
1

Optimal rate-limited secret key generation from

Gaussian sources using lattices
Laura Luzzi, Cong Ling and Matthieu R. Bloch

Abstract

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an

eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as

well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are the use

of the modulo lattice operation to extract the channel intrinsic randomness, based on the notion of flatness factor,

together with a randomized lattice quantization technique to quantize the continuous source. Compared to previous

works, we introduce two new notions of flatness factor based on L1 distance and KL divergence, respectively,

which might be of independent interest. We prove the existence of secrecy-good lattices under L1 distance and KL

divergence, whose L1 and KL flatness factors vanish for volume-to-noise ratios up to 2πe. This improves upon the

volume-to-noise ratio threshold 2π of the L∞ flatness factor.

Index Terms

Secret key generation, strong secrecy, lattice coding, flatness factor.

I. INTRODUCTION

Secret key generation (also known as key agreement) at the physical layer was first investigated by Maurer [3]

and Ahlswede and Csiszár [4], who showed that correlated observations of noisy phenomena could be used to distill

secret keys by exchanging information over a public channel. In recent years, this subject has received considerable

attention in literature (see, e.g., [5–10]). The setup has been extended to the vector case [11, 12], the multi-terminal

case [13–16], the quantum case [17] and the case with feedback [18]. Second-order asymptotics have been derived

in [19, 20]. Code constructions for the discrete memoryless case have been proposed, e.g. [21, 22].

Most existing secret key generation schemes rely heavily on the assumption of discrete random sources over finite

or countable alphabets. In order to apply these techniques to wireless communications, it is necessary to extend

the key generation framework to the case of continuous sources, such as Gaussian sources [11, 23–25]1. In [25],

the authors study a multi-terminal scenario for secret key generation in the special case for which the eavesdropper

only has access to the public channel. Beside providing a characterization of the optimal strongly secret key rate,

the authors show that this optimal rate can be achieved using lattice codes (for information reconciliation only).

We consider here the problem of secret key generation between two terminals, Alice and Bob, who observe

correlated Gaussian sequences Xn and Yn, in the presence of an eavesdropper, Eve, who also obtains a correlated

sequence Zn. For simplicity, we suppose that a single round of unidirectional public communication takes place

in order to establish the key. Our main contribution is to show that, in the case of a degraded source model, the

strong secret key capacity can be achieved by a complete lattice-coding scheme considerably different from and
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perhaps simpler than [25]2. This extends our previous work [1], in which it was shown that a secret key rate up to

half a nat from the optimal was achievable.

Typically, secret key generation consists of two distinct procedures: information reconciliation, in which public

messages are exchanged to ensure that Alice and Bob can construct the same data sequence with vanishing

error probability, and privacy amplification to extract from this shared sequence a secret key that is statistically

independent from Eve’s observation and from the public messages.

Privacy amplification and randomness extraction: Our privacy amplification strategy is based on the concept of

channel intrinsic randomness, or the maximum bit rate that can be extracted from a channel output independently

of its input [30–32]. We show that the reduction modulo a suitable lattice can be used to extract the intrinsic

randomness. Although our main objective in this paper is to solve the problem of privacy amplification, our lattice

extractor is also an intriguing result in its own right, which could have other applications.

The flatness factor and its variants: In our previous work [1], we provided a characterization of the class

of lattices that are good for randomness extraction, which was based on a computable parameter, the flatness

factor, measuring the L∞ distance between the “folded” Gaussian distribution modulo the lattice and the uniform

distribution on the corresponding fundamental region. The concept of flatness factor is related to the smoothing

parameter used in lattice-based cryptography [33], and was first introduced in [34] in the context of physical-

layer network coding. In [35], two of the authors also showed the relevance of the flatness factor for secrecy and

introduced the notion of secrecy-good lattices for the wiretap channel. In this work, we consider two extended notions

of flatness factor by which the L∞ distance is replaced respectively by the L1 distance and the Kullback-Leibler

(KL) divergence. These new flatness conditions are satisfied by a wider range of variance parameters, resulting in

improved volume conditions for the chain of lattices under consideration, which allows us to achieve the secret key

capacity. The existence of lattices with vanishing L1 and KL flatness factors follows by leveraging an existence

result for resolvability codes for regular channels [36]. We note that the L1 smoothing parameter was already

considered in [37, 38], while L1 and KL flatness factors were used implicitly earlier in [39, p. 1656]. An upper

bound on the L1 flatness factor based on the Cauchy-Schwarz inequality was given in [40]. The independent work

[41] studied L1 smoothing parameters both for lattices and for codes, also based on the Cauchy-Schwarz inequality.

Our approach bypasses the Cauchy-Schwarz inequality, therefore leading to a tighter bound than [40]. We note

however that [41] obtained a bound on the L1 smoothing parameter as tight as that in this paper, by decomposing

the discrete Gaussian distribution into a convex combination of uniform ball distributions. The smoothing parameter

is of fundamental importance in lattice and code-based cryptography [41], so our method for the L1 flatness factor

may also be useful in these areas.

Information reconciliation and Wyner-Ziv coding: Our strategy for information reconciliation follows the outline

of [23, 25]: first, the source Xn is vector quantized; then, a public message is generated in the manner of Wyner-Ziv

coding, so that Bob can decode the quantized variable using the sequence Yn as side information. The existence

of good nested lattices for Wyner-Ziv coding has been established in [42] (see also [43, 44]). We show that this

construction is compatible with the secrecy-goodness property to conclude our existence proof.

Randomized quantization technique: Unlike our previous work [1], the quantization performed at Alice’s side is

not deterministic. We introduce a new randomized quantization step inspired by the randomized rounding technique

in [45]. Essentially, this technique allows to round a continuous Gaussian into a discrete Gaussian distribution with

slightly larger variance, provided that the L∞ flatness factor of the lattice is small. We partially extend the result

of [45] under an L1 flatness factor criterion. We show that randomized quantization with uniform dithering (where

the dither is known by all parties, including the eavesdropper) achieves the optimal trade-off between public

communication rate and secret key rate established in [23]. The dithering technique has been used to achieve

capacity in literature [46, 47]. Besides, the discrete Gaussian distribution is widely used in lattice coding [35] and

lattice-based cryptography [37, 45]. However, its application to quantization is new, to the best of our knowledge.

Relation to fuzzy extractors: Fuzzy extractors [48] allow to extract a secret key from a noisy measurement, which

means that it is resilient to small measurement errors. Fuzzy extractors for continuous signals were proposed in

[49, 50]. Our proposed lattice code is also robust to measurement errors, thanks to its channel coding component

of Wyner-Ziv coding. A notable difference is that min-entropy is used to measure the available randomness in

2The scheme in [25, Section IV-B] requires the repetition of a dithered quantization and public communication step over N blocks, each

of dimension n. This is needed to achieve strong secrecy from weak secrecy by using the technique in [28]. In contrast, our scheme achieves

strong secrecy with a single block and bounds the mutual information using the variational distance, as in [29].
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fuzzy extractors, while Shannon entropy is used in our key generation model. Moreover, for fuzzy extractors the

measurement error is assumed to have bounded Hamming weight or Euclidean norm, while in our model it follows

a Gaussian distribution.

Organization: This paper is organized as follows. In Section II we provide basic definitions about lattices and

introduce the flatness factor and its L1 variant, which allows us to define the notion of L1 secrecy-good lattices. In

Section III, we introduce the Gaussian source model and describe our lattice-based secret key generation scheme.

Finally, in Section IV we offer some conclusions and perspectives. For ease of reading, the additional technical tools

needed to prove the existence of good nested lattices are presented in the Appendix. More precisely, Appendix A

summarizes some relevant results on the existence of resolvability codes for regular channels. Appendix B presents

the KL flatness factor and its properties, and discusses how the modulo lattice operation allows to extract the

intrinsic randomness of the additive Gaussian channel. The existence of lattices that are KL secrecy-good and,

consequently, also L1 secrecy-good is proven in Appendix C. Finally, the existence of the sequences of nested

lattices required in our key generation scheme is proven in Appendix D.

II. LATTICES AND FLATNESS FACTOR

Notation: All logarithms in this paper are assumed to be natural logarithms, and information is measured in

nats. Given a set A, the notation UA stands for the uniform distribution over A. The notation Fp refers to the

finite field of order p. We denote the variational distance between two (discrete or continuous) distributions p, q by

V(p, q), and their KL divergence by D(p∥q).

A. Lattice definitions

In this section, we introduce the mathematical tools we use to describe and analyze our proposed scheme.

An n-dimensional lattice Λ in the Euclidean space R
n is the discrete set defined by

Λ = L (B) = {Bx : x ∈ Z
n}

where the columns of the basis matrix B = [b1 · · ·bn] are linearly independent.

Given a lattice Λ, its dual lattice Λ∗ is defined as the set of vectors λ∗ in R
n such that ⟨λ∗, λ⟩ ∈ Z for all λ ∈ Λ.

A measurable set R(Λ) ⊂ R
n is called a fundamental region of the lattice Λ if the disjoint union ∪λ∈Λ(R(Λ)+

λ) = R
n. Examples of fundamental regions include the fundamental parallelepiped P(Λ) and the Voronoi region

V(Λ). All the fundamental regions have equal volume V (Λ).
Given a lattice Λ and a fundamental region R(Λ), any point x ∈ R

n can be written uniquely as a sum

x = λ+ x̄,

where λ ∈ Λ and x̄ ∈ R(Λ). The vector λ is the quantization of x with respect to R(Λ) and is denoted as

QR(Λ)(x), where boundary points are decided systematically. Thus we define

[x] modR(Λ) = x−QR(Λ)(x) = x̄. (1)

In particular, for any x ∈ R
n, the nearest-neighbor quantizer associated with Λ is given by

QΛ(x) = QV(Λ)(x) = argmin
λ∈Λ

∥λ− x∥

where ties are broken systematically. Note that x modV(Λ) = x−QΛ(x). The modulo lattice operation satisfies

the distributive law [51, Proposition 2.3.1], i.e., ∀λ ∈ Λ

[x+ λ] modR(Λ) = [x] modR(Λ). (2)

The following property [52, equation (35)] will also be used in the paper: given two lattices Λ ⊆ Λ1, x ∈ R
n,

and a fundamental region R(Λ),

[QΛ1
(x)] modR(Λ) = [QΛ1

([x] modR(Λ))] modR(Λ). (3)

Given a sublattice Λ′ ⊂ Λ, the quotient group Λ/Λ′ is defined as the group of distinct cosets λ+Λ′ for λ ∈ Λ.

