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1 Introduction

This paper is devoted to the second-order variational analysis and numerical applications for
a general class of constrained optimization problems formulated in Section 2. It has been well
recognized in optimization theory and its applications that second-order analysis concerning both
qualitative/theoretical and quantitative/numerical aspects of constrained optimization requires
certain second-order regularity conditions. In this paper we explore a novel one, which is the
parabolic regularity of the constraint set at the point in question.

Actually the notion of parabolic regularity for extended-real-valued functions was first for-
mulated by Rockafellar and Wets [29, Definition 13.65], but was not studied there except for fully
amenable compositions with the immediate application to the unconstrained format of second-
order optimality; see also [3, Subsection 3.3.5]. We are not familiar with any other publications
where parabolic regularity was either further investigated, or applied to structural problems of
constrained optimization.

Very recently [19], a systematic study of parabolically regular sets (both convex and non-
convex) has been conducted in our paper, where we reveal a fundamental role of this concept
in second-order variational analysis and its important applications to optimization theory. In
particular, it is shown in [19] that parabolic regularity is more general than known second-order
regularity notions, is preserved under various operations on sets, ensures—among other signifi-
cant results—twice epi-differentiability of set indicator functions, precise/equality type calculi of
second subderivatives and second-order tangents, etc. Furthermore, parabolic regularity married
to the metric subregularity constraint qualification allows us to efficiently deal with constraint
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systems in optimization with obtaining computation formulas for major second-order general-
ized derivatives, which are instrumental, in particular, for the development and justification of
primal-dual numerical algorithms of optimization. Let us also mention in the list of achievements
of [19] that parabolic regularity leads us to deriving no-gap second-order optimality conditions
in constrained optimization and establishing a quadratic growth of augmented Lagrangians that
are highly important for subsequent numerical applications.

In this paper we continue the study and applications of parabolic regularity in the new
directions that were not explored in [19]. Our first goal is to obtain complete second-order
characterizations of some major stability properties and their robust versions for perturbed
Karush-Kuhn-Tucker (KKT) systems associated with optimization problems whose constraints
are described by parabolically regular sets. We mainly concentrate here on two equivalent (up
to taking the inverse mapping) properties known as strong metric subregularity and isolated
calmness together with their robust counterparts. Using parabolic regularity, we establish novel
characterizations of these properties in the general KKT setting under consideration that cover
known results for nonlinear programs (NLPs) while contain essentially new ingredients for non-
polyhedral constraint systems. Note that the approach developed in this paper allows us to
significantly simplify the proofs of the known results for NLPs. Observe also that the recent
characterizations of noncritical Lagrange multipliers obtained in [25] for nonpolyhedral systems
play a significant role in deriving the aforementioned stability results for perturbed KKT systems
and their numerical applications discussed below.

The second goal of this paper is to develop applications of the obtained second-order charac-
terizations of robust stability for KKT systems to the sequential quadratic programming (SQP)
method for solving optimization problems with parabolically regular constraints. In the case
of NLPs, the sharpest result for the method was achieved by Bonnans [1] who established the
superlinear convergence of the basic SQP method under the uniqueness of Lagrange multipliers
and the fulfillment of the classical second-order sufficient condition. We now significantly ex-
tend this result to the general class of parabolically regular constrained optimization problems
under an appropriate version of the second-order sufficiency with adding a new condition, which
automatically holds for NLPs.

The rest of the paper is organized as follows. Section 2 presents and discusses the basic
concepts of first-order and second-order variational analysis and generalized differentiation that
are systematically used in the subsequent material. In Section 3 we define the crucial notion
of set parabolic regularity, formulate important results for it taken from [19] and needed in this
paper, and then derive some new assertions, which are required for our main achievements below.

In Section 4 we first reveal close relationships between noncriticality of Lagrange multipliers
and strong metric subregularity of the KKT mapping associated with the constrained optimiza-
tion problem under consideration. It turns out to be instrumental for deriving new second-order
characterizations of the isolated calmness property for the solution map to the canonically per-
turbed KKT system. The latter result is used further in this section to establish robust stability
of the extended KKT system associated with general perturbations of the original constrained
optimization problem. In the case of canonical perturbations, it gives us the property of solution
maps to KKT systems that is labeled as robust isolated calmness in [0].

Section 5 is devoted to the application of the obtained stability results to establishing local
superlinear convergence of the basic SQP method to numerically solve optimization problems with
parabolically regular constraints. The stability result under general perturbations developed in
Section 4 plays a crucial role in justifying the solvability of subproblems in the basic SQP method
without which the SQP iterations are not well posed. Achieving it and imposing the obtained
second-order sufficient condition together with the uniqueness of Lagrange multipliers and the
calmness of the multiplier mappings (the latter is automatic for NLPs), we prove superlinear



convergence of the basic SQP method and thus properly extend Bonnans’ remarkable result to
a significantly more general class of nonpolyhedral problems in constrained optimization.

The concluding Section 6 summarizes the main results obtained in the paper and discusses
some directions of the future research.

2 Basic Concepts and Discussions

The notation and terminology in this paper are standard in variational analysis and generalized
differentiation; see, e.g., [22,29]. For the reader’s convenience and notational unification we use
as a rule small Greek letters to signify scalar and extended-real-valued (i.e., with values in the
extended real line IR := IR U {oo}) functions, small Latin letters for vectors and single-valued
mappings, and capital letters for sets and set-valued mappings. For a nonempty subset 2 of IR",
the symbols ri €2, cl 2, and Q* stand for the relative interior, closure, and polar of §2, respectively.
We write = % 7 to indicate that o — 7 with = € Q. The distance between a point z € IR" and
a set  C IR" is denoted by dist(z;2). The indicator function of €2 is defined by dq(x) := 0 for
xz € Q and dq(x) := oo otherwise. The notation B stands for the closed unit ball in the space
in question, while B, (x) := x 4+ rB mean the closed ball centered at x with radius » > 0. The
symbol z = o(t) with z € IR™ and ¢ > 0 tells us that ||z||/t — 0 as ¢ | 0. Let us also mention
that the notation F': IR" = IR™ indicates the possibility of set values F(x) C IR™ (including
the empty set () of F' for some x € IR™, in contrast to the standard notation f: IR" — IR™ for
single-valued mappings as well as extended-real-valued functions.

Now we recall those constructions of generalized differentiation for sets, set-valued mappings,
and extended-real-valued functions that are broadly used in what follows. By generalized differ-
ential constructions for sets we understand tangent and normal cones, which are closely related
to (in fact induce) the corresponding generalized derivatives for mappings and functions.

Given a set 2 C IR", the (Bouligand-Severi) tangent cone To(Z) to Q at & € Q is defined by

Ta(z) = {w cR" ‘ 36,10, wp, —w as k— oo with T+ tpwy € Q} (2.1)

A tangent vector w € Tq(z) is said to be derivable if there exists £ : [0,e] — € with ¢ > 0,
£(0) = z, and &, (0) = w, where &, signifies the right derivative of £ at 0 defined by

F iy §() = €(0)
§4(0) == 13%1 -

The set ) is geometrically derivable at T if every tangent vector w to 2 at Z is derivable.
The (Mordukhovich limiting) normal cone to 2 at = € €2 is given by

No(z) = {ve R" | Jap—z, v — v with vy € Tg(x) }, (2.2)

where T5(x) = {v € R" | (v,w) <0 forall w e Tq(x)} is the dual cone of (2.1). If Q is
convex, (2.1) and (2.2) reduce, respectively, to the tangent and normal cones of convex analysis.
Due to the intrinsic nonconvexity of the normal cone even in simple settings (i.e., for the graph
of the function |z| at (0,0) € IR?), and thus the normal cone (2.1) is not tangentially generated.

Consider next a set-valued mapping/multifunction F': IR" = IR™ with its domain and graph
given, respectively, by

domF :={z € R" | F(z) #0} and gphF :={(z,y) € R" xR™ |y € F(z)}.

