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Abstract. Let (ak)k∈N be an increasing sequence of positive integers satisfying the Hadamard
gap condition ak+1/ak > q > 1 for all k ∈ N, and let

Sn(ω) =

n∑
k=1

cos(2πakω), n ∈ N, ω ∈ [0, 1].

Then Sn is called a lacunary trigonometric sum, and can be viewed as a random variable
defined on the probability space Ω = [0, 1] endowed with Lebesgue measure. Lacunary sums
are known to exhibit several properties that are typical for sums of independent random
variables. For example, a central limit theorem for (Sn)n∈N has been obtained by Salem and
Zygmund, while a law of the iterated logarithm is due to Erdős and Gál. In this paper we
study large deviation principles for lacunary sums. Specifically, under the large gap condition
ak+1/ak → ∞, we prove that the sequence (Sn/n)n∈N does indeed satisfy a large deviation
principle with speed n and the same rate function Ĩ as for sums of independent random
variables with the arcsine distribution. On the other hand, we show that the large deviation
principle may fail to hold when we only assume the Hadamard gap condition. However, we
show that in the special case when ak = qk for some q ∈ {2, 3, . . .}, (Sn/n)n∈N satisfies a
large deviation principle (with speed n) and a rate function Iq that is different from Ĩ, and
describe an algorithm to compute an arbitrary number of terms in the Taylor expansion of
Iq. In addition, we also prove that Iq converges pointwise to Ĩ as q →∞. Furthermore, we
construct a random perturbation (ak)k∈N of the sequence (2k)k∈N for which ak+1/ak → 2
as k → ∞, but for which at the same time (Sn/n)n∈N satisfies a large deviation principle
with the same rate function Ĩ as in the independent case, which is surprisingly different
from the rate function I2 one might naïvely expect. We relate this fact to the number of
solutions of certain Diophantine equations. Together, these results show that large deviation
principles for lacunary trigonometric sums are very sensitive to the arithmetic properties
of the sequence (ak)k∈N. This is particularly noteworthy since no such arithmetic effects
are visible in the central limit theorem or in the law of the iterated logarithm for lacunary
trigonometric sums. Our proofs use a combination of tools from probability theory, harmonic
analysis, and dynamical systems.
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1. Introduction

The study of lacunary series is a classical and still flourishing topic in harmonic analysis
that has attracted considerable attention. In the article [48] published in 1922, Rademacher
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studied the convergence behavior of series of the form
∞∑
k=1

bkrk(ω),

where ω ∈ [0, 1], b = (bk)k∈N ∈ RN, and rk denotes the kth Rademacher function, that is,
rk(ω) = sign

(
sin(2kπω)

)
. He proved that such a series converges for almost every ω ∈ [0, 1]

if
∑

k∈N |bk|2 <∞, or equivalently, b ∈ `2. The necessity of square summability was obtained
shortly after by Khintchine and Kolmogorov in 1925 [35], thereby establishing an interesting
`2-dichotomy in the convergence behavior of such series. Note that by the structure of the
Rademacher functions one has

∞∑
k=1

bkrk(ω) =
∞∑
k=1

bkr1(2k−1ω),

where on the right-hand side we have a series of dilates of a fixed function, with an expo-
nentially growing dilation factor. This leads naturally to the study of similar questions for
lacunary trigonometric series, that is, series of the form

∞∑
k=1

bk cos(2πakω) and
∞∑
k=1

bk sin(2πakω),

where ω ∈ [0, 1], b = (bk)k∈N ∈ RN, and (ak)k∈N is a sequence of positive integers that is
lacunary, in the sense that it satisfies the Hadamard gap condition

(1.1)
ak+1

ak
≥ q > 1, for every k ∈ N.

Interestingly, results similar to the Rademacher case were obtained for such series. Kolmogorov
showed in [37] that the square summability of b is sufficient for the almost everywhere conver-
gence of lacunary series and Zygmund proved in [60] that the square summability condition
was necessary, again establishing the same `2-dichotomy as for Rademacher series.

An important property of the Rademacher functions is that they form a system of inde-
pendent random variables. More precisely, if (bk)k∈N is a sequence of real numbers, then the
weighted Rademacher functions bkrk, k ∈ N, form a sequence of independent and centered
random variables with Var(bkrk) = b2k. One readily checks that Lindeberg’s condition is sat-
isfied whenever both b /∈ `2 and max1≤k≤n |bk| = o(‖(bk)nk=1‖2). This means that under these
two conditions we have, for every t ∈ R, the central limit theorem (CLT)

lim
n→∞

λ

({
ω ∈ [0, 1] :

n∑
k=1

bkrk(ω) ≤ t‖(bk)nk=1‖2
})

=
1√
2π

∫ t

−∞
e−y

2/2 dy,

which in particular holds when bk = 1 for every k ∈ N. In 1939 Kac proved an analogous
central limit theorem in the lacunary case for integer sequences (ak)k∈N with very large gaps,
that is, those for which ak+1/ak →∞, as k →∞. The case of Hadamard lacunary sequences
(ak)k∈N was settled in 1947 when Salem and Zygmund established in [52] that, for all t ∈ R,

lim
n→∞

λ

({
ω ∈ [0, 1] :

n∑
k=1

cos(2πakω) ≤ t
√
n/2

})
=

1√
2π

∫ t

−∞
e−y

2/2 dy.(1.2)

These results suggest that lacunary trigonometric sums behave in many ways like sums of
independent random variables, and in fact, this has become a classical heuristic that has been



LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 3

confirmed in many settings. Indeed, under the Hadamard gap condition, the sequence of scaled
partial sums of the functions cos(2πakx), k ∈ N, not only satisfies the central limit theorem
in (1.2), but, as Salem and Zygmund [53] and Erdős and Gál [23] showed, also satisfies a law
of the iterated logarithm (LIL), that is, for almost every ω ∈ [0, 1],

lim sup
n→∞

n∑
k=1

cos(2πakω)

√
n log log n

= 1.

A generalization to non-integral sequences (ak)k∈N was also later established in [57].
A natural question is to ask whether the CLT and LIL still hold under the Hadamard gap

condition when the function ω 7→ cos(2πω) is replaced by an arbitrary 1-periodic function f .
A famous example of Erdős and Fortet (see, e.g., [32]) shows that this is not true in general.
However, under the additional condition that the function f : R→ R is of bounded variation
on [0, 1] and satisfies both

(1.3) f(ω + 1) = f(ω) and
∫ 1

0
f(ω) dω = 0,

Kac was able to show in [31] that a central limit theorem holds for scaled partial sums of the
functions ω 7→ f(2kω), k ∈ N, but in this case the variance of the Gaussian limit law is

(1.4) σ2 =

∫ 1

0
f(ω)2 dω + 2

∞∑
k=1

∫ 1

0
f(ω)f(2kω) dω,

rather than
∫ 1

0 f(ω)2 dω, as one would have in the independent case, namely for the sequence
of partial sums

∑n
k=1 f(2kUk), where {Uk}k∈N are independent and identically distributed

(i.i.d.) random variables distributed uniformly on (0, 1). This shows that general lacunary
function systems possess a more complicated dependence structure than lacunary trigonomet-
ric function systems, and that in the general case, the arithmetic structure of the lacunary
integer sequence plays a crucial role. Gapoškin found a remarkable relation between the exis-
tence of a CLT and the number of solutions to a certain Diophantine equation [29]. It was only
more recently, in 2010, that Aistleitner and Berkes improved Gapoškin’s result and provided
the precise condition for the central limit theorem to hold in the general lacunary framework
[4, Theorem 1.1].

While we have seen that the probabilistic behavior of lacunary series is quite well un-
derstood on the scales of both the CLT and LIL, this is not the case for large deviations.
Specifically, large deviation principles (LDPs) seem to have not been studied at all in the
lacunary setting. In contrast to the CLT, which captures universal behavior in the sense that
the limits are insensitive to details of the distribution beyond the first and second moments,
probabilities of (large) deviations on the scale of laws of large numbers are non-universal
and describe the asymptotic likelihood of rare events. More precisely, LDPs are sensitive to
the distribution of the underlying random variables and their non-universality is reflected in
the so-called rate function and/or the speed, which together define the asymptotic exponen-
tial decay rate of large deviation probabilities. The most classical result in this direction
is Cramér’s theorem [15] (see also [16] and [17, Theorem 2.2.3]), which guarantees that if
X,X1, X2, . . . are i.i.d. random variables with cumulant (or log-moment) generating function



4 C. AISTLEITNER, N. GANTERT, Z. KABLUCHKO, J. PROCHNO, K. RAMANAN

Λ(u) := logE[euX ] <∞ for u in a neighborhood of zero, then one has

lim
n→∞

1

n
logP (X1 + . . .+Xn ≥ nt) = −Λ∗(t),

for all t > E[X], where Λ∗ is the Legendre-Fenchel transform of Λ given by

Λ∗(t) = sup
θ∈R

[θx− Λ(θ)] .

LDPs in the spirit of Donsker and Varadhan, who initiated a systematic study (see [17, 56] and
the references cited therein), generalize the idea behind Cramér’s theorem. Loosely speaking,
a sequence (Xn)n∈N of random variables in Rd is said to satisfy an LDP with speed sn ↑ ∞
and a rate function I : Rd → [0,∞] if for sufficiently large n ∈ N and A ⊂ Rd sufficiently
regular,

P(Xn ∈ A) ≈ e
−sn inf

x∈A
I(x)

.

More precisely, a sequence (Xn)n∈N of random variables in Rd is said to satisfy an LDP with
speed sn and rate function I : Rd → [0,∞] if I : Rd → [0,∞] is lower-semicontinuous and for
every Borel measurable set A ⊂ Rd,

(1.5) − inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

sn
logP(Xn ∈ A) ≤ lim sup

n→∞

1

sn
logP(Xn ∈ A) ≤ − inf

x∈Ā
I(x),

where A◦ and Ā, respectively, denote the interior and closure of the set A.
In this paper we study large deviations for lacunary sums, thereby complementing existing

limit theorems like the CLT and LIL mentioned above. More precisely, if (ak)k∈N is a lacunary
sequence, that is, a sequence of positive integers satisfying the Hadamard gap condition (1.1),
we study the tail behavior of the associated sequence of lacunary sums, namely partial sums of
the sequence Xk(ω) := cos(2πakω), ω ∈ [0, 1], k ∈ N, viewed as real-valued random variables
on the space [0, 1] equipped with the Borel σ-algebra B([0, 1]) and Lebesgue measure λ. Our
results reveal an interesting and surprising behavior, showing how sometimes – depending
on arithmetic properties of the lacunary sequence (ak)k∈N – the large deviations behavior
of the associated sequence of lacunary trigonometric sums resembles that of partial sums of
independent and identically distributed random variables, whereas in other situations it does
not. This is particularly interesting since no such influence of the arithmetic structure of the
lacunary sequence is visible under the Hadamard gap condition when considering lacunary
trigonometric sums, neither in the case of the CLT nor in the case of the LIL.

We present precise statements of our main findings in the next section, with the proofs
presented in the following section.

2. Main results

We now present the main results of this paper. Let U ∼ Unif(0, 1) be a random variable
with the uniform distribution on the interval [0, 1]. Given a sequence (ak)k∈N of positive
integers, define the random variables

(2.1) Xk := cos(2πakU), k ∈ N,

and their partial sums

(2.2) Sn :=

n∑
k=1

Xk =

n∑
k=1

cos(2πakU), n ∈ N.
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These random variables are most conveniently defined on the probability space Ω = [0, 1]
endowed with the Borel σ-algebra B([0, 1]) and standard Lebesgue measure λ, which we shall
sometimes also denote by P. As a function on Ω, Xk is then given by Xk(ω) = cos(2πakω),
for ω ∈ [0, 1] and k ∈ N. Note that the random variables X1, X2, . . . are identically distributed
and (if all ak, k ∈ N, are distinct) uncorrelated. To see that the correlations vanish when
(ak)k∈N are distinct, recall that cos(α) · cos(β) = 2−1[cos(α − β) + cos(α + β)] and hence,
whenever k 6= `, we have∫ 1

0
cos(2πakω) cos(2πa`ω) dω =

1

2

∫ 1

0
cos(2π(ak − a`)ω) dω+

1

2

∫ 1

0
cos(2π(ak + a`)ω) dω = 0.

However, the elements of the sequence (Xk)k∈N are not independent and in fact, the sequence
is in general not even stationary.

2.1. Behavior as in the independent case. Our aim is to prove LDPs for the sequence
(Sn/n)n∈N. It is natural to try to compare the behavior of Sn/n to the behavior of partial sums
of independent random variables with the same distribution as X1, the common distribution
of Xk, k ∈ N. To this end, consider the random variables

(2.3) X̃k := cos(2πUk), k ∈ N,

where (Uk)k∈N are i.i.d. random variables with the same distribution as U , and define their
partial sums

(2.4) S̃n :=

n∑
k=1

X̃k, n ∈ N.

By Cramér’s classical theorem (see, e.g., [17, Theorem 2.2.3]), (S̃n/n)n∈N satisfies an LDP
with speed n and rate function Ĩ : R → [0,+∞] given by the Legendre-Fenchel transform of
the logarithmic moment generating function, that is,

(2.5) Ĩ(x) = sup
θ∈R

[
θx− Λ̃(θ)

]
,

where

(2.6) Λ̃(θ) := logE[eθX̃1 ], θ ∈ R.

The function Λ̃ can be computed explicitly. The common distribution of the random variables
X̃k, k ∈ N, is the arcsine law on (−1, 1) with Lebesgue density

f(x) =
1

π
√

1− x2
, |x| < 1.

The moment generating function of X̃1 is accordingly given by

E[eθX̃1 ] =

∫ 1

−1
eθx

1

π
√

1− x2
dx =

∞∑
m=0

θ2m

(2m)!

∫ 1

−1

x2m

π
√

1− x2
dx

=

∞∑
m=0

θ2m

(2m)!

Γ(m+ 1/2)

Γ(m+ 1)
√
π

=
∞∑
m=0

θ2m

(2m)!

(2m)!

22mm!m!
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=
∞∑
m=0

θ2m

22m(m!)2
.(2.7)

Note that the right-hand side equals the modified Bessel function B0(θ) of the first kind.
When combined, the above calculations yield

(2.8) Λ̃(θ) = log

∞∑
m=0

θ2m

22m(m!)2
, θ ∈ R.

Since X̃1 is supported on the interval [−1, 1], the function Ĩ equals +∞ outside [−1, 1]. More-
over, the asymptotics of the modified Bessel function B0 given in [1, p. 377, 9.7.1] imply
that

Λ̃(θ) = θ − 1

2
log(2πθ) +O

(
1

θ

)
, as θ → +∞,

which, after taking the Legendre-Fenchel transform, yields that Ĩ(±1) = +∞. On the interval
(−1, 1), the function Ĩ is finite.

Now, let us finally turn to the partial sums (Sn)n∈N defined in (2.2). Our first result
states that when (ak)k∈N satisfies the so-called “large gap condition”, the associated sequence
of lacunary sums (Sn/n)n∈N satisfies an LDP with the same speed and the same rate function
Ĩ as in the truly independent case, that is, as (S̃n/n)n∈N.

Theorem A. Suppose that (ak)k∈N is a sequence of positive integers that satisfies the “large
gap condition”

ak+1

ak
→∞ as k →∞.

Then (Sn/n)n∈N satisfies an LDP with speed n, and rate function Ĩ.

The proof of Theorem A is given in Section 3.2, after an instructive special case has been
treated in Section 3.1.

Remark 2.1. In this paper, we discuss only sequences that satisfy Hadamard’s gap condition.
If (ak)k∈N ⊂ N is a sub-lacunary sequence, that is, increasing and log(ak)/k → 0 as k → ∞,
then for z ∈ (0, 1), we argue below that

(2.9) lim inf
n→∞

1

n
logP

({
ω ∈ [0, 1] :

1

n

n∑
k=1

cos(2πakω) ≥ z

})
= 0,

which says that in contrast to the lacunary case, these probabilities decay slower than expo-
nentially in n. To show (2.9), fix z ∈ (0, 1) and choose δ = δ(z) > 0 such that cos(2πω) ≥ z

for |ω| ≤ δ. Then, cos(2πakω) ≥ z for all k ∈ {1, . . . , n} if |ω| ≤ δ/an. But P
(
ω ≤ δ

an

)
= δ

an

and

lim inf
n→∞

1

n
logP

({
ω ∈ [0, 1] :

1

n

n∑
k=1

cos(2πakω) ≥ z

})
≥ lim inf

n→∞

1

n
logP

({
ω ∈ [0, 1] : cos(2πakω) ≥ z, ∀k ∈ {1, 2, . . . , n}

})
≥ lim

n→∞

1

n
logP

(
ω ≤ δ

an

)
= 0,
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where the last equality uses the assumption that (ak)k∈N is sub-lacunary. Since the opposite
inequality follows trivially, this proves (2.9).

