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Abstract—This work considers the problem of mitigating
information leakage between communication and sensing in
systems jointly performing both operations. Specifically, a discrete
memoryless state-dependent broadcast channel model is studied
in which (i) the presence of feedback enables a transmitter to
convey information, while simultaneously performing channel
state estimation; (ii) one of the receivers is treated as an eaves-
dropper whose state should be estimated but which should remain
oblivious to part of the transmitted information. The model
abstracts the challenges behind security for joint communication
and sensing if one views the channel state as a key attribute,
e.g., location. For independent and identically distributed states,
perfect output feedback, and when part of the transmitted
message should be kept secret, a partial characterization of the
secrecy-distortion region is developed. The characterization is
exact when the broadcast channel is either physically-degraded
or reversely-physically-degraded. The partial characterization is
also extended to the situation in which the entire transmitted
message should be kept secret. The benefits of a joint approach
compared to separation-based secure communication and state-
sensing methods are illustrated with binary joint communication
and sensing models.

Index Terms—Secure joint communication and sensing, secure
integrated sensing and communication, physical layer security,
future communication networks.

I. INTRODUCTION

The vision for next generation mobile communication net-
works includes a seamless integration of the physical and
digital world. Key to its success is the network’s ability
to automatically react to changing environments thanks to
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the tight integration of communication and sensing [2]. For
instance, a millimeter wave (mmWave) joint communication
and radar system can be used to detect a target or to estimate
crucial parameters relevant to communication and adapt the
communication scheme accordingly [3]. Integrated sensing and
communication (ISAC), also known as joint communication
and sensing, techniques are envisioned more broadly as key
enablers for a wide range of applications, including connected
vehicles and drones [4].

Several information-theoretic studies of ISAC have been ini-
tiated, drawing on existing results for joint communication and
state estimation [5]-[7]. Motivated by the integration of com-
munication and radar for mmWave vehicular applications, [8]
considers a model in which messages are encoded and sent
through a state-dependent channel with generalized feedback
both to reliably communicate with a receiver and to estimate
the channel state by using the feedback and transmitted code-
words. The optimal trade-off between communication rate and
channel-state estimation distortion is then characterized for
memoryless ISAC channels and independent and identically
distributed (i.i.d.) channel states that are causally available
at the receiver and estimated at the transmitter by using a
strictly causal channel output. Follow up works have extended
the model to multiple access channels [9] and broadcast
channels [8].

The nature of ISAC mandates the use of a single modality
for the communication and sensing functions so that sensing
signals carry information, which then creates situations in
which undesirable leakage of information may occur. For
example, a target illuminated for ranging has the ability to
gather potentially sensitive information about the transmitted
message [10]. As both sensing and secrecy performance are
measured with respect to the signal received at the sensed
target, there exists a trade-off between the two [3], [11]. To
capture and characterize this trade-off, we extend the ISAC
model in [8] by introducing an eavesdropper in the network.
The objective of the transmitter is then to simultaneously
communicate reliably with the legitimate receiver, estimate
the channel state, and hide a part of the message from
the eavesdropper. The channel state is modeled as a two-
component state capturing the characteristics of each individual
receiver, the feedback is modeled as perfect output feedback
for simplicity, and the transmitted message is divided into two
parts, only one of which should be kept secret (a setup called
partial secrecy in [12]). The proposed secure ISAC model can
be viewed as an extension of the wiretap channel with feedback
models [13]-[21].



A. Summary of Contributions

Our problem formulation introduces a strong secrecy con-
straint by considering an eavesdropper whose channel pa-
rameters are estimated at the transmitter, but that should be
kept ignorant of part of the transmitted message. Even if
the state sequence on which the ISAC channel depends is
i.i.d., strictly causal channel output feedback improves the
secrecy performance. A summary of the main contributions
is as follows:

e We develop inner and outer bounds on the secrecy-
distortion region of the secure ISAC model under partial
secrecy when i.i.d. channel states are causally available
at the corresponding receivers. Our achievability proof
leverages the output statistics of random binning (OSRB)
method [22]-[24]. Our outer bound also holds in the
presence of noisy generalized output feedback.

o We simplify the inner and outer bounds on the secrecy-
distortion region when the ISAC channel is physically-
degraded or reversely-physically-degraded such that the
inner and outer bounds match.

