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Abstract
The paper is mostly devoted to applications of a novel optimal control theory for per-
turbed sweeping/Moreau processes to two practical dynamicalmodels. The first model
addresses mobile robot dynamics with obstacles, and the second one concerns control
and optimization of traffic flows. Describing these models as controlled sweeping pro-
cesses with pointwise/hard control and state constraints and applying new necessary
optimality conditions for such systems allowus to develop efficient procedures to solve
naturally formulated optimal control problems for the models under consideration and
completely calculate optimal solutions in particular situations.

Keywords Optimal control · Sweeping process · Variational analysis · Discrete
approximations · Necessary optimality conditions · Robotics · Traffic flows

Mathematics Subject Classification 49K24 · 49J53 · 49M25 · 70B15 · 90B10

1 Introduction

Sweeping process models were introduced by Jean-Jacques Moreau in the 1970s to
describe dynamical processes arising in elastoplasticity and related mechanical areas;
see [1]. Such models were given in the form of discontinuous differential inclusions
governed by the normal cone mappings to nicely moving convex sets. It has been well

B Boris Mordukhovich
boris@math.wayne.edu

Giovanni Colombo
colombo@math.unipd.it

Dao Nguyen
dao.nguyen2@wayne.edu

1 Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, via Trieste 63, 35121
Padova, Italy

2 Department of Mathematics, Wayne State University, Detroit, MI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-019-01521-y&domain=pdf


440 Journal of Optimization Theory and Applications (2019) 182:439–472

realized in the sweeping process theory that theCauchy problem for the basicMoreau’s
sweeping process and its slightly nonconvex extensions admits unique solutions; see,
e.g., [2]. This therefore excludes any possible optimization of sweeping differential
inclusions and strikingly distinguishes them from the well-developed optimal control
theory for their Lipschitzian counterparts. On the other hand, existence and uniqueness
results for sweeping trajectories provide a convenient framework for handling simu-
lation and related issues in various applications to mechanics, hysteresis, economics,
robotics, electronics, etc.; see, e.g., [3–7] among more recent publications with the
references therein.

To the best of our knowledge, first control problems associated with sweeping pro-
cesses and first topics to investigate were related to the existence and relaxation of
optimal solutions to sweeping differential inclusions with controls in additive per-
turbations as developed and discussed in [8]. Starting with [9], serious attention
has been drawn to optimal control problems for sweeping processes with control
actions entering moving sets and deriving necessary optimality conditions in various
state-constrained optimal control problems that appear in this way for discontinuous
sweeping differential inclusions; see [10–14]. Advanced necessary optimality condi-
tion for control systems governed by sweeping processes with constrained controls in
additive perturbations has been recently derived in [15–19].

In this paper, we present new applications of the most recent necessary optimality
conditions obtained in our paper [19] to two classes of practical models. The first
one is taken from the area of robotics, while the second model concerns pedestrian
traffic flows. Dynamics in these models can be formalized as a perturbed sweeping
process. Inserting constrained control actions into a perturbation force and selecting a
practically motivated cost functional allow us to describe the corresponding controlled
dynamical systems in the form of optimal control problems studied in [19]. Then we
apply the necessary optimality condition from [19] to the obtained control problems
and express them entirely in terms of the given data. This brings us to precise relation-
ships for computing optimal solutions in some major situations, which are discussed
in detail and are illustrated by nontrivial examples.

The rest of the paper is organized as follows. In Sect. 2, we recall for the reader’s
convenience the results of [19] needed for our subsequent applications. Section 3 is
devoted to formulating and solving an optimal control version of the mobile robot
model with obstacles that is well recognized in robotics. Section 4 deals with a deter-
ministic continuous-time optimal control version of the pedestrian traffic flow model
that belongs to the area of socioeconomics. The concluding Sect. 5 presents a summary
of the major results and discusses some unsolved problems of the future research.

Throughout the paper, we use standard notations from variational analysis, control
theory, and the applied areas of modeling, which are specified in the corresponding
places below. Recall here that, given a matrix A, the symbol A∗ indicates its transpo-
sition/adjoint operator.
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2 Discretization and Necessary Optimality Conditions for Controlled
Sweeping Processes

In this section, we formulate the general optimal control problem for a perturbed
sweeping process studied in [19] and present some major results of that paper needed
in the sequel.

Denote by (P) the following optimal control problem:

minimize J [x, u] := ϕ
(
x(T )

)
(1)

over pairs (x(·), u(·)) of measurable controls u(t) and absolutely continuous trajecto-
ries x(t) on the fixed-time interval [0, T ] satisfying the controlled sweeping differential
inclusion

ẋ(t) ∈ −N
(
x(t);C) + g

(
x(t), u(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C ⊂ R

n, (2)

subject to the pointwise constraints on control actions

u(t) ∈ U ⊂ R
d a.e. t ∈ [0, T ]. (3)

The set C in (2) is a convex polyhedron given by

C :=
s⋂

j=1

C j with C j := {
x ∈ R

n : 〈x j∗ , x〉 ≤ c j
}
, (4)

and the normal cone to it in (2) is understood in the classical sense of convex analysis

N
(
x;C) := {

v ∈ R
n : 〈v, y − x〉 ≤ 0, y ∈ C

}
if x ∈ C and

N
(
x;C) := ∅ if x /∈ C . (5)

It follows directly from (2) due to the second part of the normal cone definition (5)
that we implicitly have the pointwise state constraints written in the form

〈x j∗ , x(t)〉 ≤ c j for all t ∈ [0, T ] and j = 1, . . . , s. (6)

By a feasible solution to (P), we understand a pair (u(·), x(·)) such that u(·) is
measurable and that x(·) ∈ W 1,2([0, T ],Rn) subject to the constraints in (2), (3), and
hence in (6). Then [8, Theorem 1] implies that the set of feasible solutions to (P) is
nonempty under some assumptions that are much milder than those which are listed
below.

Following [19], we say that a feasible pair (x̄(·), ū(·)) for (P) is aW 1,2 × L2-local
minimizer for this problem if there is ε > 0 such that J [x̄, ū] ≤ J [x, u] for all the
feasible pairs (x(·), u(·)) satisfying

∫ T

0

(∥
∥ẋ(t) − ˙̄x(t)∥∥2 + ‖u(t) − ū(t)‖2

)
dt < ε.
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It is clear that this notion of local minimizers for (P) includes, in the framework of
sweeping control problems, strong C × L2-local minimizers and occupies an inter-
mediate position between the conventional notions of strong and weak minima in
variational problems; cf. [20].

Next we formulate the assumptions on the given data of (P) needed for applications
to the practical models considered below. Note that the presented results taken from
[19] hold under more general assumptions, but we confine ourselves to the case of
smooth functions and convex sets in (P) that correspond to the models under con-
sideration. In the following standing assumptions imposed in the rest of the paper
without mentioning, the pair (x̄(·), ū(·)) stands for the reference feasible solution to
(P), which is a chosen W 1,2 × L2-local minimizer if stated so.

(H1) The control set U is compact and convex in R
d , and the image set g(x,U ) is

convex in Rn .
(H2) The cost function ϕ : Rn → R in (1) is C1-smooth around x̄(T ).
(H3) The perturbation mapping g : Rn × R

d → R
n in (2) is C1-smooth around

(x̄(·), ū(·)) and satisfies the sublinear growth condition

‖g(x, u)‖ ≤ β
(
1 + ‖x‖) for all u ∈ U with some β > 0.

(H4) The vertices x j∗ of (4) satisfy the linear independence constraint qualification

[ ∑

j∈I (x̄)
α j x

j∗ = 0, α j ∈ R

]
�⇒ [

α j = 0 for all j ∈ I (x̄)
}

along the trajectory x̄ = x̄(t) as t ∈ [0, T ], where I (x̄) := { j ∈ {1, . . . , s} :
〈x j∗ , x̄〉 = c j }.

First we present a crucial development of [19] establishing close relationships
between feasible and optimal solutions to problem (P) and those to a sequence of its
discrete approximations. Given any m ∈ IN := {1, 2, . . .}, consider the discrete mesh

Δm := {
0 = t0m < t1m < . . . < t2mm = T

}
with hm := t(k+1)m − tkm

on [0, T ] and the sequence of discrete-time inclusions approximating the controlled
sweeping process (2):

x(k+1)m ∈ xkm + hm
(
g(xkm, ukm) − N (xkm;C)

)
as k = 0, . . . , 2m − 1

and x0m = x0 ∈ C (7)

over discrete pairs (xm, um) = (x0m, x1m, . . . , x2mm, u0m, u1m, . . . , u(2m−1)m) with
the control constraints

um = (
u0m, u1m, . . . , u(2m−1)m

) ∈ U . (8)
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Denote by Ikm := [t(k−1)m, tkm[ for k = 1, . . . , 2m the corresponding subintervals
of [0, T ]. The following theorem is a combination of the results taken from [19,
Theorems 3.1 and 4.2].

Theorem 2.1 (Discrete approximations in sweeping optimal control) Let (x̄(·), ū(·))
be a feasible solution to problem (P) such that x̄(·) ∈ W 1,2([0, T ];Rn) and that
ū(·) is of bounded variation (BV) with a right continuous representative on [0, T ].
Then there exist sequences of unit vectors sequences z jkm → x j∗ , vectors c jkm → c j as
m → ∞, and state-control pairs (x̄m(t), ūm(t)), 0 ≤ t ≤ T , for which we have:

(a) The sequence of controls ūm : [0, T ] → U, which are constant on each interval
Ikm, converges to ū(·) strongly in L2([0, T ];Rd) and pointwise on [0, T ].

(b) The sequence of continuous state mappings x̄m : [0, T ] → R
n, which are affine

on each interval Ikm, converges strongly in W 1,2([0, T ];Rn) to x̄(·), and satisfy
the inclusions

x̄m(tkm) = x̄(tkm) ∈ Ckm for each k = 1, . . . , 2m with x̄m(0) = x0,

where the perturbed polyhedra Ckm are given by

Ckm :=
s⋂

j=1

{
x ∈ R

n : 〈z jkm , x〉 ≤ c jkm
}

for k = 1, . . . , 2m with C0m := C .

