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3. We used metagenomic methods to characterize viromes of individual chimpan-
zees while they were cycling, pregnant and lactating.

4. Females from Kanyawara, whose territory abuts the park's boundary, had higher
viral richness and loads (relative quantity of viral sequences) than females from
Ngogo, whose territory is more energetically rich and located farther from large
human settlements. Viral richness (total number of distinct viruses per sample)
was higher when females were lactating than when cycling or pregnant. In preg-
nant females, viral richness increased with estimated day of gestation. Richness
did not vary with age, in contrast to prior research showing increased viral abun-
dance in older males from these same communities.

5. Our results provide evidence of short-term physiological trade-offs between re-
production and infection, which are often hypothesized to constrain health in

long-lived species.
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1 | INTRODUCTION

Life-history theory predicts that organisms make trade-offs be-
tween reproductive effort and somatic maintenance when energy
is limited (Zuk & Stoehr, 2002). These trade-offs are expected to be
particularly pronounced in female mammals, for whom reproduc-
tion requires large and prolonged energetic investments. Although
gestation is energetically costly, especially during the third trimes-
ter (Butte et al., 2004), lactation is more costly still (Clutton-Brock
et al., 1989; Emery Thompson, 2013; Hanwell & Peaker, 1977).
Early lactation, when milk constitutes the sole contribution to off-
spring diet, can even result in negative maternal energy balance
(Alam et al., 2003). Given the amount of energy required, lactation
can affect other energetically costly processes, including mainte-
nance of physical condition [e.g. bone density (Zeni et al., 1999)
and immunity (Ross et al., 1993)]. In humans, frequency and dura-
tion of breastfeeding are positively correlated with rate of postpar-
tum weight loss (Dewey et al., 1993), a pattern driven by related
physiological changes [e.g. reversal of insulin resistance (Stuebe &
Rich-Edwards, 2009)].

Reproduction also imposes immunological challenges that do
not result from energetic trade-offs. Notably, pregnancy requires
an immune ‘balancing act’ to promote fertilization and embryonic
implantation, prevent foetal loss, and ultimately induce parturi-
tion (Aghaeepour et al., 2017; Clark & Schust, 2013; Gomez-Lopez
et al., 2014; Raghupathy, 1997). Consequently, the maternal immune
system undergoes considerable remodelling pre-, peri- and postim-
plantation. Although these changes are numerous and interactive,
a notable pattern in humans is that inflammatory immunity is gen-
erally downregulated in favour of humoral and anti-inflammatory
immunity (Raghupathy, 1997; Wang, Sung, et al., 2020). These
changes may increase susceptibility to and severity of intracellular
infections (Sappenfield et al., 2013). At the same time, females may
exhibit prominent behavioural shifts during pregnancy—for exam-
ple, decreased gregariousness in chimpanzees Pan troglodytes (Pusey
et al., 2008)—which in turn may modulate exposure to socially trans-
mitted infections.

Reproductive investment and concomitant trade-offs may have
long-term health consequences. Given scarce resources, an or-
ganism's reproductive success often benefits from prioritizing re-
productive investment over cellular repair, leading to accumulated
cellular damage (Kirkwood, 1977; Kirkwood & Austad, 2000). Thus,
as posited by the disposable soma theory, short-term physiological
challenges may contribute to cumulative cellular insult and ageing
(Kirkwood, 1977; Kirkwood & Austad, 2000). Although the exact
mechanisms by which pathogens cause cumulative somatic effects
are not fully understood (McHugh & Gil, 2018), infections contrib-
ute to processes such as oxidative stress (Beck et al., 2000; Butcher
et al., 2017; Gong et al.,, 2001) that in turn contribute to ageing
(Liguori et al., 2018). Subsequent immunosenescence, or ageing of
the immune system, is reflected in turn by increased susceptibility to
and severity of infectious disease with age (Krone et al., 2014; Leng
& Goldstein, 2010; Thomasini et al., 2017).

Long-lived nonhuman species are useful models for understand-
ing trade-offs between reproduction and somatic maintenance.
For instance, in chacma baboons Papio ursinus, helminth intensity
increases during both pregnancy and lactation (Habig et al., 2021),
and in red deer Cervus elaphus, lactating females have higher par-
asite counts than females in other reproductive states (Albery
et al.,, 2021). In African buffalo Syncerus caffer, anthelmintic treat-
ment increased body condition, which in turn predicted reproduc-
tive output (Budischak et al., 2018). However, direct measurements
of declining immune function with age are rare in free-ranging an-
imals (Peters et al., 2019). Notable examples include increased in-
flammation in ageing Soay sheep Ovis aries (Nussey et al., 2012) and
age-related increases in both gastrointestinal parasites and proin-
flammatory biomarkers in roe deer Capreolus capreolus (Cheynel
etal, 2017).