« We develop inner and outer bounds on the secrecy-
distortion region under full secrecy, when the entire trans-
mitted message is kept secret from the eavesdropper. We
characterize the exact secrecy-distortion region under full
secrecy when the ISAC channel is physically-degraded or
reversely-physically-degraded.

« We study a binary noiseless ISAC channel with multi-
plicative Bernoulli states to illustrate how secure ISAC
methods may outperform separation-based secure com-
munication and state-sensing methods. We also consider
noisy more-capable ISAC channels to illustrate the effect
of noise on an achievable strong secrecy-distortion region.

B. Organization

In Section II, we introduce our model for secure ISAC under
partial secrecy. In Section III, we provide inner and outer
bounds on the secrecy-distortion region, specializing them for
physically-degraded and reversely-physically-degraded ISAC
channels and showing that the bounds match for such channels.
In Section IV, we specialize the inner and outer bounds to
the full secrecy case. In Section V, we illustrate the benefits
of integrating security by design into ISAC by evaluating the
rate region for a degraded and noiseless ISAC channel with
multiplicative Bernoulli states. We also evaluate an achievable
region for a noisy ISAC channel with a state-dependent input
transmitted through a binary erasure channel (BEC) for the
main channel and a binary symmetric channel (BSC) for
the eavesdropper’s channel, respectively, by establishing the
parameter range for which the ISAC channel is more-capable.

C. Notation

Upper case letters represent random variables and corre-
sponding lower case letters their realizations. A random vari-
able X has probability distribution Px. A calligraphic letter
X denotes a set with cardinality |X|. A subscript ¢ denotes the
position of a variable in a sequence of variables represented
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Fig. 1. ISAC model under partial secrecy, where only Mo should be kept
secret from Eve, for j = 1,2 and ¢ = [1 : n]. We mainly consider ISAC
with perfect output feedback, where Z; 1 = (Y7,5—1, Y2,i—1).

by a superscript, e.g., X" = X1, Xo,..., X5, ..., X,. X"V
denotes the sequence X, Xo,...,X;—1,X;+1,...,X, and
XF denotes X;, X;y1,..., X}, for integers i < k < n. [1:J]
denotes the set {1,2,...,J} for an integer J > 1, and
X ~ Unif[l : J] represents a uniform distribution over the
set [1 : J]. Hy(z) = —zlogz — (1 — x)log(l — z) with
natural logarithms is the binary entropy function. X ~ Bern(p)
represents a Bernoulli random variable X with probability of
success p. BSC(3) denotes a BSC with crossover probability
B and BEC(y) denotes a BEC with erasure probability ~
and erasure symbol e. The % operator denotes the operation
p* 3 =p(l—p)+(1—p)3, @ is the modulo-2 addition, and
we define [a]T = max{a,0} for a € R.

II. PROBLEM DEFINITION

We consider the secure ISAC model shown in Fig. 1,
which includes a transmitter equipped with a state estimator, a
legitimate receiver, and an eavesdropper (Eve). The transmitter
attempts to reliably transmit a uniformly distributed message
M = (My,M;) € M = M; x M; through a mem-
oryless state-dependent ISAC channel with known statistics
Py,v,7s,5,x and iid. state sequence (S7,Sy) € St x Sy
generated according to a known joint probability distribution
Ps,s,. The transmitter calculates the channel inputs X" as
X; = Enc;(M, Z71) € X for all i = [1 : n], where Enc;(-)
is an encoding function and Z'~! € Z‘~! is the delayed
channel output feedback. The legitimate receiver that observes
Y1, € Y1 and S ; € S; for all channel uses ¢ = [1 : n] should
reliably decode both A and M; by forming the estimate
M = Dec(Y7", ST"), where Dec(-) is a decoding function. The
eavesdropper that observes Y5 ; € Vs and S; ; € Sz should be
kept ignorant of My. Finally, the transmitter es/tigllates the state
sequence (ST, .5%) as S‘J?‘ = Est;(X",Z2") e S; forj=1,2,
where Est;(-,-) is an estimation function. All sets Sy, Sa, §1,
gg, X, Y1, Vs, and Z are assumed finite.

