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Abstract—This work considers the problem of mitigating
information leakage between communication and sensing in
systems jointly performing both operations. Specifically, a discrete
memoryless state-dependent broadcast channel model is studied
in which (i) the presence of feedback enables a transmitter to
convey information, while simultaneously performing channel
state estimation; (ii) one of the receivers is treated as an eaves-
dropper whose state should be estimated but which should remain
oblivious to part of the transmitted information. The model
abstracts the challenges behind security for joint communication
and sensing if one views the channel state as a key attribute,
e.g., location. For independent and identically distributed states,
perfect output feedback, and when part of the transmitted
message should be kept secret, a partial characterization of the
secrecy-distortion region is developed. The characterization is
exact when the broadcast channel is either physically-degraded
or reversely-physically-degraded. The partial characterization is
also extended to the situation in which the entire transmitted
message should be kept secret. The benefits of a joint approach
compared to separation-based secure communication and state-
sensing methods are illustrated with binary joint communication
and sensing models.

Index Terms—Secure joint communication and sensing, secure
integrated sensing and communication, physical layer security,
future communication networks.

I. INTRODUCTION

The vision for next generation mobile communication net-

works includes a seamless integration of the physical and

digital world. Key to its success is the network’s ability

to automatically react to changing environments thanks to
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the tight integration of communication and sensing [2]. For

instance, a millimeter wave (mmWave) joint communication

and radar system can be used to detect a target or to estimate

crucial parameters relevant to communication and adapt the

communication scheme accordingly [3]. Integrated sensing and

communication (ISAC), also known as joint communication

and sensing, techniques are envisioned more broadly as key

enablers for a wide range of applications, including connected

vehicles and drones [4].

Several information-theoretic studies of ISAC have been ini-

tiated, drawing on existing results for joint communication and

state estimation [5]–[7]. Motivated by the integration of com-

munication and radar for mmWave vehicular applications, [8]

considers a model in which messages are encoded and sent

through a state-dependent channel with generalized feedback

both to reliably communicate with a receiver and to estimate

the channel state by using the feedback and transmitted code-

words. The optimal trade-off between communication rate and

channel-state estimation distortion is then characterized for

memoryless ISAC channels and independent and identically

distributed (i.i.d.) channel states that are causally available

at the receiver and estimated at the transmitter by using a

strictly causal channel output. Follow up works have extended

the model to multiple access channels [9] and broadcast

channels [8].

The nature of ISAC mandates the use of a single modality

for the communication and sensing functions so that sensing

signals carry information, which then creates situations in

which undesirable leakage of information may occur. For

example, a target illuminated for ranging has the ability to

gather potentially sensitive information about the transmitted

message [10]. As both sensing and secrecy performance are

measured with respect to the signal received at the sensed

target, there exists a trade-off between the two [3], [11]. To

capture and characterize this trade-off, we extend the ISAC

model in [8] by introducing an eavesdropper in the network.

The objective of the transmitter is then to simultaneously

communicate reliably with the legitimate receiver, estimate

the channel state, and hide a part of the message from

the eavesdropper. The channel state is modeled as a two-

component state capturing the characteristics of each individual

receiver, the feedback is modeled as perfect output feedback

for simplicity, and the transmitted message is divided into two

parts, only one of which should be kept secret (a setup called

partial secrecy in [12]). The proposed secure ISAC model can

be viewed as an extension of the wiretap channel with feedback

models [13]–[21].
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A. Summary of Contributions

Our problem formulation introduces a strong secrecy con-

straint by considering an eavesdropper whose channel pa-

rameters are estimated at the transmitter, but that should be

kept ignorant of part of the transmitted message. Even if

the state sequence on which the ISAC channel depends is

i.i.d., strictly causal channel output feedback improves the

secrecy performance. A summary of the main contributions

is as follows:

• We develop inner and outer bounds on the secrecy-

distortion region of the secure ISAC model under partial

secrecy when i.i.d. channel states are causally available

at the corresponding receivers. Our achievability proof

leverages the output statistics of random binning (OSRB)

method [22]–[24]. Our outer bound also holds in the

presence of noisy generalized output feedback.

• We simplify the inner and outer bounds on the secrecy-

distortion region when the ISAC channel is physically-

degraded or reversely-physically-degraded such that the

inner and outer bounds match.

• We develop inner and outer bounds on the secrecy-

distortion region under full secrecy, when the entire trans-

mitted message is kept secret from the eavesdropper. We

characterize the exact secrecy-distortion region under full

secrecy when the ISAC channel is physically-degraded or

reversely-physically-degraded.

• We study a binary noiseless ISAC channel with multi-

plicative Bernoulli states to illustrate how secure ISAC

methods may outperform separation-based secure com-

munication and state-sensing methods. We also consider

noisy more-capable ISAC channels to illustrate the effect

of noise on an achievable strong secrecy-distortion region.

B. Organization

In Section II, we introduce our model for secure ISAC under

partial secrecy. In Section III, we provide inner and outer

bounds on the secrecy-distortion region, specializing them for

physically-degraded and reversely-physically-degraded ISAC

channels and showing that the bounds match for such channels.

In Section IV, we specialize the inner and outer bounds to

the full secrecy case. In Section V, we illustrate the benefits

of integrating security by design into ISAC by evaluating the

rate region for a degraded and noiseless ISAC channel with

multiplicative Bernoulli states. We also evaluate an achievable

region for a noisy ISAC channel with a state-dependent input

transmitted through a binary erasure channel (BEC) for the

main channel and a binary symmetric channel (BSC) for

the eavesdropper’s channel, respectively, by establishing the

parameter range for which the ISAC channel is more-capable.

C. Notation

Upper case letters represent random variables and corre-

sponding lower case letters their realizations. A random vari-

able X has probability distribution PX . A calligraphic letter

X denotes a set with cardinality |X |. A subscript i denotes the

position of a variable in a sequence of variables represented

Ŝn
j = Estj(X

n, Zn)

PY1Y2Z|S1S2X PS1S2

S1,i

S2,i

M̂ = Dec(Y n
1 , Sn

1 )

Eve

S1,i

S2,i

Xi

Y1,i

Y2,i

M̂ =
(
M̂1, M̂2

)

M = (M1,M2)

Xi = Enci(M,Zi−1)

Zi−1

Fig. 1. ISAC model under partial secrecy, where only M2 should be kept
secret from Eve, for j = 1, 2 and i = [1 : n]. We mainly consider ISAC
with perfect output feedback, where Zi−1 = (Y1,i−1, Y2,i−1).

by a superscript, e.g., Xn = X1, X2, . . . , Xi, . . . , Xn. Xn\i

denotes the sequence X1, X2, . . . , Xi−1, Xi+1, . . . , Xn and

Xk
i denotes Xi, Xi+1, . . . , Xk for integers i ≤ k ≤ n. [1 : J ]

denotes the set {1, 2, . . . , J} for an integer J ≥ 1, and

X ∼ Unif[1 : J ] represents a uniform distribution over the

set [1 : J ]. Hb(x) = −x log x − (1 − x) log(1 − x) with

natural logarithms is the binary entropy function. X ∼ Bern(p)
represents a Bernoulli random variable X with probability of

success p. BSC(β) denotes a BSC with crossover probability

β and BEC(γ) denotes a BEC with erasure probability γ
and erasure symbol e. The ∗ operator denotes the operation

p ∗ β = p(1− β) + (1− p)β, ⊕ is the modulo-2 addition, and

we define [a]+ = max{a, 0} for a ∈ R.

