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CONTINUOUS FEEDBACK STABILIZATION OF NONLINEAR CONTROL

SYSTEMS BY COMPOSITION OPERATORS ∗

Bryce A. Christopherson1, Boris S. Mordukhovich2 and Farhad Jafari3

Abstract. The ability to asymptotically stabilize control systems through the use of continuous
feedbacks is an important topic of control theory and applications. In this paper, we provide a
complete characterization of continuous feedback stabilizability using a new approach that does not
involve control Lyapunov functions. To do so, we first develop a slight generalization of feedback
stabilization using composition operators and characterize continuous stabilizability in this expanded
setting. Employing the obtained characterizations in the more general context, we establish
relationships between continuous stabilizability in the conventional sense and in the generalized
composition operator sense. This connection allows us to show that the continuous stabilizability of a
control system is equivalent to the stability of an associated system formed from a local section of the
vector field inducing the control system. That is, we reduce the question of continuous stabilizability
to that of stability. Moreover, we provide a universal formula describing all possible continuous
stabilizing feedbacks for a given system.
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1. Introduction

In this paper, we consider autonomous control systems of the form

•
x = f(x, u), t ≥ 0. (1)

More specifically, we take a neighborhood of the origin X × U ⊆ Rn × Rm and, unless otherwise stated, we
will always assume that our function f on the right-hand side of (1) satisfies both conditions f(0, 0) = 0 and
f ∈ C0 (X × U ,Rn), where Ck(X ×U ,Rn) denotes the n-times continuously differentiable functions X ×U → Rn

(adopting as well the convention that taking k = −1 denotes the set of all functions X × U → Rn without any
assumption of continuity).
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Mostly, we are interested in stabilizing these systems. That is (as in, e.g., [9, Definition 10.11]), we are looking
at the following property.

Definition 1.1 (Local Asymptotic Stabilizability - Feedback Laws). Given a control system of type (1), we
say the system is locally asymptotically stabilizable by means of feedback laws if there exists a neighborhood of
the origin O ⊆ X and a feedback u : O → U satisfying u(0) = 0 that renders the origin a locally asymptotically

stable equilibrium [5, Definition 2.1] of the closed-loop system
•
x = f(x, u(x)).

For some commonly-used additional jargon, if the stability of the system in Definition 1.1 can be made
exponential by such a feedback control, we say that the system is locally exponentially stabilizable by means of
feedback laws. For clarity, note as well that the requirement that u(0) = 0 is a mostly-harmless simplification
and is no more of an imposition than the requirement that f(0, 0) = 0. That is, if we are in some situation

where we stabilize our system
•
x = f(x, u) with a feedback u(x) such that u(0) = u0 ̸= 0, then notice that we

must have f(0, u0) = 0. So, we could just consider the system f̃(x, u) := f(x, u + u0) instead, which certainly

has f̃(0, 0) = 0 and is stabilized by the feedback law ũ(x) := u(x)− u0 that satisfies ũ(0) = 0.
For brevity (and to avoid the idiosyncrasies of dealing with various non-classical notions of solutions to

differential equations), when we reference local asymptotic stability throughout the paper as defined in
Definition 1.1, we will always assume that the feedback u(x) satisfies the following additional criterion:

Criterion 1.2 (Uniqueness Criterion - Feedback Stabilization). The state-feedback controller u(x) is such that

f(x, u(x)) is continuous and
•
x = f(x, u(x)) has a unique solution x(t) for all t ≥ 0 and all x0 in a neighborhood

of the origin.

There is some variation in the literature as to whether Criterion 1.2 ought to be included as part of
Definition 1.1 as, e.g., Coron [8] and Zabczyk [35] do. There seems to be no consensus here: On one hand, a
number of results may be stated more cleanly when adopting this additional restriction. On the other, this
assumption is somewhat unattractive in due to this restrictiveness, since it is also possible to define various
other notions of solutions (e.g. Filippov and Krasovskii) which allow for non-unique trajectories and still
exhibit convergence in the desired fashion. We will take extra care regarding this point. In particular, when
we reference known results in Section 2 while discussing some background materials, we will note which ones
would be false without this imposition. Additionally, it is important to note that Criterion 1.2 does not
require that u(x) must be continuous. That is, it is possible for the composition of a continuous function and
a discontinuous function (or even two discontinuous functions) to be continuous. For example, let g(x) = x2

and let D : R → R be such that D(x) = 1 if x is rational and D(x) = −1 if x is irrational. Then, while D is
discontinuous everywhere, both g ◦D and D ◦D are continuous everywhere.

A variety of conditions describing whether the system (1) is locally asymptotically stabilizable by means of
continuous feedback laws have been derived. As a nowhere-near-comprehensive listing, see, e.g., the control
Lyapunov techniques described in [1, 3, 13, 20], the topological conditions in [4–6, 8, 9, 12], the homological
conditions in [8], a standard Lyapunov-theoretic techniques derived from solutions to a
Hamilton–Jacobi–Bellman equation in [15], polynomial stabilization in [16], and compilations of many others
in [9, 23, 24, 31, 32]. However, fully characterizing whether or not an arbitrary system has this property has
proven to be a formidable task. At present, we are not familiar with any conditions, which are simultaneously
necessary and sufficient, that allow us to determine the existence or nonexistence of such a controller
satisfying Criterion 1.2.

To its credit, the theory of control Lyapunov functions presents some sizable inroads to address the
problem–usually in various relaxed settings compared to the traditional notions of solutions and the
uniqueness requirement of Criterion 1.2, such as when one allows discontinuous feedbacks, admits various
other notions of solutions (e.g. Filippov and Krasovskii), and perhaps enters the broader context of differential
inclusions instead of systems (1). However, while these other questions may admit clean characterizations in
their own respective contexts (e.g., [1, 7, 13, 20, 28]), the question of stabilizability by continuous feedback in
the classical sense remains unsolved by control-Lyapunovian methods. The deficiencies of the control
Lyapunov approach in this setting are primarily due to the substantial departure control Lyapunov functions
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take from the characterization of stability that classical Lyapunov functions enable for non-control systems.
As, e.g., Clarke observes in [7], while the existence of a continuous feedback u(x) rendering (1) locally
asymptotically stable does imply the existence of a smooth control Lyapunov function, the existence of a
smooth control Lyapunov function does not necessarily imply the existence of such a continuous stabilizing
feedback for general systems (1) (though this does hold for certain restricted classes, such as input-affine

systems [1]). For example, the system (1) with f(x, u) =
[
u2u3 u1u3 u1u2

]T
has V (x) = ∥x∥2 as a smooth

control Lyapunov function, but is not stabilizable by continuous feedback laws [7, 21]. Accordingly, some
refinement of this approach–or some other approach entirely–is needed to resolve the classically-posed form of
the stabilizability problem.

In this paper, we develop such an alternate approach and finally resolve this long-standing problem, fully
characterizing the classical feedback stabilizability property.

1.1. Entering the New Approach

As discussed above, stabilization via feedback satisfying Criterion 1.2 has been recognized as a difficult
problem in control theory. One reason for why it might be is that the topic itself could be difficult. That is,
information regarding stabilization could, in a colloquial sense, be ‘buried’ too deep or ‘tangled up’ too well
in the structure of a system to be extracted with ease. Another option is that we’ve just been phrasing the
question in an unfortunate manner and have made things seem much more difficult than necessary. One way
the latter option might occur, as argued here, is that we opted to ask one particularly messy question instead
of asking two much simpler questions that, when combined, produce the original messy one.

More particularly, when we apply a feedback law to a control system of form (1), all we’re doing is sending
f(x, u) to f(x, u(x)). At the end of the day, this amounts to applying a composition operator Th to the vector
field f inducing the dynamics of the system, i.e., Thf = f ◦ h for some mapping h : X → X × U . A fairly large
amount is known about composition operators, so it seems like the real sticking point in the case of stability is
that we require the generating mapping h of our composition operator to be of a very specific form. Namely,
h(x) = (x, u(x)) for some state-feedback control u(x).

Of course, relaxing this condition would change the problem entirely, and answering a different problem
instead of the one originally asked doesn’t constitute a solution by any means. But, all the same, suppose
one did decide to do away with the restriction that the mapping h in our composition must be of the form
h(x) = (x, u(x)). Then, if one were to solve the problem of stability with the very general class of h(x), certainly
every necessary condition for the broader case would also be necessary for the particular case of the original
question. Indeed, if we knew that a system was stabilizable by some composition operators Th, all that would
then remain is a question about the nature of those stabilizing composition operators–i.e., when can we choose
a stabilizing composition operator Th to have a symbol of the form h(x) = (x, u(x))?

Broadly speaking, this is what we will attempt to do here. That is, our approach to stabilizability by feedback
will consist of asking the following two questions:

Problem 1.3. Under what conditions does there exist a composition operator Th, with a symbol h of some
desired smoothness, such that the origin of the ”closed-loop” system

•
x = Thf(x) is locally asymptotically stable?

Problem 1.4. Given the existence of some stabilizing composition operators Th with a symbol h of the required
smoothness so as to resolve Problem 1.3, does there exist at least one that is a control?