(9)
(c) For all t ∈]t(k−1)m, tkm[ and k = 1, . . . , 2m we have the differential inclusions

˙̄xm(t) ∈ −N
(
x̄m(tkm);Ckm

) + g
(
x̄m(tkm), ūm(t)

)
.

If furthermore (x̄(·), ū(·)) is a W 1,2 × L2-local minimizer for problem (P), then for
each m ∈ IN the pair (x̄m(·), ūm(·)) above can be chosen so that its restriction on
the discrete mesh Δm is an optimal solution to the discrete sweeping control problem
(Pm) of minimizing the cost functional

Jm[xm, um] := ϕ
(
xm(T )

) + 1

2

2m−1∑

k=0

∫ t(k+1)m

tkm

(∥∥∥
x(k+1)m − xkm

hm
− ˙̄x(t)

∥
∥∥
2

+∥∥ukm − ū(t)
∥∥2

)
dt

over all the pair (xm, um) satisfying (7), (8), xm(tkm) ∈ Ckm as k = 1, . . . , 2m with
Ckm taken from (9), and the W 1,2 × L2-localization constraint

2m−1∑

k=0

∫ t(k+1)m

tkm

(∥∥∥
x(k+1)m − xkm

hm
− ˙̄x(t)

∥∥∥
2 + ∥∥ukm − ū(t)

∥∥2
)
dt ≤ ε

2
.

Note that the results of [19, Theorems 6.1 and 6.2] contain necessary optimality
conditions for the discrete control problems (Pm) formulated in Theorem 2.1 that are
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not used in this paper.Nevertheless, they are very instrumental, togetherwith the results
of Theorem 2.1 above, to derive necessary optimality conditions for local minimizers
of problem (P), which are strongly employed in what follows. The next theorem
presents these results in the case of the smoothness and convexity assumptions needed
for the subsequent application to the practical models below; see [19, Theorem 7.1] for
more general settings. Let us emphasize that, even in the case of smooth and convex
data, the derivation of the obtained optimality conditions for (P) is strongly based on
the advanced tools of (nonconvex) first-order and second-order variational analysis
and generalized differentiation taken from [21].

Theorem 2.2 (Necessary optimality conditions for controlled sweeping processes)Let
(x̄(·), ū(·)) be a W 1,2 × L2-local minimizer for (P) under the assumptions of The-
orem 2.1. Then there exist a multiplier λ ≥ 0, a measure γ = (γ 1, . . . , γ n) ∈
C∗([0, T ];Rn) as well as adjoint arcs p(·) ∈ W 1,2([0, T ];Rn) and q(·) ∈
BV ([0, T ];Rn) such that (λ, p, q) �= 0 and the following conditions are satisfied:

• Primal velocity representation:

− ˙̄x(t) =
s∑

j=1

η j (t)x j∗ − g
(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ], (10)

where η j (·) ∈ L2([0, T ];R+) being uniquely determined by (10) and well defined
at t = T .

• Adjoint system:

ṗ(t) = −∇x g
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ],

where the dual arcs q(·) and p(·) are precisely connected by the equation

q(t) = p(t) −
∫

]t,T ]
dγ (τ)

that holds for all t ∈ [0, T ] except at most a countable subset.
• Maximization condition:

〈
ψ(t), ū(t)

〉 = max
{〈

ψ(t), u
〉 : u ∈ U

}
with

ψ(t) := ∇ug
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ].

• Complementarity conditions:

〈
x j∗ , x̄(t)

〉
< c j �⇒ η j (t) = 0 and η j (t) > 0 �⇒ 〈

x j∗ , q(t)
〉 = c j

for a.e. t ∈ [0, T ] including t = T and for all j = 1, . . . , s.
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• Right endpoint transversality conditions:

−p(T ) = λ∇ϕ
(
x̄(T )

) +
∑

j∈I (x̄(T ))

η j (T )x j∗ with

∑

j∈I (x̄(T ))

η j (T )x j∗ ∈ N
(
x̄(T );C)

.

• Measure nonatomicity condition: If t ∈ [0, T [ and 〈x j∗ , x̄(t)〉 < c j for all
j = 1, . . . , s, then there is a neighborhood Vt of t in [0, T ] such that γ (V ) = 0
for all the Borel subsets V of Vt .

In the next two sections, we develop applications of the obtained results to two
classes of practical models formulated in the form of the sweeping optimal control
problem (P).

3 ControlledMobile Robot Model with Obstacles

In this section, we formulate and investigate an optimal control version of the mobile
robot model with obstacles which dynamics is described in [5] as a sweeping process.
This model concerns n mobile robots (n ≥ 2) identified with safety disks in the plane
of the same radius R as depicted in Fig. 1.

The goal of each robot is to reach the target by the shortest path during a fixed-time
interval [0, T ] while avoiding the other n− 1 robots that are treated by it as obstacles.

To formalize the model, consider the configuration vector x = (x1, . . . , xn) ∈ R
2n ,

where xi ∈ R
2 is the center of the safety disk i with coordinates (‖xi‖ cos θi , ‖xi‖

sin θi ). This means that the trajectory xi (t) of the i-robot/obstacle admits the repre-

Fig. 1 Mobile robot model with
obstacles

x1
S

OT

x2

θ1(0)

θ1(0)
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sentation

x̄ i (t) = (‖x̄ i (t)‖ cos θi (t), ‖x̄ i (t)‖ sin θi (t)
)
for i = 1, . . . , n,

where the angle θi signifies the corresponding direction. According to the model
dynamics, at the moment of contacting the obstacle (one or more) the robot in question
keeps its velocity and pushes the other robots in contact to go to the target with the
same velocity and then to maintain their constant velocities until reaching either other
obstacles or the end of the process at the final time t = T . In this framework, the
constant direction θi of xi is the smallest positive angle in standard position formed
by the positive x-axis and Oxi ; see Fig. 1, where the origin is the target point.

To ensure the avoidance of collision between the robot and obstacles, we define the
admissible configuration set by imposing the noncollision/nonoverlapping conditions
‖xi − x j‖ ≥ 2R formulated as

Q0 := {
x =

(
x1, . . . , xn

)
∈ R

2n : Di j (x) ≥ 0 whenever i, j ∈ {1, . . . , n}},
(11)

where Di j (x) = ‖xi − x j‖ − 2R is the distance between the safety disks i and j .
Let ∇Di j (x) be the gradient of Di j (x) at x �= 0. In order to efficiently describe

nonoverlapping of the safety disks, define the set of admissible velocities by

Vh(x) := {
v ∈ R

2n : Di j (x)

+ h∇Di j (x)v ≥ 0 for all i, j ∈ {1, . . . , n}, i < j
}
, x ∈ R

2n,

which is closely related to the admissible configuration set (11). Indeed, if the chosen
admissible configuration at time tk ∈ [0, T ] is xk := x(tk) ∈ Q0, then the next
configuration after the period of time h > 0 is xk+1 = x(tk + h). Thus it follows from
the first-order Taylor expansion at xk �= 0 that

Di j
(
x(tk + h)

) = Di j
(
x(tk)

) + h∇Di j
(
x(tk)

)
ẋ(tk) + o(h) for small h > 0. (12)

Taking now the admissible velocity ẋ(tk) ∈ Vh(xk) and ignoring the term o(h) for
small h give us

Di j (xk) + h
〈∇Di j (xk), ẋ(tk)

〉 ≥ 0,

and therefore it follows from (12) that Di j (x(tk + h)) ≥ 0, i.e., x(tk + h) ∈ Q0.
Since all the robots intend to reach the target by the shortest path, their desired

spontaneous (i.e., in the absence of other robots) velocities can be represented as

S(x) = (
S0(x

1), . . . , S0(x
n)

)
with S0(x) = −s0D(x),

where D(x) stands for the distance from the position x = (x1, . . . , xn) ∈ Q0 to the
target, and where the scalar s0 ≥ 0 indicates the speed. Due to x �= 0 and hence by

123



Journal of Optimization Theory and Applications (2019) 182:439–472 447

‖D(x)‖ �= 1, we get s0 = ‖S0(x)‖. Remembering that in the absence of obstacles
the robots tend to keep their desired spontaneous velocities till reaching the target and
taking into account the previous discussions, we describe the velocities by

g
(
x(t)

) := − (
s1 cos θ1, s1 sin θ1, . . . , sn cos θn, sn sin θn

) ∈ R
2n

for all x ∈ Q0, where si denotes the speed of robot i . However, if the robot in question
touches the obstacles in the sense that ‖xi (t) − x1(t)‖ = 2R, its velocity should be
adjusted in order to keep the distance to be at least 2R by using some control actions
in the velocity term. It can be modeled as

g
(
x(t), u(t)

) = (
s1u

1(t) cos θ1(t), s1u
1(t) sin θ1(t), . . . ,

snu
n(t) cos θn(t), snu

n(t) sin θn(t)
)

(13)

with practically motivated control constraints represented by

u(t) = (
u1(t), . . . , un(t)

) ∈ U for a.e. t ∈ [0, T ], (14)

where the control set U ⊂ R
n will be specified below in particular settings.

To avoid overlapping between the robot in question and obstacles, we proceed as
follows. Taking xk ∈ Q0 as the admissible configuration at the time tk and using the
mapping g : R2n × R

n → R
2n from (13) with a given feasible control uk := u(tk)

from (14), the next configuration xk+1 is calculated by

xk+1 = xk + hVk+1, (15)

where Vk+1 ∈ R
2n solves the convex optimization problem:

minimize ‖V − g(xk, uk)‖2 subject to V ∈ Vh(xk), (16)

and where the control uk ∈ U is involved into the desired velocity term to adjust the
actual velocities of the robots and make sure that they do not overlap. The algorithmic
design in (15) and (16) means therefore that Vk+1 is selected as the (unique) element
from the set of admissible velocities as the closest one to the desired velocity g(xk, uk)
in order to avoid the robot overlapping.