This channel model may serve as an abstraction of ISAC
with a multi-functional phased array, in which a transmitter
exploits backscattered waveforms (the channel output feedback
Z"=1) to infer information about the states (S; ; and S2;) that
affect the transmission in the directions of a legitimate receiver
and an eavesdropper.
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For simplicity, we consider the perfect output feedback case,
in which for all ¢ = [2 : n] we have

Zi—1 = Y1,i-1,Y2,-1). (1)

Although the perfect output feedback is explicitly used in our
achievability proofs, some of our converse results hold for
generalized feedback. Furthermore, the fundamental insights
gained from our results can be used to tackle generalized
feedback scenarios, for which identifying closed-form charac-
terizations becomes challenging; see, e.g., [18]. We next define
the secrecy-distortion region for the problem of interest.

Definition 1. A secrecy-distortion tuple (R1, Rz, D1, Ds) is
achievable under partial secrecy if, for any § > 0, there
exist n > 1, one encgger, one decoder, and two estimators
Est; (X", V", Y5") = ST, j € {1,2}, such that

1
Elog IM;| > R; — 6 for j=1,2 (rates) 2)
Pr [(My, My) # (M, My)] <6 (reliability) 3)
I(M3;Y3'|S3) <0 (strong secrecy) (4)
E[d;(S7,57)]<D;+6 for j=1,2 (distortions)  (5)

where d;(s",57) = L 37 |
per-letter distortion metrics.

The secrecy-distortion region Rpspor is the closure of the
set of all achievable tuples under partial secrecy and perfect

output feedback. O

d;(si,s;) for j=1,2 are bounded

The use of per-letter distortion metrics d; (-, -) in conjunction
with i.i.d. states reduces the problem to the characterization of
a rate distortion region [8], [9]; in fact, past observations are
independent of present and future ones, lending the transmitter
no state prediction ability to adapt its transmission on the fly.
Analyzing ISAC models with memory leads to conceptually
different results; see, e.g., [25]-[27]. In practical ISAC ap-
plications, only a part of the channel parameters might be
relevant for the transmitter [28]. Our results can be extended
for such cases by adapting the estimator functions used and
not requiring an estimation of the exact state.

Remark 1. The strong secrecy condition (4) is equivalent
to I(M2;Y3",S7) < § since the transmitted message is
independent of the state sequence and I(Ms,;Yy", ST) =
I(M;Y5'[S3).

III. ISAC UNDER PARTIAL SECRECY

We next present inner and outer bounds on the secrecy-
distortion region Rps por.

Proposition 1 (Inner Bound). The region Rpspor includes
the union over all joint distributions Pyvy x of the rate tuples
(Rl, Rg, Dl, D2) such that

Ry < I(U;Y1(S1) (6)
Rg S min{R’Q, (I(V, Y1|Sl) — Rl)} (7)
D; > E[d;(S;,5)))] forj=1,2 ®)

where
Pyvxvivas:ss = PuivPvixPx Ps 5, Pyivy :8.x,  (9)
Ry = [I(V;Y1|S1,U) — I(V;Y3|Sy, U)| T
+ H(Y1]Y2,52,V)  (10)
and one can apply the  per-letter  estimators
Est;(x,y1,y2) = §; for j = 1,2 such that
ESt] (.f, y17y2)
— argmin »  Ps |xv,v, (551791, 90) dj(s5,8). (1D
§ESJ' SjES]‘
One can limit |U| to
min{[X], [V1]-[S1], |Vl [S2[}+2 (12)
and |V| 1o
(min{| X[, [V1]-[S1], |Val-[S2|}+2)
(min{| X[, Vi]|Si], Vol [S2l}+1).  (13)

Proposition 1 can be interpreted as follows. The rate Ry in
(6) represents a rate of a public message that could be decoded
by the eavesdropper. The rate R in (10) represents the rate of
a secret message superposed to the public message. R} is itself
the sum of two terms: a first term representing a wiretap-coding
rate against an eavesdropper observing the public message; a
second term representing a secret key rate extracted from the
feedback channel and used as a one-time pad. The operator
[]* in (10) indicates that the decoder should have an advantage
over the eavesdropper to apply wiretap-coding methods. The
minimum operator in (7) merely indicates that the secrecy
rate cannot exceed the reliable communication rate. Most
importantly, Proposition 1 suggests that secure ISAC systems
benefit from the inherent presence of the feedback link, which
allows the transmitter to develop situational awareness and
extract secret keys from the wireless environment.