Then we define the two generalized derivatives generated by the tangent cone (2.1) and the
normal cone (2.2) to the graph of F' in the following way, respectively. The graphical derivative



to F at (Z,y) € gph F is
DF(z,y)(u) :== {v € R™ | (u,v) € Typn r(Z,9)}, u€R", (2.3)
while the coderivative of F' at this point is
D*F(z,y ={ueR" | (u,—v) € Ngpn p(Z, %)}, veR™ (2.4)

Note that the coderivative (2.4) is not dual to the graphical derivative (2.3), since the values of
(2.4) are often nonconvex. Despite (actually due to) its nonconvexity, the coderivative enjoys
full calculus based on the variational/exttemal principles of variational analysis; see [21,22]
for more details. Furthermore, in its terms we get complete pointwise characterizations of
fundamental well-posedness properties of set-valued mappings related to metric regularity, linear
openness/covering, and robust Lipschitzian stability known as the Mordukhovich coderivative
criteria; see [20,21,29]. We present below the one for metric regularity used in this paper.
Recall that a mapping F': R" = IR™ is metrically reqular around (z,y) € gph F' if there exist
neighborhoods U of T and V of 3 together with a number xk > 0 ensuring the estimate

dist(:L‘;F_l(y)) < kdist(y; F(z)) forall (z,y) €U x V. (2.5)

The coderivative criterion for metric regularity says that a closed-graph mapping F' is metrically
around the point (Z,y) if and only if we have the kernel condition

ker D*F(z,§) :== {v € R™ | 0 € D*F(z,7)(v)} = {0}; (2.6)

see [22, Theorem 3.3] for a simplified proof and discussions in finite dimensions.

Along with the usage of (2.5) and (2.6), we largely employ the following significant modifi-
cations and relaxations of (2.5). The mapping F' is said to be metrically subregular at (z,y) if
the validity of (2.5) is required only when y = 7, i.e., if there exist x > 0 and a neighborhood U
of T ensuring the validity of the distance estimate

dist (z; F~(9)) < wdist(g; F(x)) forall =z e U. (2.7)
Furthermore, F is strongly metrically subreqular at (Z,y) if (2.7) holds with F~1(y) = {z} , i.e
|z — Z|| < kdist(g; F(x)) forall ze€U. (2.8)

It has been well realized in variational analysis that the subregularity properties (2.7) and
(2.8) are equivalent to the following calmness and isolated calmness counterparts for inverse
mappings; see, e.g., [3,22]. Recall that F': R™ = IR"™ is calm at (Z,y) € gph F if there exist
£ > 0 and neighborhoods U of  and V' of ¢ such that

Fl)nV C F(z)+ |z —z||B forall ze€U. (2.9)

We say that the mapping F' has the isolated calmness property at (z,y) if F(z) = {y} in (2.9),
i.e., there exist ¢ > 0 and neighborhoods U of  and V of ¢ for which

F(z)nV c{y}+ |z —z|B forall z€U. (2.10)

Although properties (2.7)—(2.10) are much less investigated and applied in the literature in
comparison with metric regularity and related two-point properties of multifunctions, there
is an increasing number of publications dealing with such one-point formulations; see, e.g.,
[A=8, 1113, 15,18,19,22,28,31,33] and the references therein. In this paper we pay the main



attention to the properties of strong metric subregularity and isolated calmness for KKT systems
with the subsequent applications to the SQP method.

Given next an extended-real-valued function ¢: R” — IR with the domain dom ¢ := {z €
IR" | ¢(x) < oo} and the epigraph epi = {(x, 1) € R"™ | u > ¢(x)}, suppose in what follows
that ¢ is lower semicontinuous (l.s.c.) around the reference point. The subdifferential (collection
of subgradients) of ¢ at T is defined by

dp(T) == {” e R" ‘ (v,—1) € Nepiw(@@(j?))} (2.11)

via the normal cone (2.2) to the epigraph of ¢ at (Z,p(Z)). If ¢ is convex, the subdifferential
(2.11) reduces to the classical subgradient set of convex analysis.

We proceed further with the second-order constructions of generalized differentiation needed
in this paper. Given ¢: IR"™ — IR, consider the parametric family of second-order difference
quotients for ¢ at T € dom ¢ relative to v € IR" by

o(Z + tw) — () — t{v,w)

T with w € R™ and ¢ > 0.
2t?

Afp(,0)(w) =

The second subderivative of ¢ at & for v and w is defined by
d%o(z, ) (w) = lirﬁ(i)nf A2p(z,7)(w). (2.12)
w' —w

Then ¢ is said to be twice epi-differentiable at T for v if the sets epi A2¢(Z, ) converge (in the
sense of the convergence of the corresponding distance functions) to epid?p(z,v) as t | 0. If
in addition the second subderivative is a proper function (i.e., does not take the value —oo and
is finite at some point), we say that ¢ is properly twice epi-differentiable at = for v. By [29,
Proposition 7.2], the twice epi-differentiability of f at & for v can be understood equivalently as
for every w € IR™ and every sequence tj | 0, there exists a sequence wy, — w such that

A7 o(@,0)(wy) — (@, 0)(w).

3 Parabolic Regularity and Related Issues

We begin with the formulation of the fundamental parabolic regularity property for sets.

Definition 3.1 (parabolic regularity of sets). A set Q@ C IR" is called PARABOLICALLY
REGULAR at T € Q for a vector v € R™ if for each w with d?0q(Z,v)(w) < oo there exist, among
sequences t | 0 and wi — w satisfying

Afkég(:f,f))(wk) — d%0q(7,7)(w) as k — oo,
those with the additional property that

Jon = wl _

lim sup 0.
k—00 ke
It is shown in [19] that this property holds for sets appearing frequently in constrained

optimization such as polyhedral convex sets, the second-order/Lorentz/ice-cream cone, and the
cone of symmetric positive semidefinite matrices. More broadly, any C2-cone reducible set in the
sense of [3, Definition 3.135] is always parabolically regular; see [19, Proposition 5.14]. However,
the converse statement fails even for simple examples as demonstrated in [19, Example 5.16]. It



is worth mentioning that, contrary to the C?-cone reducibility, the parabolic regularity enjoys
good calculus including intersection rule under reasonable assumptions.
The second-order tangent set to Q at & € Q for a tangent vector w € T(z) from (2.1) is

T3(z,w) = {ueR" } Ftxd0, up - u as k — oo with Z + tpw + %tiuk € Q}. (3.1)

A set Q is said to be parabolically derivable at T for w if T3(Z,w) # 0 and for each u € T3(Z, w)
there exist ¢ > 0 and an are & : [0,¢e] — Q with £(0) =z, &, (0) = w, and &/ (0) = u, where

1 (0) ety S €0~ E40)

10 %t2

The latter property is satisfied in rather general settings; see [29] and [19]. Recall further that
the critical cone for a closed set 2 at x for v with (z,v) € gph N is defined by

Ko(z,v) = To(z) N {v}t. (3.2)

Now we are ready to present an important result, which actually summarizes several achieve-
ments from [19]. To proceed, recall that a set-valued mapping F : R"™ = IR™ is proto-
differentiable at T for § with (z,y) € gph F' if the set gph F' is geometrically derivable at (Z, 7).
When this condition holds for F', we refer to DF(Z,y) as the proto-derivative of F' at T for y.

Theorem 3.2 (proto-differentiability of normal cone mappings). Let Q C IR" be closed
and convex set, and let v € Nq(Z) with & € Q. Assume that the set Q is parabolically derivable
at T for every vector w € Kq(z,v), and that Q is parabolically regular at T for v. Then the
following equivalent conditions are satisfied:

(1) The indicator function dq is twice epi-differentiable at T for v.

(ii) The normal cone mapping Nq is proto-differentiable at T for v with the proto-derivative

DNq(z,7)(w) = 0[3d*6a(z,7)](w)  for all w € R™ (3.3)

Furthermore, we have that dom d%6q(Z,v) = Kq(Z,v), and that the second subderivative d?6g(Z, 1)
s a proper convex function on IR™.

Proof. The fulfillment of both conditions (i) and (ii) and their equivalence are established

in [19, Theorem 3.5] and [19, Corollary 3.6]. The claimed formula for the domain of the second
epi-derivative is taken from [19, Theorem 3.3]. Finally, it follows from [29, Proposition 13.20]
that the second subderivative d25o(Z, ) is a proper convex function. O

Exploiting the imposed convexity of the set 2 allows us to derive the following enhanced
representations of the proto-derivative DNgq(Z,w) from Theorem 3.2 at the origin.

