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Abstract
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spaces with respect to two important binary relations derived from domination structures.
Motivated by theoretical challenges as well as by applications to some models in behavioral
sciences, we establish new variational principles that can be viewed as far-going exten-
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1 Introduction

It has been well recognized over the years that problems of vector and set/set-valued opti-
mization have great many mathematical challenges and important intrinsic issues, which
significantly differ them from the conventional areas of scalar optimization. Thus such prob-
lems require developing novel tools of analysis to deal with their theory and applications.
The spectrum of applications of vector and set-valued optimization is indeed enormous:
economics, finance, ecology, radiotherapy treatment in medicine, environmental and behav-
ioral sciences to name just a few; see [1, 5, 14, 15, 18, 19, 24, 26, 28, 29, 31, 32, 36] for more
information and references. Variational principles, together with variational techniques and
tools of generalized differentiation in set-valued and variational analysis, provide powerful
machinery for the study and applications of vector and set optimality, particularly related to
Pareto-type optimal/efficient solutions. We refer the reader to, e.g., [3, 6, 24, 28-32] and the
vast bibliographies therein for various approaches, concepts, and results in these and related
directions.

This paper is devoted to the study and applications of vector optimization problems with
domination structures that can be viewed as extensions of variable ordering cones. The
nondomination concept for problems of multiobjective optimization (i.e., with finitely many
scalar objectives) was introduced by Yu [44] and then was studied and developed in many
publications; see, e.g., [8, 19] and the references therein. This concept is significantly more
general than the conventional (Pareto) efficiency concept in vector optimization with fixed
ordering cones; it has been realized as a crucial factor for a variety of applications to decision
making, games, etc.

Here we consider several solution concepts for general problems of vector optimiza-
tion with domination structures while mainly focusing on two binary relations associated
with a given domination/variable domination structure: nondomination and efficiency. After
revealing important properties of both nondominated and efficient solutions with variable
domination structure in general linear space settings, we turn to the study of ordered-value
mappings defined on quasimetric decision spaces. Besides mathematical novelty and inter-
est, our motivation to involve quasimetric spaces (i.e., spaces with nonsymmetric distances)
into consideration is due to unavoidably appearing such spaces in models of behavioral
sciences; see the discussions in Section 5.

The composition of the paper is as follows. In Section 2 we formulate vector optimiza-
tion problems with preference relations induced by the notion of domination defined via a
set-valued mapping D : Y = Y from the image space Y to itself. This notion is a prac-
tically motivated extension of ordering structures given by variable cones. We define here
several notions of optimal solutions with respect to two binary relations induced by a given
domination structure, establish relationships between them, and then reveal some of their
basic properties.

Section 3 overviews and discusses known achievements in the theory of variational
principles of the Ekeland-type for vector optimization problems with variable domination
structures. For the reader’s convenience and making comparison with our new developments
obtained below, simplified proofs and clarifications of the major known results are given in
this section.

Section 4 is the culmination of the paper, which presents new Ekeland-type variational
principles in vector optimization with general domination structures and cost mappings
defined on quasimetric spaces. We have two main motivations to develop these novel results.
The first motivation comes from a strong mathematical call to obtain variational principles
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of the aforementioned type with taking into account drawbacks of the known results and
their proofs discussed in Section 3 as well as significant challenges that intrinsically appear
in the new framework under consideration. The second motivation comes from the aimed
applications to models of behavioral sciences in the vein of Soubeyran’s variational ratio-
nality approach, which unavoidably involves quasimetric spaces (even in finite dimensions)
and highly benefits from imposing domination structures on decision spaces; see [36, 39,
40] and the last section below. It is worth mentioning here that the progress achieved in
this paper on variational principles and their applications is strongly based on the marriage
of variational methods to Gerstewitz’s nonlinear scalarization functional [21-23] and its
recent developments given in [9, 25, 42].

The concluding Section 5 is devoted to applications of the obtained variational results in
the general framework of vector optimization to some behavioral science models via devel-
oping the variational rationality approach to human dynamics initiated and conceptionally
described in [36—40]. We first briefly review basic concepts of variational rationality that
are closely related to quasimetric and domination structures. The major notions to analyze
in these frameworks are variational traps of different types. Using our variational devel-
opments allows us to establish the existence of the so-called ex ante (before moving) and
ex post (after moving) traps. In this way, we formulate generalized efficiency and domina-
tion structures, which extend those in [44] to the settings when resistance to move matters,
and then derive the existence results in the ex ante and ex post traps in the new settings.
Observe to this end that the proofs of the variational principles developed in Section 4
provide constructive dynamic procedures to obtain such variational traps.

2 Solution Concepts for Vector Optimization Problems with Respect
to Domination Structures

This section is devoted to introducing the main concepts of our study, establishing
relationships between them, and revealing some of their important properties.
First we recall the classical notion of vector optimization with a fixed ordering cone.

Definition 2.1 (Pareto preorder) Let Y be a linear space, let C be a convex cone in Y, and
let y, v € Y. The PARETO PREORDER on Y denoted by <¢ is defined by

v<cy—=vey—-C<yev+C.

Given two vectors y and v in a linear decision space Y, we write v = y + d for some
vector d € Y. If y is preferred by the decision maker to v, then d can be viewed as a
domination factor. The set of all the domination factors for y together with the zero vector
0 € Y is denoted by D (y). Then, the multifunction D : Y =% Y is called a domination
structure. It is also called a variable ordering structure in the majority of publications if
D (y) is an ordering cone foreach y € Y.

The concept of domination structures was introduced by Yu in [43], where the sets
D (y) are supposed to be cones. Yu defined a domination structure as a family of cones
D (y), whereas Engau [20] considered it as a set-valued mapping. Domination factors were
launched by Bergstresser, Charnes, and Yu [8] in a finite-dimensional setting with convex
domination sets.

In contrast to vector optimization with a fixed ordering cone, we now define two binary
relations in Y with respect to the choice of domination sets. These binary relations will be
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used in the formulation of the variational principles in Sections 3 and 4 and also in the
context of applications in behavioral sciences in Section 5.

Definition 2.2 (binary relations) Given a domination structure D : Y = Y in a linear
space Y, and given vector y, v € Y, we introduce the following binary relations:

(i) The DOMINATION BINARY RELATION denoted by <y p is defined by
VENDp Y= yev+DW < B(y,v):=y—veD®w).
(i) The EFFICIENCY BINARY RELATION denoted by <g p is defined by

v<ppy<—=vey—D(y) << B(y,v)i=y—veD(y).

The notation B(y, v) allows us to unify the aforementioned binary relations being also
useful in the application Section 5. It signifies the so-called “worthwhile balance without
inconvenience to move.” Consider the unified relation B(y, v) € D (r), where the chosen
reference point r stands for N as r = v, for Easr = y and f : X — Y acting from a
metric space X to a linear space Y. The worthwhile balance without inconvenience to move
is B(f(x), f(w)) = f(x) — f(u), the worthwhile balance without inconvenience to move
andr = N is B(f(x) —eq(x,u), f(u)) = f(x)—+/eq(x, u) — f(u), and the worthwhile
balance without inconvenience to move and r = E is B(f (x), f(u)—+/eq(x, u)) = f(x)—
f W) — \/eq(x, u). For simplicity, we drop the subscript D in the above binary notations if
the context is clear. When D (y) = C for some ordering cone C of Y, both domination and
efficiency binary relations reduce to the classical Pareto binary relation generated by C, i.e.,
=N==fg==c.

Given a mapping f : X — Y acting from a nonempty set to a linear space, we consider
two solution concepts corresponding to both binary relations introduced in Definition 2.2.
These notions are important to deriving of the variational principles in Sections 3 and 4
with the subsequent applications to the models of behavioral sciences given in Section 5.
Denote in what follows dom f := {x € X | f(x) # @} and rge f := f(X) with f(X) :=
Urex f(x).

Definition 2.3 (nondominated and efficient solutions with respect to domination struc-
tures). Let f : X — Y be a mapping from a nonempty set to a linear space, and let
D : Y = Y be a domination structure in the image space Y. Given x € dom f, we say that:

(i) X is a CONVENTIONAL NONDOMINATED SOLUTION of f with respect to D, or a
conventional D -nondominated solution, or a conventional <y-minimal solution, if

Vx edom f, f(x) <y f(x) = f(X) =N f(x).
(ii) X is a D-NONDOMINATED SOLUTION of f with respect to D if

Vx edom f, f(x) # f(X) = f(x) £~ f(X).

(iili) X is a CONVENTIONAL EFFICIENT SOLUTION of f with respect to D , or a
conventional D -efficient solution, or a conventional <g-minimal solution, if

Vx edom f, f(x) =g f(X) = f(X) =g f(x).

(iv) X is a D-EFFICIENT SOLUTION of f with respect to D if

Vx edom f, f(x) # f(X) = f(x) £¢ f(%),
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which is equivalent to the condition
rge fN(f(X) =D(f()) ={f)}

Recall that the concept of D -nondominated solutions in Definition 2.3(ii) was initiated
by Yu [43, 44] for conic domination structures. The concept of D -efficient solutions of f
with respect to D in Definition 2.3(iv) was introduced by Chen, Huang, and Yang [10, Defi-
nition 1.13] under the name of “nondominated-like minimal points”; see also Chen and Yang
[11, Definition 3.1]. We will deal with (approximate) D -efficient and D -nondominated
solutions in Sections 3, 4, and 5.

Observe also that a D -efficient solution X of f is an element, which is not dominated
by another point x with respect to the associated set D (f(x)) at the D -efficient solution
x. However, given a D -nondominated solution X of f, a domination set D (f(x)) is a set
associated with another point x. Important properties of these elements can be found in [10,
11, 16, 17, 19, 44].

In order to combine these two solution concepts, we use in the following proposition the

language of <,-minimality, where <, stands for either the domination binary relation <y,
or for the efficient binary relation <p formulated in Definition 2.2.

Proposition 2.4 (relationships between minimal solutions, I) Let ‘<.’ stand for both
the domination binary relation <y and the efficient binary relation < taken from
Definition 2.2. Then, we have the relationships:

(i) Ifxisa <,-minimal solution of f, then it is a conventional <,-minimal solution of f.
(ii) Assume that the pointedness condition for { f, D} at x € dom f

Vx € domf, D(f(x)) N (=D(f(x))) = {0} 2.1

holds. If x is a conventional <,-minimal solution of f, then it is <,-minimal to f.

Proof Let us verify both conclusions in this proposition for the case of nondominated
solutions; the proof for efficient solutions is similar.
To justify (i), assume that x is a D -nondominated solution of f, i.e.,

Vx edom f, f(x) # f(X) = f(x) £n§ f(X),

which is equivalent to the implication

Vx edom f, f(x) <y f(x) = f(x) = f(x).

By f(x) = f(x), we have f(x) <y f(x), and so x is a conventional D -nondominated
solution of f.