Proof of Proposition 1: We use the OSRB method [23],
[24] for the achievability proof, applying the steps in [29,
Section 1.6]; see also [30]. Following [23], we shall first
define an operationally dual source coding problem to the
original ISAC problem, along with a coding scheme called
Protocol A, for which reliability and secrecy analyses are
conducted. These analyses consist of imposing bounds on
the sizes of the bins assigned to n-letter sequences such that
either a sequence reconstruction constraint is satisfied via [23,
Lemma 1] by using a Slepian-Wolf [31] decoder, or mutual
independence and uniformity constraints are satisfied via [23,
Theorem 1] by using privacy amplification. We shall next
define a randomized coding scheme, called Protocol B, for
the original ISAC problem and show that the joint probability
distributions induced by Protocols A and B are almost equal,
allowing us to invert the source code proposed for Protocol A
to construct a channel code for Protocol B. The achievability
proof shall finally follow by derandomizing Protocol B and
chaining multiple uses of Protocol B over several blocks
such that chaining does not affect the secrecy and reliability
performance.

Protocol A (dual source coding problem): We consider a se-
cret key agreement model for an i.i.d. source with distribution



Puvxv,v,s,s, as in (9), in which a source encoder observing
U™V, X™) € U™ x V™ x X™ assigns random bin indices
M e M= M; x My and F € F to its observations. The
index pair M = (M7, M>) should be reliably reconstructed at a
legitimate source receiver observing (Y7*, S7) € Y x S and
F to satisfy (3), while keeping M, secret from an eavesdropper
observing (Y7*,5%) € Y3 x 8 and F to satisfy the strong
secrecy constraint (4). Furthermore, we assume that Pyyx
has been chosen so that the distortion constraints (5) can
be satisfied, i.e., there exist associated per-letter estimators
Est;(z,y1,y2) = S for 7 = 1,2 such that

]E[ j(SjnvEStj (Xn7Y1 7Y2 ))] < Dj +6;1 (14)

where €, > 0 and €/, — 0 when n — oco.

Formally, we construct Protocol A as follows. To each
sequence u”, we independently and uniformly assign two
random bin indices (F,,W,) such that F, € [l : 2"/
and W, € [1 : 2"%%]. Furthermore, to each sequence v",
we independently and uniformly assign three random indices
(Fy, Wy, Ly) such that Fy, € [1:2"%], W, € [1:2"/] and
L, € [1 : 2"%], Finally, to each sequence y}', we indepen-
dently and uniformly assign a random index Ly, € [1: VALY
with Ry = R,. The index pair ' = (F,, Fy) shall be
transmitted publicly to allow the reliable reconstruction of the
source encoder observations at the legitimate source receiver.
The index tuple W = (W,, W,, L,) represents indices that
can then be reliably computed at the source receiver, and we
shall impose a secrecy constraint on W,,. The index Ly , which
is derived from y7' and therefore known at both the source
encoder and the legitimate receiver, shall also be subject to a
secrecy constraint. We finally set

M, = W, and My = (W, Ly®Ly). (I5)

We next develop conditions on the bin sizes to ensure the re-
quired reliability and secrecy constraints. Using a SW decoder,
the expected value (over the random bin assignments) of the
probability of incorrectly reconstructing U™ from (Y7, ST, F,)
vanishes exponentially fast when n — oo if we have [23,
Lemma 1]

Ry > H(U|Y1, S). (16)

Similarly, the probability of incorrectly reconstructing V" from
(Y™, ST, F,,U™) vanishes exponentially fast if

R, > H(V|Yy, 5, U). A7)

Using privacy amplification [23, Theorem 1], the expected
value of the variational distance between the joint probability
distributions Unif[1: 2"%] - Unif[1: 2"%] and Py, r, vanishes
exponentially fast when n — oo if

