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Abstract

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an
eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as
well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are the use
of the modulo lattice operation to extract the channel intrinsic randomness, based on the notion of flatness factor,
together with a randomized lattice quantization technique to quantize the continuous source. Compared to previous
works, we introduce two new notions of flatness factor based on L! distance and KL divergence, respectively,
which might be of independent interest. We prove the existence of secrecy-good lattices under L' distance and KL
divergence, whose L' and KL flatness factors vanish for volume-to-noise ratios up to 2we. This improves upon the
volume-to-noise ratio threshold 27 of the L°° flatness factor.
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I. INTRODUCTION

Secret key generation (also known as key agreement) at the physical layer was first investigated by Maurer [3]
and Ahlswede and Csiszér [4], who showed that correlated observations of noisy phenomena could be used to distill
secret keys by exchanging information over a public channel. In recent years, this subject has received considerable
attention in literature (see, e.g., [5—10]). The setup has been extended to the vector case [11, 12], the multi-terminal
case [13-16], the quantum case [17] and the case with feedback [18]. Second-order asymptotics have been derived
in [19, 20]. Code constructions for the discrete memoryless case have been proposed, e.g. [21, 22].

Most existing secret key generation schemes rely heavily on the assumption of discrete random sources over finite
or countable alphabets. In order to apply these techniques to wireless communications, it is necessary to extend
the key generation framework to the case of continuous sources, such as Gaussian sources [11, 23-25]'. In [25],
the authors study a multi-terminal scenario for secret key generation in the special case for which the eavesdropper
only has access to the public channel. Beside providing a characterization of the optimal strongly secret key rate,
the authors show that this optimal rate can be achieved using lattice codes (for information reconciliation only).

We consider here the problem of secret key generation between two terminals, Alice and Bob, who observe
correlated Gaussian sequences X" and Y™, in the presence of an eavesdropper, Eve, who also obtains a correlated
sequence Z". For simplicity, we suppose that a single round of unidirectional public communication takes place
in order to establish the key. Our main contribution is to show that, in the case of a degraded source model, the
strong secret key capacity can be achieved by a complete lattice-coding scheme considerably different from and
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perhaps simpler than [25]%. This extends our previous work [1], in which it was shown that a secret key rate up to
half a nat from the optimal was achievable.

Typically, secret key generation consists of two distinct procedures: information reconciliation, in which public
messages are exchanged to ensure that Alice and Bob can construct the same data sequence with vanishing
error probability, and privacy amplification to extract from this shared sequence a secret key that is statistically
independent from Eve’s observation and from the public messages.

Privacy amplification and randomness extraction: Our privacy amplification strategy is based on the concept of
channel intrinsic randomness, or the maximum bit rate that can be extracted from a channel output independently
of its input [30-32]. We show that the reduction modulo a suitable lattice can be used to extract the intrinsic
randomness. Although our main objective in this paper is to solve the problem of privacy amplification, our lattice
extractor is also an intriguing result in its own right, which could have other applications.

The flatness factor and its variants: In our previous work [1], we provided a characterization of the class
of lattices that are good for randomness extraction, which was based on a computable parameter, the flatness
factor, measuring the L> distance between the “folded” Gaussian distribution modulo the lattice and the uniform
distribution on the corresponding fundamental region. The concept of flatness factor is related to the smoothing
parameter used in lattice-based cryptography [33], and was first introduced in [34] in the context of physical-
layer network coding. In [35], two of the authors also showed the relevance of the flatness factor for secrecy and
introduced the notion of secrecy-good lattices for the wiretap channel. In this work, we consider two extended notions
of flatness factor by which the L™ distance is replaced respectively by the L' distance and the Kullback-Leibler
(KL) divergence. These new flatness conditions are satisfied by a wider range of variance parameters, resulting in
improved volume conditions for the chain of lattices under consideration, which allows us to achieve the secret key
capacity. The existence of lattices with vanishing L' and KL flatness factors follows by leveraging an existence
result for resolvability codes for regular channels [36]. We note that the L' smoothing parameter was already
considered in [37, 38], while L' and KL flatness factors were used implicitly earlier in [39, p. 1656]. An upper
bound on the L' flatness factor based on the Cauchy-Schwarz inequality was given in [40]. The independent work
[41] studied L' smoothing parameters both for lattices and for codes, also based on the Cauchy-Schwarz inequality.
Our approach bypasses the Cauchy-Schwarz inequality, therefore leading to a tighter bound than [40]. We note
however that [41] obtained a bound on the L' smoothing parameter as tight as that in this paper, by decomposing
the discrete Gaussian distribution into a convex combination of uniform ball distributions. The smoothing parameter
is of fundamental importance in lattice and code-based cryptography [41], so our method for the L' flatness factor
may also be useful in these areas.

Information reconciliation and Wyner-Ziv coding: Our strategy for information reconciliation follows the outline
of [23, 25]: first, the source X" is vector quantized; then, a public message is generated in the manner of Wyner-Ziv
coding, so that Bob can decode the quantized variable using the sequence Y™ as side information. The existence
of good nested lattices for Wyner-Ziv coding has been established in [42] (see also [43, 44]). We show that this
construction is compatible with the secrecy-goodness property to conclude our existence proof.

Randomized quantization technique: Unlike our previous work [1], the quantization performed at Alice’s side is
not deterministic. We introduce a new randomized quantization step inspired by the randomized rounding technique
in [45]. Essentially, this technique allows to round a continuous Gaussian into a discrete Gaussian distribution with
slightly larger variance, provided that the L° flatness factor of the lattice is small. We partially extend the result
of [45] under an L' flatness factor criterion. We show that randomized quantization with uniform dithering (where
the dither is known by all parties, including the eavesdropper) achieves the optimal trade-off between public
communication rate and secret key rate established in [23]. The dithering technique has been used to achieve
capacity in literature [46, 47]. Besides, the discrete Gaussian distribution is widely used in lattice coding [35] and
lattice-based cryptography [37, 45]. However, its application to quantization is new, to the best of our knowledge.

Relation to fuzzy extractors: Fuzzy extractors [48] allow to extract a secret key from a noisy measurement, which
means that it is resilient to small measurement errors. Fuzzy extractors for continuous signals were proposed in
[49, 50]. Our proposed lattice code is also robust to measurement errors, thanks to its channel coding component
of Wyner-Ziv coding. A notable difference is that min-entropy is used to measure the available randomness in

“The scheme in [25, Section IV-B] requires the repetition of a dithered quantization and public communication step over N blocks, each
of dimension n. This is needed to achieve strong secrecy from weak secrecy by using the technique in [28]. In contrast, our scheme achieves
strong secrecy with a single block and bounds the mutual information using the variational distance, as in [29].



fuzzy extractors, while Shannon entropy is used in our key generation model. Moreover, for fuzzy extractors the
measurement error is assumed to have bounded Hamming weight or Euclidean norm, while in our model it follows
a Gaussian distribution.

Organization: This paper is organized as follows. In Section II we provide basic definitions about lattices and
introduce the flatness factor and its L' variant, which allows us to define the notion of L' secrecy-good lattices. In
Section III, we introduce the Gaussian source model and describe our lattice-based secret key generation scheme.
Finally, in Section IV we offer some conclusions and perspectives. For ease of reading, the additional technical tools
needed to prove the existence of good nested lattices are presented in the Appendix. More precisely, Appendix A
summarizes some relevant results on the existence of resolvability codes for regular channels. Appendix B presents
the KL flatness factor and its properties, and discusses how the modulo lattice operation allows to extract the
intrinsic randomness of the additive Gaussian channel. The existence of lattices that are KL secrecy-good and,
consequently, also L' secrecy-good is proven in Appendix C. Finally, the existence of the sequences of nested
lattices required in our key generation scheme is proven in Appendix D.

II. LATTICES AND FLATNESS FACTOR

Notation: All logarithms in this paper are assumed to be natural logarithms, and information is measured in
nats. Given a set A, the notation U4 stands for the uniform distribution over A. The notation F, refers to the
finite field of order p. We denote the variational distance between two (discrete or continuous) distributions p, ¢ by
V(p, q), and their KL divergence by D(p||q).

A. Lattice definitions

In this section, we introduce the mathematical tools we use to describe and analyze our proposed scheme.
An n-dimensional lattice A in the Euclidean space R is the discrete set defined by

A=L(B)={Bx:xeZ"}

where the columns of the basis matrix B =[b; - - - b,| are linearly independent.

Given a lattice A, its dual lattice A* is defined as the set of vectors A\* in R” such that (\*, \) € Z for all A € A.