2.2. The case of geometric progressions ak = qk. Let us now consider the case when
there exists q ∈ {2, 3, . . .} such that ak = qk for k ∈ N. Contrary to the case of a large
gap condition (see Theorem A), we now obtain LDPs with the same speed n, but with rate
functions that are different from Ĩ, and depend on the particular value of the growth factor q.
Our main findings in this case are summarized in the following theorem, whose proof is given
in Section 3.3. Let us point out that the main aspect of Theorem B is not the LDP itself,
which follows from standard results (see, e.g., [8, 45, 59]), but rather the properties of the rate
function which are specified in (i)–(iv).

Theorem B. Fix q ∈ {2, 3, . . .}. Let ak = qk for k ∈ N, and let Sn be the partial sum defined
in (2.2). Then the following limit exists:

(2.10) Λq(θ) := lim
n→∞

1

n
logE[eθSn ],

with the convergence holding uniformly for θ in compact subsets of an open set D in the complex
plane such that R ⊂ D. Moreover, (Sn/n)n∈N satisfies an LDP with speed n and rate function
Iq, which is the Legendre-Fenchel transform of Λq, that is,

Iq(x) = sup
θ∈R

[θx− Λq(θ)] , x ∈ R.

Furthermore, each Iq satisfies Iq(x) > 0 for x 6= 0 and Iq is equal to +∞ outside [−1, 1], and
the family of rate functions Iq, q ∈ {2, 3, · · · }, has the following properties:

(i) For every q ∈ {2, 3, . . .}, we have Iq(1) ≤ Ĩ(1) and Iq(x) < Ĩ(x) for x ∈ (0, 1), where
Ĩ is defined in (2.5). In particular, the functions Iq and Ĩ are different.

(ii) The limit limq→∞ Iq(x) = Ĩ(x) holds uniformly on compact subsets of the interval
(−1, 1).

(iii) There is a smooth transition of Iq towards Ĩ as q →∞, in the following sense: for all
m ∈ {1, . . . , q}, we have( d

dθ

)m
Λq(θ)

∣∣∣
θ=0

=
( d
dθ

)m
Λ̃(θ)

∣∣∣
θ=0

= κm(X̃1),

where Λ̃ is defined in (2.6), X̃1 in (2.3), κm(X̃1) is the mth cumulant of X̃1. Further,( d
dx

)m
Iq(x)

∣∣∣
x=0

=
( d
dx

)m
Ĩ(x)

∣∣∣
x=0

.

In other words, the coefficients of 1, θ, . . . , θq in the Taylor expansions of Iq(θ) and
Ĩ(θ) coincide at the origin.

(iv) Whereas in (iii) the first q derivatives of Λq and Λ̃ coincide, this is no longer true for
the derivative of order q + 1. In particular,( d

dθ

)q+1
Λq(θ)

∣∣∣
θ=0

=
( d
dθ

)q+1
Λ̃(θ)

∣∣∣
θ=0

+
q + 1

2q
>
( d
dθ

)q+1
Λ̃(θ)

∣∣∣
θ=0

.

Indeed, we will see in Proposition 2.4 that not only is Iq 6= Ĩ but it is also true that
Iq1 6= Iq2 if q1 6= q2.

We comment on Theorem B. As mentioned above, the fact that (Sn/n)n∈N satisfies an
LDP will be deduced from general results on thermodynamic formalism and expanding maps
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Figure 2.2. The rate function Ĩ (solid line), corresponding to the case of independent
random variables, in comparison with the rate functions I2 (dotted) and I3 (dashed), whose
existence is established in Theorem B. The plot is based on the Taylor approximation of the
rate functions as given by Proposition 2.4. The rate functions I4, I5, . . . are not plotted, as
they would be indistinguishable from Ĩ on the plot. The plot supports the heuristics that Iq
should approach Ĩ as q →∞, as indeed turns out to be the case due to part (ii) of our
Theorem B. Note also that Ĩ and I3 are symmetric, while I2 is not (cf. the discussion before
the statement of Conjecture 2.2).

of the interval [0, 1] (see the proof of the theorem in Section 3.3). The key takeaways of the
theorem are the properties of the rate functions in (i)–(iv). Parts (ii) and (iii) state that the
rate functions Iq converge towards Ĩ as q →∞, which is in accordance with the “limiting case”
of Theorem A where the ratio of ak+1/ak diverges to +∞, and where the rate function for the
lacunary sums coincides with the one for the truly independent case. The rate function Ĩ and
Iq for small q, are illustrated in Figure 2.2.

Note also that as a consequence of conclusion (i) of Theorem B, the probability of large
deviations of the lacunary sums Sn is (asymptotically) greater than the large deviation prob-
ability for the corresponding partial sum of independent random variables S̃n defined in (2.4).
However, since the statement (i) only applies to positive values of x, this conclusion is only
valid for large positive deviations of the lacunary sum. In the case of large negative deviations
there seems to be an interesting dichotomy. When q is odd, then the lacunary sums have a dis-
tribution symmetric around 0, which is a consequence of the fact that the mapping ω 7→ ω+1/2
(mod 1) transforms the function cos(2πqkω) into cos(2πqk(ω+1/2)) = − cos(2πqkω). Accord-
ingly, the probabilities of large positive and large negative deviations are equal, and we have
Iq(−x) = Iq(x), so that in the odd case we have Iq(x) ≤ Ĩ(x) for all x 6= 0, with Iq(x) < Ĩ(x)
for all sufficiently small |x| due to (iv). In contrast, when q is even, there is no such symmetry.
In fact, for even q, it follows from (iii) and (iv) that Λq(θ) < Λ̃(θ) for θ < 0 sufficiently close
to 0 (because the coefficient of θq+1, an odd power, in the Taylor series of Λq(θ) is larger
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than that of Λ̃(θ), while the smaller powers coincide). By taking the corresponding Legendre-
Fenchel transforms, it follows that Iq(x) > Ĩ(x) for x < 0 sufficiently close to 0. We believe
the above inequalities hold without restricting |x| to be sufficiently small, as stated below in
this conjecture:

Conjecture 2.2. Let q ∈ {2, 3, . . .} and let ak = qk for k ∈ N. Let Iq be the rate function in
the LDP for (Sn/n)n∈N (which exists by Theorem B). Then, if q is odd,

Iq(x) < Ĩ(x) for all x ∈ (−1, 1)\{0}.
On the other hand, if q is even, then

Iq(x) < Ĩ(x) for all 0 < x < 1 and Iq(x) > Ĩ(x) for all − 1 < x < 0.

As argued above, we have Ĩ(±1) = +∞. Since |Sn/n| ≤ 1, it is clear that Iq(x) = +∞ for
|x| > 1. The next lemma, whose proof is given at the end of Section 3.3, states that Iq(+1) is
finite.

Lemma 2.3. For all q ∈ {2, 3, . . .} we have Iq(+1) ≤ log q.

As explained above, for odd q we have Iq(−1) = Iq(+1). For even q, it remains unclear
whether Iq(−1) is finite (and in fact, it is not even clear whether Iq(x) is finite for all −1 <
x < 0).

The functions Λq and Iq appearing in Theorem B are not really explicit. In fact, the only
known formula for Λq seems to be its representation as the logarithm of the largest eigenvalue
of a certain Perron-Frobenius operator (see the proof of Theorem B in Section 3.3). The next
proposition identifies the first few terms in the Taylor expansions of Iq for q ∈ {2, 3, 4}. Before
stating it, let us look at the Taylor series of the rate function Ĩ. From the expression for Ĩ in
(2.5) and properties of the Legendre-Fenchel transform, it follows that the derivative Ĩ ′ of Ĩ
is the inverse function of the derivative Λ̃′ of Λ̃, see [50, Corollary 23.5.1, p. 219]. Using this
fact together with the expression for Λ̃ in (2.8), which yields the series expansion

(2.11) Λ̃(θ) =
θ2

4
− θ4

64
+

θ6

576
− 11θ8

49152
+

19θ10

614400
− 473θ12

106168320
+O

(
θ14
)
, as θ → 0,

one can easily compute the first few terms in the Taylor series of Ĩ near 0:

(2.12) Ĩ(z) = z2 +
z4

4
+

5z6

36
+

19z8

192
+

143z10

1800
+

1769z12

25920
+O(z14), as z → 0.

Proposition 2.4. In the case when ak = 2k for all k ∈ N, the Taylor expansion of the rate
function around 0 is given by

I2(z) = z2 − z3 +
3z4

2
− 13z5

6
+

29z6

9
− 23z7

5
+

1127z8

180
− 29083z9

3780
+

12077z10

1575
+O(z11).

In the case when ak = 3k for all k ∈ N, the rate function satisfies

I3(z) = z2 − z4

12
+
z6

6
− 39z8

320
+

18113z10

100800
+O(z12),

whereas when ak = 4k for all k ∈ N, we have

I4(z) = z2 +
z4

4
− z5

12
+

5z6

36
+O(z7).

In particular, the functions I2, I3, I4, and Ĩ all differ from each other.
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In fact, in the proof of this proposition, which is deferred to Appendix A, we describe an
algorithm to compute an arbitrary number of terms in the Taylor expansion of Iq for every
q ∈ {2, 3, . . .}. The algorithm, as well as the proof of properties (i)–(iv) in Theorem B, are
based on an analysis of the number of representations of 0 as a sum of m terms of the form
±q1,±q2, . . . ,±qn. Denoting this number by Am(n), we prove in Proposition A.1 that for
fixed m ∈ N, it is a polynomial in n for all n ≥ m − 2. This fact allows us to compute the
first few moments of Sn and prove the above expansions.

Let us recall from (1.2) that (Sn/
√
n)n∈N satisfies a central limit theorem under the

Hadamard gap condition (1.1). The next theorem states that, perhaps surprisingly, the LDP
does not hold in the same generality. More precisely, by mixing up powers of 2 and 3 we shall
obtain an example of an Hadamard gap sequence (ak)k∈N for which the corresponding scaled
partial sums (Sn/n)n∈N fail to satisfy an LDP. This is stated in the following result, which is
proved in Section 3.4.

Theorem C. There exists a sequence of positive integers (ak)k∈N satisfying ak+1/ak ≥ q for
some q > 1 and all k ∈ N, for which (Sn/n)n∈N does not satisfy an LDP with speed n. More
precisely, for this sequence (ak)k∈N there exists x̄0 ∈ (0, 1) such that for all x0 ∈ (0, x̄0),

0 < lim inf
n→∞

− 1

n
logP(Sn > nx0) < lim sup

n→∞
− 1

n
logP(Sn > nx0) <∞.

Note that if (Sn)n∈N did satisfy an LDP with speed n and rate function I, then the last
display would imply that infx∈[0,x0) I(x) 6= infx∈[0,x0] I(x) for all x0 ∈ (0, x̄0), which, in turn,
implies that I is not continuous at any point in (0, x0). This leads to a contradiction since I
must be lower-semicontinuous, thus showing that (Sn)n∈N does not satisfy an LDP with speed
n.

2.3. Randomized perturbation. Theorem A and Theorem B might together give the im-
pression that the existence of a limit of ak+1/ak as k → ∞ ensures an LDP and its value
determines the rate function. In particular, one might be tempted to conjecture that the
condition ak+1/ak →∞ is necessary for the rate function in the LDP to coincide with Ĩ, the
corresponding rate function for the independent case. However, this is not true. As Theo-
rem D below shows, it is possible to construct a randomly perturbed version (ak)k∈N of the
sequence (2k)k∈N with limk→∞ ak+1/ak = 2, for which the corresponding sequence (Sn/n)n∈N
almost surely satisfies an LDP with speed n and rate function Ĩ. This shows that a random
perturbation may completely destroy the underlying dependence, at least at the large devia-
tion scale, and, as also further elaborated in Section 2.4, rather than the asymptotic growth
rate of the lacunary sequence (ak)k∈N, what seems to determine the form of the rate function
(when an LDP holds) is the fine arithmetic structure of (ak)k∈N.

Theorem D. Suppose we are given a sequence Y = (Yk)k∈N of independent random variables,
with each Yk uniformly distributed on the discrete set

(2.13) Dk :=
{
h2dk

2/3e : h ∈ Z, 0 ≤ h ≤ 2dk
2/3e
}
, k ∈ N,

all supported on a common probability space (Y,A,PY), and an independent random variable
U ∼ Unif(0, 1). Also, for each y ∈ D∞ := ⊗k∈NDk = {(yk)k∈N : yk ∈ Dk}, define ayk := 2k+yk
for all k ∈ N, and let

Syn :=

n∑
k=1

cos(2πaykU), n ∈ N.
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Then, for PY ◦ Y −1-almost every y ∈ D∞, the sequence (Syn/n)n∈N, satisfies an LDP with
speed n and rate function Ĩ.

In large deviation parlance, the LDP in Theorem D is often referred to as a “quenched
LDP” since the LDP is conditional on the realization of the sequence y, and not averaged over
the randomness of Y . Note however, that although the sequence (Syn/n)n∈N depends on the
choice of y = (yk)k∈N, the rate function Ĩ of the LDP (which holds for PY ◦ Y −1-almost every
y) does not. The proof of Theorem D is given in Section 3.5.

Remark 2.5. Note that for every realization y of Y in Theorem D, we have 2/(1 + 2−k
1/3

) ≤
ayk+1/a

y
k ≤ 2(1 + 2−(k+1)1/3), which implies that, as k → ∞, ayk+1/a

y
k → 2. Thus, Theorem

D proves that there exist lacunary sequences with proper exponential growth (as opposed to
super-exponential growth as in Theorem A) that satisfy the LDP with rate function Ĩ.

Also, by interleaving the sequence (2k)k∈N with the sequence (ayk)k∈N constructed in The-
orem D (in the same way as in the proof of Theorem C), and using the fact that I2 does
not coincide with Ĩ, it is possible to construct a sequence (bk)k∈N such that as k → ∞,
bk+1/bk → 2, but the corresponding lacunary sums do not satisfy an LDP. This sharpens The-
orem C. Somewhat surprisingly, even the randomized construction in Theorem D seems to be
quite sensitive. While Theorem D can certainly be generalized in many directions, it appears
to be more challenging to prove an analogue when each random component Yk is sampled
from {0, 1, 2, . . . , k}, or when it is sampled from {0, 2k, 2 · 2k, . . . , k · 2k}. As elaborated in the
next section, this can be related to the number of solutions of certain Diophantine equations
(see also the proof of Theorem D in Section 3.5).

2.4. Concluding remarks and further open questions.

2.4.1. Connection between LDPs and Diophantine equations. Our results (in particular, The-
orems B, C, and D together) show that only knowing that limk→∞ ak+1/ak = η for some η > 1
does in general not allow one to determine the rate function in the LDP for the lacunary sum,
or even conclude the existence of an LDP. The proofs of these results, which are presented
in Section 3, often involve approximating the exponential function in E[eθSn ] via a Taylor
polynomial in θ. In turn, keeping in mind from (2.1) and (2.2) that Sn =

∑n
k=1Xk is a finite

sum of trigonometric functions, this entails estimates of integrals of products of trigonometric
polynomials. Due to the orthogonality of the trigonometric system, calculation of these in-
tegrals leads to counting the number of solutions to certain Diophantine equations (with the
ak’s as variables). The reason why the rate function in the LDP (when it exists) for some
lacunary sequences differs from the one for the independent case may be attributed to the
existence of too many solutions to these Diophantine equations. For example, when ak = 2k

for all k, then the equation 2ak−a` = 0 holds for many combinations of `, k, namely ` = k+1
for all k. The Diophantine equations that appear in this context are always linear homoge-
neous Diophantine equations with integer coefficients. Thus, there are many more solutions to
such equations when the sequence (ak)k∈N allows many quotients a`/ak that are integers. In
contrast, when the quotients a`/ak are bounded away from any integer (and any rational with
a small denominator), then these Diophantine equations would have fewer solutions. Thus,
while specific random perturbations such as the one chosen in Theorem D may drastically
diminish the number of solutions, any generalization of Theorem D would require determining
precisely how the Diophantine structure is altered by an arbitrary random perturbation, which



12 C. AISTLEITNER, N. GANTERT, Z. KABLUCHKO, J. PROCHNO, K. RAMANAN

appears to be highly non-trivial. This also suggests that there may still be some information
that can be gleaned from the existence of the limit limk→∞ ak+1/ak = η, but only when η is
a number that is not well approximated by rationals with small denominators, and when the
same is true for η2, η3, . . . , which correspond to the limits of ak+2/ak, ak+3/ak, and so on. We
formulate this as an open problem.

Problem 2.6. Let (ak)k∈N be a lacunary sequence and assume that ak+1/ak → η for a
transcendental number η > 1 (i.e., η is not the root of a non-zero polynomial with integer
coefficients). Is it true that (Sn/n)n∈N satisfies an LDP with speed n and rate function Ĩ (i.e.,
with the same rate function as in the independent case, that is, as for (S̃n)n∈N)?

It may be that stronger assumptions on η, such as a condition on the irrationality measure
of η and its powers, are necessary to derive the desired conclusion. However, we think that
such an additional assumption should not be required. On the other hand, we believe that
just assuming ak+1/ak → η for an algebraic irrational η > 1 will not be sufficient to deduce
an LDP with rate function Ĩ.