Corollary 3.3 (proto-derivatives of normal cones at the origin). Let Q C IR" satisfy all
the assumptions of Theorem 3.2. Then we have the formulas

DNo(7,7)(0) = Ko(#,5)" = Nicq(s2)(0). (3.4)

Proof. The convexity of €2, and hence of Kq(Z, ), allows us to deduce the second equality
claimed in (3.4). We proceed now with justifying the first equality therein. It follows from the
representation in (3.3) that

DNq(z,7)(0) = 0[3d*6a(z, )] (0).



Pick any u € DNq(z,)(0) and thus get u € 9[2d?5q(Z,v)](0). Since the second subderivative
d%5q(7,) is a convex function with d25q(Z,9)(0) = 0, we obtain

(u,w—0) < %d25g(f,’£—))(’w) - %dQ(SQ(a_:, 0)(0) = %d%g(f,@)(w) for all w e IR".

Theorem 3.2 tells us that domd?d(Z,9) = Kq(#,v). To proceed further, pick ¢ > 0 and
w € Kq(Z,v) and, with taking into account that the second subderivative d25q(Z, v) is positive
homogeneous of degree 2, arrive at d?6q (%, v)(tw) = t2d25q(Z, v)(w), which results in

t(u,w) < $d%50(Z,0)(tw) = 12d*5a(z,7) (w).

This along with the choice of w € dom d?6g(z,7) implies that (u,w) < 0 and hence gives us
u € Kq(z,v)*. It verifies the inclusion “C” for the first equality in (3.4).
Assuming now that u € Kq(Z,0)*, we get (u,w) <0 for all w € Kq(Z,v). This leads us to

(u,wy <0 < 1d%00(z,v)(w) = $d*5a(Z,v)(w) — $d*60(Z,0)(0) for all w € Ko(Z,0).

If w ¢ Kq(Z,0), then it follows from Theorem 3.2 that d?6q(Z,7)(w) = oo, which clearly
ensures that the above inequality holds for such w. Then using the convexity of second sub-
derivative d25q (7, v) and the subdifferential construction of convex analysis, we arrive at u €
9[3d%5q(z,v)](0) and thus deduce from (3.3) that u € DNq(Z,)(0). This verifies the inclusion
“D” for the first equality in (3.4) and hence completes the proof of the corollary. O

Next we start considering the constrained optimization problem given by

min  @o(x) subject to f(z) € O, (3.5)
zeR"
where ¢p: IR” — IR and f: IR"® — IR™ are C?-smooth mappings around the reference points,
and where © is a closed and convex set in R™. Define its KKT system associated with (3.5) by

VoL(z,\) = Vgo(z) + VF(2)'A =0, A€ No(f(z)), (3.6)

where L(z, \) := ¢o(z)+(f(z), A) is the Lagrangian associated with (3.5) and (x,\) € R™ xIR™.
Given a point T € IR", denote the set of Lagrange multipliers at T by

A@):={Ae R™ | V,L(z,A) =0, A € No(f(z))} (3.7)

Having (z, A) as a solution to the KKT system (3.6) yields A € A(Z). It is not hard to see that
if X € A(z), then Z is a stationary point of (3.6) in the sense that it satisfies the condition

0 € d(po + (Jo © 9))(7), (3.8)

where the subdifferential of the generally nonconvex composition in (3.8) is taken from (2.11).
Now it is time to formulate the standing assumptions on the closed and convex set in (3.5)
that are used in the rest of the paper unless otherwise stated.

(H1) For every A € A(Z) the set © is parabolically derivable at f(z) for all the vectors in the
form Vf(z)w C Ko(f(Z),A) with some w € IR™.
(H2) The set © is parabolically reqular at f(z) for every A € A(Z).

As mentioned above, both assumptions (H1) and (H2) hold for important classes of convex
sets that naturally and frequently appear in constrained optimization; see, in particular, [19,
Proposition 5.14]. Imposing these assumptions on the set © opens the door for deriving enhanced
second-order optimality conditions for general problems of constrained optimization. The next
result is obtained in [19, Theorem 6.1] as a consequence of the comprehensive calculus rules
achieved therein for the second subderivatives.



Theorem 3.4 (no-gap second-order optimality conditions). Let T be a feasible solution
to problem (3.5) under the validity of the standing assumptions (H1) and (H2) on © with v :=
—Vo(Z). Assume further that the mapping x — f(x) — © is metrically subregular at (Z,0) and
consider the set of feasible solutions to (3.5) given by

Q:={zecR"| f(z) € ©}. (3.9)

The following second-order optimality conditions for problem (3.5) hold:

(1) If z is a local minimum of (3.5), then the second-order necessary condition

Jmax {{(V2,L(z, \w,w) + d%3e (f(),\) (Vf(@)w)} >0

is satisfied for all the critical vectors w € Kq(Z,0).

(ii) The fulfillment of the no-gap second-order condition

nax, {(V2,L(Z, Nw,w) + d*de (f(Z),\) (VF(@)w)} >0 forall we Kqo(z,v)\ {0}

amounts to the existence of positive constants £ and € such that the quadratic growth condition
! 2 N
o(z) > p(x) + §||:U —z||* for all © € B.(Z) with ¢ := pg+ (0o o f),

which implies that T is a strict local minimizer for (3.5).

Fix z € IR™ and define the multiplier mapping Mz: IR™ x IR™ = IR™ associated with Z by
Mz(v,w) := {\ € R™ } (v,w) € G(z,\)} for (v,w) € R" x R™, (3.10)

which can be viewed as the canonical perturbation (v, w) of the unparameterized KKT mapping
G:R" x IR™ = IR" x IR™ given by

cn = | VY [ iy | (311

It is easy to see that Mz(0,0) = A(Z), where A(Z) the set of Lagrange multipliers at Z taken
from (3.7). We collect some important properties of the multiplier mapping in the next theorem.

Theorem 3.5 (properties of multipliers and qualification conditions). Let (Z,\) be a
solution to the KKT system (3.6). The following properties are equivalent:

(i) The multiplier mapping Mz is calm at ((0,0),)\) and A(Z) = {A\}.

(ii) The multiplier mapping Mz enjoys the isolated calmness property at ((0,0), \).

(iii) We have the dual qualification condition
DNeo(f(z),A)(0) Nker V f(z)* = {0}. (3.12)

If in addition the convexr set © from (3.5) satisfies the standing assumptions (H1) and (H2),
then the above conditions are equivalent to:

(iv) The strong Robinson constraint qualification

V@R" + [To(f(z)) N {A}] = R™. (3.13)



Proof. The equivalence between (i), (ii), and (iii) follows from [25, Theorem 3.1]. Further-
more, it is shown in [25, Proposition 4.3] that conditions (iii) and (iv) are equivalent for any
C2-cone reducible set. The same arguments together with the representation DNg(f(Z),A)(0) =

Ko(f(z),\)* obtained in Corollary 3.3 under the weaker assumptions (H1) and (H2) can be uti-
lized to verify the claimed equivalence between (iii) and (iv). O

We end this section by comparing the dual qualification condition (3.12) with the basic
constraint qualification for (3.5), which is also known as the Robinson constraint qualification
for problems of conic programming.

Proposition 3.6 (comparing constraint qualifications). Let (Z,)\) solve the KKT system
(3.6), and let © in (3.5) satisfy the standing assumptions (H1) and (H2). If the dual qualification
condition (3.12) holds, then the following constraint qualifications are also fulfilled:

(i) We have the basic constraint qualification
No(f(z)) Nker Vf(z)* = {0}. (3.14)
(ii) For any vector w € R™ with Vf(z)w € Ko(f(Z),\) we have

Nico ()3 (VF(@)w) Nker Vf(2)" = {0}.

Proof. It follows from Theorem 3.2 under the standing assumptions (H1) and (H2) that éc
is twice epi-differentiable at f(z) for A\. Employing this and (3.4) gives us DNg(f(Z),A)(0) =
Nio(f(z),0)(0). Since we always have the inclusion

Ne(f(x)) C cl[Ne(f(Z)) + RA] = Ko (f(%),A)" = Nio (52 5)(0),

the dual qualification condition (3.12) ensures that the basic constraint qualification (3.14) holds,
which therefore verifies assertion (i). )
Turning to (ii), pick w € IR"™ with Vf(z)w € Ko(f(Z),A) and get from Corollary 3.3 that

Appealing now to (3.12) justifies (ii) and thus completes the proof of the proposition. O

It is important to mention that, by the coderivative criterion (2.6), the basic constraint
qualification condition (3.14) amounts to saying that the mapping = — f(x) — © is metrically
reqular around (Z,0). This assumption, which has been conventionally involved in the study of
constrained optimization problems of type (3.5), is significantly more restrictive than the metric
subregularity of the mapping z — f(z) — © at (&,0) imposed in Theorem 3.4 as well as in other
results of [19] and of this paper.