Fix further any m ∈ IN and divide [0, T ] into the 2m equal subintervals of length
hm := T /2m ↓ 0 as m → ∞. Invoking the discrete time tkm := khm , denote
Ikm := [tkm, t(k+1)m[ for k = 0, . . . , 2m − 1 and I2mm := {T }. Then according to (15)
and (16) we have the algorithm

x0m ∈ Q0 and x(k+1)m := xkm + hmV(k+1)m for all k = 0, . . . , 2m − 1, (17)

where V(k+1)m is defined as the projection of g(xkm, ukm) onto the admissible velocity
set Vhm (xkm) by

V(k+1)m := Π
(
g(xkm, ukm); Vhm (xkm)

)
, k = 0, . . . , 2m − 1. (18)
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Invoking the construction of xkm for 0 ≤ k ≤ 2m − 1 and m ∈ IN , define next a
sequence of piecewise linear mappings x2m : [0, T ] → R

2n , m ∈ IN , which pass
through those points by:

x2m (t) := xkm + (t − tkm)V(k+1)m for all t ∈ Ikm, k = 0, . . . , 2m − 1. (19)

Whenever m ∈ IN , we clearly have the relationships

x2m (tkm) = xkm = lim
t→tkm

xkm(t) and ẋ2m (t) := V(k+1)m for all t ∈]tkm, t(k+1)m[.
(20)

As discussed in [5], based on the results of [22], the solutions to (19) in the uncon-
trolled setting of (18) with g = g(x) uniformly converge on [0, T ] to a trajectory of a
certain perturbed sweeping process. The controlledmodel under consideration here is
significantly more involved. In order to proceed by using the results of Theorem 2.1,
for all x ∈ R

2n consider the set

K (x) := {
y ∈ R

2n : Di j (x) + ∇Di j (x)(y − x) ≥ 0 whenever i < j
}
, (21)

which allows us to represent the algorithm in (18), (19) as

x(k+1)m = Π
(
xkm + hmg(xkm, ukm); K (xkm)

)
for k = 0, . . . , 2m − 1.

It can be equivalently rewritten in the form

x2m
(
ϑ2m (t)

) = Π
(
x2m (τ2m (t))

+ hmg
(
x2m (τ2m (t)), u2m (τ2m (t)

); K (x2m (τ2m (t))
)

for all t ∈ [0, T ],

where the functions τ2m (·) and ϑ2m (·) are defined by τ2m (t) := tkm and ϑ2m (t) :=
t(k+1)m for all t ∈ Ikm . Taking into account the construction of the convex set K (x) in
(21) and definition (5) of the normal cone together with the relationships in (20), we
arrive at the sweeping process inclusions

ẋ2m (t) ∈ −N
(
x2m (ϑ2m (t)); K (x2m (τ2m (t)))

)

+g
(
x2m (τ2m (t)), u2m (τ2m (t))

)
a.e. t ∈ [0, T ] (22)

with x2m (0) = x0 ∈ K (x0) = Q0 and x2m (ϑ2m (t)) ∈ K (x2m (τ2m (t))) on [0, T ].
To formalize (22) as a controlled perturbed sweeping process of type (2), define the
convex polyhedron C ⊂ R

2n as in (4) by

C := {
x ∈ R

2n : 〈x j∗ , x〉 ≤ c j , j = 1, . . . , n − 1
}

(23)
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with c j := −2R and with the n − 1 vertices of the polyhedron given by

x j∗ := e j1 + e j2 − e( j+1)1 − e( j+1)2 ∈ R
2n, j = 1, . . . , n − 1, (24)

where e ji for j = 1, . . . , n and i = 1, 2 are the vectors in R2n of the form

e := (
e11, e12, e21, e22, . . . , en1, en2

) ∈ R
2n

with 1 at only one position of e ji and 0 at all the other positions.
We now formulate the sweeping optimal control problem of type (P) from Sect. 2

that can be treated as a continuous-time counterpart of the discrete algorithm of the
controlled mobile robot model by taking into account the model goal stated above.
Consider the cost functional

minimize J [x, u] := 1

2

∥∥x(T )
∥∥2, (25)

which reflects model goal to minimize the distance of the robot from the admissible
configuration set to the target. We describe the continuous-time dynamics by the
controlled sweeping process

−ẋ(t) ∈ N
(
x(t);C) − g

(
x(t), u(t)

)
for a.e. t ∈ [0, T ],

x(0) = x0 ∈ C, u(t) ∈ U a.e. on [0, T ], (26)

where the constant set C is taken from (23), the control constraints reduce to (14), and
the dynamic noncollision condition ‖xi (t) − x j (t)‖ ≥ 2R amounts to the pointwise
state constraints

x(t) ∈ C ⇐⇒ 〈x j∗ , x(t)〉 ≤ c j for all t ∈ [0, T ] and j = 1, . . . , n − 1, (27)

which follow from (26) due to the construction of C and the normal cone definition
(5). Next we obtain other representations of C , which allow us to make connections
between the discrete dynamics in (18), (19) and its sweeping control counterpart in
(26). Taking into account that we are interested in the limiting process when the
discrete step h in (15) diminishes, it is possible to choose in what follows a convenient
equivalent norm ‖(x j1, x j2)‖ := |x j1| + |x j2| for each component x j ∈ R

2 of
x ∈ R

2n .

Lemma 3.1 (Sweeping set representations) In addition to the noncollision conditions

‖xikm − x j
km‖ ≥ 2R for all i, j ∈ {

1, . . . , n
}
, k = 0, . . . , 2m − 1, and m ∈ IN

(28)
imposed on the points xkm from (11), suppose that

x ( j+1)1
km > x j1

km and x ( j+1)2
km > x j2

km whenever j = 1, . . . , n − 1 (29)
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for the components (x j1
km, x j2

km) ∈ R
2 of the iterations above as k = 0, . . . , 2m −1 and

m ∈ IN . Then the sweeping set C in (23) admits the representations

C = Q0 = K (xkm) whenever k = 0, . . . , 2m − 1 and m ∈ IN , (30)

where the sets Q0 and K (xkm) are defined by (11) and (21), respectively.

Proof By using the noncollision conditions (28) as well as the component conditions
imposed in (29), we can easily verify the relationships

∥∥x j − x j+1
km

∥∥ = ∣∣x j1
km − x ( j+1)1

km

∣∣ + ∣∣x j2
km − x ( j+1)2

km

∣∣

= −x j1
km − x j2

km + x ( j+1)1
km + x ( j+1)2

km ≥ 2R,

which yield the following equalities, where we use (24) and put x := xkm for the
simplicity of notation:

C = {
x ∈ R

2n : 〈x j∗ , x〉 ≤ c j , j = 1, . . . , n − 1
}

= {
x ∈ R

2n : x j1 + x j2 − x ( j+1)1 − x ( j+1)2 ≤ −2R, j = 1, . . . , n − 1
}

= {
x ∈ R

2n : −x j1 − x j2 + x ( j+1)1 + x ( j+1)2 ≥ 2R, j = 1, . . . , n − 1
}

= {
x ∈ R

2n : ‖x j+1 − x j‖ ≥ 2R, j = 1, . . . , n − 1
}
.

Then it follows from the definition of Q0 in (11) and Di j therein that C = Q0.
To verify the second equality(ies) in (30) for all the indicated indices j and m

therein, we get by constructions of K (·) and Di j (·) that

K (x0) = {
x ∈ R

2n : Di j (x0) + ∇Di j (x0)(x − x0) ≥ 0 if i < j
}
,

= {
x ∈ R

2n : Di j (x) ≥ 0 if i < j
} = C,

where we drop indicating the dependence on the vector x := xkm from the indices
km as above. Thus we directly arrive at the second statement in (30) and complete the
proof of the lemma. ��

It follows from the defined constructions that we can replace K (x2m (τ2m (t))) by
C on [0, T ] for large m. Thus the sweeping process in (26) can be treated as the
limiting case of (22). The next theorem provides an application and a specification of
Theorem 2.1 for the robotics model under consideration.

Theorem 3.1 (Sweeping process description of the controlled mobile robot model)
Let the pair (x̄(·), ū(·)) satisfy the controlled sweeping system (26), where C is taken
from (23), g is defined in (13), U ⊂ R

n is compact and convex, and the conditions

x̄ ( j+1)1(t) > x̄ j1(t) and x̄ ( j+1)2(t)

> x̄ j2(t) for all j = 1, . . . , n − 1 and t ∈ [0, T ] (31)

are fulfilled. Assume that x̄(·) ∈ W 1,2([0, T ];R2n) and that ū(·) is BV on [0, T ]
with a right continuous representative. Then there exist a sequence of state-control
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pairs (x̄m(t), ūm(t)), 0 ≤ t ≤ T , satisfying (22) with K (x2m (τ2m (t)) ≡ C for
which all the conclusions of Theorem 2.1 hold with s = n − 1 and Ckm ≡ C. If
furthermore (x̄(·), ū(·)) is a W 1,2 × L2-local minimizer of the cost functional (25)
over the constrained dynamics (26), then any sequence of the (extended on [0, T ])
optimal solutions (x̄m(·), ūm(·)) to the corresponding specifications of problems (Pm)

fromTheorem2.1 converges to (x̄(·), ū(·)) in the norm topology ofW 1,2([0, T ];R2n)×
L2([0, T ];Rn).

Proof It can be directly checked that the assumptions (H1)–(H4) are satisfied in the
setting of (25), (26) with the data specified for the mobile robot model. Then using
Lemma 3.1 and invoking the above discussions, we deduce the conclusions of the
theorem from the corresponding results of Theorem 2.1. ��

From now on in this section, we exclusively study the continuous-time sweeping
optimal control problem defined in (25) and (26) with themobile robot model data.We
label this problem as (SR). Applying Theorem 2.2 allows us to obtain the following
necessary optimality conditions for problem (SR) that are formulated entirely in terms
of the model data.

