Criterion disregards the initial gradient
directions in many training steps, which results in forgetting the
previously learned information from the initial dataset.

By comparing performance of AGEM-GA and AGEM, it
can be inferred that we can significantly alleviate forgetting
of the initial data by increasing the contribution of the initial
gradients. In addition to a significant gain in initial data per-
formance, AGEM-GA performs better than AGEM for the new
domains as well. Here, WER improves from 7.82% to 7.47% for
AUS accent, and from 13.15% to 12.14% for IND accent. This
observation suggests that AGEM-GA results in a generalized
model by leveraging initial data in every iteration, which also
regularizes adapting the model to the new small-sized datasets.

Gradient Averaging (GA) Results – Compared to AGEM
and AGEM-GA, the results demonstrate the superiority of GA.
Based on the results, it can be inferred that the angle-based
criterion does not offer additional information in finding an
effective solution for domain expansion. In each training iter-
ation, GA computes an averaged vector of the two gradient
vectors regardless of their relative directions. Therefore, it is
only necessary to tune the relative weight of the gradient vectors,
and then over training iterations, these averaged gradients would
lead to an optimum domain expansion solution.

The GA method does outperform other domain expansion
approaches explored in this study, which narrows the relative gap
to the performance of domain-specific models to 1.6% for AUS
and 2.12% for IND datasets. The gap towards domain-specific
models is mainly due to the difficulty in maintaining initial
data performance. One can retain initial data performance by
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increasing the contribution of the initial gradients. However,
such an approach will constrain the model to learn the new do-
main data, consequently leading to an overall reduced optimum
domain expansion solution. For example, we have examined
GA in two settings, with one being a tuning of the hyperparam-
eters to reach optimum average performance, corresponding to
GA (λbase = 0.5) in Table II. For the other setting, the two
gradients of the initial and new data are added with the same
weight, corresponding to GA (λbase = 1.0). As results show,
GA with λbase = 1.0 performs slightly better for the initial
data, but degrades for the new domain as compared with the
optimal setting of GA. Additionally, performing GA with pseudo
labels (described in Section III-C, corresponding to GA-Pseudo
Labels in Table II) results in performance degradation. The poor
performance can also be due to the fixed pseudo-labels, which
constrain the adapted model from training efficiently on new
datasets.

The proposed GA approach outperforms multi-condition
training, which can be attributed to leveraging the initial model
as well as benefiting from a flexible weight to combine gradients
for the initial and new datasets. In terms of computational com-
plexity, GA also performs better than multi-condition training.
The computational burden of processing the entire initial dataset
plus the new dataset (to perform multi-condition training) is
significantly higher than processing two times the size of new
datasets (to perform GA). This observation is valid for ASR
domain expansion scenarios, where new datasets are usually
significantly smaller than initial datasets.

Impact of Buffer Size – The rehearsal-based approaches con-
sidered leveraging the entire initial dataset to maintain model
performance. However, storing and reusing the entire initial
dataset can be an obstacle to applying these approaches for real
large-scale ASR scenarios. Therefore, it is generally preferred
in such cases to store and reuse a small amount of the initial
dataset. This section investigates the performance impact of
using a limited amount of initial data for domain expansion. The
number of stored utterances of the initial dataset is referred to
as the buffer size. Here, we study performance GA as a function
of buffer size. The buffer size changes from zero (i.e., Early
Stopped Adaptation) to the size of the entire initial domain
dataset. The results are presented in Fig. 5. Note that for each
buffer size setting, the final model is selected based on its
combined average performance for initial and new datasets.
Consequently, we observe that limiting the buffer size affects
model performance for both domains.