It can be identified by a set of coset representatives Λ ∩ R(Λ′), where R(Λ′) is any fundamental region of Λ′.
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Furthermore, R(Λ′) can be written as a disjoint union of translates of any fundamental region R(Λ) as follows

[51, equation (8.33)]:

R(Λ′) =
⋃

λ∈Λ∩R(Λ′)

(

[λ+R(Λ)] modR(Λ′)
)

. (4)

B. Gaussian distributions and the L∞ flatness factor

Suppose that Xn is an n-dimensional i.i.d. Gaussian random variable of variance σ2 with distribution

fσ(x) =
1

(
√
2πσ)n

e−
∥x∥2
2σ2 ,

for x ∈ R
n. The following useful property characterizing the product of Gaussian distributions was proven in [45,

Fact 2.1]3:

Lemma 1: Given σ1, σ2 > 0, let σ and σ̄ be such that σ2 = σ21+σ
2
2 , and 1

σ̄2 = 1
σ2
1
+ 1
σ2
2
. Moreover, let c1, c2 ∈ R

n,

and c̄ = σ̄2

σ2
1
c1 +

σ̄2

σ2
2
c2. Then ∀x ∈ R

n,

fσ1
(x− c1)fσ2

(x− c2) = fσ(c1 − c2)fσ̄(x− c̄).

Given a lattice Λ, we define the Λ-periodic function

fσ,Λ(x) =
1

(
√
2πσ)n

∑

λ∈Λ
e−

∥x+λ∥2
2σ2 , (5)

for all x ∈ R
n. We denote by fσ,R(Λ) = fσ,Λ|R(Λ) its restriction to the fundamental region R(Λ). Note that fσ,R(Λ)

is the probability density of X̄n = [Xn] modR(Λ). Given c ∈ R
n, we will also use the notation

fσ,Λ,c(x) = fσ,Λ(x− c)

to denote a shifted Λ-periodic function.

Definition 1 (L∞ Flatness factor [35]): For a lattice Λ and for a parameter σ, the L∞ flatness factor is defined

by:

ϵΛ(σ) ≜ max
x∈R(Λ)

|V (Λ)fσ,Λ(x)− 1| .

In other words, ϵΛ(σ) characterizes the L∞ distance of fσ,Λ(x) to the uniform distribution UR(Λ) over R(Λ).
The L∞ flatness factor is independent of the choice of the fundamental region R(Λ) and can be computed from

the theta series of the lattice

ΘΛ(τ) =
∑

λ∈Λ
e−πτ∥λ∥

2

(6)

using the identity [35, Proposition 2]

ϵΛ(σ) =

(

γΛ(σ)

2π

)n

2

ΘΛ

(

1

2πσ2

)

− 1, (7)

where γΛ(σ) = V (Λ)
2
n

σ2 is the volume-to-noise ratio (VNR). Moreover, the following relation holds between the

flatness factor of Λ and the theta series of its dual lattice Λ∗ [35, Corollary 1]:

ΘΛ∗(2πσ2) = ϵΛ(σ) + 1. (8)

Remark 1: We have shown in [35] that ϵΛ is a monotonically decreasing function, i.e., for σ < σ′, we have

ϵΛ(σ
′) ≤ ϵΛ(σ).

The notion of secrecy-goodness characterizes lattice sequences whose L∞ flatness factors vanish exponentially

fast as n→ ∞.

Definition 2 (Secrecy-good lattices under L∞ flatness factor [35]): A sequence of lattices Λ(n) is secrecy-good

under the L∞ flatness factor if ϵΛ(n)(σ) = e−Ω(n) for all fixed γΛ(n)(σ) < 2π.

3Note that although the statement in [45] refers to (unnormalized) Gaussian functions, one can check that it also holds for Gaussian

distributions.
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In [35] we have proven the existence of sequences of secrecy-good lattices under L∞ flatness factor as long as

γΛ(σ) < 2π. (9)

C. The L1 flatness factor

In this section, we introduce a weaker notion of flatness based on the L1 distance.

Definition 3: Given a lattice Λ, a fundamental region R(Λ) and σ > 0, we define the L1 flatness factor as

follows:

ϵ1Λ(σ) =

∫

R(Λ)

∣

∣

∣

∣

fσ,Λ(x)−
1

V (Λ)

∣

∣

∣

∣

dx = V(fσ,R(Λ),UR(Λ)). (10)

Similarly to the L∞ flatness factor, the L1 flatness factor does not depend on the choice of the fundamental region.

Moreover, it is shift-invariant, i.e. ∀c ∈ R
n,

ϵ1Λ(σ) = V(fσ,Λ,c|R(Λ),UR(Λ)). (11)

Remark 2: For any lattice Λ, ∀σ > 0, we have ϵ1Λ(σ) ≤ ϵΛ(σ).
The L1 flatness factor is related to the L1 smoothing parameter, which was discussed in [37, 38].

The following Lemma confirms the intuition that folded additive Gaussian noise with larger variance looks more

uniform:

Lemma 2: The L1 flatness factor is monotonic, i.e. for any lattice Λ, ∀σ′ > σ,

ϵ1Λ(σ
′) ≤ ϵ1Λ(σ).

Proof: Let Wn ∼ N (0, σ2In) and Xn = Wn modR(Λ) ∼ fσ,R(Λ).

Given σ0 > 0, let Wn
0 ∼ N (0, σ20In) and consider

Y
n = [Xn +W

n
0 ] modR(Λ) = [[Wn] modR(Λ)) +W

n
0 ] modR(Λ)

(a)
= [Wn +W

n
0 ] modR(Λ) ∼ f√

σ2+σ2
0 ,R(Λ)

,

where (a) follows from the distributive property (2). Now consider the random variable Un ∼ UR(Λ). By the Crypto

Lemma [51, Lemma 4.1.1],

[Un +W
n
0 ] modR(Λ) ∼ UR(Λ).

Then using the data processing inequality for the variational distance,

ϵ1Λ

(

√

σ2 + σ20

)

= V

(

f√
σ2+σ2

0 ,R(Λ)
,UR(Λ)

)

= V(Yn,Un) ≤ V(Xn,Un) = V(fσ,R(Λ),UR(Λ)) = ϵ1Λ(σ).

Since this is true for any σ0 > 0, the conclusion follows.

We will next show that lattices that are good for secrecy in the L1 sense exist and that the corresponding volume

condition is less stringent than the condition (9) for secrecy-goodness based on the L∞ metric.

Definition 4: A sequence of lattices {Λ(n)} is L1 secrecy-good if for all fixed γΛ(n)(σ) < 2πe, ∀c > 0, ϵ1Λ(n)(σ) =
o
(

1
nc

)

, i.e., the L1 flatness factor vanishes super-polynomially.

The following theorem, which was presented in [2], is the first main result of this paper:

Theorem 1: If γΛ(σ) < 2πe is fixed, then there exists a sequence {Λ(n)} of lattices which are L1-secrecy good.

The proof of Theorem 1 is given in Appendix C. Our proof is information-theoretic and does not require the

knowledge of the theta series, in contrast to the L∞ flatness factor. We outline the key ideas here. In order to show

the existence of a sequence of lattices Λ(n) such that ϵ1Λ(n)(σ) = V(fσ,R(Λ(n)),UR(Λ(n))) → 0, we actually prove

a stronger result, namely that D(fσ,R(Λ(n))||UR(Λ(n))) → 0. This requires some additional technical tools that are

presented in Appendix B. We build the required lattices using Construction A, and their existence follows from the

existence of linear resolvability codes in [36] (see Appendix A for more details).

Remark 3: It is worth mentioning that as soon as the VNR exceeds 2π, the L∞ flatness factor increases

exponentially. In fact, it is easy to see that the bound γΛ(σ) < 2π is sharp: the L∞ flatness factor of a lattice

cannot vanish for any γΛ(σ) > 2π. This is simply because (7) implies that

ϵΛ(σ) >

(

γΛ(σ)

2π

)n

2

− 1
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since ΘΛ(τ) > 1 for any τ > 0. Thus, as the VNR approaches 2πe, the L∞ flatness factor ≈ en/2, but the L1

flatness factor can still be brought under control. This demonstrates the advantage of the L1 flatness factor.

Also note that the VNR of an L1-secrecy-good lattice approaches 2πe from below, while that of an AWGN-

good lattice approaches 2πe from above. Recall that the normalized second moment of a quantization-good lattice

approaches 1/(2πe) [51], so all three types of lattices finally share the same VNR threshold 2πe.
Remark 4: In the following, we discuss the implication of Theorem 1 on the smoothing parameter4 that is

commonly used in lattice-based cryptography.

Definition 5 (Smoothing parameter): For a lattice Λ and for ε > 0, the L∞ and L1 smoothing parameters ηε(Λ)
and η1ε(Λ), respectively, are the smallest σ > 0 such that ϵΛ(σ), ϵ

1
Λ(σ) ≤ ε.

Theorem 1 implies the existence of lattices whose smoothing parameters η1εn(Λ) ≈
V (Λ)1/n√

2πe
for a suitable sequence

εn → 0. This improves upon the result ηεn(Λ) ≈ V (Λ)1/n√
2π

. Using the Cauchy-Schwarz inequality, the following

bound was proven in [40]5

ϵ1Λ(σ) ≤
√

ϵΛ

(√
2σ
)

(12)

which implies the bound η1ε(Λ) ≤ V (Λ)1/n

2
√
π

. However, this bound is not optimal.

D. Discrete Gaussians and randomized rounding

Given an n-dimensional lattice Λ in R
n and a vector c ∈ R

n, we define the discrete Gaussian distribution over

Λ centered at c as the following discrete distribution taking values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
∀λ ∈ Λ,

where fσ,c(Λ) ≜
∑

λ∈Λ fσ,c(λ). We write DΛ,σ = DΛ,σ,0.

Following Peikert [45, Section 4.1], we introduce the notion of randomized rounding with respect to Λ:

Definition 6 (Randomized rounding): Given an input vector x ∈ R
n, we define the random variable

⌊x⌉Λ,σ ∼ DΛ,σ,x.

Note that ⌊x⌉Λ,σ is a discrete random variable taking values in Λ.

It was shown in [45] that when Xn is i.i.d. Gaussian with variance σ2, the randomly rounded variable ⌊Xn⌉Λ,σQ

is close in variational distance to the discrete Gaussian DΛ,σ̃, where σ̃2 = σ2 + σ2Q, provided that the L∞ flatness

factor ϵΛ(σQ) is small:

Proposition 1 (Adapted from Theorem 3.1 of [45]): Let Xn ∼ N (0, σ2In) and µ ∈ R
n, and consider XQ =

⌊Xn + µ⌉Λ,σQ
. If ϵΛ(σQ) < 1/2, then

V(pXQ
, DΛ,σ̃,µ)) ≤ 4ϵΛ(σQ),

where σ̃2 = σ2 + σ2Q.

In the following, we prove a partial generalization of this result under an L1 flatness factor condition, for

randomized rounding with uniform dithering, which may be of independent interest.

Lemma 3: Given a Gaussian random vector Xn ∼ N (0, σ2In), a dither U ∼ UR(Λ) uniform over a fundamental

region R(Λ) and independent of Xn, and a constant µ ∈ R
n, let XQ = ⌊Xn + U+ µ⌉Λ,σQ

. Then

EU

[

V
(

pXQ|U, DΛ,σ̃,U+µ

)]

≤ 2ϵ1Λ(σQ).