As we will show (Theorem 3.2 and Theorem 5.7), the continuous and continuously differentiable formulations
of Problem 1.3 are answered in the affirmative when f has a local section α of the desired smoothness at the
equilibrium (see definition 1.8). Likewise, we will show (Theorem 6.4) that the corresponding continuous and
continuously differentiable formulations of Problem 1.4 are answered in the affirmative when the projection
onto its first factor of this local section, i.e. proj1 ◦ α where proj1(x, u) = x, induces a diffeo/homeomorphism

whose inverse, itself, yields a stable system
•
x = (proj1 ◦ α)−1(x). Moreover, the answer to these versions of

Problem 1.4 will tell us how to produce such a stabilizing control (indeed, all possible continuous or continuously
differentiable stabilizing controls) from a local section satisfying the required criteria.
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1.2. Composition Stabilizability

For precision, we require some preliminary definitions before continuing.

Definition 1.5 (Local Asymptotic Stabilizabilty - Composition Operators). Considering the control system
(1) with f ∈ C(X × U ,Rn) satisfying f(0, 0) = 0, we say the system is locally asymptotically stabilizable by
means of a composition operator if there exists a neighborhood of the origin O ⊆ X and a composition operator
Th with symbol h : O → X × U satisfying h(0) = (0, 0) that renders the origin a locally asymptotically stable

equilibrium of the system
•
x = Thf(x).

If such a stabilizing composition operator Th can be chosen with a symbol h ∈ Ck(O,X ×U) as −1 ≤ k ≤ ∞,
we say that the system (1) is locally asymptotically stabilizable by means of a composition operator with a Ck

symbol. As before with controls, note that our assumption that h(0) = (0, 0) is again a harmless simplification.
Additionally, as with the case of stabilizing feedbacks as well, we make an analogous uniqueness assumption to
that of Criterion 1.2.

Criterion 1.6 (Uniqueness Criterion - Composition Stabilization). The composition operator Th is such that

Thf is continuous and
•
x = Thf(x) has a unique solution x(t) for all t ≥ 0 and all x0 in a neighborhood of the

origin.

The stabilizability of a system by composition operators is properly a weaker property than the stabilizability
of a system by feedback laws, as it allows for compositions in the state space domain as well as the control domain.
More succinctly, we are just treating everything as a control in this generalization. To highlight it, let’s look at
the following straightforward example.

Example 1.7. Let f(x, u) := x. Since the application of any control has no effect on the dynamics, the
corresponding system (1) is not locally asymptotically stabilizable by means of feedback laws. However, (1)
is locally asymptotically stabilizable by means of a composition operator (in fact, by one with a continuous
symbol). Indeed, take, e.g., h(x) := (−x, u(x)) for any continuous feedback law u(x). Then the system

•
x = (Thf)(x) = f(h(x)) = −x

has a locally asymptotically stable equilibrium at the origin. In fact, it is easy to see that the origin is a globally
exponentially stable equilibrium.

It is also reasonable to consider stabilizability by composition operators as a mere subcase of stabilizability
by feedback laws, since treating everything as a control is really the same thing as considering local asymptotic
stabilizability for the restrictive subclass of systems which only depend on controls (i.e., systems of form (1)
that depend trivially on the state variable).

In this paper, we will show that this natural (albeit, much weaker) generalization of stabilizability
(equivalently, conventional stabilizability for the restrictive subclass of systems) has some interesting
connections to the problem of stabilizability by feedback laws given in Definition 1.1. To do so, we will build
up this approach and detail how many of the classical theorems on stabilizability have much cleaner forms in
the composition operator context. We will show that extracting properties about the composition operators
which stabilize a given system of form (1) tends to be, in general, relatively easy. Additionally, we will make a
case for the position that this is the correct approach to view the problem of feedback stabilizability. In
support of this stance, we will completely resolve the continuous and continuously differentiable formulations
of Problem 1.4 and, to some extent, the continuous and continuously differentiable formulations of
Problem 1.3.

1.3. Main Results of the Paper

The contribution of this paper is to reduce the question of stabilizability to that of stability. That is, we
will take the broader class of control systems of the form (1) and reduce the question of their stabilizability
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to the question of the stability of an associated system. This departs substantially from the existing control-
Lyapunov-theoretic approaches to the problem of stabilizability for general nonlinear systems (1)–wherein one
must determine the existence or nonexistence of a so-called control Lyapunov function, though the existence
of smooth control Lyapunov function does not necessarily guarantee the existence of a stabilizing feedback
in the setting of classical solutions to (1) and continuous feedbacks satisfying Criterion 1.2. Instead of this
incomplete approach, we present a complete characterization of stabilizability that requires no such control-
Lyapunov-theoretic tools and can be stated entirely in terms of the stability of a system derived from a local
section of the vector field f in (1). Further, this does not only provide a characterization of local exponential
and asymptotic stabilizability by feedback laws, but also produces a characterization of all possible stabilizing
feedback laws. More interestingly perhaps, this approach provides a somewhat unexpected link between the
topic of stabilization and the existence of local sections.

To allow for concise wording, we first need a definition:

Definition 1.8 (Sections, Local Sections). Given topological spaces X, Y and a function F : X → Y , a global
section of F is a continuous right inverse of F . That is, a mapping σ : Y → X is a section of F if σ is continuous
and F ◦ σ = idY . A local section of F is a continuous mapping σ : O → X for some open set O ⊆ Y such that
F ◦ σ = ι ◦ idO, where ι denotes the inclusion map ι : O → Y . If x0 ∈ X, we say that F has a local section
at x0 if there exists a local section σ : O → X of F such that O is an open neighborhood of F (x0) = y0 and
σ(y0) = x0.

For the remainder of this subsection, we will always assume that Criterion 1.2 and Criterion 1.6 hold whenever
we reference stabilizability by feedback laws or stabilizability by composition operators. Our results are as
follows:

First, we address the case of local asymptotic stabilizability by composition operators. We begin by addressing
the case of local exponential stabilizability of smooth systems by composition operators with smooth symbols.

Theorem 3.2 The system (1) with f ∈ Ck(X × U ,Rn) for k ≥ 1 is locally exponentially stabilizable by means
of a composition operator Th with a Ck symbol h if and only if f has a Ck local section at the origin.

For stabilization by composition operators with merely continuous symbols, the case is more interesting.

Theorem 5.7 The system (1) is locally asymptotically stabilizable by means of a composition operator Th with
a continuous symbol h if and only if there exists a local section of f at the origin. Moreover, such a composition
operator Th can always be chosen so that this stability is exponential.

This produces an interesting gap, which is not resolved here. Namely, exponential and asymptotic local
stabilization by composition operators with continuous symbols coincide, while they may not in the case where
k > 0. In particular, for local asymptotic stabilizability by a composition operator with an Ck symbol to be
possible when local exponential stabilizability by the same is not, this requires that all of the local sections at
the origin of the vector field f in (1) must fail to be differentiable. However, while this is necessary, it is unclear
what conditions are sufficient to provide the existence of such a stabilizing composition operator.

We make a connection to Brockett’s theorem as well, providing a variety of composition-operator stabilization
characterizations of this well-known property. In particular, while Brockett’s condition is necessary but not
sufficient for stabilization by composition operators with continuous symbols, it turns out (somewhat shockingly)
to be sufficient in the discontinuous case:

Theorem 4.5 If the vector field f in (1) satisfies Brockett’s condition, then (1) is locally exponentially
stabilizable by means of a composition operator (potentially, with a discontinuous symbol).

We do not know whether Brockett’s condition is also necessary for stabilization by composition operators with
discontinuous symbols, though we conjecture that it is. In support of this, we show that Brockett’s condition
is necessary and sufficient for a certain restricted class of systems.

Corollary 4.12 Suppose the origin is an isolated zero of f in (1). Then, (1) is locally asymptotically stabilizable
by means of a composition operator Th with a symbol which is continuous at the origin if and only if the vector
field f in (1) satisfies Brockett’s condition.
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Using the tools developed for the case of stabilization by composition operators, we are able to give a necessary
and sufficient condition for the existence of a stabilizing feedback laws as well. Unlike the case of composition
operators, this result leaves no remaining gaps.

Theorem 6.4 For k ≥ 0, the system (1) is locally asymptotically (resp. exponentially) stabilizable by means of
a Ck feedback law u if and only if there exists a Ck local section α of f at the origin such that proj1 ◦ α is a

homeomorphism (resp. diffeomorphism) and
•
x = (proj1◦α)−1(x) has the origin as a locally asymptotically (resp.

exponentially) stable equilibrium. Moreover, every such control u is of the form u = proj2 ◦α ◦ (proj1 ◦α)−1 for
some α satisfying the above.

2. Preliminaries

In this section, we begin by briefly recalling some known results regarding stabilization by feedback laws and
detailing a short taxonomy of the obstacles remaining between what is known and a complete characterization
of local asymptotic stabilizability.

2.1. Hautus Lemma and Related Results

As mentioned previously, when we reference local asymptotic stability throughout the paper, we will always
assume that the feedback u(x) satisfies Criterion 1.2. In this section, however, we will be careful to also note
which ones would be false without this imposition.

As mentioned previously, a large number of partial characterizations of stabilizability do exist, and some of
the more useful elementary ones are worth mentioning quickly. First, let us briefly recall some conventional
notation. Given a mapping f ∈ C1(X × U ,Rn) as in (1), we denote the Jacobian of f by Jf and the partial
Jacobian matrices of f at (0, 0) by

Af :=
∂f

∂x

∣∣∣∣
(0,0)

and Bf :=
∂f

∂u

∣∣∣∣
(0,0)

. (2)

e.g. so that, as a block matrix, Jf |(0,0) =
[
Af Bf

]
. Given a linear operator T : Rn → Rn, denote its spectrum

by Λ(T ) and the subset of Λ(T ) consisting of the eigenvalues with nonnegative real part by

Λ+(T ) := {λ ∈ Λ(T ) | Re(λ) ≥ 0} .