Chimpanzees P. troglodytes and bonobos P. paniscus, our closest
living relatives, are continuous (i.e. nonseasonal) breeders (Heldstab
et al., 2021) and can live for more than 60years in their natural hab-
itats (Muller & Wrangham, 2014; Wood et al., 2017). Prior studies of
wild female chimpanzees provide equivocal evidence for physiolog-
ical trade-offs associated with reproduction. In one study in Kibale
National Park, Uganda, chimpanzees shed greater quantities of
Oesophagostomum during pregnancy and early lactation, with high-
est shedding several months postpartum and a prominent decrease
thereafter (Phillips et al., 2020). In other studies, females were
more likely to test positive for Plasmodium during late pregnancy
than during other stages of reproduction (De Nys et al., 2014), and
pregnant but not lactating females exhibited higher levels of neop-
terin, a proinflammatory biomarker (Negrey et al., 2021). However,
long-term data also suggest that reproductive status does not pre-
dict the occurrence of clinically observable respiratory disease
(Emery Thompson et al., 2018). Also, some but not all chimpanzees
(Gonzalez et al., 2020) exhibit higher levels of neopterin with age
(Negrey et al., 2021), and high-fertility females in some populations
experience less of an age-related increase in parasite loads than
low-fertility females (Phillips et al., 2020). Finally, in contrast with
helminthic parasites, Plasmodium detection rates decrease with age,
presumably due to acquired immunity (De Nys et al., 2014).

Viruses may be particularly informative for understanding repro-
ductive trade-offs and immunosenescence in long-lived mammals
because viruses are obligate molecular parasites and thus repli-
cate only through direct co-option of host intracellular machinery
(Rivers, 1927; Ryu, 2017). In prior studies, we found that viral shed-
ding in faeces increased with age in male but not in female chim-
panzees in Kibale (Negrey et al., 2020, 2022), and that both males
and females shed more viruses when exhibiting clinical signs of
illness than when apparently healthy (Negrey et al., 2022). In the
present study, we assess changes in the gastrointestinal virome as
female chimpanzees transition among reproductive states (cycling,
pregnant, lactating). Specifically, we tested whether the energet-
ically costly states of pregnancy and lactation affect the diversity
(richness) and quantity (load) of viruses shed in the faeces of mature
female chimpanzees. We also assessed whether gastrointestinal
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viral richness and load increased in female chimpanzees with age,
mirroring patterns observed for males in this population (Negrey
etal., 2020, 2022).

2 | MATERIALS AND METHODS
2.1 | Ethics statement

The Uganda Wildlife Authority and Uganda National Council for
Science and Technology approved our noninvasive research proto-
cols. Further approvals were provided by the Institutional Animal
Care and Use Committees (IACUCs) of Harvard University (pro-
tocol 96-03), Tufts University (protocol M2019-83), University of
Wisconsin-Madison (protocol VO05039-R02), and the University
of New Mexico (protocol 18-200,739-MC). The University of
Michigan's IACUC formally exempted our protocols from review.

2.2 | Study subjects and sample collection

We collected observational data and faecal samples from the
Kanyawara and Ngogo chimpanzee communities of Kibale National
Park, Uganda, from July 2015 to June 2019. The Kanyawara and
Ngogo communities, separated by approximately 10 km (Figure S1),
have been the subjects of continuous study since 1987 and 1995
respectively (Muller & Wrangham, 2014; Wood et al., 2017). Early
in the study period (1 January 2016), Kanyawara and Ngogo com-
prised 49 and 194 individuals, more than a third of whom were
sexually mature females (i.e. those with known offspring and/or
full sexual swellings when cycling). As previously described (Negrey
et al., 2020, 2022), we collected faecal samples from individually
identified chimpanzees on a quarterly basis and preserved them at a
1:1 ratio with RNA later buffer (Thermo Fisher Scientific). We stored
samples in the field in freezers at —20°C until transporting them on
ice to the United States for analysis.