To prove (ii), assume that (2.1) is satisfied, and that x is a conventional D -nondominated
solution of f. To check the D -nondomination of x to f, fix an arbitrary element x € dom f
satisfying f(x) # f(x). We claim that f(x) £y f(x). Arguing by contraposition, suppose
that f(x) <y f(x). The conventional D -nondominatedness of X to f yields f(x) <y
f(x). Then, Definition 2.2(i) tells us that

f(x) € f(x)+D(f(x)) and f(x) € f(x) +D(f(x)),

and therefore f(x) — f(x) € D(f(x)) N (=D (f(x))) = {0}, where the last equality holds
due to the pointedness condition for { f, D} at x. Thus we get f(x) = f(x), a contradiction,
which shows that f(x) £n f(x). Since x was chosen arbitrarily in dom ( f) while satisfying
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f(x) # f(x), we verify that x is a D -nondominated solution of f and hence complete the
proof of the proposition. O

Observe that when D (y) = O is a fixed domination set or D (y) = C is a fixed ordering
cone, there is no difference between the two concepts of nondomination and efficiency
defined in Definition 2.3, and they both reduce to Pareto minimality. In such a situation, the
pointedness condition for D and f at x € dom f is nothing but the pointedness property of
the ordering set ® and of the ordering cone C, respectively.

Next we establish relationships between minimal solutions with respect to a domination
structure D and Pareto minimal solutions with respect to a fixed domination set ®. Denote
the two domination sets associated with { f, D} by

0% = J{P(f&x) | xedom f} and O :=({D(f(x)) | x € dom f}

and call them the union (respectively, intersection) domination set for f and D . We skip
mentioning f in the above notations for simplicity.

Proposition 2.5 (relationships between minimal solutions, II) The following hold:

() If ¥ is a conventional D -efficient solution of f, then it is ﬁ—e}ﬁcient to f, where
D : Y =Y isdefined by D(y) := (D(y) \ (—0%)) U {0}).
(ii) If x is a D-efficient solution of f, then it is ®-minimal with ® = D (f(x)).
(iii) I x is a D-nondominated solution of f, then it is (H)iD -minimal to f.
(iv)  Ifx is a ©' -minimal solution of f, then it is D -nondominated to f.

Proof (i) Assume that X is a conventional D -efficient solution of f, i.e.,

Vx edom f, f(x) <g.p f(X) = f(X) <g.p f(X)
< Vxedomf, f(x) e f(X)-D(f(x) = f(X) e f(x) —D(f(X)).

Arguing by contraposition, suppose that X is not a D -efficient solution of f. Then, we could
find x € dom f satisfying f(x) # f(x) and f(x) ) f(x),ie.,
f) e fE —D(fE) S f(X) —D(f(X). S f(&) — O (22)

which clearly implies that f(x) — f(x¥) € ®% and f(x) <gp f(X). Since X is a
conventional D -efficient solution of f, we have f(x) <gp f(x),i.e.,

FX) € f(x) =D(f(x) = f(x) = f(X) e D(f(x)) € OF.

The obtained contradiction verifies the implication in (i).
(ii) This is straightforward from the definitions. Indeed, we have
X is a D -efficient solution of f
= Vx edom f, f(x) # f(X) = f(x) £ f(X)
< Vxedomf, f(x) # f(X) = f(x) & f(x) —D(f(x))
= Vx edom f, f(x) # f(x) = f(x) Zpr@) f(X)
<= X is a <p(f(x))-minimal solution of f.
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(iii) This also follows from the definitions. Indeed, we have

X is a D-nondominated solution of f
= Vx edom f, f(x)# f(X) = f(x) £y f(X)
< Vx edom f, f(x) # f(X) = f(X) € f(x) + D(f(x))
& Vxedom f, f(x) # f(}) = f(¥) — f(x) e Y\ D(f(x)) S Y\ O
= Vx edom f, f(x) # f(X) = f(x) £gi [(¥)
< x is a (Pareto) §®5D -minimal solution of f.
(iv) Similarly to the above we get the equivalences
X is a ®%, -minimal solution of f
— Vx edom f, f(x) # f(x) = f(x) £oy, f(X)
& Vx edom f, f(x) # f(X) = f(¥) & f(x) +0Op
< Vx edom f, f(x) # f(X) = f(X) — f(x) €Y\ Op SY\D(f(x))
= Vx edomf, f(x)# f(X) = f(x) £y f(X)

<= X is a D-nondominated solution of f,

which therefore complete the proof of the proposition. O

We illustrate the differences of solution notions above by the following example.

Example 2.6 (differences between solution notions) Let X := {1, 2, 3}, and let the values
of a mapping f : X — R? are given by

F():=A; = (0,0), £(2):= A, =(4,—2), and f(3):= A3 = (=2, ).

Set ey ;= (1,0), e2 := (0,1), e3 := (1,1), and e4 := (—1, —1) and then consider a
domination structure D on f(X) with the following values in R?:

D(A}) := convcone{ey, ex}, D(A3) := convcone {eq, e3, e4}, and D (A3) := convcone {—e3, e3}.

Then, we have the optimal solutions:

a) 1 and 3 are D-efficient solutions of f.
b) 3isa D_—nondorninated solution of f.
c) 3isa ®-minimal solution of f.

3 Overview and Elaborations of Known Results

It has been well recognized that the Ekeland variational principle (EVP) plays a funda-
mental role in variational analysis and in a vast variety of applications, including those to
vector and set-valued optimization; see, e.g., the books [29-31] with the references and
commentaries therein. Quite recently, several extensions of the EVP have been developed
for problems of vector optimization with domination structures. Let us recall and elaborate
them in this section, which makes a bridge to our new developments and applications in the
subsequent sections.
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In the first part of this section we deal with approximate solutions of f as an extension
of D -efficient solutions of f in the sense of Definition 2.3(iv), see [34]. This concept of
(weakly) approximate efficient solutions with respect to D is given in the next definition.

Definition 3.1 (approximate efficient solutions) Let f : X — Y,D : Y = Y,k € Y\{0},
and & > 0. Then, we have:

(a) Anelement x, € X is called an ék-EFFICIENT SOLUTION of f with respect to D if
FXON(fxe) —ek = (D(f(xe) \ {0}) = 4.

(b) Anelement x; € X is called a WEAKLY €k-EFFICIENT SOLUTION of f with respect
to D ifintD (f(x.)) # ¥ and

FX) N (f(xe) — ek —int D (f (xe))) = 0.

Note that for the special case where ¢ = 0, the notion of (weakly) ek-efficient solu-
tions of f with respect to D reduces to that of D -efficient solutions of f formulated to
Definition 2.3(iv).

The classical EVP concerns approximate solutions of scalar optimization problems with
extended-real valued, lower semicontinuous, and bounded from below objectives in the
setting of complete metric spaces. First we recall extensions of the EVP to the case of k-
efficient solutions of f with respect to a domination structure D : Y = Y in the sense of
Definition 3.1.

In [5, Theorem 3.1], Bao et al. established a version of the EVP for set-valued mappings
with ordering structures in quasimetric spaces. They used a variational approach based on an
extended version of the Dancs-Hegedus-Medvegyevs fixed point theorem [7]. A simplified
version of this result for vector-valued mappings from a complete metric space to a normed
space is given below.

Theorem 3.2 (EVP for conic domination structures) Ler (X, d) be a complete metric
space, let Y be a normed space, and let k € Y \ {0}. Given f : X — Y and a cone
® C Y. Consider a domination structure D : Y =3 Y such that the sets D (y) are proper,
pointed, and closed cones for all y € rge f. Consider @’b =N{D (f(x)) | x € dom f}.
Picking ¢ > 0, take an ek-efficient solution x, € X of f with respect to D together with
k € ®% \ (=® — D (f(xp))) and assume that:

(A1) (BOUNDEDNESS CONDITION) f is quasibounded with respect to ® in the sense
that there is a bounded subset M of Y such that f(x) € M + © for all x € dom f.

(A2) (LIMITING MONOTONICITY CONDITION) f satisfies the limiting decreasing con-
tinuity condition over X with respect to D in the sense that for every sequence
{x,} € X such that

Xn = Xy and f(xp) — f(xp41) € D(f(xn))

we have f(x,) — f(xs) € D(f(xn)) foralln € N.
(A3) (TRANSITIVITY CONDITION FOR <g) D enjoys the monotonicity property on rge f
in the sense that

Vx,ue X, fw)— fx) € D(fw) = D(f(x)) € D(fw).
Then, there exists X € dom f such that the following conditions hold:

(i) X is an gk-efficient solution of f with respect to D.
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(i) dxe, ¥) < V.
(iii) X is an efficient solution of fz with respect to D, where fz := f + J/ed(x, )k, ie.,

Va € X\ (%}, f(¥) = f(x) — Ved (& )k & D(f(¥)).

Comment 3.3 (a) Conclusions (i) and (ii) can be formulated in the form
f(xe) = f(X) — Ved(xe, D)k € D(f (xe)),

which clearly implies that both (i) and (ii) hold.

(b) The requirement k € G)é) is equivalent to that k € D (f (x)) for all x € dom f, and
the monotonicity property of the variable ordering structure D is essential for the transitiv-
ity property of the efficiency binary relation <g. Furthermore, both these assumptions are
essential in the variational approach in [3].

(c) The space Y should be a normed space in [5, Theorem 3.1] instead of a real topolog-
ical space, since the existence of a bounded set in condition (A1) is not defined in the latter
case.

In [35, Theorem 5.1], Soleimani established a version of the EVP in vector optimization
with a domination structure D : X = Y whose domination sets are not necessarily cones.
He used the scalarization approach first developed in [41] for vector optimization with
domination sets, i.e., in the case of a constant domination structure. The result formulated in
Banach spaces holds in this setting. It was improved in [2, Theorem 3.8], [2, Theorem 3.8]
in the setting that X is a Banach space and that Y a topological linear space.

The Ekeland-type variational principle given in the next theorem is derived for ek-
efficient solutions of f with respectto D : Y =2 Y in the sense of Definition 3.1 under the
assumption that (X, d) is a complete metric space and that Y a topological linear space. It
provides a certain improvement of [35, Theorem 5.1] and [2, Theorem 3.8] with a simplified
proof as presented below.

Theorem 3.4 (EVP with relaxed conic domination) Let (X, d) be a complete metric
space, let Y be a topological linear space, and let k € Y \ {0}. Given a domination structure
D Y =Y, amapping f : X — Y, and a number ¢ > 0, we consider an &k-
efficient solution x; of f with respect to D and denote y, := f(x¢). Assume the following
conditions:

(B1) (BOUNDEDNESS CONDITION) f is bounded from below in the sense that there is
y € Y suchthatVx € X, f(x) € y — D (ye).

(B2) (LOWER SEMICONTINUITY CONDITION) f is (k, D (f (xs))-Isc in the sense that
foreveryt € R the set

M) == {x € X | f(x) € tk — cl(D(f(xe)))}

is closed in X.
(B3) (SCALARIZATION CONDITIONS)

B3-a) 0 D(ye), D(ye) is a proper, pointed, closed, and solid set with D (y.) +
D (ye) € D (ye) and D (ye) + (0, 00)k < int(D (ye)).

(B3-b)  There is a cone-valued mapping C : Y = Y satisfying k € int(C (y¢)) and
D (ye) + (C(ye) \ {0}) € intD (ye).

(B3-c) C(y) SC(ye)forall y € ye — D (ye).

Then there exists X € dom f such that we have the assertions:
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(i) X is an ek-efficient solution of f with respectto C.

