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ABSTRACT: The interaction between CH;NH,Pbl; (methylam-

monium lead iodide or MAPI) thin films and metal halide vy &9 P
perovskite quantum dots (PQDs) was studied using spectroscopic LA R 4 %, ""'LL‘ ?,:‘ K
techniques. By comparing PQDs with Cs" and CH;NH;"* cations ; 8 e b
and different surface passivation, including both conducting and e v J; (e
insulating molecular ligands, charge transfer interactions between - ¥ P, L1 - L

the PQDs and the MAPI films were tuned. Mapping static and &
dynamic MAPI emission as functions of temperature, excitation

‘JJ'PF 4 MAPI

wavelength, and excitation power revealed that a low density of

PQDs improved MAPI photoluminescence (PL) properties, including increased intensity and average recombination lifetime.
However, a high density of PQDs had detrimental effects, resulting in a spectral blue shift of MAPI emission and a shortening of
charge carrier lifetimes. This complex modulation of MAPI properties by PQDs indicates an intricate interplay between different

factors that need to be considered in optimizing such heterostructures for optoelectronic applications.

1. INTRODUCTION

Metal halide perovskites (MHPs) are at the forefront of
materials research owing to their superior optical and
electronic properties' > which have led to their utilization in
a broad range of applications. These include photovoltaics, "
light-emitting diodes,® luminescent solar concentrators,’
lasers,® and photodetectors.” MHPs have an ABX, crystal
structure, where A is a monovalent cation (common examples
include methylammonium, formamidinium, or Cs), B is a
bivalent cation (Pb** or Sn**), and X is a halide (CI~, Br™, or
I7).” Synthesis of MHPs with mixtures of A and X is a
common approach'’ in the ongoing efforts to improve material
quality and optoelectronic properties. Another strategy is to
passivate the surface of MHP thin films,"'~'* which serves a
dual purpose of passivating defects'” and reducing ion
migration.'® Passivation of defects, especially at grain
boundaries, reduces non-radiative recombination losses,
enhances overall charge carrier lifetimes, and increases charge
extraction efficiency.'” Reducing ion migration through defect
centers improves MHP stability related to chemical degrada-
tion, which is particularly important when the A cation is an
organic one.'*”

Interactions between perovskite quantum dots (PQDs) and
MHP thin films are of strong interest as PQDs with tunable
properties can be used to modify and enhance the properties of
the films.">'"”™>> While other QDs, such as CdSe and
PbS,"”*! have been studied for this purpose, PQDs are unique
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candidates due to their similarity in properties to MHP
films**~** and have demonstrated the highest potential. PQDs
can be integrated into thin film devices in two ways: as a thin
decoration layer on top® using various deposition techniques
such as spin c:oating,13’20 drop casting,26 or spray coating27 or
as a dispersed layer within the bulk of the film, using
techniques such as sol—gel,”® co-precipitation,” or hydro-
thermal®® methods. The use of both all-inorganic'® and
organic—inorganic hybrid'” PQDs has led to favorable
outcomes when incorporated into MHP films. These include
improved stability of the thin films to environmental factors
such as moisture and oxygen by virtue of defect annealing,™*
enhanced light harvesting efliciency by trapping the incident
light within the film and improving the charge transport and
extraction properties by increasing grain sizes, ' reducing
recombination rates,”” and enhancing higher optical yield.**
In this work, PQDs of varying composition, surface
functionalization, and coverage density were deposited on
CH;NH,Pbl; (methylammonium lead iodide, known as
MAPI) thin films to study how different material parameters
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affect MAPI optoelectronic properties from a spectroscopic
perspective and as a function of temperature. The results
suggest a complex dependence of the interactions between the
QDs and MAPI films on the characteristics of the PQDs and
the coverage of the PQDs on the surface of the MAPI films.

2. EXPERIMENTAL SECTION

2.1. Chemicals. Methylammonium iodide (MAIL, >99%,
Sigma-Aldrich), lead iodide (Pbl, 99%, Sigma-Aldrich), N-
methyl-2-pyrrolidone (NMP, 99.5%, Sigma-Aldrich), dimethyl
sulfoxide (DMSO, >99.9%, Sigma-Aldrich), N,N-dimethylfor-
mamide (DMF, 99.8%, Sigma-Aldrich), and cesium lead
bromide PQDs (CsPbBr;, 10 mg/mL, Sigma-Aldrich) were
used as purchased without any further purification.