2.3 | Viralidentification and quantification

We analysed 60 samples from 16 reproductively mature female
chimpanzees (Kanyawara = 8; Ngogo = 8) ranging in age from 11
to 50years. For each individual, we analysed at least one sample
collected prior to pregnancy, one sample collected during preg-
nancy and one sample collected during early lactation (within a year
of parturition, which encompasses peak nursing effort [Badescu
et al., 2017; Emery Thompson et al., 2012]). We identified and quan-
tified viruses in chimpanzee faeces using previously described meth-
ods (Goldberg et al., 2017, 2018, 2019; Negrey et al., 2020; Sibley
et al., 2016; Toohey-Kurth et al., 2017). Briefly, we extracted viral
nucleic acids from faecal samples, which we then sequenced on an
Illumina MiSeq instrument (lllumina) and reconstructed using CLC
Genomics Workbench (CLC bio) (see Supporting Information). For

analysis of relationships between reproductive status, age and vi-
ruses, we only retained viral sequences with mammalian hosts; we
discarded viral sequences of bacteriophages as well as viruses likely
associated with dietary items (e.g. viruses of figs). We calculated a
metagenomic measure of viral load for each sample as the propor-
tion of reads mapping to a viral sequence, normalized to 1 million
reads and adjusted for the target sequence length. The resulting
metric, viral reads per million per kilobase of target (vRPM/kb), has
been validated by real-time quantitative polymerase chain reaction
(Huang et al., 2019; Toohey-Kurth et al., 2017) and has previously
been used to successfully quantify viral loads in wild chimpanzees
(Negrey et al., 2020, 2022).

2.4 | Inferential statistics

We calculated viral prevalence by reproductive status and study
community using the modified Wald method (Agresti & Coull, 1998).
We then used linear mixed models (LMMs) in R v4.0.3 (R Core
Team, 2020) to analyse variation in viral richness (the number of
viral species per sample) and total viral load (VRPM/kb of all vi-
ruses) by reproductive status, age and study community. Data were
approximately normally distributed; we therefore fitted LMMs
with Gaussian error structures and restricted maximum likelihood
using the ‘Imer’ function in package ImerTest v3.1.3 (Kuznetsova
et al., 2017). Because we observed mild heteroscedasticity in model
residuals, we ran both models again as robust linear mixed models
(RLMMs). The LMM and RLMM results did not differ appreciably, so
we therefore report LMM results in the text. We report full LMM
and RLMM results in the Supporting Information (Tables S2 and S3).

To determine the relative contributions of each virus to patterns
detected in LMMs, we generated random forests using the ‘random-
Forest’ function in R package randomForest (Liaw & Wiener, 2002),
as previously described (Negrey et al., 2022). The random forest al-
gorithm is a machine learning tool that predicts or classifies values
by generating a series of decision trees (Breiman, 2001). We created
random forests to assess contributions of individual viruses to pat-
terns detected by mixed modelling, with respect to viral richness by
reproductive status, richness by community and total viral load by

community (see Supporting Information).

3 | RESULTS

We detected 27 viruses in 60 faecal samples from 16 female chim-
panzees (Table 1), including 15 viruses previously identified and re-
ported in this population (Negrey et al., 2020) and 12 novel viruses
(Figure S2). Amino acid similarity to known viruses ranged from
46.31% to 99.8% (Table 1). Overall prevalence varied from 1.7% (as-
trovirus, enterovirus A and unclassified ssDNA virus 3) to 50% (cir-
covirus 1) (Table S1). Of these, 19 viruses were present in both the
Kanyawara and Ngogo communities. Enterovirus A, genomovirus

and three unclassified ssDNA viruses were identified only in samples
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from Kanyawara. An astrovirus, chimpanzee stool-associated RNA
virus (chisavirus) and unclassified ssDNA virus 3 were identified only
in samples from Ngogo. Viruses that occurred only at Kanyawara ap-
peared in as many as 26.7% of samples from the community (ssDNA
virus 5), whereas viruses observed only at Ngogo were present at
low prevalence, appearing in no more than 6.7% of samples from the
community (ssDNA virus 3). We found an absence of viruses in 4 of
the 60 samples.