II. PROBLEM DEFINITION

We consider the secure ISAC model shown in Fig. 1,

which includes a transmitter equipped with a state estimator, a

legitimate receiver, and an eavesdropper (Eve). The transmitter

attempts to reliably transmit a uniformly distributed message

M = (M1,M2) ∈ M = M1 × M2 through a mem-

oryless state-dependent ISAC channel with known statistics

PY1Y2Z|S1S2X and i.i.d. state sequence (Sn
1 , S

n
2 ) ∈ Sn

1 × Sn
2

generated according to a known joint probability distribution

PS1S2
. The transmitter calculates the channel inputs Xn as

Xi = Enci(M,Zi−1) ∈ X for all i = [1 : n], where Enci(·)
is an encoding function and Zi−1 ∈ Zi−1 is the delayed

channel output feedback. The legitimate receiver that observes

Y1,i ∈ Y1 and S1,i ∈ S1 for all channel uses i = [1 : n] should

reliably decode both M1 and M2 by forming the estimate

M̂ = Dec(Y n
1 , Sn

1 ), where Dec(·) is a decoding function. The

eavesdropper that observes Y2,i ∈ Y2 and S2,i ∈ S2 should be

kept ignorant of M2. Finally, the transmitter estimates the state

sequence (Sn
1 , S

n
2 ) as Ŝn

j = Estj(X
n, Zn) ∈ Sj

∧n

for j = 1, 2,

where Estj(·, ·) is an estimation function. All sets S1, S2, Ŝ1,

Ŝ2, X , Y1, Y2, and Z are assumed finite.

This channel model may serve as an abstraction of ISAC

with a multi-functional phased array, in which a transmitter

exploits backscattered waveforms (the channel output feedback

Zi−1) to infer information about the states (S1,i and S2,i) that

affect the transmission in the directions of a legitimate receiver

and an eavesdropper.
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For simplicity, we consider the perfect output feedback case,

in which for all i = [2 : n] we have

Zi−1 = (Y1,i−1, Y2,i−1). (1)

Although the perfect output feedback is explicitly used in our

achievability proofs, some of our converse results hold for

generalized feedback. Furthermore, the fundamental insights

gained from our results can be used to tackle generalized

feedback scenarios, for which identifying closed-form charac-

terizations becomes challenging; see, e.g., [18]. We next define

the secrecy-distortion region for the problem of interest.

Definition 1. A secrecy-distortion tuple (R1, R2, D1, D2) is

achievable under partial secrecy if, for any δ > 0, there

exist n ≥ 1, one encoder, one decoder, and two estimators

Estj(X
n, Y n

1 , Y n
2 ) = Ŝn

j , j ∈ {1, 2}, such that

1

n
log |Mj | ≥ Rj − δ for j=1, 2 (rates) (2)

Pr
[
(M1,M2) ̸= (M̂1, M̂2)

]
≤ δ (reliability) (3)

I(M2;Y
n
2 |Sn

2 ) ≤ δ (strong secrecy) (4)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δ for j=1, 2 (distortions) (5)

where dj(s
n, ŝn) = 1

n

∑n

i=1 dj(si, ŝi) for j=1, 2 are bounded

per-letter distortion metrics.

The secrecy-distortion region RPS,POF is the closure of the

set of all achievable tuples under partial secrecy and perfect

output feedback. ♢

The use of per-letter distortion metrics dj(·, ·) in conjunction

with i.i.d. states reduces the problem to the characterization of

a rate distortion region [8], [9]; in fact, past observations are

independent of present and future ones, lending the transmitter

no state prediction ability to adapt its transmission on the fly.

Analyzing ISAC models with memory leads to conceptually

different results; see, e.g., [25]–[27]. In practical ISAC ap-

plications, only a part of the channel parameters might be

relevant for the transmitter [28]. Our results can be extended

for such cases by adapting the estimator functions used and

not requiring an estimation of the exact state.

Remark 1. The strong secrecy condition (4) is equivalent

to I(M2;Y
n
2 , Sn

2 ) ≤ δ since the transmitted message is

independent of the state sequence and I(M2;Y
n
2 , Sn

2 ) =
I(M2;Y

n
2 |Sn

2 ).

III. ISAC UNDER PARTIAL SECRECY

We next present inner and outer bounds on the secrecy-

distortion region RPS,POF.

Proposition 1 (Inner Bound). The region RPS,POF includes

the union over all joint distributions PUVX of the rate tuples

(R1, R2, D1, D2) such that

R1 ≤ I(U ;Y1|S1) (6)

R2 ≤ min{R′
2, (I(V ;Y1|S1)−R1)} (7)

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (8)

where

PUVXY1Y2S1S2
= PU |V PV |XPXPS1S2

PY1Y2|S1S2X , (9)

R′
2 = [I(V ;Y1|S1, U)− I(V ;Y2|S2, U)]+

+H(Y1|Y2, S2, V ) (10)

and one can apply the per-letter estimators

Estj(x, y1, y2) = ŝj for j = 1, 2 such that

Estj(x, y1, y2)

= argmin
s̃∈Ŝj

∑

sj∈Sj

PSj |XY1Y2
(sj |x, y1, y2) dj(sj , s̃). (11)

One can limit |U| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}+2 (12)

and |V| to

(min{|X |, |Y1|·|S1|, |Y2|·|S2|}+2)

· (min{|X |, |Y1|·|S1|, |Y2|·|S2|}+1). (13)

Proposition 1 can be interpreted as follows. The rate R1 in

(6) represents a rate of a public message that could be decoded

by the eavesdropper. The rate R′
2 in (10) represents the rate of

a secret message superposed to the public message. R′
2 is itself

the sum of two terms: a first term representing a wiretap-coding

rate against an eavesdropper observing the public message; a

second term representing a secret key rate extracted from the

feedback channel and used as a one-time pad. The operator

[·]+ in (10) indicates that the decoder should have an advantage

over the eavesdropper to apply wiretap-coding methods. The

minimum operator in (7) merely indicates that the secrecy

rate cannot exceed the reliable communication rate. Most

importantly, Proposition 1 suggests that secure ISAC systems

benefit from the inherent presence of the feedback link, which

allows the transmitter to develop situational awareness and

extract secret keys from the wireless environment.

Proof of Proposition 1: We use the OSRB method [23],

[24] for the achievability proof, applying the steps in [29,

Section 1.6]; see also [30]. Following [23], we shall first

define an operationally dual source coding problem to the

original ISAC problem, along with a coding scheme called

Protocol A, for which reliability and secrecy analyses are

conducted. These analyses consist of imposing bounds on

the sizes of the bins assigned to n-letter sequences such that

either a sequence reconstruction constraint is satisfied via [23,

Lemma 1] by using a Slepian-Wolf [31] decoder, or mutual

independence and uniformity constraints are satisfied via [23,

Theorem 1] by using privacy amplification. We shall next

define a randomized coding scheme, called Protocol B, for

the original ISAC problem and show that the joint probability

distributions induced by Protocols A and B are almost equal,

allowing us to invert the source code proposed for Protocol A

to construct a channel code for Protocol B. The achievability

proof shall finally follow by derandomizing Protocol B and

chaining multiple uses of Protocol B over several blocks

such that chaining does not affect the secrecy and reliability

performance.

Protocol A (dual source coding problem): We consider a se-

cret key agreement model for an i.i.d. source with distribution
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PUVXY1Y2S1S2
as in (9), in which a source encoder observing

(Un, V n, Xn) ∈ Un × Vn × Xn assigns random bin indices

M ∈ M = M1 × M2 and F ∈ F to its observations. The

index pair M = (M1,M2) should be reliably reconstructed at a

legitimate source receiver observing (Y n
1 , Sn

1 ) ∈ Yn
1 ×Sn

1 and

F to satisfy (3), while keeping M2 secret from an eavesdropper

observing (Y n
2 , Sn

2 ) ∈ Yn
2 × Sn

2 and F to satisfy the strong

secrecy constraint (4). Furthermore, we assume that PUV |X

has been chosen so that the distortion constraints (5) can

be satisfied, i.e., there exist associated per-letter estimators

Estj(x, y1, y2) = Ŝj for j = 1, 2 such that

E[dj(S
n
j ,Est

n
j (X

n, Y n
1 , Y n

2 ))] ≤ Dj + ϵ′n (14)

where ϵ′n > 0 and ϵ′n → 0 when n → ∞.