Theorem 3.2 (Necessary optimality conditions for the sweeping controlled robot
model) Let (x̄(·), ū(·)) be a W 1,2 × L2-local minimizer for problem (SR), and let
all the assumptions of Theorem 3.1 be fulfilled. Then there exist a multiplier λ ≥ 0, a
measure γ ∈ C∗([0, T ];R2n) as well as adjoint arcs p(·) ∈ W 1,2([0, T ];R2n) and
q(·) ∈ BV ([0, T ];R2n) satisfying to the conditions:

(1) − ˙̄x(t) =
n−1∑

j=1

η j (t)x j∗ − (
g(x̄1(t), ū1(t))), . . . , g(x̄n(t), ūn(t)

)
for a.e. t ∈ [0, T ],

where η j (·) ∈ L2([0, T ];R+) are uniquely defined by this representation and
well defined at t = T ;

(2) ‖x̄ j (t) − x̄ j+1(t)‖ > 2R �⇒ η j (t) = 0 for all j = 1, . . . , n − 1 and a.e.
t ∈ [0, T ] including t = T ;

(3) η j (t) > 0 �⇒ 〈x j∗ , q(t)〉 = c j for all j = 1, . . . , n − 1 and a.e. t ∈ [0, T ]
including t = T ;

(4) ṗ(t) = −∇x g
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ];

(5) q(t) = p(t) − γ ([t, T ]) for all t ∈ [0, T ] except at most a countable subset;
(6)

〈
ψ(t), ū(t)

〉 = maxu∈U
〈
ψ(t), u

〉
for a.e. t ∈ [0, T ], where ψ(t) :=

∇ug
(
x̄(t), ū(t)

)∗
q(t);

(7) −p(T ) = λx̄(T ) + ∑
j∈I (x̄(T )) η j (T )x j∗ via the set of active constraint indices

I (x̄(T )) at x̄(T );
(8)

∑
j∈I (x̄(T )) η j (T )x j∗ ∈ N

(
x̄(T );C);

(9) (λ, p, q) �= 0.

Proof As discussed in the framework of Theorem 3.2, all the assumptions of The-
orem 2.2 are fulfilled for (SR). Thus we can apply to the given local minimizer
(x̄(·), ū(·)) of (SR) the necessary optimality conditions from that theorem, which
are specified as (1)–(9) in the setting under consideration. The only thing we need
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to check is the validity of the implication in (2). Indeed, we have the implication
〈x̄(t), x j∗ 〉 < c j �⇒ η j (t) = 0 for j = 1, . . . , n − 1 and a.e. t ∈ [0, T ]. Moreover,

the conditions 〈x̄(t), x j∗ 〉 < c j are equivalent to

−x̄ j1(t) − x̄ j2(t) + x̄ ( j+1)1(t) + x̄ ( j+1)2(t) > 2R

whenever j = 1, . . . , n − 1, a.e. on [0, T ].

By (31) the latter conditions are equivalent in turn to those in ‖x̄ j (t)− x̄ j+1(t)‖ > 2R
for all j, t indicated above. To verify this, we get while remembering the sum norm
under consideration that

‖x̄ j (t) − x̄ j+1(t)‖ = |x̄ j (t) − x̄ ( j+1)1(t)| + |x̄ j2(t) − x̄ ( j+1)2(t)|.

Finally, it allows us to obtain the relationships

‖x̄ j (t) − x̄ j+1(t)‖ = |x̄ j1(t) − x̄ ( j+1)1(t)| + ∣∣x̄ j2(t) − x̄ ( j+1)2(t)|
= −x̄ j1(t) − x̄ j2(t) + x̄ ( j+1)1(t) + x̄ ( j+1)2(t) > 2R,

which justify (2) and thus completes the proof of the theorem. ��
Let us now discuss some conclusions for themobile robot model that can be derived

from the obtained theorem by taking into account the specific form of the perturbation
mapping g in (13).

• We know from the model description that at the contact time t1 ∈ [0, T ] when
‖x̄ i (t1) − x̄1(t1)‖ = 2R for some i = 2, . . . , n, the robot in question tends to
adjust its velocity in order to keep the distance between the obstacle in contact to
be at least 2R. By the model requirement, the robot maintains its constant velocity
after the time t = t1 until either reaching other obstacles ahead or stopping at
t = T . If furthermore the robot touches other obstacles, it pushes them to go to
the target in the same direction as before t = t1. By (13), the differential relation
in (1) is written for a.e. t ∈ [0, T ] as

− ( ˙̄x11(t), ˙̄x12(t)) = η1(t)(1, 1) − (
s1ū

1(t) cos θ1(t), s1ū
1(t) sin θ1(t)

)
,

− ( ˙̄xi1(t), ˙̄xi2(t)) = ηi−1(t)(−1,−1) + ηi (t)(1, 1)

− (
si ū

i (t) cos θi (t), si ū
i (t) sin θi (t)

)

− ( ˙̄xn1(t), ˙̄xn2(t)) = ηn−1(t)(−1,−1) − (
snū

n(t) cos θn(t), snū
n(t) sin θn(t)

)
.

(32)

• If the robot under consideration (robot 1) does not touch the first obstacle (robot 2)
in the sense that ‖x̄2(t) − x̄1(t)‖ > 2R for all t ∈ [0, T ], then we get from (2) of
Theorem 3.2 that

‖x̄2(t) − x̄1(t)‖ > 2R �⇒ η1(t) = 0 for a.e. t ∈ [0, T ] including t = T .
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Plugging η1(t) = 0 into (32) gives us the equation

−( ˙̄x11(t), ˙̄x12(t)) = −(
s1ū

1(t) cos θ1(t), s1ū
1(t) sin θ1(t)

)
a.e. on [0, T ],

whichmeans that the actual velocity and the spontaneous velocity of the robot agree
for a.e. t ∈ [0, T ]. Similarly we conclude that the condition ‖x̄n(t) − x̄n−1(t)‖ >

2R on [0, T ] yields − ˙̄xn(t) = −g(x̄n(t), ūn(t)) for a.e. t ∈ [0, T ], and then
continue in this way with robots i .

To proceed further, assume that λ = 1 (otherwise we do not have enough informa-
tion to efficiently employ Theorem 3.2) and also suppose for simplicity to handle the
examples below that the control actions ūi (·) are constant on [0, T ] for all i = 1, . . . , n.
Applying the Newton–Leibniz formula in (32) gives us the trajectory representations

(
x̄11(t), x̄12(t)

)
=

(
x110 , x120

)
−

∫ t

0
η1(τ ) (1, 1) dτ + t

(
s1ū

1 cos θ1, s1ū
1 sin θ1

)
,

(
x̄ i1(t), x̄ i2(t)

)
=

(
xi10 , xi20

)
+

∫ t

0
ηi−1(τ ) (1, 1) dτ −

∫ t

0
ηi (τ ) (1, 1) dτ

+t
(
si ū

i cos θi , si ū
i sin θi

)
whenever i = 2, . . . , n − 1,

(
x̄n1(t), x̄n2(t)

)
=

(
xn10 , xn20

)
+

∫ t

0
ηn−1(τ ) (1, 1) dτ + t

(
snū

n cos θn, snū
n sin θn

)

(33)

for all t ∈ [0, T ], where x0 := (x110 , x120 . . . , xn10 , xn20 ) ∈ C stands for the starting
point in (26).

Next we employ the obtained necessary optimality conditions to find optimal solu-
tions and understand the sweeping process behavior in some typical situations that
appear in the controlled robot mobile model by considering for simplicity the case of
n = 2. Note that in all the cases below we have the existence of optimal solutions by
[8], and thus the unique ones determined by using necessary optimality conditions are
indeed globally optimal for this model in the settings under consideration.

3.1 Mobile Robot ModelWithout Changing Direction in Contact

The first typical situation is when the robot in question touches the other robot (obsta-
cle) so that there is no change of direction at the point of contact; see Fig. 1. Let t1 be
the contact time, i.e.,

t1 := min
{
t ∈ [0, T ] : ‖x̄1(t) − x̄2(t)‖ = 2R

}
. (34)

Recalling that in ourmodel the equal angles θ1 = θ2 of the robot directions are constant
together with the optimal controls, we get by (32) the dynamic equations prior to and
after time t1:
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˙̄x1(t) =
(
s1ū

1 cos θ1, s1ū
1 sin θ1

)
,

˙̄x2(t) =
(
s2ū

2 cos θ1, s2ū
2 sin θ1)

)
for t ∈ [0, t1[,

˙̄x1(t) =
(
−η1(t) + s1ū

1(t) cos θ1,−η1(t) + s1ū
1 sin θ1

)
,

˙̄x2(t) =
(
η1(t) + s2ū

2 cos θ1, η
1(t) + s2ū

2 sin θ1

)
for t ∈ [t1, T ].

This implies, with taking into account condition (2) of Theorem 3.2, that the function
η1(·) is piecewise constant on [0, T ] and admits the representation

η1(t) =
{
0 for a.e. t ∈ [0, t1[ including t = 0,
η1 for a.e. t ∈ [t1, T ] including t = t1.

(35)

Since the two robots have the same velocities at the time t = t1 and maintain their
velocities until the end of the process, we get ˙̄x1(t) = ˙̄x2(t) for all t ∈ [t1, T ], which
allows us to calculate the value of η1 by

η1 =
{ 1

2

(
s1ū1 cos θ1 − s2ū2 cos θ1

)
if s1ū1 �= s2ū2 and cos θ1 = sin θ1,

0 otherwise.
(36)

Taking into account that the case of η1 = 0 in (36) is trivial, from now on we assume
that cos θ1 = sin θ1 and s1ū1 �= s2ū2. Remember that after touching the robot pushes
the obstacle to the target and they both maintain their constant velocities (speed and
direction) until reaching the end of the process at the final time t = T . Now using
(33)–(36) gives us the trajectory representations

x̄1(t) =
(
x̄11(0), x̄12(0)

)
+

(
ts1ū

1 cos θ, ts1ū
1 sin θ1

)
,

x̄2(t) =
(
x̄21(0), x̄22(0)

)
+

(
ts2ū

2 cos θ1, ts2ū
2 sin θ1

)
for t ∈ [0, t1[,

x̄1(t) =
(
x̄11(0), x̄12(0)

)
+ (

ts1ū
1 cos θ1 − η1(t − t1), ts1ū

1 sin θ1 − η1(t − t1)
)
,

x̄2(t) =
(
x̄21(0), x̄22(0)

)
+ (

ts2ū
2 cos θ1 + η1(t − t1), ts2ū

2 sin θ1

+ η1(t − t1)
)
for t ∈ [t1, T ].

