

Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres

Hyun Hwang^{1,*}, Antonio Rampoldi^{1,*}, Parvin Forghani¹, Dong Li¹, Jordan Fite², Gene Boland², Kevin Maher¹, and Chunhui Xu^{1,3}

¹Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA

²Techshot, Inc., Greenville, IN, USA

³Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA

* These authors made equal contributions.

Correspondence: Chunhui Xu, PhD, Professor, Department of Pediatrics, Emory University School of Medicine. Email: chunhui.xu@emory.edu. Telephone: (404) 727-7774

Abstract

Efficient generation of cardiomyocytes from human induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1G conditions. RNA-sequencing analysis revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has beneficial effect on differentiation and growth of cardiac progenitors.

Introduction

Human induced pluripotent stem cells (hiPSCs) may regenerate indefinitely and undergo differentiation into any cell type depending on the protocols used. In this aspect, understanding how cardiomyocytes can be obtained and grown from differentiating hiPSCs is of great importance for their applications in disease modeling, drug development and regenerative medicine¹⁻³. Currently there are few limitations regarding the use of hiPSC-derived cardiomyocytes (hiPSC-CMs), including a large number of cells needed for cardiac regeneration. Understanding and improving the pathways involved in cardiomyocyte proliferation and differentiation is clearly of great interest given the potential application of these cells. Investigating cardiac progenitor cells, the intermediate stage of the cells derived from hiPSCs, could help improve the efficiency of hiPSC-CM generation.

Microgravity can significantly change cell properties such as cell metabolism and function⁴⁻⁷. Exposure of cardiac progenitors to microgravity has the potential to serve as a new method to increase cardiomyocyte differentiation efficiency. Simulated microgravity has been used in studies on animal models⁸⁻¹⁰ and cardiomyocytes from animals¹¹, but relatively fewer studies focused on the effect of microgravity on cardiac progenitors or stem cell-derived cardiomyocytes^{12,13}. We previously discovered that three-dimensional (3D) cardiac progenitors under a simulated microgravity environment created with a random positioning machine generated enriched cardiomyocytes at high cell yield compared with parallel cultures under standard gravity¹⁴. Microgravity, however, cannot be perfectly replicated on Earth, since gravitational forces are still present under simulated microgravity.

Space experimentation offers a great opportunity to explore the potential impact of microgravity on cells. This is why the International Space Station (ISS) U.S. National Laboratory and other national and space agencies are further increasing experiments and studies on space microgravity regarding biology and disease modeling¹⁵⁻¹⁷. In a recent spaceflight experiment, we found that a short-term (3 days) exposure of cardiac progenitors derived from hiPSCs to space

microgravity increased expression of genes associated with proliferation¹⁸. Here, we further investigated the effect of a long-term (3 weeks) exposure of cardiac progenitors to space microgravity on changes in gene expression of late-stage cardiomyocytes.

Results

Overall experimental design

As shown in the schematic of operational procedure for our spaceflight experiment (**Figure 1**), the cryopreserved cardiac progenitor spheres were generated on the ground and sent to the ISS through the SPACEX-20 mission, a mission launched by the aerospace company SpaceX on March 6, 2020 for the delivery of cargo and supplies to the ISS (<https://www.issnationallab.org/launches/spacex-crs-20/>). On the ISS, the astronauts successfully thawed the cryopreserved cardiac progenitor spheres, cultured the cells using the Multi-specimen Variable-gravity Platform (MVP) from Techshot, Inc for 22 days, and then sent live cultures back to us. The MVP system has been successfully used in space experiments¹⁹ and allows loading of multiple biological samples under both ISS μ G and ISS 1G conditions (the 1G condition in the MVP system on the ISS was achieved by centrifugation). In our experiment, each condition was run in triplicates. The use of ISS 1G samples as a control in our data analysis allowed for examination of the effect of space microgravity on the cells while keeping other variables constant such as the effect of space radiation. At the end of the spaceflight experiment, we received live cardiac spheres¹⁸ and then isolated RNA from cardiac spheres in both the ISS μ G and the ISS 1G conditions for RNA sequencing (RNA-seq) to compare their global gene expression profiles and examine the effect of space microgravity on transcriptome alterations of cardiac spheres.

Long-term exposure to space microgravity increases expression of genes associated with cell proliferation and cardiac differentiation

RNA-seq analysis revealed a total of 470 differentially expressed genes (DEGs) upon applying threshold of adjusted p-value of 0.05 (**Figure 2A**). Among the 470 DEGs, 271 were significantly upregulated and 199 were significantly downregulated in the ISS μ G samples compared with the ISS 1G samples. The 271 upregulated and 199 downregulated DEGs in terms of \log_2 (fold change) value are shown in **Tables S1 and S2**. The top 10 genes that are noticeable in terms of adjusted p-value and \log_2 (fold change) are annotated in **Figure 2A**.

Among the upregulated DEGs, several were involved in cell cycle, proliferation, survival, and cardiac differentiation, including *CCBE1*, *CCND2*, *IGFBP5* and *BDKRB2* (**Supplementary Table1**). *CCBE1* (collagen and calcium binding EGF domains 1) was the most significantly upregulated DEG in terms of adjusted p-value (\log_2 [fold change] 3.75, adjusted p-value 7.67E-12). *CCBE1* is important for normal heart development as its downregulation disrupts differentiation of stem cells into cardiac mesoderm lineage²⁰. *CCND2* was also among the top upregulated DEGs (\log_2 [fold change] 2.01, adjusted p-value 4.41E-11). *CCND2* (cyclin D2) is a member of the cyclin family required for progression through the G1 phase of the cell cycle. *IGFBP5* (insulin like growth factor binding protein 5) was the top 5 upregulated DEGs in terms of adjusted p-value (\log_2 [fold change] 2.19, adjusted p-value 6.94E-10). *IGFBP5* is a member of the IGF signaling pathway that regulates IGF transport and availability during embryonic development, while IGF signaling pathway plays a key role during embryonic cardiac development, regulating processes of cell proliferation and survival²¹. *BDKRB2* (bradykinin receptor B2, \log_2 [fold change] 6.87, adjusted p-value 4.13E-03) encodes a G-protein coupled receptor for bradykinin which stimulates proliferation of smooth muscle cells²² and endothelial cells²³.

CD24 (CD24 molecule) was identified as the most significantly downregulated DEGs (\log_2 [fold change] -1.54, adjusted p-value 6.23E-14). *CD24* was reported as a marker for human pluripotent stem cells²⁴ and its downregulation may indicate enhanced cardiac differentiation in ISS μ G cells. In addition, *ENC1* (ectodermal-neural cortex 1) was among the top downregulated

DEGs ($\log_2[\text{fold change}]$ -2, adjusted p-value 8.25E-03, **Table S2**), suggesting limited neural differentiation in the ISS μG cultures.

Consistently, gene ontology (GO) enrichment analysis revealed upregulation of biological process associated with muscle tissue development (GO:0060537, adjusted p-value 7.19E-07), cardiac muscle tissue development (GO:0048738, adjusted p-value 1.54E-04), and regulation of cell division (GO:0051302, adjusted p-value 1.54E-04) (**Figure 2B, Supplementary Table 3**). Upregulated DEGs including *KIF14*, *IGF2*, *KIF18B*, *SUSD2*, *RBL1*, *AURKB*, *LBH*, *PDGFD*, and *CDC42* were identified in GO term of regulation of cell division (**Figure 3, Supplementary Table 4**). Upregulated DEGs including *MYL2*, *IGFBP5*, *IGF2*, *EDNRB*, and *NFATC2* were identified in GO term of muscle cell differentiation (**Figure 3, Supplementary Table 5**).

Furthermore, the top downregulated biological processes (**Figure 3, Supplementary Table 6**) include axon development (GO:0061564, adjusted p-value 6.22E-03), regulation of neuron projection development (GO:0010975, adjusted p-value 8.87E-03) and endothelial cell migration (GO:0043542, adjusted p-value 7.05E-03), suggesting limited neuronal and endothelial differentiation in the ISS μG cultures, which was consistent with efficient cardiac differentiation.

In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping showed upregulated genes in the TGF-beta signaling pathway (hsa04350) and adrenergic signaling pathway (hsa04261) (**Supplementary Figure 1**). The TGF-beta protein superfamily plays key roles during heart development, and has an important role also in cardiac cell proliferation, differentiation and heart regeneration²⁵. The adrenergic signaling pathway is tightly connected to calcium signaling, cell contraction and can affect cardiomyocyte differentiation and maturation²⁶.

Long-term exposure to space microgravity increases expression of genes associated with cardiac function

Several upregulated genes were involved in increasing cardiac function, including *THBD* (thrombomodulin, $\log_2[\text{fold change}]$ 5.76, adjusted p-value 1.31E-04), and *GADL1* (glutamate decarboxylase like 1, $\log_2[\text{fold change}]$ 6.20, adjusted p-value 3.81E-02) (**Table S1**).

Upregulation of *THBD* in hypertrophic cardiomyocytes was shown to decrease cell apoptosis and help maintain a normal contractile function²⁷. *GADL1* is involved in the production of carnosine and taurine, while carnosine and taurine are predominantly expressed in muscle tissue, where they regulate calcium signaling and indirectly regulate oxidative stress with their antioxidant effects^{28,29}.

GO terms analysis showed that space microgravity upregulated genes associated with biological processes related to muscle system process (GO:0003012, adjusted p-value 4.91E-09), muscle contractions (GO:0006936, adjusted p-value 7.77E-09), heart process (GO:0003015, adjusted p-value 8.21E-05) and heart contraction (GO:0060047, adjusted p-value 1.54E-04) (**Figure 2B, Supplementary Table 3**). Upregulated DEGs like *MYL2*, *ATP2B4*, *EDNRB*, and *IGF2* were identified in enriched GO terms associated with muscle system process and muscle contraction (**Figure 3**).

In addition, upregulation of genes known to be involved with cardiac development and contraction were observed, including *MYL2*, *TNNI3*, *RYR2*, *TCAP*, and *SCN5A* (**Supplementary Table 7**) Genes relevant for cardiac conduction were also observed, including *ATP2B4*, *PRKACA* and *ANK2* (**Supplementary Table 7**).

Similar results were observed in GO terms of cellular components and molecular functions associated with upregulated genes involved in muscle structure. These included sarcomere (GO:0030017, adjusted p-value 1.76E-03), myofibril (GO:0030016, adjusted p-value 1.76E-03), cation channel complex (GO:0034703, adjusted p-value 1.04E-02), contractile fiber

(GO:0043292, adjusted p-value 1.76E-03), z disc (GO:0030018, adjusted p-value 9.17E-03) and I band (GO:0031674, adjusted p-value 1.05E-02) (**Figure 4, Supplementary Table 3**).

GO terms of membrane raft (GO:0045121, adjusted p-value 1.86E-03) and membrane microdomain (GO:0098857, adjusted p-value 1.86E-03) were among the top upregulated cellular components (**Figure 4, Supplementary Table 3**). Membrane/lipid rafts and microdomains play an important role in targeting and controlling the interaction of proteins including cardiac channel subunits localized in lipid rafts³⁰.

GO terms related to protein kinase A were also upregulated (**Figure 4, Supplementary Table 3**). These included protein kinase A binding (GO:0051018, adjusted p-value 7.32E-03) and protein kinase A regulatory subunit binding (GO:0034237, adjusted p-value 2.94E-03). Protein kinase A plays a central role in cardiac function by enhancing Ca^{2+} cycling and increasing cardiac muscle contractility³¹. Protein kinase A also regulates fuel supply and energy-generating pathways, moving cardiomyocytes from glucose toward lipid metabolism as energy source³².

Long-term exposure to space microgravity reduces expression of genes associated with extracellular matrix (ECM) regulation

Our transcriptomics analyses also revealed downregulation of extracellular structures associated with 3D hiPSC-CMs under space microgravity. For example, downregulated DEGs including *ITIH5*, *COL4A4*, *PTPR21*, *COL26A1*, and *HPX* were associated with ECM regulation (**Supplementary Table 8**). Downregulated DEGs including *ITGA11*, *PROCR*, *ANXA1*, and *LIMA1* were associated with focal adhesion (**Supplementary Table 9**).

GO term analysis performed on downregulated genes revealed downregulation of biological process terms like actin filament organization (GO:0007015, adjusted p-value 1.75E-06), wound healing (GO:0042060, adjusted p-value 0.00317314) and endothelial cell migration (GO:0043542, adjusted p-value 0.00704613) (**Figure 2B, Supplementary Table 6**).

Downregulated molecular process terms included actin binding (GO:0003779, adjusted p-value 1.34E-03), cadherin binding (GO:0045296, adjusted p-value 5.84E-03), and collagen binding (GO:0005518, adjusted p-value 3.96E-02) (**Figure 4, Supplementary Table 6**). Downregulated cellular component terms included collagen-containing extracellular matrix (GO:0062023, adjusted p-value 1.45E-06), focal adhesion (GO:0005925, adjusted p-value 2.59E-04), primary lysosome (GO:0005766, adjusted p-value 1.76E-02) and myofibril (GO:0030016, adjusted p-value 3.19E-02) (**Figure 4, Supplementary Table 6**). Consistently, KEGG pathway mapping revealed downregulated genes in pathways of ECM-receptor interaction (HSA04512) and focal adhesion (HSA04510) (**Supplementary Figure 2**).

Long-term exposure to space microgravity alters expression of long non-coding RNAs (lncRNAs)

Our transcriptomics analyses revealed altered expression in a limited number of lncRNAs associated with 3D hiPSC-CMs under long-term exposure to space microgravity (**Supplementary Tables 1 and 2**). Among the 14 lncRNA showing altered expression, 9 were upregulated and 5 downregulated. Two among the 9 upregulated lncRNA were recently found to have important roles in cardiomyocytes development and functions. *LINC00881* (long intergenic non-protein coding RNA 881, adjusted p-value 9.41E-03) was identified as an essential regulator of sarcomere and calcium channel gene expression including *MYH6*, *CACNA1C*, and *RYR2*, and *LINC00881* knockdown was shown to significantly reduce peak calcium amplitude in beating cells³³. *BANCR* (BRAF-activated non-protein coding RNA, adjusted p-value 1.85E-05) was shown to be expressed in fetal heart and pluripotent stem-cell derived cardiomyocytes, and functional studies also revealed that *BANCR* promoted cardiomyocytes migration *in vitro* and ventricular enlargement *in vivo*³⁴. Many of the altered lncRNA are transcripts without a defined function; further studies are needed to evaluate their possible role in cardiac development and function. In addition, proper methods for lncRNA sequencing such

as library preparation and sequencing depth setting are needed for future projects related to microgravity in order to confirm these initial findings and perform a network-based analysis to gain a deeper insight.

RNA-seq analysis comparison between short-term and long-term exposure to space microgravity

We previously described the changes in gene expression during a short-term (3 days) exposure of cardiac progenitors to space microgravity¹⁸ and in this study we examined the effect of a long-term (3 weeks) exposure of space microgravity. By comparing the RNA-seq data from the long-term exposure of space microgravity with those from the short-term exposure, we observed a number of common upregulated and downregulated genes, including 11 upregulated genes and 9 downregulated (**Supplementary Tables 10 and 11**). Among the common upregulated genes, we found the aforementioned *CCND2*, which has roles in cell cycle, proliferation and cardiac differentiation, and *FGFR2* (FGF receptor 2) which by binding with protein *FGF10* mediates differentiation of stem cells into cardiomyocytes³⁵. Most of the other upregulated genes have roles related to cardiac function, such as *ATP2B4* which is involved cardiac contraction and conduction, *MYO18B* (Myosin-18B) which binds actin thin filaments and is incorporated in sarcomeres of cardiomyocytes, and *TFRC* (Transferrin receptor) which promotes iron uptake through the transferrin cycle essential for cardiac function³⁶. The common downregulated genes show that microgravity affected the extracellular matrix regulation, including the aforementioned downregulated gene *LIMA1* which is involved in focal adhesion while *EFEMP1* (EGF containing fibulin extracellular matrix protein 1) encodes Fibulin-3, an extracellular matrix glycoprotein. A deficiency of Fibulin-3 was recently shown to protect cardiac spheroids against cardiac fibrosis and improving their vascular network³⁷. Other downregulated genes are involved in cell senescence and apoptosis, like *TKT* (Transketolase) which promotes cardiomyocyte apoptosis via the cleaved Parp1/Aif pathway³⁸ and *DDIT3*

(DNA-damage inducible transcript 3) which is involved in endoplasmic reticulum protein processing and plays a role in cardiomyocyte senescence³⁹. These results suggest that even a short-term exposure to microgravity improved cardiomyocyte differentiation, cell survivability and cardiac functions and that some of those changes were not temporary but maintained in the long-term ISS cultures.

Discussion

Following transcriptomics analyses of live cell samples, we found that 3D cardiac spheres that were under long-term space microgravity (3-weeks on the ISS) were in a state of increased cell growth and cardiac differentiation compared with the ISS 1G control samples. We also discovered that long-term exposure to space microgravity resulted in gene expression profiles of enhanced cardiac development and function. Additionally, downregulation of genes associated with extracellular matrix was observed in the ISS μ G samples compared with the ISS 1G samples. Our conclusions are based on the results of DEGs identified by RNA-seq together with both the GO term analysis and the KEGG pathway mapping.

These effects of long-term exposure to space microgravity on hiPSC-CMs were also consistent with the previous findings on 3-day (short-term) exposure to space microgravity¹⁸. In our previous study, we also examined by quantitative RT-PCR analysis of the expression of genes related to cell cycle and cell proliferation (such as *CCND1* and *CCND2*), cardiac structure (such as *MYL2* and *TNNI3*) and Ca^{2+} handling (such as *ATP2B4*) in both short-term and long-term ISS cultures. We confirmed that the changes in the expression of these genes observed in short-term exposure to microgravity were also present in long-term exposure samples¹⁸, which was consistent with gene expression changes detected by RNA-seq in this study.

Beneficial effects of microgravity such as increased proliferation have also been observed in other cell types. Compared with ground-based control, neonatal cardiovascular progenitors cultured aboard the ISS for 30 days had enhanced cell proliferation⁴⁰. Under

simulated microgravity, bone marrow-derived human mesenchymal stem cells⁴¹ and adipose-derived stem cells⁴² had increased cell proliferation. In addition, culture of human mesenchymal stem cells on the ISS for 7 and 14 days increased immunosuppressive capacity of the cells, which could facilitate the use of these cells in therapy⁴³. Together, our study adds to the currently limited body of research on human cardiac cells in space and on changes in proliferation and differentiation of cells in microgravity.

An innovative aspect of our project is that cells were cultured at 37°C using the MVP system on the ISS. The MVP is configured to load multiple cultures under both ISS µG and ISS 1G conditions; the 1G condition on the ISS was achieved by centrifugation of one carousel within the same MVP system. Consequently, it allowed for better characterization of the impact of space microgravity alone on gene expression of stem-cell derived cardiomyocytes. Unlike a ground control, the 1G condition obtained through the MVP module allowed us to focus only on the effect of space microgravity without any background noise related to the space environment, such as space radiation, that could potentially alter or mask the effect of microgravity on gene expression. Therefore, the effects of space microgravity on the growth and development of cardiac progenitors we observed were independent of other potential external factors that might also affect cultures on the ISS.