Formally, we construct Protocol A as follows. To each

sequence un, we independently and uniformly assign two

random bin indices (Fu,Wu) such that Fu ∈ [1 : 2nR̃u ]
and Wu ∈ [1 : 2nRu ]. Furthermore, to each sequence vn,

we independently and uniformly assign three random indices

(Fv,Wv, Lv) such that Fv ∈ [1 : 2nR̃v ], Wv ∈ [1 : 2nRv ], and

Lv ∈ [1 : 2nRv ]. Finally, to each sequence yn1 , we indepen-

dently and uniformly assign a random index Ly1
∈ [1 : 2nRy1 ]

with Ry1
= Rv. The index pair F = (Fu, Fv) shall be

transmitted publicly to allow the reliable reconstruction of the

source encoder observations at the legitimate source receiver.

The index tuple W = (Wu,Wv, Lv) represents indices that

can then be reliably computed at the source receiver, and we

shall impose a secrecy constraint on Wv. The index Ly1
, which

is derived from yn1 and therefore known at both the source

encoder and the legitimate receiver, shall also be subject to a

secrecy constraint. We finally set

M1 = Wu and M2 = (Wv, Lv ⊕ Ly1
). (15)

We next develop conditions on the bin sizes to ensure the re-

quired reliability and secrecy constraints. Using a SW decoder,

the expected value (over the random bin assignments) of the

probability of incorrectly reconstructing Un from (Y n
1 , Sn

1 , Fu)
vanishes exponentially fast when n → ∞ if we have [23,

Lemma 1]

R̃u > H(U |Y1, S1). (16)

Similarly, the probability of incorrectly reconstructing V n from

(Y n
1 , Sn

1 , Fv, U
n) vanishes exponentially fast if

R̃v > H(V |Y1, S1, U). (17)

Using privacy amplification [23, Theorem 1], the expected

value of the variational distance between the joint probability

distributions Unif[1: 2nRu ] · Unif[1: 2nR̃u ] and PWuFu
vanishes

exponentially fast when n → ∞ if

Ru + R̃u < H(U). (18)

With a slight abuse of terminology, we shall concisely say that

the indices Fu and Wu then become almost independent and

uniformly distributed. Similarly, the indices Fv and Wv become

almost independent of (Y n
2 , Sn

2 , U
n) and uniformly distributed

if

Rv + R̃v < H(V |Y2, S2, U) (19)

and the index Ly1
becomes almost independent of(

Y n
2 , Sn

2 , V
n, Un

)
and uniformly distributed if

Ry1
= Rv < H(Y1|Y2, S2, V, U)

(a)
= H(Y1|Y2, S2, V ) (20)

where (a) follows because U − V − (Y1, Y2, S2) forms a

Markov chain. Note that Lv ⊕ Ly1
is then also almost inde-

pendent of
(
Y n
2 , Sn

2 , V
n, Un

)
and uniformly distributed.

Finally, (Fu,Wu, Fv,Wv, Lv) are almost mutually indepen-

dent and uniformly distributed if

Ru + R̃u +Rv + R̃v +Rv < H(U, V ). (21)

Assuming I(V ;Y1, S1|U)− I(V ;Y2, S2|U) > 0 and ϵ > 0
small enough, a specific choice of rates that satisfies all

conditions above is

R̃u = H(U |Y1, S1) + ϵ (22)

Ru = H(U)−H(U |Y1, S1)− 2ϵ = I(U ;Y1|S1)− 2ϵ (23)

R̃v = H(V |Y1, S1, U) + ϵ (24)

Rv = H(V |Y2, S2, U)−H(V |Y1, S1, U)− 2ϵ

= I(V ;Y1|S1, U)− I(V ;Y2|S2, U)−2ϵ (25)

Rv = min{(H(Y1|Y2, S2, U, V )− ϵ),

(H(U, V )−H(U)−H(V |Y2, S2, U))} (26)

= min{(H(Y1|Y2, S2, V )− ϵ), I(V ;Y2|S2, U)} (27)

where we have repeatedly used the independence of

(U, V ) with (S1, S2) to simplify the expressions. If

I(V ;Y1, S1|U)− I(V ;Y2, S2|U)≤0, one should set

Rv = 0

Rv = min{H(Y1|Y2, S2, V ), I(V ;Y1|S1, U)} − ϵ. (28)

Combining the above of choices with our definition R1 = Ru

and R2 = Rv + Rv, we recover the rate conditions in

Proposition 1, satisfying the reliability condition (3) and

the secrecy condition (4). Finally, we consider the distor-

tion constraints (5) on the channel state estimations. All

(un, vn, xn, yn1 , y
n
2 , s

n
1 , s

n
2 ) tuples are in the jointly typical

set with high probability and, by applying the law of total

expectation to bounded distortion metrics and from the typical

average lemma [32, pp. 26], distortion constraints (5) are

satisfied. Furthermore, one can use the deterministic per-letter

estimators in (11) without loss of generality by adapting

the proof of [8, Lemma 1], upon replacing (S,Z, Ŝ, d) with

(Sj , (Y1, Y2), Ŝj , dj), respectively, since Ŝj − (X,Y1, Y2)−Sj

forms a Markov chain for all j = 1, 2.

This concludes the construction and analysis of Protocol A.

Note that Protocol A induces a joint probability distribution

PM1M2FXnPSn
1
Sn
2
PY n

1
Y n
2
|Sn

1
Sn
2
Xn that is asymptotically indis-

tinguishable in variational distance from a distribution of the

form

Unif[1 : 2n(R̃u+R̃v)] · Unif[1 : 2n(Ru+Rv+Rv)]

· PSn
1
Sn
2
PXn|M1M2FPY n

1
Y n
2
|Sn

1
Sn
2
Xn . (29)

Protocol B (random channel coding for the original prob-

lem): We now transform Protocol A into another protocol

that is suited to the original ISAC problem. Assume that
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the index pair F = (Fu, Fv) is generated uniformly at ran-

dom and disclosed to all parties ahead of the transmission

and that the transmitter and the receiver share a secret key

K ∈ Unif[1 : 2Ry1 ]. Then, the transmitter encodes a

uniformly distributed message M1 = Wu and another uni-

formly distributed message M2 = (Wv, Lv ⊕ K) accord-

ing to the distribution PXn|M1M2F , defined by Protocol A.

Note that Protocol B induces a joint probability distribution

as in (29), which is, as argued above, asymptotically in-

distinguishable in variational distance from the distribution

PM1M2FXnPSn
1
Sn
2
PY n

1
Y n
2
|Sn

1
Sn
2
Xn , induced by Protocol A. In

other words, Protocol B guarantees the exact same asymptotic

performance as Protocol A in terms of secrecy, reliability, and

distortions subject to the same rate constraints.

Derandomizing and Chaining Protocol B. To conclude

the achievability, two aspects of Protocol B remain to be fixed

to obtain a code for the original ISAC model: i) the public

transmission of the index F should be removed; and ii) the

use of the secret key K should be removed. Following [23],

one can argue that there exists a fixed index F = f such

that Protocol B retains its properties, eliminating the need for

a public discussion. We skip this standard step for brevity.

Most importantly, note that Protocol A allows us to generate a

secret key Ly1
. Consequently, if one were to use Protocol B in

a block Markov fashion chained over multiple blocks, the key

generated in block b ≥ 1 can be used as the key for one-time

padding in block (b+ 1), removing the need for a secret key

in Protocol B.