(i) dxe, ¥) < e
(iii) ¥ is an efficient solution of fz with respect to C, where fz = f + /ed(x, Yk and
y = f(X), that is,

Vx e X, f(X) = f(x) = ed (X, x)k & C(3)\{0}.

Proof Set ©® := D (f(x.)) and consider the scalarization function ¢ : ¥ — R given by
o) :=gor(y)={teR|yetk—0}.

By [24, Theorem 2.3.1], condition (B3-a) ensures that dom ¢ = Y and that ¢ is translation
invariant along k. Furthermore, condition (B3-b) implies that ¢ is strictly C (y,)-monotone
in the sense that

a€b—(C(y:)\{0}) anda # b= ¢(a) < ¢(b).

It is easy to check that the ek-efficiency of x. to f with respect to D guarantees that x, is
an e-minimal solution of the scalarized function ¥ := ¢ o (f — f(x¢)).

By (B1) and (B2), the scalarized function ¥ is bounded from below and lower
semicontinuous. The classical EVP ensures the existence of X € dom f such that

(i) Y (@) + ed(xe, X) < Y(xe) and
(i) VxeX\{x}, () +Jed(x, x) > ¥ ().

Since x, is an s-minimal solution of ¥, it follows from (i’) that d (x,, X) < /€ such that (ii)
is shown.

Furthermore, we have that f(x) + +/ed(x;, X)k € y. — D (y) by (i’) and [24, Theo-
rem 2.3.1]. Thus f(x) € y. — int D (ye) due to (B3-a), i.e., ¥y € y. — D (ye).

In order to show (i), we argue by contraposition. Indeed, suppose that x is not an gk-
efficient solution of f with respect to C, i.e., there is some x € X with

fx)+ek e f(x)—(CH)\{0}),
such that we obtain

J) = fxe)+ek € f(&)— flx) = (CH)\{0D

(B3—c)
S f() = fxe) = (C(ye) \ {OD

for y € yo — D (y,). Taking into account the strict C (y,)-monotonicity and the translation
invariance along k of ¢, we conclude that

V@) = o(fX)=f(xe)) > p(f ()= f(xe)+ek) = o(f ()= f (xe))Fe = Inf o(f(x)—f(xe))+e = ¥(xe)

which clearly contradicts the e-minimality of X to the scalarized function ¥ in (i’).
We complete the proof by verifying that (ii’) yields (iii). Indeed, it follows that
(ii") &= Vx € X\ (X}, o(f(x) = f(xe)) +Ved(X, x) > o(f(X) — f(xe))
= Vx e X\ (X}, f(x) — fxe) +Ved (X, 0k & f(3) = f(xe) = D(f(xe))
= Vx e X\ (X}, f(x)+VedE 0k & f(¥) = D(f(xe))
= Vx e X\ {x}, f(x)+VedX 0k & () = (C(f(E)\ (0D,
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where the first implication holds due to [24, Theorem 2.3.1] and the last one holds due to
(B3-b) and (B3-c). Thus (iii) is satisfied, which ends the proof of the theorem. O

Comment 3.5 (a) The result of [35, Theorem 5.1] was formulated for ordering structures
Dx : X =2 Y acting from the domain space to the image space of the mapping f. By using
the same line as in the proof of Theorem 3.4, a better result can be established since the
hypotheses of [35, Theorem 5.1] are more restrictive. In particular, (B3) is assumed therein
for all x € dom f instead of at the element x,. The idea of the proof in [35, Theorem 5.1]
is to scalarize the vector-valued mapping by using the nonlinear scalarized function ¢ :=
@D (y,).k- Thus it is sufficient to impose the assumptions on the domination set D (y,) as in
our elaborated proof.

(b) The lower semicontinuity condition (B2) can be weaken to strictly decreasing lower
semicontinuity as in [1].

(¢) The boundedness condition of the scalar function v is equivalent to the existence of
a real number m such that

Y(x)=¢(f(x)) >m forall x edom f << f(x) &€mk—"D(ye). 3.1

It is easy to check that this condition is weaker than (B1).

(d) The result was formulated with respect to the cone-valued domination (i.e., ordering)
structure C . In the next section, we will establish a corresponding (even better) one in terms
of a given domination structure D, which may be nonconic.

Next we recall Theorem 3.12 in [2], which is a version of the EVP with nonsolid dom-
ination sets for ek-efficient solutions of f with respect to D : Y = Y in the sense of
Definition 3.1. It was established by using the nonlinear scalarization approach.

Theorem 3.6 (EVP with nonsolid domination sets) Let (X, d) be a complete metric
space, let Y be a Banach space, and let k € Y \ {0}. Given a domination structure
D :Y =Y and amapping f : X — Y, foreache > 0 and k € Y \ {0} consider an ¢k-
efficient solution x. of f with respect to D and denote y. := f(x¢). Impose the following
assumptions:

(C1) (QUASIBOUNDEDNESS CONDITION) f is quasibounded from below with respect to
D (ye) in the sense that there is a bounded set M C Y such that f(x) € M —D (y.)
forall x € dom f.

(C2) (LOWER CONTINUITY CONDITION) f is D (y.)-lower semicontinuous over dom f
in the sense that the level sets

lev(y; f) := {x edomf | f(x) € y = D(ye)}

are closed in X forally € Y.
(C3) (SCALARIZATION CONDITIONS)

(Cl-a) D(y,) is a proper, closed, convex, and pointed cone.
(C2-b) D(f(x)) € D(ye) forall x € dom f with d(xe, x) < \/e.

Then, there exists an element x € dom f for which we have:

(i)  f(xe)— f(x) € D(y:), and thus X is an ek-efficient solution of f with respect to D.
) dxe, %) < /e
(iii) X is an efficient solution of fz with respect to D, where fz := f + /ed(x, )k, ie.,

VxeX\{¥), f(&)— f(x)—Ved® )k &D(f(X).
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Comment 3.7 (a) Theorem 3.12 in [2] was formulated for ek-efficient solutions of con-
strained problems, where the cost mapping f acted between two Banach spaces. However,
the proof of the theorem holds true when the domain space is a complete metric one.

(b) The quasiboundedness condition (C1) is more restrictive then condition (3.1), which
is equivalent to the boundedness from below of the scalarized function of f.

(c) Condition (C2) implies that the composite function ¥ = ¢ o f defined in the proof of
Theorem 3.4 is lower semicontinuous. Therefore, we can weaken it to the requirement that
¥ is strictly decreasingly lower semicontinuous.

In contrast to the aforementioned developments of the EVP for ek-efficient solutions of
vector-valued mappings with respect to domination structures in the sense of Definition 3.1
as an extension of D -efficient solutions of f in the sense of Definition 2.3(iv), there have
been almost no results for ek-nondominated solutions as an extension of D -nondominated
solutions of f in the sense of Definition 2.3(ii). To the best of our knowledge, the only result
in this direction has been obtained by Bao et al. [2, Theorem 4.7], where the conclusions are
formulated via a certain auxiliary scalarized function, but not in terms of the given vector-
valued mapping. Namely, the scalarized function employed in [2] is an extended version of
the Gerstewitz scalarization function s : ¥ — R U {400} defined by the formula

s(y):=inf{t eR |y €a+1tk—Dy}. (3.2)

To formulate the aforementioned result, we need to recall the following notion, which is
also used in the subsequent developments of Section 4; see [34].

Definition 3.8 (approximate nondominated solutions) Let f : X — Y, D : Y 2 7,
k € Y\ {0}, and ¢ > 0. An element x, € X is said to be an ek-NONDOMINATED SOLUTION
of f with respect to D if we have

Vx e X, f(xe) —ek & f(x)+ (D(f(x)\{0D.

For the special case where ¢ = 0, the concept of ek-nondominated solutions of f with
respect to D reduces to D -nondominated solutions of f in the sense of Definition 2.3(ii).

The next theorem is an extension of [2, Theorem 4.7], where it is obtained under the
assumption that X is a Banach space.

Theorem 3.9 (EVP for approximate nondominated solutions) Let (X, d) be a complete
metric space while Y is a Banach space, let k € Y \ {0}, let D : Y = Y be a domination
structure, and let f : X — Y be a vector-valued mapping. Given ¢ > 0, consider an
ek-nondominated solution x. of f with respect to D and denote y. := f(x.). Impose the
following assumptions:

(D1) (BOUNDEDNESS CONDITION) f is bounded from below with respect to the element
y € Y and the set © := D (y), i.e., f(x) € y 4+ O forall x € dom f. Furthermore,
D) +D») SD)forally € rge f, k € int(®), and D (y) + int(®) € D ().

(D2) (CONTINUITY CONDITIONS) [ is continuous over dom f, and the domination mc;p-
ping D is of closed graph over rge f in the sense that for every sequence of pairs
{(Vn,vn)} with y, € rgef and v, € D (y,) for all n € N the convergence
(Vs Un) = (Y4, Ux) as n — 00 yields the existence of x,. € X such that y, = f(xy)
and vy € D (y4).
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(D3) (SCALARIZATION CONDITIONS)

(D3-a) Vy e rge f wehave O € D(y) and D (y) is closed in Y.
(D3-b) Vy € rge f we have D (y) + (0, +00)k € D (y) \ {0} and (—o0, 0)k N
D@y =0

Then there exists an element x € dom f such that the following conditions hold:

i) s(f@) + Ved(x, x) < s(f(xe)).
(i) d(x,xe) < Ve
(iii) X is an exact solution of the scalarized function defined by fz := s o f + /ed(%, -).

Comment 3.10 It is worth mentioning that the conclusions of Theorem 3.9(i,iii) are for-
mulated in a scalarized form via the scalarization function (3.2). It is important to find
appropriate assumptions on the given data such that the scalarized function under consid-
eration is bounded from below in condition (D1), and that the continuity condition (D2) is
satisfied; cf. Lemmas 4.2 and 4.6 in [2] for more details. Natural questions arise on whether
it is possible to weaken the assumptions of this result and/or to obtain conclusions in terms
of the nondomination to the given vector-valued mapping by using either a nonlinear scalar-
ization approach, or a nonscalarization approach, or a mixed approach. We develop new
results in this direction in the next section.

4 New Variational Principles in Vector Optimization with Variable
Domination Structures in Quasimetric Spaces

This section provides new versions of the EVP, which are significantly better than those dis-
cussed above and are obtained under weaker assumptions. These new versions of the EVP
seem to be important for their own sake while having interesting applications to behavioral
sciences presented in Section 5. In particular, the results below address ek-efficient solutions
of f with respect to D in the sense of Definition 3.1 as well as ek-nondominated solutions
of f with respect to D in the sense of Definition 3.8 under the assumptions that the under-
lying space X is a quasimetric space (which is essential for applications in Section 5) and
that Y is a real linear space. In our approach we use new developments for the Gerstewitz
scalarization functions of type (3.2) given in [25, 42].

First, we recall the definition of vectorial closedness with respect to a direction and
the definition of the Gerstewitz scalarization function. Given a real linear space Y and a
nonempty subset A C Y, the vectorial closure of A in the direction k € Y is defined by

velg(A) :=={y €Y | VA > 0,3t €[0,A], y + tk € A}.

We refer the reader to [25, 33, 42] for more results and discussions on the directionally
vector closedness and its relationships with vector closedness and topological closedness.