Our RNA-seq results indicate enhanced cardiac differentiation. For instance, we detected upregulation of genes known to be involved with cardiac development, contraction, and conduction such as *MYL2*, *TNNI3*, *SCN5A*, *ATP2B4*, and *RYR2*. Consistently, KEGG pathway map of “adrenergic signaling in cardiomyocytes” shows similar pattern of gene expression necessary for proper cardiomyocyte electrophysiology and contraction. These results are consistent with our observation that space microgravity improved intracellular Ca²⁺ handling in hiPSC-CMs¹⁸. In addition, increased expression of Ca²⁺ handling and signaling genes has been observed in human cardiovascular progenitors following spaceflight^{13,44}. Increased expression of genes associated with mitochondrial metabolism and cardiac structural

proteins has also been observed in 2D cultures of late-stage hiPSC-CMs following spaceflight¹². Together, these results indicate that space microgravity can potentially affect the function of cardiac cells, although additional functional studies are needed for the quantification of the effects of microgravity.

Our results also suggest that exposure to space microgravity could lead to enhanced cell proliferation. For example, we detected upregulation of genes involved with regulation of cell division such as *KIF14*, *IGF2*, *KIF18B*, *SUSD2*, *RBL1*, and *AURKB*. While not included in any specific GO terms associated with proliferation, upregulation of cell cycle regulators *CCND1*, *CCND2*, *IGF2*, and *TBX3* were also detected. These genes play a role in cell cycle, cell proliferation, and heart regeneration⁴⁵⁻⁴⁸. For example, in a swine model of myocardial infarction, *CCND2* overexpression in hiPSC-CMs enhances myocardial repair⁴⁹. In addition, we observed that the expression of *CCND1*, *CCND2*, *IGF2*, and *TBX3* was highly upregulated in cardiac progenitor cells subjected to both a short-term exposure (3 days) and a long-term (3 weeks) to space microgravity as detected by quantitative RT-PCR¹⁸, further confirming their role in cardiac differentiation and proliferation. *CCND2* together with other cell cycle regulator genes identified in this study could be interesting targets for future investigation, since factors that stimulate proliferation of cardiomyocytes or cardiac progenitors could help to enhance generation of cardiomyocytes from hiPSCs and facilitate their application in basic and translational studies. Therefore, the ISS experiments are valuable for understanding the mechanisms to generate functional cardiomyocytes under 1G conditions in a more efficient way for different applications. Future studies are needed to focus more on mechanistic aspects of the cardiomyogenic effects of microgravity, since elucidation of the mechanisms may contribute to generating functional cardiomyocytes under 1G conditions.

In addition to GO analysis, KEGG pathway maps were useful for visualizing underlying processes that may contribute to the overall transcriptomic profile. Adrenergic signaling pathway mapping, for instance, was helpful in confirming one of the underlying mechanisms by which the

ISS μ G hiPSC-CMs were able to show enhanced cardiac function. Likewise, downregulated genes in KEGG pathway of ECM-receptor interaction were also consistent with what was observed from GO analysis in terms of ECM-related terms and focal adhesion. Whether downregulation of genes in ECM-term and focal adhesion is relevant to cell proliferation and cardiac development in the context of *in vitro* 3D hiPSC-CM system remains an interesting question, since ECM downregulation has been previously reported to promote cardiac dedifferentiation and proliferation by regulating mechanical stiffness of its microenvironment⁵⁰.

In this study, we investigated the impact of long-term space microgravity on transcriptome of hiPSC-CMs by comparing cultures under the ISS μ G condition with the ISS 1G condition. The 3-week cultures on the ISS revealed interesting changes in their transcriptome but were not without limitations. First, space experiment conducted on the ISS poses a common challenge of limited samples retrieved for further analysis. Greater numbers of replicates and cells returned would be desirable for future study to better understand the functional implications of DEGs observed. Nevertheless, the role of outstanding DEGs identified in this study remain as interesting targets for future research. Second, cellular composition of our 3D cultures contained mostly cardiomyocytes¹⁸ and the role of cardiac fibroblasts in this process is lesser known. One interesting question to address in a future study may be to better understand the interaction occurring between cardiac cells and non-cardiac cells in 3D hiPSC-CMs, and how the cell composition may change in extended culture in space. Third, more advanced cell culture module with improved imaging and other characterization tools would help retrieve more visual data during cell culture and between medium change. For such purpose, future improvements in flight hardware with automated and more advanced imaging systems and other characterization tools would be desirable.

In conclusion, our transcriptomics analyses provide insight into developmental process of cryopreserved 3D cardiac progenitors under extended exposure to space microgravity. Our findings suggest that the combination of microgravity and the 3D culture leads to increased

differentiation and proliferation of cardiac progenitors, which could lead to highly desired future applications of hiPSC-CMs in therapy. Furthermore, genes and pathways identified here may be targets for future research on Earth to mimic the effects of space microgravity.

Methods

Cell Culture and Cryopreservation of Cardiac Progenitor Spheres

For the spaceflight experiment, we prepared cryopreserved cardiac progenitor spheres from IMR90 hiPSC lines (WiCell Research Institute) that were cultured in a feeder-free condition on Matrigel-coated plates and daily fed with mTeSR™ 1 medium. For the induction of IMR90 cardiomyocyte differentiation, hiPSCs were treated with growth factors^{51,52}. Briefly, when compact colonies reached >95% confluence, cells were treated with 100 ng/mL activin A from differentiation day 0 till day 1 and then 10 ng/mL bone morphogenic protein-4 (BMP4) from day 1 till day 4 in RPMI/B27 insulin-free medium (RPMI 1640 with 2% B27 minus insulin). Cells were maintained in standard RPMI/B27 medium (RPMI 1640 with 2% B27 supplement with insulin) until differentiation day 6, when cardiac progenitor spheres were generated using microscale tissue engineering using Aggewell 400 plates (STEMCELL Technologies)⁵³. Briefly cells were dissociated using 0.25% trypsin-EDTA (Thermo Fisher Scientific), resuspended for cell counting, then seeded into the Aggewell 400 plates at a concentration of 1.8x10⁶ cells/well (1,500 cells/microwell). Cells were cultured in RPMI/B27 medium and 10 µM ROCK inhibitor Y-27632 to facilitate cell survival following dissociation⁵⁴. After 24 h, cardiac spheres were cryopreserved.

For cryopreservation, cardiac progenitor spheres were resuspended in 0.5 mL cryopreservation medium (90% fetal bovine serum and 10% dimethyl sulfoxide with 10 µM ROCK inhibitor) and transferred into cryosyringes at 0.5 mL/cryosyringe. Cardiac spheres were initially precooled at 4°C for up to 25 min to maximize cryopreservation efficiency, and then stored at -80°C in a cooling box.

ISS Cell Culture Operation

For thawing cells on the ISS, cryosyringes containing cardiac progenitor spheres were placed in a thermoblock at 37°C for 5 min. The cells were then injected into cell culture chambers of the MVP modules containing a CO₂-independent medium with 10 µM ROCK inhibitor⁵⁵. The MVP modules were re-installed into the MVP facility, which started with a medium flush cycle to replace the medium with new culture medium (20 mL per chamber; ~2x chamber volume), to flush out the DMSO in the cryopreserved cell solution (0.5 mL/cryosyringe). The cells were cultured at 37°C in the MVP system for 22 days on the ISS with medium exchange every other day.

At the end of the mission, live cultures were returned to ground via warm storage after having been cultured aboard the ISS. Upon arrival at Emory University, cardiac spheres were transferred immediately into an incubator and let recover overnight. The following day cardiac spheres were transferred from the collection bags into low adhesion dishes. Medium was changed from CO₂-independent medium to standard cardiomyocyte culture medium (RPMI/B27 medium), and cardiac spheres were then maintained overnight, followed by RNA isolation.

RNA-seq Analysis

RNA was isolated using RNeasy Mini Kit (Qiagen) as per manufacturer's instructions. RNA concentration was measured using NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). RNA sequencing, quality control, and transcriptome mapping were done by Yerkes National Primate Research Center of Emory University. Total RNA quality was tested using an Agilent 4200 TapeStation and RNA 6000 Nano and Pico Chip (Agilent Technologies). RNA samples of triplicate ISS µG and ISS 1G cultures collected after the long-term exposure to space microgravity were subjected for library preparation and sequencing.

Two nanograms of total RNA were used as input for cDNA synthesis, using the Clontech SMART-Seq v4 Ultra Low Input RNA kit (Takara Bio) according to the manufacturer's instructions. Amplified cDNA was fragmented and appended with dual-indexed bar codes using

the NexteraXT DNA Library Preparation kit (Illumina). Libraries were validated by capillary electrophoresis on an Agilent 4200 TapeStation, pooled at equimolar concentrations, and sequenced on an Illumina NovaSeq 6000 at 100SR, yielding an average of 30 million reads per sample. Alignment was performed using STAR version 2.7.3a and transcripts were annotated using GRCh38. Transcript abundance estimates were calculated internal to the STAR aligner using the algorithm of htseq-count⁵⁶.

All downstream analyses were performed in R 4.1.2. Read count normalization and differential expression analyses were performed using DESeq2 R package 1.34.0⁵⁷. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of differentially expressed genes were done with a default p-value cutoff of 0.05 using clusterProfiler R package 4.2.2 and Chord diagrams were generated using GOpot 1.0.2^{58,59}.

Data Availability Statement

RNA-seq data reported in this paper is available at GEO: GEO accession number GSE228063.

Acknowledgements

This study was supported in part by grants from the Center for Advancement of Science in Space (GA-2017-266 and GA-2023-9022), the National Institutes of Health (R01HL136345 and R01AA028527), and the National Science Foundation (CBET 1926387).

We would like to thank astronauts Jessica Meir and Andrew Morgan for performing the cell culture experiments aboard the International Space Station. We also thank Kathryn Pellegrini and Gregory Tharp at the Yerkes Genomics Core of the Emory University for RNA sequencing and data deposit. A special thanks to Dr. Bill McLamb and Dr. Marc Giulianotti of the CASIS for their guidance during this project.

Competing Interests

J.F. and G.B. were employees of Techshot Inc. All other authors declare no competing interests.

Supplementary Information

Supplemental information includes Supplementary Tables 1-11 and Supplementary Figures S1-S2.

Author Contributions

A.R., K.M. and C.X. designed experiments. H.H., A.R., P.F. and D.L. performed experiments and analyzed data. J.F. and G.B. contributed to the MVP hardware design and testing. H.H. performed RNA-seq data analysis. H.H., A.R. and C.X. wrote the manuscript. All authors reviewed and approved the manuscript. H.H. and A.R. made equal contributions.

References

- 1 Laflamme, M. A. & Murry, C. E. Heart regeneration. *Nature* **473**, 326-335, (2011).
- 2 Mummery, C. L. *et al.* Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. *Cir. Res.* **111**, 344-358, (2012).
- 3 Wu, J. C. *et al.* Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. *Circ. Res.* **125**, 653-658, (2019).
- 4 Becker, J. L. & Souza, G. R. Using space-based investigations to inform cancer research on Earth. *Nat. Rev. Cancer.* **13**, 315-327, (2013).
- 5 Barzegari, A. & Saei, A. A. An update to space biomedical research: tissue engineering in microgravity bioreactors. *BiolImpacts* **2**, 23-32, (2012).
- 6 Vunjak-Novakovic, G., Searby, N., De Luis, J. & Freed, L. E. Microgravity studies of cells and tissues. *Ann. N. Y. Acad. Sci.* **974**, 504-517, (2002).
- 7 Ingber, D. How cells (might) sense microgravity. *FASEB J.* **13 Suppl**, S3-15, (1999).
- 8 Robinson, R. R. *et al.* Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat. *Aviat. Space. Environ. Med.* **67**, 835-840, (1996).
- 9 Yu, Z. B., Bao, J. X., Ma, J., Zhang, L. F. & Jin, J. P. Changes in myocardial contractility and contractile proteins after four weeks of simulated [correction of simulate] weightlessness in rats. *J. Gravit. Physiol.* **7**, P147-148, (2000).
- 10 Respress, J. L. *et al.* Long-term simulated microgravity causes cardiac RyR2 phosphorylation and arrhythmias in mice. *Int. J. Cardiol.* **176**, 994-1000, (2014).
- 11 Akins, R. E., Schroedl, N. A., Gonda, S. R. & Hartzell, C. R. Neonatal rat heart cells cultured in simulated microgravity. *In. Vitro. Cell. Dev. Biol. Anim.* **33**, 337-343, (1997).
- 12 Whorowski, A. *et al.* Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. *Stem. Cell. Rep.* **13**, 960-969, (2019).
- 13 Camberos, V. *et al.* The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome. *Int. J. Mol. Sci.* **22**, 3577, (2021).
- 14 Jha, R. *et al.* Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. *Sci. Rep.* **6**, 30956, (2016).
- 15 Low, L. A. & Giulianotti, M. A. Tissue Chips in Space: Modeling Human Diseases in Microgravity. *Pharm. Res.* **37**, 8, (2019).
- 16 Shelhamer, M. *et al.* Selected discoveries from human research in space that are relevant to human health on Earth. *NPJ microgravity* **6**, 5, (2020).
- 17 Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging Spaceflight to Advance Cardiovascular Research on Earth. *Circ. Res.* **130**, 942-957, (2022).
- 18 Rampoldi, A. *et al.* Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. *Stem. Cell. Rep.* **17**, 2272-2285, (2022).
- 19 Mhatre, S. D. *et al.* Artificial gravity partially protects space-induced neurological deficits in *Drosophila melanogaster*. *Cell. Rep.* **40**, 111279, (2022).
- 20 Bover, O. *et al.* Loss of Ccbe1 affects cardiac-specification and cardiomyocyte differentiation in mouse embryonic stem cells. *PloS one* **13**, e0205108, (2018).
- 21 Díaz Del Moral, S., Benaouicha, M., Muñoz-Chápuli, R. & Carmona, R. The Insulin-like Growth Factor Signalling Pathway in Cardiac Development and Regeneration. *Int. J. Mol. Sci.* **23**, 234, (2021).
- 22 Yang, C. M. *et al.* Bradykinin B2 receptor-mediated proliferation via activation of the Ras/Raf/MEK/MAPK pathway in rat vascular smooth muscle cells. *J. Biomed. Sci.* **10**, 208-218, (2003).

23 Seegers, H. C., Avery, P. S., McWilliams, D. F., Haywood, L. & Walsh, D. A. Combined effect of bradykinin B2 and neurokinin-1 receptor activation on endothelial cell proliferation in acute synovitis. *FASEB J.* **18**, 762-764, (2004).

24 Lian, Q. *et al.* Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. *Stem Cells* **25**, 425-436, (2007).

25 Sorensen, D. W. & van Berlo, J. H. The Role of TGF- β Signaling in Cardiomyocyte Proliferation. *Curr. Heart. Fail. Rep.* **17**, 225-233, (2020).

26 Yan, L. *et al.* Beta-adrenergic signals regulate cardiac differentiation of mouse embryonic stem cells via mitogen-activated protein kinase pathways. *Dev. Growth. Differ.* **53**, 772-779, (2011).

27 Li, Y. H. *et al.* Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. *J. Card. Fail.* **16**, 980-990, (2010).

28 Mahootchi, E. *et al.* GADL1 is a multifunctional decarboxylase with tissue-specific roles in β -alanine and carnosine production. *Sci. Adv.* **6**, eabb3713, (2020).

29 Schaffer, S. W., Jong, C. J., Ramila, K. C. & Azuma, J. Physiological roles of taurine in heart and muscle. *J Biomed Sci* **17 Suppl 1**, S2, (2010).

30 Maguy, A., Hebert, T. E. & Nattel, S. Involvement of lipid rafts and caveolae in cardiac ion channel function. *Cardiovasc. Res.* **69**, 798-807, (2006).

31 Liu, Y., Chen, J., Fontes, S. K., Bautista, E. N. & Cheng, Z. Physiological and pathological roles of protein kinase A in the heart. *Cardiovasc. Res.* **118**, 386-398, (2022).

32 Li, X. *et al.* AMPK: a therapeutic target of heart failure-not only metabolism regulation. *Biosci. Rep.* **39**, BSR20181767, (2019).

33 Liao, X. *et al.* Effect of mechanical unloading on genome-wide DNA methylation profile of the failing human heart. *JCI Insight* **8**, e161788, (2023).

34 Wilson, K. D. *et al.* Endogenous Retrovirus-Derived lncRNA BANCR Promotes Cardiomyocyte Migration in Humans and Non-human Primates. *Dev. Cell.* **54**, 694-709.e699, (2020).

35 Chan, S. S. *et al.* Fibroblast growth factor-10 promotes cardiomyocyte differentiation from embryonic and induced pluripotent stem cells. *PLoS One* **5**, e14414, (2010).

36 Lakhal-Littleton, S. Mechanisms of cardiac iron homeostasis and their importance to heart function. *Free. Radic. Biol. Med.* **133**, 234-237, (2019).

37 Sharma, P. *et al.* Fibulin-3 Deficiency Protects Against Myocardial Injury Following Ischaemia/ Reperfusion in in vitro Cardiac Spheroids. *Front. Cardiovasc. Med.* **9**, 913156, (2022).

38 Wang, Z. *et al.* Nuclear Tkt promotes ischemic heart failure via the cleaved Parp1/Aif axis. *Basic. Res. Cardiol.* **117**, 18, (2022).

39 Zhan, W. *et al.* Pcsk6 Deficiency Promotes Cardiomyocyte Senescence by Modulating Ddit3-Mediated ER Stress. *Genes (Basel)* **13**, 711, (2022).

40 Baio, J. *et al.* Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. *NPJ microgravity* **4**, 13, (2018).

41 Yuge, L. *et al.* Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. *Stem. Cells. Dev.* **15**, 921-929, (2006).

42 Zhang, S. *et al.* The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. *Biomaterials* **41**, 15-25, (2015).

43 Huang, P. *et al.* Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. *NPJ Microgravity* **6**, 16, (2020).

44 Baio, J. *et al.* Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells. *Stem. Cells. Dev.* **27**, 805-818, (2018).

45 Gan, J. *et al.* microRNA-1 inhibits cardiomyocyte proliferation in mouse neonatal hearts by repressing CCND1 expression. *Ann. Transl. Med.* **7**, 455, (2019).

46 Zhu, W., Zhao, M., Mattapally, S., Chen, S. & Zhang, J. CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Remuscularization of Injured Ventricle. *Circ. Res.* **122**, 88-96, (2018).

47 Shen, H. *et al.* Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. *Elife* **9**, e53071, (2020).

48 Ribeiro, I. *et al.* Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. *PLoS One* **2**, e398, (2007).

49 Zhao, M. *et al.* Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. *Circulation* **144**, 210-228, (2021).

50 Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. *Elife* **4**, e07455, (2015).

51 Jha, R. *et al.* Molecular beacon-based detection and isolation of working-type cardiomyocytes derived from human pluripotent stem cells. *Biomaterials* **50**, 176-185, (2015).

52 Laflamme, M. A. *et al.* Cardiomyocytes Derived From Human Embryonic Stem Cells in Pro-Survival Factors Enhance Function of Infarcted Rat Hearts. *Nat. Biotechnol.* **25**, 1015-1024, (2007).