Formally, assume that we repeat Protocol B over B blocks

indexed by b ∈ [1 : B]. In every block b, we denote the

messages by a superscript b. In particular, the transmitter

attempts to transmit messages W b
u , W b

v , and Lb
v, as well as

generate a key Lb
y1

. In this section alone, we also denote a

sequence of variables across blocks k through ℓ (ℓ ≥ k) by

the superscript k : ℓ, e.g., Mk:ℓ
1 . In the first block, no message

is transmitted and only a key L1
y1

is generated. In every

subsequent block b ∈ [2 : B], the encoder uses Protocol B

to transmit a public message M b
1 = W b

u and a secret message

M b
2 = (W b

v , L
b
v ⊕ Lb−1

y1
), and generates a key Lb

y1
. A union

bound shows that the asymptotic reliability performance

lim
n→∞

Pr
[{

M̂1:B
1 ̸= M1:B

1 or M̂1:B
2 ̸= M1:B

2

}]
(30)

is not affected by the chaining. The proof that secrecy is not

affected by the chaining requires a bit more care, as we need

to show that I(W 1:B
v , L1:B

v ;Y1:B
2 ,S1:B

2 ), where the bold-face

letters represent n-letter random variables, vanishes across all

blocks. This can be done by adapting the approach of [33] and

[34] as we show next. To simplify notation, we set W b = W b
v ,

Lb = Lb
v, Kb = Lb

y1
, and Z

b = (Yb
2,S

b
2). We have

I(W 1:B , L1:B ;ZB)

=

B−1∑

b=1

(
I(W 1:B , L1:B ;Z1:b+1)− I(W 1:B , L1:B ;Z1:b)

)

+ I(W 1:B , L1:B ;Z1)

(a)
=

B−1∑

b=1

(
I(W 1:B , L1:B ;Z1:b+1)− I(W 1:B , L1:B ;Z1:b)

)

where (a) follows since I(W 1:B , L1:B ;Z1) =
I(W 1, L1;Z1) = 0 by definition because no message is

transmitted in the first block. Focusing on every term in the

sum for a given index b, we obtain

I(W 1:B , L1:B ;Z1:b+1)− I(W 1:B , L1:B ;Z1:b)

= I(W 1:B , L1:B ;Zb+1|Z1:b)

= I(W 1:b+1, L1:b+1;Zb+1|Z1:b)

+ I(W b+2:B , Lb+2:B ;Zb+1|Z1:b,W 1:b+1, L1:b+1)

≤ I(W 1:b+1, L1:b+1,Z1:b;Zb+1)

+ I(W b+2:B , Lb+2:B ;Z1:b+1,W 1:b+1, L1:b+1)

(a)
= I(W 1:b+1, L1:b+1,Z1:b;Zb+1)

= I(W b+1, Lb+1;Zb+1)

+ I(W 1:b, L1:b,Z1:b;Zb+1|W b+1, Lb+1)

(b)
= I(W b+1, Lb+1;Zb+1)

+ I(W 1:b, L1:b,Z1:b;Zb+1,W b+1, Lb+1)

(c)

≤ I(W b+1, Lb+1;Zb+1)

+ I(W 1:b, L1:b,Z1:b;Zb+1,W b+1, Lb+1,Kb)

= I(W b+1, Lb+1;Zb+1) + I(W 1:b, L1:b,Z1:b;Kb)

+ I(W 1:b, L1:b,Z1:b;Zb+1,W b+1, Lb+1|Kb)

(d)
= I(W b+1, Lb+1;Zb+1) + I(W 1:b, L1:b,Z1:b;Kb)

(e)

≤ I(W b+1, Lb+1;Zb+1) + I(W 1:b, L1:b,Z1:b,Kb−1;Kb)

(f)
= I(W b+1, Lb+1;Zb+1)+I(W b, Lb,Zb,Kb−1;Kb) (31)

where (a) follows because the future messages

(W b+2:B , Lb+2:B) are independent of past messages and

observations (Z1:b+1,W 1:b+1, L1:b+1), (b) follows similarly

because future messages (W b+1, Lb+1) are independent of

past messages and observations (W 1:b, L1:b,Z1:b), (c) follows

by introducing the key Kb generated in block b as an attempt

to break dependence across blocks, (d) follows because

I(W 1:b, L1:b,Z1:b;Zb+1,W b+1, Lb+1|Kb) = 0 since

(W 1:b, L1:b,Z1:b)−Kb − (Zb+1,W b+1, Lb+1) (32)

forms a Markov chain, (e) follows by introducing Kb−1 in

an effort to break again dependence, and (f) follows since

I(W 1:b−1, L1:b−1,Z1:b−1;Kb|W b, Lb,ZbKb−1) = 0 since

(W 1:b−1, L1:b−1,Z1:b−1)− (W b, Lb,Zb,Kb−1)−Kb (33)

forms a Markov chain. Consequently, we obtain

I(W 1:B , L1:B ;ZB)

≤

B−1∑

b=1

(
I(W b+1, Lb+1;Zb+1) + I(W b, Lb,Zb,Kb−1;Kb)

)
.

All that remains to confirm is that in each block,

I(W b+1, Lb+1;Zb+1) and I(W b, Lb,Zb,Kb−1;Kb) are
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asymptotically vanishing. For the first term, note that

I(W b+1, Lb+1;Zb+1)

= I(W b+1;Zb+1) + I(Lb+1;Zb+1|W b+1)

(a)
= I(W b+1;Zb+1) + I(Lb+1;Zb+1,W b+1)

(b)

≤ I(W b+1;Zb+1) + I(Lb+1;Lb+1 ⊕Kb)

(c)
= I(W b+1;Zb+1) + nRv −H(Kb) (34)

where (a) follows by independence of W b+1 and Lb+1, (b)
follows because of the Markov chain Lb+1 − (Lb+1 ⊕Kb)−
(Zb+1,W b+1), and (c) follows because I(Lb+1;Lb+1⊕Kb) =
H(Lb+1 ⊕ Kb) − H(Lb+1 ⊕ Kb|Lb+1) ≤ nRv − H(Kb).
Looking back at Protocols A and B, the secrecy of W b+1

and the uniformity of Kb guarantee that I(W b+1;Zb+1) and

nRv − H(Kb) are exponentially vanishing as n → ∞;

see (19) and (20). Similarly, for the second term, the secrecy

of Kb guarantees directly that I(W b, Lb,Zb,Kb−1;Kb) is

exponentially vanishing as n → ∞; see (20).

Lastly, one can check that the chaining over B blocks has

a negligible effect on the rate of the coding scheme.

Proposition 2 (Outer Bound). The region RPS,POF is included

in the union over all joint distributions PUVX of the rate tuples

(R1, R2, D1, D2) satisfying

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (35)

R1 ≤ I(V ;Y1|S1) (36)

R2 ≤ min
{
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, V ),

I(V ;Y1|S1)−R1

}
(37)

where we have

PUVXY1Y2S1S2
= PU |V PV |XPXPS1S2

PY1Y2|S1S2X , (38)

Estj(x, y1, y2)

= argmin
s̃∈Ŝj

∑

sj∈Sj

PSj |XY1Y2
(sj |x, y1, y2) dj(sj , s̃). (39)

One can limit |V| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}+1. (40)

Remark 2. Since we consider perfect feedback as in (1),

the outer bound proposed in Proposition 2 is also valid for

the general ISAC problem depicted in Fig. 1, in which the

feedback Zi−1 can be a noisy version of (Y1,i−1, Y2,i−1).

Proof of Proposition 2: Assume that for some δn > 0
and n ≥ 1, there exist an encoder, decoder, and estimators

such that (2)-(5) are satisfied for some tuple (R1, R2, D1, D2).
Using Fano’s inequality and (3), we have

H(M |Y n
1 , Sn

1 )
(a)

≤ H(M |M̂)≤nϵn (41)

where (a) allows randomized decoding and ϵn=δn(R1+R2)+
Hb(δn)/n so that ϵn→0 if δn→0.

Let Vi ≜ (M1,M2, Y
i−1
1 , Si−1

1 , Y i−1
2 , Si−1

2 ) such that Vi −
Xi − (Y1,i, Y2,i, S1,i, S2,i) forms a Markov chain for all i ∈
[1 : n] by definition of the channel statistics.

Bound on R1: We have

nR1

(a)

≤ I(M1;Y
n
1 |Sn

1 ) + nϵn

≤

n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Sn

1 ) + ϵn
)

(b)

≤

n∑

i=1

(
H(Y1,i|S1,i)

−H(Y1,i|M1,M2, Y
i−1
1 , Si

1, Y
i−1
2 , Si−1

2 ) + ϵn
)

(c)
=

n∑

i=1

(
I(Vi;Y1,i|S1,i) + ϵn) (42)

where (a) follows by (41) and because M1 and Sn
1 are

independent, (b) follows since

Sn
1,i+1 − (M1,M2, Y

i−1
1 , Si

1)− Y1,i (43)

forms a Markov chain, and (c) follows from the definition of

Vi.