Our subsequent analysis and applications in this paper are conducted under the standing
assumptions (H1) and (H2). It follows from Theorem 3.5 that in this setting the primal and
dual conditions (3.12) and (3.13), respectively, are equivalent. Having it in mind, we refer to
both of these conditions as the strong Robinson constraint qualification.

4 Robust Stability of Perturbed KKT Systems

This section is devoted to deriving second-order characterizations of robust stability of KKT
systems by which we precisely mean the equivalent robust versions of strong metric regularity
at the reference point of the KKT mapping G(z,\) from (3.11) and of isolated calmness of its
inverse mapping S: IR" x R™ = IR™ x IR™ defined by

S(v,w) := {(z,A) € R" x R" } (v,w) € G(z,\)} with (v,w) € R" x R™, (4.1)

9



The latter mapping can be seen as the solution map to the canonical perturbation of the orig-
inal KKT system (3.6), i.e., as the KKT system associated with the canonically perturbed
constrained optimization problem
rgﬁl{ql wo(x) — (v,z) subject to f(z)+w € O. (4.2)
€T

It follows from [7] that for NLPs the isolated calmness property of (4.1) is characterized by
the simultaneous validity of the classical second-order sufficient optimality condition and the
uniqueness of Lagrange multipliers. As further shown in [0], a similar result holds for the case of
conic programs in (3.5) with a C?-cone reducible set ©, provided that the uniqueness of Lagrange
multipliers is replaced by the strong Robinson constraint qualification (3.13); see Remark 4.3
for more discussions. In this section we prove that the result of [7] can be extended to a general
class of constrained optimization problems of type (3.5) with parabolically regular sets © under
the additional assumption that the multiplier mapping (3.10) is calm. Moreover, our results
reveal that the combination of the uniqueness of Lagrange multipliers and the calmness of the
multiplier mapping amounts to the strong Robinson constraint qualification. It shows that the
calmness of the multiplier mapping, being automatically satisfied for NLPs, cannot be dismissed
in general. The usage of this property for the study of the robust stability of KKT systems
and for the subsequent SQP applications is new not only for parabolically regular problems but
also for less general classes of nonpolyhedral programs, while this condition has been recently
employed in [25] to characterize noncriticality of Lagrange multipliers.

We refer the reader to [25] for more discussions on and sufficient conditions for the calmness
of the multiplier mapping (3.10). Besides the NLP setting that corresponds to the polyhedrality
of the set © in (3.5), this calmness holds when the © is either second-order/Lorentz cone or
the cone of semidefinite symmetric matrices under the validity of the strict complementarity
condition, i.e., if there exists A € A(Z) with A € ri No(f(Z)); see [25, Theorem 5.10].

To achieve our goals, we first establish relationships between the isolated calmness of the
solution map S from (4.1) and the concept of noncriticality of Lagrange multipliers of the KKT
systems under consideration. Recall the notions of critical and noncritical multipliers taken
from [24, Definition 3.1]. Let (Z, ) be a solution to the KKT system (3.6). Then the multiplier
A € A(Z) is said to be critical for (3.6) if there is a nonzero vector w € IR™ satisfying the inclusion

0€ V2, L(Z,\w+ Vf(@)*DNo (f(2),N) (VF(T)w). (4.3)

The multiplier A\ € A(Z) is noncritical for (3.6) if (4.3) admits only the trivial solution w =
0. The above definitions are far-going extensions of those introduced by Izmailov in [14] for
nonlinear programs with equality constraints, where © = {0} C IR™, and thus the appeal to
generalized differentiation is not required. Characterizations of noncriticality are given in [15,
Proposition 1.43] for NLPs and in [25, Theorem 4.1] for C2-cone reducible constrained problems.
Now we come up to the following relationships between noncriticality and isolated calmness.

Proposition 4.1 (characterizations of isolated calmness via noncriticality). Let (z, )\)
be a solution to the KKT system (3.6). Consider the following statements:
(i) The Lagrange multiplier X is noncritical for (3.6).

(ii) The solution map S from (4.1) enjoys the isolated calmness property at ((0,0), (Z,N)).
Then we have the following relationships:
(a) Implication (ii) = (i) is always fulfilled.

(b) The converse implication (i) = (ii) also holds provided that A(Z) = {\} and that the
multiplier mapping Mz from (3.10) is calm at ((0,0), ).
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Proof. It is not hard to deduce from the definition of noncriticality that the Lagrange
multiplier A is noncritical if and only if we have

(4.4)

g
|
o

{vng(x, Nw + V£(Z)*u = 0,
u € DNe(f(z),\)(Vf(Z)w)

On the other hand, it follows from the Levy-Rockafellar criterion (see, e.g., [%, Theorem 4G.1])
that S enjoys the isolated calmness property at ((0,0), (z, A)) if and only if D.S((0,0), (z, A))(0,0) =
{(0,0)}, which amounts to saying that

{v2 LENwA V@) =0, (4.5)

u € DNe(f(z),\) (Vf(Z)w)

It is clear therefore that assertion (a) is satisfied. Suppose further that the multiplier A is
noncritical, and so the implication in (4.4) holds. Then Theorem 3.5 ensures the validity of the
dual qualification condition (3.12) under the assumptions made in (b). Picking a pair (w,u)
satisfying the left-hand side relations in (4.5), we obtain from (4.4) that w = 0. This yields

u € DNe(f(z),))(0) Nker Vf(z)*.

Appealing now to (3.12) confirms that « = 0, which tells us in turn that (4.5) holds, and hence
we complete the proof of assertion (b) and of the whole proposition. O

It is important to notice that the imposed calmness of the multiplier mapping (3.10) is
essential for the validity of (i) = (ii) in Proposition 4.1. Indeed, [25, Example 4.8] provides
a simple semidefinite program for which the calmness of the multiplier mapping Mz fails and
the unique Lagrange multiplier therein is noncritical, but the solution map S does not satisfy
the isolated calmness property. On the other hand, the polyhedrality of the convex set ©, along
with the noncriticality of the unique Lagrange multiplier, ensures the isolated calmness of S.
This follows from Proposition 4.1 due to the automatic fulfillment of the calmness property of
M3z under the imposed polyhedrality as a direct consequence of the classical Hoffman lemma.

Now we are ready to derive a major result of this section giving us complete second-
order characterizations of the isolated calmness property of the KKT solution map (4.1) under
parabolic regularity of the underlying set © in (3.5).

Theorem 4.2 (second-order characterizations of isolated calmness for KKT systems).
Let (z, \) be a solution to the KKT system (3.6) under the standing assumptions (H1) and (H2).
Then the following assertions are equivalent:

(i) The solution map S from (4.1) enjoys the isolated calmness property at ((0,0),(Z,N)), and
T is a local minimizer of (3.5).

(ii) The second-order sufficient optimality condition
(VZ,L(Z, Nw,w) + d?*e (f(2), ) (Vf(Z)w) >0 (4.6)
for all w e R™\ {0} with Vf(z)w € Ko(f(Z),\) '

holds, the multiplier mapping Mz is calm at ((0,0),\), and A(Z) = {\}.

(iii) The second-order sufficient optimality condition (4.6) and the strong Robinson constraint
qualification (3.12) are satisfied simultaneously.

(iv) The Lagrange multiplier \ from (3.7) is noncritical for (3.6), T is a local minimizer of
(3.5), the multiplier mapping Mz is calm at ((0,0),\), and A(z) = {\}.
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Proof. We begin with verifying implication (i) = (iv). Since S enjoys the isolated calm-
ness property at ((0,0),(Z,))) and A(Z) is convex, we get A(Z) = {\}. The calmness of the
Lagrange multiplier mapping Mz at ((0,0), \) is a consequence of the isolated calmness of S at
((0,0), (z,))). Finally, Proposition 4.1(a) tells us that A is noncritical, and so we arrive at (iv).