In order to prove Lemma 3, we need the following intermediate Lemma, which will be used several times

throughout the paper.

Lemma 4: Suppose that σ̃2 = σ2+σ2Q, and let R(Λ) be a fundamental region of Λ. Then the following inequality

holds:
∑

xQ∈Λ

∫

R(Λ)

∣

∣

∣

∣

∫

Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∣

∣

∣

∣

du ≤ ϵ1Λ(σQ).

4We remark that this definition differs slightly from the one in [33], where σ is scaled by a constant factor
√
2π (i.e., s =

√
2πσ).

5A similar bound was given in [41] using the statistical distance, which differs from the L1 distance by a factor 1

2
.
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Proof of Lemma 4: By Lemma 1,

fσQ
(xQ − x− u)fσ(x− µ) = fσ̃(xQ − u− µ)fσ̄(x− c̄(xQ,u,µ)), (13)

where 1
σ̄2 = 1

σ2 + 1
σ2
Q

and c̄(xQ,u,µ) =
σ̄2

σ2
Q
(xQ − u) + σ̄2

σ2µ. Then we can write

∑

xQ∈Λ

∫

R(Λ)

∣

∣

∣

∣

∫

Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∣

∣

∣

∣

du

(a)
=
∑

xQ∈Λ

∫

R(Λ)

∣

∣

∣

∣

∫

Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∫

Rn

fσ̄(x− c̄(xQ,u,µ))dx

∣

∣

∣

∣

du

(b)
=
∑

xQ∈Λ

∫

R(Λ)

∣

∣

∣

∣

∫

Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx−
∫

Rn

fσQ
(xQ − x− u)fσ(x− µ)dx

∣

∣

∣

∣

du

≤
∫

R(Λ)

∫

Rn

∑

xQ∈Λ

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

∣

∣

∣

∣

1

V (Λ)
− fσQ

(Λ− x− u)

∣

∣

∣

∣

dxdu

=

∫

Rn

fσ(x− µ)

∫

R(Λ)

∣

∣

∣

∣

1

V (Λ)
− fΛ,σQ

(x+ u)

∣

∣

∣

∣

dudx

=

∫

Rn

fσ(x− µ)

∫

R(Λ)

∣

∣

∣

∣

1

V (Λ)
− fΛ,σQ

(u)

∣

∣

∣

∣

dudx = ϵ1Λ(σQ),

where (a) follows from the fact that
∫

Rn fσ̄(x− c̄(xQ,u,µ))dx = 1, and (b) follows from (13).

Proof of Lemma 3: We have

EU

[

V
(

pXQ|U, DΛ,σ̃,U+µ

)]

=

=

∫

R(Λ)

1

V (Λ)

∑

xQ∈Λ

∣

∣pXQ|U(xQ|u)−DΛ,σ̃,u+µ(xQ)
∣

∣ du

=

∫

R(Λ)

1

V (Λ)

∑

xQ∈Λ

∣

∣

∣

∣

∫

Rn

pXQ|Xn,U(xQ|x,u)pXn(x)dx− fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣

∣

∣

∣

du

=
∑

xQ∈Λ

∫

R(Λ)

1

V (Λ)

∣

∣

∣

∣

∫

Rn

fσ(x)fσQ
(xQ − x− u− µ)

fσQ
(Λ− x− u− µ)

dx− fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣

∣

∣

∣

du

(a)

≤
∑

xQ∈Λ

∫

R(Λ)

1

V (Λ)

∣

∣

∣

∣

∫

Rn

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)V (Λ)

∣

∣

∣

∣

du (14)

+
∑

xQ∈Λ

∫

R(Λ)

1

V (Λ)

∣

∣

∣

∣

fσ̃(xQ − u− µ)V (Λ)− fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣

∣

∣

∣

du, (15)

where (a) follows from the triangle inequality and the change of variables x 7→ x+ µ. The term (14) is bounded

by ϵ1Λ(σQ) because of Lemma 4. The term (15) is equal to

∑

xQ∈Λ

∫

R(Λ)

fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣

∣

∣

∣

fσ̃(Λ− u− µ)− 1

V (Λ)

∣

∣

∣

∣

du

=

∫

R(Λ)

∣

∣

∣

∣

fσ̃(Λ− u− µ)− 1

V (Λ)

∣

∣

∣

∣

du = ϵ1Λ(σ̃)
(b)

≤ ϵ1Λ(σQ),

where (b) follows from Lemma 8.

III. SECRET KEY GENERATION

In this section, we present our system model for secret key generation from correlated Gaussian sources with

one-way rate limited communication, in the presence of an eavesdropper, and our proposed key generation protocol

based on nested lattices.
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ALICE BOB

KEY

GENERATION
QUANTIZER pXYZ DECODER

EVE

K K̂

X
n

X
n
Q Y

n

Z
n

S S

S

public channel (noiseless)

Fig. 1. Secret key generation in the presence of an eavesdropper with communication over a public channel.

A. System model

We consider the same model as in [1], illustrated in Fig. 1, in which Alice, Bob and Eve observe the random

variables Xn, Yn, Zn respectively, generated by an i.i.d. memoryless Gaussian source pXYZ whose components are

jointly Gaussian with zero mean. The distribution is fully described by the variances σ2x, σ2y , σ2z and the correlation

coefficients ρxy, ρxz , ρyz . We can write [23, Eq. (6)]:










X
n = ρxy

σx
σy

Y
n +W

n
1 ,

X
n = ρxz

σx
σz

Z
n +W

n
2 ,

(16)

where Wn
1 and Wn

2 are i.i.d. zero-mean Gaussian noise vectors of variances

σ21 = σ2x(1− ρ2xy), σ22 = σ2x(1− ρ2xz), (17)

respectively, such that σ2 > σ1. Further, Wn
1 is independent of Yn, and Wn

2 is independent of Zn.

We assume that only one round of one-way public communication takes place from Alice to Bob. More precisely,

Alice computes a public message S and a secret key K from her observation Xn; she then transmits S over the

public channel (see Fig. 1). From this message and his own observation Yn, Bob reconstructs a key K̂.

Let Kn and Sn be the sets of secret keys and public messages respectively. A secret key rate - public rate pair

(RK , RP ) is achievable if there exists a sequence of protocols with

lim inf
n→∞

1

n
log |Kn| ≥ RK , lim sup

n→∞

1

n
log |Sn| ≤ RP ,

such that the following properties hold:

lim
n→∞

log |Kn| −H(K) = 0 (uniformity)

lim
n→∞

P

{

K ̸= K̂

}

= 0 (reliability)

lim
n→∞

I(K; S,Zn) = 0 (strong secrecy).

Following [23], we denote

R(X,Y,Z) = {(RP , RK) : (RP , RK) is achievable}.
The optimal trade-off between secret key rate and public rate was derived in [23]. For the source model (16),

given public rate RP , the secret key rate is upper bounded by

RK ≤ R̄K(RP ) =
1

2
log

(

e−2RP +
σ22
σ21

(1− e−2RP )

)

. (18)

See Appendix E for details.

We recall that the secret key capacity of the Gaussian source model (16) is defined as the maximum achievable
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◦

Fig. 2. A schematic representation of the chain of nested lattices Λ1 ⊃ Λ2 ⊃ Λ3. The fundamental regions of Λ1, Λ2 and Λ3 are pictured

in blue, red and green respectively. The quotient groups Λ1/Λ2 and Λ2/Λ3 are represented by the blue and red points respectively.

secret key rate with unlimited public communication and is given by [53, 23]

Cs = sup {RK such that ∃RP ≥ 0 : (RP , RK) ∈ R(X,Y,Z)} =
1

2
log

σ22
σ21
. (19)

Additional notation. To simplify notation, we define Ŷn = ρxy
σx

σy
Yn and Ẑn = ρxz

σx

σz
Zn, so that

{

X
n = Ŷ

n +W
n
1 ,

X
n = Ẑ

n +W
n
2 ,

(20)

where Ŷn and Wn
1 are independent, and Ẑn and Wn

2 are independent. We denote the variances of Ŷn and Ẑn by

σ̂y = ρxyσx =
√

σ2x − σ21 and σ̂z = ρxzσx =
√

σ2x − σ22 respectively.

B. Secret key generation protocol

To define our key generation scheme, we use the lattice partition chain Λ1/Λ2/Λ3, where

• Λ1 is L1 secrecy-good with respect to σQ, and serves as the “source-code” component of Wyner-Ziv coding;

• Λ2 is AWGN-good with respect to σ̃1 =
√

σ21 + σ2Q, and serves as the “channel-code” component in Wyner-Ziv

coding;

• Λ3 is L1 secrecy-good with respect to σ̃2 =
√

σ22 + σ2Q, and serves as the extractor of randomness.

The existence of such a chain of lattices will be established in Appendix D.

In addition, we assume that U is a uniform dither over a fundamental region R(Λ1), which is known by Alice,

Bob and Eve6.

Our protocol is similar to the secret key generation scheme in our previous work [1] with some notable differences

due to switching from an L∞ flatness factor criterion to an L1 flatness factor criterion:

- As in [1], the modulo R(Λ3) operation is used for privacy amplification. Since the the flatness factor ϵ1Λ3
(σ)

only depends on fσ,Λ3
which is periodic mod Λ3, nearest-neighbor quantization is not needed and we can

choose any fundamental region R(Λ3). Note that the mod R(Λ) operation can be performed in polynomial

time for many fundamental regions. In particular, we can choose the fundamental parallelepiped.

- Nearest-neighbor quantization with respect to the intermediate lattice Λ2 is performed for information recon-

ciliation.

- As in [1], quantization with respect to the fine lattice Λ1 is performed to obtain a discrete key. However,

deterministic quantization is replaced with randomized rounding (using local randomness at Alice’s side),

which allows to achieve the optimal trade-off between secret key rate and public rate. Since the L1 flatness

6If Alice and Bob already share a secret source of randomness, there is no need for secret key generation. Hence, Eve should know U to

avoid trivializing the problem.
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R(Λ3)

•
0

V(Λ2)

•

•
XQ

•
QΛ2(XQ)

•
X̄Q

• S = XQ modV(Λ2)

•
K = QΛ2

(XQ) modR(Λ3)

Fig. 3. A schematic representation of the quantized signal XQ, the secret key K and the public message S.

factor is only an average condition, dithering is required in order to obtain almost uniform keys. Again, since

an L1 flatness factor criterion is used, the dither can be generated uniformly over any fundamental region

R(Λ1).

More precisely, the secret key generation proceeds as follows (see Figure 3):

• Alice quantizes Xn to

XQ = ⌊Xn + U⌉Λ1,σQ
.

That is, XQ ∼ DΛ1,σQ,x+u if Xn = x, U = u, or equivalently

pXQ|Xn,U(xQ|x,u) =
fσQ

(xQ − x− u)

fσQ
(Λ1 − x− u)

. (21)

Alice then computes the public message S and the key K as follows:

S = XQ modV(Λ2),

K = QΛ2
(XQ) modR(Λ3),

and transmits S to Bob over the public channel.