Bound on (R1 +R2): Similar to (42), we obtain

n(R1 +R2)
(a)

≤ I(M1,M2;Y
n
1 |Sn

1 ) + nϵn
(b)

≤

n∑

i=1

(
H(Y1,i|S1,i)

−H(Y1,i|M1,M2, Y
i−1
1 , Si

1, Y
i−1
2 , Si−1

2 ) + ϵn
)

(c)
=

n∑

i=1

(
I(Vi;Y1,i|S1,i) + ϵn) (44)

where (a) follows because (M1,M2, S
n
1 ) are mutually inde-

pendent and by (41), (b) follows since (43) forms a Markov

chain, and (c) follows from the definition of Vi.

Bound on R2: We obtain

nR2

(a)

≤ I(M2;Y
n
1 , Y n

2 , Sn
1 , S

n
2 ) + nϵn

≤ H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ) +H(Y n
2 , Sn

2 )−H(Y n
2 , Sn

2 |M2)

−H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ,M1,M2) + nϵn

≤ H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ) + I(Y n
2 , Sn

2 ;M2)

−
n∑

i=1

H(S1,i|Y
n
1 , Y n

2 , Sn
2 ,M1,M2, S

i−1
1 ) + nϵn

(b)

≤ H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ) + δn

−
n∑

i=1

H(S1,i|Y
i
1 , Y

i
2 , S

i
2,M1,M2, S

i−1
1 ) + nϵn

(c)
= H(Y n

1 , Sn
1 |Y

n
2 , Sn

2 ) + δn

−

n∑

i=1

H(S1,i|Y1,i, Y2,i, S2,i, Vi) + nϵn

≤

n∑

i=1

(
H(Y1,i, S1,i|Y2,i, S2,i)−H(S1,i|Y1,i, Y2,i, S2,i, Vi)

)

+ nϵn + δn (45)
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where (a) follows by (41), (b) follows by (4) and from

Remark 1, and because

(Y n
1,i+1, Y

n
2,i+1, S

n
2,i+1)− (Y i

1 , Y
i
2 , S

i
2,M1,M2, S

i−1
1 )− S1,i

(46)

forms a Markov chain, and (c) follows from the definition of

Vi.

Distortion Bounds: We have for j = 1, 2

(Dj+δn)
(a)

≥ E
[
dj(S

n
j , Ŝ

n
j )
]
=

1

n

n∑

i=1

E
[
dj(Sj,i, Ŝj,i)

]
(47)

where (a) follows by (5), which can be achieved by using the

deterministic per-letter estimators in (39).

We finally introduce a uniformly distributed time-sharing

random variable Q∼ Unif[1 : n] that is independent of other

random variables, and define Y1 = Y1,Q, S1 = S1,Q, Y2 =
Y2,Q, S2 = S2,Q, X = XQ, and V = (VQ,Q), so V − X −
(Y1, Y2, S1, S2) form a Markov chain. The expression for the

outer bound in (35)-(37) follows by letting δn → 0.

Cardinality Bounds: We use the support lemma [35,

Lemma 15.4] to prove the cardinality bound. This is a standard

procedure and we omit the proof for brevity.

A. Degraded and Reversely-Degraded Channels Under Partial

Secrecy

We next characterize the exact secrecy-distortion regions for

physically-degraded and reversely-physically-degraded ISAC

channels, which are defined below.

Definition 2. An ISAC channel PY1Y2|S1S2X is physically-

degraded if

PY1Y2S1S2|X = PY1Y2|S1S2XPS1S2

= PS1
PY1|S1XPY2S2|S1Y1

(48)

and is reversely-physically-degraded if the degradation order

is changed such that

PY1Y2S1S2|X = PY1Y2|S1S2XPS1S2

= PS2
PY2|S2XPY1S1|S2Y2

. (49)

♢

Intuitively, a physically-degraded ISAC channel corresponds

to a situation in which the observation Y2 of the eavesdropper

given its state S2 is a degraded version of the observation Y1

of the legitimate receiver given its state S1 with respect to the

channel input X .

Theorem 1. (Physically-degraded channels): For a physically-

degraded ISAC channel, RPS,POF is the union over all joint dis-

tributions PV X of the rate tuples (R1, R2, D1, D2) satisfying

(35)-(37), subject to (38) with constant U and (39). One can

limit |V| to (40).

Proof of Theorem 1: Since the outer bound given in

Proposition 2 does not assume any degradedness, the outer

bound terms for R1, R2, and Dj for j = 1, 2 follow from

Proposition 2.

The achievability proof for Theorem 1 follows by modifying

the construction and analysis of Protocol A in the proof of

Proposition 1. We next provide a sketch of the modifications

for a physically-degraded ISAC channel. First, Un is not used,

i.e., Un is eliminated from the achievability proof. Second, to

each vn we assign four random bin indices (Fv,Wv1 ,Wv2 , Lv)

such that Fv ∈ [1 : 2nR̃v ], Wv1 ∈ [1 : 2nRv1 ], Wv2 ∈

[1 : 2nRv2 ], and Lv ∈ [1 : 2nRv ] independently such that

M1 = Wv1 and M2 = (Wv2 , Lv). As in (17), we impose the

reliability constraint

R̃v > H(V |Y1, S1). (50)

As in (19) and (20), we impose the strong secrecy constraints

Rv2 + R̃v < H(V |Y2, S2), (51)

Rv < H(Y1|Y2, S2, V ). (52)

Finally, as in (21) we impose the mutual independence and

uniformity constraint

Rv1 +Rv2 + R̃v +Rv < H(V ). (53)

We remark that we have H(V |Y2, S2) ≥ H(V |Y1, S1) for

all physically-degraded ISAC channels, i.e.,

[I(V ;Y1|S1)− I(V ;Y2|S2)]
+

(a)
= H(V |Y2, S2)−H(V |Y1, S1) (54)

where (a) follows because V is independent of (S1, S2) and

since

V −X − (Y1, S1)− (Y2, S2) (55)

forms a Markov chain for such ISAC channels. Note that

R′
2,deg = [I(V ;Y1|S1)− I(V ;Y2|S2)]

+ +H(Y1|Y2, S2, V )

(a)
= H(V |Y2, S2)−H(V |Y1, S1) +H(Y1|Y2, S2, V )

(b)
= H(Y1, V |Y2, S2)−H(V |Y1, S1, Y2, S2)

= H(Y1|Y2, S2) + I(V ;S1|Y1, Y2, S2)

= H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, V ) (56)

where (a) follows by (54) and (b) follows from the Markov

chain in (55).

Applying Fourier-Motzkin elimination [36] to (50)-(53), for

any ϵ > 0 one can achieve

R1 = Rv1 = I(V ;Y1, S1)− 2ϵ = I(V ;Y1|S1)− 2ϵ (57)

and for any R1 that is less than or equal to (57), one can

simultaneously achieve

R2 = Rv2 +Rv

= min{R′
2,deg, (I(V ;Y1|S1)−R1)} − 3ϵ. (58)

The construction of Protocol B, the analysis of achievable

distortions and sufficiency of deterministic estimators, as well

as the derandomization and chaining analysis, follow as in the

proof of Proposition 1 and are omitted for brevity.

Theorem 2. (Reversely-physically-degraded Channels): For

a reversely-physically-degraded ISAC channel, RPS,POF is the
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union over all joint distributions PV X of the rate tuples

(R1, R2, D1, D2) satisfying (35), (36), and

R2 ≤ min
{
H(Y1|Y2, S2), I(V ;Y1|S1)−R1

}
(59)

subject to (38) with constant U and (39). One can limit |V| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}. (60)

Proof of Theorem 2: The achievability proof follows from

Proposition 1 after elimination of U from its proof, as in the

proof for Theorem 1. Upon removing U , we obtain from (7)

and (10) the inner bound

R2

(a)

≤ min
{
H(Y1|Y2, S2, V ), I(V ;Y1|S1)−R1

}

(b)
= min

{
H(Y1|Y2, S2), I(V ;Y1|S1)−R1

}
(61)

where (a) follows since V is independent of (S1, S2) and

because H(V |Y1, S1) ≥ H(V |Y2, S2) for all reversely-

physically-degraded ISAC channels because of the Markov

chain

V −X − (Y2, S2)− (Y1, S1) (62)

and (b) follows also because of the Markov chain in (62).