Employing ‖x̄2(t1) − x̄1(t1)‖ = 2R, we get from the latter formula the equation

[(
s2ū

2 − s1ū
1
)2]

t21 + 2
(
s2ū

2 − s1ū
1
)

[(
x̄21(0) − x̄11(0)

)
cos θ1 +

(
x̄22(0) − x̄12(0)

)
sin θ1

]
t1

+
(
x̄21(0) − x̄11(0)

)2 +
(
x̄22(0) − x̄12(0)

)2 − 4R2 = 0, (37)

which connects t1 with the given model data and the control ū = (ū1, ū2).
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To proceed further, for all t ∈ [0, T ] define the functions

di j (t) := x̄ i (t) − x̄ j (t)

‖x̄ i (t) − x̄ j (t)‖ , i, j ∈ {1, 2}

and denote by θi j the direction of the vector x̄ i (t1) − x̄ j (t1). Thus for t ∈ [t1, T ] we
have

d12(t) = x̄1(t) − x̄2(t)

‖x̄1(t) − x̄2(t)‖ = 1

2R

(
x̄1(0) − x̄2(0) +

∫ t

0

( ˙̄x1(τ ) − ˙̄x2(τ )
)
dτ

)

= 1

2R

(
x̄11(0) − x̄21(0) + 2t1η

1, x̄12(0) − x̄22(0) + 2t1η
1
)

.

On the other hand, it follows from the above that d12(t1) = (cos θ12, sin θ12), which
tells us that

cos θ12 = x̄11(0) − x̄21(0) + 2t1η1

2R
, sin θ12 = x̄12(0) − x̄22(0) + 2t1η1

2R
.

This results in determining the value of y := t1η1 from the quadratic equation

8y2 + 4
(
x11(0) + x12(0) − x21(0) − x22(0)

)
y

= 4R2 −
(
(x11(0) − x21(0))2 + (x12(0) − x22(0))2

)
. (38)

Combining (38) with (36) and (37) allows us to precisely compute of optimal solutions
when the initial data of the model are specified. The next numerical example illustrates
the computation procedure.

Example 3.1 (Solving the mobile robot problem without changing direction) Specify
the model data in the case under consideration by: n = 2, x01 = (−30,−30) , x02 =
(−20,−20) , T = 6, R = 6, s1 = 3, s2 = 1 with the compact and control convex
set

U := {
u = (u1, u2) ∈ R

2 : u1 = 2u2, −3.37 ≤ u1 ≤ 3.37
}
.

In this setting, we have t1 > 0, θ1 = 225◦, (x11(0)−x21(0))2+(x12(0)−x22(0))2 =
200. The robot in question has to reach the target by a shortest way, and we assume that
the robot tends to maintain its constant direction until either touching the other robot
(obstacle), or reaching the end of the process at t = T . To proceed with calculations,
derive from (36) and (38) that

η1 = 1

2

(

3ū1
(

−
√
2

2

)

− ū2
(

−
√
2

2

))

= −5
√
2

4
ū2 �= 0 and t1η

1 = 5 ± 3
√
2.

We split our further consideration into the following two cases:
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Case 1 η1 = − 5
√
2

4 ū2 and t1η1 = 5 + 3
√
2. It gives us t1ū2 = −12−10

√
2

5 and the
trajectory representations

x̄1(t) =
(

− 25 + 3
√
2 + −7

√
2

4
ū2t, −25 + 3

√
2 + −7

√
2

4
ū2t

)
, t ∈ [t1, 6],

x̄2(t) =
(

− 25 − 3
√
2 + −7

√
2

4
ū2t, −25 − 3

√
2 + −7

√
2

4
ū2t

)
, t ∈ [t1, 6].

The cost functional is calculated by

J [x, u] = 441
(
ū2

)2 + 1484.92(ū2) + 1286

and achieves its minimum at ū2 ≈ −1.68. Thus ū1 ≈ −3.37 and the minimum cost
is J ≈ 36.

Case 2 η1 = − 5
√
2

4 ū2 and t1η1 = 5 − 3
√
2. In this case we get t1ū2 = 12−10

√
2

5 and

x̄1(t) =
(

− 25 − 3
√
2 + −7

√
2

4
ū2t, −25 − 3

√
2 + −7

√
2

4
ū2t

)
, t ∈ [t1, 6],

x̄2(t) =
(

− 25 + 3
√
2 + −7

√
2

4
ū2t, −25 + 3

√
2 + −7

√
2

4
ū2t

)
, t ∈ [t1, 6],

with the following expression for the cost functional:

J [x, u] = 441
(
ū2

)2 + 1484.92(ū2) + 1286.

Thus J achieves its minimumvalue J ≈ 36 at ū2 ≈ − 1.68, andwe have ū1 ≈ − 3.37.
The above calculations show that, in both cases appearing in this setting, the optimal

solutions to the robot control problem are calculated as follows:

(ū1, ū2) = (− 3.37,− 1.68) ,

x̄1(t) = (− 30 + 7.15t,− 30 + 7.15t) , t ∈ [0, 3.11[,
x̄1(t) = (− 20.76 + 4.16t,− 20.76 + 4.16t) , t ∈ [3.11, 6],
x̄2(t) = (− 20 + 1.19t,− 20 + 1.19t) , t ∈ [0, 3.11[,
x̄2(t) = (− 29.24 + 4.16t,− 29.24 + 4.16t) , t ∈ [3.11, 6].

Next we employ the other optimality conditions from Theorem 3.2 to determine
adjoint trajectories. Such calculations allow us to reveal more about the optimal model
dynamics. It follows from (6) that

〈
ψ(t), ū

〉 = max
u∈U

〈
ψ(t), u

〉
on [0, 6] with ψ(t) = ∇ug

(
x̄(t), ū

)∗
q(t),
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which gives us the equations for the adjoint arc q(·):

s1

(

−
√
2

2

)

q11(t) + s1

(

−
√
2

2

)

q12(t) = ū1,

s2

(

−
√
2

2

)

q21(t) + s2

(

−
√
2

2

)

q22(t) = ū2,

and so q11(t) ≈ 0, q12(t) ≈ 1.59, q21(t) ≈ 0, and q22(t) ≈ 2.38. We deduce from

(4) and (7) that p(t) = p(6) = −λx̄(6) − η1x1∗ with η1 = − 5
√
2

4 ū2 = 2.97 and
x1∗ = (1, 1,−1,−1). Hence (5) reduces to

γ ([t, 6]) = p(t) − q(t) on [0, 6].

Combining it with the above calculations tells us that

γ ([t, 6]) = p(6) − q(t) ≈ (− 7.17,− 7.17, 7.25, 7.25) − (0, 1.59, 0, 2.38)

= (− 7.17,− 8.76, 7.25, 4.87) ,

for 3.11 ≤ t ≤ 6. Thus we confirm that the optimal motion hits the boundary of the
state constraint at time t1 ≈ 3.11 and stays there until the end of the process.

3.2 Mobile Robot Model with Changing Direction in Contact

Now we examine other situations in robot behavior before and after contacting the
obstacle that are different from the previous consideration in setting A. Let t1 be the
contacting time as in (34). Consider the case where robot 1 in question moves faster
than robot 2 (obstacle) and touches the second robot at t1, while after the contact both
robots together change their directions to go to the target with the same speed; see
Fig. 2a. We have

θ1(t) = θ2(t) =
{

θ1(0) if t ∈ [0, t1[,
θ1(t1) if t ∈ [t1, T ],

where θ j (t), j = 1, 2, are angles of the corresponding robot directions. Before the
time t1, both robots move in the same direction with different speeds, but at the contact
time t1 they change their directions and go together to the target with the same speed.
Thus the velocities of the two robots are given by

˙̄x1(t) =
(
s1ū

1 cos θ1(0), s1ū
1 sin θ1(0)

)
,

˙̄x2(t) =
(
s2ū

2 cos θ1(0), s2ū
2 sin θ1(0)

)
for t ∈ [0, t1[,

˙̄x1(t) =
(
s1ū

1 cos θ1(t1) − η1(t), s1ū
1 sin θ1(t1) − η1(t)

)
,
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Fig. 2 Mobile robot model with changing directions in contact

˙̄x2(t) =
(
s2ū

2 cos θ1(t1) + η1(t), s2ū
2 sin θ1(t1) + η1(t)

)
for t ∈ [t1, T ],

where the piecewise constant function η1(·) on [0, T ] is taken from (35). Furthermore,
starting with the contact time t = t1 the robots tend to maintain the same velocities
until the end of the process. This allows us to calculate the value of η1 in (35) by

η1 =
{ 1

2

(
s1ū1 cos θ1(t1) − s2ū2 cos θ1(t1)

)
if s1ū1 �= s2ū2 and cos θ1(t1)=sin θ1(t1),

0 otherwise.

(39)

Excluding the trivial case η1 = 0, suppose that cos θ1(t1) = sin θ1(t1) and s1ū1 �=
s2ū2. Similarly to our previous consideration in A, we arrive at the same quadratic
equation (38) for the value y := t1η1, but in the new setting. The corresponding
trajectory representations are given now by

x̄1(t) =
(
x̄11(0) + s1ū

1 cos θ1(0)t, x̄12(0) + s1ū
1 sin θ1(0)t

)
,

x̄2(t) =
(
x̄21(0) + s2ū

2 cos θ1(0)t, x̄22(0) + s2ū
2 sin θ1(0)t

)
for t ∈ [0, t1[,

x̄1(t) = (
x̄11(0) + s1ū

1 cos θ1(0)t1 + s1ū
1 cos θ1(t1)(t − t1) − η1(t − t1),

x̄12(0) + s1ū
1 sin θ1(0)t1 + s1ū

1 sin θ1(t1)(t − t1) − η1(t − t1)
)
,

x̄2(t) = (
x̄21(0) + s2ū

2 cos θ1(0)t1 + s2ū
2 cos θ1(t1)(t − t1) + η1(t − t1),
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x̄22(0) + s2ū
2 sin θ1(0)t1 + s2ū

2 sin θ1(t1)(t − t1)

+η1(t − t1)
)
for t ∈ [t1, T ].