2.2, Synthesis. For thin film fabrication, MAPI ink was
prepared in a glovebox. In a glass container, 0.636 g of MAI
was combined with 1.844 g of Pbl,. Next, 68 yL of NMP, 232
uL of DMSO, and 3 mL of DMF were added, and the ink was
left to mix at 60 °C overnight. 40 uL of this MAPI ink was
deposited on the substrates which had been cleaned with
isopropyl alcohol and spin-coated at 2000 rpm for 60 s. This
was followed by annealing the film at 100 °C for S min. For
PQD deposition, the MAPI thin film was placed back in the
spin coater, where 40 uL of PQDs (all suspended in toluene)
was deposited and spin-coated at 2000 rpm for 60 s, and the
annealing process was repeated. For the density calculation of
each type of PQD, molar concentration was used as the
starting point. As an example, MA-APTES PQDs had a molar
concentration of 3.00 mM/L. This led to 40 yL containing 8 X
10'® dots. Calculations™ were used to estimate that 0.038
fractions of the PQDs were deposited on the film after spin
coating. Over the entire substrate, this amounted to 1.6 X 107
dots/pm?. The same calculation for Cs-OABr PQDs led to 0.8
x 10% dots//,tm2 and MA-BZA/PAA to 2.7 X 10’ dots//,tmz.

2.3. Characterization. 2.3.1. Spectroscopy. The samples
were excited by a pulsed supercontinuum source (NKT
Photonics), which allowed spectral selection and modulation
of the pulse interval. Most of the PL (static and dynamic) data
were taken with this source tuned to 430 or 620 nm and 76
MHz repetition rate using a Princeton Instruments Acton
SP2300 spectrometer, which dispersed the emission onto a
thermo-electrically cooled charged coupled detector. The
spectral resolution of this system was 0.18 nm. For time-
resolved measurements, the collected PL signal was directed to
single-photon avalanche diodes that connect to a time-
correlated single-photon counting system (PicoQuant).

2.3.2. Temperature-Dependent Measurements. The sam-
ples were mounted in a cryo-free optical system from
Advanced Research Systems with an operation range of
295—6 K. Samples were mounted on a scanning stage with
motorized micrometers along all three directions. The
scanning stages had a spatial resolution of 100 nm.

2.3.3. Imaging. The confocal data was taken using an
LSM880 confocal microscope. Samples were excited at 458
and at 633 nm above and below the PQDs’ band gap. The
emission was taken by filtering light between 469 and 526 nm
for the PQD emission and between 708 and 759 nm for the
MAPI emission.

3. RESULTS AND DISCUSSION

Figure 1A schematically summarizes the three different
samples used. Two were CH;NH;PbBr; PQDs, one type
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Figure 1. (A) Schematic of PQDs and molecules used to functionalize
their surfaces: (left) CH;NH;PbBr; with APTES, (middle)
CH;NH,PbBr; with BZA PAA, and (right) CsPbBr; with OABr.
(B) Normalized PL spectra of the three PQDs in solution and PL and
absorption bands of the MAPI film showing PQD emission overlap
with MAPI absorption.