Definition 4.1 (nonlinear scalarization functions with domination sets) Let Y be a linear
space, let A be a nonempty subset of Y, and let k be a nonzero direction in Y. The function
YAk Y = RU {xoo} defined by

pax(y):==inf{r e R |y €tk — A} with inf¥) = 400 4.1)
is called the GERSTEWITZ NONLINEAR SCALARIZATION FUNCTION generated by the set

A and the scalarization direction k.
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By setting B := A + Rk, we get the equalities
Vy €Y, gvel(8).k(Y) = ¢Bxk(¥) = @Ak (Y).

Comment 4.2 The the scalarization function ¢4 x was defined in [24, Theorem 2.3.1] for
closed sets A satisfying A + R k C A in real topological vector spaces, where ¢4 i is
characterized by the description of its level sets:

Vi € R, Lev(t; pax) =tk — vel g (B) =tk — vel (A + Rik).
Furthermore, @4  is translation invariant along the direction k in the sense that
VyeY, Vit eR, par(y +1tk) =t +@ar(y).

Given a subset © of Y and elements y', y? € Y, @A k 18 ®-monotone in the sense that

ey =0 = par(y") < 9ax(?)

if and only if A+ ® C A. For other properties of the Gerstewitz scalarization functions; see
[24, Theorem 2.3.1], [25, Theorem 4], and the references therein.

Next we recall some important concepts of quasimetric space theory taken from [12].

Definition 4.3 (quasimetric spaces) A quasimetric space is a pair (X, ¢) consisting of a set
X and a function g : X x X — R4 :=[0, c0) on X x X having the following properties:

i g, x’)>0forall x,x" € X and g(x, x) = 0 for all x € X (positivity).
i) q(x,x") <qgx,x)+q@', x") forall x, x', x"” € X (triangle inequality).

Note that quasimetric spaces may be finite-dimensional, which is the case of our
applications to behavioral science models given in Section 5.

Definition 4.4 (convergence and completeness in quasimetric spaces) Let (X, ¢) be a
quasimetric space, and let {x,} be a sequence in X.

(i) The sequence {x,} is said to be FORWARD-CAUCHY if for every ¢ > 0 there exists

some N, € N such that whenever n > N, and m € N we have g (x,,, Xp4+m) < €.

(ii) The sequence {x,} is said to be FORWARD-CONVERGENT t0 X, if ¢(x,, Xo0) — 0
asn — oo.

(iii) The space (X, g) is said to be FORWARD HAUSDORFF if every forward-convergent
sequence has a unique forward-limit.

(iv) The space (X, q) is FORWARD-FORWARD-COMPLETE if every forward-Cauchy
sequence is forward-convergent.

Since a quasimetric in not symmetric, there are the corresponding backward concepts,
which can be found in [12].

The next concept of generalized Picard sequences of set-valued mappings is taken from
[13].

Definition 4.5 (generalized Picard sequences) A sequence {x,} in a topological space X
is called GENERALIZED PICARD for a set-valued mapping S : X = X if we have

Vn e N, x,41 € S(xp).
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We are speaking about a consecutively different generalized Picard sequence {x,} for the
set-valued mapping S if foralln € N, x,41 € S(x,) \ {xn}, 1.e., Xp41 # Xp.

Our approach in this paper is to scalarize a vector-valued mapping f : X — Y by using
the Gerstewitz scalarization function ¢4 x defined in (4.1) to construct a generalized Picard
sequence of a certain set-valued mapping that converges to the desired element giving us
new versions of the EVP. Note that the scalarized function @4 x o f might not be lower
semicontinuous.

Recall that an Ekeland-type variational principle for set-valued mappings F acting
between a complete Hausdorff quasimetric space X and a vector space Y is formulated
in [6, Theorem 4.2]. The binary relation in [6, Theorem 4.2] is called post-less ordering
relation, which agrees with the efficiency binary relation introduced in Definition 2.2(ii).
We derive our first result in this section for ek-efficient solutions in the sense of Defini-
tion 3.1 under weaker assumptions than in [6, Theorem 4.2], especially those concerning
the variable domination structure, monotonicity, and boundedness. It is supposed in [6, The-
orem 4.2] that the set-valued objective mapping F : X = Y with values in a linear space Y
is quasibounded in the following sense.

Definition 4.6 (quasiboundedness) A set-valued mapping F : X = Y with values in a
normed space Y is QUASIBOUNDED if there exist a bounded set M in Y such that

VxeX, Fx) CM+ 0,

where O is the given ordering cone of the image space Y.

The following major theorem significantly extends the one in [6, Theorem 4.2] with an
essentially different proof. The main tool of our analysis here is a scalarization technique
based on the nonlinear scalarization function introduced in Definition 4.1.

Theorem 4.7 (variational principle for efficient solutions under variable domination)
Let (X, q) be a quasimetric space, let Y be a linear space equipped with a variable dom-
ination structure D 'Y = Y, and let f : X — Y be a vector-valued mapping. Given
ke Y\{0}, xo € X, yo := f(x0), ® := D (yg), and ¢ > 0, we consider the set-valued
mapping W : X =2 X defined by

W) :={ueX| fx)— fu)—Veqx, wk € D(f(x0))} 4.2)
and the extended-real-valued function Y : X — R U {£o0} defined by
V(x) == o x(f(X) = f(x0) (= ¢o—fu.c(f (X)), 4.3)

where @g i is taken from (4.1). Impose the following assumptions:

(E1) (BOUNDEDNESS CONDITION) The function v from (4.3) is bounded from below
over W(xp), i.e., there exists T € R such that ¥ (x) > t for all x € W (xp).

(E2) (LIMITING MONOTONICITY CONDITION) For every consecutively different gener-
alized Picard sequence {x,} of the set-valued mapping W from (4.2) the convergence
of the series ZZOZO q(xn, Xn41) yields the existence of x,. such that

Vn e N, x, € W(xy). 4.4)
(E3) (SCALARIZATION CONDITION) ® is k-vectorial closed with0 € ©, ® + ©® C O,

® + cone (k) C O, and ® N (—cone (k)) = {0}.

@ Springer



T.Q.Baoetal.

Then, we obtain x, € W (xq) satisfying the inclusion

W(xy) € () == {u € X | q(xs, u) =0} 4.5)
If in addition the condition
(E4) (X, q) is FORWARD-HAUSDORFF

is satisfied, then the conclusions of this theorem reduce to

(i f(xo) = f(xs) — Veq(xo, x)k € D(f(x0)) and
(i) Vx e X\ {x:}, f(xse) — f(x) —eq(xs, x)k € D (f (x0)). That is, x4 is a O-efficient
solution of the perturbed function f,, where fy, : X — Y is defined by
Jr. () 1= f(x) + Veq (xs, 0)k.

Furthermore, imposing the DOMINATION INCLUSION

(ES) D(f(x+) € D(f(x0))
ensures that x. is a D -efficient solution for the perturbed function fv,, i.e.,

Va € X\ {xu), f(x) — f() = Veq(x, 0k & D (f (x2). (4.6)

If finally the starting point xq is an ek-EFFICIENT SOLUTION of f with respect to D, then
x4 can be chosen so that in addition to (i) and (ii) we have

(i) g (x0, xs) < e
Proof 1t is easy to observe from the construction of W in (4.2) that
f(x) — f(x0) € —Veq(xo, x)k — © € Rk — ® = domgg  forall x € W(xo),

This yields the inclusion W(xp) < domy and allows us to construct inductively a
generalized Picard sequence satisfying the conclusions of the theorem.

Starting with xg, we assume that x,, is given. If W(x,) = {x,}, then x, = x, satisfies
inclusion (4.5). Otherwise, choose x,+1 € W(x,) \ {x,} satisfying

Y (xpq1) < e lnf YW) + — @.7)

W (x) 2n+1

It is obvious that such an element x,4 exists due to the boundedness from below of the
function v assumed in (E1). We aim at verifying that the consecutively different generalized
Picard sequence {x,} forward-converges to the desired element by splitting the proof into
several steps.

Claim 0 If u € W(x), then f(u) <e f(x) and W(u) € W(x). A proof is straightforward.
This tells us therefore that

VneN, f(xn) — f(tns1) €O and W(xns1) S W(xn).

Claim 1 For every u € W(x,)) we have the estimate

Vn e N,Vx € W(x,), \/EQ(xna u) < 27

Indeed, it follows from ® 4+ ® C © assumed in (E3) that the scalarization function ¢g  is
©-monotone, i.e., if v <@ Y, then g x(v) < ¢ k(y). Fixing an arbitrary number n € N
and an arbitrary element x € W (x,) yields

x € W(xy) &= f(xpn) — f(x) — Veq(x,, x)k € ©
& f(x)— f(x0) +eq(xn, )k <@ f(xn) — f(x0).
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Since the scalarization function ¢g x given by (4.1) is ®-monotone and translation invariant
along the direction k (see Comment 4.2), we have

90,k (f(x) = f(x0) + Veq(xn, x)k) < go k(f (xn) — f(x0))
= o (f(x) — f(x0) + vVeq(xn, x) = ¥ (x) + Veq(xn, x) < Y (x,).

This readily implies the inequalities

1
Veqxn, x) <Y (x) — () < ¥(x,) — inf Y@ <yx,)— inf  Yu) < —,
ueW (x,) ) 2n

ueW (x,—1
where the last two estimates hold due to W (x,) € W(x,—1) and (4.7), respectively.
Claim 2 The series Z:O:OCI (xn, Xn+1) is convergent. To show this, for every n € N we have
Xnt1 € W(xn) <= [ () — f(Xnt1) — VEq(Xn, Xay 1)k € O, (4.3)

Summing up these inequalities for n = 0, ..., i gives us the inclusion

fxo) — fxiy1) — \/g (ZQ(XH» xn+l)) ke,

n=0

which can be rewritten in the form

f&xig1) — f(xo) + /¢ (Zq(xn, x,,+1)> ke —0.
n=0

Taking into account the ®-monotonicity and translation invariance along k of ¢g x, we get

9o,k (f (xit1 — f(x0) + e <24(xn, xn+1)> k) =<0

n=0

= Ve (ZCI(xn,an)> < =i (f(xiy1) = f(x0) =¥ (xip1) < — inf Y(u)<oo,

0 ueWi(xg)

where the last estimate holds due to (E1). Since i was chosen arbitrarily, we arrive at the
claimed series convergence

\/‘E (ZQ(xn, xn+l)> < Q.

n=0

Claim 3 The inclusion in (4.5) is satisfied. Using the assertion of Claim 2 and the limiting
monotonicity condition (E2) ensures the existence of x, satisfying (4.4). Since we obviously
have x,. € W(x,) € W(xp), to get (4.5) it is sufficient to prove that

Vu, € W(xy), q(xs, uy) =0. 4.9)
To this end, it is easy to check that
ueWkx)= f(x)— f(u) € ® and W(u) € W(x).
Fixing now an arbitrary element u, € W (x,) gives us by (4.4) that
VneN, u, € W(xy,).

It follows from Claim 1 that g(x,, u,) — 0 asn — o0, i.e., u, is a forward-limit of the
sequence {x,}. Denote further & := lim,_, o, ¥ (x;) and show that ¥ (x,) = «. Indeed, the
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choice of x,,11 readily implies that

. 1 1
Yl < il Y@+ gy <Y + 5

where the passage to the limit as n — oo yields @ < ¥/ (u4). On the other hand, we have
from the choice of u, € W(x,) that

fu) = f(x0) + Veq (o, u)k € f(xn) — f(x0) — ©.