Since the Diophantine structure of the sequence (ak)k∈N plays such a key role in estab-
lishing the LDP for lacunary trigonometric sums, it would be very interesting to study this
phenomenon in more detail. A natural candidate to analyze is the sequence ak = 2k+1, k ≥ 1,
known from the Erdős-Fortet example mentioned in the introduction. In the context of the
CLT and LIL, this sequence and its generalizations have received widespread attention. The
different type of behavior resulting from “pure” geometric progressions such as ak = 2k, k ≥ 1,
on the one hand, and “perturbed” sequences such as ak = 2k+1, k ≥ 1, on the other hand, can
be explained analytically in terms of Fourier analysis. However, there is also a very interesting
dynamical perspective, where the pure geometric progressions allow a natural interpretation
as an ergodic sum, while the perturbed sequences have been interpreted as modified ergodic
sums; see for example, [14, 28, 54].

2.4.2. Normal number theory. From a number theoretic perspective, sequences of the form
(qkω)k∈N are associated with the notion of normal numbers (in base q), as introduced by
Borel in 1909. It is well known that almost all numbers are normal in any base. The degree
of normality of a number can be quantified using uniform distribution theory and discrepancy
theory, which by Weyl’s criterion and the Erdős-Turán inequality naturally leads to trigono-
metric sums such as the ones studied in the present paper (see [20, 38] for general background
on uniform distribution modulo one and discrepancy theory). LDPs for such sums can thus be
viewed as quantifying the relative fraction of “non-normal” or “abnormal” numbers in a certain
base, that is, numbers whose digital structure very significantly deviates from “normal” behav-
ior. Such non-normal numbers have been intensively studied in the number theory literature,
see for example [5, 41, 42]. A particularly challenging and interesting topic in normal number
theory are questions concerning simultaneous normality resp. non-normality in two or more
different bases (see for example [12, 47]). In terms of the large deviation problems studied
in the present paper, it would be interesting to quantify the proportion of numbers that are
non-normal in two or more different bases. For example, one could try to establish an LDP
to estimate the probability of the set where two lacunary sums arising from the sequences
(qk)k∈N and (rk)k∈N (for two different bases q, r ≥ 2) are both large.

In the context of normal numbers, the case of general sequences (ak)k∈N satisfying ak+1

ak
∈

Z≥2, k ≥ 1, corresponds to normality with respect to so-called Cantor expansions. This is a
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topic that has been pioneered by Erdős and Rényi [22, 49], and received strong attention in
recent years; see for example [2, 3, 25] for recent work, and cf. also our proof of a special case
of Theorem A in Section 3.1 below.

2.4.3. More general lacunary sums. We finally recall from the introduction that the theory of
lacunary trigonometric sums is structurally relatively simple in comparison with the theory of
general lacunary sums, where interesting new phenomena show up even in the CLT setting.
In light of this, it would be interesting to study the LDP for

Sn(ω) =

n∑
k=1

f(akω),

where f is a centered 1-periodic function (possibly satisfying some regularity assumptions).
Already when f is a 2-term trigonometric polynomial (as in the Erdős-Fortet example alluded
to above) there can be additional arithmetic effects in comparison to the simple case of pure
trigonometric sums. It would certainly be interesting to investigate LDPs in this general la-
cunary setup.1 A further challenging step would be to go beyond lacunary sums for a single
fixed function f and investigate LDPs for the discrepancy (which is defined as a supremum
over indicator functions), in the spirit of Philipp’s [46] resolution of the Erdős–Gál conjecture
and Fukuyama’s [27] very precise results for the LIL for geometric progressions ak = qk.

3. Proofs

In our proofs we will make use of the Gärtner-Ellis theorem, which we require in the
following form. For a reference, see, for example, [17, Theorem 2.3.6].

Theorem 3.1 (Gärtner-Ellis theorem). Let (Sn)n∈N be a sequence of real-valued random
variables. Suppose that the limit

Λ(θ) = lim
n→∞

1

n
logE

[
eθSn

]
exists for all θ ∈ R. Assume furthermore that the function θ 7→ Λ(θ) is differentiable for all
θ ∈ R. Then (Sn/n)n∈N satisfies an LDP with speed n and convex rate function I, which can
be expressed as the Legendre-Fenchel transform of Λ, that is,

I(x) = sup
θ∈R

[θx− Λ(θ)] ∈ R ∪ {+∞}, x ∈ R.

3.1. Proof of Theorem A in a simple special case. We first give a proof of Theorem A in
a special case, the justification being two-fold: we believe that the proof helps the intuition of
the reader, but we also point out that it goes through if we replace cos(2π·) by any Lipschitz
continuous function f that also satisfies (1.3) (i.e., is 1-periodic and centered). We consider a
sequence (ak)k∈N of positive integers such that a1 = 1,

mk :=
ak+1

ak
∈ {2, 3, . . .}, k ∈ N, and lim

k→∞

ak+1

ak
= +∞.

1Note added during revision stage: a first major step towards a theory of LDPs for general lacunary sums
was taken in a recent paper of Frühwirth, Juhos and Prochno; see [26]. They obtained a perfect analogue of
Theorem A of the present paper, and a version of our Theorem B in which the rate function depends in a
delicate way on an interplay of properties of the function f and the growth factor q.
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The assumption a1 = 1 is without loss of generality, but the assumption that mk, k ∈ N, are
integers will be essential for the following argument. By the Gärtner-Ellis theorem, it suffices
to show that for all θ ∈ R,

lim
n→∞

1

n
logE

[
eθSn

]
= Λ̃(θ),

with Λ̃ as defined in (2.6). To this end, we shall approximate each Sn by a random variable Tn
that is easier to deal with, in the sense that it can be written as a sum of independent random
variables expressed, as defined below, in terms of certain conditional expectations. First, recall
that the Cantor series expansion (ξk)k∈N of ω ∈ [0, 1) associated with (mk)k∈N ⊂ {2, 3, . . .} is
given as follows:

ω =

∞∑
k=1

ξk(ω)

m1m2 · · ·mk
=

∞∑
k=1

ξk(ω)

ak+1
,

with ξk(ω) ∈ {0, 1, . . . ,mk−1} for every k ∈ N. This expansion was first introduced by Cantor
in [10], and the investigation of its probabilistic properties appears to have been initiated by
Erdős, Rényi, and Turan [22, 49, 55]. Our construction uses the following key property
established by Rényi in [49] (see also (7) of [44]): the image of Lebesgue measure on [0, 1),
under the correspondence ω 7→ (ξk(ω))k∈N makes (ξk)k∈N a sequence of independent integers
with each ξk uniformly distributed on {0, 1, . . . ,mk − 1}.2

Given this property, now consider the filtration F2 ⊂ F3 ⊂ . . ., where the σ-algebras are
defined by

Fk+1 := σ

(
Jk+1,i, i = 0, . . . , ak+1 − 1

)
, k ∈ N,

where for k ∈ N,

Jk+1,i :=

[
i

ak+1
,
i+ 1

ak+1

)
, i = 0, . . . , ak+1 − 1.

We now define certain conditional expectations:

Yk := E
[
Xk|Fk+1

]
=

ak+1−1∑
i=0

E
[
Xk

∣∣∣Jk+1,i

]
1Jk+1,i

, k ∈ N.

In particular, we see that by construction, for every k ∈ N and i = 0, . . . , ak+1 − 1,

Yk =

ak+1−1∑
i=0

ck+1,i1Jk+1,i
,

where ck+1,i, the constant representing the value of Yk on Jk+1,i, is given by

ck+1,i := ak+1

∫
Jk+1,i

Xk(ω)λ(dω).

Since the function Xk is (1/ak)-periodic, for any k ∈ N, ck+1,i = ck+1,i′ whenever |i− i′| is a
multiple of mk = ak+1/ak. Hence, for each k ∈ N, the random variable Yk is only a function of
ξk. Since the {ξk}k∈N are independent, the random variables {Yk}k∈N0 are also independent.

2This is simply a generalization of the possibly more familiar result going back to Borel [7], where mk = r
for all k and the correspondence between elements of [0, 1] and their r-ary expansions maps Lebesgue measure
on [0, 1] to the Bernoulli product measure on the space of {0, 1, . . . , r − 1}-valued sequences, with uniform
marginals (see also [39, Section 2.3] for a more detailed exposition).
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We now show that the approximation of Xk by Yk is sufficiently good, more precisely, for
each k ∈ N and i = 0, . . . , ak+1 − 1, using the mean-value theorem and the fact that Xk has
Lipschitz constant 2πak, we have

max
ω∈Jk+1,i

|Xk(ω)− Yk(ω)| = max
ω∈Jk+1,i

∣∣∣∣Xk(ω)− ak+1

∫
Jk+1,i

Xk(y) dy

∣∣∣∣
= max

ω∈Jk+1,i

∣∣Xk(ω)−Xk(ω0)
∣∣

≤ max
ω∈Jk+1,i

2πak
∣∣ω − ω0

∣∣
≤ 2π

ak
ak+1

,

where ω0 = ω0,k,i ∈ Jk+1,i is obtained from the mean value theorem. Taking the maximum
over all i = 0, . . . , ak+1 − 1 yields

(3.1) ‖Xk − Yk‖∞ ≤ 2π
ak
ak+1

.

In particular, this means that if Sn :=
∑n

k=1Xk and Tn :=
∑n

k=1 Yk, then

‖Sn − Tn‖∞ ≤ 2π

n∑
k=1

ak
ak+1

= o(n), n→∞,

because by assumption ak/ak+1 → 0 as k →∞. For fixed θ ∈ R we obtain

E
[
eθSn

]
= E

[
eθTneθ(Sn−Tn)

]
≤ e|θ|‖Sn−Tn‖∞E

[
eθTn

]
.

We also have the analogous lower bound

E
[
eθSn

]
= E

[
eθTneθ(Sn−Tn)

]
≥ e−|θ|‖Sn−Tn‖∞E

[
eθTn

]
.

Altogether, taking into account that ‖Sn − Tn‖∞ = o(n), we obtain

(3.2) E
[
eθSn

]
= eo(n)E

[
eθTn

]
, n→∞.

Since Tn = Y1 + . . .+ Yn is a sum of independent random variables, it follows that

(3.3)
1

n
logE

[
eθSn

]
= o(1) +

1

n
logE

[
eθTn

]
= o(1) +

1

n

n∑
k=1

logE
[
eθYk

]
.

Similarly, in view of (3.1) and the fact that (Xk)k∈N are identically distributed, we have

logE
[
eθYk

]
= o(1) + logE

[
eθXk

]
= o(1) + logE

[
eθX1

]
, k →∞.

Inserting this into (3.3) and recalling that the usual convergence implies convergence of arith-
metic means to the same limit, the fact that X1 and X̃1 are identically distributed and the
definition (2.6) of Λ̃, we arrive at

1

n
logE

[
eθSn

]
= o(1) + logE

[
eθX1

]
= o(1) + logE

[
eθX̃1

]
= o(1) + Λ̃(θ),

as desired. Since the function Λ̃ is differentiable by (2.8), the Gärtner-Ellis theorem (repro-
duced as Theorem 3.1 herein) can be applied and the proof of Theorem A in the case when
ak+1/ak are positive integer numbers tending to infinity is complete.
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3.2. Proof of Theorem A in full generality. Fix θ ∈ R and a sufficiently small ε ∈ (0, 1).
As in the simple case, we wish to apply the Gärtner-Ellis theorem, but this time the analysis
is more delicate. In contrast to the proof for the simple case, which relied on a reduction to
the independent setting, our proof for the general case uses harmonic analysis methods and is
more in the spirit of the classical works of Salem and Zygmund, Kac, and others mentioned
in the introduction. Recall from (2.1) and (2.2) that

(3.4) E
[
eθSn

]
=

∫ 1

0
eθ
∑n
k=1 cos(2πakω)dω =

∫ 1

0

n∏
k=1

eθ cos(2πakω)dω.

We start with an elementary lemma on the approximation of the exponential function by
a Taylor polynomial of length d. For d ∈ N, define

(3.5) pd(x) :=

d∑
m=0

xm

m!
, x ∈ R.

Lemma 3.2. There exists d : (0, 1) → N with d(ε) → ∞ as ε → 0 such that the polynomial
p := pd(ε) satisfies for every k ∈ N,

(3.6) 1− ε ≤ p(θ cos(2πakω))

eθ cos(2πakω)
≤ 1 + ε, ω ∈ [0, 1].

Proof. Fix d ∈ N and p = pd. Then, by the classical theory of Taylor approximation, the
remainder in the Lagrange form satisfies

|ex − p(x)| ≤ emax{0,x}

(d+ 1)!
|x|d+1,

and hence,

1− emax{0,x}|x|d+1

(d+ 1)! ex
≤ p(x)

ex
≤ 1 +

emax{0,x}|x|d+1

(d+ 1)! ex
.

Noting that in our situation we have |θ cos(2πakω)| ≤ |θ|, this implies that for every k ∈ N,

(3.7) 1− e|θ||θ|d+1

(d+ 1)!
≤ p(θ cos(2πakω))

eθ cos(2πakω)
≤ 1 +

e|θ||θ|d+1

(d+ 1)!
.

Recall that θ is assumed to be fixed throughout the section. By picking d = d(ε) ∈ N
sufficiently large such that e|θ||θ|d+1

(d+1)! < ε, we have d(ε)→∞ as ε→ 0, and (3.6) follows. �

As an immediate corollary we see that for every ε > 0, we have d = d(ε) ∈ N such that
for every n ∈ N, p = pd satisfies

(3.8) (1− ε)n ≤
∫ 1

0

∏n
k=1 p (θ cos(2πakω)) dω∫ 1

0

∏n
k=1 e

θ cos(2πakω)dω
≤ (1 + ε)n.

Let k0 = k0(d) be a positive integer such that ak+1/ak > 2d for all k ≥ k0; such an index
must exist since we assumed that ak+1/ak →∞ as k →∞. For n > k0, we split

n∏
k=1

p (θ cos(2πakω)) =

(
k0∏
k=1

p (θ cos(2πakω))

) n∏
k=k0+1

p (θ cos(2πakω))

 ,
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and, taking into account that p(θ cos(2πakω)) > 0 by (3.6), note that
(3.9)

m0

 n∏
k=k0+1

p (θ cos(2πakω))

 ≤ n∏
k=1

p (θ cos(2πakω)) ≤M0

 n∏
k=k0+1

p (θ cos(2πakω))

 ,

where

m0 := inf
ω∈[0,1]

(
k0∏
k=1

p (θ cos(2πakω))

)
and M0 := sup

ω∈[0,1]

(
k0∏
k=1

p (θ cos(2πakω))

)
.

We now state an important estimate on the integral of the common product that is on both
sides of the inequality (3.9).

Lemma 3.3. Fix d ∈ N and p = pd as in (3.5). Then for any θ, x ∈ R,

(3.10) pd(θ cosx) =

d∑
j=0

bj(θ) cos(jx),

where the coefficients bj(θ) = bj(θ; d), j = 0, 1, . . . , d, are real numbers with

(3.11) b0(θ) = b0(θ; d) =
∑

0≤m≤bd/2c

θ2m

22m(m!)2
,

and for j = 1, . . . , d, bj(θ) ≥ 0 when θ > 0. Furthermore, given k0 = k0(d) ∈ N as above, for
every θ ∈ R, and all n > k0,

(3.12)
∫ 1

0

n∏
k=k0+1

p (θ cos(2πakω)) dω = b0(θ)n−k0 .

We first show how Theorem A follows from Lemma 3.3, and then provide the proof of the
lemma. Integrating each term in the inequalities in (3.9) with respect to Lebesgue measure
over the interval [0, 1], and applying (3.12), we obtain

m0b0(θ)n−k0 ≤
∫ 1

0

n∏
k=1

p (θ cos(2πakω)) dω ≤M0b0(θ)n−k0 .

Combining these inequalities with (3.8) and (3.4), we arrive at
1

(1 + ε)n
m0 (b0(θ))n−k0 ≤ E

[
eθSn

]
≤ 1

(1− ε)n
M0 (b0(θ))n−k0 .

Taking the natural logarithm of each term, dividing by n and letting n → ∞, while keeping
all other variables fixed, we obtain

log b0(θ)− log(1 + ε) ≤ lim inf
n→∞

1

n
logE

[
eθSn

]
≤ lim sup

n→∞

1

n
logE

[
eθSn

]
≤ log b0(θ)− log(1− ε).

Recall that ε ∈ (0, 1) was fixed but arbitrary, that d = d(ε) depends on ε and satisfies
d(ε) → ∞ as ε → 0, and that b0(θ) = b0(θ; d(ε)) depends on this choice of d. Note that
b0(θ) is a finite partial sum of the series expansion for the moment generating function of the
arcsine distribution on the interval (−1, 1), which we derived in (2.7). Since the logarithm is
a continuous function, (3.11) and (2.8) yield

lim
ε→0

log b0(θ; d(ε)) = Λ̃(θ).
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Thus, the last two displays together yield the limit

lim
n→∞

1

n
logE

[
eθSn

]
= Λ̃(θ),

as desired. Since the function Λ̃ is differentiable, the Gärtner-Ellis theorem can be applied,
and the proof of Theorem A is complete, given Lemma 3.3.