A measurable set R(A) C R™ is called a fundamental region of the lattice A if the disjoint union Uycp (R(A) +
A) = R™. Examples of fundamental regions include the fundamental parallelepiped P(A) and the Voronoi region
V(A). All the fundamental regions have equal volume V' (A).

Given a lattice A and a fundamental region R(A), any point x € R™ can be written uniquely as a sum

X = \+X,

where A € A and X € R(A). The vector X is the quantization of x with respect to R(A) and is denoted as
QRr()(x), where boundary points are decided systematically. Thus we define

[x] mod R(A) =x — Qr)(x) =x. (1
In particular, for any x € R”, the nearest-neighbor quantizer associated with A is given by
Qa(x) = Qua)(x) = argmin [|A — x|

where ties are broken systematically. Note that x mod V(A) = x — Qx(x). The modulo lattice operation satisfies
the distributive law [51, Proposition 2.3.1], i.e., VA € A

[x + A] mod R(A) = [x] mod R(A). (2)

The following property [52, equation (35)] will also be used in the paper: given two lattices A C Ay, x € R",
and a fundamental region R(A),

[Qa, (x)] mod R(A) = [Qa, ([x] mod R(A))] mod R(A). 3)

Given a sublattice A’ C A, the quotient group A/A’ is defined as the group of distinct cosets A + A’ for A € A.
It can be identified by a set of coset representatives A N R(A’), where R(A’) is any fundamental region of A’.



Furthermore, R(A’) can be written as a disjoint union of translates of any fundamental region R(A) as follows
[51, equation (8.33)]:
RMA)=|J (M+R(A) modR(A)). 4)
AEANR(AY)

B. Gaussian distributions and the L™ flatness factor
Suppose that X" is an n-dimensional i.i.d. Gaussian random variable of variance o2 with distribution
1 L2
f X)) = ——e 202
=(x) (V2mo)n ’

for x € R". The following useful property characterizing the product of Gaussian distributions was proven in [45,
Fact 2.1]°:
Lemma 1: Given 07,05 > 0, let o and & be such that 0% = 0+ 03, and &5 =

2

and ¢ = Z—;cl + %CQ. Then Vx € R™,
fo,(x —¢1) fo,(x — c2) = fo(c1 — c2) fa(x —€).

Given a lattice A, we define the A-periodic function

fon() = e ST e 5)

(V2mo)n vy

1

of

+ a%f Moreover, let cq,cy € R”,

for all x € R". We denote by f, z(r) = fo, AIR(A) its restriction to the fundamental region R(A). Note that f5 (a)
is the probability density of X" = [X"] mod R(A). Given ¢ € R", we will also use the notation

fU,A,c(X) = fo,A(X - C)

to denote a shifted A-periodic function.
Definition 1 (L*° Flatness factor [35]): For a lattice A and for a parameter o, the L°° flatness factor is defined
by:

ealo) £ nax [V(A) fon(x) — 1].

In other words, e () characterizes the L> distance of f, A(x) to the uniform distribution Uga) over R(A).
The L*° flatness factor is independent of the choice of the fundamental region R(A) and can be computed from

the theta series of the lattice ,
Oa(r) =) e ™I (6)

AEA
using the identity [35, Proposition 2]

(o) = <”A2(:)> O, (27302> Y )

where yp(0) = V(;XQ)W is the volume-to-noise ratio (VNR). Moreover, the following relation holds between the
flatness factor of A and the theta series of its dual lattice A* [35, Corollary 1]:

Op-(2m0?) = ep(0) + 1. 8)

Remark 1: We have shown in [35] that €5 is a monotonically decreasing function, i.e., for ¢ < o/, we have
ea(d’) < eplo).

The notion of secrecy-goodness characterizes lattice sequences whose L°° flatness factors vanish exponentially
fast as n — oo.

Definition 2 (Secrecy-good lattices under L flatness factor [35]): A sequence of lattices A™ s secrecy-good
under the L flatness factor if €, (o) = e~ for all fixed ) (o) < 2.

3Note that although the statement in [45] refers to (unnormalized) Gaussian functions, one can check that it also holds for Gaussian
distributions.



In [35] we have proven the existence of sequences of secrecy-good lattices under L flatness factor as long as

ya(o) < 2m. 9)

C. The L' flatness factor

In this section, we introduce a weaker notion of flatness based on the L! distance.
Definition 3: Given a lattice A, a fundamental region R(A) and o > 0, we define the L' flatness factor as

follows:
)= [
R(A)

Similarly to the L> flatness factor, the L' flatness factor does not depend on the choice of the fundamental region.
Moreover, it is shift-invariant, i.e. Vc € R",

er(0) = V(fonemy Urn))- (11)

Remark 2: For any lattice A, Vo > 0, we have €} () < ex(0).

The L' flatness factor is related to the L' smoothing parameter, which was discussed in [37, 38].

The following Lemma confirms the intuition that folded additive Gaussian noise with larger variance looks more
uniform:

Lemma 2: The L' flatness factor is monotonic, i.e. for any lattice A, Vo' > o,

er(0') < ep(o).

Proof: Let W™ ~ N'(0,0%1,,) and X" = W" mod R(A) ~ f, »(a)-
Given oy > 0, let W§ ~ N(0,031,,) and consider

1
foa(x) — V(A)‘ dx = V(fsrn)Ur(a))- (10)

Y7 = X"+ W] mod R(A) = W] mod R(A)) + W] mod R(A) 2 (W™ + W] mod R(A) ~ f, s o )

where (a) follows from the distributive property (2). Now consider the random variable U™ ~ Up ,). By the Crypto
Lemma [51, Lemma 4.1.1],

Then using the data processing inequality for the variational distance,

A <\/02 + aa) =V (/ frmm ey Urin) ) = VY U™) < VXU = V(fprqn), Urin) = €A (o).

Since this is true for any oy > 0, the conclusion follows. O

We will next show that lattices that are good for secrecy in the L' sense exist and that the corresponding volume
condition is less stringent than the condition (9) for secrecy-goodness based on the L°° metric.

Definition 4: A sequence of lattices {A™} is L' secrecy-good if for all fixed vy (o) < 27e, Ve > 0, €}, (o) =
0 (ni), i.e., the L' flatness factor vanishes super-polynomially.

The following theorem, which was presented in [2], is the first main result of this paper:

Theorem 1: If v (o) < 2me is fixed, then there exists a sequence {A(™} of lattices which are L'-secrecy good.

The proof of Theorem 1 is given in Appendix C. Our proof is information-theoretic and does not require the
knowledge of the theta series, in contrast to the L°° flatness factor. We outline the key ideas here. In order to show
the existence of a sequence of lattices A(™ such that erm (0) = V( for(Am); Ur(amy) — 0, we actually prove
a stronger result, namely that D(f, (a0 ||{Ugaemy) — 0. This requires some additional technical tools that are
presented in Appendix B. We build the required lattices using Construction A, and their existence follows from the
existence of linear resolvability codes in [36] (see Appendix A for more details).

Remark 3: It is worth mentioning that as soon as the VNR exceeds 27, the L° flatness factor increases
exponentially. In fact, it is easy to see that the bound 5 (o) < 27 is sharp: the L> flatness factor of a lattice
cannot vanish for any 5 (o) > 2. This is simply because (7) implies that

ea(o) > <’m2(:)>2 -1



since ©(7) > 1 for any 7 > 0. Thus, as the VNR approaches 27e, the L™ flatness factor ~ ¢"/2, but the L'
flatness factor can still be brought under control. This demonstrates the advantage of the L' flatness factor.

Also note that the VNR of an L'-secrecy-good lattice approaches 27e from below, while that of an AWGN-
good lattice approaches 2me from above. Recall that the normalized second moment of a quantization-good lattice
approaches 1/(2me) [51], so all three types of lattices finally share the same VNR threshold 2me.

Remark 4: In the following, we discuss the implication of Theorem 1 on the smoothing parameter* that is
commonly used in lattice-based cryptography.

Definition 5 (Smoothing parameter): For a lattice A and for £ > 0, the L> and L' smoothing parameters 7.(A)

and 7} (A), respectively, are the smallest o > 0 such that e (), €} (o) < e.
Theorem 1 implies the existence of lattices whose smoothing parameters 775 (A) = V\(//;L/n for a suitable sequence
vy

e, — 0. This improves upon the result 7., (A) =~ T . Using the Cauchy-Schwarz inequality, the following

bound was proven in [40]3
eh(0) < en (V20) (12)

V(A)!/n

which implies the bound 7(A) < ===

. However, this bound is not optimal.