Since the outer bound in Proposition 2 does not assume

any degradedness, the outer bound terms for R1 and Dj for

j = 1, 2 follow from Proposition 2. Furthermore, by (37) we

obtain the outer bound

R2

(a)

≤ min
{
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2),

I(V ;Y1|S1)−R1

}

= min
{
H(Y1|Y2, S2), I(V ;Y1|S1)−R1

}
(63)

where (a) follows from the Markov chain in (62).

IV. ISAC UNDER FULL SECRECY

We next develop inner and outer bounds for the situa-

tion in which M = M2 should be kept secret from the

eavesdropper and M1 = ∅. The definitions of an achiev-

able secrecy-distortion tuple (R,D1, D2) and corresponding

secrecy-distortion region RPOF follow from Definition 1 by

eliminating (M1, R1) and replacing (M2, R2,RPS,POF) with

(M,R,RPOF), respectively.

Proposition 3. (Inner Bound): The region RPOF includes the

union over all joint distributions PV X of the rate tuples

(R,D1, D2) satisfying

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (64)

R ≤ min{R′′, I(V ;Y1|S1)} (65)

where

PV XY1Y2S1S2
= PV |XPXPS1S2

PY1Y2|S1S2X , (66)

R′′ = [I(V ;Y1|S1)− I(V ;Y2|S2)]
+

+H(Y1|Y2, S2, V ) (67)

and one can apply the deterministic per-letter estimators

Estj(x, y1, y2)

= argmin
s̃∈Ŝj

∑

sj∈Sj

PSj |XY1Y2
(sj |x, y1, y2) dj(sj , s̃). (68)

One can limit |V| to (40).

Proof of Proposition 3: The proof follows by eliminating

U in the proof of Proposition 1, so that R1 = Rv1 = 0 and by

imposing (50)-(53) after replacing Rv2 with Rv, since for this

case we have M = (Wv, Lv).

Proposition 4. (Outer bound): The region RPOF is included in

the union over all PX of the rate tuples (R,D1, D2) satisfying

(64) and

R ≤ min
{
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X),

I(X;Y1|S1)
}

(69)

where one can apply the deterministic per-letter estimators in

(68).

Proof of Proposition 4: The proof follows from the

proof of Proposition 2 by making appropriate replacements

for the full secrecy scenario, but we provide a new proof

with minor simplifications for completeness. Assume that for

some δn > 0 and n ≥ 1, there exist an encoder, a decoder,

and estimators such that all constraints imposed on the ISAC

problem with perfect output feedback are satisfied for some

tuple (R,D1, D2). We then obtain

nR
(a)

≤ I(M ;Y n
1 |Sn

1 ) + nϵn

≤

n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|Y

i−1
1 , Sn

1 ,M,Xi) + ϵn
)

(b)
=

n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|S1,i, Xi) + ϵn

)

=

n∑

i=1

(I(Xi;Y1,i|S1,i) + ϵn) (70)

where (a) follows because M and Sn
1 are independent, and

from Fano’s inequality for an ϵn > 0 such that ϵn → 0 if

δn → 0, similar to (41), and (b) follows because

Y1,i − (S1,i, Xi)− (Y i−1
1 , S

n\i
1 ,M) (71)

forms a Markov chain. Furthermore, we also have

nR
(a)

≤ I(M ;Y n
1 , Y n

2 , Sn
1 , S

n
2 ) + nϵn

= H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ) + I(Y n
2 , Sn

2 ;M)

−H(Y n
1 , Sn

1 |Y
n
2 , Sn

2 ,M) + nϵn
(b)

≤
n∑

i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn

−

n∑

i=1

H(S1,i|Y
n
1 , Y n

2 , Sn
2 ,M, Si−1

1 , Xi) + nϵn

(c)
=

n∑

i=1

(
H(Y1,i, S1,i|Y2,i, S2,i)

−H(S1,i|Y1,i, Y2,i, S2,i, Xi) + ϵn

)
+ δn + nϵn (72)

where (a) follows from Fano’s inequality, similar to (41), (b)
follows by (4) and from Remark 1 after replacing M2 with M



GÜNLÜ, BLOCH, SCHAEFER, AND YENER: SECURE INTEGRATED SENSING AND COMMUNICATION 9

for the ISAC problem with a single secure message, and (c)
follows because

S1,i − (Y1,i, Y2,i, S2,i, Xi)− (Y
n\i
1 , Y

n\i
2 , S

n\i
2 ,M, Si−1

1 )
(73)

forms a Markov chain. Thus, by applying the distortion bounds

in (47) and introducing a uniformly-distributed time-sharing

random variable as in the proof of Proposition 2, we prove

the outer bound for the ISAC problem with a single secure

message and perfect output feedback by letting δn → 0.

A. Degraded and Reversely-Degraded Channels Under Full

Secrecy

We next present the exact strong secrecy-distortion regions

for the ISAC problem with a single secure message when the

ISAC channel PY1Y2|S1S2X is physically-degraded, as in (48),

or reversely-physically-degraded, as in (49).

Theorem 3. (Physically-degraded Channels): For a physically-

degraded ISAC channel, RPOF is the union over all probability

distributions PX of the rate tuples (R,D1, D2) satisfying (64)

and (69), where we have (68).

Proof of Theorem 3: Since the bound given in Proposi-

tion 4 is valid for any ISAC channel, the proof for the outer

bound follows from Proposition 4. Furthermore, the achiev-

ability proof follows by modifying the proof of Theorem 1

such that we assign V n(k) = Xn(k) for all k = [1 : b]
and then apply the same OSRB steps for Xn(k) rather than

V n(k), i.e., replace V with X in the inner bound terms given

in Proposition 3. Note that

R′′
deg = [I(X;Y1|S1)− I(X;Y2|S2)]

+ +H(Y1|Y2, S2, X)

(a)
= I(X;Y1, S1|Y2, S2) +H(Y1|Y2, S2, X)

= H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X) (74)

where (a) follows because the ISAC channel is physically-

degraded, and since X is independent of (S1, S2). Thus, by

(65), we have

R ≤ min{R′′
deg, I(X;Y1|S1)} (75)

which proves the achievability bound.

Theorem 4. (Reversely-physically-degraded Channels): For

a reversely-physically-degraded ISAC channel, RPOF is the

union over all probability distributions PX of the rate tuples

(R,D1, D2) satisfying (64) and

R ≤ min
{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(76)

where one can apply the deterministic per-letter estimators in

(68).

Proof of Theorem 4: We assign V n = Xn in the

achievability proof, i.e., we choose V = X as allowed by

(66). From (65) we obtain the inner bound

R
(a)

≤ min
{
H(Y1|Y2, S2, X), I(X;Y1|S1)

}

(b)
= min

{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(77)

where (a) follows since X is independent of (S1, S2) and

because H(X|Y1, S1) ≥ H(X|Y2, S2) for all reversely-

physically-degraded ISAC channels because of the Markov

chain in (62), and (b) follows also because of the same Markov

chain in (62).

Since the outer bound in Proposition 4 does not assume any

degradedness, the outer bound terms for Dj for j = 1, 2 follow

from Proposition 4. Furthermore, by (69), we obtain the outer

bound

R
(a)

≤ min
{
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2),

I(X;Y1|S1)
}

= min
{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(78)

where (a) follows from the Markov chain in (62).

V. ISAC CHANNELS WITH BERNOULLI STATES

A. Binary Noiseless ISAC Channels with Bernoulli States

We next consider a scenario with perfect output feedback

and single secure message, in which channel input and output

alphabets are binary with multiplicative Bernoulli states. The

model serves as a coarse approximation of fading channels

with high signal-to-noise ratio. Specifically, we have

Y1 = S1 ·X, Y2 = S2 ·X (79)

and

PS1S2
(0, 0)=(1−q), PS1S2

(1, 1)=qα,

PS1S2
(0, 1)=0, PS1S2

(1, 0)=q(1−α) (80)

for fixed q, α ∈ [0, 1], so the ISAC channel is stochastically-

degraded, i.e., there exists a marginal probability distribution

such that the ISAC channel can be represented as in (48). The

constraints (2)-(5) in Definition 1 only depend on the marginal

probability distributions of (X,Y1, S1) and (X,Y2, S2) when

per-letter estimators of the form Estj(x, yj) are imposed for

j = 1, 2, so the secrecy-distortion region given in Theorem 3

is also valid for stochastically-degraded ISAC channels.