Taking into account the ®-monotonicity and the translation invariance along the direction &
of the scalarization function ¢g x ensures that

¥ () + eq (n, ux) < ¥ (xn),

and thus we get by passing to the limit as n — oo that ¥ (uy) < o«. Hence ¥ (uy) = .
Since x, € W(x,), we have ¥ (x,) = « as claimed. It now follows from u, € W (x,) that

Fus) — f(x0) +eq(x, u)k € f(x) — f(x0) — ©.

The aforementioned properties of the scalarization function ¢g x lead us to

Y(uy) + \/ECI(X*’ uy) < Y(xy).

Substituting ¥ (u4) = ¥ (x,) = « into the last inequality, we have g (xy, u,) < 0 and hence
q(xx, uy) = 0, which verifies (4.9) Since u, was chosen arbitrarily in W (x,), we have

xe € W(xg) and W(xs) C {x4}. (4.10)
This ensures the fulfillment of (4.5) and thus completes the proof of Claim 3.

Claim 4 Imposing (E4) gives us assertions (i) and (ii) of the theorem. Assumption (E4) tells
us that the forward-limit is unique if exists. Thus {x,} = {x.}, and the two inclusions in
(4.10) reduce to assertions (i) and (ii), respectively, by the construction of the sets W (x) in
4.2).

Claim 5 The domination inclusion in (E5) yields (4.6). Arguing by contraposition, suppose
that x, is not a D -efficient solution of the perturbed function f,. Then, we find x # x,
such that

(ES)
FO) 4+ Veqes, vk € f(xe) =D (f(x)) S flx) — O,
which clearly contradicts (ii).
Claim 6 If xq is an ek-efficient solution of f with respect to D, then we have (iii). We again
argue by contraposition and suppose that (iii) fails, i.e., g (xo, x+) > /€. Then, (i) yields
fa) € fxo) — Veq(xo, x)k — D (f(x0))
= fxo) — ek — Ve(q(x0, xx) — Ve)k — D (f (x0))
(E3)
C f(xo0) — ek = D(f(x0)).
This readily contradicts the assumption that xg is an ek-efficient solution of f with respect
to D and thus completes the proof of the theorem. O

It is clear that the obtained Theorem 4.7 weakens and/or drops many assumptions in
Theorem 3.2 and Theorem 3.4. Let us comment on the major assumptions imposed in
Theorem 4.7.
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Comment 4.8 (a) Condition (E1) allows us to extend the EVP to the class of vector-valued
mappings having their image spaces as arbitrary linear spaces. When the image space hap-
pens to be a normed one, (E1) is weaker than the quasiboundedness condition (A1) and the
boundedness condition (B1). In fact, (E1) can be equivalently written as

decY, Vx € W(xp), f(x) — f(x0) €e+Y \ (—0).

(b) Condition (E2) is better than conditions (A2) and (B2) as shown in the next two
propositions.

The following simple example shows that the boundedness from below condition (E1)
imposed in Theorem 4.7 is weaker than the quasiboundedness assumption (A1) imposed in
Theorem 3.2.

Example 4.9 (boundedness from below condition of Theorem 4.7 versus quasibounded-
ness) Consider a vector-valued mapping f : R = R? defined by
_}©,=x)if x >0,

fox) = { (x,0) if x <O,
and consider a fixed domination structure D : R? = R? with D (y) = Ri. In this case we
have ® = Ri. Take k := (1,1) € ®\ —O and g(x, u) := |x — u|. Then, W(x) = {x} for
all x € R. The mapping f clearly satisfies the boundedness from below condition (E1), but
it is not quasibounded in the sense of (A1) as required in Theorem 3.2. Indeed, we have

rge f = cone {(0, —1), (=1, 0)}.
Next we present an illustrative example for other assumptions of Theorem 4.7.

Example 4.10 (illustrating the assumptions of Theorem 4.7) Let X := R and ¥ := R?,
and let f : X — Y be defined by

(x,2—=1) if x <O,
fx) = .
(x, 1) if x > 0.
The domination structure D : R?> = R? is given by
convcone {(1,0), (Iy1], [y2D} if y1 <0 and y» <0,
D(y) =1, .
R4 otherwise.

Take e = 1,x0 = 0,k = (1, 1), and d(x, u) = 1/2|x — u|. In this case we have ¥ (x) =
PR2 - It is easy to check that:

a) W(0) =[-0.5,0] and W(-0.5) = {—0.5}.

b) fis P2, -bounded from below.

¢) fisnot Ri-lower semicontinuous since
lev(f,Op2) = {x € X | f(x) €0 =R} = (=00, 0)

is not a closed set in R.

d f(-05 = (-05-1 + 1/@), fO© = (@O0, D (f(-05) =
conv cone {(1, 0), (0.5,1 — l/ﬁ)}, and D (f(0)) = Ri. It is obvious that
f(=0.5) <p(rxp) f(0)and D (f(—-0.5)) € D (f(0)), and hence condition (E5) is
satisfied.

@ Springer



T.Q.Baoetal.

e) Condition (E2) holds since for any nonconstant generalized Picard sequences in Wy
(without loss of generality it can assumed that x,, < 0) we have that W (x,,) is closed
whenever n € N. Then, the existence of x, follows from the classical Cantor theorem.

Our next goal is to derive efficient conditions expressed entirely via the given problem
data ensuring the fulfillment of the limiting monotonicity assumption (E2) of Theorem 4.7.
First we introduce the following new notion.

Definition 4.11 (decreasing lower semicontinuity with respect to domination sets) A
vector-valued mapping f : X — Y is said to be ®-DECREASING LOWER SEMICONTINU-
0oUS over a set A if for every forward-convergent sequence {x,} € A with a forward-limit
X4, the ®-decreasing monotonicity of { f (x,)} with respect to the DOMINATION SET O (i.e.,
f(xn+1) <o f(xp) for all n € N) implies that

VneN, f(xs) <o f(x).

Proposition 4.12 (sufficient conditions for limiting monotonicity) Ler (X, q) be a
forward-forward-complete quasimetric space such that (E4) is fulfilled, and let the vector-
valued mapping f : X — Y be O-decreasing lower semicontinuous over W (xo). Then
the set-valued mapping W from (4.2) satisfies the limiting monotonicity condition (E2) of
Theorem 4.7.

Proof . Take an arbitrary generalized Picard sequence {x,} € W(xg) of the set-valued
mapping W satisfying ) 2, q(xn, Xn41) = £ < oc. Then, for each ¢ > 0 there exists
N¢ € N such that

Ne.—1 [ee)
Z q(xn, Xp41) > £ —¢ and Z q(xp, Xpy1) < 6.
n=0 n=N;

For every i, j > N, with j > i we have

Jj—1 00

G X)) <Y qn Xap1) < Y g Xng1) <&

n=i n=N;

Hence {x,} is a forward-Cauchy sequence. Since (X, ¢g) is forward-forward-complete, it
forward-converges to some forward-limit x,, € X by (E4). Thus {x,} is a generalized Picard
sequence of W, i.e.,

Vn € N, Xn+1 € W(xrl):

which implies that f(x,+1) <e f(x,) for all n € N by (E4). The imposed ®-decreasing
lower semicontinuity of f ensures that

Vn e N, f(xs) <o f(xn).

Since {x,} is a generalized Picard sequence of W, it follows that

vn eN, f(xp+1) + \/EQ(xns XnrD)k <@ f(xn).

Summing up these relations from n = i to i + j while taking into account (E4) and the
triangle inequality for the quasimetric, we have

f it j) +Veq(xi, xip )k <o f(xi).
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Adding this to f(x4) <e f(xi+;) yields
f ) + Veq(xi, xip )k <o f(x).

Taking again into account the triangle inequality for the quasimetric and (E4) gives us the
estimates

Fx) + Veq(xi, x0)k <o f(xe) + Veqxi, xig Dk + /eq(xigj, x0)k <o f(xi) + veq(xit), xk.

Since j was chosen arbitrarily, ® is k-vectorial closed, and since lim,_, oo g (x5, Xx) = 0,
the passage above to the limit as j — oo yields

fx) +Veq(xi, x)k € f(xi) — O,

i.e., xo € W(x;). The latter verifies the fulfillment of (E2), since i was also chosen
arbitrarily. O

Proposition 4.13 (other sufficient conditions for the fulfillment of (E2)) Let ® satisfy
condition (E3), and let f be (®, k)-lower semicontinuous in the sense of Soleimani [35]:

Vx € W(xo),Vt € R, L(x,1) :={u € X | f(u) € f(x)+ 1tk — O} isclosedin X.
Then, f satisfies condition (E2) of Theorem 4.7.

Proof Pick an arbitrary generalized Picard sequence {x,} € W (xg) of the set-valued map-
ping W satisfying > 7 ) g (xy, Xp+1) = £ < 0o, and then fix an arbitrary number n € N.
For every i € N, it is not difficult to check that

S Xn+i) + \/EQ(xn, Xnti)k <o f(xn)

by using (E3) and the triangle inequality for the quasimetric. We can further proceed as
follow:

fQnti) € fxn) = Veq(xn, Xnti)k — ©
= f(n) = Veq(xXn, %) + Veq(xnyi, x2)k
—Ve(qnsiz Xk — g (X0, X4) + q(Xn, Xpyi) )k — O
[ (xn) — Veq(xn, x:0k + eq(xnyi, x)k — ©.
Since lim;_, o ¢ (Xp+i, Xx) = 0, for every § > 0 there is N5 € N such that
FCnsi) € f(xn) = Veq (i, x)k + /e5k — ©.
Since f is (®, k)-lower semicontinuous, we have
F(x) € fxn) — V/oq(xn, xk + V/E5k — ©.

Remembering that § > 0 was chosen arbitrarily while ® is k-vectorially closed, it follows
that

N

f(xs) € flxo) + f(xn) — x/EQ(xn,x*)k -0,

i.e., X« € W(x,). Since n was also chosen arbitrarily, condition (E2) is verified. O

Our second major result is a new variational principle for ek-nondominated solutions of
f with respect to D in the sense of Definition 3.8. Note to this end that in [6, Theorem 4.5]
an Ekeland-type variational principle is obtained for set-valued objective mappings F :
X =% Y between a complete Hausdorff quasimetric space X and a linear space Y. The
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binary relation considered in [6, Theorem 4.5] is called pre-less ordering relation, which
agrees with the nondomination binary relation introduced in Definition 2.2(i).

Now we establish our variational principle in quasimetric spaces for nondominated
solutions under weaker assumptions than in [6, Theorem 4.5], especially those concern-
ing variable domination structures, monotonicity and boundedness. Furthermore, as in the
case of Theorem 4.7, the proof of the following theorem is based on the nonlinear scalar-
ization function from Definition 4.1, which is significantly different from the proof of
[6, Theorem 4.5].