• Upon receiving S, Bob reconstructs

X̂Q = S+QΛ2

(

ρxy
σx
σy

Y
n + U− S

)

.

He then computes his version of the key:

K̂ = QΛ2
(X̂Q) modR(Λ3).

Let X̄Q = XQ modR(Λ3) ∈ Λ1/Λ3, where the quotient Λ1/Λ3 is identified with the set of coset representatives

Λ1 ∩R(Λ3). By definition, X̄Q = S+ K. Note that K and S are both functions of X̄Q:

K = QΛ2
(XQ) modR(Λ3)

(a)
= QΛ2

(XQ modR(Λ3)) modR(Λ3) = QΛ2
(X̄Q) modR(Λ3) = f(X̄Q). (22)

where (a) follows from equation (3). Similarly,

X̄Q modΛ2 = X̄Q −QΛ2
(X̄Q) = XQ −QR(Λ3)(XQ)−QΛ2

(XQ −QR(Λ3)(XQ)) = XQ −QΛ2
(XQ)

= XQ modΛ2 = S = g(X̄Q). (23)

Remark 5: Because of the previous relations, we can conclude that there exists a bijection (f, g) : Λ1/Λ3 →
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Λ1/Λ2 × Λ2/Λ3 that sends X̄Q into the corresponding pair (S,K).
We now state the main result of the paper, which will be proven in the following sections:

Theorem 2: For the Gaussian source model (16), there exists a sequence of nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1

such that for any public rate RP > 0, the previous secret key generation protocol asymptotically achieves the

optimal secret key rate R̄K(RP ) in (18). In particular, any secret key rate RK < Cs =
1
2 log

σ2
2

σ2
1

is achievable.

C. Reliability

We want to show that the error probability Pe = P{K ̸= K̂} → 0 as n→ ∞.

Note that K = K̂ if X̂Q = XQ. Since XQ = S+QΛ2
(XQ), we have

X̂Q = XQ ⇔ QΛ2
(Ŷn + U− S) = QΛ2

(XQ).

Observe that

QΛ2
(Ŷn + U− S) = QΛ2

(

Ŷ
n + U− XQ +QΛ2

(XQ)
)

= QΛ2
(Ŷn + U− XQ) +QΛ2

(XQ).

Therefore

X̂Q = XQ ⇔ QΛ2
(Ŷn + U− XQ) = 0 ⇔ Ŷ

n ∈ XQ − U+ V(Λ2). (24)

The error probability is bounded by

Pe ≤ P{X̂Q ̸= XQ} =

∫

Rn

∫

R(Λ1)
P{X̂Q ̸= XQ | Ŷn = y,U = u}pŶn(y)

V (Λ1)
dudy

=

∫

Rn

∫

Rn

∫

R(Λ1)
P{X̂Q ̸= XQ | Ŷn = y,Xn = x,U = u}

p
Xn|Ŷn(x|y)pŶn(y)

V (Λ1)
dudydx

=
∑

xQ∈Λ1

∫

Rn

∫

Rn

∫

R(Λ1)
pXQ|XnU(xQ|x,u)P{X̂Q ̸= xQ | Ŷn = y,U = u,XQ = xQ}

p
Xn|Ŷn(x|y)pŶn(y)

V (Λ1)
dudydx.

In the last step we have used the Markov chain Xn−(Ŷn,XQ,U)−X̂Q. Replacing the expression for the conditional

distribution in equation (21), we obtain

Pe =
∑

xQ∈Λ1

∫

Rn

∫

R(Λ1)

(∫

Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ1
(x− y)

V (Λ1)
dx

)

1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)du dy

(a)

≤
∑

xQ∈Λ1

∫

Rn

∫

R(Λ1)

∣

∣

∣

∣

∫

Rn

fσQ
(xQ−x−u)fσ1

(x−y)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃1
(xQ−u−y)

∣

∣

∣

∣

1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)du dy (25)

+
∑

xQ∈Λ1

∫

Rn

∫

R(Λ1)
fσ̃1

(xQ − u− y)1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)du dy (26)

where (a) follows from the triangle inequality.

The term (25) is upper bounded by
∫

Rn

∑

xQ∈Λ1

∫

R(Λ1)

∣

∣

∣

∣

∫

Rn

fσQ
(xQ − x− u)fσ1

(x− y)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃1
(xQ − u− y)

∣

∣

∣

∣

dufσ̂y
(y)dy

≤
∫

Rn

ϵ1Λ1
(σQ)fσ̂y

(y)dy = ϵ1Λ1
(σQ)

using Lemma 4. This tends to 0 provided that Λ1 is L1 secrecy-good and

V (Λ1)
2/n

σ2Q
< 2πe. (27)
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With the change of variables y′ = y − xQ + u, the term (26) can be rewritten as

∑

xQ∈Λ1

∫

R(Λ1)

∫

Rn

fσ̃1
(y′)1{y′ /∈V(Λ2)}fσ̂y

(y′ + xQ − u)dy′du

=
∑

xQ∈Λ1

∫

R(Λ1)

∫

Rn\V(Λ2)
fσ̃1

(y′)fσ̂y
(y′ + xQ − u)dy′du

=

∫

Rn\V(Λ2)
fσ̃1

(y′)
∫

R(Λ1)
fσ̂y,Λ1

(y′ − u)dudy′

(b)
=

∫

Rn\V(Λ2)
fσ̃1

(y′)dy′

where (b) follows from the fact that
∫

R(Λ1)
fσ̂y,Λ1

(y′−u)du = 1. This tends to 0 provided that Λ2 is AWGN-good

and
V (Λ2)

2/n

σ̃21
> 2πe. (28)

D. Uniformity

We want to show that the key is asymptotically uniform when n→ ∞. First, we want to bound the L1 distance

between pX̄Q
and the uniform distribution over Λ1/Λ3. Given x ∈ R

n, x̄Q ∈ Λ1/Λ3, we have

pX̄Q|XnU(x̄Q|x,u) =
∑

λ3∈Λ3

pXQ|Xn,U(x̄Q + λ3|x,u) =
∑

λ3∈Λ3

fσQ
(x̄Q + λ3 − x− u)

fσQ
(Λ1 − x− u)

. (29)

Then

pX̄Q
(x̄Q) =

∫

R(Λ1)

∫

Rn

pX̄Q|Xn,U(x̄Q|x,u)
pXn(x)

V (Λ1)
dx du =

∑

λ3∈Λ3

∫

R(Λ1)

∫

Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx du.

Using the previous expression, we find

∥

∥

∥
pX̄Q

− UΛ1/Λ3

∥

∥

∥

L1
=

∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

pX̄Q
(x̄Q)−

V (Λ1)

V (Λ3)

∣

∣

∣

∣

=
∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

∣

∫

R(Λ1)

∣

∣

∣

∣

∣

∑

λ3∈Λ3

∫

Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dxdu− V (Λ1)

V (Λ3)

(a)

≤
∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

∣

∫

R(Λ1)

∑

λ3∈Λ3

∫

Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dxdu−
∑

λ3∈Λ3

∫

R(Λ1)
fσ̃x

(x̄Q + λ3 − u)du

∣

∣

∣

∣

∣

(30)

+
∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

∣

∫

R(Λ1)

∑

λ3∈Λ3

fσ̃x
(x̄Q + λ3 − u)du− V (Λ1)

V (Λ3)

∣

∣

∣

∣

∣

(31)

where (a) follows from the triangle inequality, and σ̃2x = σ2x + σ2Q. The term (30) is upper bounded by

∑

x̄Q∈Λ1/Λ3

∑

λ3∈Λ3

∫

R(Λ1)

∣

∣

∣

∣

∫

Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃x
(x̄Q + λ3 − u)

∣

∣

∣

∣

du

≤
∑

xQ∈Λ1

∫

R(Λ1)

∣

∣

∣

∣

∫

Rn

fσQ
(xQ − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃x
(xQ − u)

∣

∣

∣

∣

du ≤ ϵ1Λ1
(σQ)
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by Lemma 4. This vanishes as o
(

1
n

)

if Λ1 is L1 secrecy-good and the condition (27) is satisfied.

The term (31) is equal to

∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

∣

∫

R(Λ1)

∣

∣

∣

∣

∣

fσ̃x,Λ3
(x̄Q − u)du−

∫

R(Λ1)

1

V (Λ1)
du
V (Λ1)

V (Λ3)

≤
∑

x̄Q∈Λ1/Λ3

∫

R(Λ1)

∣

∣

∣

∣

fσ̃x,Λ3
(x̄Q − u)− 1

V (Λ3)

∣

∣

∣

∣

du.

Setting v = x̄Q − u modR(Λ3), and recalling that R(Λ3) =
⋃

x̄Q∈Λ1∩R(Λ3)
([x̄Q +R(Λ1)] modR(Λ3)) by (4),

where the union is disjoint, the last expression is equal to
∫

R(Λ3)

∣

∣

∣

∣

fσ̃x,Λ3
(v)− 1

V (Λ3)

∣

∣

∣

∣

dv = ϵ1Λ3
(σ̃x) ≤ ϵ1Λ3

(σ̃2)

where σ̃22 = σ22 + σ2Q ≤ σ2x + σ2Q = σ̃2x. Thus, the term (31) vanishes as o
(

1
n

)

if both Λ1 and Λ3 are L1-secrecy

good and satisfy the volume conditions (27) and

V (Λ3)
2/n

σ̃22
< 2πe. (32)

We now show that the distribution of the key is close to the uniform distribution UK over K = Λ2/Λ3:

V(pK,UK) =
∑

k∈K

∣

∣

∣

∣

pK(k)−
V (Λ2)

V (Λ3)

∣

∣

∣

∣

=
∑

k∈K

∣

∣

∣

∣

∣

∣

∑

s∈Λ1/Λ2

pX̄Q
(s⊕ k)−

∑

s∈Λ1/Λ2

V (Λ1)

V (Λ3)

∣

∣

∣

∣

∣

∣

≤
∑

k∈K

∑

s∈Λ1/Λ2

∣

∣

∣

∣

pX̄Q
(s⊕ k)− V (Λ1)

V (Λ3)

∣

∣

∣

∣

=
∑

x̄Q∈Λ1/Λ3

∣

∣

∣

∣

pX̄Q
(x̄Q)−

V (Λ1)

V (Λ3)

∣

∣

∣

∣

= V(pX̄Q
,UΛ1/Λ3

)

which vanishes as o
(

1
n

)

as shown previously. Using [54, Lemma 2.7], we have that if V(pK,UK) ≤ 1
2 ,

|H(pK)−H(UK)| ≤ −V(pK,UK) log
V(pK,UK)

|K| = V(pK,UK) log
2nRK

V(pK,UK)

= nRKV(pK,UK)− V(pK,UK) logV(pK,UK).