Ru+ Ry < H(U). (18)

With a slight abuse of terminology, we shall concisely say that
the indices Fy, and W, then become almost independent and
uniformly distributed. Similarly, the indices F, and W, become
almost independent of (Y3, S, U™) and uniformly distributed
if

Ry + Ry < H(V|Ya, S2,U) (19)
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and the index L, becomes almost independent of
(Y3, S5, V™, U™) and uniformly distributed if

(@)

Ry =R, < HV1|Y2, 5, V,U) = H(Y1|Y2,5,,V)

where (a) follows because U — V — (Y7,Y5,S52) forms a
Markov chain. Note that Ly © Ly, is then also almost inde-
pendent of (Y3*,5%, V™,U™) and uniformly distributed.

Finally, (F,, Wy, Fy, W,, L,) are almost mutually indepen-
dent and uniformly distributed if

Ri+ Ry + Ry + R, + R, < H(U,V).

Assuming I(V;Y7,51|U) —I(V;Y2,52|U) >0 and e > 0
small enough, a specific choice of rates that satisfies all
conditions above is

(20)

2y

R HU|Y1,51) +¢€ 22)
R, =H(U) - (U|Y1,51)*2€:I(U§Y1\51)*26 (23)
Rv H(V|Y1,5,U0) + 24)
R, = H(V|Ys,S5,U) — (V‘Yl, S1,U) — 2¢
=I(V;Y1|51,0) — I(V; Y2]S2,U)—2¢ (25)
= min{(H (Y1|Y2, S2,U, V) —¢),
(HU,V) - HU) — H(V[Y2,82,U))} (26)
= min{(H (Y1]Y2, 82, V) —€), [(V; Y2[S2,U)}  (27)

where we have repeatedly used the independence of
(U,V) with (S1,S2) to simplify the expressions. If
I(V;Y1,51|U) — I(V; Y, S2|U) <0, one should set

R,=0

Ry = min{H (Y1|Y2, S2, V), I(V;Y1]S1,U)} —e.  (28)

Combining the above of choices with our definition Ry = R,
and Rs = R, + R,, we recover the rate conditions in
Proposition 1, satisfying the reliability condition (3) and
the secrecy condition (4). Finally, we consider the distor-
tion constraints (5) on the channel state estimations. All
(u™, o™, ™, Yy, ¥y, st,s5) tuples are in the jointly typical
set with high probability and, by applying the law of total
expectation to bounded distortion metrics and from the typical
average lemma [32, pp. 26], distortion constraints (5) are
satisfied. Furthermore, one can use the deterministic per-letter
estimators in (11) without loss of generality by adapting
the proof of [8, Lemma 1], upon replacing (S5, Z,5,d) with
(Sj,(Y1,Y2),S;,d;), respectively, since S; — (X,Y7,Y2) —S;
forms a Markov chain for all j = 1, 2.

This concludes the construction and analysis of Protocol A.
Note that Protocol A induces a joint probability distribution
Py vy pxn Psypsp Pypypspspxn that is asymptotically indis-
tinguishable in variational distance from a distribution of the
form

Unif[1 : 2"(FtR))Unif[1 « gn (Rt R i)
* Pspsp Pxn vy Mo Py oy spsy xn- (29)

Protocol B (random channel coding for the original prob-
lem): We now transform Protocol A into another protocol
that is suited to the original ISAC problem. Assume that
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the index pair F' = (F,, F\) is generated uniformly at ran-
dom and disclosed to all parties ahead of the transmission
and that the transmitter and the receiver share a secret key
K € Unif[l 2f1]. Then, the transmitter encodes a
uniformly distributed message M; = W, and another uni-
formly distributed message My = (W,,L, & K) accord-
ing to the distribution Pxn |y, a7, defined by Protocol A.
Note that Protocol B induces a joint probability distribution
as in (29), which is, as argued above, asymptotically in-
distinguishable in variational distance from the distribution
Pyry v, pxn Psypsp Pynypsnspxn, induced by Protocol A. In
other words, Protocol B guarantees the exact same asymptotic
performance as Protocol A in terms of secrecy, reliability, and
distortions subject to the same rate constraints.