Theorem 4.14 (variational principle for nondominated solutions under variable dom-
ination) Let (X, q) be a quasimetric space, let Y be a linear space, let D : Y = Y be a
domination structure on Y with the nondomination relation <y, and let k € Y \ {0}. Given
xo € X and & > 0, define the set-valued mapping W = Wy, . : X = X by

W) = {ueX | fx)=Veqx,wk — fu) € D(fw)}; (4.11)

where we drop the parameters f, q, and ¢ in the notation of W for simplicity. Consider also
the extended-real-valued function ¥ : X — R U {£o00} given by

Y (x) =g r(f(x) = f(x0) (= go-ruys(f(x), (4.12)
where © := D (f (x0)) and pe i was introduced in (4.1). Impose the following assumptions:

(F1) (BOUNDEDNESS CONDITION) v is bounded from below on W (xg); i.e., there exists
T € R such that ¥ (x) > t for all x € W (xp).

(F2) (LIMITING MONOTONICITY CONDITION) for every consecutively different gener-
alized Picard sequence {x,} of the set-valued mapping W, the convergence of the
series Zflozoq(xn, Xn+1) yields the existence of x, satisfying x, € W(x,) for all
neN

(F3) (SCALARIZATION CONDITIONS)

(F3-a) © is k-vectorially closed, ® + ® C O, ® + cone (k) C O, and ® N
—cone (k) = {0}.

(F3-b) Vx € X, D(f(x)) + cone (k) € D(f(x)).

(F3-0) Vf(u)— f(w) € D(fw), D(fw)) +D(fw)) < D(fw))

(F3-d) ©" C O, where ®" :=U{D(f(x)) : x € W(xp)}.

Then, we obtain x, € W (xq) such that W (x,) C {x.}, where
{x4} = {u eX ‘ q (x4, u) = O}.
Assuming furthermore that

(F4)  the forward-limit of a forward-convergent sequence in the quasimetric space (X, q)
is UNIQUE,

the conclusions of the theorem can be written in the equivalent form

() f(x0) — Veq(xo, x:) — f(x) € D(f(xs)),
(i) Vx #xi, [ — Veq, 0k — f(x) € D(f(x).

If finally the starting point xq is an ek—-NONDOMINATED SOLUTION of f with respect to
D, ie,

Vx e X, f(xo) —ek — f(x) € D(f(x)), (4.13)
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then we have in addition to (i) and (ii) that x, satisfies the localization condition

(i) g(xo0, x) < 5.

Proof Let us construct inductively a generalized Picard sequence that satisfies all the
requirements of the theorem. Observe that for every u € W (xp) we have

(F3—d) (F3—a)
f) € f(xo)—+eqxo, k=D (fw)) < fx0)—veq(xo, k=0 < f(x0)-0,

which clearly implies that g « (f (u) — f(x0)) is finite due to (F1). This gives us W (xp) €
dom .

Starting with xo, suppose that x, is defined. If W(x,) = {x,}, then x, = x, satisfies
inclusion (4.5). Otherwise, choose x,,+1 € W(xy) \ {x,} such that

1/f(xn+1)< lnf Iﬂ(u)+

£ T (4.14)

It is obvious that such an element x,; exists due to the boundedness from below of the
function i assumed in (F1). This generates a consecutively different generalized Picard
sequence.

Claim 1 Ifu € W(x), then W (1) € W (x). To verify this, fix an arbitrary element w € W (u)
and by using the construction of W get the inclusions

@) = Veqx,wk — fu) € D(fw) and f(u) — Vequ, wk — f(w) € D(f(w)). (4.15)

By (F3-b), the second inclusion in (4.15) yields f(u) — f(w) € D (f(w)), and thus
D(fw)+D(f(w)) < D(f(w)) due to (F3-c). Combining both inclusions in (4.15) tells
us that

fx) = Veq(x, wk — Vequ, wk — f(w) € D(f(w)).
Employing (F3-b) and the triangle inequality of the quasimetric ¢, we obtain
f&) = Veq(x, wk — equ, wk — f(w) € D(f(w))
= f0) = Veq(x,wk — f(w) € D(f(w)) +Velg(x,u) +qu, w) —qx, w)k
= () = Veq(x,wk — f(w) € D(f(w)),

which readily implies that w € W (x). Since w was chosen arbitrarily in W (u), it gives us
W(u) € W(x) as asserted in Claim 1.

Claim 2 For all n € N and for every u € W(x,) we have \/eq(x,, u) < 2% Picking an
arbitrary element u € W (x,), observe that

f ) = Veq (o, wk — f(u) € D(f W)
f @) = Veq (o, wk — f(u) € ©
= f)— fxo0) € fxn) — f(x0) — vVeq(x, u)k — ©.

Since ® + ® C O by (F3-a), the scalarization function ¢g x is ®-monotone. This leads us
to

(F3-d)

g k(fW) = f(x0)) < gox(f(xn) = f(x0) — Veq(xn, wk)
9ok (f (xn) — f(x0)) — /eq(xn, u).
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Using the assertion of Claim 1, we have W (x,) € W (x,—1) and thus arrive at the estimates
. . 1
VeqQo,u) < Y(xn) — ¥ ) < ¥(xy) — ueg/l(an)llf(u) < V(xn) — uevy(lem)llf(u) < o

where the two last inequalities hold due to W(x,) € W(x,—_1) and (4.7). This verifies the
claim.

Claim 3 The series ZZOZI q(Xn, Xp+1) is convergent. For every n € N we have x,41 €
W (x,), which is equivalent to the inclusion
f ) — Veq(xn, xnr 1)k — f(xnt1) € D(f (ng1)). (4.16)

It follows from (F2-b) that f(x,) — f(xs+1) € D (f(xp+1)). Then, using (F3-c) gives
us D (f(xp+1)) + D (f(xn)) € D (f(xn+1)). Summing up the inclusions in (4.16) for
n=0,...,i, we get that

fx0) — Ve (Z q(Xn, xn+1)> k= f(xiy1) € D(f (xig1)).

n=0

Taking further (F3-d) into account ensures that

fxig1) — f(xo) + /¢ (Zq(x,,, x,,ﬂ)) ke —0.

n=0

Since ¢g x is ®-monotone and translation invariant along the direction k as discussed in
Comment 4.2, we obtain the inequality

g0k (f(xiy) — f(x0)) < —/e (ZCI(xn, xn+1)> .

n=0
Then, the boundedness condition (F1) tells us that

i

Ve D qu xa) | £ —¥(xis) < — inf Y(u) < oo
o ueW(xo)

Since i was chosen arbitrarily, we arrive at

\/‘g(Zq(xn»xn+l)> < 0o,

n=0

which readily verifies this claim.

Claim 4 We have the inclusion W(x,) € {x,}. Since (F2) yields the existence of x, with
Xxx € W(x,) for all n € N, to justify this claim it is sufficient to show that

Vi, € W(xy), q(xy, uy) =0.

Fix an arbitrary element u,, € W(x,). It follows from Claim 3 with u, € W(x,) and the
assertion of Claim 2 that \/eq (x,, us) < % for all n € N, i.e., uy is a forward-limit of the
sequence {x,}.

Denoting @ := lim,—~ ¥ (x,), we intend to prove that ¥ (u,) = «. Indeed, it follows
from the choice of x4 that

1 1
E Y = s SV —

Xpe1) < In
1/f( n+ ) ueW(x,
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where the passage to the limit as n — oo yields @ < ¥ (uy). To verify the opposite
inequality, deduce from u, € W(x,) that

f) — fxo) € f) = f(x0) = Veq(xn, u)k — D (f (ux))
(F3—d)
C  f) — fxo) — \/EQ(xna u )k —©.
Since the scalarization function @@ x is ®-monotone and translation invariant along the
direction k (see Comment 4.2), we get

Y(uy) < Y(xp) — \/EQ(xn, Us).

Passing there to the limit as n — oo yields ¥ (u4) < o, and thus ¥ (u,) = «. Furthermore,
we obtain ¥ (x,) = o since x, € W(xy).
Deduce now from u, € W(x,) the inclusion

fus) — f(x0) € fxe) — f(x0) — Veq(xy, u)k — ©.

Employing again the aforementioned properties of the scalarization function gg x implies
that

Y (uy) + \/ECI(X*y uy) < Y(xe).

Substituting ¥ (u,) = ¥ (x4) = o into the last inequality, we arrive at g (x,, uy) < 0 and
thus justify that g (x4, u,) = 0. This readily verifies Claim 4 due to the construction of the
set W(x,) in Eq. 4.11.

Claim 5 Assertions (i) and (ii) under assumption (F4). Assuming (F4) ensures that {x,} =
{x«}. This yields by the constructions above that x,, € W(xp) and W (x,) = {x,}, which can
be equivalently written as forms (i) and (ii) of the theorem.

Claim 6 Completing the proof. It remains to estimate the quasidistance between xo and x,
when x is an ek—nondominated solution of f with respect to D . Indeed, if (iii) fails, we
have g (xo, x«) > /€. Then, it follows from (i) and (F3-b) that

) € fxo) — Veq(xo, x:) — D (f (x:)) = f(x0) — ek
—Ve(q(x0, x:) — Ve)k = D (f (x))
€ f(xo) — ek = D(f(x:)),

which clearly contradicts the choice of xo and thus completes the proof of the theorem. [J

Comment 4.15 (a) In the proof of Theorem 4.14 we provide a new way to construct a
generalized Picard sequence of W by using the scalarization function ¢g . This seems to
be more effective than the procedure in [3, Theorem 3.4]: find x,, 11 € W (x,) such that

1

q(xn, Xp41) = sup g (xp, u) — on+1°

ueW (xn)

(b) The boundedness condition (F1) is less restrictive than the requirement that f is qua-
sibounded with respect to ® (see Definition 4.6) as supposed in (H3) of [6, Theorem 4.5].

(¢) The limiting monotonicity condition (F2) is related to the level-decreasing-closedness
condition (H4’) used in [6, Theorem 4.5] under the name of “pre-less preorder.”

(d) Since there is only one domination set ® = D (f(xp)) satisfying condition (F3-
a), the additional condition (F3-d) is essential in comparison with (D3). Condition (F3-c)
guarantees that the domination binary relation <y is transitive.

@ Springer



T.Q.Baoetal.

The next proposition provides efficient conditions in terms of the given data of the
problem that ensure the fulfillment of the boundedness assumption (F1) in Theorem 4.14
expressed therein via the auxiliary function (4.12).

Proposition 4.16 (sufficient conditions for the boundedness assumption of Theo-
rem 4.14) Let Y be a normed space, and let a set ® be topologically closed in Y with k €
® \ (—O). Assume in addition that (F3-a) holds, and that the mapping f in Theorem 4.14
is quasibounded over W (xo). Then, the boundedness condition (F1) is satisfied.

Proof Since f is quasibounded over W (xg), there exists a bounded set M such that
Vx € W(xp), f(x) — f(x0) € M + O. (4.17)

Arguing by contraposition, assume that the function ¥ from (4.12) is not bounded from
below over W (x¢). Then, there is a sequence {x,} € W (xp) such that ¥ (x,) < —n, and thus

vneN, f(xp) — f(xg) € —nk — ©O.
Fixing an arbitrary number n € N, we find 6; € © such that f(x,) — f(x0) = —nk — 6. It
follows from (4.17) that —nk — 6, € M + ©, and then by (F3-a) we have
1
ke —-M— 0.
n

Since n was chosen arbitrarily in N while ® is a closed set, the passage to limit as n — oo
yields k € —©. This clearly contradicts the choice of k € ® \ (—®) and thus completes the
proof. O

Now we present an example illustrating the fulfillment of all the scalarization conditions
in assumption (F3) of Theorem 4.14.