functionalized with 3-aminopropyl triethoxysilane, denoted
MA-APTES, and the other with ligands containing benzyl-
amine (BZA) and phenylacetic acid (PAA), denoted MA-BZA
PAA. Both MA-APTES and MA-BZA PAA PQDs were
synthesized following the protocols in our previous
works.””** The third PQD was CsPbBr, functionalized with
octylammonium bromide, labeled Cs-OABr, purchased from
Sigma-Aldrich. Figure 1B shows the normalized photo-
luminescence (PL) spectra of each of the PQDs in solution,
compared to PL emission from the MAPI film, with all the
PQDs emitting at shorter wavelengths than the MAPI film.
This was a deliberate choice to allow for the possibility of
energy transfer from the larger band gaps of the PQDs to the
smaller band gap of the film,>' given the spectral overlap
between MAPI absorption and PQD emission bands. In
addition, BZA PAA ligands are conductive and were chosen as
an alternative to the insulating APTES and OABr ligands to
allow for more efficient charge transfer from PQDs to films.
MAPI thin films were fabricated via spin coating and
annealing, followed by the same procedure for PQD
deposition. Calculations from the literature based on molar
concentration revealed the density of PQDs to range between
107 and 10® dots/um? which is well below the limit of a single
close-packed PQD layer (~10' dots/um?) and should not
lead to inter-dot ET-induced spectral red-shift.’' These
samples were denoted LD (low density), and another set,
prepared with a second spin-coated deposition of the same
concentration of PQD, was denoted high density (HD).
Schematic representations of LD and HD films are shown in
Figure 2A. Scanning electron microscopy (SEM) and X-ray
photoelectron spectroscopy (XPS) (Figures S1 and S2)
confirm no unexpected differences between the films. Figure
2B—F shows fluorescence confocal images of a MAPI film as it
went through successive PQD depositions. Bare MAPI
emission (Figure 2B) with 633 nm, when compared to those
after the first PQD deposition (LD film, Figure 2C) and after
the second (HD film, Figure 2E), showed no noticeable
variation, indicating that the deposition and annealing did not
cause significant changes to the film. The same film with
excitation tuned to 458 nm (which excited both the PQDs and
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Figure 2. (A) Schematics of (top) LD and (bottom) HD films. (B)
Confocal image of bare MAPI film. Images of the LD film taken with
(C) 633 and (D) 458 nm excitation. Images of the HD film taken
with (E) 633 and (F) 458 nm excitation. All images are of the same
film taken after successive depositions. All scale bars are 250 ym.

MAPI) is shown in Figure 2D,F, highlighting the changes in
PQD area coverage between LD and HD films.
Room-temperature PL results are summarized for all LD
films in Figure 3. PL data were collected from, and averaged
over, spatially resolved maps (Figure S3), and the resultant
spectra in Figure 3A show that PQD emission was quenched
for all the LD films, regardless of PQD composition or surface
functionalization. For all thin films, MAPI emission was
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Figure 3. (A) PL emission of LD MAPI films shows quenched
emission from the PQDs. (B) Change in PL intensity of the MAPI
films with PQDs added (C) TRPL data for the same samples. (D)
Distribution of average recombination lifetime 7 for MAPI w/o PQDs
and with. Addition of PQDs results in increased 7. Bars in (C and D)
indicate the standard deviations.

recorded before and after PQD deposition. The same results
also indicated a small blue shift (~5—10 nm, Figure S4A) of
MAPI PL after PQD deposition, with enhanced intensity. This
was investigated further in Figure 3B where MAPI PL intensity
changes (AIp;) for multiple samples are plotted. These
confirm that overall, both MA-PQDs increased MAPI
emission, while MA-APTES demonstrated nearly a threefold
enhancement. Furthermore, compared to bare MAPI, the
deposition of Cs-OABr and MA-BZA PAA PQDs increased
spectral full width at half-maximum (FWHM) by a couple of
nm, while MA-APTES PQDs led to narrower spectral widths
in a large proportion of samples (Figure S2B). FWHM is an
indicator of the quality of MAPI thin films and the presence of
defects.*> Narrow FWHM values are associated with higher
power conversion efficiency of solar cells.”> Figure 3C
juxtaposes time-resolved PL (TRPL) profiles of MAPI films
with and without PQDs, and the former all demonstrated
longer lifetimes. The TRPL decay profiles were fitted with a bi-
exponential function, I, = Aje /" + A,e™/™, and the
average recombination time was extracted using the weighted
formula 7 = (A7} + A,13)/ (A7, + Ay7,).>* Compiled from
multiple samplings, Figure 3D confirms that 7 was longer with
the addition of all the PQDs.

The measurements were repeated with a second set of
freshly made MAPI films, but with PQDs spin-coated twice,
each time the same amount as before, denoted HD films. PQD
PL was observed alongside MAPI for all three samples (Figure
4A—C). While the PL of the PQDs was not quenched by
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Figure 4. PL emission of MAPI films with HD of (A) CsPbBr; PQDs
with OABr, (B) CH,NH,PbBr, PQDs with BZA/PAA, and (C)
CH;NH;PbBr; PQDs with APTES, showing emission from both
MAPI and the QDs. The red curve indicates bare MAPI emission,
while the solid curves in each plot indicate PQD emission in solution.
(D) Center wavelength Ac of MAPI emission with the PQDs. The
dashed line indicates the peak position of the bare MAPI film. (E)
Distribution of average recombination lifetime 7 for MAPI w/o PQDs
and with. The bars in (D) and (E) indicate the standard deviations.