53 Nguyen, D. C. *et al.* Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. *Stem. Cell. Rep.* **3**, 260-268, (2014).

54 Watanabe, K. *et al.* A ROCK inhibitor permits survival of dissociated human embryonic stem cells. *Nat. Biotechnol.* **25**, 681-686, (2007).

55 Rampoldi, A., Jha, R., Fite, J., Boland, G. & Xu, C. Cryopreservation and CO₂-independent culture of 3D cardiac progenitors for spaceflight experiments. *Biomaterials* **269**, 120673, (2021).

56 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics* **31**, 166-169, (2015).

57 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome. Biol.* **15**, 550, (2014).

58 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS* **16**, 284-287, (2012).

59 Walter, W., Sánchez-Cabo, F. & Ricote, M. GOpplot: an R package for visually combining expression data with functional analysis. *Bioinformatics* **31**, 2912-2914, (2015).

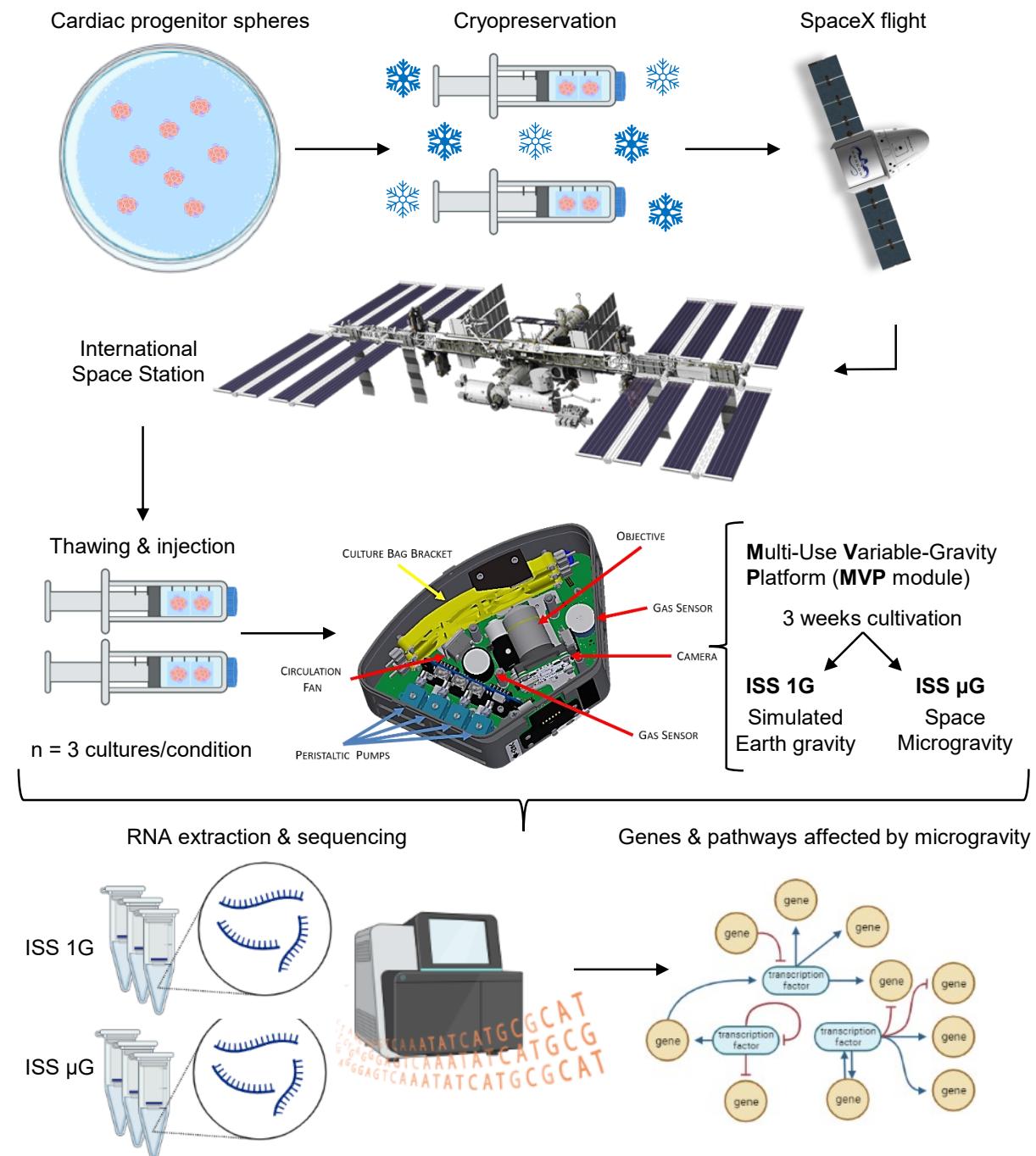
Figure legends

Figure 1. Schematic of spaceflight operation.

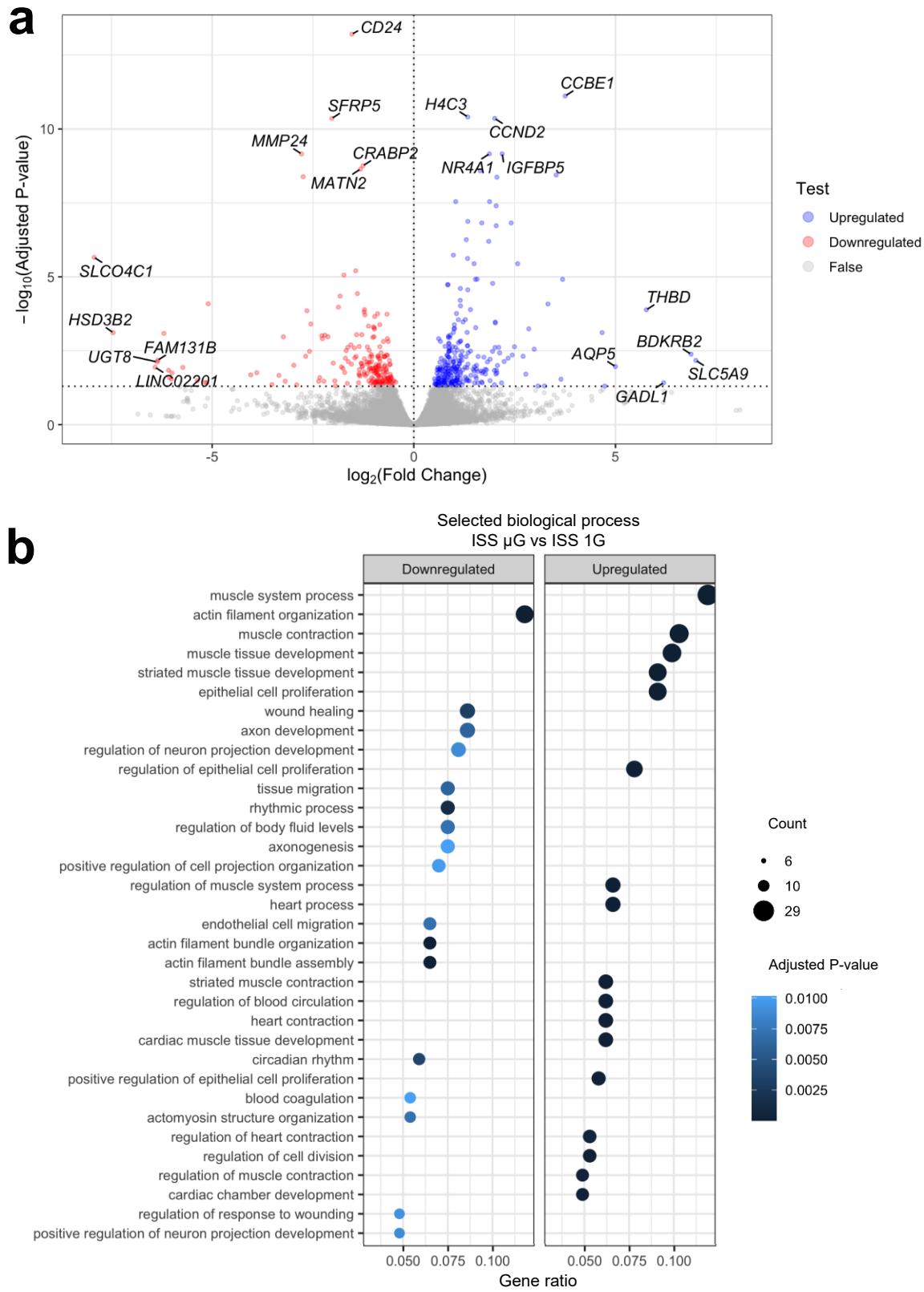
Schematic of sample preparation, spaceflight operation, Multi-specimen Variable-gravity Platform (MVP) sample collection, and RNA extraction, sequencing, and gene expression analysis. Figures created with BioRender. MVP module image source: Techshot Inc, SpaceX-20 Dragon capsule and International Space Station image source: NicePNG (images adapted by the author).

Figure 2. Differentially expressed genes and gene ontology (GO) terms identified by RNA-sequencing analysis of hiPSC-CMs exposed to space microgravity.

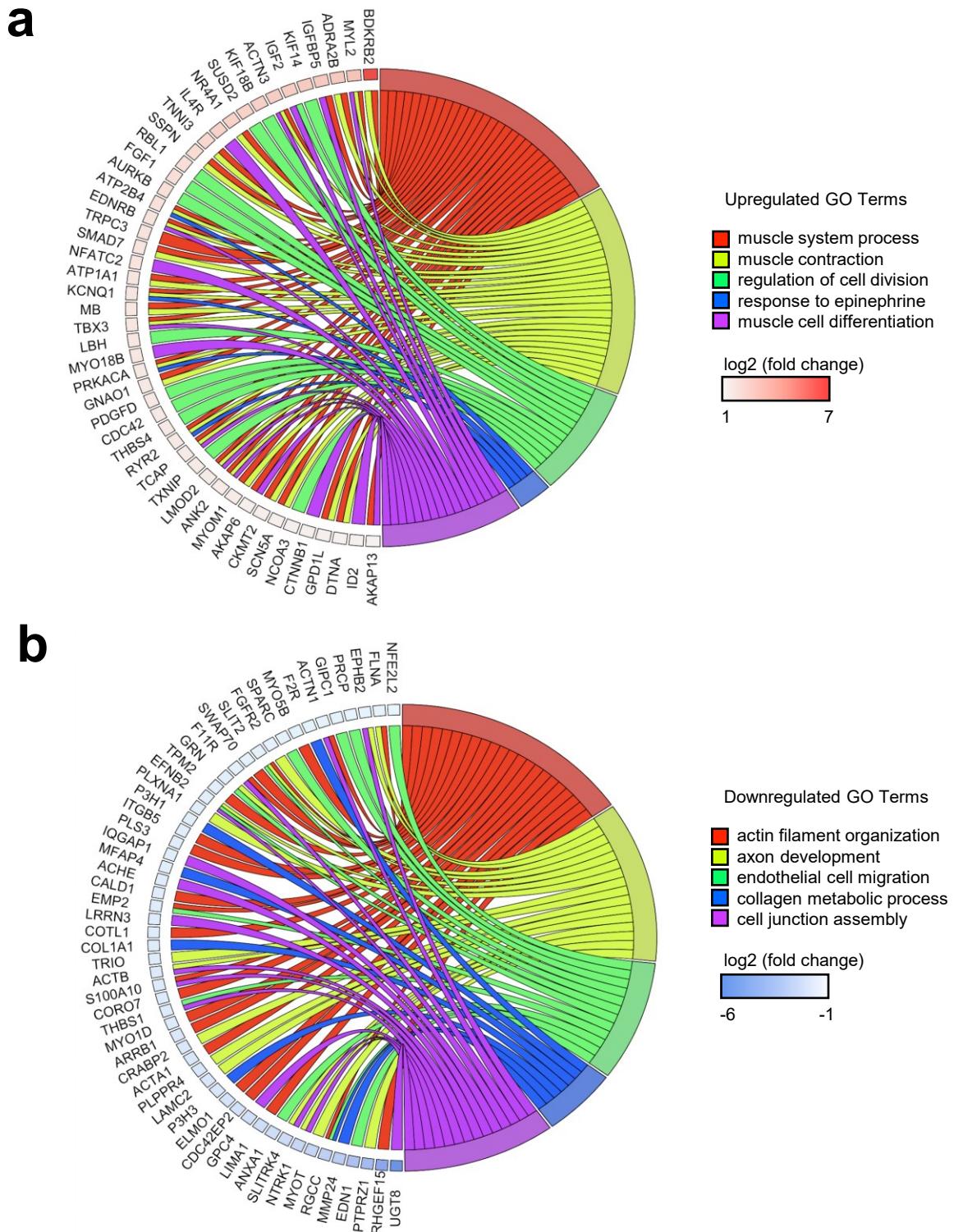
(A) Volcano plot illustrating differentially expressed genes between ISS μ G and ISS 1G samples (n=3 cultures) collected from IMR90 hiPSC differentiation cultures of 3 weeks on the ISS (long-term exposure to space microgravity). (B) Dot plot showing up- and downregulated GO terms of biological processes. GSEA, Gene Set Enrichment Analysis; ISS 1G, the 1G condition on the International Space Station; ISS μ G, the microgravity condition on the International Space Station.


Figure 3. Chord diagrams showing the relationship between gene ontology (GO) terms and differentially expressed genes in hiPSC-CMs exposed to space microgravity.

(A) Chord diagram of selected upregulated GO terms and genes in ISS μ G vs. ISS 1G of IMR90 hiPSC differentiation cultures of 3 weeks on the ISS. (B) Chord diagram of selected downregulated GO terms and genes. GO terms were presented on the right, genes on the left, colored squares on the left indicated \log_2 (fold change) value from highest to lowest (n=3 cultures).


Figure 4. Gene ontology (GO) terms identified by RNA-sequencing analysis of hiPSC-CMs exposed to space microgravity.

(A) Dot plot showing upregulated and downregulated genes clustered by GO enrichment analysis of molecular function from ISS μ G and ISS 1G samples (n=3 cultures) collected 3 weeks after thawing onboard ISS (long-term exposure to microgravity). (B) Dot plot showing up- and downregulated genes clustered by GO enrichment analysis of cellular components. GSEA, Gene Set Enrichment Analysis; ISS 1G, the 1G condition on the International Space Station; ISS μ G, the microgravity condition on the International Space Station.