To complete the proof of Theorem A, it only remains to establish Lemma 3.3.

Proof of Lemma 3.3. For every fixed k ∈ N, the function ω 7→ p (θ cos(2πakω)) is a polynomial
of degree d in θ cos(2πakω). A standard trigonometric formula asserts that for even m = 2n,
(cosx)m can be expressed as a linear combination of 1, cos(2x), cos(4x), . . . , cos(mx), more
precisely, for every n ∈ N and x ∈ R,

(3.13) (cosx)2n =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
`=0

(
2n

`

)
cos(2(n− `)x).

For odd m, (cosx)m can be expressed as a linear combination of cosx, cos(3x), . . . , cos(mx),
more precisely, for every n ∈ N and x ∈ R,

(3.14) (cosx)2n+1 =
1

4n

n∑
`=0

(
2n+ 1

`

)
cos((2n+ 1− 2`)x).

The precise statements of the last two formulas will not be important to us; we will only use
the fact that the coefficient of the constant term in the expansion of (cosx)m is

(
m
m/2

)
2−m

when m is even and zero otherwise. So for d ∈ N and θ ∈ R, it is possible to write p (θ cosx)
for x ∈ R, in the form

p (θ cosx) = b0(θ) + b1(θ) cosx+ b2(θ) cos(2x) + · · ·+ bd(θ) cos(dx),

where the coefficients bk(θ) = bk(θ; d), k = 1, . . . , d, depend on the coefficients of the poly-
nomial p (and thus on d) and on θ, but not on x, and the zeroth coefficient b0(θ) takes the
explicit form

b0(θ) =
∑

0≤m≤d,
m even

(
m

m/2

)
θm

2mm!

=
∑

0≤m≤bd/2c

(
2m

m

)
θ2m

22m(2m)!

=
∑

0≤m≤bd/2c

(2m)!

m!m!

θ2m

22m(2m)!

=
∑

0≤m≤bd/2c

θ2m

22m(m!)2
,(3.15)

which agrees with (3.11). This proves (3.10). Further, when θ > 0, since the Taylor coefficients
of the exponential function are all positive, and the coefficients in the trigonometric identities
(3.17) and (3.13) are all non-negative, it follows that bj(θ) ≥ 0 for j = 1, . . . , d.

It only remains to show that when integrating the product-form integrand on the right-
hand side of (3.12) only terms involving the zeroth coefficient remain. To this end, note that
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by (3.10) we have for ω ∈ [0, 1],
n∏

k=k0+1

p (θ cos(2πakω))

=

n∏
k=k0+1

(
b0(θ) + b1(θ) cos(2πakω) + b2(θ) cos(2π2akω) + · · ·+ bd(θ) cos(2πdakω)

)
.

When multiplying out this product, we obtain a constant term b0(θ)n−k0 as well as a sum of
many mixed terms of the form

b0(θ)n−k0−` · bj1(θ) cos (2πj1ak1ω) · . . . · bj`(θ) cos (2πj`ak`ω) ,

for some ` ∈ {1, . . . , n−k0}, (j1, . . . , j`) ∈ {1, . . . , d}`, and (k1, . . . , k`) ∈ {k0 + 1, . . . , n}` such
that k1 > · · · > k`. Thus, to prove (3.12), it suffices to show that for any such configuration,
we have

(3.16)
∫ 1

0
cos(2πj1ak1ω) · . . . · cos(2πj`ak`ω)dω = 0.

We now show that this follows because ak+1/ak > 2d for k ≥ k0 (by the choice of k0) Indeed,
recall the standard trigonometric identity

(3.17) cosx cos y =
1

2

(
cos(x− y) + cos(x+ y)

)
,

which implies that the product cos(2πj1ak1ω) · . . . · cos(2πj`ak`ω) can be written as a linear
combination of cosine functions cos(2πmω) with frequencies of the form

m = j1ak1 ± · · · ± j`ak` .

As already mentioned above, we have k1 > k2 > . . . > k` > k0. Then, taking into account
that j1 ≥ 1, we have

j1ak1 ± · · · ± j`ak` ≥ ak1 − dak2 − dak3 − · · · − dak` .

The inequality ak+1/ak > 2d for all k ≥ k0 then implies

ak1−dak2−dak3−· · ·−dak` ≥ ak1

(
1− d

∑̀
r=1

1

(d+ 1)r

)
= ak1

(
1− d

(
1− (d+ 1)−`

d

))
︸ ︷︷ ︸

>0

> 0.

Consequently, the product cos(2πj1ak1ω) · . . . · cos(2πj`ak`ω) can be written as a linear combi-
nation of cosine functions cos(2πmω) that have all non-zero frequencies m ∈ N. This clearly
implies (3.16), and thus completes the proof. �

3.3. Proofs of Theorem B and Lemma 2.3. Let q ∈ {2, 3, . . .} be fixed, let ak = qk for
each k ∈ N, and let Sn be as defined in (2.2). We establish the LDP by first recasting Sn/n
as a Birkhoff average (or time average) of a stationary sequence induced by the expanding
piecewise continuous map T : [0, 1]→ [0, 1] given by

(3.18) T ω := qω (mod 1) = qω − bqωc, ω ∈ [0, 1],
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(which is merely the fractional part of qω). Then, (2.2) and the identity ak = qk show that
the lacunary sums of interest can be expressed as

(3.19) Sn(ω) =

n−1∑
k=0

X1(T kω) = X1(ω) + . . .+Xn(ω), ω ∈ [0, 1].

We can then apply tools from the theory of LDPs for (uniform and non-uniform) hyperbolic
dynamics and mixing processes; see for example [8, 9, 13, 18, 19, 30, 34, 36, 40, 43, 58].
Since in some references (see, e.g., [11, p. 422] or [8, Thm. 10.8 on p. 90]), an LDP is stated
only for some small neighborhood of 0, and since parts of the argument will be needed to
prove property (iii) in the statement of Theorem B, we provide a sketch of the full proof in
Section 3.3.1. The proofs of properties (i)–(iv), which are the main message of Theorem B,
are presented in Section 3.3.3. They rely on additional estimates that are first obtained in
Section 3.3.2. Finally, the proof of Lemma 2.3 is given in Section 3.3.4.

3.3.1. Proof of the LDP in Theorem B. By the Gärtner-Ellis Theorem, to prove the LDP
it suffices to show that the limit Λq(θ) := limn→∞

1
n logE[eθSn ] exists for all θ ∈ R and is

differentiable in θ. We now express eθSn in terms of a certain linear operator. Let Lip[0, 1]
denote the Banach space of Lipschitz functions f : [0, 1]→ C, endowed with the norm ‖f‖ :=
‖f‖∞ + L(f), where L(f) is the Lipschitz constant of f . Next, for θ ∈ R, consider the linear
operator Φθ,q : Lip[0, 1]→ Lip[0, 1] defined, for g ∈ Lip[0, 1], by

(3.20) (Φθ,qg)(ω) :=
1

q

q−1∑
j=0

e
θX1

(
ω+j
q

)
g

(
ω + j

q

)
, ω ∈ [0, 1],

where we recall from (2.1) that X1(ω) = cos(2πqω), ω ∈ [0, 1].
The proof of the LDP for (Sn/n)n∈N stated in Theorem B is a direct consequence of the

following proposition.

Proposition 3.4. Fix q ∈ {2, 3, . . .} and θ ∈ R. Then

Λq(θ) := lim
n→∞

1

n
logE[eθSn ] = log λθ,q,

where λθ,q is the Perron-Frobenius eigenvalue of the operator Φθ,q defined in (3.20). Moreover,
there exists an open domain D of the complex plane that contains the real line R such that the
convergence above holds uniformly for θ in any compact subset of D. In particular, θ 7→ Λq(θ)
is differentiable.

In the language of thermodynamic formalism [59], log λθ is referred to as the pressure
or the free energy of a one-dimensional lattice system, and its differentiability expresses the
known fact that there are no phase transitions for such systems. (For more background on the
spectral gap property of Perron-Frobenius transfer operators, the reader is referred to [6, 8, 51]
and [59, Chapter 4].)

Proof of Proposition 3.4. Recall the definition of the map T : [0, 1] → [0, 1] given in (3.18)
and note that Lebesgue measure is an invariant measure for T , i.e., T maps the measure space
([0, 1],B([0, 1]), λ) to itself and satisfies λ(T −1(A)) = λ(A) for every A ∈ B[0, 1]. Indeed, (for
simplicity we only consider q = 2)

T (x) = 2x (mod 1) = 2x− b2xc =

{
2x : 0 ≤ x < 1

2

2x− 1 : 1
2 ≤ x ≤ 1
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and so, for every positive and measurable function f : [0, 1]→ R,∫
[0,1]

f(T (x))λ(dx) =

∫
[0,1/2)

f(2x)λ(dx) +

∫
[1/2,1]

f(2x− 1)λ(dx)

=
1

2

∫
[0,1]

f(y)λ(dy) +
1

2

∫
[0,1]

f(y)λ(dy) =

∫
[0,1]

f(y)λ(dy).

In ergodic theory parlance,
(
([0, 1],B([0, 1]), λ); T

)
is a measure-preserving dynamical sys-

tem and we refer the reader to [21] for further details. The Perron-Frobenius operator
Φq : Lip[0, 1]→ Lip[0, 1] associated with T is defined by

(Φqg)(ω) =
1

q

q−1∑
j=0

g

(
ω + j

q

)
, ω ∈ [0, 1], g ∈ Lip[0, 1],

where recall Lip[0, 1] is the space of Lipschitz functions defined above. Note that for any
g ∈ Lip[0, 1] ∫ 1

0
(Φqg)(ω)dλ(ω) =

1

q

q−1∑
j=0

∫ 1

0
g

(
ω + j

q

)
dλ(ω) =

∫ 1

0
g(ω)dλ(ω),

where the last equality uses the fact that T is λ-preserving and {(ω+ j)/q, j = 0, 1, . . . , q−1}
is the preimage of ω under T . This shows that Φq preserves the integral for any function
g ∈ Lip[0, 1]. Next, for θ ∈ R, note that the operator Φθ,q defined in (3.20) can be viewed as
a perturbation of the operator Φq since for g ∈ Lip[0, 1],

(3.21) (Φθ,qg)(ω) =
(

Φq[e
θX1g]

)
(ω) =

1

q

q−1∑
j=0

e
θX1

(
ω+j
q

)
g

(
ω + j

q

)
, ω ∈ [0, 1],

where once again recall from (2.1) that X1(ω) = cos(2πqω), ω ∈ [0, 1]. It is immediate from
the definition that both Φq and Φθ,q are linear operators. Denoting by Φn

q and Φn
θ,q the n-fold

composition of Φq and Φθ,q, respectively, a straightforward inductive argument (see, e.g., [8,
Proposition 5.1 (P4)]), shows that

(3.22) Φn
θ,qg = Φn

q [eθSng], for every n ∈ N.

Let 1 denote the constant function on [0, 1] that takes the value 1, and henceforth, denote
dλ(ω) just as dω. Then, the moment generating function of Sn can be expressed as

E
[
eθSn

]
=

∫ 1

0
eθSn(ω)dω =

∫ 1

0
Φn
q [eθSn ](ω)dω =

∫ 1

0

(
Φn
θ,q1

)
(ω)dω,(3.23)

where the second equality uses the fact that Φn
q preserves the integral and the last equality

uses (3.22) with g = 1.
We will now use the crucial fact that the operator Φθ,q has the spectral gap property; see,

e.g., [59, Theorems 4.1 and 4.23] and [6, Theorem 1.5], where all essential arguments can be
found. Namely, we use the well-known fact that for every θ ∈ R, Φθ,q admits a decomposition

(3.24) Φθ,q = λθQθ +Rθ,

where

(3.25) λθ = λθ,q > 0
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is a simple eigenvalue of Φθ,q, Qθ = Qθ,q is a projection operator onto a line spanned by an
eigenfunction hθ = hθ,q > 0 associated with λθ, and Rθ = Rθ,q is an operator whose spectral
radius is strictly smaller than λθ. More precisely, there is a probability measure µθ = µθ,q on
[0, 1] such that for every f ∈ Lip[0, 1],

Qθf = hθ ·
∫ 1

0 f(ω)dµθ(ω)∫ 1
0 hθ(ω)dµθ(ω)

and RθQθ = QθRθ ≡ 0 .

Continuing to omit the dependence of the quantities λθ, Rθ, Qθ, hθ and µθ on q, by raising the
decomposition of Φθ,q to the n-th power, it follows that for any f ∈ Lip[0, 1],

Φn
θ,qf = λnθQ

n
θ f +Rnθ f = λnθ · hθ ·

∫ 1
0 f(ω)dµθ(ω)∫ 1
0 hθ(ω)dµθ(ω)

+Rnθ f.

Now, setting f = 1, taking the integral on both sides, and using (3.23), one obtains

E
[
eθSn

]
=

∫ 1

0

(
Φn
θ,q1

)
(ω)dω = λnθ ·

∫ 1
0 hθ(ω)dω∫ 1

0 hθ(ω)dµθ(ω)
+

∫ 1

0
(Rnθ1)(ω)dω.(3.26)

Recalling that the spectral radius of Rθ is strictly smaller than λθ, one obtains

(3.27) lim
n→∞

E
[
eθSn

]
λnθ

=

∫ 1
0 hθ(ω)dω∫ 1

0 hθ(ω)dµθ(ω)
.

Note in passing that this shows that the sequence (Sn)n∈N satisfies some version of mod-phi
convergence [24], but what is more pertinent, it implies the weaker statement

(3.28) lim
n→∞

1

n
logE

[
eθSn

]
= log λθ,

which proves the first assertion of the proposition.
We now turn to the proof of the remaining assertions, which we claim (and justify below)

can be deduced from the perturbation theory of linear operators [33, Chapter 7, §3, p. 368], in
particular the Kato-Rellich theorem, as stated in [59, Theorem 4.24]. Indeed, since the family
of operators Φθ,q depends on θ ∈ C in an analytic way (see [8, Proposition 5.1 (P3)] and [33,
Theorem 1.7, p.368]), the decomposition (3.24) continues to hold in some neighborhood D of
the real axis (with λθ, hθ and µθ becoming complex-valued), with λθ 6= 0 and λθ (as well as
hθ, µθ, Rθ) being analytic on D. Moreover, |λθ| stays strictly smaller than the spectral radius
of Rθ if D is sufficiently small, which, looking at (3.26), shows that convergence in (3.28) is
uniform on compact subsets of D. �

3.3.2. Moment estimates for the partial sums Sn and S̃n. Let n ∈ N and consider

Λq,n(θ) :=
1

n
logE

[
eθSn

]
=

1

n
log

∞∑
m=0

θm

m!
E
[
Smn
]
,(3.29)

and

Λ̃n(θ) :=
1

n
logE

[
eθS̃n

]
=

1

n
log

∞∑
m=0

θm

m!
E
[
S̃mn
]
,(3.30)

where we recall that S̃n =
∑n

j=1 X̃j , and (X̃j)j∈N are i.i.d. having the same distribution as
X1, as defined in (2.4) and (2.3), respectively. The proof of properties (i)–(iv) in Theorem B,
presented in the next section, involve a comparison of the coefficients in the Taylor expansions
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of (3.29) and (3.30) considered as functions of θ, which in turn relies on estimates on the
moments of Sn and S̃n, obtained in Lemmas 3.5–3.7 below. We start with Lemma 3.5 on
estimates of the moments of Sn.

Lemma 3.5. Fix q ∈ {2, 3, . . .}, let ak = qk for all k ∈ N, and let Sn be as defined in (2.2).
Then, for every m,n ∈ N, we have

E[Smn ] =
Am(n)

2m
,

where Am(n) is the number of solutions to the equation
∑m

i=1 εiq
ki = 0 in the unknowns

k1, . . . , km ∈ {1, . . . , n} and ε1, . . . , εm ∈ {+1,−1}.

Proof. For every m ∈ N, we have

E
[
Smn
]

=

∫ 1

0

( n∑
k=1

cos(2πqkω)
)m

dω

=

∫ 1

0

n∑
k1,...,km=1

m∏
`=1

cos(2πqk`ω) dω

=
1

2m

∫ 1

0

n∑
k1,...,km=1

m∏
`=1

[
e(qk`ω) + e(−qk`ω)

]
dω,

where we write e(z) := e2πiz for z ∈ R and used that cos z = (eiz + e−iz)/2. By rewriting the
product in the last line of the last display in terms of an exponential and using the elementary
identity

∫ 1
0 e(kω)dω = 0 for all integer k 6= 0, we see that

E
[
Smn
]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

1{
ε1qk1+···+εmqkm=0

}.(3.31)

To complete the proof of the lemma, observe that the right-hand side equals Am(n)/2m. �

Next, we give a combinatorial interpretation of Am(n) for m ≤ q. Let Bm(n) be the
number of simple random walk paths in Zn of length m that return to the origin, which is
sometimes also referred to as the number of bridges of length m in Zn.