Viral richness increased when individual chimpanzees were lac-
tating compared to when they were cycling ( = -1.95, SE = 0.720,
95% Cl [-3.45, -0.451], p = 0.013; Table S2; Figure 1a) or preg-
nant (p = -1.91, SE = 0.718, 95% CI [-3.42, -0.415], p = 0.015;
Table S2; Figure 1a). Mean viral richness among lactating females
increased 1.54- and 1.34-fold, respectively, compared to when they
were cycling and pregnant (M+SD: cycling, 3.00+2.40; pregnant,
3.45+1.77; lactating, 4.62+2.78; Figure 1a). This relationship was
not likely due to seasonal effects: a Pearson Chi-square test did not
support an association between collection quarter (e.g. January-
March, April-June, etc.) and reproductive status (X-squared = 4.92,
df = 6, p = 0.553). Random forest classification indicated that rich-
ness among lactating females was most strongly predicted by unclas-
sified ssDNA virus 5 and porprismacovirus 2 (Table S4). A post-hoc
general additive model indicated a marginally significant increase in
viral richness with estimated date of gestation (EDF = 1.00, F = 4.70,
p = 0.042; Figure 1b). The model defaulted to a linear relationship
(i.e. did not indicate nonlinearity between richness and date of preg-
nancy), perhaps due to small sample size of individuals. A post-hoc

mixed model indicated that viral richness did not significantly vary

from the second half of pregnancy to lactation (s =0.585, SE = 0.829,
p = 0.488). Among lactating females, richness did not vary by days
since parturition (EDF =1.32, F =1.41, p = 0.358). Total viral load did
not vary by reproductive status (Table S3) and did not increase with
day of gestation (EDF = 1.00, F = 0.336, p = 0.568).

Viral richness was higher in chimpanzees from Kanyawara
than in chimpanzees from Ngogo, regardless of reproductive state
(p=-1.62,SE =0.720, 95% CI [-2.98, -0.163], p = 0.032; Table S2;
Figure 1a). Mean viral richness in Kanyawara was approximately
1.5 times higher than in Ngogo (Mean vRPM/kb +SD: Kanyawara,
4.43+2.53; Ngogo, 3.03+2.08). Random forests indicated that
unclassified ssDNA virus 5, circovirus 2 and unclassified ssDNA
virus 4 most strongly contributed to this effect (Table S4; the two
unclassified viruses were found only in samples from Kanyawara).
Furthermore, total viral load was lower in samples from Ngogo than
in samples from Kanyawara when controlling for female reproduc-
tive state (f=-0.934, SE =0.281, 95% CI [-1.51, -0.409], p = 0.006;
Table S3; Figure 2). On average, viral loads were 3.4 times higher
at Kanyawara than at Ngogo (M+SD: Kanyawara, 0.543+0.540;
Ngogo, 0.158+0.208). Random forest classification indicated
that circovirus 2 and unclassified ssDNA virus 5 contributed most
strongly to this effect (Table S4; Figure S3). We did not include
sample collection quarter as a fixed effect in our models to prevent
overfitting; however, a Pearson Chi-square test did not indicate a
relationship between collection quarter and study community (X-
squared = 2.34, df = 3, p = 0.505).

Mixed modelling indicated that age was not associated with ei-
ther viral richness (p = 0.033, SE = 0.321, 95% Cl [-0.672, 0.687],
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FIGURE 1 Viralrichness as a function of reproductive status in wild female chimpanzees. (a) Richness in cycling, pregnant and lactating
chimpanzees. Light and dark boxes represent Kanyawara and Ngogo respectively. The top and bottom of each box represent the 75th
and 25th percentiles, respectively, and bold horizontal lines indicate medians. (b) Viral richness by gestation day in pregnant chimpanzees.

Shading indicates the 95% confidence interval.
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1.5 in this population have shown that females are particularly energet-
ically stressed in the year following parturition (Emery Thompson
— P et al., 2012), which is when we chose to sample the individuals in
§ this study. Female chimpanzees do not wean their infants until
E 9 4-6years, so we do not yet know how maternal costs change as in-
2> 1.0 fants grow and begin consuming solid foods. For example, shedding
(29 of Oesophagostomum in Kibale chimpanzees peaks in the months
g ° ° o following parturition and returns to baseline levels by approxi-
g 2 =3 mately 2.5years postpartum (Phillips et al., 2020). The increase in
3 o o viral richness with progression of pregnancy parallels patterns of
E 0.5 o— o Oesophagostomum (Phillips et al., 2020) and Plasmodium infection
> (De Nys et al., 2014). Females experience the dual effects of es-
g °© calating energetic costs and pregnancy-related shifts in immuno-
= © regulation that may each contribute to high viral shedding in the
© g]"o ° postpartum period. The high costs of lactation appear to compound
0.0+ © g these effects either by rendering females susceptible to new infec-
Kanyéwara Ngé)go tions or decreasing their ability to control existing infections.