This vanishes as long as V(pK,UK) ∼ o
(

1
n

)

, which is indeed the case.

E. Strong secrecy

Using [29, Lemma 1], we can bound the leakage as follows:

I(K; S,Zn,U) = I(K; S, Ẑn,U) ≤ dav log
|K|
dav

, (33)

where

dav =
∑

k∈K
pK(k)V(pSẐnU|K=k, pSẐnU

)

≤
∑

k∈K
pK(k)

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

∣

∣

∣

∣

p
SẐnU|K=k(s, z,u|k)−

p
Ẑn(z)

V (Λ2)

∣

∣

∣

∣

dz du (34)

+
∑

k∈K
pK(k)

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

∣

∣

∣

∣

p
Ẑn(z)

V (Λ2)
− p

SẐnU
(s, z,u)

∣

∣

∣

∣

dz du (35)
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by the triangle inequality.

Due to Remark 5, we can write

p
SẐnU|K=k(s, z,u|k) =

p
SẐnUK

(s, z,u, k)

pK(k)
=
p
Ẑn(z)

V (Λ1)

p
X̄Q|Ẑn,U(k + s|z,u)

pK(k)

=
p
Ẑn(z)

V (Λ1)pK(k)

∑

λ3∈Λ3

p
XQ|Ẑn,U(k + s+ λ3|z,u),

and so the term (34) is equal to

∑

k∈K

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

p
Ẑn(z)

∣

∣

∣

∣

∣

∑

λ3∈Λ3

p
XQ|Ẑn,U(k + s+ λ3|z,u)

V (Λ1)
− pK(k)

V (Λ2)

∣

∣

∣

∣

∣

dzdu

≤
∑

k∈K

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

p
Ẑn(z)

∣

∣

∣

∣

∣

∑

λ3∈Λ3

p
XQ|Ẑn,U(k + s+ λ3|z,u)

V (Λ1)
−
∑

λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)

∣

∣

∣

∣

∣

dzdu (36)

+
∑

k∈K

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

p
Ẑn(z)

∣

∣

∣

∣

∣

∑

λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)− pK(k)

V (Λ2)

∣

∣

∣

∣

∣

dzdu, (37)

where σ̃22 = σ22 + σ2Q. Recalling that

p
XQ|Ẑn,U(xQ|z,u) =

∫

Rn

pXQ|Xn,U(xQ|x,u)pXn|Ẑn(x|z)dx =

∫

Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ2
(x− z)dx,

the term (36) can be upper bounded by
∫

Rn

p
Ẑn(z)

∫

R(Λ1)

∑

k∈K

∑

s∈Λ1/Λ2

∑

λ3∈Λ3

∣

∣

∣

∣

∫

Rn

fσQ
(k + s+ λ3 − x− u)

V (Λ1)fσQ
(Λ1 − x− u)

fσ2
(x− z)dx− fσ̃2

(k + s+ λ3 − u− z)

∣

∣

∣

∣

du dz

=

∫

Rn

p
Ẑn(z)

∫

R(Λ1)

∑

xQ∈Λ1

∣

∣

∣

∣

∫

Rn

fσQ
(xQ − x− u)

V (Λ1)fσQ
(Λ1 − x− u)

fσ2
(x− z)dx− fσ̃2

(xQ − u− z)

∣

∣

∣

∣

du dz ≤ ϵ1Λ1
(σQ)

by Lemma 4. This vanishes as o
(

1
n

)

assuming the condition (27).

On the other hand, by the triangle inequality the term (37) can be bounded by

∑

k∈K

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

p
Ẑn(z)

∣

∣

∣

∣

∣

∑

λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)− 1

V (Λ3)

∣

∣

∣

∣

∣

dzdu (38)

+
∑

k∈K

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

p
Ẑn(z)

∣

∣

∣

∣

1

V (Λ3)
− pK(k)

V (Λ2)

∣

∣

∣

∣

dzdu. (39)

Setting v = k + s− u modR(Λ3) and using the property (4), the term (38) can be written as
∫

Rn

p
Ẑn(z)

∫

R(Λ3)

∣

∣

∣

∣

fσ̃2,Λ3
(v − z)− 1

V (Λ3)

∣

∣

∣

∣

dvdz = ϵ1Λ3
(σ̃2),

which vanishes as o
(

1
n

)

assuming the condition (32). Finally, (39) is equal to

V (Λ2)
∑

k∈K

∣

∣

∣

∣

1

V (Λ3)
− pK(k)

V (Λ2)

∣

∣

∣

∣

=
∑

k∈K
|UK − pK(k)| = V(UK, pK) = o

(

1

n

)

→ 0
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as already shown in Section III-D.

We now come back to the expression (35), which is equal to

∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

∣

∣

∣

∣

p
Ẑn(z)

V (Λ2)
− p

SẐnU
(s, z,u)

∣

∣

∣

∣

dzdu

≤
∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

∣

∣

∣

∣

∣

p
Ẑn(z)

V (Λ2)
−
∑

k′∈K

∑

λ3∈Λ3

p
Ẑn(z)fσ̃2

(k′ + s+ λ3 − u− z)

∣

∣

∣

∣

∣

dzdu (40)

+
∑

s∈Λ1/Λ2

∫

R(Λ1)

∫

Rn

∣

∣

∣

∣

∣

∑

k′∈K

∑

λ3∈Λ3

p
Ẑn(z)fσ̃2

(k′ + s+ λ3 − u− z)− p
SẐnU

(s, z,u)

∣

∣

∣

∣

∣

dzdu (41)

by the triangle inequality.

The term (40) is upper bounded by
∫

Rn

p
Ẑn(z)

∑

s∈Λ1/Λ2

∑

k′∈K

∫

R(Λ1)

∣

∣

∣

∣

1

V (Λ3)
− fσ̃2,Λ3

(k′ + s− u− z)

∣

∣

∣

∣

dudz

=

∫

p
Ẑn(z)

∫

R(Λ3)

∣

∣

∣

∣

1

V (Λ3)
− fσ̃2,Λ3

(v − z)

∣

∣

∣

∣

dv dz = ϵ1Λ3
(σ̃2)

and vanishes as o
(

1
n

)

if condition (32) is satisfied.

Observe that

p
SẐnU

(s, z,u) =
∑

k′∈K
p
SKẐnU

(s, k′, z,u) =
∑

k′∈K

p
Ẑn(z)

V (Λ1)
p
X̄Q|ẐnU

(s+ k′|z,u)

=
∑

k′∈K

p
Ẑn(z)

V (Λ1)

∑

λ3∈Λ3

p
XQ|ẐnU

(s+ k′ + λ3|z,u) =
∑

k′∈K

p
Ẑn(z)

V (Λ1)

∑

λ3∈Λ3

∫

Rn

fσQ
(s+ k′ + λ3 − x− u)fσ2

(x− z)

fσQ
(Λ1 − x− u)

dx.

Thus the term (41) can be bounded by
∫

Rn

p
Ẑn(z)

∫

R(Λ1)

∑

k′∈K

∑

s∈Λ1/Λ2

∑

λ3∈Λ3

∣

∣

∣

∣

fσ̃2
(k′+s+λ3−u−z)−

∫

Rn

fσQ
(s+k′+λ3−x−u)fσ2

(x−z)

V (Λ1)fσQ
(Λ1 − x− u)

dx

∣

∣

∣

∣

du dz

=

∫

Rn

p
Ẑn(z)

∫

R(Λ1)

∑

xQ∈Λ1

∣

∣

∣

∣

fσ̃2
(xQ − u− z)−

∫

Rn

fσQ
(xQ − x− u)fσ2

(x− z)

V (Λ1)fσQ
(Λ1 − x− u)

dx

∣

∣

∣

∣

dudz ≤ ϵ1Λ1
(σQ)

by Lemma 4, which again vanishes as o
(

1
n

)

under condition (27).

In conclusion, dav ∼ o
(

1
n

)

and thus from (33), we find that the leakage vanishes asymptotically as n→ ∞.

Remark 6: Although in Section III-D we only showed that the key is close to uniform on average over the dither

U, using the results in this section we see that

H(UK)−H(K|U) = H(UK)−H(K) + I(K;U) ≤ H(UK)−H(K) + I(K; S,Zn,U) → 0.

F. Achievable strong secrecy rate and optimal trade-off

Recall that in the previous sections we have imposed the conditions (27), (28) and (32) on the volumes of Λ1,

Λ2 and Λ3 respectively, i.e.

V (Λ1)
2/n

σ2Q
< 2πe,

V (Λ2)
2/n

σ̃21
> 2πe,

V (Λ3)
2/n

σ̃22
< 2πe.

Therefore, the achievable secret key rate is upper bounded by

RK =
1

n
log

V (Λ3)

V (Λ2)
<

1

2
log

σ̃22
σ̃21

=
1

2
log

σ22 + σ2Q
σ21 + σ2Q

(42)
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As σQ → 0,

RK → 1

2
log

σ22
σ21
,

which is the optimal secret key rate. This improves upon our previous work [1] in which the achievable secrecy

rate had a 1/2 nat gap compared to the optimal.

Remark 7: The optimal scaling of the lattice Λ3 requires the noise variance σ2 to be known by Alice; if only a

lower bound for σ2 is available, positive secret key rates can still be attained.

The public communication rate is lower bounded by

RP =
1

n
log

V (Λ2)

V (Λ1)
>

1

2
log

σ21 + σ2Q
σ2Q

.

Equivalently, we have σ2Q >
σ2
1

e2RP −1 . Replacing this expression in the bound (42) for RK , and observing that (42)

is a decreasing function of σ2Q, we find

RK <
1

2
log

(

e−2RP +
σ22
σ21

(1− e−2RP )

)

.

which corresponds to the optimal public rate / secret key rate trade-off (18).

IV. CONCLUSIONS AND PERSPECTIVES

To conclude, we have proposed a new lattice-based technique to extract a secret key from correlated Gaussian

sources against an eavesdropper. Using L1 distance and KL divergence, we have proved the existence of lattices

with a vanishing flatness factor for all VNRs up to 2πe. This improves upon the previous result for VNRs up

to 2π, based on L∞ distance. Together with dithering and randomized rounding, it has enabled us to achieve the

optimal trade-off with one-way public communication. In the same way, it is possible to remove the 1
2 -nat gap to

the secrecy capacity of wiretap channels [35] associated to the use of the L∞ flatness factor [39, p. 1656].

An immediate step for future work is to turn the existence result of this paper into a practical scheme. There

are avenues for replacing random nested lattices for Wyner-Ziv coding with lower-complexity techniques, such as

superposition coding or residual quantization [55, 56]. However such techniques do not address privacy amplification.