Lemma 1. The strong secrecy-distortion region RPOF for a

binary ISAC channel with multiplicative Bernoulli states char-

acterized by parameters (q, α) and with Hamming distortion

metrics is the union over all p ∈ [0, 1], where X ∼ Bern(p),
of the rate tuples (R,D1, D2) satisfying

R ≤ min

{(
q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)

(1− qα)

))
,

qHb(p)

}
(81)

D1 ≥ (1− p) ·min{q, (1− q)} (82)

D2 ≥ (1− p) ·min{qα, (1− qα)}. (83)

Proof of Lemma 1: The proof follows by evaluating the

strong secrecy-distortion region RPOF defined in Theorem 3.

Proofs for (82) and (83) follow by choosing Estj(1, yj) = yj
and Estj(0, yj) = 1{Pr[Sj = 1] > 0.5} for j = 1, 2 that

can be obtained as in (68), which are equivalent to the proofs
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for [37, Eqs. (27c) and (27d)]. We next have I(X;Y1|S1) =
qHb(p), which is equivalent to the proof for [37, Eq. (27a)]

with r = 1. Furthermore, we obtain

H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X)

(a)
= H(S1|S2) +H(Y1|S1, Y2, S2)−H(S1|S2)

+ I(S1;Y1, X|S2)

(b)
= PS1S2

(1, 0)H(Y1|S1 = 1, S2 = 0) +H(X)

+H(Y1|X,S2)−H(Y1, X|S2, S1)

(c)
= PS1S2

(1, 0)H(X) +H(X)

+ PX(1)PS2
(0)H(Y1|X = 1, S2 = 0)

+ PX(1)PS2
(1)H(Y1|X = 1, S2 = 1)−H(X)

(d)
= q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)

(1− qα)

)
(84)

where (a) follows since S1−S2−Y2 and S1−(Y1, S2, X)−Y2

form Markov chains for the considered ISAC channel, (b)
follows since if S1 = 0, then Y1 = 0; if (S1, S2) = (1, 1),
then Y1 = Y2 = X; and if S2 = 0, then Y2 = 0, and

because X is independent of S2, (c) follows since Y1 = X if

S1 = 1, because X is independent of (S1, S2), since Y1 = 0
if X = 0, and because (S1, X) determine Y1, and (d) follows

since S1 = 1 if S2 = 1 due to (80) and because (S1, X)
determine Y1. Therefore, we have

R ≤ min
{
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X),

I(X;Y1|S1)
}

= min

{(
q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)

(1− qα)

))
,

qHb(p)

}
. (85)

The securely-transmitted message rate for ISAC sce-

narios under full secrecy is upper bounded both by(
H(Y1, S1|Y2, S2) − H(S1|Y1, Y2, S2, X)

)
and I(X;Y1|S1),

the latter of which is the upper bound for the rate when there

is no secrecy constraint [37, Corollary 4]. Thus, secrecy might

incur a rate penalty for this example. Nevertheless, ISAC meth-

ods achieve significantly better performance than separation-

based secure communication and state-sensing methods. One

can illustrate this by showing that time sharing between the

operation point with the maximum secrecy rate and the point

with the minimum distortions results in a region that is strictly

smaller than the one identified in Lemma 1; see Fig. 2

for the boundary of the secrecy-distortion region RPOF for

a binary ISAC channel with multiplicative Bernoulli states

characterized by parameters (q = 0.65, α = 0.21). These

analyses are analogous to the comparisons between joint and

separation-based secrecy and reliability methods for the secret

key agreement problem, as discussed in [38]–[40].

B. BEC-BSC ISAC Channels with State-Dependent Inputs

We next illustrate an achievable rate region for a noisy ISAC

channel. Consider a binary-input ISAC channel with binary

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0

0.1

0.2

D1

D2

R

Secure ISAC Boundary

Separation-Based Boundary

Fig. 2. Boundary of the secrecy-distortion region RPOF for a binary ISAC
channel with multiplicative Bernoulli states characterized by parameters
(q = 0.65, α = 0.21) and with Hamming distortion metrics, as well as
the separation-based region boundary.

channel states such that

X ∼ Bern(p), (86)

sX1 = S1 ·X, sX2 = S2 ·X, (87)

PY1|ĎX1
∼ BEC(γ), (88)

PY2|ĎX2
∼ BSC(β) (89)

for γ, β ∈ (0, 1), p ∈ [0, 1], and the binary states (S1, S2) are

again distributed according to the joint probability distribution

in (80). We remark that (88) and (89) impose the following

Markov chains

Y1 − (S1, X)− (Y2, S2), (90)

Y2 − (S2, X)− (Y1, S1). (91)

We next establish the set of (γ, β) parameters such that the

BEC-BSC ISAC channel is more-capable, as defined below.

Definition 3. An ISAC channel PY1Y2|S1S2X is more-capable

if we have for all PX

I(X;Y1, S1) ≥ I(X;Y2, S2). (92)

♢

The set of more-capable channels is strictly larger than

the set of degraded channels. Furthermore, (92) is equivalent

to I(X;Y1|S1) ≥ I(X;Y2|S2) since X is independent of

(S1, S2) for ISAC models.

Lemma 2. BEC-BSC ISAC channels with state-dependent

inputs, as defined in (86)-(89), are more-capable if we have

γ ≤ 1− α(1−Hb(β)). (93)

We present the proof of Lemma 2 in Appendix.

We next evaluate an inner bound for the strong secrecy-

distortion region of more-capable BEC-BSC ISAC channels.

For simplicity in the bound below for D2, suppose β ∈ (0, 0.5].
The results for β ∈ (0.5, 1) follow by symmetry.

Lemma 3. For more-capable BEC-BSC ISAC channels with

state-dependent inputs, defined in (86)-(89) for γ ∈ (0, 1) and
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β ∈ (0, 0.5], satisfying (93), and with Hamming distortion

metrics, RPOF includes the union over all p ∈ [0, 1] of the rate

tuples (R,D1, D2) satisfying

R ≤ q
(
Hb(p)(1− γ) + α(Hb(β)−Hb(p ∗ β))

)
(94)

D1 ≥ (1− p+ pγ) ·min{q, (1− q)} (95)

D2 ≥ (1− p) ·min{qα, (1− qα)}

+ p ·





qα if qα ≤ β

(qα∗β∗qα) if β < qα ≤ (1− β)

(1− qα) if qα > (1− β).

(96)

Proof of Lemma 3: Consider the inner bound given in

Proposition 3 that is valid for all ISAC channels with single

secure message and perfect output feedback. Choose V = X
in (65), which is allowed by (66), so we obtain

R≤min{
(
[I(X;Y1|S1)−I(X;Y2|S2)]

++H(Y1|Y2, S2, X)
)
,

I(X;Y1|S1)}

(a)
= min{

(
I(X;Y1|S1)− I(X;Y2|S2) +H(Y1|S2, X)

)
,

I(X;Y1|S1)} (97)

where (a) follows by (92) since the BEC-BSC ISAC channel

is more-capable and from the Markov chain in (91). Using

(109), we obtain

(I(X;Y1|S1)− I(X;Y2|S2))

= q
(
Hb(p)(1− γ) + α(Hb(β)−Hb(p ∗ β))

)
. (98)

We remark that the calculation of the term H(Y1|S2, X) in

(97) is cumbersome, so we omit it for simplicity since the rate

region given in Lemma 3 is an inner bound. We next calculate

the achievable distortions.