Lemma 3.6. For all n,m ∈ N, we have Am(n) ≥ Bm(n) and, if m ≤ q, then Am(n) = Bm(n).

Proof. We start with the proof of the second statement. Let m ≤ q. We first claim (and
justify below) that

(3.32)
m∑
`=1

ε`q
k` = 0, k` ∈ {1, . . . , n}, ε` ∈ {−1, 1}

if and only if for every k ∈ {1, . . . , n},

Hk =

m∑
`=1

1{k`=k} · ε` = 0.(3.33)
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In other words, (3.32) can hold only if every term +qk is canceled by a term −qk at some
other place. One direction of the claim is immediate. We note that

(3.34)
m∑
`=1

ε`q
k` =

n∑
k=1

( m∑
`=1

1{k`=k} · ε`
)
qk =

n∑
k=1

Hk q
k

and therefore if all Hk vanish, then
∑m

`=1 ε`q
k` = 0. For the opposite direction, suppose∑m

`=1 ε`q
k` = 0. Then, due to the identity in (3.34),

n∑
k=1

Hk q
k = 0.

We first show that this, along with the fact that m ≤ q, implies H1 = 0. First, dividing
everything by q ≥ 2, we obtain

n∑
k=1

Hk q
k−1 = 0,(3.35)

which clearly implies divisibility of H1 by q. Now, if m < q, then |H1| ≤ m < q by definition.
Hence, H1 = 0. If m = q, then either H1 = 0 or H1 = ±q and the latter case only occurs
if all ε1, . . . , εm are equal and k` = 1 for all ` ∈ {1, . . . ,m}. In this case, the condition∑m

`=1 ε`q
k` = 0 is violated. Hence, for m ≤ q, we have H1 = 0. Now dividing (3.35) by q and

repeating the argument, it follows that H2 = · · · = Hn = 0 as well. This completes the proof
of the claim of equivalence between the conditions (3.33) and (3.32).

Next, note that the conditions (3.33) on Hk may be interpreted as follows: for given
ε1, . . . , εm ∈ {−1, 1} and k1, . . . , km ∈ {1, . . . , n}, we consider the nearest neighbor path of
length m in Zn whose `th step is equal to ε`~ek` for ~e1, . . . , ~en the standard vector basis in Rn.
Clearly, condition (3.33) is satisfied if and only if the path returns to its starting point. It
follows that Am(n) = Bm(n), which proves the second assertion of the lemma.

To prove the first assertion, note that if m ∈ N is arbitrary, then the solutions of (3.32) can
be divided into the trivial ones (i.e., those for which H1 = . . . = Hn = 0), and the non-trivial
ones (such as q2 − q − . . .− q = 0 for m = q + 1, where the term −q appears m times). Since
the number of trivial solutions is Bm(n), and (by definition) Am(n) is the total number of
solutions, the claim Am(n) ≥ Bm(n) follows. �

Taken together, Lemmas 3.5 and 3.6 show that, for each m ≤ q,

E
[
Smn
]

=
Bm(n)

2m
.

Let us turn to the computation of E[S̃mn ], where we shall prove that the analogous identity
holds, this time for all m ∈ N.

Lemma 3.7. Recall that S̃n = X̃1 + . . . + X̃n, where X̃1, X̃2, . . . are i.i.d. random variables
with the arcsine distribution on (−1, 1). Then, for all m,n ∈ N, we have

E
[
S̃mn
]

=
Bm(n)

2m
.
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Proof. Recalling that (Uk)k∈N is a sequence of i.i.d. random variables with the same uniform
distribution as U , we can write

X̃k = cos(2πUk) =
e(Uk) + e(−Uk)

2
,

where we again write e(z) := e2πiz. For m ∈ N, we have

E
[
S̃mn
]

=
1

2m
E
[( n∑

k=1

[
e(Uk) + e(−Uk)

])m ]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E
[ m∏
`=1

e(ε`Uk`)

]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E
[
e
( m∑
`=1

ε`Uk`

)]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

E
[
e
( n∑
`=1

H`U`

)]
,

where for any fixed ki ∈ {1, . . . , n}, εi ∈ {−1, 1}, i = 1, . . . ,m, we set

H` :=
m∑
i=1

1{ki=`} · ε`, ` = 1, . . . .n.

Then we have

E
[
e
( n∑
`=1

H`U`

)]
=

n∏
`=1

E
[
e
(
H`U`

)]
= 1{H1=···=Hn=0}.

Since H1 = · · · = Hn = 0 if and only if the associated nearest neighbor path of length m in
Zn, whose `th step is equal to εi~eki , with ~e1, . . . , ~en the standard basis in Zn, returns to its
starting point, we have shown that

E
[
S̃mn
]

=
1

2m

n∑
k1,...,km=1

∑
ε1,...,εm∈{−1,1}

1{H1=...=Hn=0} =
Bm(n)

2m
,

which completes the proof. �

3.3.3. Proof of Properties (i)–(iv) of Theorem B. We now complete the proof of Theorem B.
First, note that the function Λq, as a uniform limit of analytic functions, is itself analytic for
all θ ∈ C, |θ| < ε0, for a sufficiently small ε0 > 0.

Proof of (i). First, let us observe that the proof that Iq ≤ Ĩ on the positive real axis is simple.
Indeed, Lemmas 3.5–3.7 imply that for all m,n ∈ N,

E[Smn ] ≥ E[S̃mn ].

When combined with (3.29) and (3.30), it follows that for every n ∈ N and θ > 0,

Λq,n(θ) ≥ Λ̃n(θ).

Passing to the limit as n→∞ on both sides, and noting that both limits exist and are equal
to Λq(θ) and Λ̃q(θ), respectively, due to the proof in Section 3.3.1 and the independence of
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(X̃k)k∈N, we conclude that Λq(θ) ≥ Λ̃q(θ) for all θ > 0. Passing to the Legendre-Fenchel
transform we then obtain Iq(x) ≤ Ĩ(x) for all x > 0.

The proof of the strict inequality Iq(x) < Ĩ(x) for x > 0 is more delicate. Assume that
q ≥ 2 and θ > 0 are fixed. We choose a large integer d > q; at the end of the proof we will let
d→∞. As in the proof of Theorem A, we approximate the exponential function by a Taylor
polynomial p = pd of degree d, and by (3.7), we have

E
[
eθSn

]
≥
(

1 +
eθθd+1

(d+ 1)!

)−n ∫ 1

0

n∏
k=1

p(θ cos(2πqkω))dω.

We recall from Lemma 3.3 that we can write p(θ cos(2πqkω)) in the form

(3.36) b0(θ) + b1(θ) cos(2πqkω) + b2(θ) cos(2π2qkω) + · · ·+ bd(θ) cos(2πdqkω),

where b0 = b0(θ; d) is given by (3.15) and bj = bj(θ; d) ≥ 0 for j = 1, . . . , d. Since d > q by
assumption, the q-th term in the Taylor expansion for p(θ cos(2πqkx)) is (θ cos(2πqkx))q/q!.
From (3.13) and (3.14) we see that the expansion of (cos y)q into a linear combination of cosine
functions contains the term 2−q+1 cos(qy). We emphasize again that all coefficients, in the
Taylor expansion of ey as well as in (3.13) and (3.14), are non-negative. Thus the coefficient
bq(θ) in (3.36) is at least as large as the contribution coming from (θ cos(2πqkx))q/q!, and so
we have

bq = bq(θ) ≥
θq

q!

1

2q−1
.(3.37)

By a similar reasoning the coefficient b1(θ) in (3.36) is at least as large as the contribution
coming from the linear term in the Taylor expansion, which is simply θ cos(2πqkx). Thus we
have b1(θ) ≥ θ. Once again using the fact that all coefficients are non-negative, in (3.36) as
well as in (3.17), (3.13) and (3.14), we have∫ 1

0

n∏
k=1

p(θ cos(2πqkω)) dω ≥
∫ 1

0

n∏
k=1

(
b0 + b1 cos(2πqkω) + bq cos(2πqk+1ω)

)
dω.

Now the point is that there will always be interference between the term bq cos(2πqk+1x)

coming from index k, and the term b1 cos(2πqk+1x) coming from index k + 1. Let us assume
that n is even. Always combining two consecutive factors together, we have∫ 1

0

n∏
k=1

(
b0 + b1 cos(2πqkω) + bq cos(2πqk+1ω)

)
dω

=

∫ 1

0

n/2∏
`=1

(
b0 + b1 cos(2πq2`−1ω) + bq cos(2πq2`ω)

)(
b0 + b1 cos(2πq2`ω) + bq cos(2πq2`+1ω)

)
dω

≥
∫ 1

0

n/2∏
`=1

(
b20 + bq cos(2πq2`ω)b1 cos(2πq2`ω)

)
dω

≥
n/2∏
`=1

(
b20 +

b1bq
2

)
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≥
n/2∏
`=1

(
b20 +

θq+1

q!2q

)
.

where the last inequality uses (3.37) and b1(θ) > θ. Consequently, we have

Λq(θ) = lim
n→∞

1

n
logE[eθSn ] ≥ log


(

1 +
eθθd+1

(d+ 1)!

)−1

︸ ︷︷ ︸
→1 as d→∞

√
b20 +

θq+1

q!2q

 .

Recall that b0 depends on d and θ, and that we have log b0 → Λ̃(θ) as d → ∞. For every
fixed θ > 0 since the logarithm is a strictly increasing function, the term log

(√
b20 + θq+1

q!2q

)
converges to a quantity that is is strictly larger than Λ̃(θ) as d→∞. Consequently, we have

Λq(θ) > Λ̃(θ), for all θ > 0.

From the properties of the Bessel function B0(θ) it is easily seen that for x ∈ (0, 1) the
supremum in the definition of Ĩ(x) is actually a maximum, and is attained at some (finite)
value θx > 0. Consequently, we have

Iq(x) = sup
θ>0

[θx− Λq(θ)] = θxx− Λq(θx) < θxx− Λ̃(θx) = Ĩ(x).

Thus, we have Iq(x) < Ĩ(x) for all x ∈ (0, 1).

In conclusion, we note that we can make the difference between Λq and Λ̃ quantitative.
Recall that θ > 0 by assumption. Since b0(θ) is a partial sum of B0(θ), we have b0(θ) ≤ B0(θ).
Furthermore, from the series expansion for B0(θ) it is easily seen that B0(θ) ≤ eθ. Thus
b20(θ) ≤ e2θ, and b20 + θq+1

q!2q ≥ b
2
0

(
1 + θq+1

q!2qe2θ

)
. Thus, letting d→∞, we deduce that

Λq(θ)− Λ̃(θ) ≥ 1

2
log

(
1 +

θq+1

q!2qe2θ

)
.

Proof of (ii): It follows from Proposition 3.4 that for θ ∈ R, Λq(θ) = log λθ,q, where λθ,q > 0
is the largest eigenvalue of the Perron-Frobenius transfer operator defined in (3.20). Fixing
θ ∈ R and sending q →∞, the Riemann sums converge on the right-hand side of the definition
in (3.20) converge to the corresponding Riemann integrals; hence this sequence of operators
converges in the norm topology to the operator

(Φ̃θg)(ω) =

∫ 1

0
eθX1(z)g(z)dz = λ̃θ

∫ 1
0 e

θX1(z)g(z)dz∫ 1
0 e

θX1(z)dz
· 1,

where λ̃θ :=
∫ 1

0 e
θX1(z)dz = eΛ̃(θ), where Λ̃ is defined as in (2.6). Thus, Φ̃θ/λ̃θ is a projection

onto the line spanned by the function 1. The Perron-Frobenius eigenvalue of Φ̃θ,q is λ̃θ. Now,
if θ ∈ R stays constant and q →∞, we can view Φθ,q as a perturbation of Φ̃θ. By perturbation
theory (see, e.g., [33]), we have the convergence of the Perron-Frobenius eigenvalues, that is,
limq→∞ λθ,q = λ̃θ for every θ ∈ R. Taking the logarithm, we get limq→∞ Λq(θ) = Λ̃(θ). Since
the involved functions are convex, the convergence is, in fact, uniform on compact intervals.
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By taking the Legendre-Fenchel transform, it follows that limq→∞ Iq(x) = Ĩ(x) locally uni-
formly on (−1, 1).

Proof of (iii). Lemma 3.7 shows that for every n ∈ N, whenever m ∈ N satisfies m ≤ q, one
has

E[Smn ] = E[S̃mn ] =
Bm(n)

2m
,

or, in other words, the moments of Sn and S̃n coincide for all m ≤ q. Since cumulants of order
less than or equal to q can be expressed in terms of moments of order less than or equal to q,
we infer that as long as m ≤ q,

κm(Sn) = κm(S̃n) := n · κm(X̃1),

where κm(Y ) denotes the mth cumulant of a real-valued random variable Y . Hence, for m ≤ q
and every n ∈ N, we have(

d

dθ

)m
Λq,n(θ)

∣∣∣∣∣
θ=0

=
1

n
κm(Sn) = κm(X̃1) =

1

n
κm(S̃n) =

(
d

dθ

)m
Λ̃(θ)

∣∣∣∣∣
θ=0

.

Now because the uniform convergence of the analytic functions Λq,n → Λq (established in
Proposition 3.4) implies the convergence of the derivatives, we obtain (iii).

Proof of (iv): In the case when m = q + 1, a slight modification of the argument used to
prove Lemma 3.6 shows that any solution to (3.32) either satisfies H1 = . . . = Hn = 0, or is a
permutation of one of the solutions qk + . . .+ qk− qk+1 = 0 or qk+1− qk− . . .− qk = 0, where
k ∈ {1, . . . , n− 1}. The total number of such exceptional solutions is 2(q + 1)(n− 1), hence

Aq+1(n) = Bq+1(n) + 2(q + 1)(n− 1).

From Lemma 3.5 and Lemma 3.7 it follows that

E[Sq+1
n ] =

Aq+1(n)

2q+1
=
Bq+1(n) + 2(q + 1)(n− 1)

2q+1
= E[S̃q+1

n ] +
(q + 1)(n− 1)

2q
.

The cumulant κq+1(Sn) can be expressed as E[Sq+1
n ] plus some polynomial function of the

lower moments E[Smn ] with m ≤ q. A similar representation holds for the cumulant κq+1(S̃n),
and the moments of all orders m ≤ q of Sn coincide with those of S̃n by part (ii) of Theorem B.
It follows that

κq+1(Sn) = κq+1(S̃n) +
(q + 1)(n− 1)

2q
.

For the derivatives of order q + 1 of Λq,n and Λ̃ at θ = 0 we therefore obtain

Λ(q+1)
q,n (0) =

1

n
κq+1(Sn) =

1

n
κq+1(S̃n) +

(q + 1)(n− 1)

2qn
= Λ̃(q+1)(0) +

(q + 1)(n− 1)

2qn
.

Letting n → ∞ and using that the uniform convergence of analytic functions Λq,n → Λq
implies convergence of their derivatives, we arrive at

Λ(q+1)
q (0) = Λ̃(q+1)(0) +

q + 1

2q
.

This proves (iv).
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3.3.4. Proof of Lemma 2.3. We now present the proof of Lemma 2.3. The idea is that in the
lacunary sum Sn all cosine functions cos(2πqkU) are equal to 1 at U = 0. Thus, Sn is close
to n if the uniform random variable U ∼ Unif(0, 1) takes a value that is sufficiently close to
0. To make this precise, fix ε ∈ (0, 1). We have cosx ≥ 1− x2/2. It follows that

Xk = cos(2πqkU) ≥ 1− ε provided that U ≤
√

2ε

2π
q−k.

Hence, if U ≤
√

2ε
2π q

−n, then we have Sn ≥ (1− ε)n. It follows that

Iq(1− ε) = − lim
n→∞

1

n
logP(Sn ≥ (1− ε)n) ≤ − lim

n→∞

1

n
logP

(
U ≤

√
2ε

2π
q−n

)
≤ − lim

n→∞

1

n
log

(√
2ε

2π
q−n

)
= log q.

Since this holds for every ε ∈ (0, 1), by the lower semicontinuity of Iq, it follows that

Iq(+1) ≤ lim inf
ε→0

Iq(1− ε) ≤ log q.

This completes the proof.

3.4. Proof of Theorem C. We know from Theorem B and Proposition 2.4 that there exists
some sufficiently small x̄0 > 0 such that 0 < I2(x0) < I3(x0) for every x0 ∈ R with 0 < x0 ≤ x̄0.
By interleaving the powers of 2 and 3 appropriately, we shall construct an Hadamard gap
sequence (ak)k∈N such that for all x0 ∈ (0, x̄0), the corresponding partial sums (Sn)n∈N satisfy

0 < lim inf
n→∞

− 1

n
logP(Sn ≥ nx0) < lim sup

n→∞
− 1

n
logP(Sn ≥ nx0) <∞.

Since both I2 and I3 are continuous, there exist ε0 ∈ (0, x0) and δ0 > 0 such that

sup
|x−x0|≤ε0

I2(x) + δ0 < inf
|x−x0|≤ε0

I3(x) and inf
|x−x0|≤ε0

I2(x) > δ0.