In order to implement the approach proposed in this paper based on the notion of flatness factor of a lattice, a

promising option is to instantiate the lattices using polar codes (aka polar lattices), which have been shown to be

good for quantization, channel coding [57] and secrecy. A polar lattice has been constructed in [39] to achieve

the secrecy capacity of Gaussian wiretap channels. It can be shown that the secrecy-good lattice in [39] enjoys

a vanishing L1 flatness factor. Since the encoding and decoding complexity of a polar lattice is quasi-linear in

blocklength n, it is an excellent candidate to build a practical scheme for secret key generation. It is also possible

to implement the randomized rounding algorithm over a polar lattice.

Another problem is to see if it is possible to modify the design of this paper to yield a fuzzy extractor, which would

require redesigning a lattice with respect to other entropy measures. Other open problems include identifying whether

is is possible to remove dithering and/or randomized quantization, characterizing the second-order asymptotics and

the extension of the proposed key-agreement protocol to multi-terminal systems. Furthermore, the reconciliation

technique based on Wyner-Ziv coding may be extended to key-encapsulation mechanisms (KEM) in lattice-based

cryptography, due to the similarity between KEM and secret key agreement. Finally, it is interesting to explore the

applications of L1 and KL smoothing parameters in other cryptographic and mathematical problems [37, 38].
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APPENDIX A

RESOLVABILITY CODES

In this section we review some results from [36] about resolvability codes for regular channels, which are needed

for the proof of Theorem 1.

First, we need some preliminary definitions. In the following, we assume X is a finite abelian group and Y is a

measurable space. Given a channel W : X → Y , we use the notation Wx(y) =W (y|x) for x ∈ X , y ∈ Y .

Definition 7 (Rényi Entropy): Given a discrete distribution pA on A and ρ ≥ 0, we define

H1+ρ(A) = −1

ρ
log
∑

a∈A
pA(a)

1+ρ.

Definition 8: Given a channel W : X → Y and a probability distribution pX on X , we define ∀ρ ≥ 0

ψ(ρ|W, pX) = log
∑

x∈X
pX(x)

∫

Y
Wx(y)

1+ρ(W ◦ pX)(y)−ρdy.

This function has the following properties:

ψ(0|W, pX) = 0, (43)

ψ(ρ|Wn, p⊗n
X

) = nψ(ρ|W, pX), (44)

lim
ρ→0

ψ(ρ|W, pX)
ρ

= I(X;Y). (45)

We also compute the second derivative in 0 which will be needed in the next section.

Lemma 5:

ψ′′(0) =
∑

x∈X
pX(x)

∫

Y
Wx(y)

(

log
Wx(y)

(W ◦ pX(y))

)2

dy −
(

∑

x∈X
pX(x)

∫

Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy

)2

.

The proof of Lemma 5 can be found in Appendix F.

Definition 9 (Regular channel): The channel W : X → Y is called regular if X acts on Y by permutations

{πx}x∈X such that πx(π
′
x(y)) = πx+x′(y) ∀x, x′ ∈ X , and there exists a probability density pY on Y such that

Wx(y) = pY(πx(y)) ∀x ∈ X , ∀y ∈ Y .

In particular, a regular channel is symmetric [58, 59] in the sense of Gallager [60], and its capacity is achieved

by the uniform distribution.

The following theorem was stated for discrete memoryless channels [36, Corollary 18] but can be extended to

continuous outputs [36, Appendix D] as follows:

Theorem 3: Let M and X be a finite-dimensional vector spaces over Fp and Y a measurable space. Consider

a uniform random variable F taking values over the set of linear mappings f : M → X and a distribution pM on

M. If W : X → Y is regular, then ∀ρ ∈ (0, 1],

EF

[

eρD(W◦F◦pM||W◦UX )
]

≤ 1 + e−ρH1+ρ(M)eψ(ρ|W,UX ).

Theorem 3 is a one-shot result, but we can apply it to n uses of an i.i.d. channel to get the following.

Corollary 1: Let X be a finite-dimensional vector space over Fp and Y a measurable space, and W : X → Y
a regular channel. Let R > I(X;Y), where X ∼ UX and Y ∼ W ◦ UX . Consider Cn ⊂ X n chosen uniformly at

random in the set of (n, k) linear codes in X n, where k = ⌈nR⌉
log p . Denote by UCn

the uniform distribution over the

codewords in Cn. Then

ECn
[D(Wn ◦ UCn

||Wn ◦ U⊗n
X )] → 0

exponentially fast as n→ ∞.

Proof: Note that Wn : X n → Yn is still a regular channel with respect to the set of permutations {πx}x∈Xn ,

where we define πx(y1, . . . , yn) = (πx1
(y1), . . . , πxn

(yn)) for x = (x1, . . . , xn).
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Applying Theorem 3 to this channel, and taking M = F
k
p with k = ⌈nR⌉

log p and pM = UM, for Fn representing a

random linear encoder fn : M → X n we have

EFn

[

eρD(W
n◦Fn◦UM||Wn◦U⊗n

X )
]

≤ 1 + e−ρH1+ρ(M)eψ(ρ|W
n,U⊗n

X ).

By Jensen’s inequality,

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ
log
(

1 + e−ρH1+ρ(M)eψ(ρ|W
n,U⊗n

X )
)

≤ 1

ρ
e−ρH1+ρ(M)+ψ(ρ|Wn,U⊗n

X ).

Note that H1+ρ(M) = nR since M is uniform. Using (44), we find that ∀ρ ∈ (0, 1],

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ
e−n(ρR−ψ(ρ|W,UX )). (46)

From (43) and (45), we have ψ(ρ|W, pX) = ρI(X;Y) + η(ρ), where limρ→0
η(ρ)
ρ = 0. Given R > I(X;Y), ∃ρ̄

sufficiently small such that δ = R− I(X;Y)− η(ρ̄)
ρ̄ > 0. Therefore

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ̄
e−nρ̄δ → 0 (47)

as n→ ∞.

APPENDIX B

MODULO LATTICE CHANNELS AND THE KL FLATNESS FACTOR

In this section, we review some properties of modulo lattice channels and introduce another notion of flatness

factor based on the KL divergence, which will be used in the proof of Theorem 1.

A. The mod-Λ channel and the mod-Λ/Λ′ channel

Following Forney et al. [58], given a fundamental region R(Λ) of a lattice Λ we can define the mod-Λ channel

with input Xn ∈ R(Λ) and output

Y
n = [Xn +W

n] modR(Λ),

where Wn is a noise vector. When Wn is i.i.d. Gaussian with variance σ2, this channel has capacity

C(Λ, σ2) = log V (Λ)− h(fσ,Λ).

In the above expression, with slight abuse of notation we denote by h(fσ,Λ) the differential entropy of fσ,R(Λ),

which does not depend on the choice of the region R(Λ).
The following result [57, Lemma 1] relates the L∞ flatness factor to the capacity of the mod-Λ channel.

Lemma 6: The capacity C(Λ, σ2) of the mod-Λ channel is bounded by C(Λ, σ2) ≤ log(1 + ϵΛ(σ)) ≤ ϵΛ(σ).
Given two nested lattices Λ′ ⊂ Λ and a fundamental region R(Λ′), we can define the mod-Λ/Λ′ channel with

discrete input Xn ∈ Λ ∩R(Λ′) and output

Y
n = [Xn +W

n] modR(Λ′).

It was shown in [58] that this channel has capacity

C(Λ/Λ′, σ2) = log
∣

∣Λ/Λ′∣
∣+ h(fσ,Λ)− h(fσ,Λ′).

In particular, the following relation holds:

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2). (48)

Lemma 7: For any σ > 0,

C(Λ/Λ′, σ2) = D

(

fσ,R(Λ′)

∥

∥

∥

1

|Λ/Λ′|fσ,Λ|R(Λ′)

)

.



19

Proof: By definition,

D

(

fσ,R(Λ′)

∥

∥

∥

1

|Λ/Λ′|fσ,Λ|R(Λ′)

)

=

∫

R(Λ′)
fσ,Λ′(y) log

fσ,Λ′(y) |Λ/Λ′|
fσ,Λ(y)

dy

= −h(fσ,Λ′) +

∫

R(Λ′)
fσ,Λ′(y) log

|Λ/Λ′|
fσ,Λ(y)

dy

= −h(fσ,Λ′) + log
∣

∣Λ/Λ′∣
∣−
∫

R(Λ′)
fσ,Λ′(y) log fσ,Λ(y)dy.

The conclusion follows by observing that

−
∫

R(Λ′)
fσ,Λ′(y) log fσ,Λ(y)dy = −

∑

λ∈Λ/Λ′

∫

R(Λ)+λ
fσ,Λ′(y) log fσ,Λ(y)dy

=−
∑

λ∈Λ/Λ′

∫

R(Λ)
fσ,Λ′(y − λ) log fσ,Λ(y)dy = −

∫

R(Λ)
fσ,Λ(y) log fσ,Λ(y)dy = h(fσ,Λ).

B. The KL flatness factor

We can now introduce a notion of flatness factor based on KL divergence.

Definition 10: Given a lattice Λ, a fundamental region R(Λ) and σ > 0, we define the KL flatness factor as

follows:

ϵKLΛ (σ) = D(fσ,R(Λ)||UR(Λ)). (49)

Note that as before, the definition does not depend on the choice of the fundamental region.

Remark 8: By Pinsker’s inequality, ∀σ > 0,

ϵ1Λ(σ) ≤
√

2ϵKLΛ (σ).

Remark 9 (Relation to the capacity of the mod-Λ channel): Note that [39, p.1656]

D(fσ,R(Λ)||UR(Λ)) = log V (Λ)− h(fσ,Λ) = C(Λ, σ2).

By shift-invariance of the differential entropy, the KL flatness factor is also shift-invariant, i.e.

ϵKLΛ (σ) = D(fσ,Λ,c|R(Λ)||UR(Λ))

for all c ∈ R
n.

Thanks to Remark 9, we are able to prove that the KL flatness factor is monotonic:

Lemma 8: For any lattice Λ, ∀σ′ > σ, ϵKLΛ (σ′) ≤ ϵKLΛ (σ).
Proof: With the same notation as in the proof of Lemma 2, from the data processing inequality for the KL

divergence [54, Lemma 3.11] we have

ϵKLΛ

(

√

σ2 + σ20

)

= D

(

f√
σ2+σ2

0 ,R(Λ)
||UR(Λ)

)

= D(Yn||Un) ≤ D(Xn||Un) = D(fσ,R(Λ)||UR(Λ)) = ϵKLΛ (σ).

Similarly to Definition 4, we can introduce a notion of secrecy goodness based on the KL flatness factor.

Definition 11: A sequence of lattices {Λ(n)} is KL secrecy-good if ϵKLΛ(n)(σ) = o
(

1
nc

)

.
By Remark 8, a sequence of KL secrecy-good lattices is also L1 secrecy-good.