Next we prove implication (iv) = (ii). Assume that (iv) holds and deduce from The-
orem 3.5 that (3.12) is satisfied. This along with Proposition 3.6(i) implies that the basic
constraint qualification (3.14) is also satisfied. As mentioned before, the qualification condition
(3.14) guarantees the metric subregularity of the mapping z — f(z) — © at (z,0) required
in Theorem 3.4. Employing Theorem 3.4(i) with A(Z) = {A} tells us that the second-order
necessary optimality condition

(V2,L(Z, Nw,w) + d%3e (f(2), ) (Vf(@)w) >0 for all we Kq(F, V(7)) (4.7)
fulfills, where € is taken from (3.9). Furthermore, if follows from (3.14) that
w € Ko(Z,—Veo(z)) < Vf(@)w e Ko(f(Z),N).

To verify the second-order sufficient condition (4.6), we need to show that the above inequality
is strict for any w # 0. Arguing by contradiction, suppose that there exists a nonzero vector
w € IR™ satisfying the equality

(V2,L(z,\)w,w) + d*0e (f(2),A) (Vf(z)w) =0 with Vf(Z)w € Ko (f(Z),N).

Consider now the auxiliary optimization problem

min %(meL(f, Nw, w) + %6 (£(2), 1) (Vf(2)w)) (4.8)

welR™

and deduce from (4.7) that @ is an optimal solution to (4.8). It follows from Theorem 3.2 that
dom d?ée (f(z), ) = Ko(f(Z),\). Combining this with Proposition 3.6(ii) confirms that

Nyomd2se ()% (VF(@)w) Nker V f(2)* = {0}.

Since the second subderivative d%dg (f(Z), A) is a convex function, the latter condition allows us
to obtain the subdifferential chain rule

0w (54%06 (f(2),X) (Vf(2)-)) (@) = Vf(2)*0[5d%56 (f(2), )] (V}(@)@).

Remembering that @ is a minimizer for (4.8) and employing the subdifferential Fermat rule
together the chain rule above and formula (3.3) yield

0 € VZ,L(z,Nw+ V(@) 0[3d%e(f(z),\)](Vf(@)w)
= Vi.L(z,Nw+ Vf(@)*DNe(f(z),\)(Vf(@)w).

Thus we arrive at the inclusion of type (4.3). Since w # 0, it tells us that ) is a critical multiplier,
a contradiction. This shows that the inequality in (4.7) is strict, which proves the validity of
the second-order sufficient condition (4.6) and hence verifies (ii).

The next step is to check the fulfillment of (ii) = (i). Assuming (ii), we are going to prove
that A is noncritical, which amounts to show that implication (4.4) holds. To proceed, pick any
pair (w, u) satisfying the left-hand side relations in (4.4). This brings us to

(V2,L(z, Nw,w) + (u, VF(@)w) =0 and u € DNe(f(z), ) (Vf(T)w). (4.9)
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The second condition in (4.9) together with (3.3) ensures that u € 0[1d%de (f(z),N)] (Vf(Z)w).
Thus we obtain the relationships

Vf(@)w € domd*5e (f(Z),\) = Ko (f(2),N).

Recalling again that d2dg(f(z),\) is a convex function, it follows from the definition of the
subdifferential in convex analysis that

(u,v = Vf(@)w) < 3d%30 (f(2), A) (v) — 3d%de (f(2), A) (Vf(2)w)

whenever v € R™. Pick further any € € (0,1) and set v := (1 £ ¢)V f(Z)w. Since the second

subderivative is positive homogeneous of degree 2, we get

eEx2 N _
5 d*0e(f(Z), A) (Vf(@)w).

Letting ¢ | 0 therein clearly gives us the equality d?6e(f(Z), \)(Vf(Z)w) = (u, Vf(Z)w). Com-
bining the latter with (4.9) implies that

(V2,L(z, Nw,w) + d*e (f(z),\) (VF(@)w) =0, Vi(@)we Ko(f(z),)),

+(u, Vf(z)w) <

which results in w = 0 due to the second-order condition (3.4). This verifies that the multiplier
)\ is noncritical. Appealing now to Proposition 4.1(b) tells us that the solution map S enjoys
the isolated calmness property at ((0,0), (z,))). We also conclude from (4.6), A(z) = {\}, and
Theorem 3.4(ii) that Z is a local minimizer of (3.5), which proves that (i) holds.

To complete the proof of theorem, it remains to observe that the equivalence between (ii)
and (iii) is a direct consequence of Theorem 3.5. O

Let us now discuss relationships of the obtained characterizations of isolated calmness for
KKT systems with known results on the subject.

Remark 4.3 (comparison with known results on the KKT isolated calmness). The
equivalence between assertion (i) and (iii) of Theorem 4.2 was obtained in [, Theorem 24]
for the case where C?-cone reducible sets © by using a different approach. Our new proof for
the general case is deeply rooted into the recent developments on parabolic regularity and its
important consequences in second-order variational analysis developed in [19]. Characterizations
(ii) and (iv) of Theorem 4.2 did not appear either in [6, Theorem 24] or any other publication
on nonpolyhedral problems. These characterizations highlight significant differences in dealing
with KKT systems of type (3.6) where O is a nonpolyhedral set. If © is polyhedron in (3.6),
the optimization problem (3.5) can be reduced to a nonlinear program. It is known from [7,
Theorem 2.6] that in the NLP case the uniqueness of Lagrange multipliers together with (4.6)
amounts to the isolated calmness of the solution mapping S from (4.1). As argued in [(], a
similar result is not expected for nonpolyhedral constrained optimization while it holds if the
uniqueness of multipliers is replaced by the strong Robinson constraint qualification (3.13);
see [0, Theorem 24]. However, the authors of [6] did not address the question to understand why
the result with the multiplier uniqueness may fail for nonpolyhedral problems. Theorem 4.2(ii)
answers this question by revealing that the calmness of the multiplier mapping Mz (which is
automatic for NLPs) is essential to derive such an equivalence. As shown in [25, Example 3.4],
the calmness of Mz may fail for a two-dimensional semidefinite program (and hence for a three-
dimensional ice-cream program) even in the case where the set of Lagrange multipliers is a
singleton. In that example, the equivalences of Theorem 4.2 also fail.

Finally in this remark, observe that the assumptions of [, Theorem 24] include the basic con-
straint qualification (3.14). However, our proof shows that the latter condition can be dropped
without any harm even in the more general case under consideration in Theorem 4.2.
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Now we consider a parameterized version of problem (3.5) together with the correspond-
ing parameterized KKT system and establish crucial well-posedness and robust stability results
for them with respect to general perturbations. Given a parameter space IRY and a nominal
parameter p € IRY, define the mappings @y : R” x R — IR and f : R"” x IR? — IR™ such that

oo(z,p) = @o(x) and f(z,p) = f(x) forall z € R", (4.10)

where ¢ and f are taken from (3.5). Assume that both ¢y and f are C2-smooth with respect
to both variables x and p. Then we associate with (3.5) its perturbed version

min  @g(z,p) subject to f(z,p) € O. (4.11)
zeR™
The next theorem is a nonpolyhedral extension of [15, Theorem 1.21] obtained there for NLPs.

Theorem 4.4 (Well—posiedness and robust stability of solution maps under general
perturbations). Let (Z,\) be a solution to the KKT system (3.6) under the standing assump-
tions (H1) and (H2). Suppose that in addition to (4.10) we have the equalities

Then the following assertions hold:

(1) If z is a strict local minimizer of (4.11) with p = p and if the basic constraint qualification
(3.14) is satisfied, then for any p € RY sufficiently close to § problem (4.11) admits a local
minimizer T, converging to T as p — p.

(i) If the second-order sufficient condition (4.6) and the strong Robinson constraint qualification
(3.12) are satisfied, and if

V2,50(%,0) + V2, )(@,5) = V2,L(z, ), (4.13)
then there exist constants € > 0 and £ > 0 such that
0 #Y(p) NB(z,A) C {(Z,N)}+Lp—pl for al p € B(p), (4.14)

where T : R = IR™ x R™ is the solution map to the KKT system of (4.11) defined by

" [ Vo' } )

Proof. Since 7 is a strict local minimum of (4.11) as p = p, we get a number £ > 0 such
that = is the unique minimizer for the problem

Vago(x,p) + Vaf(z,p)"A

T(p)::{(x,A)eIR”x]Rm‘ [8]6 —f(z,p)

m]lél Po(x,p) subject to f(z,p) € O, z € B.(). (4.15)
z€lR™

Consider the auxiliary constrained optimization problem

m]gl Zo(x,p) subject to f(z,p) € O, z € B.(Z). (4.16)
z€lR™

It follows from (3.14), (4.10), and (4.12) that

Nef(z,p)) Nker V,f(z,p)* = {0}, (4.17)
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which is equivalent to the Robinson constraint qualification for the constraint system f(z,p) € ©
at (z,p), i.e., to the condition

0 € int(f(z,p) + Vo f(Z,p)R™ — O).