Our construction proceeds inductively. Assume that for some n ∈ N we have constructed
increasing positive integers a1, . . . , an such that

− 1

n
logP(Sn ≥ nx0) > inf

|x−x0|≤ε0
I3(x)− δ0

3
=: c+.

We want to extend the sequence a1, . . . , an to a longer sequence a1, . . . , aN , with N ∈ N,
N > n in such a way that

− 1

N
logP(SN ≥ Nx0) < sup

|x−x0|≤ε0
I2(x) +

δ0

3
=: c−.

Note that 0 < c− < c+. This is done as follows. We define an+1 := 2m, where m ∈ N is
any number such that 2m > 2an (to guarantee the Hadamard gap condition) and m > n+ 1.
Further, we define an+` := 2m+(`−1) so that with N = n+(N −n), we have aN := 2N−n+m−1.
We choose N ∈ N sufficiently large, in particular such that 2m/N < ε0/5. Clearly,∣∣∣∣∣

n∑
k=1

cos(2πakx0)

∣∣∣∣∣ ≤ n and

∣∣∣∣∣
m−1∑
k=1

cos(2π2kx0)

∣∣∣∣∣ ≤ m.
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Therefore, by replacing the first n elements a1, . . . , an by m − 1 powers of 2, more precisely,
by 2, 22, . . . , 2m−1, respectively, and using the specific choice of an+1, an+2, . . . together with
the two estimates in the previous display (which guarantee that the replacement of n by m−1
cosine terms yields an error bounded above by n+m), we obtain

− 1

N
logP(SN ≥ Nx0) ≤ − 1

N
logP

(N−n+m−1∑
k=1

cos(2π2kx0) ≥ Nx0 + (n+m)

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ Nx0 + (n+m) + (m− n− 1)

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ Nx0 + 2m

)

≤ − 1

N
logP

( N∑
k=1

cos(2π2kx0) ≥ N(x0 + ε0/5)

)
,

where we used that 2m/N < ε0/5. The latter expression converges, as N → ∞, to I2(x0 +
ε0/5). Hence, making N ∈ N larger, if necessary, we obtain

− 1

N
logP(SN ≥ Nx0) < I2(x0 + ε0/5) +

δ0

3
≤ sup
|x−x0|≤ε0

I2(x) +
δ0

3
= c−.

Now we can continue this argument back and forth, by adding strings of consecutive powers of
2 in odd steps and strings of powers of 3 in even steps, we can construct an infinite sequence
(ak)k∈N for which − 1

n logP(Sn ≥ nx0) is infinitely often smaller than c− and infinitely often
larger than c+.

3.5. Proof of Theorem D. Recall that the i.i.d. sequence Y = (Yk)k∈N is defined on a
common probability space (Y,A,PY) with each Yk uniformly distributed on the discrete set

(3.38) Dk :=
{
h2dk

2/3e : h ∈ Z, 0 ≤ h ≤ 2dk
2/3e
}
, k ∈ N.

Since by definition aYk = 2k + Yk, (aYk )k∈N is also a sequence of independent random variables
defined on (Y,A,PY). We also assume (without loss of generality) that the independent uni-
form random variable U is realized as the identity map on the space ([0, 1],B(0, 1), λ) and,
since U and Y are independent, that both Y and U are defined on the product measure space
(Y × [0, 1],A⊗ B(0, 1),PY ⊗ λ). Throughout the argument, fix θ ∈ R. The proof proceeds in
several steps.

Step 1. Construct a suitable partition of the integers.
For any large n, we split the set of all positive integers into disjoint sets ∆1,∆2, . . .

and ∆′1,∆
′
2, . . . , which are defined via the following recursive construction. First, set ∆1 :=

{1, . . . , n1/2}, where for notational simplicity, we assume that n1/2 is an integer. Let the set
∆′1 contain the next n2/5 smallest positive integers not already contained in ∆1, where (again
for notational simplicity) we assume that n2/5 is also an integer. Then, for each i ∈ N, we
recursively define ∆i+1 to contain the n1/2 smallest positive integers not already contained in⋃i
j=1(∆j ∪ ∆′j), and the set ∆′i+1 to contain the n2/5 smallest positive integers not already
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contained in ∆i+1∪
⋃i
j=1(∆j ∪∆′j). This decomposition can be characterized by the following

requirements:
• ∆i < ∆′i < ∆i+1 for all i ∈ N, where the inequality is understood to hold element-wise
•
⋃∞
i=1 (∆i ∪∆′i) = N.

• #∆i = n1/2 for all i ∈ N, and #∆′i = n2/5 for all i ∈ N.
The philosophy is that the primed index sets are sufficiently large to cause a strong “indepen-
dence” between the trigonometric functions in the non-primed sets, while at the same time the
total cardinality of the primed index sets is so small that they are asymptotically negligible.
The precise choice of n1/2 and n2/5 for the cardinalities of the ∆ and ∆′ blocks is somewhat
arbitrary, the relevant facts are that the one type of block is significantly larger than the other,
and that both types of blocks are not too small in comparison with n.
For i ∈ N, let δi,min and δi,max denote the smallest and largest integers in ∆i, respectively.
Then our construction ensures that

(3.39) δi,max + n2/5 < δi+1,min, ∀i ∈ N, and max
1≤i≤Mn

δi,max + n2/5 ≤ n,

where

(3.40) Mn := min

{
M ∈ N : {1, . . . , n} ⊂

M+1⋃
i=1

(
∆i ∪∆′i

)}
≤
√
n,

with the last inequality being a simple consequence of the fact that |∆i| =
√
n for each i ∈ N.

Step 2. Bound the moment generating function in terms of polynomial integrals.
Recall that D∞ = ⊗k∈NDk, where the definition of the discrete set Dk was repeated again

in (3.38), and for y ∈ D∞, ayk = 2k+yk. Recall also that Syn(ω) =
∑n

k=1 cos(2πaykω), ω ∈ [0, 1].

Lemma 3.8. Fix n ∈ N sufficiently large such that n2/5 ≤ Mn. Then, for y ∈ D∞ and
ω ∈ [0, 1],

(3.41) e−5θn9/10

∫ 1

0
Hy
n(ω)dω ≤

∫ 1

0
eθS

y
n(ω)dω ≤ e5θn9/10

∫ 1

0
Hy
n(ω)dω,

where for ω ∈ [0, 1]

(3.42) Hy
n(ω) :=

 ∏
n2/5≤i≤Mn

∏
k∈∆i

eθ cos(2πaykω)

 .

Consequently, for any ε > 0, there exists d = d(ε) ∈ N such that the Taylor polynomial
p = pd(ε) of length d(ε) defined in (3.5) satisfies

(3.43) (1− ε)n
∫ 1

0
Hy
n(ω)dω ≤

∫ 1

0

Mn∏
i=n2/5

∏
k∈∆i

p(θ cos(2πaykω)) dω ≤ (1 + ε)n
∫ 1

0
Hy
n(ω)dω,

for every y ∈ D∞ and for all sufficiently large n ∈ N.

Proof. Fix n ∈ N as in the statement of the lemma. Also, fix y ∈ D∞ and for notational
conciseness, omit all dependence on y. Then for any ω ∈ [0, 1], we can split

eθSn(ω) =

n∏
k=1

eθ cos(2πakω)
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=

 ∏
1≤i<n2/5

∏
k∈∆i∪∆′i

eθ cos(2πakω)


︸ ︷︷ ︸

=:H(1)(ω)

×

 ∏
n2/5≤i≤Mn

∏
k∈∆i

eθ cos(2πakω)


︸ ︷︷ ︸

=:H(2)(ω)

×

×

 ∏
n2/5≤i≤Mn

∏
k∈∆′i

eθ cos(2πakω)


︸ ︷︷ ︸

=:H(3)(ω)

×

 ∏
1≤k≤n,

k 6∈
⋃Mn
i=1(∆i∪∆′i)

eθ cos(2πakω)


︸ ︷︷ ︸

=:H(4)(ω)

.

We will show below that H(1), H(3), and H(4) are all sub-exponential in n (that is, their
logarithms are all sublinear in n), and thus these three factors will be negligible in comparison
with H(2), whose logarithm is linear in n. Indeed, first note that by construction H(1) is
a product of at most 2n2/5n1/2 factors, each of which is trivially between e−θ and eθ, so
in total we have e−2θn9/10 ≤ H(1)(ω) ≤ e2θn9/10 for all ω ∈ [0, 1]. Next, the product H(3)

contains all contributions coming from the complete short “primed” blocks ∆′; the purpose of
these blocks was just to separate the longer blocks, and H(3) is also small in comparison with
H(2). Since the product H(3) has a total of at most Mnn

2/5 ≤ n9/10 many factors, we have
e−θn

9/10 ≤ H(3)(ω) ≤ eθn9/10 for all ω ∈ [0, 1]. Lastly, the product H(4) is split off since it does
not cover a full block; this is no problem, since H(4) only has a small number of factors. More
precisely, since by (3.40), n−Mn ≤Mn+1−Mn ≤ 2

√
n, we have e−2θn1/2 ≤ H(4)(ω) ≤ e2θn1/2

for all ω ∈ [0, 1]. Overall, this implies e−5θn9/10 ≤ H(1)(ω)H(3)(ω)H(4)(ω) ≤ e5θn9/10 for all
ω ∈ [0, 1]. When combined with the last display, and the observation that everything inside
the integrals is positive, this yields (3.41) with Hn := H(2), which agrees with the expression
in (3.42). The second estimate (3.43) is then a simple consequence of (3.41), (3.6) of Lemma
3.2 and the relations |∆i| =

√
n for all i and Mn ≤

√
n. �

Step 3. Evaluate the integral
∫ 1

0

∏Mn

i=n2/5

∏
k∈∆i

p(θ cos(2πaykω)) dω from (3.43). The key idea
is to first show that we can take the product

∏Mn

i=n2/5 outside the integral; see (3.45) below. In
other words, we show that there are no correlations between cosine functions with indices from
different blocks ∆i and ∆j , for i, j, i 6= j, in the range, and thus, that it is possible to evaluate
all integrals entirely within each block. Indeed, this was the purpose of the construction of ∆i

and ∆′i in Step 1. Then we simplify each of the integrals in the product using the expansion
for the polynomial p obtained in Lemma 3.3. Indeed, recall from (3.10) and (3.11) of that
lemma that for d ∈ N, there exist nonnegative coefficients bj = bj(θ; d), j = 0, . . . , d, such that
for all k ∈ N, the Taylor polynomial p = pd satisfies

(3.44) p
(
θ cos(2πaykω)

)
=

d∑
j=0

bj(θ) cos(2πjaykω),

where the zeroth coefficient b0 = b0(θ; d) is given explicitly by the finite series in (3.11). To
shorten notations we suppress the dependence of b0, b1, . . . on θ and d in the formulas below.
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Proposition 3.9. Fix d ∈ N and p = pd the Taylor polynomial of length d. Then, for all
sufficiently large n, and every y ∈ D∞,

(3.45)
∫ 1

0

Mn∏
i=n2/5

∏
k∈∆i

p(θ cos(2πaykω)) dω =

Mn∏
i=n2/5

∫ 1

0

∏
k∈∆i

p(θ cos(2πaykω))dω.

Furthermore, for i ∈ {n2/5, . . . ,Mn},

c
(i)
0 (y) :=

∫ 1

0

∏
k∈∆i

p(θ cos(2πaykω))dω(3.46)

=b
√
n

0 +
∑∑∑

b
√
n−`

0 bj1 · . . . · bj`
∑ `!

2`−1
1{

j1a
y
k1

+s2j2a
y
k2

+···+s`j`ayk`=0
},(3.47)

where the four summations in the displayed formula above are taken over the ranges (in the
order of appearance)

(3.48)
∑

1≤`≤
√
n

,
∑

(k1,...,k`)∈∆i,
k1>···>k`

,
∑

(j1,...,j`)∈{0,...,d}`,
(j1,...,j`)6=(0,...,0)

,
∑

(s2,...,s`)∈{−1,1}`−1

,

and the coefficients bj = bj(θ; d), j = 0, . . . d, are as in (3.44). Furthermore, for all sufficiently
large i, given ` and km, jm, sm,m = 1, . . . , ` as in (3.48), we have

(3.49) j1a
y
k1

+ s2j2a
y
k2

+ · · ·+ s`j`a
y
k`

= 0 ⇒ j1yk1 + s2j2yk2 + · · ·+ s`j`yk` = 0.

Proof. Fix y = (yk)k∈N ∈ D∞. We will start by establishing (3.47) and (3.49). Multiplying
out the product

∏
k∈∆i

p(θ cos(2πaykω)) within a certain fixed block ∆i, using (3.44) and the
cosine product trigonometric identity (3.17) we obtain

∏
k∈∆i

p(θ cos(2πaykω))

(3.50)

=b
√
n

0 +
∑∑∑

b
√
n−`

0 bj1 · . . . · bj`
∑ `!

2`−1
cos
(
2π(j1a

y
k1

+ s2j2a
y
k2

+ · · ·+ s`j`a
y
k`

)ω
)
,

where the four summations in the displayed formula above are taken over the ranges (in the
order of appearance) in (3.48), and the power

√
n in the constant term b

√
n

0 and the coefficient
b
√
n−`

0 arises from the fact that |∆i| =
√
n. Note that (3.50) shows that

∏
k∈∆i

p(θ cos(2πaykω))

can be written as the sum of the constant term b
√
n

0 (which would be the contribution for the
“independent” case; see (3.12) of Lemma 3.3) plus a linear combination of cosine functions
with frequencies

(3.51) j1a
y
k1
± · · · ± j`ayk` ,

the latter following from the trigonometric identity (3.17). Assume that the expression in
(3.51) is non-zero. Recall that ayk = 2k + yk, where yk takes values in Dk := {h2k

2/3
: 0 ≤ h ≤

2k
2/3}; here and in the sequel we write 2k

2/3 for 2dk
2/3e for notational conciseness. Substituting

ayk = 2k + yk into (3.51), we can rewrite the frequency of the cosine function as

(3.52) j1(2k1 + yk1)± · · · ± j`(2k` + yk`) = j12k1 ± · · · ± j`2k`︸ ︷︷ ︸
fixed part

+ j1yk1 ± · · · ± j`yk`︸ ︷︷ ︸
D∞-dependent part

,
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which is different from zero only if at least one of the parts is non-zero. Note that by (3.48),
the absolute value of the fixed part in this expression, whenever it is non-zero, has a value
between

2δi,min and d
√
n2δi,max ,

where recall δi,min and δi,max, respectively, are the smallest and largest elements of ∆i. Indeed,
the upper bound is trivial and since k1 > k2 > · · · > k`, we also obtain the lower bound:

|j12k1 ± · · · ± j`2k` | = |2k` | · |j12k1−k` ± · · · ± j`|︸ ︷︷ ︸
≥1, since non-zero

≥ 2δi,min .

Similarly, recalling the structure of Dk from (3.38), the D∞-dependent part, whenever it is
non-zero, has absolute value between

2δ
2/3
i,min and d

√
n2δ

2/3
i,max .

Thus (if both are non-zero), the absolute value of the sum of the fixed and D∞-dependent
parts always lies between

1

2
2δi,min and 2d

√
n2δi,max .

Hence, the product
∏
k∈∆i

p(θ cos(2πaykω)) can be written as a constant term, plus a linear
combination of cosine functions, each of which has a frequency that is contained in the range

(3.53) R̄i :=

[
2δ

2/3
i,min , d

√
n2δ

2/3
i,max

]
∪
[

1

2
2δi,min , 2d

√
n2δi,max

]
.

In other words, from (3.50) and the above discussion, it follows that

(3.54)
∏
k∈∆i

p(θ cos(2πaykω)) = c
(i)
0 (y) +

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm(i)x)

for some appropriate set Ri ⊂ R̄i of positive integers, and appropriate coefficients c(i)
m (y).

Note that c(i)
0 may differ from b

√
n

0 since some frequencies of the form (3.51) may vanish, and
the coefficients of the corresponding cosines would then contribute to the constant term. Using
(3.50) and the fact that the integral over [0, 1] of any cosine term in that expansion with a
non-zero frequency vanishes, we obtain (3.47). Note that the dependence of c(i)

0 = c
(i)
0 (y) on

y arises because the value of the indicator

1{
j1a

y
k1

+s2j2a
y
k2

+···+s`j`ayk`=0
}

depends on (yk1 , . . . , yk`) via the values of ayk1 , . . . , a
y
k`
.