MAP], its peak position red-shifted by 15—20 nm compared to
solution PL, attributed to inter-dot energy transfer. MAPI PL
from films with Cs-OABr (Figure 4A) and MA-BZA PAA
(Figure 4B) was blue-shifted by nearly 100 nm, and the spectra
were notably broadened (Figure SS). MA-APTES PQDs
(Figure 4C) proved to be an exception to the blue shift, as
further summarized in Figure 4D. Recombination lifetimes
extracted from TRPL data as plotted in Figure 4E did not show
any increase for MA-APTES and a minor decrease for MA-
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BZA PAA. But Cs-OABr PQDs suppressed 7 on average by
almost half.

PL properties, including emission intensity, wavelength, and
recombination rates, are usually affected by a combination of
mechanisms. One is the passivation of surface traps that reduce
non-radiative recombination, leading to enhanced PL intensity
and decreased spectral FWHM ' observed in LD films (Figure
S6). APTES is a well-known passivation agent,””*> and BZA
PAA can neutralize dangling bonds,*® reducing non-radiative
recombination. The other is energy transfer (ET) from PQDs
to MAPI, which can also increase emission efficiency and
charge carrier lifetimes in the acceptor (entity with a lower
bandgap).”” There is a third possibility, where the annealing
process following PQD deposition leads to ions being released
from them to neutralize halide vacancies.”® In addition to
passivation of specific defects, this could lead to the formation
of localized domains of CH;NH;Pbl; Br,, causing the spectral
blue shift observed in Figures 3A and 4D and the reduced
recombination in Figure 4E.

Variations of excitation wavelength and temperature
revealed further differences between the PQDs and their effect
on MAPIL Figure SAB schematically outlines the role of
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Figure 5. Schematics indicating the consequences of exciting (A)
above and (B) below the band gap of PQDs. (C) Center emission
wavelength Ac, (D) FWHM, and (E) average recombination time 7 of
MAPI emission with and without PQDs as the excitation wavelength
is tuned. The dashed line indicates the wavelength below which both
PQDs and MAPI are excited.

excitation wavelength. When both PQDs and MAPI were
excited (430 nm below PQD bandgaps), emission from each
was expected, and there was a likelihood of ET from PQD to
MAPL If the excitation wavelength was longer (630 nm) and
the PQDs were not excited, the only photophysical process
would be direct absorption by and emission from MAPIL In
Figure SC—F, MAPI emission wavelength A, spectral FWHM,
emission intensity Ip;, and average recombination time 7 are
plotted as the excitation wavelength was tuned from 430 to
650 nm for LD films. Ac and FWHM did not show any
consistent and noteworthy variation with the excitation
wavelength. ET may not necessarily have affected those

parameters but changes to Iy, and 7 were expected. For films
with MA-BZA PAA and Cs-OABr, there were no changes in
I, (Figure SE). Films with MA-APTES did indicate an
increase in excitation wavelength. Similarly, both MA-APTES
and MA-BZA PAA incorporated MAPI films showed 7
increasing at longer excitation wavelengths. If ET from the
PQDs was the cause, then both Ip; and 7 should have been
enhanced for excitation <500 nm when carriers were excited in
the PQDs. The reverse was noticed, and therefore, it leads to
the conclusion that ET does not play a critical role in the
trends observed.