Community

FIGURE 2 Total viral load (VRPM/kb) of wild female
chimpanzees by study community. The upper and lower bounds
of each box represent the 75th and 25th percentiles, respectively,
and bold horizontal lines indicate medians. Two outliers from the
Kanyawara community are above the upper limit of the y axis and
are not visible.

p = 0.919; Table S2) or total viral load (5 = 0.047, SE = 0.126, 95% Cl
[-0.188, 0.289], p = 0.717; Table S3).

4 | DISCUSSION

We used metagenomic methods to identify and quantify viruses shed
by wild female chimpanzees over the course of reproduction. We iden-
tified 27 viruses, including 12 novel viruses, in 16 female chimpanzees
sampled over time in a population in western Uganda. Nineteen viruses
(70.4%) were single-stranded DNA viruses, which are geographically
widespread and infect a variety of hosts (Shulman & Davidson, 2017).
Consistent with our prior work (Negrey et al, 2020; Negrey
et al., 2022), we found that viral shedding varied with host physiology
and ecological conditions. In the present study, we observed changes
inviral richness and load based on female reproductive state and study
community. Viruses that we previously found most strongly associated
with illness or old age in males from this same chimpanzee population
(e.g. salivirus, chisavirus; Negrey et al., 2020, 2022) did not drive the
reproductive patterns observed in females.

Viral richness was higher in females when they were lactating
than when they were cycling or pregnant. In addition, viral rich-
ness increased as pregnancy progressed. Given the high energetic
costs of late pregnancy and early lactation, our findings support
the hypothesis that energetic limitations force trade-offs between
reproduction and physiological processes associated with somatic
maintenance and immunity. Energetic data from wild chimpanzees

Kanyawara females exhibited greater viral richness and total viral load
than Ngogo females, regardless of reproductive status. This result paral-
lels a previous finding that chimpanzees of any age and sex at Kanyawara
exhibited higher viral loads than those at Ngogo when exhibiting clin-
ical signs of ill health (Negrey et al., 2022). The direction of this effect
is striking because the Ngogo community is larger than the Kanyawara
community, and, other factors being equal, group size is hypothesized
to increase pathogen transmission (Freeland, 1976). As previously pos-
ited (Negrey et al., 2022), community-level variation in viral shedding
may be attributable to documented differences in dietary quality and
energy availability. Specifically, the Ngogo territory contains a greater
abundance of ripe fruit (Potts et al., 2011), which corresponds to higher
energy balance in Ngogo chimpanzees than in Kanyawara chimpanzees
(Emery Thompson et al., 2009). Diet quality impacts immune function
(Scrimshaw & SanGiovanni, 1997), so habitat quality may contribute
to this trend. In addition, the Kanyawara community territory abuts
the park boundary, whereas Ngogo territory does not. Anthropogenic
disturbance (e.g. forest fragmentation, poaching) and associated stress
(McLennan et al., 2019), exposure to human and domestic animal patho-
gens directly or through the environment (Goldberg et al., 2008), and
exposure to environmental toxins (Wang, Steiniche, et al., 2020) may ex-
plain differences between Kanyawara and Ngogo viromes.

Finally, we did not find age-related variation in either viral rich-
ness or load, consistent with our prior research on chimpanzee fe-
males (Negrey et al., 2020). The youngest and oldest individuals in
the current study (at the time of sample collection) were 11.5 and
50.3years, a range of 38.8years. Given this age range, the absence
of age-related variation in the virome is notable, especially because
we have observed increases in helminthic parasite shedding with age
in females (Phillips et al., 2020) and prominent increases in viral shed-
ding among older males in the same population (Negrey et al., 2020,
2022). These results suggest that patterns of immunosenescence
differ between males and females. Life expectancy for female chim-
panzees is greater than for males (Muller & Wrangham, 2014; Wood
et al., 2017), which may result, in part, from differences in physio-
logical ageing rates—that is, immunosenescence is delayed, slower
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and/or less pronounced in females than in males, as females likely
increase reproductive success through longevity (Rolff, 2002). We
note that the virome of the gastrointestinal tract may be less respon-
sive to immunosenescence and/or general physiological health than
viromes of other body compartments (e.g. blood, lung), which could
have reduced our ability to detect associations between viruses and
age in females.