Combining the noncollision conditions with (39) allows us to conclude that

x21(t) > x11(t) and x22(t) > x12(t) for all t ∈ [0, T ],
with s1ū

1 �= s2ū
2 and cos θ1(t1) = sin θ1(t1), (40)

which lead us to the following two cases.

• Case 1 (robots are in the third quadrant) This case is illustrated by Fig. 2b where
we have

θ1(t) = θ2(t) =: θ for all t ∈ [0, T ].

Prior to the final time t1 = T both robots move in the same direction with different
speeds, while at t1 = T they are in contact and reach the target. Thus we get from
(40) that

x21(t) > x11(t) and x22(t) > x12(t) for all t ∈ [0, T ]
with s1ū

1 �= s2ū
2 and cos θ = sin θ, (41)

and that all the other formulas above hold with the corresponding specifications.
Note that in this case both robots reach the target at the final time t = T , and the
minimum cost is J = 0. It obviously shows that the distance from the robot to the
target is the shortest one.

• Case 2 (robots are in the first quadrant) In this case robot 1 in question moves
faster than the robot 2 and touches the latter at the contact time t1 �= T . Then
robot 1 pulls robot 2 to go back to the starting point with the same speed, where
the starting point is taken as the target at the origin. Then we also have θ1(t) =
θ2(t) = θ for all t ∈ [0, T ]; see Fig. 3a, b. Prior to the contact time t1 both
robots move in the same direction with different speeds, while at the contact time
t1 they change their directions simultaneously and move together to the starting
point with the same speed. Thus we can proceed similarly to Case 1 under the
conditions in (41).

4 ControlledModel of Pedestrian Traffic Flows

In this section, we formulate a continuous-time, deterministic, and optimal control
version of the pedestrian traffic flow model through a doorway for which a stochastic,
discrete-time, and simulation (uncontrolled) counterpart was originated in [23]. Here
we formalize the dynamics via a perturbed sweeping process with constrained controls
in perturbations that should be determined to ensure the desired performance. We also
discuss differences and similarities with the crowd motion model of the pedestrian
traffic as well as with the mobile robot model formulated and studied in Sect. 3.
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Fig. 3 Mobile robot model with changing directions in Case 2

Fig. 4 Unidirectional flows of
pedestrians through doorway

x1 x2 . . . xn−1 xn

In the model under consideration, we have n pedestrians xi ∈ R, i = 1, . . . , n
as n ≥ 2 that are identified with rigid disks of the same radius R going through a
doorway as depicted in Fig. 4.

Define the set of admissible configurations by imposing the nonoverlapping con-
ditions in order to avoid overlapping between two pedestrians:

Q0 := {
x = (

x1, . . . , xn
) ∈ R

n : xi+1 − xi ≥ 2R whenever i, j ∈ {1, . . . , n}}.
(42)

Denoting by S(x) the spontaneous velocity of the pedestrians at x ∈ Q0, we represent
it as

S(x) := (
S0(x

1), . . . , S0(x
n)

)
with S0(x) = s0∇D(x), x ∈ Q0,

where Q0 is taken from (42), D(x) denotes the distance from the position x =
(x1, . . . , xn) ∈ Q0 to the doorway, and the scalar s0 ≥ 0 indicates the speed. Since
x �= 0 and hence ‖∇D(x)‖ = 1, we get s0 = ‖S0(x)‖. Each pedestrian tends to main-
tain his/her desired spontaneous velocity until reaching the doorway in the absence of
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other pedestrians that is reflected in the model by

g(x) = (s1, . . . , sn) ∈ R
n for all x = (x1, . . . , xn) ∈ Q0, (43)

where si denotes the speed of the pedestrian i ∈ {1, . . . , n}. If the distance between
pedestrian i and pedestrian i + 1 is xi+1(t) − xi (t) = 2R, then both pedestrians tend
to adjust their velocities in order to keep the distance to be at least 2R. In this setting,
we use some force in order to control the actual velocity of all the pedestrians in the
presence of the nonoverlapping conditions (42). This is modeled by inserting controls
u(·) = (u1(·), . . . , un(·)) into the perturbation term as follows:

g(x(t), u(t)) := (
s1u

1(t), . . . , snu
n(t)

)
, t ∈ [0, T ], (44)

where measurable control functions u = (u1, . . . , un) : [0, T ] → R
n satisfy the

constraint

u(t) ∈ U a.e. on [0, T ] (45)

defined via a convex and compact set U ⊂ R
n , which is specified below in particular

situations.
Observing that the pedestrians cannot move with their spontaneous velocities due

to the nonoverlapping constraints in (42), we consider the set of feasible velocities

Vx := {
v = (

v1, . . . , vn
) ∈ R

n : xi+1 − xi = 2R �⇒ vi+1

≥ vi for all i = 1, . . . , n − 1
}

and then describe the actual velocity field is the feasible field in terms of the (unique)
Euclidean projection of the spontaneous velocity S

(
x
)
onto the convex set Vx by

ẋ(t) = Π
(
S(x); Vx

)
for a.e. t ∈ [0, T ], x(0) = x0 ∈ Q0, (46)

where x0 indicates the starting position of the pedestrians. Based on the projection
description (46) and definition (5) of the normal cone of convex analysis, we deduce
from (46) that

S
(
x
) ∈ N (x; Q0) + ẋ(t) for a.e. t ∈ [0, T ], x(0) = x0,

which gives us the differential inclusion of the perturbed sweeping process

ẋ(t) ∈ −N (x; Q0) + S(x) for a.e. t ∈ [0, T ], x(0) = x0. (47)

Define further the convex set C ⊂ R
n by

C :={
x ∈ R

n : 〈x j∗ , x〉≤c j , j =1, . . . , n − 1
}

with x j∗ :=e j − e j+1, c j = −2R

(48)
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for j = 1, . . . , n−1, where (e1, . . . , en) are the orths inRn . Remembering the control
velocity description (43) allows us to describe the pedestrian model dynamics as the
controlled sweeping process

−ẋ(t) ∈ N
(
x(t);C) − g (x(t), u(t)) for a.e. t ∈ [0, T ],

u(t) ∈ U for a.e. t ∈ [0, T ], x(0) = x0 ∈ C, (49)

with C and U taken from (48) and (45), respectively. Note the differential inclusion
in (49) intrinsically contains the pointwise state constraint

x(t) ∈ C for all t ∈ [0, T ], (50)

which is equivalent to the nonoverlapping conditions from (42) due to the structure of
C in (48).

Furthermore, it surely makes sense to introduce an appropriate cost functional to
optimize the performance of the model over the constrained dynamics in (49) and to
formulate an optimal control problem in the form of (P) from Sect. 2. A very natural
candidate for the cost functional, which reflects the essence and goal of the model, is
the following one:

minimize J [x, u] := 1

2
‖x(T )‖2 (51)

meaning the minimization of the distance from all the pedestrians from (42) to the
doorway at the origin. The obtained description of the controlled pedestrian traffic
model allows us applying the necessary optimality conditions for problem (P) pre-
sented in Sect. 2 to find optimal solutions in this model that exist due to [8]. Prior to
such an application, let us compare the model under consideration with those for the
controlled crown model from [11] and for the mobile robot model studied in Sect. 3.

Remark 4.1 (Comparison with the crowd motion model) There are certain similarities
between the controlled pedestrian traffic flow model through a doorway considered
here and the optimization model for controlled crowd motions in a corridor studied in
[11] via alternative necessary optimality conditions for absolutely continuous controls
of a perturbed sweeping process. However, a crucial difference of the present model
from the one considered in [11] is that nowwe are able, based on the new results of [19],
to deal with real-life pointwise constraints on control functions, which are unavoidable
in practicewhile being highly theoretically challenging. Incorporating such constraints
allows us to exclude the energy term from the cost functional and concentrate on
minimizing the distance of participants from the target, which adequately reflects the
very essence of the model.

Mathematicallywe can treat the pointwise (hard) control constraints by the powerful
maximum principle established in [19] for the controlled perturbed sweeping process
under consideration; seemore details below. This was not the case in the unconstrained
setting of [11].
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Remark 4.2 (Comparison with the mobile robot model) Although the essence and
practical sense of the controlled robotics model studied in Sect. 3 and the controlled
pedestrian flow model considered in this section are completely different, there are
some similarities in their mathematical descriptions as perturbed sweeping processes.
This allows us to apply the same necessary optimality conditions from [19] to deter-
mining optimal solutions in both models. Of course, the main mathematical difference
between the mathematical descriptions of these two models is the space dimension.
On the other hand, the available results for planar crowd motion models developed in
[12,13] are not applicable to either of the models considered in Sects. 3 and 4 due to
the unconstrained nature of the previously obtained developments.

Denoting now by (SF) the optimal control problem for the pedestrian traffic flow
model formulated by (50)–(51) with the data from (44)–(48), we apply to it the neces-
sary optimality conditions of Theorem 2.2 obtained for problem (P) of this category.
The next theorem specifies the obtained results in the case of problem (SF) under
consideration.

Theorem 4.1 (Necessary optimality conditions for the sweeping control pedestrian
traffic flow model) Let (x̄(·), ū(·)) be a W 1,2 × L2-local minimizer of problem (SF),
where the control set U is compact and convex. Then there exist a multiplier λ ≥
0, a measure γ = (γ 1, . . . , γ n) ∈ C∗([0, T ];Rn) as well as adjoint arcs p(·) ∈
W 1,2([0, T ];Rn) and q(·) ∈ BV ([0, T ];Rn) satisfying to the following conditions:

(1) − ˙̄x(t) =
n−1∑

j=1

η j (t)x j∗ − (
s1ū

1(t), . . . , snū
n(t)

)
for a.e. t ∈ [0, T ], where η j (·) ∈

L2([0, T ];R+) are uniquely defined by this representation and well defined at
t = T ;

(2) x̄ j+1(t)− x̄ j (t) > 2R �⇒ η j (t) = 0 for all j = 1, . . . , n−1 and a.e. t ∈ [0, T ]
including t = T ;

(3) η j (t) > 0 �⇒ 〈x j∗ , q(t)〉 = c j for all j = 1, . . . , n − 1 and a.e. t ∈ [0, T ]
including t = T ;

(4) p(t) = p(T ) for all t ∈ [0, T ];
(5) q(t) = p(T ) − γ ([t, T ]) for all t ∈ [0, T ] except at most a countable subset;
(6)

〈
ψ(t), ū(t)

〉 = maxu∈U
〈
ψ(t), u

〉
for a.e. t ∈ [0, T ], where ψ(t) :=⎛

⎜
⎜
⎝

s1 0 . . . 0
0 s2 . . . 0
. . . . . . . . . . . .