D. Discrete Gaussians and randomized rounding

Given an n-dimensional lattice A in R™ and a vector ¢ € R™, we define the discrete Gaussian distribution over
A centered at c as the following discrete distribution taking values in A € A:

foe(N)
foe(A)

where f5c(A) £ ZAeA fo.c(N). We write Dp o = Dp 4.0.
Following Peikert [45, Section 4.1], we introduce the notion of randomized rounding with respect to A:
Definition 6 (Randomized rounding): Given an input vector x € R", we define the random variable

Dpge(N) = VA €A,

LX.‘ A,O’ ~ DA,O',X‘

Note that |x] Ao 18 @ discrete random variable taking values in A.

It was shown in [45] that when X" is i.i.d. Gaussian with variance o2, the randomly rounded variable |X"], oo
is close in variational distance to the discrete Gaussian Dj 5, where 52 =02+ aQ, provided that the L°° flatness
factor ep(og) is small:

Proposition 1 (Adapted from Theorem 3.1 of [45]): Let X" ~ N(0,0%I,) and p € R™, and consider X =
[ X" + 1] - If €a(0g) < 1/2, then

V(pXQvDA,&,u)) < 46A(0Q)7

where &2

=%+ 0'22.

In the following, we prove a partial generalization of this result under an L' flatness factor condition, for
randomized rounding with uniform dithering, which may be of independent interest.

Lemma 3: Given a Gaussian random vector X" ~ N(0,021,,), a dither U ~ Ur(n) uniform over a fundamental

region R(A) and independent of X", and a constant pu € R", let Xg = [X" + U + ], , . Then

Eu [V (pxous Das,u+u)] < 2€4(00).

In order to prove Lemma 3, we need the following intermediate Lemma, which will be used several times
throughout the paper.
Lemma 4: Suppose that 52 = ¢ —}—O‘%, and let R(A) be a fundamental region of A. Then the following inequality

holds: f Y )
o(x — oo(XQ —X—u
XZGA /R(A / fUQ( - X u) !

*We remark that this definition differs slightly from the one in [33], where o is scaled by a constant factor V27 (i.e., s = V/27wo).
5A similar bound was given in [41] using the statistical distance, which differs from the L' distance by a factor %

x — fo(xq — 1 — p)| du < ek (o).




Proof of Lemma 4: By Lemma 1,
foq(xq =x =) fo(x — p) = fo(xq —u— p)fa(x — c(xq,u, p)), (13)

where & = L + % and ¢(xqQ,u, pu) = %(XQ —u)+ Z—zu. Then we can write

e L e Soa

= Z /R(A / folx fUZJQA(XQX _Xu_) W e fo(xq —u—p) /R fa(x — e(x0, u, p))dx| du
ZE /R(A / = fg";"Q(XQX_u dx—/ Jro(Xg =% = W) fy (x — p)dx| du
. fo(x—p) /R " V(IA) — fAoq(x + u)| dudx

= /R fox—n) /R " V(lA) — fAoo (0)| dudx = €} (0q),

where (a) follows from the fact that [, f5(x — €(xq, u, u))dx =1, and (b) follows from (13). O
Proof of Lemma 3: We have

Ey [V (pr|U,DAa U+u)] =

= o 717 2 Ipxalxelt) = Do)

Xg€EA
_ 1 fo(xq—u—p)
_/R( V(A) XZGA /Rnpxmx",u(XQ‘Xau)PXn(X)dX_ 0 —u—p) du
B JoX)fog(Xg — X —u—p) _ frlxq—u—p)
_XZGA/(A)V . Joo(A—x—u—p) i f5(A—u—p) du
(@) 1 fU(X_P')fUQ(XQ_X_U-) :
- ZEA/ VO e Frgb-x-w T e Va8
1 Jo(xg —u—p)
R 5 _ _ A _ ,
+XQZ€:A/R(A) vy |frxe mum wWVIA) = To e | e (15)

where (a) follows from the triangle inequality and the change of variables x +— x + p. The term (14) is bounded
by €} (0g) because of Lemma 4. The term (15) is equal to

F(x 1
éﬁffﬂﬁwm“”vw“
= [ |pt—umw - | =@ € deo)
R(A) V(A)
where (b) follows from Lemma 8. O

III. SECRET KEY GENERATION
In this section, we present our system model for secret key generation from correlated Gaussian sources with
one-way rate limited communication, in the presence of an eavesdropper, and our proposed key generation protocol
based on nested lattices.
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Fig. 1. Secret key generation in the presence of an eavesdropper with communication over a public channel.

A. System model

We consider the same model as in [1], illustrated in Fig. 1, in which Alice, Bob and Eve observe the random
variables X", Y™, Z" respectively, generated by an i.i.d. memoryless Gaussian source pxyz whose components are

jointly Gaussian with zero mean. The distribution is fully described by the variances o2, 05, o2 and the correlation
coefficients puy, Pz, py-. We can write [23, Eq. (6)]:
X" = pxyﬁvn + W,
oy (16)
X" = pxzizn + ng
Oz
where W7 and W% are i.i.d. zero-mean Gaussian noise vectors of variances
ot = 0u(1=pz), 03 =0z(1= ), (17)

respectively, such that oo > o1. Further, W7 is independent of Y™, and WY is independent of Z".

We assume that only one round of one-way public communication takes place from Alice to Bob. More precisely,
Alice computes a public message S and a secret key K from her observation X"; she then transmits S over the
public channel (see Fig. 1). From this message and his own observation Y”, Bob reconstructs a key K.

Let K, and S, be the sets of secret keys and public messages respectively. A secret key rate - public rate pair
(Rk, Rp) is achievable if there exists a sequence of protocols with

1 1
liminf — log |K,,| > Rk, limsup —log|S,| < Rp,
n n

n—oo n—00

such that the following properties hold:

li_>m log |[KC,,] — H(K) =0 (uniformity)
lim P {K ” R} ~0 (reliability)
li_)m I(K;S,Z") =0 (strong secrecy).

Following [23], we denote
R(X,Y,Z) ={(Rp,Rk) : (Rp, Rk) is achievable}.

The optimal trade-off between secret key rate and public rate was derived in [23]. For the source model (16),
given public rate Rp, the secret key rate is upper bounded by

_ 1 o2
Ric < Ric(Rp) = 5 log (e“"RP + 50— e”"“’)) : (18)
1

See Appendix E for details.
We recall that the secret key capacity of the Gaussian source model (16) is defined as the maximum achievable



Fig. 2. A schematic representation of the chain of nested lattices A1 D A2 D As. The fundamental regions of A;, A and A3z are pictured
in blue, red and green respectively. The quotient groups A1/A2 and A2/A3 are represented by the blue and red points respectively.

secret key rate with unlimited public communication and is given by [53, 23]

1 2
Cy = sup { R such that 3Rp > 0 : (Rp, R) € R(X,Y,2)} = log Z (19)
01

Additional notation. To simplify notation, we define Yn = pxy%Y” and 7" = png—fZ”, so that
y z

X" =YY"+ W,

. (20)
X" = 7" + W2,

where Y and W7 are independent, and 7" and W3 are independent. We denote the variances of Y™ and Z" by

6y = puyOs = \/02 — 07 and 6, = py,0, = \/02 — 03 respectively.

B. Secret key generation protocol

To define our key generation scheme, we use the lattice partition chain A;/A2/A3, where

o A;is L! secrecy-good with respect to o, and serves as the “source-code” component of Wyner-Ziv coding;

e Ay is AWGN-good with respect to 61 = (/0% + O'QQ, and serves as the “channel-code” component in Wyner-Ziv
coding;

o Az is L' secrecy-good with respect to 69 = /03 + 022, and serves as the extractor of randomness.

The existence of such a chain of lattices will be established in Appendix D.
In addition, we assume that U is a uniform dither over a fundamental region R (A1), which is known by Alice,
Bob and Eve®.

Our protocol is similar to the secret key generation scheme in our previous work [1] with some notable differences

due to switching from an L flatness factor criterion to an L' flatness factor criterion:

- As in [1], the modulo R(Aj3) operation is used for privacy amplification. Since the the flatness factor 6}\3 (o)
only depends on f; A, which is periodic mod As, nearest-neighbor quantization is not needed and we can
choose any fundamental region R(A3). Note that the mod R(A) operation can be performed in polynomial
time for many fundamental regions. In particular, we can choose the fundamental parallelepiped.

- Nearest-neighbor quantization with respect to the intermediate lattice Ay is performed for information recon-
ciliation.