Next we recount the celebrated Hautus lemma needed below.

Lemma 2.1 (Hautus). Given an n × n matrix A and an n ×m matrix B, the linear system
•
x = Ax + Bu is

locally exponentially stabilizable if and only if for all λ ∈ Λ+(A) it holds that

rank
[
λI −A B

]
= n.

There is a similar result to the Hautus lemma, which applies to the linearization of a system like that given
in (1). That is, using the notation of (2), it applies to the linearized system

•
x = Afx+Bfu, t ≥ 0. (3)

This nonlinear analogue of the Hautus lemma via linearization was first proved by Zabczyk in [35], though he
mentioned that it was likely known as folklore for some time before a published proof was available.

Theorem 2.2 (Zabczyk). The control system (1) with f ∈ C1(X ×U ,Rn) is locally exponentially stabilizable by
means of C1 feedback laws if and only if the linearized system (3) is locally exponentially stabilizable. Moreover,
if the linearized system (3) is locally exponentially stabilizable, then the linear feedback law stabilizing (3) is a
locally exponentially stabilizing feedback law for the original system (1).
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Combining Hautus’ lemma and Zabczyk’s theorem yields the following consequence.

Corollary 2.3 (Hautus-Zabczyk). The control system (1) with f ∈ C1(X × U ,Rn) is locally exponentially
stabilizable by means of C1 feedback laws if and only if we have for all λ ∈ Λ+(Af ) that

rank
[
λI −Af Bf

]
= n.

The most famous result regarding asymptotic stabilizability is probably a remarkable and easily formulated
necessary condition given by Brockett [4]. We discuss it in the next subsection.

2.2. Brockett’s Theorem

Brockett gave in [4] a necessary condition for feedback asymptotic stabilizability of nonlinear systems, which
has attained a great attention in control theory. This condition constitutes (with the proof based on topological
degree theory) that f must satisfy a certain ‘local openness’ property if such a controller exists.

Definition 2.4 (Locally Open). A mapping f : Rℓ → Rn is said to be open at a point z̄ ∈ Rℓ if we have
f(z̄) ∈ intf(O) for any neighborhood O of z̄.

The origin of this property goes back to the classical Banach-Schauder open mapping theorem, which is one
of the central results of functional analysis. We give it in the form of a well-known extension of its classical
statement from smooth to continuous system by means of continuous vs. smooth feedback laws is given by
Coron [8] with the usage of a result by Zabczyk from [35].

Theorem 2.5 (Brockett’s Theorem - Continuous Extension). If the system (1) is locally asymptotically
stabilizable by means of continuous feedback laws satisfying Criterion 1.2, then it is necessary that the mapping
f is open at (0, 0).

Stated a bit differently, Brockett’s theorem says that any system (1), which is asymptotically stabilizable by
means of continuously differentiable feedback laws, has a solution to f(x, u) = y for all ∥y∥ sufficiently small.
More compactly, Brockett’s condition says that such a system must be ‘locally surjective’ on any neighborhood
of the origin, i.e., f is surjective onto a neighborhood of the origin in Rn when restricted to some appropriate
neighborhood of the origin in Rn × Rm. For intuition, the ‘archetypal’ example of a mapping that satisfies
this condition would be–in the spirit of the inverse function theorem–any such f that has a Jacobian of full
row-rank at the origin. To contrast, while having a full row-rank Jacobian at the origin is certainly sufficient,
it is definitely not necessary; take, for example, f(x) := −x3.

As a small note, observe that it is not known whether or not Brockett’s condition is required for local
asymptotic stabilizability in the more general case of merely continuous feedback laws without the assumption
of Criterion 1.2 regarding the uniqueness of locally defined solutions. That being said, it is worth mentioning
(as Sontag notes in [31, Section 5.8, 5.9] and [33, p. 554]) that continuous feedback laws can often be ‘smoothed
out’ away from the origin. Thus, combined with Sontag’s proof in [33, p. 560] that stabilization via continuous
feedback laws which are locally Lipschitz away from the origin yields Brockett’s condition (without making the
assumption of uniqueness of trajectories), this does lend some support to the conjecture that Brockett’s theorem
may be necessary in the general case of Definition 1.1 sans the strong requirement of unique trajectories, as
evidenced by partial results to this effect such as, e.g., [27].

Strong attempts have been made to extend Brockett’s theorem (and results like it) in some or another form
and to ‘close the gap’ between necessity and sufficiency when it comes to characterizing stabilizable systems.
There are a large number of results like that, accounting for a similarly large number of relatively-involved
distinctions regarding the continuity and differentiability classes of stabilizing controls–for example, by Coron
in [9], by Sontag in [31,33], by Zabczyk in [35], and many others. For an easy reference on a fairly large portion
of the subject (and a truly excellent treatment of the topic overall), Byrnes [5] provides nice, streamlined proofs
of both Coron’s and Zabczyk’s results among other developments.

To conclude this short overview of known results in the area particularly related to Brockett’s theorem, let
us mention a new variational approach to feedback stabilizability of nonlinear control systems that was initiated
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in [12] and then further developed in our paper [6]. Though variational analytic connections will not be our
focus here, we should note that some results in [6] were reached by arguments involving the use of composition
operators. Particularly, [6, Theorem 9] gives a condition (less restrictive than what is required by Corollary 2.3)
which ensures the existence of stabilizing controls which are C1 on only a punctured neighborhood of the origin
(that is, N \ {(0, 0)} for some neighborhood of the origin N ). This extends results like Corollary 2.3 to cover
some instances of the case where locally asymptotically stabilization of (1) is only possible by continuous (and
not C1), feedback laws. The techniques employed in [6] seem to suggest that further applications of composition
operators–utilized more adroitly–might allow for further progress in this direction. This constitutes, in large
part, the motivation for our approach herein.

2.3. Outline

The rest of the paper is organized as follows. Section 3 is devoted to developing the composition
counterpart of the extended Hautus-Zabczyk result in the novel context. In Section 4, we derive new results
for composition operators under Brockett’s openness condition to familiarize ourselves with the notion of
composition stabilization. In particular, Subsection 4.1 establishes some subtle properties of local quotient
maps under the openness condition. In Subsection 4.2 we show that Brockett’s theorem is still necessary for
the composition generalization of stabilizability and, in some cases, sufficient. In Section 5, we solve the
problem of exponential stabilization by means of composition operators. In the process, we will also solve a
portion of the problem of asymptotic stabilization by composition operators.

In Section 6, we return to the case of stabilization via feedback laws and leverage what we have learned
about stabilization via composition operators in the previous sections. We produce a characterization of local
asymptotic and exponential stabilizability by feedbacks, also characterizing what stabilizing controls must be
like. The conclusion, Section 7, summarizes the main developments of the paper and discusses some open
problems for future research.

3. A Generalized Hautus Lemma for Composition Operators

Let’s begin by seeing how a well-known feedback stabilizability result carries over to the composition
stabilizability setting. In the spirit of the Hautus-Zabczyk result (i.e., Corollary 2.3) regarding the local
exponential stabilizability of a system by Ck feedback laws, we establish an analogous criterion for the local
exponential stabilizability of a system by means of composition operators with a Ck symbol.

The next result in this subsection was proven previously by the authors in [6] (see, e.g. [6, Lemma 5]),
although the context was not so explicitly stated. We opt to include a modified (and much simpler) version of
the proof here.

Corollary 3.1 (Hautus-Zabczyk - Composition Stabilizability). The system (1) with f ∈ C1(X × U ,Rn) is
locally exponentially stabilizable by a composition operator with a C1 symbol if and only if

rank
(
Jf |(0,0)

)
= n. (4)

Proof. Writing w = (x, u), consider the system
•
y = F (y, w) := f(w) with trivial dependence on the state

variable y. Clearly, stabilization of this system by feedback laws is equivalent to the stabilization of (1) by
composition operators. As such, Corollary 2.3 gives the result. □

This result isn’t surprising at all–it is just a sub-case of that given in Corollary 2.3. Indeed, the condition
(4) must happen in the case of stabilization by feedback laws as well: suppose that (1) is locally exponentially
stabilizable by means of continuously differentiable feedback laws. Then there are two possibilities: either Af

is full rank, or it is not. In the first case, if Af is of full rank, then Jf |(0,0) certainly has full row-rank. In the

second case, if Af is not of full rank, then λ = 0 is certainly an eigenvalue of Af with nonnegative real part,
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and thus the Hautus lemma dictates that we have

rank
[
λI −Af Bf

]
= rank

(
Jf |(0,0)

)
= n.

The result of Corollary 3.1 serves as good motivation for what we will proceed to do in much of the remainder
of the paper. Namely, notice that if (4) holds, then Jf |(0,0) has a continuous right inverse–namely, the Moore-

Penrose pseudoinverse
(
Jf |(0,0)

)+

. In fact, this holds more generally.

In the following theorem, we show that the existence of a Ck local section at zero is equivalent to exponential
stabilizability of (1) by means of a Ck composition operator.

Theorem 3.2 (Composition Stabilizability and Local Sections - Ck Version). The system (1) with
f ∈ Ck(X × U ,Rn), where k ≥ 1, is locally exponentially stabilizable by a composition operator with a Ck

symbol if and only if f has a Ck local section at the origin.