Figure 1

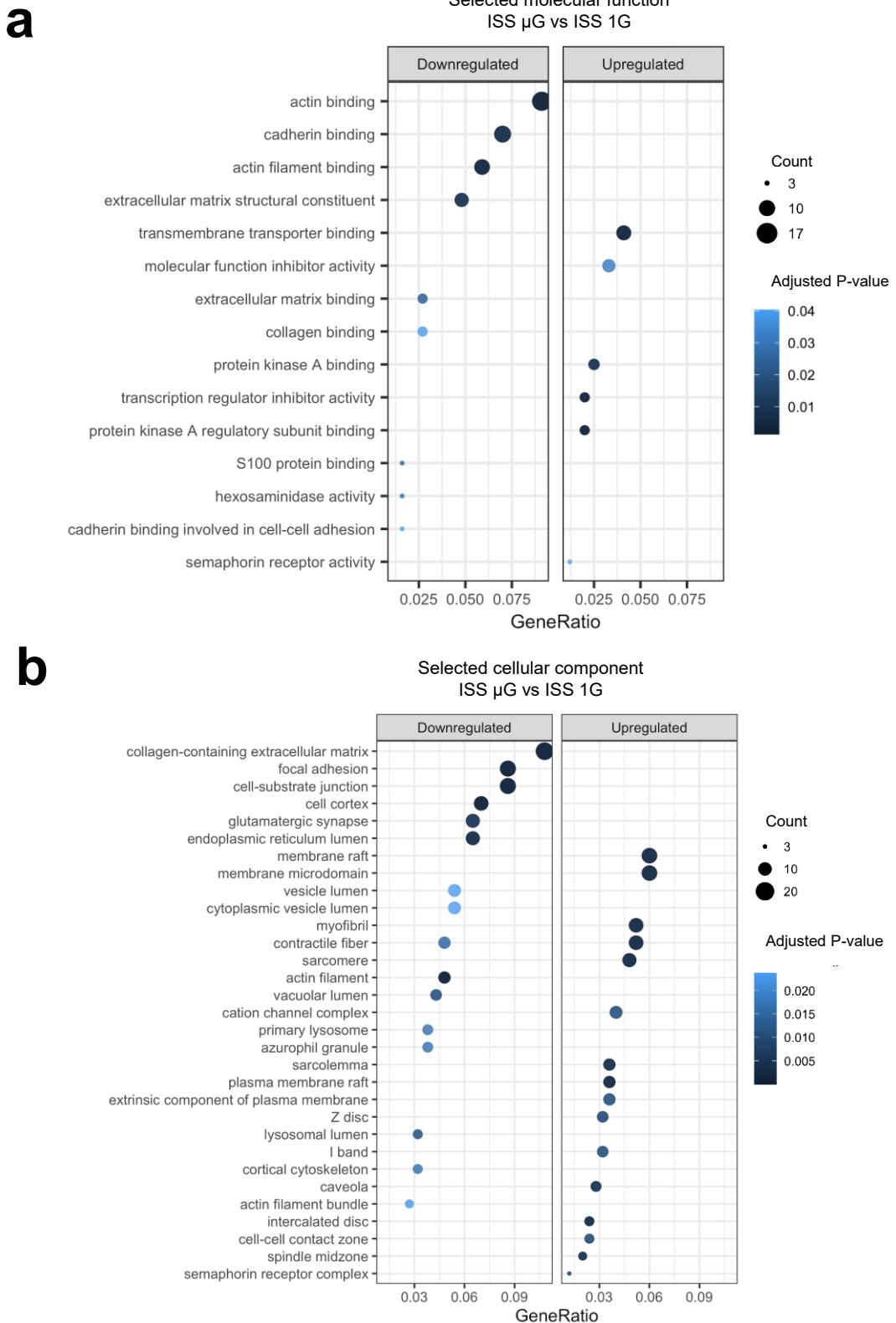

Figure 2

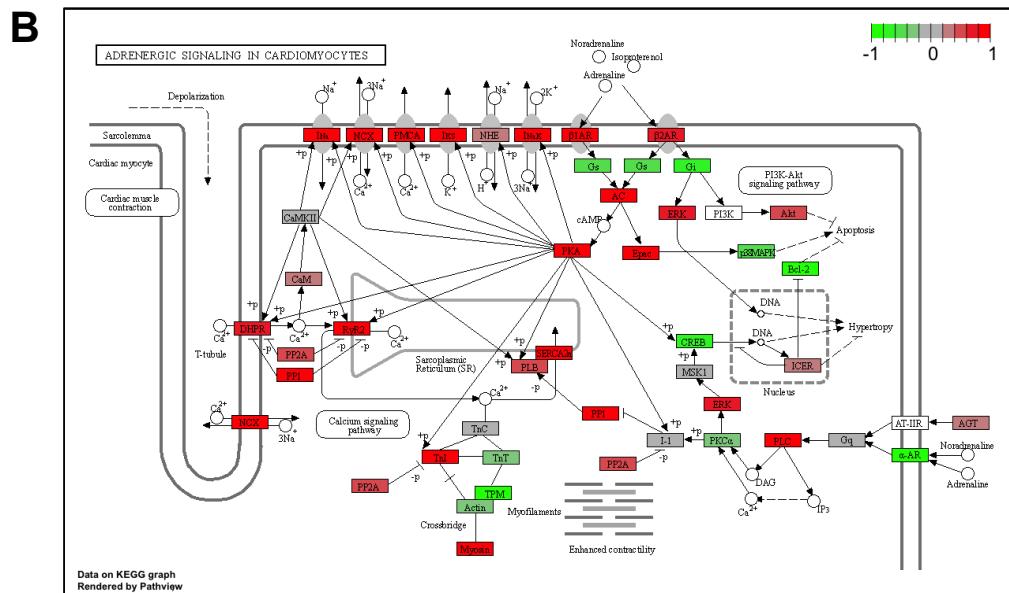
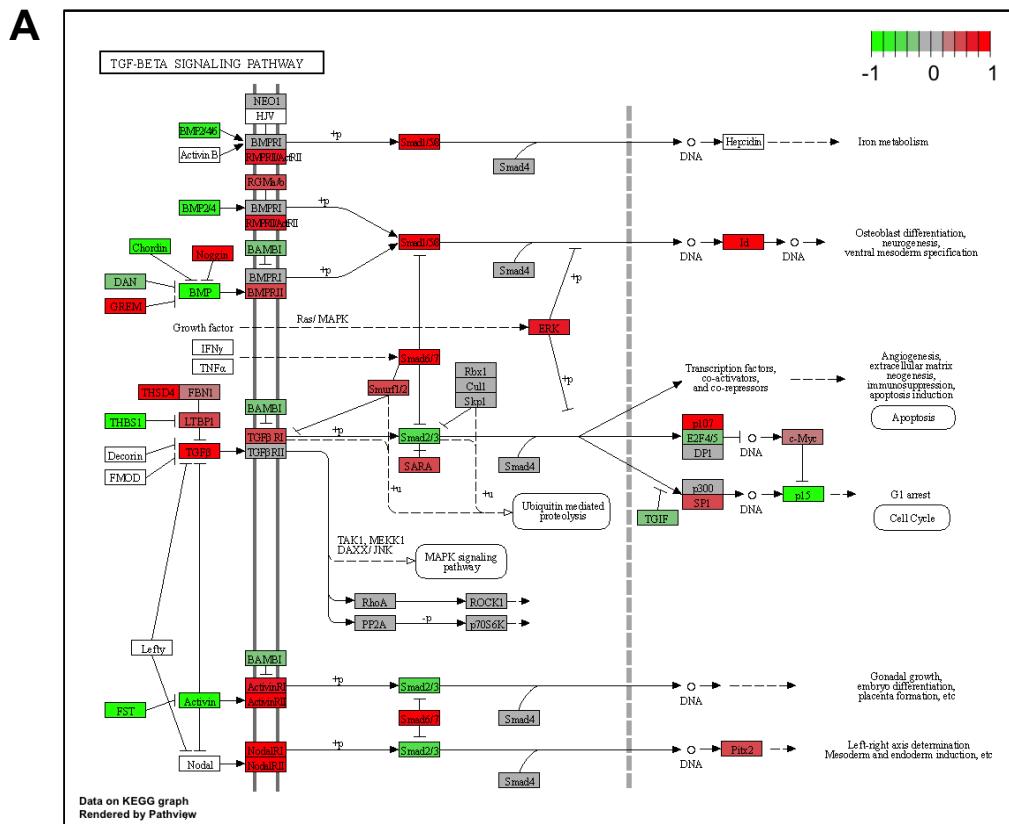
Figure 3

Figure 4

Supplementary Information

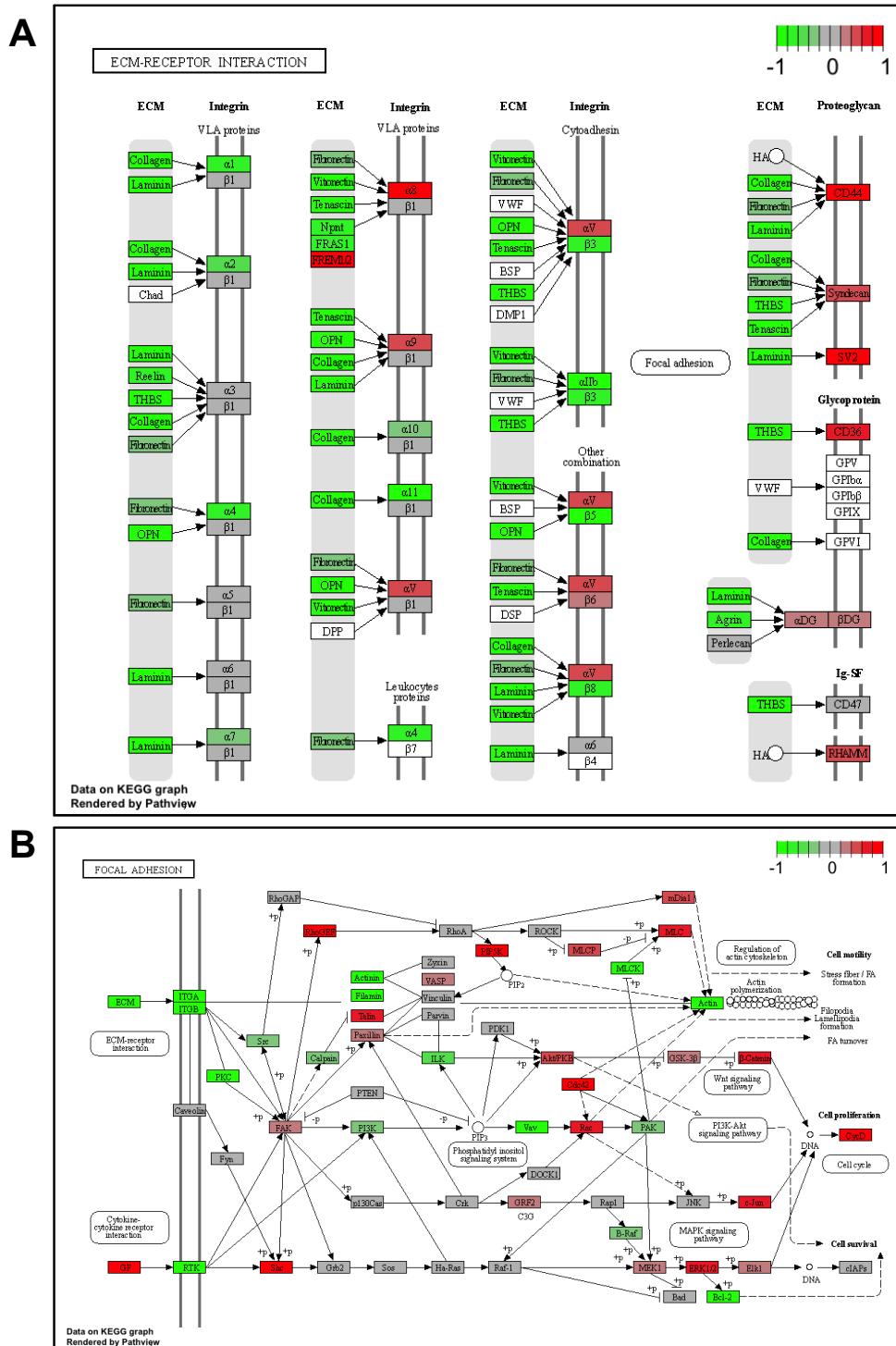
Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres

Hyun Hwang^{1,*}, Antonio Rampoldi^{1,*}, Parvin Forghani¹, Dong Li¹, Jordan Fite², Gene Boland², Kevin Maher¹, and Chunhui Xu^{1,3}



¹Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA

² Techshot, Inc., Greenville, IN, USA

³ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA


* These authors made equal contributions.

Correspondence: Chunhui Xu, PhD, Professor, Department of Pediatrics, Emory University School of Medicine. Email: chunhui.xu@emory.edu.

Supplementary Figure 1. KEGG mapping of TGF-beta signaling and adrenergic signaling pathways.

Supplementary Figure 11. KEGG mapping of TGF-beta signaling and adrenergic signaling pathway. Pathway maps were derived from KEGG analysis using our RNA-seq data set. Each gene is color-coded by the KEGG analysis, indicating the level of expression upregulated or downregulated by space microgravity. (A) TGF-beta signaling pathway in IMR90 cardiac spheres after 3 weeks in the ISS μ G condition compared with the ISS 1G condition. (B) Adrenergic signaling pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes. ISS 1G, the 1G condition on the International Space Station; ISS μ G, the microgravity condition on the International Space Station.

Supplementary Figure 2. KEGG mapping of ECM-receptor interaction and focal adhesion pathways. Pathway maps were derived from KEGG analysis using our RNA-seq data set. Each gene is color-coded by the KEGG analysis, indicating the level of expression upregulated or downregulated by space microgravity. (A) ECM-receptor interaction pathway in IMR90 cardiac spheres after 3 weeks in the ISS μ G condition compared with the ISS 1G condition. (B) Focal adhesion pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes. ISS 1G, the 1G condition on the International Space Station; ISS μ G, the microgravity condition on the International Space Station.

Supplementary Table 1. 271 upregulated differentially expressed genes (DEGs) in the ISS μ G condition compared with the ISS 1G condition.

Gene	Description	log2(Fold change)	adjusted p-value
<i>SLC5A9</i>	solute carrier family 5 member 9 [Source:HGNC Symbol;Acc:HGNC:22146]	6.99	6.70E-03
<i>BDKRB2</i>	bradykinin receptor B2 [Source:HGNC Symbol;Acc:HGNC:1030]	6.87	4.13E-03
<i>GADL1</i>	glutamate decarboxylase like 1 [Source:HGNC Symbol;Acc:HGNC:27949]	6.20	3.81E-02
<i>THBD</i>	thrombomodulin [Source:HGNC Symbol;Acc:HGNC:11784]	5.76	1.31E-04
<i>AQP5</i>	aquaporin 5 [Source:HGNC Symbol;Acc:HGNC:638]	5.00	1.08E-02
<i>UPK1A</i>	uroplakin 1A [Source:HGNC Symbol;Acc:HGNC:12577]	4.74	4.93E-02
<i>COL11A1</i>	collagen type XI alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2186]	4.67	7.71E-04
<i>CCBE1</i>	collagen and calcium binding EGF domains 1 [Source:HGNC Symbol;Acc:HGNC:29426]	3.75	7.67E-12
<i>SOCS3</i>	suppressor of cytokine signaling 3 [Source:HGNC Symbol;Acc:HGNC:19391]	3.69	1.22E-05
<i>SNCB</i>	synuclein beta [Source:HGNC Symbol;Acc:HGNC:11140]	3.65	2.90E-02
<i>CTNNA2</i>	catenin alpha 2 [Source:HGNC Symbol;Acc:HGNC:2510]	3.53	3.61E-09
<i>ATOH8</i>	atonal bHLH transcription factor 8 [Source:HGNC Symbol;Acc:HGNC:24126]	3.33	8.27E-05
<i>SLC16A3</i>	solute carrier family 16 member 3 [Source:HGNC Symbol;Acc:HGNC:10924]	3.24	4.91E-02
<i>TRPA1</i>	transient receptor potential cation channel subfamily A member 1 [Source:HGNC Symbol;Acc:HGNC:497]	3.08	4.91E-02
<i>SPAG4</i>	sperm associated antigen 4 [Source:HGNC Symbol;Acc:HGNC:11214]	2.98	2.78E-03
<i>PNOC</i>	prepronociceptin [Source:HGNC Symbol;Acc:HGNC:9163]	2.85	5.74E-04
<i>BRIP1</i>	BRCA1 interacting protein C-terminal helicase 1 [Source:HGNC Symbol;Acc:HGNC:20473]	2.78	1.95E-02
<i>SEC14L6</i>	SEC14 like lipid binding 6 [Source:HGNC Symbol;Acc:HGNC:40047]	2.71	4.85E-03
<i>SHROOM4</i>	shroom family member 4 [Source:HGNC Symbol;Acc:HGNC:29215]	2.57	3.60E-06
<i>TAFA2</i>	TAFA chemokine like family member 2 [Source:HGNC Symbol;Acc:HGNC:21589]	2.50	2.32E-03
<i>MYL2</i>	myosin light chain 2 [Source:HGNC Symbol;Acc:HGNC:7583]	2.44	4.39E-03
<i>SLC26A9</i>	solute carrier family 26 member 9 [Source:HGNC Symbol;Acc:HGNC:14469]	2.41	1.50E-07
<i>EGR4</i>	early growth response 4 [Source:HGNC Symbol;Acc:HGNC:3241]	2.34	5.66E-03
<i>ADRA2B</i>	adrenoceptor alpha 2B [Source:HGNC Symbol;Acc:HGNC:282]	2.24	7.31E-03
<i>IGFBP5</i>	insulin like growth factor binding protein 5 [Source:HGNC Symbol;Acc:HGNC:5474]	2.19	6.94E-10
<i>RIN3</i>	Ras and Rab interactor 3 [Source:HGNC Symbol;Acc:HGNC:18751]	2.17	3.87E-02
<i>MT3</i>	metallothionein 3 [Source:HGNC Symbol;Acc:HGNC:7408]	2.13	3.73E-03
<i>KIF14</i>	kinesin family member 14 [Source:HGNC Symbol;Acc:HGNC:19181]	2.11	2.42E-03
<i>IGF2</i>	insulin like growth factor 2 [Source:HGNC Symbol;Acc:HGNC:5466]	2.07	9.89E-03
<i>ANKRD63</i>	ankyrin repeat domain 63 [Source:HGNC Symbol;Acc:HGNC:40027]	2.06	1.77E-02
<i>ADPRHL1</i>	ADP-ribosylhydrolase like 1 [Source:HGNC Symbol;Acc:HGNC:21303]	2.06	4.28E-09
<i>TMEM200B</i>	transmembrane protein 200B [Source:HGNC Symbol;Acc:HGNC:33785]	2.05	1.44E-02
<i>ACTN3</i>	actinin alpha 3 (gene/pseudogene) [Source:HGNC Symbol;Acc:HGNC:165]	2.04	1.87E-07

<i>SORL1</i>	sortilin related receptor 1 [Source:HGNC Symbol;Acc:HGNC:11185]	2.04	3.97E-08
<i>KCNQ3</i>	potassium voltage-gated channel subfamily Q member 3 [Source:HGNC Symbol;Acc:HGNC:6297]	2.03	1.95E-02
<i>LOXL3</i>	lysyl oxidase like 3 [Source:HGNC Symbol;Acc:HGNC:13869]	2.02	3.64E-04
<i>MIR210HG</i>	MIR210 host gene [Source:HGNC Symbol;Acc:HGNC:39524]	2.02	3.38E-04
<i>LINC00880</i>	long intergenic non-protein coding RNA 880 [Source:HGNC Symbol;Acc:HGNC:27948]	2.01	2.45E-03
<i>CCND2</i>	cyclin D2 [Source:HGNC Symbol;Acc:HGNC:1583]	2.01	4.41E-11
<i>ADAMTS17</i>	ADAM metallopeptidase with thrombospondin type 1 motif 17 [Source:HGNC Symbol;Acc:HGNC:17109]	2.00	4.44E-02
<i>LDHAP4</i>	lactate dehydrogenase A pseudogene 4 [Source:HGNC Symbol;Acc:HGNC:6539]	2.00	1.46E-02
<i>EGLN3</i>	egl-9 family hypoxia inducible factor 3 [Source:HGNC Symbol;Acc:HGNC:14661]	1.95	1.66E-05
<i>AC107068.2</i>	novel transcript, antisense to CORIN and NFXL1	1.95	3.31E-03
<i>ID1</i>	inhibitor of DNA binding 1, HLH protein [Source:HGNC Symbol;Acc:HGNC:5360]	1.89	6.10E-03
<i>KIF18B</i>	kinesin family member 18B [Source:HGNC Symbol;Acc:HGNC:27102]	1.89	3.23E-02
<i>SUSD2</i>	sushi domain containing 2 [Source:HGNC Symbol;Acc:HGNC:30667]	1.88	2.86E-08
<i>NR4A1</i>	nuclear receptor subfamily 4 group A member 1 [Source:HGNC Symbol;Acc:HGNC:7980]	1.87	6.94E-10
<i>IL4R</i>	interleukin 4 receptor [Source:HGNC Symbol;Acc:HGNC:6015]	1.86	6.31E-07
<i>KCNN1</i>	potassium calcium-activated channel subfamily N member 1 [Source:HGNC Symbol;Acc:HGNC:6290]	1.82	7.53E-03
<i>FOXM1</i>	forkhead box M1 [Source:HGNC Symbol;Acc:HGNC:3818]	1.80	1.39E-02
<i>NEK2</i>	NIMA related kinase 2 [Source:HGNC Symbol;Acc:HGNC:7745]	1.78	1.93E-02
<i>CDCA2</i>	cell division cycle associated 2 [Source:HGNC Symbol;Acc:HGNC:14623]	1.77	1.34E-02
<i>LINC01470</i>	long intergenic non-protein coding RNA 1470 [Source:HGNC Symbol;Acc:HGNC:51105]	1.74	5.21E-03
<i>AC015522.1</i>	novel transcript	1.72	1.61E-02
<i>VWC2</i>	von Willebrand factor C domain containing 2 [Source:HGNC Symbol;Acc:HGNC:30200]	1.70	1.81E-02
<i>PDCD6IPP2</i>	PDCD6IP pseudogene 2 [Source:HGNC Symbol;Acc:HGNC:49873]	1.69	3.85E-02
<i>ID3</i>	inhibitor of DNA binding 3, HLH protein [Source:HGNC Symbol;Acc:HGNC:5362]	1.68	1.50E-07
<i>OPCML</i>	opioid binding protein/cell adhesion molecule like [Source:HGNC Symbol;Acc:HGNC:8143]	1.68	3.54E-02
<i>AC021678.2</i>	novel transcript	1.67	1.53E-02
<i>TNNI3</i>	troponin I3, cardiac type [Source:HGNC Symbol;Acc:HGNC:11947]	1.64	2.58E-09
<i>GCNT1</i>	glucosaminyl (N-acetyl) transferase 1 [Source:HGNC Symbol;Acc:HGNC:4203]	1.59	4.93E-03
<i>FAIM2</i>	Fas apoptotic inhibitory molecule 2 [Source:HGNC Symbol;Acc:HGNC:17067]	1.59	3.89E-02
<i>GREM2</i>	gremlin 2, DAN family BMP antagonist [Source:HGNC Symbol;Acc:HGNC:17655]	1.59	1.57E-02
<i>PRUNE2</i>	prune homolog 2 with BCH domain [Source:HGNC Symbol;Acc:HGNC:25209]	1.57	1.20E-05
<i>ARHGAP45</i>	Rho GTPase activating protein 45 [Source:HGNC Symbol;Acc:HGNC:17102]	1.56	9.78E-03
<i>CDH13</i>	cadherin 13 [Source:HGNC Symbol;Acc:HGNC:1753]	1.55	1.32E-02