- As in [1], quantization with respect to the fine lattice A; is performed to obtain a discrete key. However,
deterministic quantization is replaced with randomized rounding (using local randomness at Alice’s side),
which allows to achieve the optimal trade-off between secret key rate and public rate. Since the L' flatness

®If Alice and Bob already share a secret source of randomness, there is no need for secret key generation. Hence, Eve should know U to
avoid trivializing the problem.
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R(As)

Fig. 3. A schematic representation of the quantized signal X¢, the secret key K and the public message S.

factor is only an average condition, dithering is required in order to obtain almost uniform keys. Again, since
an L' flatness factor criterion is used, the dither can be generated uniformly over any fundamental region
R(A1).
More precisely, the secret key generation proceeds as follows (see Figure 3):
o Alice quantizes X" to
X = [ X"+ U}AW_Q .
That is, Xg ~ Dj, 04 ,x+u if X" =x, U= u, or equivalently

foo (xg —x —u)
»~ y(Xolx,u) = . 21)
PrapeuxaPow) = TG )
Alice then computes the public message S and the key K as follows:
S = Xg mod V(As),

K= QAz (XQ) mod R(A?))v

and transmits S to Bob over the public channel.
» Upon receiving S, Bob reconstructs

Xo =S+ Qn, (M%Y” +U- s> .
Oy
He then computes his version of the key:
K = Qa,(Xg) mod R(A3).

Let )_(Q = Xg mod R(A3) € A1/A3, where the quotient A; /A3 is identified with the set of coset representatives

A1 NR(A3). By definition, Xg = S + K. Note that K and S are both functions of X¢:

K = Qa,(Xo) mod R(As) 2 Qa,(Xg mod R(As)) mod R(As) = Qu,(Xg) mod R(As) = f(Xg).  (22)
where (a) follows from equation (3). Similarly,

Xg mod Ay = Xg — Qa,(Xq) = X — Qr(ry)(XQ) — Qa,(Xg — Qra,)(XQ)) = Xo — Qa, (Xg)
= Xg mod Ay =S = g(Xg). (23)

Remark 5: Because of the previous relations, we can conclude that there exists a bijection (f,g) : Aj/As —
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A1/As x Ag/As that sends X into the corresponding pair (S, K).

We now state the main result of the paper, which will be proven in the following sections:

Theorem 2: For the Gaussian source model (16), there exists a sequence of nested lattices A(n) C A(n) A(n)
such that for any public rate Rp > 0, the previous secret key generation protocol asymptotlcally achleves the
optimal secret key rate Ry (Rp) in (18). In particular, any secret key rate Ry < Cy = & log o is achievable.

C. Reliability

We want to show that the error probability P = P{K # K} — 0 as n — oo.
Note that K = K if Xg = X¢. Since Xg =S+ Qa,(Xg), we have

Xg=Xq & Qa(Y"+U=5) =Qu,(Xq).
Observe that
Qu(¥" +U=5) = Qu, (V" +U = Xq + Qu.(Xq)) = Quu(¥" + U = Xg) + Qu,(Xq)-

Therefore
XQ XQ - QAQ( +U-— XQ) =0 < Yn S XQ U+ V(AQ) 24)

The error probability is bounded by
Py (¥)
} Y

PeSP{XQ#XQ}Z/ / P{Xq #Xq | Y" =y, U
R’ JR(AL) 1)

V(A
. . Pyenyn (X[Y)Pg (¥)
_/ / / P{Xg #Xo | V" =y, X" = x,U = u} X V(Al)Y dudydx

dudy

Py (X[Y)Pg (¥)
= Z //n/ Pxqxnu(Xqlx, u)P{XQ # XQ Y=y, U=u Xg =%} X" |Y V(Al)v dudydx.

XQ %

In the last step we have used the Markov chain X" — (Y™, Xq, V) —XQ. Replacing the expression for the conditional
distribution in equation (21), we obtain

- 5 [ (L o e ) i vin o, (v

XQ€M
fUQ XQ—X— u) fo, (x— Y) ‘
< — Jou U 1 Xo—Uu 5 G, dud 25
x% /"/ re foo (A1 —x—u)V(Ay) dx — f5.(xQ—u=y)| Liygxq—utvaa fo, (y)dudy (25)
T Z / / fUl Xg—u-— Y)]l{ygéXQ u+V(Az) fo-y( )dudy (26)
xgeN; Y R"

where (a) follows from the triangle inequality.
The term (25) is upper bounded by

fo 2 e,

Xg€A:
< / e (00)f5, (¥)dy = ek (0Q)

using Lemma 4. This tends to 0 provided that Ay is L' secrecy-good and

V(Al)Q/n
2
7Q

fJQ XQ _X_u)fal(x_}’)
re  foo(AM1 —x—u)V(Ay)

X — fa,(xQ —u — y)‘ dufs, (y)dy

< 2e. 27
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With the change of variables y' =y — X + u, the term (26) can be rewritten as

> / Rt NMiygvannfe, ¥y +xo —u)dy'du

Xg €A
>/ / ¥')fa, (¥ +xq — u)dy'du
xq€A, Y R(A1) "\V(Az

= / fo.(y) / fo,.0, (¥ —u)dudy’
R™\V(Az) R(A1)

© / fo.(y))dy'
R\V(Az)

where (b) follows from the fact that fR( LN (y/ —u)du = 1. This tends to 0 provided that Ay is AWGN-good
and

T > 2re. (28)

D. Uniformity

We want to show that the key is asymptotically uniform when n — oo. First, we want to bound the L' distance
between Px, and the uniform distribution over A;/A3. Given x € R”, X € A1/A3, we have

fo (5( +A3—x—u)
Prou Xl w) = Y prgxeu(Xo +Aslxou) = S 17 -

(29)
As€A;3 As€A; fUQ (A1 —x —u)

Then

Px, (X0) / / Dx|xn,u (Xqlx, u)

Using the previous expression, we find

>

fch XQ+)\3_X_ )fox(x)
/\;\ / re  foo(A1 —x—u)V(Ay) b

PR, (XQ) — “;Et;

prQ — U, /A,

Q€M /As
(XKoo + A —x—u)f,
RQEA /As R(A1) AscAs 7 R? fUQ(Al —X— u)V( ) V(Ag)
o A3 —
/ Z fQ XQ+ A3 —x— u) dxdu Z/ f5. XQ+)\3—u)du 30)
XQeA /A3 ) Asehs IR" foo(M =x =)V (A Ao, I R(AY)
V(A
+ Z / Z f5.(Xg + A3 —u)du — (A1) 31
V(As)
Q€M /As ) \s€hs

where (a) follows from the triangle inequality, and 2 = o2 + aé. The term (30) is upper bounded by

foo(XQ+ A3 —x —u)f,, (%)
> Y [

%oEAL /A3 Aa€As re Joo(A1 —x—u)V(A1)

<y / Joo(Xq —x—u)f5,(x)

dx — f5, (xg —u
2ot i Ve T = —wvag B

dx — f5,(Xg + A3 —u)|du

du < 6}\1 (0g)
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~ o - 1 V(A1)
Jo..05(%q —u)du /72(/\1) V(Al)duV(As)

2.

by Lemma 4. This vanishes as 0( ) if Ay is L' secrecy-good and the condition (27) is satisfied.
XQ€A1 /A3

The term (31) is equal to
/R(Al)
< 2

%€M, JAg ¢ R

Setting v = X — u mod R(As3), and recalling that R(A3) = Us,ea,nr(as) (K@ + R(A1)] mod R(A3)) by (4),
where the union is disjoint, the last expression is equal to

/R(Aa)
~2

where 5 = 03 + O'Q <o+ O'Q = G2. Thus, the term (31) vanishes as 0( ) if both A; and A3 are L'-secrecy
good and satisfy the volume conditions (27) and

du.

1
fo..0(XQ —u) — V(hs)

dv = e}, (62) < €y, (62)

1
f&m,As (V) - m

< 2me. (32)

We now show that the distribution of the key is close to the uniform distribution Uy over K = Ag/As:

_ VA)|
V(pK,u’C) - l;C pK(k) V(A3) - l;C sEAzl/AszQ " k SEA1 /A V )
V(A1) V(A
ke’C SEAl/Az )_CQEAl/Ag

which vanishes as o (%) as shown previously. Using [54, Lemma 2.7], we have that if V(pk,Ux) < %,

V(pk, U onhix
() — HU)| < Vo, the) o 1) = Vit o

K,Z/IIC)
=nRkV(pk,Ux) — V(pk,Ux) log V(pk, U).