C. Extracting the intrinsic randomness of additive Gaussian channels with a modulo lattice operation

In this section, we show that under the assumption of a small KL flatness factor, the modulo lattice operation

allows to extract the intrinsic randomness of the additive Gaussian channel (in the sense of [30]). For simplicity,

we only focus on privacy amplification and we assume that Alice and Bob observe the same i.i.d. Gaussian random



20

ALICE
RANDOMNESS

EXTRACTOR
pXZ EVE

X̄n Xn Zn

Fig. 4. Intrinsic randomness extractor.

variable Xn = Yn of variance σ2x per dimension. Eve observes a correlated i.i.d. random variable Zn. We assume

that Xn and Zn are jointly Gaussian, according to the model

X
n = Z

n +W
n, (50)

where Wn is an i.i.d. zero-mean Gaussian random vector of variance σ2 per dimension, and is independent of Zn.

Our aim is to extract from Xn a random variable that is almost uniform on R(Λ) and almost independent of Zn

(cf. Fig. 4). More precisely, we give the following definition.

Definition 12 (Continuous lattice extractor for channel intrinsic randomness under a KL divergence criterion):

Given the model (50) and ε > 0, an ε-lattice extractor with lattice Λ for channel intrinsic randomness (under a KL

divergence criterion) is a device that takes Xn as input and outputs X̄n ∈ R(Λ) such that D(pX̄n ||UR(Λ)) ≤ ε and

I(X̄n;Zn) = D(pZnX̄n ||pZnpX̄n) ≤ ε.
We will show that if Λ is a lattice in R

n such that ϵKLΛ (σ) = ϵ, and R(Λ) is a fundamental region of Λ, then

X̄n = Xn modR(Λ) satisfies Definition 12. Recall that

pX̄n(x̄) = fσx,Λ(x̄)1R(Λ)(x̄).

The conditional density of X̄n given Zn is

pX̄n|Zn(x̄|z) =
∑

x: x̄=x modR(Λ)

pXn|Zn(x|z) =
∑

x∈x̄+Λ

pXn|Zn(x|z) =
∑

λ∈Λ

1

(
√
2πσ)n

e−
∥x̄+λ−z∥2

2σ2

= fσ,Λ(x̄− z)1R(Λ)(x̄) = fσ,Λ,z(x̄)1R(Λ)(x̄).

By monotonicity of the KL flatness factor (Lemma 8), D(pX̄n ||UR(Λ)) = ϵKLΛ (σx) ≤ ϵKLΛ (σ), and moreover

h(X̄n) = h(fσx,Λ),

h(X̄n|Zn = z) = −
∫

R(Λ)
pX̄n|Zn(x̄|z) log pX̄n|Zn(x̄|z)dx̄ = −

∫

R(Λ)
fσ,Λ(x̄− z) log fσ,Λ(x̄− z)dx̄

= −
∫

R(Λ)−z

fσ,Λ(x̄) log fσ,Λ(x̄)dx̄ = h(fσ,Λ)

since fσ,Λ is Λ-periodic and R(Λ) − z is a fundamental region of Λ. We can now bound the mutual information

as follows:

I(X̄n;Zn) = h(X̄n)− h(X̄n|Zn)

= h(fσx,Λ)−
∫

Rn

pZn(z)h(X̄n|Zn = z)dz = h(fσx,Λ)− h(fσ,Λ)

= log V (Λ)− h(fσ,Λ)− (log V (Λ)− h(fσx,Λ)) = ϵKLΛ (σ)− ϵKLΛ (σx) ≤ ϵKLΛ (σ).

The differential entropy of X̄n is lower bounded by

h(X̄n) = h(fσx,Λ) = log V (Λ)− ϵKLΛ (σx) = h(UR(Λ))− ϵKLΛ (σx) ≥ h(UR(Λ))− ϵKLΛ (σ)

since, by monotonicity of the KL flatness factor, ϵKLΛ (σx) ≤ ϵKLΛ (σ).
Remark 10: Taking a sequence of KL secrecy-good lattices {Λ(n)} such that γΛ(n)(σ) → 2πe and ϵKLΛ (σ) → 0

as n→ ∞, the asymptotic differential entropy rate of X̄n is

r = lim inf
n→∞

1

n
h(X̄n) = lim inf

n→∞
1

n
log V (Λ) =

1

2
log 2πeσ2,

which is equal to the asymptotic differential entropy rate of the Gaussian noise Wn. Thus, the modulo lattice
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operation can asymptotically extract the intrinsic randomness of the channel.

Remark 11: It is worth mentioning that our continuous lattice extractor scheme does not require dithering.

Moreover, since the flatness factor ϵKLΛ only depends on fσ,Λ which is periodic mod Λ, we can choose any

fundamental region R(Λ).
Remark 12: We note that if we replace the KL flatness factor condition ϵKLΛ (σ) = ε with the L1 flatness factor

condition ϵ1Λ(σ) = ε, one can easily show that V(pX̄n ,UR(Λ)) ≤ ε and V(pZnX̄n , pZnpX̄n) ≤ 2ϵ, but on the other

hand we cannot guarantee that the differential entropy h(X̄n) is close to h(UR(Λ)). In fact, for general continuous

distributions, convergence in variational distance does not necessarily imply convergence in differential entropy

[61]7.

Finally, we note that since the L1 flatness factor and KL flatness factor are average conditions, we can’t obtain a

discrete key from X̄n simply by quantizing it with respect to a fine lattice Λ1 ⊃ Λ. In order to obtain good discrete

keys, one can combine the modulo lattice operation with uniform dithering over a fundamental region R(Λ1), as

shown in Section III.

APPENDIX C

PROOF OF THEOREM 1

In order to prove Theorem 1, we will actually show a stronger result:

Proposition 2: If γΛ(σ) < 2πe is fixed, then there exists a sequence {Λ(n)} of lattices which are KL secrecy-good.

Theorem 1 then follows from Proposition 2 by Remark 8.

Before proceeding with the proof, we summarize the main idea here. We use the standard Construction A to find

the sought-after lattice Λ, by choosing a coarse lattice Λc = αpZ, a fine lattice Λf = αZ, an (n, k) linear code C
over Fp, and Λnc ⊆ Λ = α(pZn + C) ⊆ Λnf . Using the chain rule (48), we have

D(fR(Λ),σ||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2) + C(Λnf/Λ, σ

2).

Now, using a sufficiently fine lattice Λf , we can easily make C(Λnf , σ
2) → 0 thanks to the flatness phenomenon

(cf. Lemma 6). The non-trivial part of the proof is to exhibit a lattice Λ such that C(Λnf/Λ, σ
2) → 0 as well. It

turns out that if the linear code C is a resolvability code for the mod-Λf/Λc channel W , i.e. if the output of the

code is close to the output of uniform input, then C provides the desired solution. In fact, we show that

D(Wn ◦ UC ||Wn ◦ U(Λf/Λc)n) = C(Λnf/Λ, σ
2),

which tends to 0 if C is a resolvability code. The existence of such linear resolvability codes follows from the

results of [36] (see Appendix A). However, making the above argument rigorous involve certain technicalities, as

seen in the following.

Proof of Proposition 2:

For a given dimension n, we will construct Λ as a scaled mod-p lattice [63] of the form Λ = α(pZn + Cn),
where Cn is an (n, k)-linear code over Fp.

We will consider the asymptotic behavior as n → ∞, α → 0, p → ∞ while satisfying the volume condition

αnpn−k = V (Λ) = (γσ2)n/2. Here, γ is the volume-to-noise ratio, which is assumed to be fixed.

By construction, Λnc ⊂ Λ ⊂ Λnf , where Λc = αpZ and Λf = αZ are one-dimensional lattices.

From Remark 9 and the relation (48), we have

D(fσ,R(Λ)||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2) + C(Λnf/Λ, σ

2).

We want to show that both terms in the sum tend to zero when n→ ∞.

1) First, we will show that C(Λnf , σ
2) = C((αZ)n, σ2) → 0 if α = o

(

1
nc

)

for some c > 0. We follow the same

approach as in [57, Appendix A]. From Lemma 6 we have that C(Λnf , σ
2) ≤ ϵΛn

f
(σ). Furthermore, it was

shown in [64, Lemma 3] that

ϵΛn
f
(σ) = (1 + ϵΛf

(σ))n − 1. (51)

7More precisely, [61, Definition 3] identifies a class of probability distributions for which convergence in total variation leads to convergence

in entropy. One of the requirements is that the densities should be bounded, which is not guaranteed under an L1 flatness factor criterion.

See also the discussion in [62].
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Finally, one can show that [57, Appendix A]

ϵΛf
(σ) = ϵαZ(σ) ≤ 4e−

2π2σ2

α2 . (52)

Then

ϵΛn
f
(σ) ≤

(

1 + 4e−
2π2σ2

α2

)n
− 1 ≤ 4ne−

2π2σ2

α2 + o(e−
2π2σ2

α2 ) → 0.

since (1 + x)n = 1 + nx+ o(x) when x→ 0.

2) Next, we want to show that there exists a sequence of lattices Λ of the form α(pZn + Cn) such that

C(Λnf/Λ, σ
2) → 0 as n→ ∞.

Consider the mod-(Λf/Λc) channel W : Λf ∩ R(Λc) → R(Λc). This channel is regular (see Definition 9 in

Appendix A) with respect to the set of permutations πx(y) = [y − x] mod Λc for x ∈ X = Λf ∩ R(Λc),
y ∈ R(Λc). In fact,

Wx(y) =W (y|x) = fσ,Λc
(y − x) = fσ,Λc

([y − x] modΛc) = fσ,Λc
(πx(y)).

Being regular, the mod Λf/Λc channel is symmetric and the uniform distribution over X achieves capacity (see

Appendix A). Moreover, Λf/Λc ∼= Fp as abelian groups. We consider the required rate condition in Corollary

1:

R =
1

n
log |Cn| =

1

n
log |Λ/Λnc | =

1

n
log

αnpn

V (Λ)
> I(X;Y) = C(Λf/Λc, σ

2). (53)

We have

C(Λf/Λc, σ
2) = log |Λf/Λc|+ h(fσ,Λf

)− h(fσ,Λc
) = log p+ h(fσ,Λf

)− h(fσ,Λc
)

= log p+ logα− C(Λf , σ
2)− h(fσ,Λc

).

Therefore, the condition (53) is equivalent to

1

n
log V (Λ) < h(fσ,Λc

) + C(Λf , σ
2).

In the asymptotic limit for α→ 0, p→ ∞ while keeping αnpn−k = V (Λ) = (γσ2)n/2, we have C(Λf , σ
2) →

0. Moreover, αp → ∞, and so h(Λc, σ
2) → 1

2 log 2πeσ
2. So asymptotically, the rate condition is satisfied

when

V (Λ)2/n

2πeσ2
< 1. (54)

In this case we have

R− I(X;Y) = − 1

n
log V (Λ) + C(Λf , σ

2)− h(fσ,Λc
) → δ0 =

1

2
log

2πeσ2

V (Λ)2/n
=

1

2
log

2πe

γΛ(σ)
> 0 (55)

as n→ ∞.