<i>ERCC6L</i>	ERCC excision repair 6 like, spindle assembly checkpoint helicase [Source:HGNC Symbol;Acc:HGNC:20794]	1.55	2.69E-02
<i>STARD13</i>	StAR related lipid transfer domain containing 13 [Source:HGNC Symbol;Acc:HGNC:19164]	1.53	5.24E-04
<i>APOLD1</i>	apolipoprotein L domain containing 1 [Source:HGNC Symbol;Acc:HGNC:25268]	1.53	2.29E-02
<i>ARHGEF37</i>	Rho guanine nucleotide exchange factor 37 [Source:HGNC Symbol;Acc:HGNC:34430]	1.53	1.22E-05
<i>MAB21L3</i>	mab-21 like 3 [Source:HGNC Symbol;Acc:HGNC:26787]	1.51	3.87E-02
<i>KIFC1</i>	kinesin family member C1 [Source:HGNC Symbol;Acc:HGNC:6389]	1.50	1.09E-02
<i>LMNB1</i>	lamin B1 [Source:HGNC Symbol;Acc:HGNC:6637]	1.49	1.55E-02
<i>HHATL</i>	hedgehog acyltransferase like [Source:HGNC Symbol;Acc:HGNC:13242]	1.49	3.60E-06
<i>SSPN</i>	sarcospan [Source:HGNC Symbol;Acc:HGNC:11322]	1.47	1.33E-02
<i>NFIB</i>	nuclear factor I B [Source:HGNC Symbol;Acc:HGNC:7785]	1.42	2.14E-02
<i>TOP2A</i>	DNA topoisomerase II alpha [Source:HGNC Symbol;Acc:HGNC:11989]	1.41	3.24E-03
<i>C2orf88</i>	chromosome 2 open reading frame 88 [Source:HGNC Symbol;Acc:HGNC:28191]	1.40	1.28E-04
<i>KLHL29</i>	kelch like family member 29 [Source:HGNC Symbol;Acc:HGNC:29404]	1.38	3.27E-02
<i>ASB11</i>	ankyrin repeat and SOCS box containing 11 [Source:HGNC Symbol;Acc:HGNC:17186]	1.35	3.70E-03
<i>BCL11A</i>	BAF chromatin remodeling complex subunit BCL11A [Source:HGNC Symbol;Acc:HGNC:13221]	1.34	3.27E-02
<i>ARTN</i>	artemin [Source:HGNC Symbol;Acc:HGNC:727]	1.34	8.95E-03
<i>NMRK2</i>	nicotinamide riboside kinase 2 [Source:HGNC Symbol;Acc:HGNC:17871]	1.34	1.34E-07
<i>H1-0</i>	H1.0 linker histone [Source:HGNC Symbol;Acc:HGNC:4714]	1.34	2.75E-05
<i>H4C3</i>	H4 clustered histone 3 [Source:HGNC Symbol;Acc:HGNC:4787]	1.34	3.92E-11
<i>TRH</i>	thyrotropin releasing hormone [Source:HGNC Symbol;Acc:HGNC:12298]	1.33	2.14E-03
<i>PLEKHA4</i>	pleckstrin homology domain containing A4 [Source:HGNC Symbol;Acc:HGNC:14339]	1.33	2.40E-06
<i>NLGN1</i>	neuroligin 1 [Source:HGNC Symbol;Acc:HGNC:14291]	1.33	2.14E-03
<i>LRRC14B</i>	leucine rich repeat containing 14B [Source:HGNC Symbol;Acc:HGNC:37268]	1.32	7.57E-04
<i>RBL1</i>	RB transcriptional corepressor like 1 [Source:HGNC Symbol;Acc:HGNC:9893]	1.32	1.19E-02
<i>CCDC151</i>	coiled-coil domain containing 151 [Source:HGNC Symbol;Acc:HGNC:28303]	1.32	2.76E-02
<i>SCD5</i>	stearoyl-CoA desaturase 5 [Source:HGNC Symbol;Acc:HGNC:21088]	1.31	3.15E-02
<i>FGF1</i>	fibroblast growth factor 1 [Source:HGNC Symbol;Acc:HGNC:3665]	1.30	5.54E-07
<i>IER2</i>	immediate early response 2 [Source:HGNC Symbol;Acc:HGNC:28871]	1.29	5.05E-03
<i>SMCO1</i>	single-pass membrane protein with coiled-coil domains 1 [Source:HGNC Symbol;Acc:HGNC:27407]	1.28	2.79E-04
<i>AURKB</i>	aurora kinase B [Source:HGNC Symbol;Acc:HGNC:11390]	1.28	2.47E-02
<i>OLFML2A</i>	olfactomedin like 2A [Source:HGNC Symbol;Acc:HGNC:27270]	1.27	1.15E-02
<i>FGF16</i>	fibroblast growth factor 16 [Source:HGNC Symbol;Acc:HGNC:3672]	1.23	3.50E-02
<i>RGS9</i>	regulator of G protein signaling 9 [Source:HGNC Symbol;Acc:HGNC:10004]	1.22	3.36E-04
<i>PRRG3</i>	proline rich and Gla domain 3 [Source:HGNC Symbol;Acc:HGNC:30798]	1.21	1.41E-02
<i>ATP2B4</i>	ATPase plasma membrane Ca2+ transporting 4 [Source:HGNC Symbol;Acc:HGNC:817]	1.20	3.31E-03

<i>CCNB2</i>	cyclin B2 [Source:HGNC Symbol;Acc:HGNC:1580]	1.19	4.58E-02
<i>ZFP36</i>	ZFP36 ring finger protein [Source:HGNC Symbol;Acc:HGNC:12862]	1.19	6.71E-03
<i>PGK1</i>	phosphoglycerate kinase 1 [Source:HGNC Symbol;Acc:HGNC:8896]	1.18	4.93E-03
<i>TSPAN9</i>	tetraspanin 9 [Source:HGNC Symbol;Acc:HGNC:21640]	1.16	4.55E-03
<i>THSD4</i>	thrombospondin type 1 domain containing 4 [Source:HGNC Symbol;Acc:HGNC:25835]	1.16	1.48E-03
<i>SMAD6</i>	SMAD family member 6 [Source:HGNC Symbol;Acc:HGNC:6772]	1.16	9.62E-05
<i>LRRC52-AS1</i>	LRRC52 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:54044]	1.16	1.69E-02
<i>ADAMTSL1</i>	ADAMTS like 1 [Source:HGNC Symbol;Acc:HGNC:14632]	1.15	1.96E-02
<i>A2M</i>	alpha-2-macroglobulin [Source:HGNC Symbol;Acc:HGNC:7]	1.15	2.47E-05
<i>PPP1R3A</i>	protein phosphatase 1 regulatory subunit 3A [Source:HGNC Symbol;Acc:HGNC:9291]	1.15	6.23E-05
<i>SOX11</i>	SRY-box transcription factor 11 [Source:HGNC Symbol;Acc:HGNC:11191]	1.15	2.72E-02
<i>PPFA4</i>	PTPRF interacting protein alpha 4 [Source:HGNC Symbol;Acc:HGNC:9248]	1.15	1.53E-03
<i>EDNRB</i>	endothelin receptor type B [Source:HGNC Symbol;Acc:HGNC:3180]	1.15	6.90E-03
<i>VSNL1</i>	visinin like 1 [Source:HGNC Symbol;Acc:HGNC:12722]	1.14	3.87E-02
<i>B3GNT9</i>	UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 9 [Source:HGNC Symbol;Acc:HGNC:28714]	1.13	8.80E-03
<i>TRPC3</i>	transient receptor potential cation channel subfamily C member 3 [Source:HGNC Symbol;Acc:HGNC:12335]	1.12	8.80E-03
<i>P4HA1</i>	prolyl 4-hydroxylase subunit alpha 1 [Source:HGNC Symbol;Acc:HGNC:8546]	1.12	1.31E-02
<i>FXYD6</i>	FXYD domain containing ion transport regulator 6 [Source:HGNC Symbol;Acc:HGNC:4030]	1.11	6.79E-03
<i>CENPF</i>	centromere protein F [Source:HGNC Symbol;Acc:HGNC:1857]	1.11	3.81E-02
<i>SDK2</i>	sidekick cell adhesion molecule 2 [Source:HGNC Symbol;Acc:HGNC:19308]	1.11	1.69E-03
<i>SMAD7</i>	SMAD family member 7 [Source:HGNC Symbol;Acc:HGNC:6773]	1.10	2.81E-04
<i>TSPAN15</i>	tetraspanin 15 [Source:HGNC Symbol;Acc:HGNC:23298]	1.09	4.72E-02
<i>HS3ST3B1</i>	heparan sulfate-glucosamine 3-sulfotransferase 3B1 [Source:HGNC Symbol;Acc:HGNC:5198]	1.09	2.31E-02
<i>BIRC5</i>	baculoviral IAP repeat containing 5 [Source:HGNC Symbol;Acc:HGNC:593]	1.09	3.13E-02
<i>WDHD1</i>	WD repeat and HMG-box DNA binding protein 1 [Source:HGNC Symbol;Acc:HGNC:23170]	1.08	1.11E-02
<i>NFATC2</i>	nuclear factor of activated T cells 2 [Source:HGNC Symbol;Acc:HGNC:7776]	1.08	2.67E-02
<i>PDK1</i>	pyruvate dehydrogenase kinase 1 [Source:HGNC Symbol;Acc:HGNC:8809]	1.08	1.08E-02
<i>ATP1A1</i>	ATPase Na ⁺ /K ⁺ transporting subunit alpha 1 [Source:HGNC Symbol;Acc:HGNC:799]	1.08	3.00E-03
<i>NUSAP1</i>	nucleolar and spindle associated protein 1 [Source:HGNC Symbol;Acc:HGNC:18538]	1.08	1.47E-02
<i>EPN3</i>	epsin 3 [Source:HGNC Symbol;Acc:HGNC:18235]	1.06	2.04E-02
<i>PRICKLE2</i>	prickle planar cell polarity protein 2 [Source:HGNC Symbol;Acc:HGNC:20340]	1.06	1.75E-04
<i>PHF19</i>	PHD finger protein 19 [Source:HGNC Symbol;Acc:HGNC:24566]	1.06	2.90E-02
<i>INTS2</i>	integrator complex subunit 2 [Source:HGNC Symbol;Acc:HGNC:29241]	1.05	3.21E-02
<i>C14orf132</i>	chromosome 14 open reading frame 132 [Source:HGNC Symbol;Acc:HGNC:20346]	1.05	1.33E-02

<i>ST8SIA2</i>	ST8 alpha-N-acetyl-neuraminate alpha-2,8-sialyltransferase 2 [Source:HGNC Symbol;Acc:HGNC:10870]	1.05	4.69E-02
<i>FUT11</i>	fucosyltransferase 11 [Source:HGNC Symbol;Acc:HGNC:19233]	1.04	3.36E-02
<i>ACVR2B</i>	activin A receptor type 2B [Source:HGNC Symbol;Acc:HGNC:174]	1.04	3.28E-02
<i>PLXNA4</i>	plexin A4 [Source:HGNC Symbol;Acc:HGNC:9102]	1.04	1.29E-02
<i>CKM</i>	creatine kinase, M-type [Source:HGNC Symbol;Acc:HGNC:1994]	1.04	2.86E-08
<i>FAM162A</i>	family with sequence similarity 162 member A [Source:HGNC Symbol;Acc:HGNC:17865]	1.04	2.42E-03
<i>KCNQ1</i>	potassium voltage-gated channel subfamily Q member 1 [Source:HGNC Symbol;Acc:HGNC:6294]	1.04	1.67E-02
<i>MB</i>	myoglobin [Source:HGNC Symbol;Acc:HGNC:6915]	1.03	1.55E-02
<i>TBX3</i>	T-box transcription factor 3 [Source:HGNC Symbol;Acc:HGNC:11602]	1.02	5.48E-03
<i>PLCB2</i>	phospholipase C beta 2 [Source:HGNC Symbol;Acc:HGNC:9055]	1.02	4.06E-02
<i>PHACTR1</i>	phosphatase and actin regulator 1 [Source:HGNC Symbol;Acc:HGNC:20990]	1.01	3.73E-03
<i>NUCKS1</i>	nuclear casein kinase and cyclin dependent kinase substrate 1 [Source:HGNC Symbol;Acc:HGNC:29923]	1.01	5.58E-04
<i>STING1</i>	stimulator of interferon response cGAMP interactor 1 [Source:HGNC Symbol;Acc:HGNC:27962]	1.01	4.14E-04
<i>TENM3</i>	teneurin transmembrane protein 3 [Source:HGNC Symbol;Acc:HGNC:29944]	1.00	3.38E-02
<i>DOCK11</i>	dedicator of cytokinesis 11 [Source:HGNC Symbol;Acc:HGNC:23483]	1.00	2.65E-02
<i>CD44</i>	CD44 molecule (Indian blood group) [Source:HGNC Symbol;Acc:HGNC:1681]	1.00	1.05E-02
<i>TIPARP</i>	TCDD inducible poly(ADP-ribose) polymerase [Source:HGNC Symbol;Acc:HGNC:23696]	1.00	5.73E-04
<i>WDR54</i>	WD repeat domain 54 [Source:HGNC Symbol;Acc:HGNC:25770]	0.99	1.14E-02
<i>PLXNA2</i>	plexin A2 [Source:HGNC Symbol;Acc:HGNC:9100]	0.99	7.53E-03
<i>DUSP5</i>	dual specificity phosphatase 5 [Source:HGNC Symbol;Acc:HGNC:3071]	0.99	1.09E-02
<i>ADAMTS9</i>	ADAM metallopeptidase with thrombospondin type 1 motif 9 [Source:HGNC Symbol;Acc:HGNC:13202]	0.98	7.36E-03
<i>LRP5</i>	LDL receptor related protein 5 [Source:HGNC Symbol;Acc:HGNC:6697]	0.98	7.57E-04
<i>CCND1</i>	cyclin D1 [Source:HGNC Symbol;Acc:HGNC:1582]	0.98	1.85E-06
<i>NCALD</i>	neurocalcin delta [Source:HGNC Symbol;Acc:HGNC:7655]	0.97	3.38E-02
<i>LBH</i>	LBH regulator of WNT signaling pathway [Source:HGNC Symbol;Acc:HGNC:29532]	0.97	7.71E-03
<i>MYO18B</i>	myosin XVIIIB [Source:HGNC Symbol;Acc:HGNC:18150]	0.96	2.31E-03
<i>VPS13A</i>	vacuolar protein sorting 13 homolog A [Source:HGNC Symbol;Acc:HGNC:1908]	0.96	1.26E-02
<i>PRKACA</i>	protein kinase cAMP-activated catalytic subunit alpha [Source:HGNC Symbol;Acc:HGNC:9380]	0.95	4.73E-02
<i>GNAO1</i>	G protein subunit alpha o1 [Source:HGNC Symbol;Acc:HGNC:4389]	0.95	4.62E-02
<i>GEM</i>	GTP binding protein overexpressed in skeletal muscle [Source:HGNC Symbol;Acc:HGNC:4234]	0.94	3.41E-02
<i>HNRNPA0</i>	heterogeneous nuclear ribonucleoprotein A0 [Source:HGNC Symbol;Acc:HGNC:5030]	0.94	4.13E-02
<i>JPT2</i>	Jupiter microtubule associated homolog 2 [Source:HGNC Symbol;Acc:HGNC:14137]	0.94	4.18E-02
<i>RRM2</i>	ribonucleotide reductase regulatory subunit M2 [Source:HGNC Symbol;Acc:HGNC:10452]	0.94	3.70E-02

<i>IRF6</i>	interferon regulatory factor 6 [Source:HGNC Symbol;Acc:HGNC:6121]	0.93	4.68E-02
<i>PEX26</i>	peroxisomal biogenesis factor 26 [Source:HGNC Symbol;Acc:HGNC:22965]	0.93	1.72E-02
<i>SYNDIG1</i>	synapse differentiation inducing 1 [Source:HGNC Symbol;Acc:HGNC:15885]	0.93	2.19E-02
<i>PDGFD</i>	platelet derived growth factor D [Source:HGNC Symbol;Acc:HGNC:30620]	0.93	1.28E-02
<i>ETV3</i>	ETS variant transcription factor 3 [Source:HGNC Symbol;Acc:HGNC:3492]	0.92	2.95E-02
<i>TAB3</i>	TGF-beta activated kinase 1 (MAP3K7) binding protein 3 [Source:HGNC Symbol;Acc:HGNC:30681]	0.92	4.16E-02
<i>SRSF6</i>	serine and arginine rich splicing factor 6 [Source:HGNC Symbol;Acc:HGNC:10788]	0.92	3.06E-03
<i>FKBP5</i>	FKBP prolyl isomerase 5 [Source:HGNC Symbol;Acc:HGNC:3721]	0.91	1.49E-02
<i>CDC42</i>	cell division cycle 42 [Source:HGNC Symbol;Acc:HGNC:1736]	0.90	9.44E-04
<i>CBX7</i>	chromobox 7 [Source:HGNC Symbol;Acc:HGNC:1557]	0.90	2.01E-02
<i>THBS4</i>	thrombospondin 4 [Source:HGNC Symbol;Acc:HGNC:11788]	0.90	5.96E-03
<i>KIF1C</i>	kinesin family member 1C [Source:HGNC Symbol;Acc:HGNC:6317]	0.89	1.13E-03
<i>FAM219A</i>	family with sequence similarity 219 member A [Source:HGNC Symbol;Acc:HGNC:19920]	0.89	3.28E-02
<i>RYR2</i>	ryanodine receptor 2 [Source:HGNC Symbol;Acc:HGNC:10484]	0.88	3.29E-03
<i>MSX2</i>	msh homeobox 2 [Source:HGNC Symbol;Acc:HGNC:7392]	0.88	2.46E-03
<i>TFRC</i>	transferrin receptor [Source:HGNC Symbol;Acc:HGNC:11763]	0.88	2.65E-03
<i>SC5D</i>	sterol-C5-desaturase [Source:HGNC Symbol;Acc:HGNC:10547]	0.88	3.22E-03
<i>DMXL2</i>	Dmx like 2 [Source:HGNC Symbol;Acc:HGNC:2938]	0.87	1.79E-03
<i>ZNF385B</i>	zinc finger protein 385B [Source:HGNC Symbol;Acc:HGNC:26332]	0.87	5.17E-03
<i>CREB3L2</i>	cAMP responsive element binding protein 3 like 2 [Source:HGNC Symbol;Acc:HGNC:23720]	0.87	9.86E-03
<i>USP9X</i>	ubiquitin specific peptidase 9 X-linked [Source:HGNC Symbol;Acc:HGNC:12632]	0.86	1.79E-03
<i>SSH2</i>	slingshot protein phosphatase 2 [Source:HGNC Symbol;Acc:HGNC:30580]	0.86	1.25E-02
<i>YEATS2</i>	YEATS domain containing 2 [Source:HGNC Symbol;Acc:HGNC:25489]	0.86	3.29E-03
<i>ABCA2</i>	ATP binding cassette subfamily A member 2 [Source:HGNC Symbol;Acc:HGNC:32]	0.86	5.17E-03
<i>CCDC141</i>	coiled-coil domain containing 141 [Source:HGNC Symbol;Acc:HGNC:26821]	0.86	1.01E-03
<i>TCAP</i>	titin-cap [Source:HGNC Symbol;Acc:HGNC:11610]	0.85	1.11E-03
<i>TXNIP</i>	thioredoxin interacting protein [Source:HGNC Symbol;Acc:HGNC:16952]	0.85	1.55E-02
<i>PLCXD3</i>	phosphatidylinositol specific phospholipase C X domain containing 3 [Source:HGNC Symbol;Acc:HGNC:31822]	0.85	1.94E-02
<i>KDM3A</i>	lysine demethylase 3A [Source:HGNC Symbol;Acc:HGNC:20815]	0.85	7.95E-03
<i>BANCR</i>	BRAF-activated non-protein coding RNA [Source:HGNC Symbol;Acc:HGNC:43877]	0.85	1.85E-05
<i>TMEM65</i>	transmembrane protein 65 [Source:HGNC Symbol;Acc:HGNC:25203]	0.84	3.86E-02
<i>LCLAT1</i>	lysocardiolipin acyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:26756]	0.84	2.37E-02
<i>NEFL</i>	neurofilament light [Source:HGNC Symbol;Acc:HGNC:7739]	0.84	1.69E-02
<i>MCC</i>	MCC regulator of WNT signaling pathway [Source:HGNC Symbol;Acc:HGNC:6935]	0.84	1.85E-05
<i>ADD2</i>	adducin 2 [Source:HGNC Symbol;Acc:HGNC:244]	0.83	2.36E-02