Proof. The reverse direction is obvious: Suppose f has a Ck local section at the origin α : O → X . Take any
system

•
x = g(x) for which the origin is a locally exponentially stable equilibrium and g is Ck. Let ι : O → Rn

denote the inclusion map and let g̃ : N → O be such that ι ◦ g̃ = g|N for some neighborhood of the origin N
(i.e. so that g(N ) ⊆ O, as is always possible by continuity). Choosing Th to be the composition operator with
symbol h = α ◦ g̃ so that

Thf = f ◦ α ◦ g̃ = ι ◦ g̃ = g|N ,

it is clear that Th locally exponentially stabilizes (1).
In the forward direction, assume that the system (1) is locally exponentially stabilizable by means of a

composition operator Th with a Ck symbol. Then, the system
•
x = Thf(x) is locally exponentially stabilizable

by means of the composition operator Tx, which certainly has a C1 symbol. By Corollary 3.1, JThf |0 has full
row-rank and the function F (x, y) := Thf(y)− x satisfies the conditions of the Implicit Function Theorem. So,
there exists an open neighborhood of the origin O ⊆ Rn and a Ck function g : O → Rn such that g(0) = 0 and
F (x, g(x)) = 0 for all x ∈ O. Correspondingly, the function α : O → X × U defined by α := h ◦ g is Ck and
satisfies (f ◦ α)(x) = x for all x ∈ O. That is, α is a Ck local section of f at the origin. □

The central thesis of this paper’s approach to stabilization by composition operators is largely characterized
by the result above. That is, in the remainder of the composition-operator-focused portion of this paper, we
will show that Theorem 3.2 generalizes to characterize exponential and asymptotic stabilizability by means of
composition operators in the continuous case. To this aim, we will begin by showing that Brockett’s theorem
holds in the context of stabilization by composition operators in the next section. After some prerequisite
details are dealt with following this, we will show that the obvious non-differentiable analog of the result of
Theorem 3.2 holds as well.

4. Extended Brockett Theorem and Composition Properties under Openness

This section studies the role of the openness property of vector fields of control systems in stabilizability of
such systems by means of composition operators. We begin in Subsection 4.1 by first investigating the openness
property of Brockett’s theorem, yielding a connection to quotient maps that will be important throughout the
remainder of this paper. After this, in Subsection 4.2, we show that Brockett’s openness property is not only
necessary, but is also sufficient, for stabilization by composition operators with symbols that are continuous at
the origin provided the origin is an isolated zero of f in (1). For systems with the origin as non-isolated zero,
we conjecture that the same holds as well.

4.1. Openness Condition and Local Quotient Maps

The first lemma here showcases a useful fact about continuous surjections between arbitrary topological
spaces satisfying the property given in Definition 2.4 for some point x0 in their domain.
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Lemma 4.1. Let X and Y be topological spaces. Fix x0 ∈ X and suppose that F : X → Y is a continuous
surjection which is open at x0. Then, for any topological space Z and any g : Y → Z, the mapping g is continuous
at F (x0) if and only if the composition g ◦ F is continuous at x0.

Proof. In the forward direction, suppose that g is continuous at F (x0). The continuity of the composition
g ◦F : X → Z at x0 follows immediately, since continuity is preserved under compositions. That is, if Z0 ⊆ Z is
a neighborhood of g(F (x0)), then the continuity of g at F (x0) ensures that g

−1(Z0) is a neighborhood of F (x0).
Using the continuity of F at x0 tells us that the inverse image F−1(g−1(Z0)) is a neighborhood of x0.

In the reverse direction, suppose that g ◦F is continuous at x0. Then, for any neighborhood Z0 of g(F (x0)),
there exists a neighborhood O ⊆ X of x0 such that O ⊆ (g ◦ F )−1(Z0). Observing that

O ⊆ (g ◦ F )−1(Z0) = F−1(g−1(Z0))

and employing the surjectivity of F imply that F (F−1(S)) = S for all subsets S ⊆ X. Therefore, it yields

F (O) ⊆ F (F−1(g−1(Z0))) = g−1(Z0).

Since F is open at x0 and O is a neighborhood of x0, we get that F (O) is a neighborhood of F (x0). Remembering
that Z0 was an arbitrarily chosen neighborhood of g(F (x0)), the continuity of g at F (x0) follows. □

Lemma 4.1 has an interesting interpretation in terms of quotient maps.

Definition 4.2. Let X and Y be topological spaces. We say that a continuous function f : X → Y is a quotient
map if f is surjective and f−1(U) ⊆ X is open if and only if U ⊆ Y is open

Recall that quotient maps are characterized among continuous surjections as follows; see, e.g., [34]:

Theorem 4.3. Let q : X → Y be a continuous surjection. The following are equivalent:

(i) q is a quotient map.
(ii) For any topological space Z and any mapping g : Y → Z, we have that g is continuous if and only if the

composition g ◦ q is continuous.

Similarly, to show that a continuous surjection q is a quotient map, recall that it is sufficient (though not
necessary) to verify that q is either an open map or a closed map. That is, if a continuous surjection is to be a
quotient map, it is sufficient that it is open at every point in its domain. Essentially, it is the global analogue
to the local version given in the assumptions of Lemma 4.1.

In fact, the similarities between this and what we have in the Definition 2.4 are really quite apparent. Namely,
instead of a continuous surjection which is open at every point, we have a continuous surjection that is open
at a selected point. In this sense, a continuous surjection which satisfies Definition 2.4 must be something like
a local quotient map, i.e., a quotient map at a point. In light of the characteristic global property of quotient
maps (i.e., Theorem 4.3), it’s not surprising that the local analogue of a quotient map induces a local analogue
of this characteristic property (i.e., Lemma 4.1).

As it turns out, we can go further in some situations. Recall that we say a map F : X → Y is proper if
F−1(K) is compact for every compact set K ⊆ Y . Similarly, we say that a topological space X is locally compact
if every point x ∈ X has a compact neighborhood. As is well-known, if X is Hausdorff, this is equivalent to
the statement that every neighborhood N of a point x ∈ X contains a compact neighborhood K of x. Finally,
recall, as mentioned previously following Theorem 4.3, that if one desires to show that a mapping F : X → Y
is a quotient map, then it is sufficient to show that F is a closed, continuous surjection.

Lemma 4.4. Let X and Y be topological spaces and suppose that F : X → Y is continuous, F (x0) = y0, and
F is open at x0 ∈ X. Then there exist an open neighborhood Y0 ⊆ Y of y0, an open neighborhood X0 ⊆ X of
x0, and a continuous surjection F̃ : X0 → Y0 which is open at x0 and satisfies ι ◦ F̃ = F |X0

, where ι : Y0 → Y
denotes the inclusion map.



TITLE WILL BE SET BY THE PUBLISHER 11

If, in addition, both X and Y are locally compact and Y is Hausdorff, then we can instead take X0 and Y0

to both be compact and such that F̃ is a closed quotient map.

Proof. Since F is open at x0 ∈ X, it follows that F (x0) ∈ intF (X0) for any neighborhood X0 ⊆ X of x0.
In particular, by x0 ∈ int(X) we have F (x0) ∈ intF (X). It allows us to choose an open neighborhood Y0 of
F (x0) = y0 ∈ Y such that Y0 ⊆ F (X). Write X0 := F−1(Y0) and take the inclusion map ι : Y0 → Y . Then X0

is an open neighborhood of x0 by the continuity of F , and the mapping F̃ : X0 → Y0 defined by ι ◦ F̃ := F |X0
is

a surjection by construction. Since F̃ agrees with F on X0, the claimed openness and continuity follow as well.
Now, let us also assume that X is locally compact and that Y is locally compact and Hausdorff. Note that

by the local compactness of X, there must exist a compact neighborhood K ⊆ X of x0. If Y is Hausdorff, then
F |K : K → Y is a continuous map from a compact space to a Hausdorff space. By the Closed Map Lemma,
F |K is therefore both proper and closed. By the openness of F at x0, we have that F (x0) ∈ intF (K), and
there exists a neighborhood of F (x0) contained in F (K). As we have assumed that Y is both locally compact
and Hausdorff, we may take this to be a compact neighborhood Y0 ⊆ F (K) of F (x0). Since F |K is proper

and continuous, X0 := F |−1
K (Y0) = K ∩ F−1(Y0) ⊆ K is a compact neighborhood of x0. Define the mapping

F̃ : X0 → Y0 by ι ◦ F̃ = (F |K) |X0
= F |X0

, where ι : Y0 → Y is again the inclusion map. Noting that a subspace

of a Hausdorff space is itself a Hausdorff space, Y0 is Hausdorff and the mapping F̃ is continuous map from a
compact space to a Hausdorff space and a surjection by construction. Hence, via another application of the
Closed Map Lemma, F̃ is a proper, closed, continuous surjection and therefore, a closed quotient map. □

Every function factors as a surjection (onto its image) and an injection (of the image into the codomain), so
a factorization of this form is nothing surprising. What Lemma 4.4 really tells us, in essence, is that systems
(1) satisfying Brockett’s necessary condition factor in this way, but with neighborhoods of the origin as the
respective domain and codomain of the corresponding surjection and inclusion. Moreover, systems (1) that
satisfy Brockett’s condition do not just have a local analogue to the characteristic property of quotient maps,
but factor as inclusions and quotient maps themselves on some suitable restriction of their domain.