This vanishes as long as V(pk,Ux) ~ o (L), which is indeed the case.

n

E. Strong secrecy

Using [29, Lemma 1], we can bound the leakage as follows:

I(K;S,Z",U) = I(K; S, Z", U) < day log gq, (33)

av

where

day = ZPK(k)V(psanK:k’pSZ"U)

kex
Py (2)
< pk (k / Psznuiker (5> Z, ulk) — dz du (34)
,;C seAz;A R(A1) JR7 | V(Asg)

Pz.(2) dz du (35)

+ZPK /R(A)/L

kek sEA;/As

Py (s, z,u)
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by the triangle inequality.
Due to Remark 5, we can write

pSZ"UK(S’ z,Uu, k) . DPin (Z) pXQ|Z",U(k + $’Z, u)

Pszuujk—k (82, ulk) = (k) V(M) px (k)
__pp(m) s+ \glz,u
V(A1)pk (K )A;\ Pxq(zn,u u(k+ s+ Aslz, ),

and so the term (34) is equal to

pXQ|2n7U(k +s+Aslz,u) (k)

> [ L - P8 da
Zn
ke seA, /A, Y R(A1) JR? Xs eA V(A1) V(A2)
Dy 19n y(k+ s+ Aslz,u)
<Z Z / / Py (z Xal2",V - Z fo,(k+s+ X3 —u—2z)|dzdu (36)
kek R(A1) JR™ V(A1)
SEA /Ag AgGA A3€A3
px (k)
+ 50 (2 sk+s+A3—u—1z)— dzdu, 37
P Lo, /sz @] X St s—u—z) - 20 G7)

where 53 = o3 + 0?2' Recalling that

Joo(x@ —x —u)
pr|2n U(XQ‘Z, u) = / pXQ\X",U(XQ’X7 u)an|2n (x[z)dx = 7a
’ R R faQ(

the term (36) can be upper bounded by

/pz Z/ Z Z Z fan+s+)\3—X— u)

) keK seAy /Ay As€As |/ R” V(A1) foo (A1 —x —u)

/n / Z /n Joo(Xg —x —u) fon (% — 2)dx — fo(x0 — 1 —2)

x A Al fO’Q(Al_X_ )

fo,(x —2z)dx — f5,(k+ s+ A3 —u—2z)|dudz

dudz < €y, (0q)

by Lemma 4. This vanishes as o (%) assuming the condition (27).
On the other hand, by the triangle inequality the term (37) can be bounded by

1
Do ( fo,(k+s+A3—u—12z)— dzdu 38)
kE,CSeA A /R(A / z /\326;\3 V(A3)
(k)
PP / / Pz (2 A3) V(M) dadu =

ke seAi/As

Setting v = k + s — u mod R(A3) and using the property (4), the term (38) can be written as

/n Py.(2) /72(/\3)

which vanishes as o (1) assuming the condition (32). Finally, (39) is equal to

V(AQ) Z 1 Z ‘UIC pK V(Ulc,pK) =0 (;) —0

kek V(As) kek

dvdz = e} (52),

f5271\3 (V - Z) -

1
V(As)
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as already shown in Section III-D.
We now come back to the expression (35), which is equal to

pZn

Z / / — Pszay (8,2, 1) dzdu
SEAL /A, "
/ / pz" 3" S by @ (K + 5+ Ay — u—z)| dzdu (40)
sy /A Y R(A) k'€K As€As

dzdu 41)

+Z/ e

sENL /A

Z sz z)fs, (K +s+X3—u—2z)— pszu(szu)

k'€l Az€As

by the triangle inequality.
The term (40) is upper bounded by

for X %]
R" R(A1)

sEA, /A k'ek

Z/pzn()/n(‘)

and vanishes as o ( ) if condition (32) is satisfied.
Observe that

Pezny(s,2,0) = Z Pokzny (s, k' z,u) = Z ]‘)/Z("/i ipXle u(s +K|z,u)

k'ek k'ek
e P2 () Fogls K s — x — W) fo(x — 2)
= Z ‘/Z(Al) Z px |Z U(S“‘k‘ +>\3|Z ll) Z ‘/Z(Al) Z fa—Q<A1—X—U)

k'ek As€A k'ek AseAg 7 R”

dudz

— foops (K +5—u—1z)

dv dz = 611\3 (62)

f0'27A3( )

V(A3)

dx.

Thus the term (41) can be bounded by

|RZCI VDM

(A1) jreK seAy JAs As€As

ol

XQ €Ny

foo(s+K +A3—x—1)f,,(x—2)
e V(A1) foo (A1 —x—1)

fO'Q(XQ —X—U)fg2(X—Z)
R V(A1) foo (A —x—u)

Jo, (K +s+X3—u—2z) — dx|dudz

dx

fos(xg —u—12z) — dudz < e}\l(aQ)

by Lemma 4, which again vanishes as o (}L) under condition (27).

In conclusion, d,, ~ o ( ) and thus from (33), we find that the leakage vanishes asymptotically as n — co.
Remark 6: Although in Section III-D we only showed that the key is close to uniform on average over the dither

U, using the results in this section we see that

H(Uk) — H(K|U) = H(Ux) — H(K) + I(K; U) < H(Ux) — H(K) + I(K;S,Z",U) — 0.

F. Achievable strong secrecy rate and optimal trade-off

Recall that in the previous sections we have imposed the conditions (27), (28) and (32) on the volumes of A,
Ao and Ag respectively, i.e.
V(A{)2/m V(A5)2/m V(A2)2/m
# < 2we, % > 27e, %
O'Q 0'1 0'2

< 2re.

Therefore, the achievable secret key rate is upper bounded by

1. V(As) 1. &2 1, o5+0p
Rg = —1 < -—log -2 = -1
k=570 V(Ay) 2 8 52 2 ©8 a%—}—aé

(42)
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As o Q — 0,
Rg — ! 1 %
— O ——
K 2 g O’% )
which is the optimal secret key rate. This improves upon our previous work [1] in which the achievable secrecy
rate had a 1/2 nat gap compared to the optimal.
Remark 7: The optimal scaling of the lattice Ag requires the noise variance oo to be known by Alice; if only a
lower bound for o9 is available, positive secret key rates can still be attained.
The public communication rate is lower bounded by
V(Ay) 1, oi+0f

V(A) 2% o

1
Rp = —log
n

2
gy

Equivalently, we have aé > —mp—7- Replacing this expression in the bound (42) for R, and observing that (42)
is a decreasing function of aé, we find

1 —2R U% —2R
R < Zlog e ™™+ S (1—e77") ).
2 o7

which corresponds to the optimal public rate / secret key rate trade-off (18).

IV. CONCLUSIONS AND PERSPECTIVES

To conclude, we have proposed a new lattice-based technique to extract a secret key from correlated Gaussian
sources against an eavesdropper. Using L' distance and KL divergence, we have proved the existence of lattices
with a vanishing flatness factor for all VNRs up to 2mwe. This improves upon the previous result for VNRs up
to 27, based on L distance. Together with dithering and randomized rounding, it has enabled us to achieve the
optimal trade-off with one-way public communication. In the same way, it is possible to remove the %—nat gap to
the secrecy capacity of wiretap channels [35] associated to the use of the L* flatness factor [39, p. 1656].

An immediate step for future work is to turn the existence result of this paper into a practical scheme. There
are avenues for replacing random nested lattices for Wyner-Ziv coding with lower-complexity techniques, such as
superposition coding or residual quantization [55, 56]. However such techniques do not address privacy amplification.
In order to implement the approach proposed in this paper based on the notion of flatness factor of a lattice, a
promising option is to instantiate the lattices using polar codes (aka polar lattices), which have been shown to be
good for quantization, channel coding [57] and secrecy. A polar lattice has been constructed in [39] to achieve
the secrecy capacity of Gaussian wiretap channels. It can be shown that the secrecy-good lattice in [39] enjoys
a vanishing L' flatness factor. Since the encoding and decoding complexity of a polar lattice is quasi-linear in
blocklength n, it is an excellent candidate to build a practical scheme for secret key generation. It is also possible
to implement the randomized rounding algorithm over a polar lattice.

Another problem is to see if it is possible to modify the design of this paper to yield a fuzzy extractor, which would
require redesigning a lattice with respect to other entropy measures. Other open problems include identifying whether
is is possible to remove dithering and/or randomized quantization, characterizing the second-order asymptotics and
the extension of the proposed key-agreement protocol to multi-terminal systems. Furthermore, the reconciliation
technique based on Wyner-Ziv coding may be extended to key-encapsulation mechanisms (KEM) in lattice-based
cryptography, due to the similarity between KEM and secret key agreement. Finally, it is interesting to explore the
applications of L' and KL smoothing parameters in other cryptographic and mathematical problems [37, 38].
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APPENDIX A
RESOLVABILITY CODES

In this section we review some results from [36] about resolvability codes for regular channels, which are needed
for the proof of Theorem 1.