Derandomizing and Chaining Protocol B. To conclude
the achievability, two aspects of Protocol B remain to be fixed
to obtain a code for the original ISAC model: i) the public
transmission of the index F' should be removed; and ii) the
use of the secret key K should be removed. Following [23],
one can argue that there exists a fixed index F' = f such
that Protocol B retains its properties, eliminating the need for
a public discussion. We skip this standard step for brevity.
Most importantly, note that Protocol A allows us to generate a
secret key Ly . Consequently, if one were to use Protocol B in
a block Markov fashion chained over multiple blocks, the key
generated in block b > 1 can be used as the key for one-time
padding in block (b+ 1), removing the need for a secret key
in Protocol B.

Formally, assume that we repeat Protocol B over B blocks
indexed by b € [1 : BJ]. In every block b, we denote the
messages by a superscript b. In particular, the transmitter
attempts to transmit messages W2, WP, and LY, as well as
generate a key Lb In this section alone, we also denote a
sequence of Vanables across blocks k through ¢ (¢ > k) by
the superscript k : £, e.g., M. In the first block, no message
is transmitted and only a key L;l is generated. In every
subsequent block b € [2 : B], the encoder uses Protocol B
to transmit a public message M? = W? and a secret message
M) = (W Lbo Lgl’l), and generates a key Lgl. A union
bound shows that the asymptotic reliability performance

Tim P [{MIF 2 MEP or MFP 2 My |

is not affected by the chaining. The proof that secrecy is not
affected by the chaining requires a bit more care, as we need
to show that I(W}Y P, LIB; Y18 SL:B) where the bold-face
letters represent n-letter random variables, vanishes across all
blocks. This can be done by adapting the approach of [33] and
[34] as we show next To simplify notation, we set Wb = W,
Lb=1b K®=1TL}%, and Z° = (Y}, S%). We have

I(WLB, Ll:B; ZB)

—1

(30)

o

(I(WLB,LI:B; Zl:b+1) - I(WLB,LI:B; Zl:b))

I
lng

I(Wl:B,LLB; Zl)
B-1
g (I(WI:B,LI:B; Zl:b+1) o

L+

—
=

I(WI:B, Ll:B; Zl:b))

o
Il
—

where  (a) follows since [(W1B L1:B:.7Z!) =
I(WY LY;ZY) = 0 by definition because no message is
transmitted in the first block. Focusing on every term in the
sum for a given index b, we obtain

I(WHB, [1:B, Zlib+1y _ (1B [1:B, Z1:b)
= [(WEB, [LB, zb+1|Z1:b)
J(WEbtL bl Zbtl)71b)
+ [(WhHEB [b+2:B, gbtl|71:b bl plibily
< [(WhbHL plibtl 71, 7b+)
 (WHHEB [brEB gL+l ppLbtl pLbHL
(@) J(WEbHL b+l Z1b, gbtl)
— [(WhHL, [t Zb
(W, LI glb, ZbHL b [hL
® T(WhHL, oL, ZbH)
(Wb Lt Zlb, Zbtl pbel pbaly

I(Wb+1 Lb+1.zb+1)
+ I(Wl:b,Ll:b, Zl:b; Zb+1,Wb+1,Lb+l,Kb)
I(Wb+1,Lb+1; Zb+1) + I(W1:b7L1:b7 Zl:b;Kb)
+I(W1:b Ll:b Zl:b,zb+l Wb+1 Lb+1|Kb)

=

I(Wb+1,Lb+1; Zb-‘rl) + I(W1:b7L1:b7 Zl:b;Kb)

A
I/\:b,

(Wb+1 Lb+l,zb+l)+I(W1:b Ll:b Zl:b Kb—l,Kb)
Dy T(WPHL Lo oy Wt LY, Zb, KOL KY) (31)

where (a) follows because the future messages
(WOo+2B [b+2:B) are independent of past messages and
observations (Z1:0*tt Wb+l LLb+1) " (p) follows similarly
because future messages (W°*! L*1) are independent of
past messages and observations (W L1* Z1:) (c) follows
by introducing the key K° generated in block b as an attempt
to break dependence across blocks, (d) follows because
I(wl:b’ Ll:b, Zl:b; Zb+1, Wb+1, Lb+1|Kb) = 0 since
(leb,leb, Zl:b) _ Kb _ (Zb+17 Wb+17Lb+1) (32)
forms a Markov chain, (e) follows by introducing K®~! in
an effort to break again dependence, and (f) follows since
I(wl:b717L1:b71’ Zl:bfl;Kb|Wb7Lb’ Zbefl) — 0 since
(Wl:b—l Ll:b—l Zl:b—l)_