Recall that any surjection F : X → Y necessarily has a right inverse α : Y → X, i.e. a mapping α such that
F ◦ α = idY . This gives us a nice, albeit obvious, result. For clarity, there is no assumption on the continuity
of the symbol of the stabilizing composition operator in what follows.

Theorem 4.5 (Discontinuous Composition Stabilizability). If the vector field f in (1) satisfies Brockett’s
condition, then (1) is locally exponentially stabilizable by means of a composition operator.

Proof. If (1) satisfies the necessary condition of Brockett’s theorem, then f is open at (0, 0). As such, Lemma 4.4
implies that there exists a neighborhood of the origin X0 ⊆ X × U and a neighborhood of the origin Y0 ⊆ Rn

such that the mapping f̃ : X0 → Y0, defined by ι1 ◦ f̃ = f |X0
via the inclusion map ι1 : Y0 → Rn, is a surjection.

Hence, f̃ has a right inverse α : Y0 → X0, and as f |X0
(0, 0) = 0, we may certainly choose this right inverse so

that it satisfies α(0) = (0, 0). Take any system
•
x = g(x) for which the origin is a locally exponentially stable

equilibrium and g is continuous. Let g̃ : N → Y0 be such that ι1 ◦ g̃ = g|N for some neighborhood of the origin
N (i.e. so that g(N ) ⊆ Y0, as is always possible by continuity). Set h = ι2 ◦ α ◦ g̃, where ι2 : X0 → X is the

inclusion map, and notice that, since ι1 ◦ f̃ = f |X0
and f ◦ ι2 = f |X0

, we have

Thf = f ◦ ι2 ◦ α ◦ g̃
= f |X0

◦ α ◦ g̃

= ι1 ◦ f̃ ◦ α ◦ g̃ = ι1 ◦ g̃ = g|N .

Since
•
x = g(x) has the origin as a locally exponentially stable equilibrium and satisfies g(0) = 0, so does

•
x = g|N (x). It then follows that Th is a composition operator which locally exponentially stabilizes (1). □

To reiterate, we stress that there is absolutely no assurance of continuity for the symbol h of the stabilizing
composition operator Th. Instead, Theorem 4.5 simply highlights the fact that, while stabilization by



12 TITLE WILL BE SET BY THE PUBLISHER

composition operators is remarkably easy to obtain in the presence of Brockett’s condition (on a theoretical
level, at least), the real trick is obtaining continuity for the stabilizing composition operator’s symbol. We will
proceed towards this end with some more characterizations of systems satisfying Brockett’s condition and the
potential continuity of their restrictions’ right inverses.

Recall now that, given a mapping F : X → Y , we say a subset S ⊆ X is F -saturated if S = F−1(F (S)).
As illustrated by the following lemma (the proof of which can be found in, e.g., [29, Lemma 2.3]), F -saturated
subsets of closed mappings behave nicely.

Lemma 4.6. Let X and Y be topological spaces, let F : X → Y be a closed map, and assume M ⊆ X is closed
and F -saturated. Then, for every open set O ⊆ X such that M ⊆ O, there exists an F -saturated open set
N ⊆ X such that M ⊆ N ⊆ O.

This immediately leads to the following result:

Lemma 4.7. Let X and Y be locally compact and let Y be Hausdorff. Suppose that F : X → Y is continuous,
F (x0) = y0, and F is open at x0 ∈ X. Then, if F (x) = y0 has only the trivial solution x = x0 for all x in some

sufficiently small neighborhood of x0, any right inverse of the closed quotient map F̃ : X0 → Y0 (guaranteed to
exist by Lemma 4.4) is continuous at y0 whenever X0 and Y0 are chosen to be sufficiently small.

Proof. By Lemma 4.4, the existence of the closed quotient map follows immediately from our assumptions.
Noting that if F (x) = y0 has only the trivial solution x = x0 for all x in some sufficiently small neighborhood of

x0, suppose we have chosen X0 and Y0 such that F̃ (x) = y0 has only the solution x = x0 (as is always possible,
viz. the proof of Lemma 4.4). Then, the subset M = {x0} ⊆ X0 satisfies

F̃−1(F̃ (M)) = F̃−1(F̃ (x0)) = F̃−1(y0) = x0

and is therefore F̃ -saturated. Since F̃ is a surjection, there exists a (potentially non-unique) right inverse

α : Y0 → X0 of F̃ . Taking O to be any neighborhood of x0, notice that O must necessarily contain an open set
containing M. Hence, by Lemma 4.6, there exists an open neighborhood N of x0 such that N is F̃ -saturated
and M ⊆ N ⊆ O. So, since O ⊇ N and F̃−1(F̃ (N )) = N , we have

α−1(O) ⊇ α−1(N ) = α−1(F̃−1(F̃ (N ))) = (F̃ ◦ α)−1(F̃ (N )) = (idY0)
−1(F̃ (N )) = F̃ (N ).

By openness, F̃ (N ) contains a neighborhood of y0, and therefore α−1(O) must as well for any neighborhood O
of α(y0) = x0. That is, any right inverse α of F̃ is continuous at y0. □

Essentially, Lemma 4.7 just tells us that systems (1), which satisfy Brockett’s necessary condition and have
the origin as an isolated zero of f in (1), automatically have (viz. Theorem 4.5) locally asymptotically (and
exponentially) stabilizing composition operators with symbols that are continuous at the origin. This will lead
nicely into the results of the following subsection.

4.2. Brockett’s Theorem in the Class of Composition Operators

The next result provides a natural extension of Brockett’s theorem to the class of stabilizing composition
operators with continuous symbols.

Theorem 4.8 (Brockett’s Theorem for Composition Stabilizability). If the system (1) is locally asymptotically
stabilizable by means of a composition operator with a continuous symbol, then it is necessary that the vector
field f(x, u) is open at (0, 0).

Proof. Let y ∈ Rn and write w := (x, u) ∈ Rn × Rm. Set W := X × U and choose a neighborhood of the
origin Y ⊆ Rn. Let F : Y × W → Rn be given by F (y, w) := f(w); so F is independent of y. If the system
(1) is locally asymptotically stabilizable by means of a composition operator Th with a continuous symbol h(·),
then the one in

•
y = F (y, w) is locally asymptotically stabilizable by means of continuous feedback laws, namely
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w(y) := h(y). Applying Theorem 2.5 tells us it must be the case that 0 ∈ intF (Y0 ×W0) = intf(W0) for any
neighborhood of the origin Y0 ×W0 ⊆ Y ×W . Since W0 is an arbitrary neighborhood of the origin in X × U ,
we justify the result. □

The fact that Brockett’s theorem holds when we treat everything–that is, both the state variable x and the
control variable u in the standard setting–as a control gives us a good perspective to understand why Brockett’s
condition is necessary for stabilizability by feedback laws, but far from sufficient. Specifically, straightforward
cases like that of Example 1.7 demonstrate that stabilizability by a composition operator is a much weaker
property than stabilizability by a feedback law. Yet Brockett’s condition is necessary in either case.

As it turns out, Brockett’s condition remains necessary under even weaker conditions. The following theorem
presents one such situation.

Theorem 4.9 (Brockett’s Theorem for Composition Stabilizability - Continuity at Zero). If the system (1) is
locally asymptotically stabilizable by means of a composition operator Th with a symbol which is continuous at
the origin, then it is necessary that the vector field f in (1) satisfies Brockett’s condition.

Proof. If (1) is locally asymptotically stabilizable by means of a composition operator Th with a symbol h

which is continuous at the origin and is such that Thf is continuous, then the system
•
x = Thf(x) is locally

asymptotically stabilizable by the composition operator Th with h given by the identity, which is certainly
continuous. Hence, by Theorem 4.8, Thf must be open. Since h is assumed to be continuous at zero and satisfy
h(0) = (0, 0), it follows that for every neighborhood V of h(0) = (0, 0), there exists a neighborhood O of 0 such
that h(O) ⊆ V . Correspondingly, by the openness of Thf = f ◦ h, there exists a neighborhood N of 0 such that
N ⊆ Thf(O) = f(h(O)) ⊆ f(V). Therefore, f is open at the origin. □

Example 4.10. Consider Brockett’s famous integrator, the system (1) with f ∈ C1(R3 × R2,R3) given by

f(x, u) =

 u1

u2

x1u2 − x2u1

 .

It is easy to see that f fails to satisfy Brockett’s condition as stated in Theorem 2.5, as the f -image of any
neighborhood of the origin fails to contain points of the form (0, 0, ϵ) for ϵ ̸= 0. Consequently, there can be no
continuous feedback law stabilizing this system. In light of Theorem 4.9, this deficiency can be extended and
is, in fact, even stronger–not only can there be no continuous stabilizing feedback, this continuity is impossible
to achieve even just at the equilibrium. Moreover, neither of these deficiencies can be remedied by moving to
the larger context of stabilization by composition operators.

After some consideration, Theorem 4.9 is relatively natural, as openness at the origin is a local property
and continuity at the origin is the local analogue to continuity. In light of Theorem 4.9, Lemma 4.7, and
Theorem 4.5, we pose the following conjecture:

Conjecture 4.11. If the vector field f in (1) satisfies Brockett’s condition, then (1) is locally exponentially
stabilizable by means of a composition operator Th with a symbol which is continuous at the origin.