Thus it follows from [3, Theorem 2.86] that for all (z,p) sufficiently close to (Z,p) we have

dist(z; T(p)) = O(dist(f(z;p); ©)), (4.18)

where I'(p) := {x € R" | f(z,p) € ©}. This guarantees that whenever p is sufficiently close to
p the feasible region of (4.16), namely I'(p) N B.(Z), is nonempty for all small positive numbers
e. Appealing to the classical Weierstrass theorem, we deduce that (4.16) attains a (global)
minimizer Z, for all p sufficiently close to p.

Now we claim that z, — Z as p — p. Indeed, the failure of it gives us a sequence p, — p for
which Z,,, an optimal solution of (4.16) for p = py, does not converge to z as k — oo. Since
Zp, € B.(Z), there exists a subsequence of Z,, that converges to some = € B.(Z) with = # z.
Without relabeling, assume with no loss of generality that z,, — 7 for all k¥ — oo and then find
by (4.18) such zp, € I'(py) that

[, — 7l = O(dist (7. p):©)) = Ol — ).
Remembering that p; — p as k — oo, it is no harm to suppose that z,, € B.(z) for all k € N.
Since Z,, is an optimal solution of (4.16) for p = py, we have ©o(Zp,,Pr) < Po(Tp,, Pk). Passing
to the limit as k — oo brings us to $o(7,p) < $o(Z, p), which contradicts the fact that z is the
unique minimizer of problem (4.15). Thus we are done with (i).

Turing next to (ii), pick any £ > 0 such that (i) holds whenever p € B.(p). We claim that
the set of Lagrange multipliers for (4.11) at (Z,p) is the singleton {\}, which follows from the
combination of Theorem 3.5 with conditions (3.12), (4.10), and (4.12). It allows us to deduce
from (4.13), the second-order sufficient condition (4.6), and Theorem 3.4(ii) that Z is a strict
local minimizer of (4.11) for p = p. Employing now assertion (i) of this theorem, we conclude
that for any p sufficiently close to p problem (4.11) admits a local minimizer z, with =, — z
as p — p. It follows from Proposition 3.6(i) combined with conditions (3.12) and (4.12) that
the basic constraint qualification (4.17) for problem (4.15) is satisfied. Shrinking the closed ball
B.(p) if necessary, we assume without loss of generality that the basic constraint qualification
(4.17) holds for the perturbed problem (4.16) at (z,,p) for all p € B.(p). This ensures the
existence of a Lagrange multiplier A, associated with the local minimizer x,, for (4.11) whenever
p € B.(p). Shrinking again the ball B.(p), we conclude that the Lagrange multipliers A, are
uniformly bounded for all p € B.(p). Remembering that the set of Lagrange multipliers for
(4.11) at (z,p) is the singleton {A} and using it together with the boundedness of {\,} for
p € B.(p) yield the convergence A\, — A as p — p. Since (x,,\p) € Y(p) and (zp, Ap) — (7, \)
as p — P, by decreasing € > 0 if necessary we get Y (p) NB.(Z, ) # () for all p € B.(p).

To justify finally the inclusion in (4.14), observe first by (4.10) and (4.12) that (z, ) € T(p).
Employing the latter together with (4.13) and [%, Corollary 4E.3] tells us that the mapping T

enjoys the isolated calmness property at (p, (Z, A)) provided that the implication

2 L 7 ) V5 =

u € DNo(f(z),\) (Vf(Z)w)
holds. To verify (4.19), we proceed similarly to the proof of implication (ii) == (i) in Theo-
rem 4.2 and thus complete the proof of the theorem. Il

The following remark is important to understand the meaning of the robust stability property
established in Theorem 4.4(ii) and its comparison with known results in this direction.
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Remark 4.5 (robust stability of KKT systems with respect to general vs. canoni-
cal perturbations). The properties established in (4.14) of Theorem 4.4(ii) were investigated
before for nonlinear programming problems in [7, Theorem 2.6]. Then they were extended
in [6, Theorem 24] to C?-cone reducible constrained optimization problems in the case where the
parameterized problem (4.11) has the canonically perturbed form (4.2) meaning that

po(z,p) = ¢o(x) = (v,z) and f(z,p) = f(x) +w with p:=(v,w) € R" x R™.

The properties in (4.14) of Theorem 4.4(ii) were called in [6] the robust isolated calmness. We
can see that the difference between (4.14) and the isolated calmness of the solution map Y is the
additional highly important assertion that Y(p) N B.(Z, \) # 0 for all p sufficiently close to p.
In general, the isolated calmness and its robust counterpart (4.14) are not equivalent as shown
in [23, Example 6.4] for a three-dimensional second-order cone program.

On the other hand, it follows from the previous Theorem 4.2 that the assumptions imposed
in Theorem 4.4(ii) yields the isolated calmness property at ((0,0),(Z,)) of the solution map
(4.1) for the KKT system associated with the canonically perturbed form (4.2). Combining it
with Theorem 4.4(ii) tells us that for canonical perturbations the isolated calmness and robust
isolated properties of KKT solution maps are equivalent. Our main reason to consider general
perturbations as in (4.11) and to justify the robust isolated calmness for the associated KKT
systems is that this allows us to verify the solvability of subproblems in the basic SQP method
for parabolically regular constrained optimization problems as developed in the next section. It
does not seem to be possible while considering only canonical perturbations.

Note to this end that the assumptions (4.10), (4.12), and (4.13) imposed in Theorem 4.4
are automatically satisfied in our application to the aforementioned solvability of the basic SQP
method for the original problem (3.5) that is addressed below in Theorem 5.2.

5 Superlinear Convergence of the Basic SQP Method

This section is devoted to establish the primal-dual superlinear convergence of the basic SQP
method for the general class of parabolically regular constrained optimization problems of type
(3.5). Various versions of the SQP method have been among the most effective numerical
algorithms in constrained optimization. The principal idea of SQP algorithms is to solve a
sequence of quadratic approximations, called subproblems, whose optimal solutions converge
under appropriate assumptions to an optimal solution of the original problem.

Given the current iterate xy, the generic SQP subproblems for (3.5) are formulated as

mp )t e om) e oo

subject to  f(xg) + Vf(zg)(z — i) € O,

where Hyp € IR™™" for all k =0,1,.... The KKT system associated with each subproblem (5.1)
is described by the generalized equation

B[] [y 57 M52 ) L] e

The generic SQP method for the original problem (3.5) is therefore as follows:

Algorithm 5.1 (generic SQP method). Choose (zg, ;) € IR" x IR and set k = 0.
1. If (xg, Ag) satisfies the KKT system (3.6), then stop.
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2. Choose some matrix Hy € IR"*" and compute the next iterate (zxy1, Akr1) as a solution to
the generalized equation (5.2).

3. Increase k by 1 and then go back to Step 1.

In quasi-Newton SQP algorithms, the matrix Hy is chosen as a quasi-Newton approximation
of the Hessian V2, L(xy, \). An efficient way to construct Hy, is the BFGS (Broyden—Fletcher—
Goldfarb—Shanno) method; see [9, 15, 18] for more details on this and related algorithms. In-
structive discussion and suggestions on how to construct quasi-Newton SQP approximations can
be found in [2]. Following [15], we refer to the basic SQP method if Hj, are chosen as

Hy = V2, L(x, \p) forall k=0,1,.... (5.3)

It has been well recognized, the basic SQP method can be viewed as a natural extension of
the Newton method that is implemented for generalized equations rather than equations. Indeed,
we can equivalently express the KKT system (3.6) as the generalized equation

[ : ] © [ R ] " [ Nng } | (5.4)

Employing the Newton method for this generalized equation leads us to the aforementioned
basic SQP method for the constrained problem (3.5); see [15, Section 3.1] for more details.