(Wb, LP, Z° K'Y — K, (33)

forms a Markov chain. Consequently, we obtain

[(WLB, Ll:B; ZB)

B—1

S Z (I(Wb+1,Lb+l;Zb+1) +I(Wb,Lb,Zb7Kb_l;Kb)) )
b=1

All that remains to confirm 1is that in each block,

I(WhHl o+l zb+1)  and  [(WP Lb Z° K*~1; K®) are



asymptotically vanishing. For the first term, note that
I(Wb+1, Lb+1; Zb+l)
I(wb+1. Zb+1) 4 [(Lb+1, Zb+1|wb+1)
(a) T(WPHL, Zb+Y) 4 [(Lo+ Z0H ot
< I(wb+1;zb+l) +I(Lb+1;Lb+1 @Kb)

© [(WhHL ZY) £ R, — H(K) (34)
where (a) follows by independence of W1 and L**!, (b)
follows because of the Markov chain L'*! — (L¥*1 @ K?) —
(Z*+1, Wb+ and (c) follows because (L1 LPH1p KP) =
H(LM @ Kb — H(L*™! @ K°|LPY) < nR, — H(K?).
Looking back at Protocols A and B, the secrecy of WW*!
and the uniformity of K guarantee that I(W°+!; Z**+1) and
nRy, — H(K") are exponentially vanishing as n — oc;
see (19) and (20). Similarly, for the second term, the secrecy
of K" guarantees directly that I(W?°, L° Z K®~1: K?) is
exponentially vanishing as n — oco; see (20).

Lastly, one can check that the chaining over B blocks has
a negligible effect on the rate of the coding scheme. ]

Proposition 2 (Outer Bound). The region Rps por is included
in the union over all joint distributions Py x of the rate tuples

(R1, Ra, D1, D) satisfying

D; > E[d;(S;,5)))] for j=1,2 (35)
R1 S I(V,Y1|Sl) (36)
Ry < min {H(Y1, $1[Y2, S2) —H(S$1[¥3, 2, 52, V),
(ViYi|$1) = Ri} GT)
where we have
Pyvxvivesis. = Puiv Pvix Px Ps; 5, Py, vs|s: 9. x5 (38)
Est;(z, y1,92)
= argmin Z Ps;1xv,v, (8517, y1,92) d; (s, 3). (39)
SGS ;€S
One can limit |V| to
min{|X|, [V1]-[S1], [Val-[Sal}+1. (40)

Remark 2. Since we consider perfect feedback as in (1),
the outer bound proposed in Proposition 2 is also valid for
the general ISAC problem depicted in Fig. 1, in which the
feedback Z;_; can be a noisy version of (Y7,,-1,Y2,-1).

Proof of Proposition 2: Assume that for some §,, > 0
and n > 1, there exist an encoder, decoder, and estimators
such that (2)-(5) are satisfied for some tuple (Ry, Ry, D1, D>).
Using Fano’s inequality and (3), we have

H(M|Y], S )<)H(M|M)<nen (41)

where (a) allows randomized decoding and €, =6, (R1+Rs2)+
Hy(6,,)/n so that €, —0 if 4,, —0.

Let V; 2 (My, My, Y71, 8071 V=t Si=1Y such that V; —
Xi — (Y1,4,Y5,,51,,52,) forms a Markov chain for all ¢ €
[1: n] by definition of the channel statistics.
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Bound on R;: We have

(a)
an < I(Ml,Y1n|Sin) + ney,

< Z (Y1,4S1,1) — H(Y1,3| My, Mo, Yi71, ST) + €,)

(b) n

< Z (H(Y1,:|1.)