Choose the first estimator as

Est1(x, y1)

=

{
1{Pr[S1 = 1] > 0.5} if (x, y1) = (0, 0) or (·, e)

y1 if (x, y1) = (1, 1) or (1, 0)

which minimizes the probability of error given (x, y1). Thus,

by using (64) we obtain

D1 ≥ E
[
d(S1,Est1(X,Y1))

]

(a)
= (PX(0) + PXY1

(1, e)) · E
[
d(S1,1{Pr[S1 = 1] > 0.5})

]

(b)
= (1− p+ pγ)

·
(
PS1

(1) · (1⊕ 1{Pr[S1 = 1] > 0.5})

+ PS1
(0) · (0⊕ 1{Pr[S1 = 1] > 0.5})

)

= (1− p+ pγ) ·min{q, (1− q)} (99)

where (a) follows since PXY1
(0, 1) = 0 and because there is

no estimation error in other cases, and (b) follows because we

consider a Hamming distortion metric.

Choose the second estimator as

Est2(x, y2)

=

{
1{Pr[S2 = 1] > 0.5} if x = 0

1{Pr[S2 = 1|Y2 = y2, X = x] > 0.5} if x = 1

which minimizes the probability of error given (x, y2). One

can show that

1{Pr[S2=1|Y2=1, X=1]>0.5}=1{qα > β}, (100)

1{Pr[S2=1|Y2=0, X=1]>0.5}=1{qα > (1−β)}. (101)

Thus, by using (64), (100), and (101), we obtain

D2 ≥ E
[
d(S2,Est2(X,Y2))

]

= PX(0) · E
[
d(S2,1{qα > 0.5})

]

+ PXY2
(1, 1) · E

[
d(S2,1{qα > β})

]

+ PXY2
(1, 0) · E

[
d(S2,1{qα > (1− β)})

]

(a)
= (1− p) ·min{qα, (1− qα)}

+ p(qα ∗ β) · E
[
d(S2,1{qα > β})

]

+ p(1− qα ∗ β) · E
[
d(S2,1{qα > (1− β)})

]
(102)

where (a) follows by applying a similar step to (99)(b).
Furthermore, we have

E
[
d(S2,1{qα > β})

]
=

{
qα if qα ≤ β

(1− qα) if qα > β,
(103)

E
[
d(S2,1{qα > (1− β)})

]

=

{
qα if qα ≤ (1− β)

(1− qα) if qα > (1− β).
(104)

Therefore, since we assume that β ∈ (0, 0.5], i.e., we have

β ≤ (1− β), using (102)-(104) we have

D2 ≥ (1− p) ·min{qα, (1− qα)}

+ p ·





(qα ∗ β)qα+ (1− qα ∗ β)qα

if qα ≤ β,

(qα ∗ β)(1− qα) + (1− qα ∗ β)qα

if β < qα ≤ (1− β),

(qα ∗ β)(1− qα) + (1− qα ∗ β)(1− qα)

if qα > (1− β)

which is equal to (96).
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APPENDIX

Proof of Lemma 2: We follow steps similar to the proofs

of [41, Claims 3 and 4]. Define

D(p) = I(X;Y1|S1)− I(X;Y2|S2)

(a)
= Hb(p)−H(X|Y1, S1)

−H(Y2|S2) +H(Y2|S2, X) (105)

where (a) follows since X ∼ Bern(p) is independent of S1.

First, we have

H(X|Y1, S1)
(a)
= Hb(p)

(
PY1S1

(0, 0) + PY1
(e)
)

= Hb(p)
(
(1− q)(1− γ) + γ

)

= Hb(p)(1− q + qγ) (106)

where (a) follows since H(X|Y1 = 0, S1 = 1) is equal to

H(X|Y1 = 1, S1 = 1) = 0 and PY1S1
(1, 0) = 0.

Second, we have

H(Y2|S2) = PS2
(0)H(Y2|S2 = 0) + PS2

(1)H(Y2|S2 = 1)

(a)
= (1− qα)Hb(β) + qαHb(p ∗ β) (107)

where (a) follows since we obtain

PY2|S2
(0|1) = PX(0)PY2|ĎX2

(0|0) + PX(1)PY2|ĎX2
(0|1)

= p ∗ (1− β)

and because the binary entropy function is symmetric around

0.5.

Third, we have

H(Y2|S2, X) = Hb(β). (108)

Therefore, by combining (105)-(108), have

D(p) = q
(
Hb(p)(1− γ) + α(Hb(β)−Hb(p ∗ β))

)
. (109)

We next establish the set of (γ, β) parameters such that the

BEC-BSC ISAC channel is more-capable by finding the set of

parameters such that D(p) ≥ 0 for all p ∈ [0, 1].
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Since D(p) given in (109) is symmetric around 0.5, which

follows from the symmetry of the binary entropy function

around 0.5, we can consider the range p ∈ [0, 0.5] rather than

p ∈ [0, 1]. Similarly, we can consider the range β ∈ (0, 0.5] due

to symmetry. One can show that D(0) = 0, and D(0.5) ≥ 0
if

γ ≤ 1− α(1−Hb(β)). (110)

Moreover, we have

d

dp
D(p)

= q
(
log
(1− p

p

)
(1− γ)− α log

(1− p ∗ β

p ∗ β

)
(1− 2β)

)

(111)

that is non-negative for all p ∈ [0, 0.5] if

γ ≤ 1− α(1− 2β) (112)

which follows because log((1 − p)/p) is non-negative and

p∗ β ≥ p for all p ∈ [0, 0.5] and any β ∈ (0, 0.5]. Thus, if the

parameters satisfy (112), D(p) is non-decreasing and is non-

negative for p ∈ [0, 0.5] since D(0) = 0, which proves that the

BEC-BSC ISAC channel is more-capable for the parameters

that satisfy (112).

Next, we consider the case

γ > 1− α(1− 2β). (113)

Define

c =
1− γ

α(1− 2β)
(114)

such that using (111) we obtain

d

dp
D(p) ≥ 0 ⇐⇒

(1− p

p

)c
≥
(1− p ∗ β

p ∗ β

)

⇐⇒ p ∗ β ≥

((1− p

p

)c
+ 1

)−1

(115)

with equality if p = 0.5. We remark that 0 < c < 1 when we

consider (113), which does not allow α = 0 or β = 0.5 since

γ ∈ (0, 1). Furthermore, the function

((1− p

p

)c
+ 1

)−1

(116)

is proved in [41, pp. 10] to be concave in p in the range [0, 0.5]
if 0 < c < 1, which indicates that there can be at most two

values of p that achieves equality in (115). Since equality is

achieved when p = 0.5, the other possible value of p that

achieves equality in (115) must be in the range (0, 0.5). Note

that we have

lim
p→0+

d

dp
D(p) = ∞ (117)

so we can conclude that D(p) first increases and then decreases

in p in the range p ∈ [0, 0.5] for the parameters that satisfy

(113). Combining the conditions in (110) and (113), as well

as the results for the condition in (112), the proof follows.
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Sweden in the Information Coding Division since October 2022. He has been a
Brain City Berlin Ambassador since June 2020, received the prestigious VDE
Information Technology Society (ITG) 2021 Johann-Philipp-Reis Award, been
selected by the IEEE Communications Society as 2021 Exemplary Reviewer
of the IEEE Transactions on Communications (TCOM), and received the 2023
ZENITH Research and Leadership Career Development Award. His research
interests include information theoretic privacy and security, coding theory,
statistical signal processing for biometrics and physical unclonable functions
(PUFs), private (federated) learning and function computations, and doubly-
exponential (secure) identification via channels. Among his publications is
the book Key Agreement with Physical Unclonable Functions and Biometric

Identifiers (Dr. Hut Verlag, 2019). He is currently a TPC Co-Chair for
2023 IEEE GLOBECOM - Communication and Information System Security
Symposium; an Associate Editor of EURASIP JOURNAL ON WIRELESS
COMMUNICATIONS AND NETWORKING and ENTROPY journal;
and a Reviewer Board Member of COMPUTERS and INFORMATION jour-
nals, and recently was a Guest Editor of IEEE JOURNAL ON SELECTED
AREAS IN INFORMATION THEORY.

Matthieu Bloch (Senior Member, IEEE) is a Pro-
fessor in the School of Electrical and Computer En-
gineering. He received the Engineering degree from
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