If Conjecture 4.11 is true, then Brockett’s condition is (by Theorem 4.5) necessary and sufficient for
stabilizability by a composition operator with a symbol that is continuous at the origin. We suspect that this
could possibly be the case, but can also imagine that there may be pathologies preventing such a neat
characterization. In support of this conjecture, however, we do have the following immediate result via
Theorem 4.9 and Theorem 4.7:

Corollary 4.12 (Brockett’s Theorem for Composition Stabilizability - Continuity at Zero). Suppose the origin
is an isolated zero of f in (1). Then, (1) is locally asymptotically stabilizable by means of a composition operator
Th with a symbol which is continuous at the origin if and only if the vector field f in (1) satisfies Brockett’s
condition.
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Having now touched on Brockett’s condition in the context of composition stabilization, we are now ready
to proceed to composition stabilization for non-differentiable systems.

5. Composition Stabilizability without Differentiability

To proceed, we must develop a method to characterize stabilizability by a composition operator with a
continuous, but not continuously differentiable, symbol. To do this, it will be helpful first to state a much
more general version of the implicit function theorem that allows us to deal with this non-differentiability a bit
better. Such a version of the (generalized) implicit function theorem was obtained by Kumagai in [19], which
is a refinement of the origin result given by Jittorntrum in [17].

The major goal of this section is to answer this remaining question and solve the problem of exponential
stabilization by means of composition operators. In the process, we solve a portion of the problem of asymptotic
stabilization by composition operators as well. To do so, we will begin in Subsection 5.1 by applying the
Kumagai-Jittorntrum implicit function theorem judiciously.

5.1. Composition Stabilizability via Implicit Functions

We start this section with formulating the aforementioned Kumagai-Jittorntrum theorem .

Theorem 5.1 (Kumagai-Jittorntrum Implicit Function Theorem). Let F : Rk × Rℓ → Rk be a continuous
mapping, and let F (a0, b0) = 0. Then the following statements are equivalent:

(i) There exists open neighborhoods A0 ⊆ Rk and B0 ⊆ Rℓ of a0 and b0, respectively, such that for all b ∈ B0

the equation F (a, b) = 0 has a unique solution a = w(b) for some continuous mapping w : B0 → A0.
(ii) There exist open neighborhoods A ⊆ Rk and B ⊆ Rℓ of a0 and b0, respectively, such that for all b ∈ B,

the mappings a 7→ F (a, b) defined on A are injective.

For the sake of completeness, it’s worth noting that the Kumagai-Jittorntrum implicit function theorem can
be applied to control systems of form (1) whose domain are neighborhoods of points in Rk ×Rℓ. This is due to
the fact that a neighborhood of a point in Rp contains an open set homeomorphic to Rp itself.

Simple examples, such as
•
x = x + u3, show that local asymptotic stabilizability by a composition operator

with a smooth symbol is still possible in certain cases where local asymptotic stabilizability by a continuously
differentiable feedback law is not. Let’s use the Kumagai-Jittorntrum implicit function theorem again to
investigate this phenomenon. We will need a criterion suitably formulated for compositions to do this.

Criterion 5.2. There exists an open neighborhood of the origin N ⊆ X and an auxiliary continuous function
β : N → X × U satisfying β(0) = (0, 0) such that the composition f ◦ β : N → Rn is injective.

The connection between Criterion 5.2 and the Kumagai-Jittorntrum implicit function theorem is pretty
straightforward: Criterion 5.2 simply asserts the existence of some function β that serves as an appropriate
’adapter’ so that we can apply the second item of the equivalence given in Theorem 5.1. The first theorem here
shows how this may be applied to stabilization by composition operators.

Theorem 5.3. If Criterion 5.2 holds for the system (1), then (1) is locally exponentially stabilizable by means
of a composition operator with a continuous symbol.

Proof. Let g ∈ C(X ,Rn) be any vector field such that
•
x = g(x) is locally exponentially stable around the origin.

Observe that if there exists an open neighborhood of the origin N ⊆ X and a continuous function β : N → X×U
such that the mappings y 7→ f(β(y)) defined on N are injective, then given any open neighborhood of the origin
O ⊆ X , the mappings y 7→ g(x)−f(β(y)) defined on N are also injective for each fixed x ∈ O. Theorem 5.1 tells
us that there exist open neighborhoods of the origin O0,N0 ⊆ X and a unique continuous mapping w : O0 → N0

such that g(x) − f(β(w(x))) = 0. Since the system
•
x = g(x) is locally exponentially stable, and since taking

h = β ◦ w yields g(x) = (Thf)(x), the claimed local exponential stabilizability follows. □
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While Theorem 5.3 yields the existence of a stabilizing composition operator whenever Criterion 5.2 is
satisfied, the question remains: when does such an auxiliary mapping satisfying Criterion 5.2 exist? The
answer is: when there exists a stabilizing composition operator with a continuous symbol. That is, we will
show that the two are equivalent. Before doing so, the reader should recall that the continuous extension of
Brockett’s theorem (i.e. Theorem 2.5) requires the uniqueness condition given in Criterion 1.2. As it should be,
the following result requires the composition stabilizability uniqueness condition given in Criterion 1.6 in the
same fashion.

Lemma 5.4. Let Th be a composition operator with a continuous symbol locally asymptotically stabilizing (1).
Then, Thf |N is injective for some open neighborhood of the origin N and h|N is a continuous function satisfying
Criterion 5.2.

Proof. If
•
x = Thf(x) has the origin as a locally asymptotically stable equilibrium, then by our assumption in

Criterion 1.6, the trajectories of the system are unique when initialized in some open neighborhood O of the
origin. Fix y in O, choose some T > 0, and note that O × (O × (−T,∞)) is an open neighborhood of the
origin in Rn × (Rn × R) such that the function F : O × (O × (−T,∞)) → Rn given by

F (x, (y, t)) = Thf(x) −
•

Φy(t + T ) satisfies F (0, (0, 0)) = 0 and is such that for all (y, t) ∈ O × (−T,∞), the
equation F (x, (y, t)) = 0 has a unique solution x = w(y, t) given by the continuous mapping
w(y, t) = Φy(t + T ). By the Kumagai-Jittorntrum Implicit Function Theorem, this then implies that for all
(y, t) in a neighborhood of (0, 0) contained in O × (−T,∞), the mappings x 7→ F (x, (y, t)) defined on some
open neighborhood of the origin are injective. That is, for all sufficiently small (y, t), the mappings
x 7→ Thf(x) − Thf(Φy(t)) defined on an open neighborhood of the origin N ⊆ O are injective.

Correspondingly, taking (y, t) = (0, 0), it follows that the mapping Thf(x) −
•

Φ0(T ) = Thf(x) defined on N is
injective, and h|N is a continuous function satisfying Criterion 5.2. □

Since exponential stabilizability implies asymptotic stabilizability, the results of Lemma 5.3 and Lemma 5.4
produce the following immediate corollary:

Corollary 5.5. There exists a composition operator with a continuous symbol locally asymptotically stabilizing
(1) if and only if Criterion 5.2 holds for the system (1). Moreover, if (1) is locally asymptotically stabilizable by
means of a composition operator with a continuous symbol, then it is locally exponentially stabilizable by means
of a composition operator with a continuous symbol.

The equivalence of stabilizability by a composition operator with a continuous symbol and Criterion 5.2 might
seem strange at first, but is not so unusual on further inspection. As it turns out, Criterion 5.2 is equivalent to
a more familiar condition: the existence of a local section at the origin.

Lemma 5.6. Criterion 5.2 is satisfied for the system (1) if and only if the vector field f has a local section at
the origin. Moreover, if Criterion 5.2 is satisfied, then f(β(N )) is a neighborhood of the origin and the local
section of f at the origin is given by α = β ◦ g−1, where g : N → f(β(N )) is a homeomorphism.

Proof. One direction is clear: If α is a local section of f at the origin, then f ◦α is the identity on the domain of
α and is certainly injective, therefore satisfying Criterion 5.2. In the other direction, suppose that Criterion 5.2
holds for the system (1). Then by the invariance of domain, the image set f(β(N )) is an open neighborhood
of the origin and the composition f ◦ β induces a homeomorphism g : N → f(β(N )) such that ι ◦ g = f ◦ β,
where ι denotes the inclusion map ι : f(β(N )) → Rn. Since g is a homeomorphism, the inverse mapping
g−1 : f(β(N )) → N is continuous, as is β ◦ g−1. Observing that g(0) = 0 and that f ◦ β ◦ g−1 = ι ◦ g ◦ g−1 = ι,
it follows that f has a local section at the origin given by α := β ◦ g−1. □

Therefore, we have that stabilizability by means of a composition operator with a continuous symbol is
equivalent to Criterion 5.2, which is equivalent to the existence of a local section of f at the origin. Hence, the
theme of the Theorem 3.2 continues to hold in the continuous case:
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Theorem 5.7. The system (1) is locally asymptotically stabilizable by means of a composition operator Th with
a continuous symbol h if and only if there exists a local section of f at the origin. Moreover, such a composition
operator Th can always be chosen so that this stability is exponential.

Having now resolved a large part of the continuous formulation of Problem 1.3 posed in the introduction via
the results of this section and Section 3.1, we move on to the case of feedback laws.

6. Stabilizability by Feedback Laws

In this section, we will apply the composition stabilizability results of the previous sections to resolve the
problem of asymptotic and exponential stabilizability by continuous and continuously differentiable feedback
laws. In doing so, we solve the continuous and continuously differentiable formulation of Problem 1.4 as posed
in the introduction. To do this, we will reduce the problem of stabilizability to the problem of stability.