We now turn to the proof of (3.49). Recall that we constructed our blocks ∆i,∆
′
i and

defined Mn such that δi+1,min ≥ δi,max + n2/5 and for i ≤ Mn, δi,max + n2/5 ≤ n, see (3.39),
which together with the mean-value theorem implies that

δ
2/3
i+1,min ≥

(
δi,max + n2/5

)2/3
≥ δ2/3

i,max +
2

3

1

(δi,max + n2/5)1/3
n4/15 ≥ δ2/3

i,max +
2

3
n1/15,

and hence, for 1 ≤ i ≤Mn,

(3.55) 2δi+1,min ≥ 2n
2/5+δi,max and 2δ

2/3
i+1,min ≥ 2δ

2/3
i,max+ 2

3
n1/15

,
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Also, for sufficiently large n and n2/5 ≤ i ≤ Mn, note that δi,min ≥ (n2/5)(n1/2) = n9/10 =

n7/30+2/3 ≥ n7/30 + n2/3 ≥ n7/30 + δ
2/3
Mn,max, and so

(3.56)
1

2
2
δ
n2/5,min ≥ 2n

7/30−1

d
√
n

(
d
√
n2δ

2/3
Mn,max

)
.

The last inequality shows that for all sufficiently large n ∈ N, any “D∞-dependent part” of a
frequency that could originate from some product with indices in ∆i (with n2/5 ≤ i ≤ Mn)
is of a much smaller order than the smallest non-zero “fixed” part that we could encounter
from such blocks, which proves (3.49). (This is why we split off the product H(1) with the
frequencies in ∆i ∪∆′i for 1 ≤ i < n2/5 earlier in Lemma 3.8, since the frequencies there are
so small that their fixed parts could cause correlations with the D∞-dependent parts coming
from blocks with higher indices.)

To complete the proof of the proposition, it only remains to prove (3.45). To show how
our construction facilitates control of the value of the integral

(3.57)
∫ 1

0

Mn∏
i=n2/5

∏
k∈∆i

p(θ cos(2πaykω))dω,

note that (3.54) implies that we have for y ∈ D∞ and ω ∈ [0, 1],

(3.58)
Mn∏

i=n2/5

∏
k∈∆i

p(θ cos(2πaykω)) =

Mn∏
i=n2/5

c(i)
0 (y) +

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm(i)ω)

 ,

with c(i)
0 as in (3.47) and c(i)

m(i) other coefficients as described above (whose precise values will
not matter for what follows). When multiplying out the terms in the product on the right-
hand side of (3.58), for each i in the range n2/5 ≤ i ≤ Mn we can either choose the factor
c

(i)
0 (y) or a factor of the form c

(i)

m(i)(y) cos(2πm(i)ω) for some m(i) ∈ Ri. That is, we can write
the right-hand side of (3.58) as

∑
U ,V

(∏
i∈U

c
(i)
0 (y)

)∏
i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm(i)ω)

 .

where the sum is taken over all sets U ,V that form a disjoint partition of {n2/5, . . . ,Mn},
i.e., U ∩ V = ∅ and U ∪ V = {n2/5, . . . ,Mn}. Assume that V is non-empty. Then using the
standard trigonometric identity (3.17) we can expand∏

i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm(i)ω)

into a linear combination of cosine-functions with frequencies of the form∑
i∈V
±m(i), m(i) ∈ Ri.

Since Ri is contained in the range set R̄i defined in (3.53), and since we have the estimates
(3.55) and (3.56) separating these respective ranges for different values of i, it is not possible



36 C. AISTLEITNER, N. GANTERT, Z. KABLUCHKO, J. PROCHNO, K. RAMANAN

that the linear combination equals zero (provided that n is large enough). Thus our construc-
tion ensures that all frequencies of cosine-functions in this linear combination are non-zero,
which implies that their integrals vanish over [0, 1], so that we have∫ 1

0

∏
i∈V

∑
m(i)∈Si

c
(i)

m(i)(y) cos(2πm(i)ω)dω = 0,

and consequently,∫ 1

0

(∏
i∈U

c
(i)
0 (y)

)∏
i∈V

∑
m(i)∈Ri

c
(i)

m(i)(y) cos(2πm(i)ω)

 dω = 0,

whenever V is non-empty. Thus, the only term that actually contributes to the value of (3.57)
is when all indices i are contained in U and V = ∅. The contribution of this case to the integral
is ∫ 1

0

I∏
i=n2/5

c
(i)
0 (y)dω =

I∏
i=n2/5

c
(i)
0 (y),

so that in total we have for every y ∈ D∞,∫ 1

0

I∏
i=n2/5

∏
k∈∆i

p(θ cos(2πaykω))dω =
I∏

i=n2/5

c
(i)
0 (y) =

Mn∏
i=n2/5

∫ 1

0

∏
k∈∆i

p(θ cos(2πaykω))dω.

This is (3.45) and completes the proof of the proposition. �

Step 4. Give an explicit formula for
∏Mn

i=n2/5

∫ 1
0

∏
k∈∆i

p(θ cos(2πaYk ω))dω which holds with
large PY -probability. We will prove the following result.

Lemma 3.10. Let Y = (Yk)k∈N be the sequence of independent random variables, with each
Yk uniformly distributed on the set Dk defined in (3.38). Then for every d ∈ N, with p = pd,
the Taylor polynomial of length d, and b0 = b0(θ; d) as in (3.11), we have

(3.59) PY

 Mn∏
i=n2/5

∫ 1

0

∏
k∈∆i

p
(
θ cos(2πaYk ω)

)
dω =

Mn∏
i=n2/5

b
√
n

0

 ≥ 1− n−3/2,

for all sufficiently large n ∈ N.

Proof. Fix d ∈ N and set p = pd to be the corresponding Taylor polynomial, and let bj :=
bj(θ; d), j = 0, 1, . . . , d, be the associated coefficients as presented in Equations (3.10) and
(3.11) of Lemma 3.3 (see also (3.44)). For any y ∈ D∞, let c(i)

0 (y) be defined as in (3.47).
Combining (3.47) and (3.49) in Proposition 3.9 with the fact that i ≥ n2/5 in (3.47), we see
that for all sufficiently large n ∈ N and for all i in the range n2/5 ≤ i ≤Mn we have∫ 1

0

∏
k∈∆i

p(θ cos(2πaykω))dω

=b
√
n

0 +
∑∑∑

b
√
n−`

0 bj1 · . . . · bj`
∑ `!

2`−1
1{j1yk1+s2j2yk2+···+s`j`yk`=0},(3.60)

with the summation ranges as specified in (3.48).
We now estimate the probability of the event {j1Yk1+s2j2Yk2+· · ·+s`j`Yk` = 0}. We recall

that by assumption, Yk1 , . . . , Yk` are independent discrete random variables, and that s2, . . . , s`
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are just some plus/minus signs. In principle the distribution of j1Yk1 + s2j2Yk2 + · · ·+ s`j`Yk`
could thus be calculated exactly by some convolution argument. However, for our purpose it
suffices to establish a very crude bound. Observe from (3.48) that there is at least one value
among j1, . . . , j` that is non-zero. Let us assume, without loss of generality, that j` 6= 0. We
split off the corresponding random variable Yk` in the indicator in (3.60), which is independent
of Yk1 , . . . , Yk`−1

since k1 > · · · > k`, and use the fact that by assumption Yk` is uniformly

distributed among the 2k
2/3
` + 1 different values in the set Dk` defined in (3.38), to obtain

PY(j1Yk1 + s2j2Yk2 + · · ·+ s`j`Yk` = 0)

=
∑
a∈Z

PY
(
j1Yk1 + s2j2Yk2 + · · ·+ s`−1j`−1Yk`−1

= a
)
PY
(
s`j`Yk` = −a

)︸ ︷︷ ︸
≤2
−k2/3
`


≤ 2−k

2/3
`

∑
a∈Z

PY
(
j1Yk1 + s2j2Yk2 + · · ·+ s`−1j`−1Yk`−1

= a
)

︸ ︷︷ ︸
=1

≤ 2−δ
2/3
i,min ,

where the last inequality holds because (k1, . . . , k`) ∈ ∆i, and δi,min is by definition the
smallest element of ∆i. In the quadruple sum in line (3.60) the total number of summands
is at most

√
n
√
n
√
n
(d + 1)

√
n2
√
n. Note that by construction δi,min ≥ n9/10 for all i ≥ n2/5,

so that 2−δ
2/3
i,min ≤ 2(−n3/5) for all i ≥ n2/5. Thus, by a union bound the PY -probability that

there exists at least one configuration of `, (k1, . . . , k`), (j1, . . . , j`), (s1, . . . , s`) such that
j1Yk1 + s2j2Yk2 + · · ·+ s`j`Yk` = 0 holds is bounded above by

√
n
√
n
√
n
(d+ 1)

√
n2
√
n2(−n3/5).

Observe that, since d is fixed, for sufficiently large n ∈ N, (d+ 1) ≤
√
n and

√
n
√
n
√
n
(d+ 1)

√
n2
√
n2(−n3/5) ≤ 22

√
n log2(n)−n3/5

for which we can give the crude upper bound n−2 holding for all large enough n ∈ N. Thus,

PY
(
c

(i)
0 (Y ) 6= b

√
n

0

)
≤ 1

n2
, i ∈ {n2/5, . . . ,Mn},

for all sufficiently large n ∈ N. Now, by (3.40), |{n2/5, . . . ,Mn}| ≤Mn ≤
√
n. Thus, we have

PY

 Mn⋃
i=n2/5

{
c

(i)
0 (Y ) 6= b

√
n

0

} ≤ 1

n3/2
,

for all large enough n ∈ N, which implies the statement of the lemma. �

Step 5: Complete the proof of the LDP stated in Theorem D. By the definition ofMn in (3.40),
we have the relation

Mn+1⋃
i=1

(∆i ∪∆′i) ⊃ {1, . . . , n}
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and Mn ≤
√
n. Together with the fact that ∆i,∆

′
i, i ∈ N, are all disjoint, |∆i| =

√
n, and

|∆′i| = n2/5, this implies
Mn∑

i=n2/5

√
n ≥ n−

Mn∑
i=n2/5

|∆′i| −
n2/5−1∑
i=1

(|∆i|+ |∆′i|)− (|∆Mn+1|+ |∆′Mn+1|)

≥ n− n2/5√n− 2
√
nn2/5 − 2

√
n

= n− 3n9/10 − 2
√
n,

while in the other direction trivially
∑Mn

i=n2/5

√
n ≤ n. Thus, for the factor

∏Mn

i=n2/5 b
√
n

0
appearing in Lemma 3.10 we have the lower and upper bounds

(3.61) b
n−3n9/10−2

√
n

0 ≤
Mn∏

i=n2/5

b
√
n

0 ≤ bn0 .

Thus, for any fixed θ ∈ R, given any ε > 0, choosing d = d(ε) such that (3.43) of Lemma
3.8 holds with p = pd(ε), then invoking (3.41) as well as (3.45) of Proposition 3.9, next applying
Lemma 3.10 with d = d(ε), b0 := b0(θ; d(ε)), and finally using (3.61) we obtain

(3.62) (1 + ε)−ne−5θn9/10
b
n−3n9/10−2

√
n

0 ≤
∫ 1

0
eθS

Y
n (ω)dω ≤ bn0e5θn9/10

(1− ε)−n

with PY -probability at least 1−n−3/2, for all sufficiently large n ∈ N. Next, note that we have
log(1 + ε) ≤ ε, and we can (and will) assume that ε > 0 is so small that log(1− ε) ≥ −2ε. We
also have the trivial bound 5θn9/10+(3n9/10+2

√
n) log b0 = n9/10(5θ+3 log b0)+(2

√
n) log b0 ≤

nε for all sufficiently large n ∈ N. Thus, from (3.62) we can deduce that for sufficiently large
n ∈ N, with PY -probability at least 1− n−3/2,

−2ε ≤ − log(1 + ε)− 1

n

(
5θn9/10 + (3n9/10 + 2

√
n) log b0

)
≤ 1

n
log

(∫ 1

0
eθS

Y
n (ω)dω

)
− log b0

≤ 1

n
[5θn9/10]− log(1− ε)

≤ 3ε.

This implies that for all sufficiently large n ∈ N,

PY
(∣∣∣∣ 1n log

(∫ 1

0
eθS

Y
n (ω)dω

)
− log b0

∣∣∣∣ ≤ 3ε

)
≥ 1− n−3/2.

By the Borel-Cantelli lemma, with PY -probability equal to one only finitely many exceptional
events occur. This implies that PY -almost surely we have

(3.63) lim sup
n→∞

∣∣∣∣ 1n log

(∫ 1

0
eθS

Y
n (ω)dω

)
− log b0

∣∣∣∣ ≤ 3ε.

Recall from (3.15) that b0(θ; d(ε)) is a finite polynomial approximation to the modified Bessel
function B0(θ), the moment generating function defined in (2.7), and that b0(θ; d(ε))) can
be made arbitrarily close to B0(θ) by choosing the degree d = d(ε) sufficiently large. Thus,
letting ε → 0 (and hence d(ε) → +∞) and using (3.63) together with (2.8), we derive, for
every fixed θ ∈ R,

lim
n→∞

1

n
log

(∫ 1

0
eθ
∑n
k=1 cos(2πakω)dω

)
= logB0(θ) = Λ̃(θ) PY -a.s.
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Since Λ̃(θ) is a continuous (in fact, differentiable) function in θ, we can deduce that PY -almost
surely this result holds for all θ ∈ R: for PY -almost all realizations of the random sequence Y ,
or equivalently, aY1 , aY2 , . . . , we have

lim
n→∞

1

n
log

(∫ 1

0
eθS

Y
n (ω)dω

)
= lim

n→∞

1

n
log

(∫ 1

0
eθ
∑n
k=1 cos(2πaYk ω)dω

)
= Λ̃(θ) for all θ ∈ R.

Together with the Gärtner-Ellis theorem, Theorem 3.1, this proves the desired result.
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Appendix A. Proof of Proposition 2.4

Fix an integer q ∈ {2, 3, . . .}. For m ∈ N and n ∈ N recall that Am(n) denotes the number
of solutions to the equation

(A.1)
m∑
i=1

εiq
ki = 0

in the unknowns k1, . . . , km ∈ {1, . . . , n} and ε1, . . . , εm ∈ {+1,−1}.

Proposition A.1. Fix m ∈ N. Then, the function Am(n) restricted to the values n ≥ m− 2
is a polynomial in n of degree at most [m/2].

Proof. Let Am,p1,p2(n) be the number of representations of zero as a sum of signed powers of
2 which begins with p1 terms of the form +q1 followed by p2 terms of the form −q1 and does
not contain any more ±q-terms. More precisely, for p1, p2 ∈ N0 such that p1 + p2 ≤ m, we
define Am,p1,p2(n) to be the number of solutions to (A.1) such that

k1 = . . . = kp1+p2 = 1,

ε1 = . . . = εp1 = +1,

εp1+1 = . . . = εp1+p2 = −1,

ki ∈ {2, . . . , n} for i ∈ {p1 + p2 + 1, . . . , n}.
Since in any general solution to (A.1) the terms ±q can appear at arbitrary positions, we have

Am(n) =
∑

p1,p2≥0
p1+p2≤m

(
m

p1 + p2

)(
p1 + p2

p1

)
Am,p1,p2(n).

To establish Proposition A.1 it suffices to prove the following two claims for all ` ∈ N:
(a) A`,0,0(n) is a polynomial in n of degree at most [`/2] in the range n ≥ `− 2.
(b) For (p1, p2) 6= (0, 0), A`,p1,p2(n) is a polynomial in n of degree at most [`/2]− 1 in the

range n ≥ `− 3.
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First of all, observe that these claims are true for ` = 1 and ` = 2 because

A1,0,0(n) = 0, A2,0,0(n) = 2n− 2, A2,1,1(n) = 2, A2,0,1(n) = A2,1,0(n) = 0.

For larger values of `, we shall prove these claims by induction. The inductive argument is
based on certain recurrence relations for the functions Am,p1,p2(n) that we now derive.

Case 1. Let first p1 = p2 = p ∈ N0. Then, in (A.1) we can cancel the +q-terms with the
−q-terms, which yields a representation of 0 as a sum of ±q2,±q3, . . . ,±qn, the total number
of terms being m− p1 − p2. Dividing all terms by q, we obtain a representation of 0 as a sum
of m− p1 − p2 terms of the form ±q,±q2, . . . ,±qn−1. The number of such representations is
Am−p1−p2(n− 1). Hence, we arrive at

(A.2) Am,p,p(n) = Am−2p(n− 1) =
∑

r1,r2≥0
r1+r2≤m−2p

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am−2p,r1,r2(n− 1).

Case 2. Let now p1 > p2. Then, in the representation (A.1) we can cancel p2 terms of the
form +q1 with the same number p2 of terms of the form −q1. The resulting representation of 0
contains p1−p2 > 0 terms of the form +q1 andm−p1−p2 terms of the form ±q2,±q3, . . . ,±qn.
If p1 − p2 is not divisible by q, then Am,p1,p2(n) = 0 because the sum on the left-hand side
of (A.1) is not divisible by q2. So, assume that p1 − p2 = sq for some s ∈ N. Divide the
remaining p1−p2 terms of the form +q1 into s groups of the form +q1+. . .+q1, each consisting
of q terms, and replace each group by +q2. We obtain s terms of the form q2. However, we
have also to take care of the terms of the form ±q2 that can appear among the m − p1 − p2

terms of the form ±q2,±q3, . . . ,±qn. Let r1, respectively, r2, be the number of the terms
+q2, respectively, −q2, among these m− p1 − p2 terms. Dividing all terms by q, we obtain a
representation of 0 starting with s = (p1 − p2)/q terms of the form +q1, followed by a sum
of m− p1 − p2 terms of the form ±q1,±q2, . . . ,±qn−1, among which r1 terms are of the form
+q1 and r2 terms are of the form −q1. Since the positions of these terms can be arbitrary
among the m− p1 − p2 terms, we arrive at the identity

(A.3) Am,p1,p2(n) =
∑

r1,r2≥0
r1+r2≤m−p1−p2

(
m− p1 − p2

r1 + r2

)(
r1 + r2

r1

)
As+m−p1−p2,s+r1,r2(n− 1),

which holds if p1 − p2 = sq for s ∈ N.