Example 4.17 (scalarization conditions of Theorem 4.14) In the setting of ¥ = R? with
k = (1, 1), consider the ordering structure D : R? = R2 defined by
D (1, y1) if y1 <y,
D(y) :={ D2, y2) if y1 >y,
conv cone {(l % — ﬁ) , (% — 2laaﬁ l)} if yj =y, =a.
It is easy to check that D (y) C RZ, that
VYa,b € R witha > b, D(a,a) € D (b,b),

and that condition (F3-a) is satisfied due to the convexity of the cones D (y) for every
y € RZ. To check the fulfillment of (F3-c), fix two arbitrary elements y, v € R? such that
v <n . It follows from the definition of D that

yev—l—'D(v)gv—HRz,

which clearly implies that y; > v; and y, > vp. Denoting y := min{y;, y2} and v :=

min{vy, v2}, we have y > v and D (y, y) € D (v, v). Hence
D(y1,y2) =D(y,y) SD(@,v) = D(v1, v2).

Since D (yi1, y2) and D (vy, v2) are convex cones, we get D (v, v2) + D (y1,y2) C
D (v1, v2). Remembering that y and v were chosen arbitrarily in R? allows us to conclude
that D satisfies condition (F3-c), which completes our considerations in this example.
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The last result of this section provides efficient conditions via the problem data that
ensure the fulfillment of the limiting monotonicity assumption of Theorem 4.14. First we
need to define the following notion of decreasing lower semicontinuity with respect to
nondomination relations; cf. Definition 4.11 in a different setting.

Definition 4.18 (decreasing lower semicontinuity with respect to nondomination) A
vector-valued mapping f : X — Y is said to be <y-DECREASING LOWER SEMI-
CONTINUOUS WITH RESPECT TO NONDOMINATION RELATIONS over a subset A if for
every forward-convergent sequence {x,} € A with a forward-limit x,, we have that the
decreasing monotonicity of { f(x,)} with respect to the nondomination relation <y, i.e.,
fxns1) <N f(xy) forall n € N, implies that

VneN, f(xy) <n f(xp).

Proposition 4.19 (sufficient conditions for limiting monotonicity in Theorem 4.14) Let
(X, q) be a forward-forward-complete quasimetric space, and let f : X — Y be a <y-
decreasing lower semicontinuous mapping with respect to the nondomination relation from
Theorem 4.14. Then the mapping W defined by (4.11) satisfies the limiting monotonicity
condition (F2).

Proof Take an arbitrary generalized Picard sequence {x,} of the set-valued mapping W
satisfying ZZO:O q(xn, Xp+1) = L < o0o. For each ¢ > 0 there exists N € N such that

o0

> g, xas) > L—¢/2,

n=N,

and thus for every i, j > N, with j > i we have the estimates

j—1 [ee)
q(xi %)) < g Xar1) < Y g, Xag1) <&,
n=i n=N;

which show that {x, } is a forward-Cauchy sequence. Since X is forward-forward complete,
this sequence forward-converges to some x, € X.

Remembering that {x, } is a generalized Picard sequence of W, we deduce from condition
(F3-b) that f(x,4+1) <y f(x,) forall n € N. The imposed decreasing lower semicontinuity
of f gives us

Vn e N, f(xs) =N f(xn).
Using now (F3-c) yields the inclusions
Vn € N, D(f(xn+1)) € D(f(xn)) and D (f (xx)) S D(f (xn))- (4.18)
Since {x,} is a generalized Picard sequence of W, we get
S Gng1) € f(xn) = Veq(xn, Xur )k = D (f (Xn11)).

Summing up the above relations from n = i to j while taking into account (F3-b) and the
triangle inequality of the quasimetric ensure that

fxjr1) € () — Veqxi, xj+ Dk — D(f(xj41)).
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Adding the latter to the inclusion f(xy) € f(xj41) — D (f(x;41)) yields

fx) € fxi)—eqxi, xjr D)k —D(f (xs))
= fxi) — Veq(xi, x0k + Veq(xjy1, x0k
—e(q(xi, x5) + q(xj1, %) — g (xi, xj41)k — D (f (x4))
(F3—b)

S fO) = Veqxi, x0)k +Veq(xjr1, x )k — D (f (x:)).

Since the index j was chosen arbitrarily and since D (f(x,)) is k-vectorial closed, the
passage to limit above as j — oo gives us the inclusion

) € fO) = Veq(xi, x)k — D (f (x:)),

i.e., X, € W(x;). This verifies (F2) by taking into account that i was also chosen arbitrarily.
O

5 Variational Rationality in Behavioral Sciences

This section is devoted to developing a variational rationality approach to human dynamics
in the vein of [36—40], with taking now into account the new results on variational principles
in vector optimization with variable domination structures that were established above.

After presenting the basic concepts of the variational rationality modeling of human
dynamics, we mainly concentrate on the following issues:

® Introducing generalized efficiency and domination structures of the type formalized in
Definition 2.2, while being adjusted to the variational rationality approach to human
dynamics. These notions extend those from [44] to the settings where the resistance to
move matters.

® Applying the obtained variational principles in vector optimization with variable domi-
nation structures to establish the existence of ex ante (before moving) and ex post (after
moving) variational traps with showing that possible regrets can matter much.

To highlight the major topics of the presentation, we split this section into several
subsections.

5.1 Pareto and Yu Efficiency and Domination Structures in Behavioral Models

In this subsection we discuss some basic notions in the modeling of human dynamics
and conventional approaches to behavioral models based on efficiency and domination
structures in the classical sense of Pareto and more recent ones introduced by Yu.

5.1.1 Pareto Efficiency and Nondomination Binary Relations in Behavioral Models

In the finite-dimensional space ¥ = R™, consider a list of different pains J = {1, ..., m}
and a list of vector amounts of pains v = W, ..., e R% C Y associated with each pain
j € J. The amount of pain v/ € R, represents a quantity of a “fo be decreased” payoff,
e.g., some degree of unsatisfaction, loss, cost, lack of given things (size of needs), etc. In
this context where the agent wants less of each pain and tries to minimize the amounts of
pain v/ as j € J, the space Y = R™ is the space of amounts associated with pains and
pleasures. The first problem of the agent is to compare the lists of different amounts of
pains v = W, ..., v e R¥ and y = (y], ..., ¥™) € R%. As usual, a vector of pains v
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is Pareto smaller (resp. Pareto larger) than another vector of pains y if and only if we have
v/ <yl (resp. v/ > y/)forall j € J.

Having in mind the above descriptions of “Pareto smaller” and “Pareto larger” vectors,
we need now to clarify the related meanings of the expressions that a given vector of pains is
“better than” or is “worse than” another vector of pains in all their aspects; cf. Definition 2.1.

(Pareto-i) The vector of pains v is Pareto better than the vector of pains y (in all their
aspects) if v = y — D*, where D* := R'}". In this setting, v = y — d with d € D* means
that each amount of pain v/ of the list v is smaller than or equal to each amount of pains
y/ of the list y, i.e., v/ < y/ forall j € J. This tells us that “less of each pain is better.”

(Pareto-ii) The vector of pains y is Pareto worse than the vector of pains v (in all their
aspects) if y € v + D*, where D* := R}". In this case we have y = v +d with d € D*
meaning that each amount of pain y/ of the list y is higher or equal to each amount of
pains v/ of the list v, i.e., y/ > v/ for all j € J. This tells us that “more of each pain is
worse.”

Note that in the above case of D* := R’} we have the equivalencies (cf. Section 2)
y—veED = v=<p:y=v—y=<p: 0.

Thus defining the “better than” sets B(y) = y — D* and the “worse than” sets 20(y) =
y + D*, we get that v is Pareto better (resp. worse) than y if and only if v € B(y) (resp.
y € 2(y)).

5.1.2 Yu Efficiency and Nondomination Binary Relations

(cf. Definitions 2.2 and 2.3). In [43, 44], Yu generalized the above concepts of Pareto
efficiency and nondomination by considering the following conic domination structures:

(Yu-i)  An arbitrary fixed convex cone D C Y instead of the Pareto constant cone D* =
R™.
(Yu-ii) Variable conic structures D(y) forall y € Y.

To discuss these concepts, consider first the “worse” and “better” relations with respect
to constant cones D C Y. The main emphasis here is that the same amount of two different
pains can be more important or less important for an individual. In this setting, the agent
may accept to trade off a lower amount of a more important pain 1 to a higher amount of a
less important pain 2. For simplicity, take two pains 1 and 2 with the corresponding amounts
of these pains v = (v', v?) € Rﬁ_ andy = (y',y?) € Rﬁ_. The new meaning that Yu gave
to the “better than” relation is: v is better than y if and only if v = y — D, when the cone
D may be larger than the Pareto cone D* = R'{. In this simple situation where the agent
compares the new short list of pains v with the old short list of pains y, he/she prefers the
new list of pains v to the old one y if accepting to trade off the lower amount v! < y!
of the most important pain 1 against a higher amount v? > y? of the less important pain
2. This means that, moving from the list y to the list v € y — D, the agent trades off the
diminution v! —y! < 0 of the most important pain against the augmentation v> — y> > 0 of
the less important pain. However, this augmentation should not be too important relative to
the diminution. Given the diminution y! — v! = d' > 0 of pain 1, the larger augmentation

v2 — y2 = —d? > 0 of pain 2, which the agent tolerates, can be

0<®—y’= - <o vy =ald!
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giving us d> + a'd! > 0. Then, @' > 0 is the larger augmentation of the less impor-
tant pain 2 that the agent would accept relative to the diminution of one unit of the more

important pain 1, i.e.,

2 1

0<vw —yzfoz if yl—vlzl.
These considerations lead us to the following construction of the cone D of acceptable

augmentations of less important pains relative to given diminutions of more important pains:
D={d=@@"d)eR*|d" >0, «'d' +d* >0}

We also refer the reader to [27] for related discussions showing how tradeoffs modelize the

relative importance of criteria in the case where D D ’}Z is not a too obtuse cone.

The same meaning can be given to the relation “to be worse than” with the same domi-
nated cone D. In this case we say that y is worse than v if y € v+ D, ie.,if y =v +d as
d € D. This tells us that the agent finds y worse than v if a given augmentation of the more
important pain 1 is not compensated by a large enough diminution of the less important
pain 2.

5.2 Variational Rationality with Variable Efficiency and Domination Structures

In this subsection we describe the variational rationality (VR) approach to human dynam-
ics, which benefits from the variational principles developed in Section 4. In fact, one of
the major motivations for developing our new research on variational principles in vector
optimization problems with variable domination structures came from the needs of the VR
approach described below.

5.2.1 Ex Ante and Ex Post Visions of Moves.

According to Definition 2.2, a variable domination and efficiency structures gives us, for
each position v € Y of a space of pains (positions) Y, a set of possible worse (dominated)
positions v+D(v) C Y and a set of better (preferred) positions v—D(v) C Y. The variable
cone D(v) C Y represents a set of pains, which can be added to the vector of pains v to
make worse the new vector of pains v + d with d € D(v). On the other hand, the variable
cone P(v) = —D(v) C Y defines a set of pains that can be dropped from the vector of
pains v while making better the vector of pains v — d with d € D(v).