0 0 . . . sn

⎞

⎟
⎟
⎠ q(t);

(7) −p(T ) = λx̄(T ) + ∑
j∈I (x̄(T )) η j (T )x j∗ via the set of active constraint indices

I (x̄(T )) at x̄(T );
(8)

∑
j∈I (x̄(T )) η j (T )x j∗ ∈ N

(
x̄(T );C);

(9) (λ, p, q) �= 0.

Proof It is direct consequence of Theorem 2.2 with the data of (P) specified for (SF)

by particularly taking into account the form of the controlled perturbation mapping g
in (44). ��
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Let us discuss some immediate conclusions for the pedestrian traffic flow model
that can be derived from the obtained theorem.

• At the contacting time t1 ∈ [0, T ]when x̄ i+1(t1)− x̄ i (t1) = 2R, i = 1, . . . , n−1,
pedestrians i and i + 1 adjust their speeds in order to keep the distance between
them to be at least 2R. It is natural to suppose that after the time t = t1 both
pedestrians i and i + 1 tend to maintain their new constant velocities until either
reaching someone ahead or stopping at t = T . Hence the velocities of all the
pedestrians are piecewise constant on [0, T ] in this setting.

• The controlled system of the differential equations in (1) can be written as

− ˙̄x1(t) = η1(t) − s1ū
1(t),

− ˙̄xi (t) = ηi (t) − ηi−1(t) − si ū
i (t), i = 2, . . . , n − 1,

− ˙̄xn(t) = −ηn−1(t) − snū
n(t) for a.e. t ∈ [0, T ]. (52)

If pedestrian 1 does not touch pedestrian 2 in the sense that x̄2(t) − x̄1(t) > 2R
for all t ∈ [0, T ], then it follows from (52) and (2) that the actual velocity and the
spontaneous velocity of pedestrian 1 agree for a.e. t ∈ [0, T ], which means that
˙̄x1(t) = s1ū1(t) a.e. on [0, T ]. If x̄n(t) − x̄n−1(t) > 2R for all t ∈ [0, T ], we get
this conclusion for pedestrian n. The same holds for pedestrians i = 2, . . . , n − 1
provided that x̄ i+1(t)− x̄ i (t) > 2R and x̄ i (t)− x̄ i−1(t) > 2Rwhenever t ∈ [0, T ].
To proceed further, suppose that λ > 0 (say λ = 1); otherwise, it is not enough

information to efficiently apply Theorem 3.2. Moreover, assuming for simplicity of
calculations in the examples below that the control actions ūi (·) are constant ūi on
[0, T ] for all i = 1, . . . , n and then employing the Newton–Leibniz formula in (52)
gives us the trajectories

x̄1(t) = x01 −
∫ t

0
η1(τ )dτ + ts1ū

1,

x̄ i (t) = x0i +
∫ t

0

[
ηi−1(τ ) − ηi (τ )

]
dτ + tsi ū

i as i = 2, . . . , n − 1,

x̄n(t) = x0n +
∫ t

0
ηn−1(τ )dτ + tsnū

n (53)

for all t ∈ [0, T ], where (x01, . . . , x0n) are the components of the starting point x0 ∈ C
in (49).

Nextwefix i ∈ {1, . . . , n−1} and let ti be thefirst timewhen x̄ i+1(ti )−x̄ i (ti ) = 2R.
Observe that the vector function η(·) in the conditions above is piecewise constant on
[0, T ] and rewrite (53) by

x̄ i (t) = x0i +
∫ t

0

[
ηi−1(τ ) − ηi (τ )

]
dτ + tsi ū

i for i = 1, . . . , n
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with η0 = ηn = 0. For each i define the positive numbers Θ i and Θi by

Θ i := min
{
t j
∣∣ t j > ti , j = 1, . . . , n − 1

}
,

Θi := max
{
t j
∣∣ t j < ti , j = 1, . . . , n − 1

}
.

Then we have the following trajectory representations:

x̄ i (t) = x0i +
∫ t

0
ηi−1(τ )dτ + tsi ū

i , t ∈ [0, ti ),

x̄ i (t) = x0i +
∫ ti

0
ηi−1(τ )dτ + (t − ti )

[
ηi−1(ti ) − ηi (ti )

] + tsi ū
i , t ∈ [ti ,Θ i ],

x̄ i+1(t) = x0(i+1) −
∫ t

0
ηi+1(τ )dτ + tsi+1ū

i+1, t ∈ [0, ti [,

xi+1(t) = x0(i+1) −
∫ ti

0
ηi+1(τ )dτ

+ (t − ti )
[
ηi (ti ) − ηi+1(ti )

] + tsi+1ū
i+1, t ∈ [ti ,Θ i ].

Suppose without loss of generality that the functions ˙̄xi (·) are well defined at ti while
ηi (·) are well defined at ti andΘi . At the contact time t = ti we get x̄ i+1(ti )− x̄ i (ti ) =
2R and

x̄ i+1(ti ) − x̄ i (ti )

= x0(i+1) − x0i −
∫ ti

0

[
ηi+1(τ ) + ηi−1(τ )

]
dτ + ti

(
si+1ū

i+1 − si ū
i )

= x0(i+1) − x0i −
∫ Θi

0

[
ηi+1(τ ) + ηi−1(τ )

]
dτ

− (ti − Θi )
[
ηi+1(Θi ) + ηi−1(Θi )

] + ti (si+1ū
i+1 − si ū

i ).

Then we arrive at the following conclusions:

• If x0(i+1) − x0i = 2R, it is easy to see that ti = 0.
• If x0(i+1) − x0i > 2R, it follows that

ti =
x0(i+1) − x0i − 2R+Θi

[
ηi+1(Θi ) + ηi−1(Θi )

] −
∫ Θi

0

[
ηi+1(τ )+ηi−1(τ )

]
dτ

ηi+1(Θi )+ηi−1(Θi ) − si+1ūi+1 + si ūi
.

(54)

Since after the contact at ti the pedestrians go to the target with the same velocity,
we get

˙̄xi+1(ti ) = ˙̄xi (ti ) ⇐⇒ 2ηi (ti ) = ηi+1(ti ) + ηi−1(ti ) − si+1ū
i+1 + si ū

i (55)
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and can further proceed in the following way that is illustrated by the examples
below:

• If ηi (ti ) > 0, it follows from (3) that 〈xi∗, q(ti )〉 = ci . Combining this with the
maximization condition (6) allows us to determine an optimal control and the
corresponding optimal motion dynamics.

• If ηi (ti ) = 0, then the problem can be solved via (55).
Observe also that in our setting it is possible to represent the cost functional (51) as
a function of (ū1, . . . , ūn) and ηi (t j ) with i = 0, . . . , n and t j ∈ [0, T ]. Thus the
original optimal control problem can be reduced to finite-dimensional optimization
of this cost subject to the constraints in (54) and (55).

In the remainder of this section, we consider two numerical examples with n = 2 and
n = 3 participants, where the outlined procedure allows us to completely solve the
formulated optimal control problem for the pedestrian traffic flow model.

Example 4.1 (Solving the controlled pedestrian traffic flow model with two partici-
pants) Specify the data of (49) and (51) as follows: n = 2, T = 6, s1 = 8, s2 =
2, x01 = −60, x02 = −48, R = 3, and c j = −2R for j = 1, 2. Then the equations
in (53) reduce to

x̄1(t) = −60 −
∫ t

0
η(τ)dτ + ts1ū

1, (56)

x̄2(t) = −48 +
∫ t

0
η(τ)dτ + ts2ū

2 (57)

for all t ∈ [0, 6]. Define the convex and compact control set U in (49) by

U := {
(u1, u2) ∈ R

2 : −1.8 ≤ u1 = u2 ≤ 1.8
}
,

and let t1 ∈ [0, 6] be the first time when x̄2(t1) − x̄1(t1) = 2R = 6. If t < t1, we
get x2(t) − x1(t) > 2R = 6, and it follows from (2) that η(t) = 0. At t = t1 the
motion x̄(t) hits the state constraint setC in (50), and hence it is reflected by a nonzero
measure γ in (5). Now subtracting (56) from (57) with t = t1 and taking into account
that

∫ t1
0 η(τ)dτ = 0 tell us that

12 + t1(2ū
2 − 8ū1) = 6, and so − 8ū1 + 2ū2 + 1 ≤ 0 by t1 ≤ 6. (58)

Suppose without loss of generality that both vector functions η(t) and ˙̄x(t) are well
defined at t = t1. Then we get from (52) the equations

˙̄x1(t1) = − η(t1) + 8ū1,
˙̄x2(t1) = η(t1) + 2ū2, (59)
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which being combined with ˙̄x1(t1) ≤ ˙̄x2(t1) give us the formulas

− 2η(t1) + 8ū1 − 2ū2 ≤ 0. (60)

Thus we deduce from (58) and (60) that η(t1) ≥ 1/2.
Remember that after the contact time t1 both pedestrians tend to maintain their new

constant velocities until t = 6, and thus it holds that ˙̄x(t) = ˙̄x(t1) for all t ∈ [t1, 6].
Taking into account that ū(·) is a constant on [0, 6] and that ˙̄x(·) is constant on the
intervals [0, t1[ and [t1, 6], we get that the vector function η(·) is constant on [0, t1[
and [t1, 6], i.e.,

η(t) =
{

η(0) for a.e. t ∈ [0, t1[ including t = 0,
η(t1) for a.e. t ∈ [t1, 6] including t = t1.