6.1. Stabilizability and Stability of Local Sections

Before delving into the results of this subsection, it behooves us to take brief diversion to stress a point.
Namely, there are different conventions as to whether or not it is appropriate to write F = G given two
functions F : X → Y and G : X → Z with Z ⊆ Y such that F (x) = G(x) for all x ∈ X. Though it is
technically more correct to write F = ι ◦G for the inclusion ι : Z → Y , it is common practice to abuse notation
and omit this detail when the codomain is either not particularly important or is sufficiently important so as to
make the necessity of ι clearly apparent. Accordingly, most theorems in this section admit two formulations–a
longer and messier-looking one with explicitly stated inclusions and a more concise, readable one in which they
are implied. We opt for the latter option in the statements of the results themselves, but use the former more
verbose, more technically correct convention in the proofs for greater clarity.

Theorem 6.1. For k ≥ 0 and ℓ ≥ 1, suppose Th is a composition operator with Ck symbol h such that Thf
is Cℓ and has the origin as a locally exponentially stable equilibrium. Then, there exists some open connected
neighborhood of the origin V contained in the domain of h such that Thf |V is a diffeomorphism.

Proof. Let Th be a composition operator with Ck symbol h such that Thf is Cℓ and has the origin as a locally
exponentially stable equilibrium. Treating

•
x = Thf(x) as a control system with trivial dependence on the

control variable, Corollary 2.3 implies that JThf |0 ∈ GL n(R), and the constant rank theorem yields there is a
neighborhood of the origin such that JThf |x ∈ GL n(R) for each x in this neighborhood. By Lemma 5.4, there
exists another neighborhood of the origin such that the restriction of Thf to this neighborhood is injective.
Take V to be a connected open neighborhood of the origin (any sufficiently small open ball about the origin
will suffice) contained in the intersection of these two regions region. Then, since Thf is Cℓ, Thf |V is Cℓ. By
the invariance of domain, Thf |V = ι ◦ g where g : V → Thf(V) is a homeomorphism and ι : Thf(V) → Rn.
So, Thf(V) is simply connected as well, g is Cℓ, and Jg|x = JThf |x for each x ∈ V . Since the fibers of g are
singletons, they are certainly compact, and since g is a homeomorphism, it is certainly closed. As V is locally
compact and Hausdorff, g is correspondingly proper. Therefore, g has a bijective derivative for each x ∈ V and
is a proper differentiable map between an open subset V ⊆ Rn and the open simply connected subset Thf(V).
By the Hadamard-Caccioppoli theorem, it then follows that g is a Cℓ diffeomorphism. □

We can use this to great effect in the situations where we seek an exponentially stabilizing feedback law u(x)
such that f(·, u(·)) is, at least, of class C1.

Theorem 6.2. For k ≥ 0 and ℓ ≥ max {1, k}, the system (1) is locally exponentially stabilizable by means of a
Ck feedback law u such that f(·, u(·)) is Cℓ if and only if u = proj2 ◦ α ◦ (proj1 ◦ α)−1 for some Ck local section

of f at the origin α such that proj1 ◦ α is a Cℓ diffeomorphism and Λ+(Jα1
|−1
0 ) = ∅.

Proof. In the forward direction, suppose (1) is locally exponentially stabilizable by the Ck feedback law u
inducing h(x) = (x, u(x)) such that Thf is Cℓ for ℓ ≥ max {1, k}. By Theorem 6.1, Thf |V = ι ◦ g for some
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Cℓ diffeomorphism g : V → Thf(V) on some open connected neighborhood of the origin V. So, the function
α : Thf(V) → X × U given by α := h|V ◦ g−1 is a Ck local section of f at the origin and

proj1 ◦ α = proj1 ◦ h|V ◦ g−1 = ι ◦ g−1

where g−1 is a Cℓ diffeomorphism. Observe as well that proj2◦α◦g = u|N is certainly a Ck stabilizing control for

(1). Treating
•
x = Twf |N (x) as a control system with trivial dependence on the control variable, Corollary 2.3

implies that Λ+

(
J
Twf

∣∣∣
V

∣∣∣∣
0

)
= ∅. Since Twf(0) = 0, the inverse function theorem tells us that

Jproj1◦α
∣∣−1

0
= Jg−1

∣∣−1

g(0)
= Jg|0 = J

Twf
∣∣∣
N

∣∣∣∣
0

.

Hence, we conclude that Λ+

(
Jproj1◦α

∣∣−1

0

)
= ∅.

In the reverse direction, suppose f has a Ck local section at the origin α such that proj1 ◦α = ι1 ◦ g where g

is an Cℓ diffeomorphism for ℓ ≥ max {1, k} and ι1 is the appropriate inclusion, and that Λ+

(
Jproj1◦α

∣∣−1

0

)
= ∅.

Since f ◦ α = ι2 for ι2 the corresponding inclusion, it follows that f ◦ α ◦ g−1 = ι2 ◦ g−1. Since

J−1
g

∣∣
g(0)

= Jg|−1
0 = Jproj1◦α

∣∣−1

0
by the inverse function theorem, the local exponential stability of

•
x = (f ◦ α ◦ g−1)(x) at the origin follows from Λ+

(
Jα1

|−1
0

)
= ∅. Clearly, this yields that

u = proj2 ◦ α ◦ (proj1 ◦ α)−1 is a Ck feedback law locally exponentially stabilizing (1). □

The case for asymptotic and exponential stabilizability when f(·, u(·)) is only C0 follows similarly.

Theorem 6.3. The system (1) is locally asymptotically (resp. exponentially) stabilizable by means of continuous
feedback laws if and only if there exists a local section of f at the origin, α, such that proj1◦α is a homeomorphism

and
•
x = (proj1 ◦α)−1(x) has the origin as a locally asymptotically (resp. exponentially) stable equilibrium point.

Proof. In the forward direction, suppose (1) is locally asymptotically (resp. exponentially) stabilizable by a
continuous feedback law u : O → U defined on some neighborhood of the origin O ⊆ X . This induces the
stabilizing composition operator Th with h : O → X × U given by h(x) = (x, u(x)). By the equivalences
established in Corollary 5.5 and Lemma 5.4, there exists an open neighborhood of the origin N ⊆ O and a
homeomorphism g : N → Thf(N ) such that the function α : Thf(N ) → X × U given by α := h|N ◦ g−1 is a
local section of f at the origin. Correspondingly,

Thf |N = f ◦ h|N ◦ g−1 ◦ g
= f ◦ α ◦ g
= ι1 ◦ g

for the inclusion ι1 : Thf(N ) → Rn. Hence, proj1 ◦ α = ι2 ◦ g−1 for the inclusion ι2 : N → X and
•
x = (ι1 ◦ g)(x) has the origin as a locally asymptotically (resp. exponentially) stable equilibrium. Observe as
well that proj2 ◦ α ◦ g = u|N is certainly a continuous feedback law stabilizing (1).

In the reverse direction, suppose f has a local section at the origin α such that proj1 ◦ α = ι2 ◦ h for some

homeomorphism h and
•
x = (ι1 ◦ h−1)(x) has the origin as a locally asymptotically (resp. exponentially) stable

equilibrium, where ι1 and ι2 are the appropriate inclusions. Since f ◦ α = ι1, we have f ◦ α ◦ h−1 = ι1 ◦ h−1

and the local asymptotic (resp. exponential) stability of
•
x = (f ◦ α ◦ h−1)(x) at the origin follows. As

(f ◦α ◦ (proj1 ◦α)−1)(x) = f(x, proj2 ◦α ◦h−1(x)), this yields that u = proj2 ◦α ◦h−1 is a continuous feedback
law locally asymptotically (resp. exponentially) stabilizing (1). □

With the results of Theorem 6.2 and Theorem 6.3 in hand, we can answer the question of stabilizability by
feedback laws quite nicely.
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Theorem 6.4. For k ≥ 0, the system (1) is locally asymptotically (resp. exponentially) stabilizable by means
of a Ck feedback law u if and only if there exists a Ck local section α of f at the origin such that proj1 ◦ α is

a homeomorphism (resp. diffeomorphism) and
•
x = (proj1 ◦ α)−1(x) has the origin as a locally asymptotically

(resp. exponentially) stable equilibrium. Moreover, every such control u is of the form u = proj2◦α◦(proj1◦α)−1

for some α satisfying the above.

As a minor aside, it is interesting to note that Theorem 6.4 allows us to characterize continuous feedback
stabilizability in terms of classical Lyapunov functions, as opposed to the more cumbersome control-Lyapunov
functions that have been used previously to provide necessary conditions. That is, the existence of a Lyapunov
function for (proj1 ◦ α)−1 is equivalent to the local asymptotic stability of the origin for

•
x = (proj1 ◦ α)−1(x),

which is equivalent to the local asymptotic/exponential stabilizability of (1) by the result above.
Broadly speaking, Theorem 6.4 ties a nice bow on the question of stabilizability in a very easy to understand

way. Speaking colloquially and in clear terms, here is a summary of what we have learned:

• Exponential stabilizability by a composition operator with Ck symbols is possible if and only if we
locally have a Ck local section at the origin. More simply, when we can change every argument of the
dynamics, stabilization at an equilibrium is possible if and only if we have a tool to change the dynamics
at will.

• Stabilizability by Ck feedback laws is possible if and only if we locally have a Ck local section at the
origin which is invertible in the non-control variables and whose inverse induces a stable system. More
simply, when we impose that we may change only some arguments of the dynamics, stabilization at an
equilibrium is possible if and only if we have two things: (1) a tool to change the dynamics at will and
(2) a second tool to undo the effects of the first tool on the arguments we cannot change that, itself,
stabilizes those unchanged arguments.