The Newton method for generalized equations has been investigated extensively since the late
1970s; see, e.g., [3,9,15,18] and the references therein. Josephy’s observation in [16] significantly
advanced the topic by showing that strong regularity in the sense of Robinson [27] ensures the
superlinear convergence of the Newton method for variational inequalities. As proved in [27,
Theorem 4.1] for NLPs, strong regularity is guaranteed under a stronger form of the second-
order sufficient condition (4.6) together with the linear independence constraint qualification.
The next improvement in the setting of NLPs was achieved by Bonnans in [I] by showing that
the basic SQP method converges superlinearly if the second-order sufficient condition (4.6) with
a polyhedral set ) therein is satisfied and the set of Lagrange multipliers is a singleton.

In this section we are going to extend Bonnans’ result to nonpolyhedral constrained opti-
mization problems (3.5) in the general case of parabolically reqular sets ©. To do it, we intend to
employ the results from the previous section, which tell us that an extra calmness assumption on
the multiplier mapping (3.10) is needed. To achieve our goal, we utilize—besides Theorems 4.2
and 4.4 obtained above—the result of Theorem 3.2 from the book by Izmailov and Solodov [15]
in which superlinear convergence of the Newton method for abstract generalized equations was
established under the following two assumptions. The first one, called “semistability” in [15],
reduces for (5.4) to the isolated calmness of the solution map S from (4.1). The second assump-
tion of [15, Theorem 3.2], called “hemistability” therein, is defined in [15, Definition 3.1] for
arbitrary generalized equations of the type

0€g(x)+ F(z), zeR" (5.5)

with g : IR" — IR™ and F': R™ =2 IR™. A feasible solution Z to (5.5) is said to be hemistable if
for any z close to T the perturbed generalized equation

0 € g(x)+ Vg(x)n+ F(z +n)

has a solution 7, such that 7, - 0 as * — . We show below that the isolated caln}ness of the
solution map (4.1) at ((0,0), (z, \)) yields the hemistability of the solution pair (Z, \) for (5.4).

The first major theorem of this section justifies the crucial well-posedness of subproblems (5.1)
in the basic SQP case (5.3) under parabolic regularity, in the sense of the existence of optimal
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solutions to (5.1) (i.e., solvability of these subproblems) and stability of the corresponding KKT
systems with respect to general parameter perturbations. The proofs of these results are based
on the robust stability characterizations established in Section 4, which are in turn employ recent
developments on parabolic regularity [19] and noncriticality of Lagrange multipliers [25].

Theorem 5.2 (solvability and stability of subproblems in the basic SQP method). Let
(Z,\) be a solution to the KKT system (3.6) under the standing assumptions (H1) and (H2).
Suppose in addition that the second-order sufficient condition (4.6) and the strong Robinson
constraint qualification (3.12) are satisfied. Then there is € > 0 such that for all (u, p) € B.(Z, )
the following assertions hold:

(i) The perturbed optimization problem
rglléln 900(“) + <V(,00(U),SL‘ - u) + %(v?sz(unu’)(‘T - ’LL),QZ - u> (5 6)
subjectto  f(u) + Vf(u)(z —u) € © '
always admits a local optimal solution.
(ii) The KKT system of (5.6), which can be formulated as

[ 8 } € [ Vm_Lf((ul;)M) } + [ V%“é}&ﬁi) Vféu)* } [ iiz ] + [ N;O\) ] , (5.7)

has a solution (z,)\) that converges to (z,\) as (u, ) — (T, \).
Proof. Set p := (u,p) with p:= (¥, \), denote

o(x,p) = goo(u)—i-(cho(u,a:—u)—i—%(VixL(u, p)(x—u),x—u), g(z,p):= fu)+Vf(u)(x—u),

and view (5.6) as the parameterized optimization problem

min  ¢(z,p) subject to g(x,p) € © (5.8)
zeR™
with respect to the general parameter perturbations p. We claim now that x := Z is a strict
local minimizer for (5.8) associated with p. To this end, observe first that the KKT system of
(5.8) associated with p has the representation

el T TG T Lt | e

We clearly have that(Z, \) is a solution to (5.9), which hence implies that Z is a stationary point
for (5.8) associated with p and that X is a Lagrange multiplier associated with Z for the latter
problem. Furthermore, it is not hard to observe from the KKT system (5.9) with p = p that
the set of Lagrange multipliers for the latter problem at (Z,p) agrees with that for problem
(3.5) at &. Combining these observations tells us that the set of Lagrange multipliers for the
parameterized problem (5.8) at (Z,p) is the singleton {\}. Since

Vie?(@,0) + Vi (A, 9)(2,p) = Vi, L(z,)) and  Vag(z,p) = Vf(2),

holds for (3.5) at (Z, \), we get

and since the second-order sufficient condition (4.6)
([V2,0(Z,D) + V2, (X, 9)(Z, P)|w, w) —I—d25@( ) N (Vag(Z, p)w)

A

p)w

= (V2. L@ Nw,w) + d*5e (f(2),\) (Vf(@)w) >
for all w € IR™ \ {0} with V,g(z, —V f(z )wEK@(f(;i),X).
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This verifies therefore that the second-order sufficient condition of type (4.6) for problem (5.8) is
satisfied at ((z,p), \). Employing further Theorem 3.4(ii) ensures that  a strict local minimizer
for (5.8) as p = p. Then it follows from Theorem 4.4 that there exists € > 0 such that for all
(u,p) = p € B.(p) the parameterized problem (5.8) admits a local minimizer z, with z, — = as
p — p. This concludes the proof of assertion (i).

Turing next to (ii), Turing now to (ii), observed first that the KKT system of (5.6) is the same
is the KKT system of the parametric problem (5.8). By Proposition 4.4(ii), for any p = (u, )
close to p := (7, \) the generalized equation (5.7) admits a solution (zp,\,). Moreover, (4.14)
ensures that (z,,\p) — (Z,A) as p — p, which completes the proof of (ii). O

To the best of our knowledge, the solvability of subproblems in the basic SQP method for
NLPs was first established by Robinson [26, Theorem 3.1] who assumed, in addition to the
second-order sufficient condition, the validity of the linear independence constraint qualification
together with the strict complementarity condition. This result was improved by Bonnans [1,
Proposition 6.3] for NLPs satisfying the second-order sufficient condition (4.6) and having a
unique Lagrange multiplier. Theorem 5.2 significantly extends Bonnans’ result to a general
class of nonpolyhedral problems with parabolically regular constraint sets.

We are finally in a position to derive the superlinear convergence of the basic SQP method
in our general setting. To be precise, the aimed convergence is understood as the superlinear
convergence of the primal-dual iterates (xy, A) to a given KKT solution (Z, A) meaning that

H(.’L'k+1, /\k+1> - (‘7737 ;\)H - O(H(‘Tb)‘k) - ('f75‘)H) as k — oo.

Theorem 5.3 (superlinear convergence of the basic SQP method under parabolic
regularity). Let (Z,\) be a solution to the KKT system (3.6) under the validity of the standing
assumptions (H1) and (H2). Suppose in addition that the second-order sufficient condition (4.6)
is satisfied at (z,\), that the multiplier mapping Mgz is calm at ((0,0),\), and that A(z) = {\}.
Then for any starting point (xo, o) € IR™ x IR™ sufficiently close to (z, ), Algorithm 5.1 with
Hj, taken from (5.3) generates an iterative sequence {(xg,A\p)} C IR™ x IR™ that converges to
(Z,\), and the rate of convergence is superlinear.

Proof. Due to our results achieved above, we can fit into the framework of [15, Theorem 3.2]
for the KKT system (3.6), which can equivalently written as the generalized equation (5.4).
Indeed, the semistability and hemistability properties of (Z,\) imposed in [15, Theorem 3.2]
are the isolated calmness of the solution map S and the KKT well-posedness formulated in
Theorem 5.2(ii), respectively. Then both of these requirements are satisfied by the results of
Theorems 4.2 and 5.2. It allows us to deduce the claimed superlinear convergence of primal-dual

iterates from the abstract result of [15, Theorem 3.2] for arbitrary generalized equations. [

Let us now compare Theorem 5.3 with known results in the literature.