The variable nondomination and efficiency binary relations under consideration are
given by:

® “y is worse than v” if and only if y € v 4+ D(v); this is the nondomination binary
relation taken from Definition 2.2(i).

e “yis better than y” if and only if v € y — D(y); this is the efficiency binary relation
taken from Definition 2.2(ii).

Note that these variable relations are not generally equivalent, while they becomes
equivalent in the case of constant structures D(y) = D(v) = D forallv,y € Y.

The VR approach to human dynamics focuses the major attention on a short list of main
concepts for modeling human behaviors: activities, payoffs (utilities and disutilities as sat-
isfactions and unsatisfactions to move), moves, costs to move, advantages/disadvantages
to move, inconveniences to move, motivation and resistance to move, worthwhile bal-
ances, worthwhile moves, aspiration points, desires, and stationary or variational traps. This
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approach is well adapted to: (a) give a new interpretation of the Yu’s approach in the con-
text of variable cones when there are no resistance to move (i.e., change rather than stay),
and (b) generalize the nondomination and efficiency binary relations in the vein of Defi-
nition 2.2 when resistance to move matters. Without resistance to move, the VR approach
provides the following:

(i)  Starts by focusing the attention on moves in a space of positions.

(ii) Makes a distinction between disadvantageous (utility deteriorating) moves d € D(v)
and advantageous (utility improving) moves —d with d € D(v) in the space of
positions.

(iii) Makes an essential distinction between an ex ante perception to move and an ex post
perception to move. In this context, D(v) is a set of disadvantageous moves, while
P(v) = —D(v) is a set of advantageous moves starting from the initial position v in
the payoff space Y.

We refer the reader to [5, 6] for the first attempts to investigate adaptive aspects of the
variational rationality approach when resistance to move matters. Now we can do more.

5.2.2 Should I stay, should | move?

The corresponding logic of the efficiency and domination structures become very clear
in the context of the variational rationality approach to human dynamics. We start here
with the VR discussions concerning the space of “to be decreased” payoffs ¥ = R™. Let
y € Y and v € Y be the amounts of pains that the agent endorses in the previous and the
current periods. Then, within the current period, a simplified definition of a move that is
well adapted to the present paper starts with “having suffered of the amounts of pains y € ¥
in the previous period” and ends with “suffering of the amount of pains v” in the current
period. This move is (y, v) € Y x Y. Itis achangeif v # y and a stay if v = y. Note that the
move (y, v) in the payoff space corresponds to some move (x, #) € X x X in the activity
space X. With the two given bundles of activities x € X and u € X, we have the amount of
pains y = f(x) € Y in the previous period and the amounts of pains v = f(u) € Y in the
current period. The most basic question driving the VR approach is the following: “should
I stay or should I move?” That is, at the beginning of the current period (ex ante, i.e., before
moving) the main alternative is:

(a) Either fo stay, i.e., doing the same bundle of activities x in the current period as
before. In this case, the agent would suffer from the same amounts of pains y = f(x)
as before.

(b)  Or to change, i.e., doing a different bundle of activities # # x in the current period as
before. In this case, the agent will suffer from new amounts of pains v = f(u) in the
current period.

Let us discuss the aforementioned major alternative from both viewpoints of the
efficiency and nondomination binary relations introduced in Definition 2.2.

EFFICIENCY BINARY RELATION (Definition 2.2 (ii)): SHOULD I CHANGE? Yes, if ex
ante v is better than y. In this case the advantages to move from y to v (change rather than
stay) in the payoff space is A(y, v) ;= y—v = f(x)— f(u) = A(x,u) € Y. Consider an ex
ante perception of a move. In this setting, the agent prefers to change before moving from x
to u, rather than to stay at x, if the new amount of pains v = f(u) is lower than the old one
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y = f(x). This means that, ex ante, a given diminution of the most important pains com-
pensates a not too large augmentation of the less important pains. The latter is equivalent
to saying that A(y,v) = y —v € D(y) <= A(x,u) = f(x) — f(u) € D(f(x)), which
means that there are ex ante advantages to move from y to v, i.e., from x to u. Appealing to
Definition 2.2(ii)), this can be written as v € y — D(y).

NONDOMINATION BINARY RELATION (Definition 2.2(i)): SHOULD I REGRET TO HAVE
CHANGED? No, if ex post y is worse than v. Indeed, consider, the agent’s ex post percep-
tion of the same move (y, v). In this new setting, the agent would prefer to change from y to
v after moving, i.e., to go from x to u rather than to stay at y provided that the new amount
of pains v = f(u) is perceived ex post as lower than the old amount of pains y = f(x).
This means that after moving a given diminution of the most important pains compensates
a not too large augmentation of the less important pains. The latter is equivalent to saying
that A(y,v) ;= y—v € D(v) <= A(x,u) = f(x) — f(u) € D(f(u)), which tells us that
there are ex post advantages to move from y to v, i.e., from x to u. Coming back to Defini-
tion 2.2(i), this can be written y € v 4+ D(v) meaning that the agent does not regret ex post
to move from y to v. We refer the reader to [40] for more discussions of the possible origins
of regrets in the variational rationality context, where ex post regrets come from wrong ex
ante evaluations of utility and costs of different moves.

5.2.3 When the Resistance to Move Matters Much

First let us offer an appropriate extension of variable domination and efficiency structures
in the variational rationality approach when the resistance to move matters. With respect
to the binary relations in Definition 2.2, the VR approach compares advantages to move to
inconveniences/resistance to move and defines ex ante and ex post worthwhile moves that
generalize ex ante and ex post advantageous moves, respectively.

Inconveniences to Move When the resistance to move (change rather than stay) matters,
the resistance to move generates the inconvenience to move rather than to stay defined
by I(y,v) := C(y,v) — C(y,y) = C(x,u) — C(x,x) = I(x,u). In this formula, the
amount C(y,v) = C(x,u) € R% C Y represents vectorial costs to move from “having
done the bundle of activities x in the previous period” to “being able to do and do the
bundle of activities u in the current period”. The amount C(y, y) = C(x,x) € Rﬂ cY
defines vectorial costs to stay at x. Observe that costs to move are not symmetric, i.e.,
C(v, y) # C(y, v). This requires to use in modeling the framework of quasimetric spaces,
which has been done in the variational theory developed in Section 4. In our VR behavioral
model we consider a specific vectorial case, where I(x,u) = /eq(x, u)k with q(x, u)
being a given quasidistance; see [5, 6] for more discussions of such issues.

Advantageous Moves When resistance to move does not matter, we define in our termi-
nology (following an implicit construction of [40]) an advantageous move (y, v) from the
viewpointof ¥ € {y, v} by A(y,v) ==y —v € D(r) < A(x,u) = f(x) — f(u) € D(r).

Worthwhile moves Now we are ready to define, based on the binary relations from Defini-
tion 2.2, the new notion of worthwhile moves when the resistance to move matters. Namely,
the worthwhile move (y, v) from the viewpointof r € {y = f(x),v = f(u), yo = f(x0)}
is given by B¢ (y, v) := A(y, v) — €I(y, v) € D(r). In our specific context of efficient and
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domination structures, the worthwhile balance is defined by
Be(y,v) :=A(y,v) = &l(y,v) =y —v —£&IL(y,v), with & > 0.

In [36-38], the reader can find some discussions on motivation of the resistance to move in
other behavioral science settings. Note that the concepts from Definition 2.2 correspond to
the case where & := /¢ = 0. In what follows we consider even a more specific balance
situation with I(y, v) = /eq(x, u)k, i.e.,

B:(y,v) = f(x) — f(u) — Veq(x, uk,

where & = /¢ > 0. Then, a move (y, v), which starts from the position y and goes to the
position v, is worthwhile in the following senses:

® Ex ante if we have Bg(y, v) € D(y) before moving, while choosing the viewpoint of
the starting position r = y = f(x) and the viewpoint of x (efficiency binary relation
as in Definition 2.2(ii)).

®  FExpostif we have Bg (y, v) € D(v) after moving, while choosing the viewpoint of the
final position r = v = f(u) and the viewpoint of # (nondomination binary relation as
in Definition 2.2(i)).

Observe finally that the move (yp = f(xg), v = f(u)) is ex ante worthwhile if

Bz (y0. v) = A(yo, v) — £I(yo, v) = f(x0) — f(u) — +/eq(x0, u)k € D(v),

while choosing the initial viewpoint of » = yp = f(xg) and from viewpoint of xg.
5.3 Existence of Ex Ante and Ex Post Variational Traps

The above discussions show that the behavioral model of human dynamics, which is
described in terms of the variational rationality approach, can be enclosed into the varia-
tional framework of vector optimization with variable domination structures in quasimetric
spaces. Then, the new variational principles of Section 4 obtained in this general framework
leads us to behavioral conclusions that can be interpreted as the existence of ex ante and ex
post variational traps. The results presented below are direct consequences of the obtained
variational principles, which are derived in Theorems 4.7 and 4.14. Note that, besides the
statements of the these theorems, their very proofs based on constructive generalized Picard
sequences provide efficient dynamic procedures to approach such traps, not only to establish
their existence.

To this end, we define in the framework of the VR approach the concept of variational
traps as follows. A given position x, is a variational trap if this position is worthwhile to
reach, but not worthwhile to leave. Using the definition of a worthwhile balance formulated
in this section and the results obtained in Theorems 4.7 and 4.14 allows us to arrive at the
following conclusions:

e Ex ante variational traps. It follows from the results of Theorem 4.7 with & := /¢ >
0 that we have the conditions:

()  B:(yo = f(x0), v« = f(x)) = f(x0) — f(xs) — /€q(x0, x:)k € D(f(x0)).
()  Be(ve = f(x),y = f(x) = fx) — f(x) — Veq(xi, )k € D(f (x0)).

Note that condition (i) means that it is worthwhile to move from xg to x,, while condition
(ii) tells us that it is not worthwhile to move away from x,.. The point of view that determines
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preferences is the initial position (xg, ¥ = f(xg)). This defines an ex ante variational trap as
an efficiency binary relation from Definition 2.2(ii)), which gives us the ex ante motivation
to move from x( to x, and then to stay at x,.

¢ Ex post variational traps. It follows from the results of Theorem 4.14 with & := /¢ >
0 that we have the conditions:

() Bs(yo = f(x0), vs = f(x:)) = f(x0) — f(xs) — Veq(x0, x:)k € D(f (x1)).
(i) Bi(vi=f(x),y = f(x) = f(x) — f(x) — Veq(xs, x)k € D(f (x)).

As seen, condition (i) tells us that it is worthwhile to move from xg to x,, while condition
(i1) means that it is not worthwhile to move away from x.. The point of view that determines
preferences in this case for condition (i) is the final position (xx, 7 = f(x,)). On the other
hand, for condition (ii) it is the position x with r = f(x) for each x away from x,. This
defines an ex post variational trap corresponding to the nondomination binary relation from
Definition 2.2(i), which excludes ex post regrets to move from xg to x, and then to stay at
X

Thus Theorems 4.7 and 4.14 provide efficient conditions ensuring the existence of ex
ante and ex post variational traps in the variational rationality model of human dynamics.
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