All MAPbX; undergoes a structural phase transition as
temperature is decreased. For MAP], for T > 140 K, the crystal
structure is tetragonal with a bandgap of 1.56 eV (~790 nm),
after which the system stabilizes in an orthorhombic structure
with a higher bandgap at 1.62 eV (~760 nm).”> As the
temperature of the MAPI films was changed from 300 to 6 K,
the expected phase transition was observed in all samples
(Figure S7A-D),* though the spectral shifts indicate
retention of tetragonal domains in films with PQDs (Figure
S7E—QG). Strain at surfaces/interfaces is a common cause of
such an effect,”” and the energy of emission at neither phase is
affected. Plotting MAPI lifetime 7 versus temperature for films
with all three PQD in Figure 6A shows that 7 increased with
temperature T in all cases, which is typical of MAPI and
implies that recombination is dominated by excitons rather
than free charges.*’
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Figure 6. (A) Recombination lifetime 7 as a function of temperature
T for two different excitation wavelengths for (top) CH;NH;PbBr;
with BZA/PAA, (middle) CH;NH,PbBr; with APTES, and (bottom)
CsPbBr; with OABr. (B) PL intensity varying with MAPI carrier
density at T = 300, 200, and 20 K for the same PQDs. Fits are to a
power law.

For MA-APTES and Cs-OABr, excitation wavelength did
not affect lifetime, but 7 was consistently higher in the MAPI
film for 430 nm excitation for samples with MA-BZA PAA in
the range T < 260 K. Having established that ET does not play
a substantial role in modulating MAPI behavior, it is feasible
that charge transfer from the MA-BZA PAA PQDs to MAPI,
resulting from the higher conductivity afforded by the aromatic
BZA PAA ligands compared to the insulating behavior of
APTES and OABr. A final consequence of the deposition of
PQDs with conducting ligands is seen in Figure 6B, which
plots MAPI emission intensity Ip; with excitation power at 295,
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200, and 20 K for an excitation wavelength of 430 nm. At 295
K, Ipp « P2, where P, is excitation power, which is
indicative of free charge carrier recombination®’ and was
consistent for bare MAPI (Figure S8) and in MAPI with all
three PQDs (Figures 6B, S9, and S10). At 20 K, I o P, for
all samples, implying recombination is excitonic,*' as expected
at low temperatures when the thermal energy is lower than the
excitonic binding energy.”' However, at 200 K, MAPI PL
emission from films with MA-APTES and Cs-OABr PQDs
showed a linear dependence with excitation power (Figures S9
and S10), while MAPI with MA-BZA PAA exhibited
bimolecular recombination. Assuming there is no charge
transfer from the other two types of PQDs, then the behavior
of those MAPI films is the norm, leading to the conclusion that
free charges from MA-BZA PAA PQDs result in this
anomalous power dependence.

Taken together, these results showed complex changes in
thin film optoelectronic properties, driven by three primary
mechanisms, schematically depicted in Figure 7. At LD of
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Figure 7. Schematic summarizing the most dominant effects observed
between MAPI and the PQDs. (1) Passivation of vacancy-related
dangling bonds in MAPI by some PQDs increases PL yield and
improves recombination lifetimes; (2) at low temperatures (T < 200
K), PQDs with conducting ligands allow charge transfer to MAPI,
increasing bimolecular recombination; and (3) halide ion migration
from PQDs to MAPI results in spectral blue shift and increased
recombination rates, particularly impactful in the HD films.

PQDs, MAPI surface defects were passivated, leading to
increased emission intensity and improved recombination
lifetimes. The role of surface ligands on the PQDs became
clearer at lower temperatures, where the conducting BZA PAA
molecules allowed for charge transfer, reflected in an increased
charged lifetime and in an increased proportion of free carriers
participating in recombination. There is also the possibility
that the annealing process following PQD deposition led to ion
migration and the formation of domains of I/Br mixed
perovskite, and this consequence was more severe after the
second annealing when the PQD density was doubled in the
case of MA-BZA PAA and Cs-OABr PQDs. Ion migration in
MAPDX, films is a well-established occurrence and has been
investigated in depth in both thin films"*~* and nanocryst-
als.>”*" In particular, because the Pb—Br bond is shorter and
stronger,””~>” 1™ is replaced by Br~ with relative ease, and this
substitution can be driven optically’® or thermally.>”
Furthermore, the clearest indication of halide migration is a

spectral shift in PL, which extends between 100—125 nm in
wavelength,’o’m’58 as we have observed here.

4. CONCLUSIONS

This study of MHP PQDs deposited on MAPI using
spectroscopic techniques reveals the critical role of the surface
and interfaces in MHP-based materials and provides some
insights into how surface optimization may be attempted to
achieve desired features for different applications. For higher
PL emission yield, insulating bulky molecules are better, while
in cases where conduction is a necessity, aromatic ligands may
be more suited.
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