Remark 5.4 (comparison with known results on superlinear convergence of the basic
SQP method). We address here the following two issues:

(i) Theorem 5.3 significantly extends the sharpest local superlinear convergence result ob-
tained in [I, Theorem 5.1] for NLPs to a large class of parabolically regular constrained op-
timization problems. The additional calmness requirement for the multiplier mapping (3.10)
automatically holds not only for polyhedral problems, but also in the essentially more general
settings; see the discussion above in front of Proposition 4.1. Note also that the results on
SQP superlinear convergence for the particular class of second-order cone programs were given
in [17,32] under the strong regularity of the KKT system (3.6) that is a significantly more
involved assumption in comparison with those imposed in Theorem 5.3.
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(ii) The superlinear convergence of a sequence of the SQP iterates (xg, A\x), while not the
existence of such a sequence, can be derived from [4, Theorem 6.4] in which the superlinear
convergence of the Newton method for the generalized equation (5.5) was obtained when the
mapping g + F' is strongly metrically subregular. Adopting the latter result to our framework
of the generalized equation (5.4), the assumed strong metric subregularity is equivalent to the
isolated calmness of the solution map S from (4.1). Furthermore, by Theorem 4.2 we can
equivalently translate the imposed assumptions in Theorem 5.3 to the requirements that the
solution map S enjoys the isolated calmness property and the point Z is a local minimizer for
(3.5). This indicates that, in contrast to [1], we impose the additional assumption on local
optimality of Z, and so one might ask whether it is possible to drop this condition with no harm.
However, it happens not to be correct since [4, Theorem 6.4] assumes the existence of iterates
(z1, M) (i.e., solvability of the subproblems) that always stay in a neighborhood of (Z, ). Below
we present an example of an NLP problem considered in [15, Example 3.3], which shows that
the isolated calmness of the solution map S alone is not enough to guarantee the solvability
of the subproblems in our setting. Thus the local optimality of Z turns out to be an essential
requirement to construct a well-posed and superlinearly convergent sequence of iterates in the
basic SQP method even for simple problems of nonlinear programming.

Example 5.5 (failure of solvability for subproblems in the basic SQP method). Con-
sider the one-dimensional nonlinear program
min —%x + éxg subject to x > 0. (5.10)
By definition (4.1) of the solution map S for this problem we have
Sw,w) ={(z,\) e R* |v=—z+ 22>+ X and z+weNr_ (N},

where (v,w) € R x IR. Set (z,)) := (0,0) and observe that (Z,) € S(0,0). It is not hard to
check that A(Z) = {\} and that Z is not a local minimizer for problem (5.10); indeed, x = 2 is
the unique minimizer for this problem. We show nevertheless that the solution map S enjoys the
isolated calmness property at ((0,0), (Z,A)). Let us verify to this end that the KKT mapping G
from (3.11) in the case of (5.10) is strongly metrically subregular at ((z, A), (0,0)) by using the
criterion in (4.5). Observe that the mapping G for this framework reduces to

G(r,2) = [ _H_%fM ] + [ N]RO(A) ]

and its graphical derivative is easily calculated by

DG((, 1), (0,0))(€.) = [ B ] [ : ] + [ DNe, (4 2)01) ] |

Since DNRr_ (), Z)(n) = Nr_(n), we arrive at
(0,0) € DG((7,1),(0,0))(§,m) <= £=n and &€ Nr_(n)

from which it clearly follows that £ =7 = 0. Then (4.5) tells us that the mapping G is strongly
metrically subregular at ((z, ), (0,0)).

Next we are going to show that the generalized equation (5.7) has no solution for all (u, u) €
1531/2(3_0,5\) with v # Z. To furnish it, pick (u,u) € 1531/2(3_0,5\) with u # Z and observe that for
(5.10) the generalized equation in question is represented by

e[ ] Lt
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This leads us to the relationships
)\:%uQ—x(u—l), xA=0, >0, A<0.

From the second condition above we deduce that either x = 0 or A = 0. If the former holds,

it follows from the first equation that A = %u2 > 0, a contradiction. If the latter holds, we get

u2

T = < 0, a contradiction as well. This justifies that the KK'T system associated with the

-1
subp?oblems of the basic SQP method for (5.10) has no solution for such a pair (u, u).
Since we have A(z) = {\}, the basic constraint qualification (3.14) is satisfied. This tells us
that if subproblems (5.6) corresponding to (5.10) have local optimal solutions associated with
(u, p), then we would end up with having a solution for the generalized equation (5.7), which is

not possible. This demonstrates the failure of solvability for subproblems in the basic SQP.

Let us mention that assuming metric reqularity vs. strong metric subregularity of the mapping
G = S~! from (3.11) ensures the solvability of subproblems in the basic SQP method; cf. [3,
Theorem 6D.2]. However, the next theorem shows that in our framework the metric regularity
yields the strong metric subregularity of the mapping G, which is equivalent to the isolated
calmness of solution map S from (4.1). Recall to this end that the isolated calmness of S alone
does not ensure the existence of the SQP iterates as shown in Example 5.5.

Theorem 5.6 (strong metric subregularity from metric regularity for KKT systems).
Let (%, \) be a solution to the KKT system (3.6) under the standing assumptions (H1) and (H2).
If the mapping G from (3.11) is metrically regular around ((z,)),(0,0)), then it is strongly
metrically subreqular at this point.

Proof. According to the coderivative criterion for metric regularity (2.6), the mapping G
enjoys this property around ((z, A), (0,0)) if and only if

(0,0) € D*G((z, A), (0,0))(w,u) = w=0,u=0. (5.11)
It is not hard to see that for any (w,u) € IR™ x IR the coderivative of G is calculated by

Vi L(Z, Nw — V f(2)*
z

DIG(@ ), 0.0)(w, ) = | G ez + DNG (3, £( )I)L(u) '

As follows from [3, Theorem 4G.1], G is strongly metrically subregular at ((z, ), (0,0)) if and
only if we have the implication

(0,0) € DG((z, ), (0,0)) (w,u) = w=0,u=0. (5.12)
Furthermore, it is easy to calculate as in (4.5) that

Vi L(@, Nw + Vf(Z)*u

DG((z, 1), (0,0)) (w,u) = ~Vf(@)w+ DNg' (X, ®(z)) (u)

for all (w,u) € R" x IR™. We get from Theorem 3.2(ii) under our standing assumptions (H1)
and (H2) that the normal cone mapping Ng is proto-differentiable at f(z) for A\. The latter
together with [29, Theorem 13.57] gives us the derivative-coderivative inclusion

DNg(f(2),A)(§) C D*Ne(f(Z),A)(&) for all £ € R™. (5.13)

Pick now (w,u) € R™ x R™ from the left-hand side of implication (5.12) and deduce from the
derivative-coderivative inclusion (5.13) that (w, —u) satisfies the relation on the left-hand side
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of implication (5.11). Hence (w,u) = (0,0), which yields (5.12), and thus ensures the strong
metric subregularity of G at ((z, A), (0,0)). O

A similar result to the one in Theorem 5.6 was obtained in [%, Lemma 4F.8| for NLPs by
using the graphical derivative characterization of the isolated calmness in (4.5). It was extended
in [6, Corollary 25] to C?-cone reducible constrained optimization problems by using a delicate
topological result by Fusek [10]. The obtained Theorem 5.6 further extends the aforementioned
results to the general case of parabolically regular constrained problems by employing a com-
pletely different device based on the coderivative criterion, the derivative-coderivative inclusion,
and our recent second-order developments on parabolic regularity.

6 Conclusions

This paper provides first applications of the novel theory of parabolic regularity in second-order
variational analysis to characterizations of robust stability properties of KKT systems in general
nonpolyhedral problems of constrained optimization with the subsequent usage of them to the
development and justification of numerical algorithms. In particular, we derive complete second-
order characterizations of robust isolated calmness for KKT systems with respect to arbitrary
(not just canonical) perturbations. The obtained results are applied to developing the basic
SQP method of solving constrained optimization problems governed by parabolically regular
sets. This approach allows us to fully justify well-posedness of the basic SQP method (including
solvability and stability of the corresponding subproblems) and its primal-dual superlinear con-
vergence for parabolically regular constrained problems. Most of the obtained results are new
not only in the general framework under consideration, but also for any conventional setting of
nonpolyhedral constrained optimization.

Our future research aims at further developments of the presented approach to make it
powerful in applications to more involved and efficient versions of the generic SQP algorithm as
well as in other primal-dual methods of constrained optimization.
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