<i>LINC00881</i>	long intergenic non-protein coding RNA 881 [Source:HGNC Symbol;Acc:HGNC:48567]	0.83	9.41E-03
<i>CPNE5</i>	copine 5 [Source:HGNC Symbol;Acc:HGNC:2318]	0.83	4.74E-03
<i>LMOD2</i>	leiomodin 2 [Source:HGNC Symbol;Acc:HGNC:6648]	0.82	4.36E-03
<i>CBX6</i>	chromobox 6 [Source:HGNC Symbol;Acc:HGNC:1556]	0.81	2.63E-02
<i>GNG7</i>	G protein subunit gamma 7 [Source:HGNC Symbol;Acc:HGNC:4410]	0.81	1.71E-02
<i>FAM122B</i>	family with sequence similarity 122B [Source:HGNC Symbol;Acc:HGNC:30490]	0.80	1.23E-02
<i>CACNB1</i>	calcium voltage-gated channel auxiliary subunit beta 1 [Source:HGNC Symbol;Acc:HGNC:1401]	0.79	1.28E-02
<i>ELOVL6</i>	ELOVL fatty acid elongase 6 [Source:HGNC Symbol;Acc:HGNC:15829]	0.79	4.79E-02
<i>ANK2</i>	ankyrin 2 [Source:HGNC Symbol;Acc:HGNC:493]	0.79	4.68E-02
<i>KDM2B</i>	lysine demethylase 2B [Source:HGNC Symbol;Acc:HGNC:13610]	0.78	1.84E-02
<i>DCAF17</i>	DDB1 and CUL4 associated factor 17 [Source:HGNC Symbol;Acc:HGNC:25784]	0.78	4.62E-02
<i>PKM</i>	pyruvate kinase M1/2 [Source:HGNC Symbol;Acc:HGNC:9021]	0.78	9.55E-03
<i>SLC35F1</i>	solute carrier family 35 member F1 [Source:HGNC Symbol;Acc:HGNC:21483]	0.78	3.23E-02
<i>LRRC20</i>	leucine rich repeat containing 20 [Source:HGNC Symbol;Acc:HGNC:23421]	0.78	1.55E-02
<i>PFKL</i>	phosphofructokinase, liver type [Source:HGNC Symbol;Acc:HGNC:8876]	0.77	3.87E-02
<i>TMTC3</i>	transmembrane O-mannosyltransferase targeting cadherins 3 [Source:HGNC Symbol;Acc:HGNC:26899]	0.77	2.25E-03
<i>DGAT2</i>	diacylglycerol O-acyltransferase 2 [Source:HGNC Symbol;Acc:HGNC:16940]	0.77	2.69E-02
<i>MYOM1</i>	myomesin 1 [Source:HGNC Symbol;Acc:HGNC:7613]	0.76	3.27E-02
<i>HEATR1</i>	HEAT repeat containing 1 [Source:HGNC Symbol;Acc:HGNC:25517]	0.76	2.49E-02
<i>DEPP1</i>	DEPP1 autophagy regulator [Source:HGNC Symbol;Acc:HGNC:23355]	0.76	7.53E-03
<i>PDE4DIP</i>	phosphodiesterase 4D interacting protein [Source:HGNC Symbol;Acc:HGNC:15580]	0.76	6.71E-03
<i>ZKSCAN2</i>	zinc finger with KRAB and SCAN domains 2 [Source:HGNC Symbol;Acc:HGNC:25677]	0.74	3.15E-02
<i>C4orf3</i>	chromosome 4 open reading frame 3 [Source:HGNC Symbol;Acc:HGNC:19225]	0.74	3.81E-02
<i>MIDEAS</i>	mitotic deacetylase associated SANT domain protein [Source:HGNC Symbol;Acc:HGNC:19853]	0.74	3.42E-02
<i>MLH3</i>	mutL homolog 3 [Source:HGNC Symbol;Acc:HGNC:7128]	0.73	4.05E-02
<i>C20orf194</i>	chromosome 20 open reading frame 194 [Source:HGNC Symbol;Acc:HGNC:17721]	0.73	1.95E-02
<i>IGF2R</i>	insulin like growth factor 2 receptor [Source:HGNC Symbol;Acc:HGNC:5467]	0.72	1.08E-02
<i>MAPK8IP3</i>	mitogen-activated protein kinase 8 interacting protein 3 [Source:HGNC Symbol;Acc:HGNC:6884]	0.72	2.00E-02
<i>SMCHD1</i>	structural maintenance of chromosomes flexible hinge domain containing 1 [Source:HGNC Symbol;Acc:HGNC:29090]	0.72	2.86E-02
<i>NFYB</i>	nuclear transcription factor Y subunit beta [Source:HGNC Symbol;Acc:HGNC:7805]	0.71	4.58E-02
<i>PRKAA2</i>	protein kinase AMP-activated catalytic subunit alpha 2 [Source:HGNC Symbol;Acc:HGNC:9377]	0.70	1.33E-02
<i>EXOC6B</i>	exocyst complex component 6B [Source:HGNC Symbol;Acc:HGNC:17085]	0.70	3.21E-02
<i>AKAP6</i>	A-kinase anchoring protein 6 [Source:HGNC Symbol;Acc:HGNC:376]	0.69	4.63E-02

<i>PHLDA1</i>	pleckstrin homology like domain family A member 1 [Source:HGNC Symbol;Acc:HGNC:8933]	0.69	4.15E-02
<i>PRSS35</i>	serine protease 35 [Source:HGNC Symbol;Acc:HGNC:21387]	0.68	5.69E-03
<i>CKMT2</i>	creatine kinase, mitochondrial 2 [Source:HGNC Symbol;Acc:HGNC:1996]	0.67	1.47E-02
<i>INSR</i>	insulin receptor [Source:HGNC Symbol;Acc:HGNC:6091]	0.66	1.15E-02
<i>SCN5A</i>	sodium voltage-gated channel alpha subunit 5 [Source:HGNC Symbol;Acc:HGNC:10593]	0.66	1.53E-03
<i>NRP1</i>	neuropilin 1 [Source:HGNC Symbol;Acc:HGNC:8004]	0.65	1.39E-02
<i>NCOA3</i>	nuclear receptor coactivator 3 [Source:HGNC Symbol;Acc:HGNC:7670]	0.65	2.54E-02
<i>SLC20A2</i>	solute carrier family 20 member 2 [Source:HGNC Symbol;Acc:HGNC:10947]	0.65	7.79E-03
<i>PIFO</i>	primary cilia formation [Source:HGNC Symbol;Acc:HGNC:27009]	0.64	1.33E-02
<i>CTNNB1</i>	catenin beta 1 [Source:HGNC Symbol;Acc:HGNC:2514]	0.64	4.68E-02
<i>ANP32A</i>	acidic nuclear phosphoprotein 32 family member A [Source:HGNC Symbol;Acc:HGNC:13233]	0.64	3.81E-02
<i>GPD1L</i>	glycerol-3-phosphate dehydrogenase 1 like [Source:HGNC Symbol;Acc:HGNC:28956]	0.62	3.62E-02
<i>PDCD11</i>	programmed cell death 11 [Source:HGNC Symbol;Acc:HGNC:13408]	0.62	2.76E-02
<i>MCL1</i>	MCL1 apoptosis regulator, BCL2 family member [Source:HGNC Symbol;Acc:HGNC:6943]	0.62	1.57E-02
<i>LZTS3</i>	leucine zipper tumor suppressor family member 3 [Source:HGNC Symbol;Acc:HGNC:30139]	0.62	3.85E-02
<i>GLUL</i>	glutamate-ammonia ligase [Source:HGNC Symbol;Acc:HGNC:4341]	0.62	1.23E-03
<i>MFGE8</i>	milk fat globule-EGF factor 8 protein [Source:HGNC Symbol;Acc:HGNC:7036]	0.62	2.76E-02
<i>DOCK7</i>	dedicator of cytokinesis 7 [Source:HGNC Symbol;Acc:HGNC:19190]	0.61	2.21E-02
<i>SMARCC1</i>	SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1 [Source:HGNC Symbol;Acc:HGNC:11104]	0.61	1.33E-02
<i>PWWP3B</i>	PWWP domain containing 3B [Source:HGNC Symbol;Acc:HGNC:26583]	0.61	4.80E-02
<i>DARS1</i>	aspartyl-tRNA synthetase 1 [Source:HGNC Symbol;Acc:HGNC:2678]	0.61	3.62E-02
<i>AC245297.1</i>	phosphodiesterase 4D interacting protein (myomegalin) (PDE4DIP) pseudogene	0.60	2.63E-02
<i>PARP4</i>	poly(ADP-ribose) polymerase family member 4 [Source:HGNC Symbol;Acc:HGNC:271]	0.60	3.65E-02
<i>TTC28</i>	tetratricopeptide repeat domain 28 [Source:HGNC Symbol;Acc:HGNC:29179]	0.60	3.41E-02
<i>ACADSB</i>	acyl-CoA dehydrogenase short/branched chain [Source:HGNC Symbol;Acc:HGNC:91]	0.59	1.16E-02
<i>MASP1</i>	mannan binding lectin serine peptidase 1 [Source:HGNC Symbol;Acc:HGNC:6901]	0.58	4.44E-02
<i>SET</i>	SET nuclear proto-oncogene [Source:HGNC Symbol;Acc:HGNC:10760]	0.58	4.47E-02
<i>DTNA</i>	dystrobrevin alpha [Source:HGNC Symbol;Acc:HGNC:3057]	0.58	1.39E-02
<i>ID2</i>	inhibitor of DNA binding 2 [Source:HGNC Symbol;Acc:HGNC:5361]	0.58	1.81E-02
<i>CBLB</i>	Cbl proto-oncogene B [Source:HGNC Symbol;Acc:HGNC:1542]	0.56	4.26E-02
<i>AKAP13</i>	A-kinase anchoring protein 13 [Source:HGNC Symbol;Acc:HGNC:371]	0.55	4.48E-02
<i>XPR1</i>	xenotropic and polytropic retrovirus receptor 1 [Source:HGNC Symbol;Acc:HGNC:12827]	0.54	3.29E-02
<i>GPR162</i>	G protein-coupled receptor 162 [Source:HGNC Symbol;Acc:HGNC:16693]	0.53	4.18E-02
<i>H3-3B</i>	H3.3 histone B [Source:HGNC Symbol;Acc:HGNC:4765]	0.52	4.17E-02

<i>NDRG2</i>	NDRG family member 2 [Source:HGNC Symbol;Acc:HGNC:14460]	0.51	2.81E-02
--------------	--	------	----------

Supplementary Table 2. 199 downregulated DEGs in the ISS μ G condition compared with the ISS 1G condition.

Gene	Description	$\log_2(\text{Fold change})$	adjusted p-value
<i>SLCO4C1</i>	solute carrier organic anion transporter family member 4C1 [Source:HGNC Symbol;Acc:HGNC:23612]	-7.93	2.2E-06
<i>HSD3B2</i>	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 [Source:HGNC Symbol;Acc:HGNC:5218]	-7.46	7.7E-04
<i>LINC02201</i>	long intergenic non-protein coding RNA 2201 [Source:HGNC Symbol;Acc:HGNC:53067]	-6.42	1.1E-02
<i>UGT8</i>	UDP glycosyltransferase 8 [Source:HGNC Symbol;Acc:HGNC:12555]	-6.36	7.5E-03
<i>FAM131B</i>	family with sequence similarity 131 member B [Source:HGNC Symbol;Acc:HGNC:22202]	-6.35	6.6E-03
<i>DNAH2</i>	dynein axonemal heavy chain 2 [Source:HGNC Symbol;Acc:HGNC:2948]	-6.20	8.2E-04
<i>MUC4</i>	mucin 4, cell surface associated [Source:HGNC Symbol;Acc:HGNC:7514]	-6.08	1.4E-02
<i>PCSK9</i>	proprotein convertase subtilisin/kexin type 9 [Source:HGNC Symbol;Acc:HGNC:20001]	-6.06	2.5E-02
<i>ITIH5</i>	inter-alpha-trypsin inhibitor heavy chain 5 [Source:HGNC Symbol;Acc:HGNC:21449]	-6.01	2.9E-02
<i>VIPR1</i>	vasoactive intestinal peptide receptor 1 [Source:HGNC Symbol;Acc:HGNC:12694]	-6.00	1.8E-02
<i>COL4A4</i>	collagen type IV alpha 4 chain [Source:HGNC Symbol;Acc:HGNC:2206]	-5.73	1.2E-02
<i>SATB2</i>	SATB homeobox 2 [Source:HGNC Symbol;Acc:HGNC:21637]	-5.37	3.2E-02
<i>DNAH12</i>	dynein axonemal heavy chain 12 [Source:HGNC Symbol;Acc:HGNC:2943]	-5.18	3.7E-02
<i>ARHGEF15</i>	Rho guanine nucleotide exchange factor 15 [Source:HGNC Symbol;Acc:HGNC:15590]	-5.13	3.8E-02
<i>GABRP</i>	gamma-aminobutyric acid type A receptor subunit pi [Source:HGNC Symbol;Acc:HGNC:4089]	-5.10	8.2E-05
<i>C5orf46</i>	chromosome 5 open reading frame 46 [Source:HGNC Symbol;Acc:HGNC:33768]	-4.05	2.1E-02
<i>PTPRZ1</i>	protein tyrosine phosphatase receptor type Z1 [Source:HGNC Symbol;Acc:HGNC:9685]	-3.90	1.7E-02
<i>EDN1</i>	endothelin 1 [Source:HGNC Symbol;Acc:HGNC:3176]	-3.52	4.4E-02
<i>GRAMD1C</i>	GRAM domain containing 1C [Source:HGNC Symbol;Acc:HGNC:25252]	-3.34	2.2E-02
<i>TRPC4</i>	transient receptor potential cation channel subfamily C member 4 [Source:HGNC Symbol;Acc:HGNC:12336]	-3.24	1.1E-03
Z97832.2	novel transcript, antisense to SCUBE3	-3.19	3.4E-02
<i>CDHR1</i>	cadherin related family member 1 [Source:HGNC Symbol;Acc:HGNC:14550]	-2.98	9.8E-03
<i>SLC38A5</i>	solute carrier family 38 member 5 [Source:HGNC Symbol;Acc:HGNC:18070]	-2.90	4.5E-02
<i>MMP24</i>	matrix metallopeptidase 24 [Source:HGNC Symbol;Acc:HGNC:7172]	-2.79	6.9E-10
<i>C1R</i>	complement C1r [Source:HGNC Symbol;Acc:HGNC:1246]	-2.74	4.1E-09
<i>RGCC</i>	regulator of cell cycle [Source:HGNC Symbol;Acc:HGNC:20369]	-2.68	4.8E-03
<i>ITGA11</i>	integrin subunit alpha 11 [Source:HGNC Symbol;Acc:HGNC:6136]	-2.65	1.4E-04
<i>MFSD2A</i>	major facilitator superfamily domain containing 2A [Source:HGNC Symbol;Acc:HGNC:25897]	-2.59	3.3E-03

<i>NECAB2</i>	N-terminal EF-hand calcium binding protein 2 [Source:HGNC Symbol;Acc:HGNC:23746]	-2.55	3.9E-04
<i>MYOT</i>	myotilin [Source:HGNC Symbol;Acc:HGNC:12399]	-2.36	3.4E-02
<i>PROCR</i>	protein C receptor [Source:HGNC Symbol;Acc:HGNC:9452]	-2.33	2.6E-02
<i>COL26A1</i>	collagen type XXVI alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:18038]	-2.28	9.7E-04
<i>NTRK1</i>	neurotrophic receptor tyrosine kinase 1 [Source:HGNC Symbol;Acc:HGNC:8031]	-2.27	1.2E-03
<i>HPX</i>	hemopexin [Source:HGNC Symbol;Acc:HGNC:5171]	-2.23	3.4E-02
<i>PHF24</i>	PHD finger protein 24 [Source:HGNC Symbol;Acc:HGNC:29180]	-2.21	9.4E-04
<i>AC018647.1</i>	novel transcript	-2.13	1.1E-03
<i>SFRP5</i>	secreted frizzled related protein 5 [Source:HGNC Symbol;Acc:HGNC:10779]	-2.03	4.4E-11
<i>ENC1</i>	ectodermal-neural cortex 1 [Source:HGNC Symbol;Acc:HGNC:3345]	-2.00	8.3E-03
<i>AC023481.1</i>	novel transcript	-1.96	3.3E-02
<i>SL/TRK4</i>	SLIT and NTRK like family member 4 [Source:HGNC Symbol;Acc:HGNC:23502]	-1.94	4.8E-02
<i>NIPAL4</i>	NIPA like domain containing 4 [Source:HGNC Symbol;Acc:HGNC:28018]	-1.87	1.1E-04
<i>ANXA1</i>	annexin A1 [Source:HGNC Symbol;Acc:HGNC:533]	-1.83	4.5E-05
<i>LIMA1</i>	LIM domain and actin binding 1 [Source:HGNC Symbol;Acc:HGNC:24636]	-1.79	1.1E-02
<i>HPSE2</i>	heparanase 2 (inactive) [Source:HGNC Symbol;Acc:HGNC:18374]	-1.76	1.2E-02
<i>GPC4</i>	glypican 4 [Source:HGNC Symbol;Acc:HGNC:4452]	-1.74	8.7E-06
<i>INHBA</i>	inhibin subunit beta A [Source:HGNC Symbol;Acc:HGNC:6066]	-1.71	1.7E-02
<i>ERICH5</i>	glutamate rich 5 [Source:HGNC Symbol;Acc:HGNC:26823]	-1.70	5.7E-03
<i>SLC35F2</i>	solute carrier family 35 member F2 [Source:HGNC Symbol;Acc:HGNC:23615]	-1.68	3.1E-03
<i>AC109583.1</i>	Probable threonine protease PRSS50 [Source:UniProtKB/Swiss-Prot;Acc:Q9UI38]	-1.65	4.0E-02
<i>SNCAIP</i>	synuclein alpha interacting protein [Source:HGNC Symbol;Acc:HGNC:11139]	-1.64	2.4E-03
<i>CDC42EP2</i>	CDC42 effector protein 2 [Source:HGNC Symbol;Acc:HGNC:16263]	-1.63	7.3E-03
<i>RASGRP1</i>	RAS guanyl releasing protein 1 [Source:HGNC Symbol;Acc:HGNC:9878]	-1.56	2.0E-03
<i>MYRF</i>	myelin regulatory factor [Source:HGNC Symbol;Acc:HGNC:1181]	-1.55	8.9E-03
<i>CD24</i>	CD24 molecule [Source:HGNC Symbol;Acc:HGNC:1645]	-1.54	6.2E-14
<i>GPR176</i>	G protein-coupled receptor 176 [Source:HGNC Symbol;Acc:HGNC:32370]	-1.48	2.5E-03
<i>ELMO1</i>	engulfment and cell motility 1 [Source:HGNC Symbol;Acc:HGNC:16286]	-1.47	5.5E-03
<i>CTSV</i>	cathepsin V [Source:HGNC Symbol;Acc:HGNC:2538]	-1.44	6.3E-06
<i>TCIRG1</i>	T cell immune regulator 1, ATPase H ⁺ transporting V0 subunit a3 [Source:HGNC Symbol;Acc:HGNC:11647]	-1.43	4.9E-03
<i>LDB2</i>	LIM domain binding 2 [Source:HGNC Symbol;Acc:HGNC:6533]	-1.42	9.1E-04
<i>TAGLN</i>	transgelin [Source:HGNC Symbol;Acc:HGNC:11553]	-1.40	3.7E-05
<i>EFHD1</i>	EF-hand domain family member D1 [Source:HGNC Symbol;Acc:HGNC:29556]	-1.37	3.8E-02
<i>PPM1H</i>	protein phosphatase, Mg ²⁺ /Mn ²⁺ dependent 1H [Source:HGNC Symbol;Acc:HGNC:18583]	-1.36	1.9E-02
<i>ACAT2</i>	acetyl-CoA acetyltransferase 2 [Source:HGNC Symbol;Acc:HGNC:94]	-1.36	2.3E-03