First, we need some preliminary definitions. In the following, we assume X is a finite abelian group and ) is a
measurable space. Given a channel W : X — ), we use the notation W, (y) = W (y|x) for x € X,y € ).

Definition 7 (Rényi Entropy): Given a discrete distribution pa on A and p > 0, we define

1
Hyyp(A) = —1og 3 pala)*”.
P acA

Definition 8: Given a channel W : X — ) and a probability distribution px on X, we define Vp > 0

VoW, p0) = o - pxle) | Walw) POV o px) )y,
reX y

This function has the following properties:

¢(0‘W7p>() = 07 (43)
Yp|W™, ™) = np(p|W, px), (44)

i LPWoPX) I(X;Y). (45)
p—0 P

We also compute the second derivative in 0 which will be needed in the next section.

Lemma 5:

W) ) LAOTIPRY
" z\Y z\Y
V0= Lo [ weto) (105 e ) <§px($) [ wetos opx)<y)dy>
The proof of Lemma 5 can be found in Appendix F.

Definition 9 (Regular channel): The channel W : X — Y is called regular if X acts on ) by permutations
{7z }zex such that 7, (7, (y)) = Teta (y) Va,2’ € X, and there exists a probability density py on ) such that
Wa(y) = py(ma(y)) Vo € X, Vy € V.

In particular, a regular channel is symmetric [58, 59] in the sense of Gallager [60], and its capacity is achieved
by the uniform distribution.

The following theorem was stated for discrete memoryless channels [36, Corollary 18] but can be extended to
continuous outputs [36, Appendix D] as follows:

Theorem 3: Let M and X be a finite-dimensional vector spaces over I, and ) a measurable space. Consider
a uniform random variable F taking values over the set of linear mappings f : M — X and a distribution py on
M. If W : X — Y is regular, then Vp € (0, 1],

Er epD(WoFopMHWoux)} <1 4 e PHi+o(M) (W)

Theorem 3 is a one-shot result, but we can apply it to n uses of an i.i.d. channel to get the following.

Corollary 1: Let X' be a finite-dimensional vector space over I, and ) a measurable space, and W : X — )
a regular channel. Let R > I(X;Y), where X ~ Uy and Y ~ W o Uy. Consider C,, C X™ chosen uniformly at
random in the set of (n, k) linear codes in X", where k = ngR;.
codewords in C,,. Then

Denote by Uc, the uniform distribution over the

Ec,[D(W" oUc, [[W" oUY™)] — 0

exponentially fast as n — oc.
Proof: Note that W™ : X™ — )" is still a regular channel with respect to the set of permutations {7x }xcxn,
where we define mx(y1,...,yn) = (72, (Y1), .-+, Tz, (Yn)) for x = (21,...,2p).
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[nR]
logp

Applying Theorem 3 to this channel, and taking M = ]F’; with k£ =
random linear encoder f, : M — X" we have

Ee ePD(W"anouM||W"ou;?">} <1 e PHiro (M) g (pW" UZ™)

and py = Uy, for F,, representing a

By Jensen’s inequality,
Er [D(W™ 0 Fp o Upgl [V 0 UE™)] < < log (1+ P S22 ) < L o M)+ (oW U™
n - p - p
Note that H;4,(M) = nR since M is uniform. Using (44), we find that Vp € (0, 1],

Er, [D(W" o Fy 0 Un||W" o US™)] < ;e”@Rw(P'Wv“X”. (46)

From (43) and (45), we have ¢(p|W,px) = pI(X;Y) + n(p), where lim, o ) — 0. Given R > I(X;Y), 3p

Y o
sufficiently small such that 6 = R — I(X;Y) — @ > 0. Therefore

Ee, [D(W™ o Fy o Upg|[W" 0 UT™)] < =™ =0 (47)

n

=

as n — oo. O

APPENDIX B
MODULO LATTICE CHANNELS AND THE KL FLATNESS FACTOR

In this section, we review some properties of modulo lattice channels and introduce another notion of flatness
factor based on the KL divergence, which will be used in the proof of Theorem 1.

A. The mod-A channel and the mod-A/\' channel

Following Forney et al. [58], given a fundamental region R(A) of a lattice A we can define the mod-A channel
with input X" € R(A) and output
Y" = [X" +W"] mod R(A),

where W” is a noise vector. When W" is i.i.d. Gaussian with variance o2, this channel has capacity
C(A,0%) =log V(A) = h(fon)-

In the above expression, with slight abuse of notation we denote by h(f, ) the differential entropy of JoR(A)s
which does not depend on the choice of the region R(A).

The following result [57, Lemma 1] relates the L flatness factor to the capacity of the mod-A channel.

Lemma 6: The capacity C(A, ?) of the mod-A channel is bounded by C(A, 0?) < log(1 + ex(0)) < ea(o).

Given two nested lattices A’ C A and a fundamental region R(A’), we can define the mod-A/A’ channel with
discrete input X € ANR(A’) and output

Y™ = [X" + W"] mod R(A).
It was shown in [58] that this channel has capacity
C(A/N,0?) =log |A/A| + h(frn) — h(fonr).
In particular, the following relation holds:
C(A/N,0%) = C(N,0?) — C(A, 2. (48)

Lemma 7: For any o > 0,

1
C(A/A/702) =D <f0',R(A')H|A/A,|fU,A|’R(A/)> .
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Proof: By definition,

1 B Jon (y) A/
D (fa,R(A’)HWMfU,AR(A/)> = /R(A/) Jon(y)log Wdy
- / / A/
= —hhan)+ | o fo ) log vy

= hlfoa) 1o [A/N] = [ foely)log foa()dy.

The conclusion follows by observing that

- / Fonr(y) 108 fon (y)dy = — / Fore (¥)108 for (y)dy
R(A) R(A)+A

AEA/A/

-— > /R " fon(y = A)log fon(y)dy = — /R " foa(y)10g fon(y)dy = h(fon)- O

AEA/N

B. The KL flatness factor

We can now introduce a notion of flatness factor based on KL divergence.
Definition 10: Given a lattice A, a fundamental region R(A) and o > 0, we define the KL flatness factor as
follows:

enL(0) = D(frr)lUr))- (49)

Note that as before, the definition does not depend on the choice of the fundamental region.
Remark 8: By Pinsker’s inequality, Vo > 0,

ep(0) < /255 (o).
Remark 9 (Relation to the capacity of the mod-A channel): Note that [39, p.1656]
D(forn)Ur(ay) =10g V(A) = h(fsa) = C(A, 0?).

By shift-invariance of the differential entropy, the KL flatness factor is also shift-invariant, i.e.

Ef\(L (U) = D(fU,A,c‘R(A) | ‘U’R(A))
for all c € R™.
Thanks to Remark 9, we are able to prove that the KL flatness factor is monotonic:
Lemma 8: For any lattice A, Vo' > o, k(") < lL(0).
Proof: With the same notation as in the proof of Lemma 2, from the data processing inequality for the KL
divergence [54, Lemma 3.11] we have

v <m> =D ({ rrzagren ey ) = DY [IU) < DKUY = D(fan Ura) = k(o). 1

Similarly to Definition 4, we can introduce a notion of secrecy goodness based on the KL flatness factor.
Definition 11: A sequence of lattices {A(™} is KL secrecy-good if efl(o)=0(L).

By Remark 8, a sequence of KL secrecy-good lattices is also L' secrecy-good.

C. Extracting the intrinsic randomness of additive Gaussian channels with a modulo lattice operation

In this section, we show that under the assumption of a small KL flatness factor, the modulo lattice operation
allows to extract the intrinsic randomness of the additive Gaussian channel (in the sense of [30]). For simplicity,
we only focus on privacy amplification and we assume that Alice and Bob observe the same i.i.d. Gaussian random
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X" (RANDOMNESS | X" (Y zn
- [N
ALICE EXTRACTOR '\ pxz | EVE

Fig. 4. Intrinsic randomness extractor.

variable X" = Y™ of variance o2 per dimension. Eve observes a correlated i.i.d. random variable Z". We assume
that X" and Z" are jointly Gaussian, according to the model
X" =27Z"+W", (50)

where W" is an i.i.d. zero-mean Gaussian random vector of variance o2 per dimension, and is independent of Z".

Our aim is to extract from X" a random variable that is almost uniform on R(A) and almost independent of Z"
(cf. Fig. 4). More precisely, we give the following definition.