(61)

If η(t) = η(t1) > 0 a.e. on [t1, 6], then it follows from (2) that x̄2(t)− x̄1(t) = 2R = 6
for all t ∈ [t1, 6], and hence it shows that the optimal motion stays on the boundary
of the state constraints (50) on the entire interval [t1, 6]. Using further (56), (57),
x̄2(t) − x̄1(t) = 6 for all t ∈ [t1, 6], (61), and the first equation in (58) gives us the
relationships

x2(t) − x1(t) = 12 + 2

(∫ t1

0
η(τ)dτ +

∫ t

t1
η(τ)dτ

)
+ t

(
s2ū

2 − s1ū
1
)

⇐⇒ 6 = 12 + 2 (t − t1) η(t1) + t
(
s2ū

2 − s1ū
1
)

⇐⇒ 12 + t1
(
s2ū

2 − s1ū
1
)

= 12 + 2 (t − t1) η(t1) + t
(
s2ū

2 − s1ū
1
)

⇐⇒ 0 = (t − t1)
[
2η(t1) − 8ū1 + 2ū2

]
, t ∈ [t1, 6],

which yield 2η(t1) − s1ū1 + s2ū2 = 0. Combining this with the construction of the
control set U where ū1 = ū2, we calculate the value of η(·) at the contact time t = t1
by η(t1) = 3ū2 = 3ū1. Recalling that ˙̄x2(t1) = ˙̄x1(t1) in this setting and remembering
that t1 = (ū2)−1 by (54) or (58) and that η(t1) = 3ū2 allows us to express the value
of cost functional (51) at (x̄, ū) by

J [x̄, ū] = 1

2

[( − 60 − (6 − t1)η(t1)+6 · 8ū2)2+( − 48+(6 − t1)3ū
2+6 · 2ū2)2

]

= 1

2

[(
30ū2 − 57

)2 + (
30ū2 − 51

)2]
.

Minimizing the latter function of ū2 subject to the constraint ū2 ≥ 1
6 , which follows

from the second inequality in (58), we get the optimal control value ū2 = 3240
1800 = 1.8.

Let us now calculate all the other elements of the optimal solution with the cor-
responding values of dual elements from the necessary optimality conditions. It
follows from the first part of the maximization condition (6) that we can choose
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ψ(t) = ū(t) =
(
1.8
1.8

)
and hence arrive at q(t) =

(
q1(t)
q2(t)

)
≡

(
0.225
0.9

)
by the second

part of (6) and then calculate

p(t) =
(
p1(t)
p2(t)

)
=

(
p1(6)
p2(6)

)

= −λx̄(6) − η(6)x1∗

= −
(− 60 − (6 − t1) · 3ū1 + 6 · 8 · ū1

− 48 + (6 − t1) · 3ū2 + 6 · 2ū2
)

− η(t1)x
1∗

= −
(− 60 − (6 − t1) · 3ū1 + 6 · 8 · ū1

− 48 + (6 − t1) · 3ū2 + 6 · 2ū2
)

− 3

(
1.8

−1.8

)

=
(− 2.4

2.4

)
for all t ∈ [0, 6]

due to (4) and (7). Then it follows from γ ([t, 6]) = p(t) − q(t) by (5) that

γ
([t, 6]) =

(−2.6
1.5

)
for 0.5556 ≈ t1 ≤ t ≤ 6,

which shows that the optimal sweepingmotion hits the boundary of the state constraints
at t1 ≈ 0.5556 and then stays there until T = 6.

The next example concerns the case of three participants in the pedestrian traffic
flow model.

Example 4.2 (Solving the controlled pedestrian traffic flow model with three partici-
pants) Consider the optimal control problem in (49) and (51) with the following data:
n = 3, s1 = 8, s2 = 4, s3 = 2, T = 6, R = 3, x01 = −60, x02 = −48, x03 =
−42, c j = −2R for j = 1, 2, 3, and the compact convex control set U given by

U := {
(u1, u2, u3) ∈ R

3 : max{|u1|, |u2|, |u3|} ≤ 2
}
.

Following the procedure outlined above, we first obtain x02 − x01 = 12 > 6 = 2R
and x03 − x02 = 6 = 2R. Then it is obvious that t2 = 0, and t1 is calculated from
(54) by

t1 = 6

η2(0) − 4ū2 + 8ū1
≤ 6.

Hence Θ1 = t2 = 0, and we get for t ∈ [0, t1[ that
˙̄x1(t) = 8ū1, ˙̄x2(t) = −η2(0) + 4ū2, ˙̄x3(t) = η2(0) + 2ū3,

x̄1(t) = − 60 + 8t ū1,

x̄2(t) = − 48 − tη2(0) + 4t ū2,

x̄3(t) = − 42 + tη2(0) + 2t ū3.
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When t ∈ [t1, 6], the corresponding representations of the velocities and the trajecto-
ries are

˙̄x1(t) = − η1(t1) + 8ū1, ˙̄x2(t) = − η2(t1) + η1(t1) + 4ū2, ˙̄x3(t) = η2(t1) + 2ū3,

x̄1(t) = − 60 − (t − t1)η
1(t1) + 8t ū1,

x̄2(t) = − 48 − tη2(0) + (t − t1)
(
η1(t1) − η2(t1)

) + 4t ū2,

x̄3(t) = − 42 + tη2(0) + (t − t1)η
2(t1) + 2t ū3.

It follows from (55) and the obvious condition η1(0) = 0 that

2η1(t1) = η2(t1) − 4ū2 + 8ū1, 2η2(0) = −2ū3 + 4ū2, and

2η2(t1) = η1(t1) − 2ū3 + 4ū2.

Using (3) together with η1(t1) > 0 yields 〈x1∗, q(t1)〉 = c1 and hence q1(t1)−q2(t1) =
c1 = −6. Then we can rewrite the above expressions for η(·) and the formula for t1
as

t1 = 6

8ū1 − 2ū2 − ū3
,

η2(0) = 2ū2 − ū3,

η1(t1) = 16

3
ū1 − 4

3
ū2 − 2

3
ū3,

η2(t1) = 8

3
ū1 + 4

3
ū2 − 4

3
ū3. (62)

Since pedestrians 2 and 3 are in contact at the beginning and since we do not know
whether η2(0) > 0 or η2(0) = 0, let consider the following two cases:
Case 1 η2(0) > 0. Then it follows from (3) that

〈x2∗, q(0)〉 = c2, i.e., q2(0) − q3(0) = −6.

Combining this with the equality q1(t1) − q2(t1) = c1 = −6 obtained above, we can

choose q(t) =
⎛

⎝
1
7
13

⎞

⎠ and then deduce from the formula for ψ(t) in (6) that

ψ(t) =
⎛

⎝
ψ1(t)
ψ2(t)
ψ3(t)

⎞

⎠ =
⎛

⎝
8q1(t)
4q2(t)
2q3(t)

⎞

⎠ on [0, 6].
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Thus ψ(t) ≡
⎛

⎝
8
28
26

⎞

⎠ on [0, 6]. Now the maximization condition (6) gives us the

optimal control ū(t) =
⎛

⎝
2
2
2

⎞

⎠, which lies on the boundary of the control set U . The

corresponding optimal contact time and the optimalmotion dynamics are, respectively,
t1 = 0.6 and

(
x̄1(t), x̄2(t), x̄3(t)

) =
⎧
⎨

⎩

(16t − 60, 6t − 48, 6t − 42) for t ∈ [0, t1[,(
28

3
t − 56,

22

3
t − 48.8,

34

3
t − 45.2

)
for t ∈ [t1, 6].

Note also that γ ([t, 6]) =
⎛

⎝
− 23

3− 13
15

− 457
15

⎞

⎠ when t ∈ [t1, 6] for λ = 1. Using (5) and

calculating q(t) as above, we arrive then at the following calculation of p(·):

p(t) ≡ p(T ) = −x̄(T ) −
∑

i∈I (x̄(T ))

ηi (T )xi∗

= −
⎛

⎝
28
3 · 6 − 56

22
3 · 6 − 48.8
34
3 · 6 − 45.2

⎞

⎠ − η1(t1)

⎛

⎝
1

−1
0

⎞

⎠ − η2(t1)

⎛

⎝
0
1

−1

⎞

⎠

=
⎛

⎝
− 20

3
92
15− 262
15

⎞

⎠ .

Case 2 η2(0) = 0. In this case, we have 2ū2 = ū3, and it follows from (62) that

t1 = 6

8ū1 − 4ū2
≤ 6,

η2(0) = 0,

η1(t1) = 16

3
ū1 − 8

3
ū2,

η2(t1) = 8

3
ū1 − 4

3
ū2.

Since η1(t1) > 0 and η2(t1) > 0, we get 2ū1 > ū2, and hence we can choose

q(t) =
⎛

⎝
1
7
13

⎞

⎠ by (3). The maximization condition (6) gives us ū1 = ū2 = ū3 = 2,

which contradicts the relationships 2ū1 > ū2 = ū3
2 obtained above. This tells us that

the situation in Case 2 cannot be realized, and therefore the calculations in Case 1
completely solve the problem under consideration in this example.
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5 Conclusions

This paper presents applications of recently obtained results on optimal control of per-
turbed sweeping processes to two practical models known as the mobile robot model
with obstacle and the pedestrian traffic flowmodel through a doorway. We see that the
approach and developments of [19], based on advanced variational analysis and the
method discrete approximations, provide efficient tools to determine optimal solutions
to naturally formulated control versions of these models via new necessary optimality
conditions expressed entirely in terms of the model data. Nontrivial numerical exam-
ples presented in the paper give us exact solutions of the control problems formulated
for the models under consideration in the case of lower numbers of participants and
illustrate the scheme of applications of the obtained necessary optimality conditions
in more general settings.

Our further research goals concerning these models include developing efficient
numerical algorithms to solve the optimal control problems for them with large
numbers of participants. It could be done, in particular, by using an appropriate dis-
cretization and employing numerical algorithms of finite-dimensional optimization
to the discrete-time problems obtained in this way. We also believe that the devel-
oped necessary optimality conditions for the perturbed sweeping processes would be
useful to investigate other practical model with a sweeping process dynamics that fre-
quently appear in various branches of mechanics, engineering, economics, behavioral
sciences, etc.
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