<i>P3H3</i>	prolyl 3-hydroxylase 3 [Source:HGNC Symbol;Acc:HGNC:19318]	-1.36	2.1E-02
<i>NDNF</i>	neuron derived neurotrophic factor [Source:HGNC Symbol;Acc:HGNC:26256]	-1.35	1.4E-02
<i>LAMC2</i>	laminin subunit gamma 2 [Source:HGNC Symbol;Acc:HGNC:6493]	-1.33	2.3E-02
<i>MATN2</i>	matrilin 2 [Source:HGNC Symbol;Acc:HGNC:6908]	-1.32	2.3E-09
<i>PLPPR4</i>	phospholipid phosphatase related 4 [Source:HGNC Symbol;Acc:HGNC:23496]	-1.31	8.3E-03
<i>HCN3</i>	hyperpolarization activated cyclic nucleotide gated potassium channel 3 [Source:HGNC Symbol;Acc:HGNC:19183]	-1.29	8.6E-03
<i>ACTA1</i>	actin alpha 1, skeletal muscle [Source:HGNC Symbol;Acc:HGNC:129]	-1.29	9.1E-04
<i>RELB</i>	RELB proto-oncogene, NF- κ B subunit [Source:HGNC Symbol;Acc:HGNC:9956]	-1.28	1.1E-02
<i>KMT2D</i>	lysine methyltransferase 2D [Source:HGNC Symbol;Acc:HGNC:7133]	-1.27	1.0E-02
<i>CRABP2</i>	cellular retinoic acid binding protein 2 [Source:HGNC Symbol;Acc:HGNC:2339]	-1.26	1.8E-09
<i>DDIT3</i>	DNA damage inducible transcript 3 [Source:HGNC Symbol;Acc:HGNC:2726]	-1.23	1.7E-02
<i>MT-ND6</i>	mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6 [Source:HGNC Symbol;Acc:HGNC:7462]	-1.23	1.5E-04
<i>ARRB1</i>	arrestin beta 1 [Source:HGNC Symbol;Acc:HGNC:711]	-1.23	1.9E-02
<i>RNF19B</i>	ring finger protein 19B [Source:HGNC Symbol;Acc:HGNC:26886]	-1.23	5.9E-03
<i>RAI14</i>	retinoic acid induced 14 [Source:HGNC Symbol;Acc:HGNC:14873]	-1.22	1.3E-04
<i>TKT</i>	transketolase [Source:HGNC Symbol;Acc:HGNC:11834]	-1.21	1.9E-04
<i>EHD2</i>	EH domain containing 2 [Source:HGNC Symbol;Acc:HGNC:3243]	-1.20	2.2E-02
<i>SEC31B</i>	SEC31 homolog B, COPII coat complex component [Source:HGNC Symbol;Acc:HGNC:23197]	-1.17	7.5E-03
<i>ASXL3</i>	ASXL transcriptional regulator 3 [Source:HGNC Symbol;Acc:HGNC:29357]	-1.16	1.9E-02
<i>GNA11</i>	G protein subunit alpha 11 [Source:HGNC Symbol;Acc:HGNC:4379]	-1.16	8.9E-03
<i>MYO1D</i>	myosin ID [Source:HGNC Symbol;Acc:HGNC:7598]	-1.15	2.3E-03
<i>MGST1</i>	microsomal glutathione S-transferase 1 [Source:HGNC Symbol;Acc:HGNC:7061]	-1.12	4.6E-04
<i>THBS1</i>	thrombospondin 1 [Source:HGNC Symbol;Acc:HGNC:11785]	-1.12	7.7E-03
<i>BRD1</i>	bromodomain containing 1 [Source:HGNC Symbol;Acc:HGNC:1102]	-1.12	3.3E-02
<i>CMTM5</i>	CKLF like MARVEL transmembrane domain containing 5 [Source:HGNC Symbol;Acc:HGNC:19176]	-1.11	1.3E-02
<i>TP53I3</i>	tumor protein p53 inducible protein 3 [Source:HGNC Symbol;Acc:HGNC:19373]	-1.11	3.0E-03
<i>CORO7</i>	coronin 7 [Source:HGNC Symbol;Acc:HGNC:26161]	-1.10	1.2E-02
<i>S100A10</i>	S100 calcium binding protein A10 [Source:HGNC Symbol;Acc:HGNC:10487]	-1.09	7.9E-03
<i>ACTB</i>	actin beta [Source:HGNC Symbol;Acc:HGNC:132]	-1.09	5.0E-03
<i>H2BC4</i>	H2B clustered histone 4 [Source:HGNC Symbol;Acc:HGNC:4757]	-1.07	3.8E-02
<i>IDI1</i>	isopentenyl-diphosphate delta isomerase 1 [Source:HGNC Symbol;Acc:HGNC:5387]	-1.06	1.3E-02
<i>VAMP1</i>	vesicle associated membrane protein 1 [Source:HGNC Symbol;Acc:HGNC:12642]	-1.06	1.5E-02
<i>CAPN5</i>	calpain 5 [Source:HGNC Symbol;Acc:HGNC:1482]	-1.05	4.2E-03

<i>TRIO</i>	trio Rho guanine nucleotide exchange factor [Source:HGNC Symbol;Acc:HGNC:12303]	-1.05	7.3E-03
<i>COL1A1</i>	collagen type I alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2197]	-1.05	2.6E-02
<i>COTL1</i>	coactosin like F-actin binding protein 1 [Source:HGNC Symbol;Acc:HGNC:18304]	-1.04	4.9E-03
<i>TMEM97</i>	transmembrane protein 97 [Source:HGNC Symbol;Acc:HGNC:28106]	-1.03	3.4E-02
<i>CLK1</i>	CDC like kinase 1 [Source:HGNC Symbol;Acc:HGNC:2068]	-1.02	1.1E-03
<i>ADA</i>	adenosine deaminase [Source:HGNC Symbol;Acc:HGNC:186]	-1.02	1.2E-02
<i>INHA</i>	inhibin subunit alpha [Source:HGNC Symbol;Acc:HGNC:6065]	-1.01	4.7E-02
<i>LRRN3</i>	leucine rich repeat neuronal 3 [Source:HGNC Symbol;Acc:HGNC:17200]	-1.01	2.8E-02
<i>NAGLU</i>	N-acetyl-alpha-glucosaminidase [Source:HGNC Symbol;Acc:HGNC:7632]	-1.00	5.0E-04
<i>TCN2</i>	transcobalamin 2 [Source:HGNC Symbol;Acc:HGNC:11653]	-0.99	1.5E-02
<i>EHD3</i>	EH domain containing 3 [Source:HGNC Symbol;Acc:HGNC:3244]	-0.99	1.1E-03
<i>TXNL4B</i>	thioredoxin like 4B [Source:HGNC Symbol;Acc:HGNC:26041]	-0.98	3.9E-02
<i>MSMO1</i>	methylsterol monooxygenase 1 [Source:HGNC Symbol;Acc:HGNC:10545]	-0.98	1.3E-02
<i>CLK4</i>	CDC like kinase 4 [Source:HGNC Symbol;Acc:HGNC:13659]	-0.98	5.2E-04
<i>PRSS23</i>	serine protease 23 [Source:HGNC Symbol;Acc:HGNC:14370]	-0.98	5.9E-04
<i>PAOX</i>	polyamine oxidase [Source:HGNC Symbol;Acc:HGNC:20837]	-0.98	1.8E-02
<i>EMP2</i>	epithelial membrane protein 2 [Source:HGNC Symbol;Acc:HGNC:3334]	-0.97	2.2E-04
<i>CEP164</i>	centrosomal protein 164 [Source:HGNC Symbol;Acc:HGNC:29182]	-0.96	3.8E-02
<i>ZNF467</i>	zinc finger protein 467 [Source:HGNC Symbol;Acc:HGNC:23154]	-0.95	1.4E-02
<i>CALD1</i>	caldesmon 1 [Source:HGNC Symbol;Acc:HGNC:1441]	-0.95	3.6E-02
<i>ACHE</i>	acetylcholinesterase (Cartwright blood group) [Source:HGNC Symbol;Acc:HGNC:108]	-0.95	1.7E-02
<i>LIMK2</i>	LIM domain kinase 2 [Source:HGNC Symbol;Acc:HGNC:6614]	-0.94	1.2E-02
<i>FAM189A2</i>	family with sequence similarity 189 member A2 [Source:HGNC Symbol;Acc:HGNC:24820]	-0.94	9.4E-03
<i>USP7</i>	ubiquitin specific peptidase 7 [Source:HGNC Symbol;Acc:HGNC:12630]	-0.94	1.1E-02
<i>GBP2</i>	guanylate binding protein 2 [Source:HGNC Symbol;Acc:HGNC:4183]	-0.93	1.7E-02
<i>MFAP4</i>	microfibril associated protein 4 [Source:HGNC Symbol;Acc:HGNC:7035]	-0.93	3.3E-02
<i>IQGAP1</i>	IQ motif containing GTPase activating protein 1 [Source:HGNC Symbol;Acc:HGNC:6110]	-0.92	3.7E-02
<i>FAM89A</i>	family with sequence similarity 89 member A [Source:HGNC Symbol;Acc:HGNC:25057]	-0.92	1.4E-02
<i>NAGPA</i>	N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase [Source:HGNC Symbol;Acc:HGNC:17378]	-0.90	2.1E-02
<i>RHPN1</i>	rhophilin Rho GTPase binding protein 1 [Source:HGNC Symbol;Acc:HGNC:19973]	-0.90	1.5E-02
<i>PLS3</i>	plastin 3 [Source:HGNC Symbol;Acc:HGNC:9091]	-0.90	1.8E-04
<i>SGK1</i>	serum/glucocorticoid regulated kinase 1 [Source:HGNC Symbol;Acc:HGNC:10810]	-0.90	4.4E-02
<i>GLRX</i>	glutaredoxin [Source:HGNC Symbol;Acc:HGNC:4330]	-0.90	3.0E-02
<i>GSDME</i>	gasdermin E [Source:HGNC Symbol;Acc:HGNC:2810]	-0.89	4.7E-03
<i>SQLE</i>	squalene epoxidase [Source:HGNC Symbol;Acc:HGNC:11279]	-0.89	1.0E-02

<i>ITGB5</i>	integrin subunit beta 5 [Source:HGNC Symbol;Acc:HGNC:6160]	-0.89	3.6E-02
<i>P3H1</i>	prolyl 3-hydroxylase 1 [Source:HGNC Symbol;Acc:HGNC:19316]	-0.89	2.0E-02
<i>DAB2</i>	DAB adaptor protein 2 [Source:HGNC Symbol;Acc:HGNC:2662]	-0.88	3.4E-02
<i>ASS1</i>	argininosuccinate synthase 1 [Source:HGNC Symbol;Acc:HGNC:758]	-0.88	5.5E-03
<i>CSRP2</i>	cysteine and glycine rich protein 2 [Source:HGNC Symbol;Acc:HGNC:2470]	-0.88	4.9E-03
<i>PLXNA1</i>	plexin A1 [Source:HGNC Symbol;Acc:HGNC:9099]	-0.88	4.7E-02
<i>ARSA</i>	arylsulfatase A [Source:HGNC Symbol;Acc:HGNC:713]	-0.88	1.0E-02
<i>FHL1</i>	four and a half LIM domains 1 [Source:HGNC Symbol;Acc:HGNC:3702]	-0.87	2.3E-02
<i>HSD17B14</i>	hydroxysteroid 17-beta dehydrogenase 14 [Source:HGNC Symbol;Acc:HGNC:23238]	-0.86	4.2E-02
<i>MAFG</i>	MAF bZIP transcription factor G [Source:HGNC Symbol;Acc:HGNC:6781]	-0.86	9.9E-03
<i>EFNB2</i>	ephrin B2 [Source:HGNC Symbol;Acc:HGNC:3227]	-0.84	2.3E-03
<i>TPM2</i>	tropomyosin 2 [Source:HGNC Symbol;Acc:HGNC:12011]	-0.84	4.1E-04
<i>VAT1L</i>	vesicle amine transport 1 like [Source:HGNC Symbol;Acc:HGNC:29315]	-0.84	5.8E-03
<i>GRN</i>	granulin precursor [Source:HGNC Symbol;Acc:HGNC:4601]	-0.84	7.3E-03
<i>C3orf70</i>	chromosome 3 open reading frame 70 [Source:HGNC Symbol;Acc:HGNC:33731]	-0.83	3.7E-02
<i>FBXL6</i>	F-box and leucine rich repeat protein 6 [Source:HGNC Symbol;Acc:HGNC:13603]	-0.83	2.1E-02
<i>PLAAT3</i>	phospholipase A and acyltransferase 3 [Source:HGNC Symbol;Acc:HGNC:17825]	-0.83	1.4E-02
<i>GUCY1A1</i>	guanylate cyclase 1 soluble subunit alpha 1 [Source:HGNC Symbol;Acc:HGNC:4685]	-0.83	2.5E-02
<i>TENT5A</i>	terminal nucleotidyltransferase 5A [Source:HGNC Symbol;Acc:HGNC:18345]	-0.81	3.7E-03
<i>P2RY14</i>	purinergic receptor P2Y14 [Source:HGNC Symbol;Acc:HGNC:16442]	-0.80	1.3E-02
<i>HTRA1</i>	HtrA serine peptidase 1 [Source:HGNC Symbol;Acc:HGNC:9476]	-0.79	3.8E-02
<i>PAXIP1-AS1</i>	PAXIP1 antisense RNA 1 (head to head) [Source:HGNC Symbol;Acc:HGNC:27328]	-0.79	3.4E-02
<i>LGR4</i>	leucine rich repeat containing G protein-coupled receptor 4 [Source:HGNC Symbol;Acc:HGNC:13299]	-0.78	4.2E-02
<i>SRPX</i>	sushi repeat containing protein X-linked [Source:HGNC Symbol;Acc:HGNC:11309]	-0.78	3.3E-02
<i>MVD</i>	mevalonate diphosphate decarboxylase [Source:HGNC Symbol;Acc:HGNC:7529]	-0.77	3.3E-02
<i>PUM3</i>	pumilio RNA binding family member 3 [Source:HGNC Symbol;Acc:HGNC:29676]	-0.76	4.1E-02
<i>TENM4</i>	teneurin transmembrane protein 4 [Source:HGNC Symbol;Acc:HGNC:29945]	-0.76	1.7E-02
<i>ULK3</i>	unc-51 like kinase 3 [Source:HGNC Symbol;Acc:HGNC:19703]	-0.75	1.5E-03
<i>MOV10</i>	Mov10 RISC complex RNA helicase [Source:HGNC Symbol;Acc:HGNC:7200]	-0.74	4.9E-03
<i>F11R</i>	F11 receptor [Source:HGNC Symbol;Acc:HGNC:14685]	-0.73	5.1E-03
<i>RSRP1</i>	arginine and serine rich protein 1 [Source:HGNC Symbol;Acc:HGNC:25234]	-0.73	1.1E-02
<i>CXXC5</i>	CXXC finger protein 5 [Source:HGNC Symbol;Acc:HGNC:26943]	-0.73	2.4E-02
<i>LRRC8D</i>	leucine rich repeat containing 8 VRAC subunit D [Source:HGNC Symbol;Acc:HGNC:16992]	-0.72	2.7E-02