Definition 12 (Continuous lattice extractor for channel intrinsic randomness under a KL divergence criterion):
Given the model (50) and ¢ > 0, an e-lattice extractor with lattice A for channel intrinsic randomness (under a KL
divergence criterion) is a device that takes X" as input and outputs X™ € R(A) such that D(pg.||Ur(s)) < € and
I(X":Z") = D(pz.. lpzope) < =

We will show that if A is a lattice in R™ such that e{Z(0) = ¢, and R(A) is a fundamental region of A, then
X" = X" mod R(A) satisfies Definition 12. Recall that

Pxn(X) = fo, AR) LR (2)(X).
The conditional density of X" given Z" is

) 1 _lx+a—z)?
Pnjzn (X]2) = > Pxrize(X[2) = ) pxojze (x[2) Zme o

x: X=x mod R(A) XEX+A A€A
= for(X = 2)Ign)(X) = forz(X)1ra) (%)
By monotonicity of the KL flatness factor (Lemma 8), D(pg.
h()‘(n) = h(fo'myA)7
h(X"Z" = 2) = / Pxnjzn (X[2) 108 pin 20 (X|2)dx = / fon(x —z)log fo (X — z)dx
R(A) R(A)

() = exnt(oz) < e F(0), and moreover

= —/ foa(X)log fon(X)dx = h(fsA)
R(A)—z
since f, A is A-periodic and R(A) — z is a fundamental region of A. We can now bound the mutual information
as follows:
I(X";Z") = h(X™) — h(X"|Z")
—hlfr) = [ 2 @h(KIZ" = 2)dz = h(fr.0) = ()
=1og V(A) = h(fs,0) — (log V(A) = h(fo,0)) = e "(0) — ex (o) < X (o).
The differential entropy of X" is lower bounded by
h(X") = 0(fo,,n) = 10g V(A) = ex " (00) = hUr(n)) — €4 " (02) = BUr(r)) — €1 (o)
since, by monotonicity of the KL flatness factor, e{Z(0,) < €K% (o).
Remark 10: Taking a sequence of KL secrecy-good lattices {A(™} such that Yy (0) — 27e and L (0) — 0
as n — oo, the asymptotic differential entropy rate of X" is
1. 1 1
r = liminf —A(X") = liminf —log V(A) = 3 log 2meo?,

n—oo N n—oo N

which is equal to the asymptotic differential entropy rate of the Gaussian noise W". Thus, the modulo lattice
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operation can asymptotically extract the intrinsic randomness of the channel.

Remark 11: It is worth mentioning that our continuous lattice extractor scheme does not require dithering.
Moreover, since the flatness factor ef\(L only depends on f, A which is periodic mod A, we can choose any
fundamental region R(A).

Remark 12: We note that if we replace the KL flatness factor condition eXL (o) = ¢ with the L! flatness factor

condition €} () = &, one can easily show that V(pgn,Ur(n)) < € and V(pz.xgn, pznPxn) < 2¢, but on the other
hand we cannot guarantee that the differential entropy h(X") is close to h(Up(n)). In fact, for general continuous
distributions, convergence in variational distance does not necessarily imply convergence in differential entropy
[61]".
Finally, we note that since the L' flatness factor and KL flatness factor are average conditions, we can’t obtain a
discrete key from X" simply by quantizing it with respect to a fine lattice A; O A. In order to obtain good discrete
keys, one can combine the modulo lattice operation with uniform dithering over a fundamental region R(A;), as
shown in Section III.

APPENDIX C
PROOF OF THEOREM 1

In order to prove Theorem 1, we will actually show a stronger result:

Proposition 2: If y5(c) < 2me is fixed, then there exists a sequence {A(™} of lattices which are KL secrecy-good.
Theorem 1 then follows from Proposition 2 by Remark 8.

Before proceeding with the proof, we summarize the main idea here. We use the standard Construction A to find
the sought-after lattice A, by choosing a coarse lattice A. = apZ, a fine lattice Ay = aZ, an (n, k) linear code C
over IF,, and A7 C A =a(pZ™+C) C A’}. Using the chain rule (48), we have

D(fR(A),UHuR(A)) = C(Av 02) = C( ;”La 02) + C(A?/Av 02)'

Now, using a sufficiently fine lattice Ay, we can easily make C( s 02) — 0 thanks to the flatness phenomenon
(cf. Lemma 6). The non-trivial part of the proof is to exhibit a lattice A such that C'(A/A, 0?) — 0 as well. It
turns out that if the linear code C is a resolvability code for the mod-Ay/A. channel W, i.e. if the output of the
code is close to the output of uniform input, then C provides the desired solution. In fact, we show that

D(W™ oUe|[W™ oUin,jn.)n) = C(A;/A,(;?),

which tends to 0 if C is a resolvability code. The existence of such linear resolvability codes follows from the
results of [36] (see Appendix A). However, making the above argument rigorous involve certain technicalities, as
seen in the following.
Proof of Proposition 2:

For a given dimension n, we will construct A as a scaled mod-p lattice [63] of the form A = a(pZ™ + C,),
where C,, is an (n, k)-linear code over F,,.

We will consider the asymptotic behavior as n — oo, a — 0,p — oo while satisfying the volume condition
a™p" % = V(A) = (y0?)"/2. Here, 7 is the volume-to-noise ratio, which is assumed to be fixed.

By construction, A7 C A C A%, where Ac = apZ and Ay = oZ are one-dimensional lattices.

From Remark 9 and the relation (48), we have

D(fU,R(A)HuR(A)) = C(Av 02) = C( }La 02) + C( 7J"L/A> 02)'

We want to show that both terms in the sum tend to zero when n — oo.

1) First, we will show that C(A},0%) = C((aZ)",0%) = 0 if a = o (5-) for some ¢ > 0. We follow the same
approach as in [57, Appendix A]. From Lemma 6 we have that C'(A%, 0?) < €ar (o). Furthermore, it was
shown in [64, Lemma 3] that

GA?(U) = (14 e, (o))" — 1. (51)

"More precisely, [61, Definition 3] identifies a class of probability distributions for which convergence in total variation leads to convergence
in entropy. One of the requirements is that the densities should be bounded, which is not guaranteed under an L' flatness factor criterion.
See also the discussion in [62].
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Finally, one can show that [57, Appendix A]

2n252

er,(0) = €az(0) < de” o7, (52)
Then

27252 27252 27252

n o
eny(0) < (1+4e755) —1 < dne™ ™5 4 o(e5) -0,

since (14 z)" =1+ nx + o(x) when x — 0.

Next, we want to show that there exists a sequence of lattices A of the form a(pZ™ + C,) such that
C(A}/A, 02) — 0 as n — oo.

Consider the mod-(As/A.) channel W : Ay N R(A.) — R(A.). This channel is regular (see Definition 9 in
Appendix A) with respect to the set of permutations 7, (y) = [y — x] mod A, for z € X = Ay NR(A.),
y € R(Ac). In fact,

Wa(y) = W(ylz) = for.(y — ) = for.([y — ] mod Ac) = foa, (72(y))-

Being regular, the mod A /A, channel is symmetric and the uniform distribution over X" achieves capacity (see
Appendix A). Moreover, A¢/A. = [F,, as abelian groups. We consider the required rate condition in Corollary
1:

NN

a’p

V(A)

1 1 1
R = —log ICn| = —log |A/A"| = —log > 1(X;Y) = C(Ap/Ae, 0%). (53)

We have

C(Af/AC7U2) = log ’Af/AC‘ + h(fU,Af) - h(fa,/\c) = logp + h(fU,Af) - h(fa,AC)
= Ing + IOga - C(Afa 02) - h(fcr,Ac)'

Therefore, the condition (53) is equivalent to
1
“log V(A) < hlfon.) +C(Ay, o).

In the asymptotic limit for v — 0, p — oo while keeping ap" ¥ = V(A) = (y02)"/2, we have C(A;, 0?) —
0. Moreover, ap — oo, and so h(A.,0?) — %log 2mec?. So asymptotically, the rate condition is satisfied
when

V( A)2 /n

— <L (54)

2meo
In this case we have

2rec? 1 2me

V(A)2/m ) 8 YA (o)

1 1
R—=I(X;Y) = ——logV(A) + C(As,0%) = h(frn.) — 60 = 5 log >0 (55

as n — oo.