Let us conclude with some examples to drive home the theme of Theorem 6.4.

Example 6.5. In this example, we consider Artstein’s circles; i.e., the system (1) where f : R2 × R → R2 is
given as

f(x, u) :=

[
u(x2

2 − x2
1)

−2ux1x2

]
.

It is well known that this system is not feedback stabilizable by C1 feedback laws, since the conditions of
Corollary 2.3 are not satisfied. Since taking z = x2 + ix1 in C renders (1) as the system

•
z = uz2, it is

straightforward to see that Brockett’s condition is satisfied. So, continuous stabilizing feedbacks are not ruled
out by this criteria, though it is a well-known fact that they are indeed impossible. We will confirm this
through the use of Theorem 6.4. To wit, suppose that f is stabilizable by a continuous feedback. Accordingly,
f must then have a local section at the origin α such that proj1 ◦ α is a homeomorphism. Since

(f ◦ α)(z) = (proj2 ◦ α)(z)((proj1 ◦ α)(z))
2
= z must hold, and as proj2 ◦ α must then be a nonzero real

function away from the origin, it follows that the inverse function of proj1 ◦ α must satisfy
(proj1 ◦ α)−1(z) = (proj2 ◦ α ◦ (proj1 ◦ α)−1)(z)z2. That is, (proj1 ◦ α)−1 is a continuous rescaling of z2, which
has a ramification point at the origin, thereby contradicting our supposition that it is a homeomorphism.
Correspondingly, Artstein’s circles are not asymptotically stabilizable by means of continuous feedback laws.

Example 6.6. Consider the system (1) where f : R2 × R → R2 is defined by:

f(x, u) :=

[
x2
1 + x2

2 + x2

x1x2 + x2
2 + u3

]
We begin by noting that Corollary 2.3 yields, by routine computation, that this system fails to be exponentially
stabilizable by C1 feedback laws. It does, however, turn out to be exponentially stabilizable by C0 feedback
laws. We will employ Theorem 6.4 to this end.

We will construct a local section for f at the origin. To do so, let α1, α2, α3 : R2 → R be the (as-of-yet,
unspecified) component functions of this sought right inverse α : R2 → R2 × R. When constructing α, we
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must be careful to do so in such a way so as to satisfy the constraints of Theorem 6.4–namely, proj1 ◦ α must

be a diffeomorphism defined on some neighborhood of the origin and
•
x = (proj1 ◦ α)−1(x) must be locally

exponentially stable.
To this end, we start in a straightforward fashion and observe that the first component of f yields that α1

and α2 must satisfy α2
1 +α2

2 +α2 = x1. Using the quadratic formula, it is easy to see that this equation will be
satisfied if

α2 =
1

2

(
−1 +

√
1− 4(α2

1 − x1)

)
.

Hence, if proj1 ◦ α is to be invertible, then this inverse function must satisfy α1((proj1 ◦ α)−1) = x1, as well as:

α2((proj1 ◦ α)−1) = x2

1

2

(
−1 +

√
1− 4(x2

1 − (proj1 ◦ α)−1
1 )

)
= x2

(proj1 ◦ α)−1
1 = x2

1 + x2
2 + x2.

Applying this information, note that the linearization of
•
x = (proj1 ◦ α)−1(x) would then be of the form

J(proj1◦α)−1

∣∣
(0,0)

=

[
0 1

∂(proj1◦α)
−1
2

∂x1

∂(proj1◦α)
−1
2

∂x2

]
.

So, let us take (proj1 ◦ α)−1
2 = −2x2 − 1

2x1, producing eigenvalues of λ = 1/2(−2±
√
2) < 0. Correspondingly,

(proj1 ◦ α)−1 is now well-defined and the system
•
x = (proj1 ◦ α)−1(x) is locally exponentially stable. Via an

application of the inverse function theorem, we reach proj1 ◦α as the inverse of this function at the origin, thus
specifying α1 and α2.

To conclude, we complete our construction of α by solving α1α2 + α2
2 + α3

3 = x2 for α3, producing

α3 = 3
√
x2 − α1α2 − α2

2. By Theorem 6.4, the C0 feedback law

u(x) =
3

√
(proj1 ◦ α)−1

2 − x1x2 − x2
2 =

3

√
−2x2 −

1

2
x1 − x1x2 − x2

2

is a stabilizing control. To confirm this, observe that f(x, u(x)) =

[
x2
1 + x2

2 + x2

−2x2 − 1
2x1

]
. Linearizing the right-hand

side, we produce Jf◦(id,u)
∣∣
(0,0)

=

[
0 1
− 1

2 −2

]
, the eigenvalues of which are given by λ = 1/2(−2±

√
2) < 0 and

are, as they should be, the same as the eigenvalues of the linearization of
•
x = (proj1 ◦ α)−1(x).

Before finishing, it is worth providing some words here regarding the use of Theorem 6.4 in practice. In
particular, not all examples will work out as nicely as the one above. Indeed, even with the characterization
given by Theorem 6.4, explicit constructions of stabilizing controls is still, quite often, very challenging. In large
part, this is due to the fact that the local sections for the vector field f in (1), should they exist, might not be
possible to express in a closed form.

In some situations where this difficulty arises, it does not necessarily present a problem. For example, as
illustrated by the technique employed in Example 6.6 above, one does not always need to actually compute
proj1 ◦ α directly to obtain our stabilizing feedback law. That is, the actual computation involved in
constructing a stabilizing feedback law can, in some particular circumstances, be accomplished without the
explicit construction of a local section (correspondingly, allowing us to occasionally overcome the
aforementioned difficulty of obtaining a closed form expression for the section). Unfortunately, such tricks do
not always resolve similar issues that may arise. For example, even if a local section of f can be expressed in a
closed form, this does not guarantee that (proj1 ◦ α)−1 enjoys the same property. Likewise, it may be the case
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that it is possible to express (proj1 ◦ α)−1 in a closed form while the same is not possible for proj2 ◦ α. To add
to one’s potential confusion, it can also be the case that a stabilizing control u(x) exists, is expressible in a
closed form, and satisfies u = u = proj2 ◦ α ◦ (proj1 ◦ α)−1 for a local section α of f where both (proj1 ◦ α)−1

and proj2 ◦ α cannot be expressed in a closed form (since composing two functions that cannot be expressed in
closed form does not guarantee that the same holds for the result).

Finally (and, perhaps, frustratingly), it is important to note that we cannot simply employ some
approximation technique and ignore the challenge of finding an exact closed-form expression for our control, as
Theorem 6.4 tells us that every possible stabilizing feedback must be of the form u = proj2 ◦ α ◦ (proj1 ◦ α)−1

for some local section α satisfying the conditions of the theorem. As such, one should expect to occasionally
encounter systems which are stabilizable, but whose stabilizing controls are beyond our practical reach.

7. Conclusion and Future Work

In this paper, we have demonstrated that many of the most well-known classical theorems regarding
stabilizability have somewhat cleaner forms in the composition operator context. We also, hopefully, were able
to convince the reader that extracting properties about the composition operators which stabilize a given
system (1) tends to be, in general, relatively easy (at least, in comparison with extracting information about
stabilizing feedback control laws). By employing these composition-stabilizability results in the classical
feedback-stabilizability context, we have shown that the stabilizability of a control systems is equivalent to the
stability of an associated system. That is, we reduce the question of stabilizability to that of stability.

There is a lot of potential for further work characterizing stabilizability via composition operators. In
particular, completing the distinction between asymptotic and exponential stabilization via composition
operators–that is, closing the gap between Theorem 3.2 and Theorem 5.7–could be a worthwhile endeavor.
Additionally, conjecture 4.11 would be interesting to investigate further.

From the characterization of stabilizing controls and stabilizable systems, there seem to be a variety of
potential avenues for further study. For example, Coron’s result from [8] give us a stronger necessary condition
than Brockett’s theorem by establishing a relationship between the existence of continuous feedback laws and
the existence of an isomorphism between certain singular homology (or, equivalently, stable homotopy) groups
associated to the system. Refining arguments along homological lines could prove fruitful, in light of the
characterizations provided by Theorem 6.4. Additionally, since stability can be completely characterized via
Lyapunov functions (as Zubov’s theorem shows; see [36]), investigations of Lyapunov-theoretic connections in
the context of the results presented here could provide a bridge between the existence of local sections and the
existence of Lyapunov functions.

It also would be worth pursuing variational-analytic connections. Namely, extending the established
characterizations of local asymptotic and exponential stabilizability to the case of set-valued differential
inclusions could shed some light on the topic of stabilizability in a more general sense (particularly, by
removing the uniqueness criteria imposed throughout this paper). As mentioned and exploited in [6, 12],
variational analysis achieves complete characterizations of linear openness (see, e.g., [22] and the references
therein), a notion which might potentially serve as the counterpart to Brockett’s openness property from
Definition 2.4 for general nonsmooth mappings and multifunctions (indeed, Brockett’s property has already
been investigated in this context to some degree [11]). So, much of the groundwork for further developments
has already been completed. The real challenge would be implementing the classical, known results regarding
feedback stabilizability (or, better, stabilizability via composition operators) in this much wilder context.

Acknowledgements. The authors gratefully acknowledge the helpful remarks of both referees that allowed
us to significantly improve the original presentation.
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