The results demonstrate that leveraging initial data as small as
1 k utterances significantly impacts performance. Here a model
with a “buffer size=1 k” improves relative performance by 8.3%
compared to a “buffer size = 0”. Furthermore, increasing the
buffer size to 5 k and 30 k utterances also results in a significant
relative improvement. However, an interesting observation is
that further increasing the buffer size to 60 k or 100 k utter-
ances only slightly improves performance. Therefore, for our
experimental settings, it can be inferred that a reasonable com-
promise between performance and buffer size is a “buffer size =
30 k”. After this point, the rate of improvement declines, where
increasing the buffer size from 30 k to 281 k utterances (entire

Fig. 5. WER performance of the Gradient Averaging approach as a function
of initial data buffer size. (a) WER performance of Gradient Averaging on initial
data, new data (for this figure, we use Indian accent data), and average WER
for each buffer size. (b) Relative improvement of average WER compared to a
preceding buffer size.

utterances of Libri960) improves the relative performance by
only 3.33%, which is minimal.

Comparing performance of GA for different buffer sizes with
SKLD-MA (reported in Table I) demonstrates the significant
advantage of leveraging initial data to preserve initial domain
model performance. Results show that leveraging 1k-5 k utter-
ances of the initial dataset leads to a comparable performance
to the best regularization-based approach.

VI. CONCLUSION

This study has proposed a number of novel continual learning-
based techniques for an effective domain expansion solution
in ASR. We examined the efficacy of approaches through ex-
periments on adapting a model trained with native English to
two unseen English accents: Australian and Indian. We demon-
strate that adapting the initial model to new domains results
in improved performance for new domains but at the expense
of a significant performance degradation for the initial domian
dataset. We addressed performance degradation assuming two
scenarios; (1) where only data for the new domain is available
during adaptation, and (2) where data for the initial domain and
new domains are both available during adaptation.

For the first scenario, we investigated regularization-based
approaches to mitigate performance loss for the initial do-
main data. Weight constrained-based approaches (i.e., WCA,
EWC, SI) improve domain expansion performance compared to
ES-Adaptation (i.e., the baseline domain expansion approach).
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However, results demonstrated that improvement is mainly at-
tributed to the weight constrained regularization terms, and
that parameter importance weights (computed by EWC and SI)
do not provide significant performance gains. Although these
approaches have performed well for small models and simple
image recognition tasks, we hypothesized that these approaches
would not offer the same performance for ASR, where tasks
and models are complicated. The proposed SKLD approach
offers the same or better performance compared to weight-
constrained approaches. The superior performance of the hybrid
SKLD-EWC approach supports our hypothesis that curvature
information (computed by EWC) can be complementary to the
SKLD approach.

Next, results demonstrated the efficacy of our proposed MA
approach in providing a trade-off between retaining the initial
domain model and learning new domains. The experiments also
support our hypothesis behind MA, where the objective loss
for the datasets is smooth and convex-like along a linear path.
Performing MA after adaptation regularized with SKLD (i.e.,
SKLD-MA) outperforms other regularization-based approaches
and improves the relative average WER by 11.8%–16.25%,
compared to the baseline ES-Adaptation.

For the second domain expansion scenario, where initial
domain data is also available, we explored rehearsal-based
approaches to leverage initial data to prevent initial domain
performance loss. The AGEM approach, which operates based
on the angle between gradient vectors, underperforms other
rehearsal-based approaches, mainly due to forgetting initial
domain data. AGEM-GA however increases the contribution of
the initial gradients, which improves overall performance. In
general, the superior performance of GA demonstrates that an
angle-based criterion does not offer additional information in
finding an effective domain expansion solution. GA narrows the
relative performance gap to the best domain-specific models of
1.6% for AUS and 2.12% for IND datasets. Furthermore, GA
offers better WER performance and improved computational
cost compared to multi-condition training. This can be attributed
to leveraging the initial model and benefiting from a flexible
weight to combine gradients for the initial and new datasets.
Examining the impact of the available initial domain data buffer
size shows that increasing the buffer size to 30 k utterances im-
proves performance significantly. However, further increasing
the buffer size to 281 k utterances (i.e., entire initial utterances)
only slightly improves the performance. Therefore, it can be
inferred that a reasonable compromise between performance and
buffer size is using a “buffer size = 30 k”.

This study has, therefore, demonstrated the merits of proposed
regularization-based and rehearsal-based approaches as prac-
tical solutions for domain expansion in ASR systems. Future
work could explore using our proposed approaches for multi-
step domain expansion scenarios as well as improving ASR
performance under other domain mismatch scenarios.
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