Remark 13: Note that we cannot directly apply Corollary 1 in Appendix A to this setting, since the definition
of the channel W depends on o and p which are not fixed but are a function of n. However, we will show
that the proof of the Corollary can be extended to this channel since the convergence in (47) is uniform.
Proof of Remark 13: Let X be a uniformly distributed variable on Ay NR(A.) and Y the corresponding output
distribution. Consider the function 1(p) = ¢(p|W,Ux) in Definition 8. From (43) and (45), it follows that its
Taylor expansion in 0 is given by

P(p) = pI(X;Y) + p*"(0) + o(p?), (56)

where ¢ (0) is given in Lemma 5. Noting that

1 1 1
(Wolx)(y) = Z me(y) = Z mfo,Ac(y —x)= mfa,zxf(y),
zEX TEAFNR(AL)
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we find

2
" o g o faA( )
WO)‘xeA% |Af/A|/ fon(8 )(lglAf/Angm) W

2

- —xo—fUA( z)
2 rAf/A|/ Joaly =)o p ™

z€ANR(A
2
faA.(y_x)
xeA;Q |Af/A| |Af}AC\fUaAf(y)

2
fO’A( ) /

= o.\. l 1 s N d
/R(Ac)f,A('( )<Og |Af/A‘fO'Af( )) Y

with the change of variables 3’ = y —x mod R(A.). From the definition of flatness factor and the bound (52),
we find that Yy’ € R(A.),

1 —ep,(0) o 1 —4e o
V(Af) B o

Recalling the definition of the theta series of a lattice in (6) and the relation (8), we have e (0) = O« (2m0?) —
1, where A* is the dual lattice of A. Then by [35, Remark 1], Vy' € V(A,)

1 1 1 1
. / < o 0 = @ < ) — (1 =+ ep <>) .
f A (y) </ 7Ac( ) \/%0 A, DY) \/%U A; 2o
Again using the bound (52), we have

1 1 <4 _a2p?
EA* —_— — €1 —_— e 202 ,
Az 2mo W\ 210 ) —

Then, since @ — 0 and ap — oo when n — oo, for sufficiently large n we have

fa,Af (y/) >

a2p2

Joun (V) < 1 ap(l+4e =7)
mfg’/\f( N T N2m0 1 4o F

for some constant C' > 0. Consequently, for large enough n, 3C’ > 0 such that
1"(0) < C'(log ap)®.
Then, from the Taylor expansion (56) we obtain the bound
b(p) < pLXY) + p*C" (log ap)?

for another suitable constant C” > 0. In particular, we can bound the exponent in equation (46) as follows:

< Cap

1)
PR —(plW,Uzx) = p(R—1(X;Y) = pC"(log ap)*) > p7)

for sufficiently large n, where dg is defined in (55), as long as p = o (W) and the VNR condition (54)
is satisfied. In particular if we choose the scaling®

p=¢&n®?  ap=2yn, (57)

where ¢ is the smallest number in the interval [1, 2) such that p is prime [65, Section IV], we have convergence

8This choice of scaling is compatible with the existence of a suitable sequence of nested lattices, see Appendix D.
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in (47) with p = W for some 7 > 0 since

1 5% oy ———00

—e "% = (log 2y/n)" e 200e2vmF 1 — (),
This concludes the proof of Remark 13. O O
Then according to Corollary 1, for C,, chosen uniformly in the set of (n,k) linear codes over F, of rate
R= %log D,

1
Ec, [D(W" ole, [W" oUS™)] < —e ™% -0

as n — oc. In particular, there exists at least one code C,, such that D(W" oUe, ||[W" o US™) — 0. Note that

W"olle)¥) = 3 fonely —00) = 3 3 Zfoly—ae =)= = 3 foly —3)
ceC, n

cEC, A EAT AeA
1
= ﬁfa,A(Y)a (58)
1 1
(W"oUg™(y) = >, ﬁfa,AZ? (y —x) = ﬁfcf,A}‘ (y)- (59)

xEATNR(AT)

Since both (W™ olUc, ) and (W™ o US™) are A-periodic, we can write

D(W™ o U,

—k
W"olUy") = / b fraly) log L2 gy

R(A™) P " fonn(y)

_ fJ,A (Y) . —(n—k) B . )
— /R(A) Jon(y)log PO fyp (y)dy = D(for)llP Jonyieay) = C(A}/A,0?) =0

using Lemma 7. This concludes the proof.
U]
Remark 14: With a standard argument based on Markov’s inequality, we can also show that the set of KL-secrecy
good lattices has large measure, since V¢ > 0,

1
P{D(W" ol [[W" o U™) > £} < e [DW™ o Ue, W™ oUZ™)] -
Given 0 < ¢ < 1/2, we can take £ = %e_ﬂ;so and we obtain

P{D(W" olUc, |[W" o U™) > ¢} < c.

APPENDIX D
EXISTENCE OF A SEQUENCE OF NESTED LATTICES FOR SECRET KEY GENERATION

In this section, we show the existence of a sequence of nested lattices Aén) C Aé"’ - A§”) such that Az is KL
secrecy-good, Ay is AWGN-good and A; is KL secrecy-good. Note that we don’t need covering-goodness, which
requires more stringent conditions on the parameters [66].

We will follow the construction in [65]. We denote by V3, the volume of the n-dimensional ball of radius 1.
Given P3 > P, > P, > 0, let a; = log P% for + = 1,2, 3. We consider the dimensions k3 < ko < ki < n defined
as follows:

log +a; ||, i=1,2,3,

2/n
2logp VB,n
where p = &n3/2, and € is taken to be the smallest number in the interval [1,2) such that p is prime [65, Section
IV]’. Let C; be uniformly sampled from the set of all linear (n,k;) codes over F,,, with generator matrix G (in
column notation). We denote by GGo and ('3 the submatrices of Gy corresponding to the first k5 and k3 columns

Note that the conclusions of [65] still hold for any p = G(n%“s) with § > 0, see Remark 7 in that paper.
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respectively, and by Co, C3 the corresponding linear codes. Finally, we define the lattices A = %CZ' + Z" and
A; = ap]&i for i = 1,2, 3, where o = %. Then by [65, Theorem 1 and Theorem 6], the matrices G1, G2, G3
are full rank and the nested lattices Agn) C Ag") - AY‘) obtained in this way are good for quantization and coding
with probability that tends to 1 when n — co and

lim V(A" = 2rep;, i=1,2,3.

n—oo

Note that we have taken the same scaling as in (57). In particular, when n — oo we have p — oo, @« — 0 and
ap — 0.

Moreover, o« = 5% satisfies the condition @ = o( ) in Appendix C. Therefore, due to Remark 14 the lattices
Ag and A; are also KL secrecy-good with probability close to 1, which concludes the proof.

APPENDIX E
OPTIMAL PUBLIC RATE / SECRET KEY RATE TRADE-OFF

In this section, we derive the optimal trade-off between public rate and secret key rate from [23] for the setting in
our paper. Note that Theorem 4 in [23] doesn’t directly apply to our model because our source doesn’t necessarily
satisfy X — Y — Z. However, the proof of Lemma 6 in [23] shows how to obtain a new source (X, Y, Z) which is
degraded (X — Y — Z) and has the same achievable region (R(X,Y,Z) = R(X,Y,Z)). In particular, translating
the proof into our notation, we can take X = X, Y =Y and
OzPxz

OyPxy

Z=2C2y 4N,

2
where N is independent of all other random variables and has variance o? gl — f}%).
Ty

Tz

From elementary computations we see that 0z = 0., pgz = pz. and pyz Fe
In our notation, the optimal trade-off given by Theorem 4 of [23] is given by

Ri < 1log (1- pgg)(l — p2:) = (pag — pyapaz)’e 1"

-2 (1= p3=)(1 = p2z) — (Pag — pyzpaz)*

In terms of the original variables X, Y, Z, after simplifying the expression we obtain the optimal trade-off

1— 02 ) — (02 — 2 )e—2Re
R < Llog (1-pz.) (pgcy2 Pz)
2 1- pa:y
(Recall that p,, > p,- in our setting). Using the notation o = 0(1—p2,), 03 = 02(1 — p3,) from our paper, this
is equal to

Ric < Llog (e-2r 1 T2(1 _ o2 60
K < 5log e +—=51—e ). (60)

01
APPENDIX F
PROOF OF LEMMA 5
The first derivative of the function 1 (p) = ¢¥(p|W, px) is

W (y)'*° W (y)
Y (p) = 2wex PX(@) [y rwepgwmr 18 o @ f(p)
o (y) i+ - :
erXpX fy Wopx))(y)) dy 9(p)

Then we have
g(0) =1,
Wa
= px(x /W ) 1og 737 Wal) g, (o),
zeX Opx)( )

=) px(x) /W <1ogm>2dy.

reX
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