<i>CERCAM</i>	cerebral endothelial cell adhesion molecule [Source:HGNC Symbol;Acc:HGNC:23723]	-0.72	4.9E-03
<i>SUMF1</i>	sulfatase modifying factor 1 [Source:HGNC Symbol;Acc:HGNC:20376]	-0.72	9.8E-03
<i>MVK</i>	mevalonate kinase [Source:HGNC Symbol;Acc:HGNC:7530]	-0.72	1.8E-02
<i>SWAP70</i>	switching B cell complex subunit SWAP70 [Source:HGNC Symbol;Acc:HGNC:17070]	-0.71	3.8E-02
<i>SLC22A2</i>	slit guidance ligand 2 [Source:HGNC Symbol;Acc:HGNC:11086]	-0.69	1.4E-02
<i>S100A11</i>	S100 calcium binding protein A11 [Source:HGNC Symbol;Acc:HGNC:10488]	-0.68	1.3E-02
<i>FGFR2</i>	fibroblast growth factor receptor 2 [Source:HGNC Symbol;Acc:HGNC:3689]	-0.68	4.4E-03
<i>SPARC</i>	secreted protein acidic and cysteine rich [Source:HGNC Symbol;Acc:HGNC:11219]	-0.68	1.7E-02
<i>MYO5B</i>	myosin VB [Source:HGNC Symbol;Acc:HGNC:7603]	-0.67	3.7E-02
<i>HEXA</i>	hexosaminidase subunit alpha [Source:HGNC Symbol;Acc:HGNC:4878]	-0.67	3.4E-02
<i>PRDX1</i>	peroxiredoxin 1 [Source:HGNC Symbol;Acc:HGNC:9352]	-0.67	1.8E-04
<i>F2R</i>	coagulation factor II thrombin receptor [Source:HGNC Symbol;Acc:HGNC:3537]	-0.66	2.6E-02
<i>ACTN1</i>	actinin alpha 1 [Source:HGNC Symbol;Acc:HGNC:163]	-0.66	1.2E-03
<i>GIPC1</i>	GIPC PDZ domain containing family member 1 [Source:HGNC Symbol;Acc:HGNC:1226]	-0.65	4.5E-03
<i>MACROH2A1</i>	macroH2A.1 histone [Source:HGNC Symbol;Acc:HGNC:4740]	-0.64	2.6E-02
<i>KIF13A</i>	kinesin family member 13A [Source:HGNC Symbol;Acc:HGNC:14566]	-0.64	2.8E-02
<i>TP53I11</i>	tumor protein p53 inducible protein 11 [Source:HGNC Symbol;Acc:HGNC:16842]	-0.63	1.5E-03
<i>PRCP</i>	prolylcarboxypeptidase [Source:HGNC Symbol;Acc:HGNC:9344]	-0.62	3.6E-02
<i>TULP3</i>	TUB like protein 3 [Source:HGNC Symbol;Acc:HGNC:12425]	-0.62	2.8E-02
<i>CNN1</i>	calponin 1 [Source:HGNC Symbol;Acc:HGNC:2155]	-0.61	4.0E-02
<i>CERS5</i>	ceramide synthase 5 [Source:HGNC Symbol;Acc:HGNC:23749]	-0.60	9.4E-03
<i>ANXA2</i>	annexin A2 [Source:HGNC Symbol;Acc:HGNC:537]	-0.60	6.7E-03
<i>SERPINI1</i>	serpin family I member 1 [Source:HGNC Symbol;Acc:HGNC:8943]	-0.60	3.3E-02
<i>ANO10</i>	anoctamin 10 [Source:HGNC Symbol;Acc:HGNC:25519]	-0.59	2.8E-02
<i>EPHB2</i>	EPH receptor B2 [Source:HGNC Symbol;Acc:HGNC:3393]	-0.59	9.1E-03
<i>FLNA</i>	filamin A [Source:HGNC Symbol;Acc:HGNC:3754]	-0.58	2.0E-02
<i>AKR1B1</i>	aldo-keto reductase family 1 member B [Source:HGNC Symbol;Acc:HGNC:381]	-0.58	2.4E-02
<i>ACTA2</i>	actin alpha 2, smooth muscle [Source:HGNC Symbol;Acc:HGNC:130]	-0.56	3.8E-02
<i>PRKRIP1</i>	PRKR interacting protein 1 [Source:HGNC Symbol;Acc:HGNC:21894]	-0.56	2.5E-02
<i>TRIM54</i>	tripartite motif containing 54 [Source:HGNC Symbol;Acc:HGNC:16008]	-0.56	2.8E-02
<i>NFE2L2</i>	nuclear factor, erythroid 2 like 2 [Source:HGNC Symbol;Acc:HGNC:7782]	-0.53	4.9E-02
<i>RCN1</i>	reticulocalbin 1 [Source:HGNC Symbol;Acc:HGNC:9934]	-0.53	5.0E-02
<i>DDX28</i>	DEAD-box helicase 28 [Source:HGNC Symbol;Acc:HGNC:17330]	-0.52	3.5E-02
<i>ABHD4</i>	abhydrolase domain containing 4 [Source:HGNC Symbol;Acc:HGNC:20154]	-0.50	3.3E-02
<i>TSC22D3</i>	TSC22 domain family member 3 [Source:HGNC Symbol;Acc:HGNC:3051]	-0.45	3.6E-02

Supplementary Table 3. Select upregulated GO terms in the ISS μ G condition compared with the ISS 1G condition.

Ontology	ID	Description	adjusted p-value	Count
BP	GO:0003012	muscle system process	4.91E-09	29
BP	GO:0006936	muscle contraction	7.77E-09	25
BP	GO:0060537	muscle tissue development	7.19E-07	24
BP	GO:0014706	striated muscle tissue development	5.92E-06	22
BP	GO:0006941	striated muscle contraction	9.27E-06	15
BP	GO:0006942	regulation of striated muscle contraction	2.55E-05	11
BP	GO:0050673	epithelial cell proliferation	3.41E-05	22
BP	GO:0003015	heart process	8.21E-05	16
BP	GO:0090257	regulation of muscle system process	8.21E-05	16
BP	GO:0048738	cardiac muscle tissue development	1.54E-04	15
BP	GO:0003229	ventricular cardiac muscle tissue development	1.54E-04	8
BP	GO:0050679	positive regulation of epithelial cell proliferation	1.54E-04	14
BP	GO:0051302	regulation of cell division	1.54E-04	13
BP	GO:0050678	regulation of epithelial cell proliferation	1.54E-04	19
BP	GO:0060047	heart contraction	1.54E-04	15
BP	GO:0003205	cardiac chamber development	2.90E-04	12
BP	GO:1903522	regulation of blood circulation	2.90E-04	15
BP	GO:0006937	regulation of muscle contraction	4.44E-04	12
BP	GO:0008016	regulation of heart contraction	5.91E-04	13
BP	GO:0003231	cardiac ventricle development	8.53E-04	10
MF	GO:0140416	transcription regulator inhibitor activity	2.94E-03	5
MF	GO:0044325	transmembrane transporter binding	2.94E-03	10
MF	GO:0034237	protein kinase A regulatory subunit binding	2.94E-03	5
MF	GO:0051018	protein kinase A binding	7.32E-03	6
MF	GO:0140678	molecular function inhibitor activity	3.26E-02	8
MF	GO:0017154	semaphorin receptor activity	4.03E-02	3
CC	GO:0030016	myofibril	1.76E-03	13
CC	GO:0043292	contractile fiber	1.76E-03	13
CC	GO:0044853	plasma membrane raft	1.76E-03	9
CC	GO:0030017	sarcomere	1.76E-03	12
CC	GO:0045121	membrane raft	1.86E-03	15
CC	GO:0098857	membrane microdomain	1.86E-03	15

Ontology	ID	Description	adjusted p-value	Count
CC	GO:0014704	intercalated disc	2.19E-03	6
CC	GO:0042383	sarcolemma	3.43E-03	9
CC	GO:0051233	spindle midzone	3.72E-03	5
CC	GO:0005901	caveola	3.79E-03	7
CC	GO:0030018	Z disc	9.17E-03	8
CC	GO:0002116	semaphorin receptor complex	9.17E-03	3
CC	GO:0044291	cell-cell contact zone	9.17E-03	6
CC	GO:0034703	cation channel complex	1.04E-02	10
CC	GO:0019897	extrinsic component of plasma membrane	1.04E-02	9
CC	GO:0031674	I band	1.05E-02	8

Supplementary Table 4. DEGs associated with regulation of cell division.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>KIF14</i>	kinesin family member 14	2.11	2.42E-03
<i>IGF2</i>	insulin like growth factor 2	2.07	9.89E-03
<i>KIF18B</i>	kinesin family member 18B	1.89	3.23E-02
<i>SUSD2</i>	sushi domain containing 2	1.88	2.86E-08
<i>RBL1</i>	RB transcriptional corepressor like 1	1.32	1.19E-02
<i>FGF1</i>	fibroblast growth factor 1	1.3	5.54E-07
<i>AURKB</i>	aurora kinase B	1.28	2.47E-02
<i>LBH</i>	LBH regulator of WNT signaling pathway	0.97	7.71E-03
<i>PDGFD</i>	platelet derived growth factor D	0.93	1.28E-02
<i>CDC42</i>	cell division cycle 42	0.9	9.44E-04
<i>THBS4</i>	thrombospondin 4	0.9	5.96E-03
<i>TXNIP</i>	thioredoxin interacting protein	0.85	1.55E-02
<i>NCOA3</i>	nuclear receptor coactivator 3	0.65	2.54E-02

Supplementary Table 5. DEGs associated with muscle cell differentiation.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>MYL2</i>	myosin light chain 2	2.44	4.39E-03
<i>IGFBP5</i>	insulin like growth factor binding protein 5	2.19	6.94E-10
<i>IGF2</i>	IL4R (interleukin 4 receptor	1.86	6.31E-07
<i>EDNRB</i>	endothelin receptor type B	1.15	6.90E-03
<i>NFATC2</i>	nuclear factor of activated T cells 2	1.08	2.67E-02
<i>MYO18B</i>	myosin XVIIIB	0.96	2.31E-03
<i>LMOD2</i>	leiomodin 2	0.82	4.36E-03
<i>ANK2</i>	ankyrin 2	0.79	4.68E-02
<i>AKAP6</i>	A-kinase anchoring protein 6	0.69	4.63E-02
<i>CTNNB1</i>	catenin beta 1	0.64	4.68E-02
<i>ID2</i>	inhibitor of DNA binding 2	0.58	1.81E-02
<i>AKAP13</i>	A-kinase anchoring protein 13	0.55	4.48E-02

Supplementary Table 6. Select downregulated GO terms in the ISS μ G condition compared with the ISS 1G condition.

Ontology	ID	Description	adjusted p-value	Count
BP	GO:0007015	actin filament organization	1.75E-06	22
BP	GO:0051017	actin filament bundle assembly	7.69E-05	12
BP	GO:0061572	actin filament bundle organization	7.69E-05	12
BP	GO:0048511	rhythmic process	1.36E-03	14
BP	GO:0042060	wound healing	3.17E-03	16
BP	GO:0050818	regulation of coagulation	3.43E-03	7
BP	GO:0007623	circadian rhythm	3.72E-03	11
BP	GO:0090130	tissue migration	6.22E-03	14
BP	GO:0061564	axon development	6.22E-03	16
BP	GO:0043542	endothelial cell migration	7.05E-03	12
BP	GO:0050878	regulation of body fluid levels	7.05E-03	14
BP	GO:0031032	actomyosin structure organization	7.05E-03	10
BP	GO:0010976	positive regulation of neuron projection development	8.87E-03	9
BP	GO:0010975	regulation of neuron projection development	8.87E-03	15
BP	GO:1903034	regulation of response to wounding	9.34E-03	9
BP	GO:0030193	regulation of blood coagulation	9.53E-03	6
BP	GO:0031346	positive regulation of cell projection organization	9.92E-03	13
BP	GO:1900046	regulation of hemostasis	1.00E-02	6
BP	GO:0007596	blood coagulation	1.02E-02	10
BP	GO:0007409	axonogenesis	1.02E-02	14
MF	GO:0003779	actin binding	1.34E-03	17
MF	GO:0051015	actin filament binding	3.38E-03	11
MF	GO:0045296	cadherin binding	5.84E-03	13
MF	GO:0005201	extracellular matrix structural constituent	8.06E-03	9
MF	GO:0050840	extracellular matrix binding	2.45E-02	5
MF	GO:0044548	S100 protein binding	2.73E-02	3
MF	GO:0015929	hexosaminidase activity	2.90E-02	3
MF	GO:0005518	collagen binding	3.96E-02	5
MF	GO:0098641	cadherin binding involved in cell-cell adhesion	3.96E-02	3
CC	GO:0062023	collagen-containing extracellular matrix	1.45E-06	20
CC	GO:0005884	actin filament	2.31E-04	9
CC	GO:0005925	focal adhesion	2.59E-04	16
CC	GO:0030055	cell-substrate junction	2.59E-04	16
CC	GO:0005938	cell cortex	5.33E-04	13
CC	GO:0005788	endoplasmic reticulum lumen	2.55E-03	12

Ontology	ID	Description	adjusted p-value	Count
CC	GO:0098978	glutamatergic synapse	4.54E-03	12
CC	GO:0005775	vacuolar lumen	1.06E-02	8
CC	GO:0043202	lysosomal lumen	1.17E-02	6
CC	GO:0043292	contractile fiber	1.55E-02	9
CC	GO:0030863	cortical cytoskeleton	1.70E-02	6
CC	GO:0005766	primary lysosome	1.76E-02	7
CC	GO:0042582	azurophil granule	1.76E-02	7
CC	GO:0032432	actin filament bundle	2.27E-02	5
CC	GO:0060205	cytoplasmic vesicle lumen	2.38E-02	10
CC	GO:0031983	vesicle lumen	2.38E-02	10

Supplementary Table 7. DEGs associated with cardiac contraction and conduction.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>MYL2</i>	myosin light chain 2	2.44	4.39E-03
<i>TNNI3</i>	troponin I3	1.64	2.58E-09
<i>ATP2B4</i>	ATPase plasma membrane Ca ²⁺ transporting 4	1.2	2.52E-05
<i>PRKACA</i>	protein kinase cAMP-activated catalytic subunit a	0.95	4.73E-02
<i>RYR2</i>	ryanodine receptor 2	0.88	3.29E-03
<i>TCAP</i>	titin-cap	0.85	1.11E-03
<i>ANK2</i>	ankyrin 2	0.79	4.68E-02
<i>SCN5A</i>	sodium voltage-gated channel alpha subunit 5	0.66	1.53E-03

Supplementary Table 8. DEGs associated with regulation of ECMs.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>ITIH5</i>	inter-alpha-trypsin inhibitor heavy chain 5	-6.01	2.88E-02
<i>COL4A4</i>	collagen type IV alpha 4 chain	-5.73	1.16E-02
<i>PTPRZ1</i>	protein tyrosine phosphatase receptor type Z1	-3.9	1.74E-02
<i>COL26A1</i>	collagen type XXVI alpha 1 chain	-2.28	9.69E-04
<i>HPX</i>	hemopexin	-2.23	3.38E-02
<i>ANXA1</i>	annexin A1	-1.83	4.48E-05
<i>GPC4</i>	glypican 4	-1.74	8.72E-06
<i>LAMC2</i>	laminin subunit gamma 2	-1.33	2.26E-02
<i>MATN2</i>	matrilin 2	-1.32	2.28E-09
<i>THBS1</i>	thrombospondin 1	-1.12	7.71E-03
<i>S100A10</i>	S100 calcium binding protein A10	-1.09	7.92E-03
<i>COL1A1</i>	collagen type I alpha 1 chain	-1.05	2.57E-02
<i>ACHE</i>	acetylcholinesterase	-0.95	1.74E-02
<i>MFAP4</i>	microfibril associated protein 4	-0.93	3.32E-02
<i>P3H1</i>	prolyl 3-hydroxylase 1	-0.89	2.02E-02
<i>HTRA1</i>	HtrA serine peptidase 1	-0.79	3.81E-02
<i>SRPX</i>	sushi repeat containing protein X-linked	-0.78	3.29E-02
<i>FGFR2</i>	fibroblast growth factor receptor 2	-0.68	4.39E-03
<i>SPARC</i>	secreted protein acidic and cysteine rich	-0.68	1.67E-02
<i>ANXA2</i>	annexin A2	-0.6	6.74E-03

Supplementary Table 9. DEGs associated with focal adhesion.

Gene	Description	$\log_2(\text{fold change})$	adjusted p-value
<i>ITGA11</i>	integrin subunit alpha 11	-2.65	1.40E-04
<i>PROCR</i>	protein C receptor	-2.33	2.55E-02
<i>ANXA1</i>	annexin A1	-1.83	4.48E-05
<i>LIMA1</i>	LIM domain and actin binding 1	-1.79	1.11E-02
<i>ACTB</i>	actin beta	-1.09	5.05E-03
<i>CAPN5</i>	calpain 5	-1.05	4.23E-03
<i>EHD3</i>	EH domain containing 3	-0.99	1.06E-03
<i>IQGAP1</i>	IQ motif containing GTPase activating protein 1	-0.92	3.73E-02
<i>ITGB5</i>	integrin subunit beta 5	-0.89	3.62E-02
<i>DAB2</i>	DAB adaptor protein 2	-0.88	3.36E-02
<i>CSRP2</i>	cysteine and glycine rich protein 2	-0.88	4.93E-03
<i>FHL1</i>	four and a half LIM domains 1	-0.87	2.26E-02
<i>EFNB2</i>	ephrin B2	-0.84	2.31E-03
<i>ACTN1</i>	actinin alpha 1	-0.66	1.23E-03
<i>CNN1</i>	calponin 1	-0.61	4.01E-02

Supplementary Table 10. Common upregulated DEGs between short-term and long-term exposure to space microgravity.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>ARTN</i>	artemin [Source:HGNC Symbol;Acc:HGNC:727]	1.32	2.76E-02
<i>PRSS35</i>	serine protease 35 [Source:HGNC Symbol;Acc:HGNC:21387]	0.90	1.34E-03
<i>ATP2B4</i>	ATPase plasma membrane Ca ²⁺ transporting 4 [Source:HGNC Symbol;Acc:HGNC:817]	0.89	1.60E-04
<i>MYO18B</i>	myosin XVIIIB [Source:HGNC Symbol;Acc:HGNC:18150]	0.82	2.59E-02
<i>TFRC</i>	transferrin receptor [Source:HGNC Symbol;Acc:HGNC:11763]	0.76	2.32E-03
<i>CCND2</i>	cyclin D2 [Source:HGNC Symbol;Acc:HGNC:1583]	0.67	2.34E-03
<i>EXOC6B</i>	exocyst complex component 6B [Source:HGNC Symbol;Acc:HGNC:17085]	0.61	1.77E-03
<i>XPR1</i>	xenotropic and polytropic retrovirus receptor 1 [Source:HGNC Symbol;Acc:HGNC:12827]	0.54	1.01E-02
<i>FGFR2</i>	fibroblast growth factor receptor 2 [Source:HGNC Symbol;Acc:HGNC:3689]	0.54	3.98E-02
<i>CSRP2</i>	cysteine and glycine rich protein 2 [Source:HGNC Symbol;Acc:HGNC:2470]	0.52	1.59E-02
<i>MGST1</i>	microsomal glutathione S-transferase 1 [Source:HGNC Symbol;Acc:HGNC:7061]	0.52	2.64E-02

Supplementary Table 11. Common downregulated DEGs between short-term and long-term exposure to space microgravity.

Gene	Description	log ₂ (fold change)	adjusted p-value
<i>H2BC4</i>	H2B clustered histone 4 [Source:HGNC Symbol;Acc:HGNC:4757]	-2.47	1.19E-02
<i>EFEMP1</i>	EGF containing fibulin extracellular matrix protein 1 [Source:HGNC Symbol;Acc:HGNC:3218]	-1.78	1.06E-02
<i>MT-ND6</i>	mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6 [Source:HGNC Symbol;Acc:HGNC:7462]	-1.34	4.19E-02
<i>DDIT3</i>	DNA damage inducible transcript 3 [Source:HGNC Symbol;Acc:HGNC:2726]	-1.14	8.63E-05
<i>ACTG1</i>	actin gamma 1 [Source:HGNC Symbol;Acc:HGNC:144]	-0.92	1.49E-05
<i>CDC42EP2</i>	CDC42 effector protein 2 [Source:HGNC Symbol;Acc:HGNC:16263]	-0.84	1.28E-03
<i>LIMA1</i>	LIM domain and actin binding 1 [Source:HGNC Symbol;Acc:HGNC:24636]	-0.80	4.09E-02
<i>EFNB2</i>	ephrin B2 [Source:HGNC Symbol;Acc:HGNC:3227]	-0.73	4.23E-02
<i>TKT</i>	transketolase [Source:HGNC Symbol;Acc:HGNC:11834]	-0.47	3.80E-02