Viruses shed in faeces do not encompass all viruses harboured
by an organism. The extent and frequency with which rhinovi-
ruses, for instance, are shed in faeces vary widely among individu-
als (Savolainen-Kopra et al., 2013). Given such variability, research
seeking to assess the full diversity of viruses harboured by and/or
infecting wildlife would ideally examine multiple tissue types and
byproducts, from saliva (Smiley Evans et al., 2015) to urine (Newman
et al., 1998). We note that Kanyawara and Ngogo chimpanzees do
not harbour simian immunodeficiency viruses that occur at high
prevalence elsewhere (Santiago Mario et al., 2003), and this differ-
ence may influence analyses of infection and life-history trade-offs.
We also note that viral shedding may ‘spike’ prior to death (either
as cause or consequence of declining health), so our data may suf-
fer from survival bias (i.e. individuals who live longer are those able
to avoid or fight infection), as has been shown in humans (Vaupel
& Yashin, 1985) and wild animals other than chimpanzees (Beirne
et al., 2016). Nevertheless, this evidence suggests that the costs of
reproductive effort for female immunological health are transient
and do not accumulate, as has been observed in some human subsis-
tence groups (Gurven et al., 2016).

We acknowledge limitations in our methods that underscore
the difficulty in measuring viral burdens in wild chimpanzees and
preclude definitive claims about the eco-physiological mechanisms
underlying our results. Trade-offs between the energetic demands
of pregnancy and lactation and metrics of viral infection may be di-
rect (i.e. reduced robustness or duration of immunological defences
against intracellular microbes) or indirect (i.e. resulting secondarily
from other factors that covary with reproductive status, even in
the absence of immunological effects, e.g. behavioural differences
that affect viral exposure). We did not measure immunity or ener-
getic status directly in this study, but that would be a logical next
step. Furthermore, many of the viruses we identified remain poorly
characterized, and their relationship to host health remains unclear.
As we have noted previously (Negrey et al., 2022), several of the
identified viruses—notably, salivirus and chisavirus—may represent
anthroponoses, and future data from humans living in proximity to
Kibale National Park will illuminate such relationships, if they exist.
Because our study was observational and noninvasive (essential for
research on wild chimpanzees), the viruses we identified could be
causes of ill health or benign reflections of physiological compro-
mise. Notably, we did not address changes throughout the menstrual
cycle, which in primates has been shown to influence susceptibility
to infection [e.g. Candida albicans (Steele et al., 1999), simian immu-
nodeficiency virus (Morris et al., 2015)], and influence inflammatory
biomarkers (Negrey et al., 2021). Finally, we acknowledge limita-
tions common to viral metagenomics, as indicated by our prior work

(Negrey et al., 2022). Although highly specific, viral metagenomics
methods can be less sensitive than targeted assays, especially when
working with complex biological samples with high background
noise and multiple viruses (Chiu & Miller, 2019). Metagenomics ap-
proaches are also biased towards viruses with small DNA genomes
(Callanan et al., 2021; Roux et al., 2016). In our dataset, for example,
19 of the 27 viruses (70.4%) we report are single-stranded DNA vi-
ruses (Table 1), which may be overrepresented.

Our results may nevertheless be generalizable to other long-lived
mammalian species and have transdisciplinary applications. For in-
stance, understanding the physiological costs of lactation may be ap-
plicable to captive and free-ranging animal management (Moresco &
Agnew, 2013). Our results may be particularly pertinent to the repro-
ductive evolution of human females, given similarities in genetics and
life histories between humans and chimpanzees. Both species have
long life expectancies that vary greatly with local ecological condi-
tions (Wood et al., 2017). Furthermore, both humans and chimpanzees
invest great time and energy in offspring (Barton & Capellini, 2011,
Martin, 1995). Although studies of humans and nonhuman primates
have often highlighted pregnancy as an immunologically costly repro-
ductive stage (e.g. De Nys et al., 2014), our results suggest that homi-
nid females may face greater physiological challenges when lactating.
Prior studies have noted the protective effects of breastfeeding on
health and mortality in human children (Feachem & Koblinsky, 1984).
Our results contribute to this body of knowledge by showing that
lactation also affects biomarkers of health in the lactating mother
(measures of viral infection in the case of this study). Postnatal care is
often neglected relative to prenatal care (Albers, 2000), reflecting the
general rarity of prolonged breastfeeding by mothers in industrialized
populations and the United States in particular (Dagher et al., 2016).
Should our results be generalizable to humans, they suggest that more
consideration be given to postnatal infectious disease susceptibility

for the benefit of maternal and child health alike.
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