Case 3. Similar arguments show that in the case when p1 < p2 we have Am,p1,p2(n) = 0 if
p2 − p1 is not divisible by q and

(A.4) Am,p1,p2(n) =
∑

r1,r2≥0
r1+r2≤m−p1−p2

(
m− p1 − p2

r1 + r2

)(
r1 + r2

r1

)
As+m−p1−p2,r1,s+r2(n− 1),

if p2 − p1 = sq for some s ∈ N.

We are now in position to prove claims (a) and (b) by induction. As already mentioned
above, the claims are true for ` = 1, 2. Assume that the claims are true for ` = 1, . . . ,m − 1
with some m ∈ {3, 4, . . .}. We prove them for ` = m.

Case A. Consider first the case when (p1, p2) 6= (0, 0). Then, (A.2), (A.3), (A.4) yield a
representation of Am,p1,p2(n) as a linear combination of the terms A`,r1,r2(n− 1) with ` < m.
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Applying the induction assumption, we obtain that Am,p1,p2(n) is a polynomial in n of degree
at most [m/2]− 1 in the range n ≥ m− 3. In the individual cases, this can be seen as follows:

• Case 1: If p1 = p2 = p 6= 0, then from (A.2) we have ` = m − 2p < m. By the
induction assumptions (a) and (b), the terms Am−2p,r1,r2(n − 1) appearing in (A.2)
are polynomials in (n − 1) of degree at most [(m − 2p)/2] ≤ [m/2] − 1 in the range
n− 1 ≥ m− 2p− 2, which lies in the range n ≥ m− 3.
• Case 2: If p1 > p2 and p1 − p2 = sq for s ∈ N, then ` = s + m − p1 − p2, which
is strictly less than m since q ≥ 2. By the induction assumption (b), the terms
As+m−p1−p2,s+r1,r2(n−1) (for which we have s+r1 > 0 since s ∈ N) appearing in (A.3)
are polynomials of (n − 1) of degree at most [(s + m − p1 − p2)/2] − 1 ≤ [m/2] − 1
in the range n − 1 ≥ s + m − p1 − p2 − 3. This lies in the range n ≥ m − 3 since
p1 + p2 − s = p + p2 − (p1 − p2)/q > 0 and hence, being integral, is greater than or
equal to 1.
• Case 3: If p2 > p1 and p2 − p1 = sq for s ∈ N, then ` = s + m − p1 − p2 < m. The
remaining considerations are similar to Case 2.

In all three cases we obtain that (b) holds for ` = m.

Case B. Consider now the case when p1 = p2 = 0. Then, (A.2) yields

Am,0,0(n) = Am(n− 1) =
∑

r1,r2≥0
r1+r2≤m

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am,r1,r2(n− 1).

Separating the term with (r1, r2) = (0, 0), we obtain

Am,0,0(n) = Am,0,0(n− 1) +
∑

r1,r2≥0
r1+r2≤m

(r1,r2)6=(0,0)

(
m− 2p

r1 + r2

)(
r1 + r2

r1

)
Am,r1,r2(n− 1).

To each term in the sum on the right-hand side we can apply the same considerations as in
Case A, due to the restriction (r1, r2) 6= (0, 0). Thus, the sum on the right-hand side is a
polynomial in n of degree at most [m/2] − 1 in the range n − 1 ≥ m − 3. Denoting this
polynomial by Pm(n), we have

Am,0,0(n) = Am,0,0(n− 1) + Pm(n)

for all n ≥ m− 2. Iterating this, we obtain

Am,0,0(n) = Pm(n) + Pm(n− 1) + . . .+ Pm(m− 2) +Am,0,0(m− 3),

for all n ≥ m − 2. The right-hand side is a polynomial in n of degree at most [m/2]. This
proves that (a) holds with ` = m, thus completing the induction. �

Proposition A.1 allows us to find explicit formulae for Am(n) for every fixed m and all
n ≥ m−2. This also yields the moments of the lacunary sums Sn because, as shown in Lemma
3.5, these are given by

E[Smn ] =
Am(n)

2m
, m, n ∈ N.

To compute Am(n), we can proceed as follows. Let some m ∈ N be given. Using computer
algebra, calculate the values Am(n) for n = m− 2, . . . ,m− 2 + [m/2]. For example, one may
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just expand the Laurent polynomial(
n∑
k=1

(
x+qk + x−q

k
))m

and observe that Am(n) is the coefficient of x0 there. Then, compute the unique interpolating
polynomial of degree [m/2] taking the same values as Am(n) for n = m−2, . . . ,m−2+[m/2].
By Proposition A.1, this yields a formula for Am(n) for all n ≥ m− 2. For example, for q = 2
we obtained the following formula

A1(n) = 0 for all n ∈ N,
A2(n) = 2n for all n ∈ N,
A3(n) = 6n− 6 for all n ∈ N,
A4(n) = 12n2 + 18n− 48 for all n ≥ 2,

A5(n) = 120n2 − 130n− 240 for all n ≥ 3,

A6(n) = 120n3 + 900n2 − 3310n+ 870 for all n ≥ 4,

A7(n) = 2520n3 + 840n2 − 40446n+ 48552 for all n ≥ 5,

and so on. By computing more values of Am(n) than necessary, it is also possible to check the
correctness of these formulas. Since the m-th cumulant κm(Sn) of Sn can be expressed as a
polynomial of the first m moments E[Sn], . . . ,E[Smn ], we obtain that κm(Sn) is a polynomial
in n of degree at most [m/2] for all n ≥ m − 2. In fact, it is even a polynomial of degree 1.
To see this, recall that the convergence of analytic functions in (2.10) is uniform on some disk
around 0. Differentiating (2.10) m ∈ N times, we get

lim
n→∞

1

n
κm(Sn) = Λ(m)

q (0),

which implies that κm(Sn) must be of degree 1. For example, in the case when q = 2, we
obtained

κ1(Sn)

1!
= 0 for all n ∈ N,

κ2(Sn)

2!
=
n

4
for all n ∈ N,

κ3(Sn)

3!
=
n− 1

8
for all n ∈ N,

κ4(Sn)

4!
=

3n− 8

64
for all n ≥ 2,

κ5(Sn)

5!
=
−n− 24

384
for all n ≥ 3,

κ6(Sn)

6!
=
−115n− 51

4608
for all n ≥ 4,

κ7(Sn)

7!
=

916− 393n

15360
for all n ≥ 5,

and so on. This yields the first few terms in the Taylor expansion of Λ2. Since I ′2 is the inverse
function of Λ′2, this easily yields the Taylor expansion of I2 stated in Proposition 2.4.



LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 43

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and math-
ematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. 1964.

[2] D. Airey and B. Mance. Normality of different orders for Cantor series expansions. Nonlinearity,
30(10):3719–3742, 2017.

[3] D. Airey, B. Mance, and J. Vandehey. Normal number constructions for Cantor series with slowly growing
bases. Czechoslovak Math. J., 66(141)(2):465–480, 2016.

[4] C. Aistleitner and I. Berkes. On the central limit theorem for f(nkx). Probab. Theory Related Fields,
146(1-2):267–289, 2010.

[5] S. Albeverio, I. Garko, M. Ibragim, and G. Torbin. Non-normal numbers: full Hausdorff dimensionality
vs zero dimensionality. Bull. Sci. Math., 141(2):1–19, 2017.

[6] V. Baladi. Positive transfer operators and decay of correlations, volume 16 of Advanced Series in Nonlinear
Dynamics. World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[7] É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matem-
atico di Palermo (1884-1940), 27(1):247–271, Dec 1909.

[8] A. Broise. Transformations dilatantes de l’intervalle et théorèmes limites. Études spectrales d’opérateurs
de transfert et applications. Number 238, pages 1–109. 1996.

[9] W. Bryc. On the large deviation principle for stationary weakly dependent random fields. Ann. Probab.,
20(2):1004–1030, 1992.

[10] G. Cantor. Ueber die einfachen zahlensysteme. Z. Math. Phys., 14:121–128, 1869.
[11] J.-R. Chazottes and P. Collet. Almost-sure central limit theorems and the Erdős-Rényi law for expanding

maps of the interval. Ergodic Theory Dynam. Systems, 25(2):419–441, 2005.
[12] C. M. Colebrook and J. H. B. Kemperman. On non-normal numbers. Nederl. Akad. Wetensch. Proc. Ser.

A 71=Indag. Math., 30:1–11, 1968.
[13] P. Collet. Some ergodic properties of maps of the interval. In Dynamical systems (Temuco, 1991/1992),

volume 52 of Travaux en Cours, pages 55–91. Hermann, Paris, 1996.
[14] J.-P. Conze and S. Le Borgne. Limit law for some modified ergodic sums. Stoch. Dyn., 11(1):107–133,

2011.
[15] H. Cramér. Sur un nouveau théorème-limite de la théorie des probabilités’. Actualités Scientifiques et

Industrielles 736, pages 5–23, 1938.
[16] H. Cramér and H. Touchette. On a new limit theorem in probability theory (Translation of ‘Sur un

nouveau théorème-limite de la théorie des probabilités’). ArXiv e-prints, Feb. 2018.
[17] A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38 of Stochastic Modelling

and Applied Probability. Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.
[18] M. Denker and M. Kesseböhmer. Thermodynamic formalism, large deviation, and multifractals. In Sto-

chastic climate models (Chorin, 1999), volume 49 of Progr. Probab., pages 159–169. Birkhäuser, Basel,
2001.

[19] M. Denker and M. Nicol. Erdös-Rényi laws for dynamical systems. J. Lond. Math. Soc. (2), 87(2):497–508,
2013.

[20] M. Drmota and R. F. Tichy. Sequences, discrepancies and applications, volume 1651 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1997.

[21] T. Eisner, B. Farkas, M. Haase, and R. Nagel. Operator theoretic aspects of ergodic theory, volume 272 of
Graduate Texts in Mathematics. Springer, Cham, 2015.

[22] P. Erdős and A. Rényi. On Cantor’s series with convergent
∑

1/qn. Ann. Univ. Sci. Budapest. Eötvös
Sect. Math., 2:93–109, 1959.

[23] P. Erdös and I. Gál. On the law of the iterated logarithm. Proc. Kon. Nederl. Akad. Wetensch, 58:65–84,
1955.

[24] V. Féray, P.-L. Méliot, and A. Nikeghbali. Mod-φ convergence. SpringerBriefs in Probability and Mathe-
matical Statistics. Springer, Cham, 2016.

[25] F. Filip and J. Šustek. Normal numbers and Cantor expansions. Unif. Distrib. Theory, 9(2):93–101, 2014.
[26] L. Frühwirth, M. Juhos, and J. Prochno. The large deviation behavior of lacunary sums. arXiv:2107.12860,

to appear in Monatsh. Math.
[27] K. Fukuyama. The law of the iterated logarithm for discrepancies of {θnx}. Acta Math. Hungar., 118(1-

2):155–170, 2008.



44 C. AISTLEITNER, N. GANTERT, Z. KABLUCHKO, J. PROCHNO, K. RAMANAN

[28] K. Fukuyama and S. Miyamoto. Metric discrepancy results for Erdős-Fortet sequence. Studia Sci. Math.
Hungar., 49(1):52–78, 2012.

[29] V. F. Gapoškin. The central limit theorem for certain weakly dependent sequences. Teor. Verojatnost. i
Primenen., 15:666–684, 1970.

[30] J. Grigull. Große Abweichungen und Fluktuationen für Gleichgewichtsmaße rationaler Abbildungen. Dis-
sertation. Georg-August-Universität Göttingen, 1993.

[31] M. Kac. On the distribution of values of sums of the type
∑
f(2kt). Ann. of Math. (2), 47:33–49, 1946.

[32] M. Kac. Probability methods in some problems of analysis and number theory. Bull. Amer. Math. Soc.,
55:641–665, 1949.

[33] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
Reprint of the 1980 edition.

[34] M. Kesseböhmer. Multifraktale und Asymptotiken grosser Deviationen. Dissertation. Georg-August-
Universität Göttingen, 1999.

[35] A. Khintchine and A. Kolmogorov. Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt
werden. Rec. Math. Moscou, 32:668–677, 1925.

[36] Y. Kifer. Large deviations in dynamical systems and stochastic processes. Trans. Amer. Math. Soc.,
321(2):505–524, 1990.

[37] A. Kolmogoroff. Une contribution à l’étude de la convergence des sèries de Fourier. Fund. Math., 5(1):96–
97, 1924.

[38] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley-Interscience [John Wiley & Sons],
New York-London-Sydney, 1974.

[39] G. Leobacher and J. Prochno. Statistical independence in mathematics – the key to a Gaussian law. Math.
Semesterber., 68:69–104, 2021.

[40] A. O. Lopes. Entropy and large deviation. Nonlinearity, 3(2):527–546, 1990.
[41] G. Martin. Absolutely abnormal numbers. Amer. Math. Monthly, 108(8):746–754, 2001.
[42] L. Olsen. Extremely non-normal numbers. Math. Proc. Cambridge Philos. Soc., 137(1):43–53, 2004.
[43] S. Orey and S. Pelikan. Large deviation principles for stationary processes. Ann. Probab., 16(4):1481–1495,

1988.
[44] E. P and A. Rényi. Some further statistical properties of the digits in cantor’s series. Acta Mathematica

Hungarica, 10:21–29, 1959.
[45] C.-E. Pfister and W. G. Sullivan. Large deviations estimates for dynamical systems without the specifi-

cation property. Applications to the β-shifts. Nonlinearity, 18(1):237–261, 2005.
[46] W. Philipp. Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith., 26(3):241–251,

1974/75.
[47] A. D. Pollington. The Hausdorff dimension of a set of normal numbers. Pacific J. Math., 95(1):193–204,

1981.
[48] H. Rademacher. Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann., 87:112–

138, 1922.
[49] A. Rényi. On the distribution of the digits in Cantor’s series. Mat. Lapok, 7:77–100, 1956.
[50] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press,

Princeton, N.J., 1970.
[51] M. Rychlik. Bounded variation and invariant measures. Studia Math., 76(1):69–80, 1983.
[52] R. Salem and A. Zygmund. On lacunary trigonometric series. Proc. Nat. Acad. Sci. U. S. A., 33:333–338,

1947.
[53] R. Salem and A. Zygmund. La loi du logarithme itéré pour les séries trigonométriques lacunaires. Bull.

Sci. Math.(2), 74:209–224, 1950.
[54] D. Schnellmann. Law of iterated logarithm and invariance principle for one-parameter families of interval

maps. Probab. Theory Related Fields, 162(1-2):365–409, 2015.
[55] P. Turán. On the distribution of “digits” in Cantor-systems. Mat. Lapok, 7:71–76, 1956.
[56] S. R. S. Varadhan. Large deviations. Ann. Probab., 36(2):397–419, 2008.
[57] M. Weiss. The law of the iterated logarithm for lacunary trigonometric series. Trans. Amer. Math. Soc.,

91:444–469, 1959.
[58] L.-S. Young. Large deviations in dynamical systems. Trans. Amer. Math. Soc., 318(2):525–543, 1990.



LARGE DEVIATION PRINCIPLES FOR LACUNARY SUMS 45

[59] M. Zinsmeister. Thermodynamic formalism and holomorphic dynamical systems, volume 2 of SMF/AMS
Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France,
Paris, 2000. Translated from the 1996 French original by C. Greg Anderson.

[60] A. Zygmund. On the convergence of lacunary trigonometric series. Fund. Math., 16(1):90–107, 1930.

Christoph Aistleitner: Institute of Analysis and Number Theory, Graz University of Technology,
Steyrergasse 30/II, 8010 Graz, Austria E-mail: aistleitner@math.tugraz.at

Nina Gantert: Department of Mathematics, Technical University of Munich, Parkring 11, 85748
Garching, Germany E-mail: nina.gantert@tum.de

Zakhar Kabluchko: Institute for Mathematical Stochastics, University of Münster, Orléans-Ring
10, 48149 Münster, Germany E-mail: zakhar.kabluchko@uni-muenster.de

Joscha Prochno: Faculty of Computer Science and Mathematics, University of Passau, Innstraße
33, 94032 Passau, Germany E-mail: joscha.prochno@uni-passau.de

Kavita Ramanan: Division of Applied Mathematics, Brown University, 182 George Street, Provi-
dence, RI 02912, U.S.A. E-mail: kavita_ramanan@brown.edu