Remark 13: Note that we cannot directly apply Corollary 1 in Appendix A to this setting, since the definition

of the channel W depends on α and p which are not fixed but are a function of n. However, we will show

that the proof of the Corollary can be extended to this channel since the convergence in (47) is uniform.

Proof of Remark 13: Let X be a uniformly distributed variable on Λf ∩R(Λc) and Y the corresponding output

distribution. Consider the function ψ(ρ) = ψ(ρ|W,UX ) in Definition 8. From (43) and (45), it follows that its

Taylor expansion in 0 is given by

ψ(ρ) = ρI(X;Y) + ρ2ψ′′(0) + o(ρ2), (56)

where ψ′′(0) is given in Lemma 5. Noting that

(W ◦ UX )(y) =
∑

x∈X

1

|X |Wx(y) =
∑

x∈Λf∩R(Λc)

1

|Λf/Λc|
fσ,Λc

(y − x) =
1

|Λf/Λc|
fσ,Λf (y),
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we find

ψ′′(0) =
∑

x∈Λf∩R(Λc)

1

|Λf/Λc|

∫

R(Λc)
fσ,Λc

(y − x)

(

log
fσ,Λc

(y − x)
1

|Λf/Λc|fσ,Λf
(y)

)2

dy

−





∑

x∈Λf∩R(Λc)

1

|Λf/Λc|

∫

R(Λc)
fσ,Λc

(y − x) log
fσ,Λc

(y − x)
1

|Λf/Λc|fσ,Λf
(y)

dy





2

≤
∑

x∈Λf∩R(Λc)

1

|Λf/Λc|

∫

R(Λc)
fσ,Λc

(y − x)

(

log
fσ,Λc

(y − x)
1

|Λf/Λc|fσ,Λf
(y)

)2

dy

=

∫

R(Λc)
fσ,Λc

(y′)

(

log
fσ,Λc

(y′)
1

|Λf/Λc|fσ,Λf
(y′)

)2

dy′

with the change of variables y′ = y−x modR(Λc). From the definition of flatness factor and the bound (52),

we find that ∀y′ ∈ R(Λc),

fσ,Λf
(y′) ≥ 1− ϵΛf

(σ)

V (Λf )
≥ 1− 4e−

2π2σ2

α2

α
.

Recalling the definition of the theta series of a lattice in (6) and the relation (8), we have ϵΛ(σ) = ΘΛ∗(2πσ2)−
1, where Λ∗ is the dual lattice of Λ. Then by [35, Remark 1], ∀y′ ∈ V(Λc)

fσ,Λc
(y′) ≤ fσ,Λc

(0) =
1√
2πσ

ΘΛc

(

1

2πσ2

)

=
1√
2πσ

(

1 + ϵΛ∗
c

(

1

2πσ

))

.

Again using the bound (52), we have

ϵΛ∗
c

(

1

2πσ

)

= ϵ 1

αp
Z

(

1

2πσ

)

≤ 4e−
α2p2

2σ2 .

Then, since α→ 0 and αp→ ∞ when n→ ∞, for sufficiently large n we have

fσ,Λc
(y′)

1
|Λf/Λc|fσ,Λf

(y′)
≤ 1√

2πσ

αp(1 + 4e−
α2p2

2σ2 )

1− 4e−
2π2σ2

α2

≤ Cαp

for some constant C > 0. Consequently, for large enough n, ∃C ′ > 0 such that

ψ′′(0) ≤ C ′(logαp)2.

Then, from the Taylor expansion (56) we obtain the bound

ψ(ρ) ≤ ρI(X;Y) + ρ2C ′′(logαp)2

for another suitable constant C ′′ > 0. In particular, we can bound the exponent in equation (46) as follows:

ρR− ψ(ρ|W,UX ) ≥ ρ(R− I(X;Y)− ρC ′′(logαp)2) > ρ
δ0
2

for sufficiently large n, where δ0 is defined in (55), as long as ρ = o
(

1
(logαp)2

)

and the VNR condition (54)

is satisfied. In particular if we choose the scaling8

p = ξn3/2, αp = 2
√
n, (57)

where ξ is the smallest number in the interval [1, 2) such that p is prime [65, Section IV], we have convergence

8This choice of scaling is compatible with the existence of a suitable sequence of nested lattices, see Appendix D.
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in (47) with ρ̄ = 1
(log 2

√
n)2+η for some η > 0 since

1

ρ̄
e−nρ̄

δ0
2 = (log 2

√
n)2+ηe

− nδ0
2(log 2

√
n)2+η → 0.

This concludes the proof of Remark 13.

Then according to Corollary 1, for Cn chosen uniformly in the set of (n, k) linear codes over Fp of rate

R = k
n log p,

ECn

[

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X )
]

≤ 1

ρ̄
e−nρ̄

δ0
2 → 0

as n→ ∞. In particular, there exists at least one code Cn such that D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) → 0. Note that

(Wn ◦ UCn
)(y) =

∑

c∈Cn

1

|Cn|
fσ,Λn

c
(y − αc) =

∑

c∈Cn

∑

λc∈Λn
c

1

pk
fσ(y − αc− λc) =

1

pk

∑

λ∈Λ
fσ(y − λ)

=
1

pk
fσ,Λ(y), (58)

(Wn ◦ U⊗n
X )(y) =

∑

x∈Λn
f∩R(Λn

c )

1

pn
fσ,Λn

c
(y − x) =

1

pn
fσ,Λn

f
(y). (59)

Since both (Wn ◦ UCn
) and (Wn ◦ U⊗n

X ) are Λ-periodic, we can write

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) =

∫

R(Λn
c )
p−kfσ,Λ(y) log

p−kfσ,Λ(y)

p−nfσ,Λn
f
(y)

dy

=

∫

R(Λ)
fσ,Λ(y) log

fσ,Λ(y)

p−(n−k)fσ,Λn
f
(y)

dy = D(fσ,R(Λ)∥p−(n−k)fσ,Λn
f |R(Λ)

) = C(Λnf/Λ, σ
2) → 0

using Lemma 7. This concludes the proof.

Remark 14: With a standard argument based on Markov’s inequality, we can also show that the set of KL-secrecy

good lattices has large measure, since ∀ξ > 0,

P
{

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) > ξ
}

≤ 1

ξ
ECn

[

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X )
]

.

Given 0 < c < 1/2, we can take ξ = 1
c
e−nρ̄δ0

ρ̄ and we obtain

P
{

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) > ξ
}

≤ c.

APPENDIX D

EXISTENCE OF A SEQUENCE OF NESTED LATTICES FOR SECRET KEY GENERATION

In this section, we show the existence of a sequence of nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 such that Λ3 is KL

secrecy-good, Λ2 is AWGN-good and Λ1 is KL secrecy-good. Note that we don’t need covering-goodness, which

requires more stringent conditions on the parameters [66].

We will follow the construction in [65]. We denote by VB,n the volume of the n-dimensional ball of radius 1.

Given P3 > P2 > P1 > 0, let ai = log 1
Pi

for i = 1, 2, 3. We consider the dimensions k3 < k2 < k1 ≤ n defined

as follows:

ki =









n

2 log p



log





4

V
2/n
B,n



+ ai











 , i = 1, 2, 3,

where p = ξn3/2, and ξ is taken to be the smallest number in the interval [1, 2) such that p is prime [65, Section

IV]9. Let C1 be uniformly sampled from the set of all linear (n, k1) codes over Fp, with generator matrix G1 (in

column notation). We denote by G2 and G3 the submatrices of G1 corresponding to the first k2 and k3 columns

9Note that the conclusions of [65] still hold for any p = Θ(n
1
2
+δ) with δ > 0, see Remark 7 in that paper.
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respectively, and by C2, C3 the corresponding linear codes. Finally, we define the lattices Λ̃i = 1
pCi + Z

n and

Λi = αpΛ̃i for i = 1, 2, 3, where α = 2
√
n
p . Then by [65, Theorem 1 and Theorem 6], the matrices G1, G2, G3

are full rank and the nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 obtained in this way are good for quantization and coding

with probability that tends to 1 when n→ ∞ and

lim
n→∞

V 2/n(Λ
(n)
i ) = 2πePi, i = 1, 2, 3.

Note that we have taken the same scaling as in (57). In particular, when n → ∞ we have p → ∞, α → 0 and

αp→ ∞.

Moreover, α = 2
ξn satisfies the condition α = o

(

1
nc

)

in Appendix C. Therefore, due to Remark 14 the lattices

Λ3 and Λ1 are also KL secrecy-good with probability close to 1, which concludes the proof.

APPENDIX E

OPTIMAL PUBLIC RATE / SECRET KEY RATE TRADE-OFF

In this section, we derive the optimal trade-off between public rate and secret key rate from [23] for the setting in

our paper. Note that Theorem 4 in [23] doesn’t directly apply to our model because our source doesn’t necessarily

satisfy X → Y → Z. However, the proof of Lemma 6 in [23] shows how to obtain a new source (X̄, Ȳ, Z̄) which is

degraded (X̄ → Ȳ → Z̄) and has the same achievable region (R(X,Y,Z) = R(X̄, Ȳ, Z̄)). In particular, translating

the proof into our notation, we can take X̄ = X, Ȳ = Y and

Z̄ =
σzρxz
σyρxy

Y + N̂,

where N̂ is independent of all other random variables and has variance σ2z

(

1− ρ2xz

ρ2xy

)

.

From elementary computations we see that σz̄ = σz , ρxz̄ = ρxz and ρyz̄ =
ρxz

ρxy
.

In our notation, the optimal trade-off given by Theorem 4 of [23] is given by

RK ≤ 1

2
log

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)
2e−2RP

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)2
.

In terms of the original variables X,Y,Z, after simplifying the expression we obtain the optimal trade-off

RK ≤ 1

2
log

(1− ρ2xz)− (ρ2xy − ρ2xz)e
−2RP

1− ρ2xy
.

(Recall that ρxy > ρxz in our setting). Using the notation σ21 = σ2x(1− ρ2xy), σ22 = σ2x(1− ρ2xz) from our paper, this

is equal to

RK ≤ 1

2
log

(

e−2RP +
σ22
σ21

(1− e−2RP )

)

. (60)

APPENDIX F

PROOF OF LEMMA 5

The first derivative of the function ψ(ρ) = ψ(ρ|W, pX) is

ψ′(ρ) =

∑

x∈X pX(x)
∫

Y
Wx(y)

1+ρ

((W◦pX)(y))ρ log
Wx(y)

(W◦pX)(y)dy
∑

x∈X pX(x)
∫

Y
Wx(y)1+ρ

((W◦pX)(y))ρdy
=
f(ρ)

g(ρ)
.

Then we have

g(0) = 1,

f(0) =
∑

x∈X
pX(x)

∫

Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy = g′(0),

f ′(0) =
∑

x∈X
pX(x)

∫

Y
Wx(y)

(

log
Wx(y)

(W ◦ pX)(y)

)2

dy.
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The conclusion follows since

ψ′′(0) =
f ′(0)g(0)− f(0)g′(0)

g2(0)
.
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