— H(Y1,:| My, Mo, Y71 ST, Y3 S5 + e)

3

i=1

where (a) follows by (41) and because M; and S} are
independent, (b) follows since

— (My, Mo, Y{71, 81 — Y1 4 (43)

Lit1
forms a Markov chain, and (c) follows from the definition of
Vi.

Bound on (R; + Ry): Similar to (42), we obtain

(a)
n(R1 + Ro) < I(My, Ma; Y"|ST) + ney,

b
<

—~
=

I

(H(Yl,i|Sl,i)

=1

— H(Y1,:| My, Mo, Y71 ST Y3 S + €)

3

C

= I(Vi;Yi,

1:1

N

i)+ €n) (44)

where (a) follows because (M, My, S7') are mutually inde-
pendent and by (41), (b) follows since (43) forms a Markov
chain, and (c) follows from the definition of V;.

Bound on Rs: We obtain

(a)
nly < I(M;Y{",Y5", ST, 55) + ney,
< H(Y\", S5T1Y", 85) + H(Yy', S) — H(Y3', S5 |Ms)
7H(Y1n,S?|Y2n,S;,M1,M2) + ney,
S H(Y1n7s?|y2n78§) + I(YQna ngMQ)
— > H(S1[Y7 VS, S5, My, My, Si71) + e,y
=1
< H(YY", S7Y5", 55) + 6n
- ZH(Sl-,i|Y1ia}gvséaMlvM%Siil
=1

(Yln’ Sn|an, S;) + 5

) + ney,

© 4

_ZH511|Y127}/2175215 )+n6n

=1
n
:1
+ ne, + 0y,

H(Y1,, S14(Y2,i, S2) — H(S1,i[Y1,5, Ya,i, S2,4, Vi)

(45)
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where (a) follows by (41), (b) follows by (4) and from
Remark 1, and because

(i1, Y2lig1: S541) — (Y{,Ys, S84, My, My, S771) — 1
(46)

forms a Markov chain, and (c) follows from the definition of
Vi.
Distortion Bounds: We have for j = 1,2

1 — _
> E[d;(S),854)] 47
1=1

n -

(Dy+o0) 2 E[d;(57,57)] =
where (a) follows by (5), which can be achieved by using the
deterministic per-letter estimators in (39).

We finally introduce a uniformly distributed time-sharing
random variable @) ~ Unif[1 : n] that is independent of other
random variables, and define Y7 = Y7 g, S1 = S1,0, Y2 =
}/2’@, 52 = SQ’Q, X = XQ, and V = (VQ,Q), soV — X —
(Y1,Y5,51,55) form a Markov chain. The expression for the
outer bound in (35)-(37) follows by letting 4,, — 0.

Cardinality Bounds: We use the support lemma [35,
Lemma 15.4] to prove the cardinality bound. This is a standard
procedure and we omit the proof for brevity. [ |

A. Degraded and Reversely-Degraded Channels Under Partial
Secrecy

We next characterize the exact secrecy-distortion regions for
physically-degraded and reversely-physically-degraded ISAC
channels, which are defined below.

Definition 2. An ISAC channel Pyy,|s,s,x is physically-
degraded if

Py v,5,5,1x = Pyivs8:9,x sy 5,

= Ps, Py, 15, x Pyv38,15: 71 (43)

and is reversely-physically-degraded if the degradation order
is changed such that

Pyiv,5,5,1x = Pyiv51819,x P51 5,
(49)

O

Intuitively, a physically-degraded ISAC channel corresponds
to a situation in which the observation Y5 of the eavesdropper
given its state Sy is a degraded version of the observation Y;
of the legitimate receiver given its state .S; with respect to the
channel input X.

= Ps, Py, |5, x Py15,19: Yz

Theorem 1. (Physically-degraded channels): For a physically-
degraded ISAC channel, Rps por is the union over all joint dis-
tributions Py x of the rate tuples (Ry1, Ro, D1, D) satisfying
(35)-(37), subject to (38) with constant U and (39). One can
limit |V| to (40).

Proof of Theorem 1: Since the outer bound given in
Proposition 2 does not assume any degradedness, the outer
bound terms for R;, Ry, and D; for j = 1,2 follow from
Proposition 2.

The achievability proof for Theorem 1 follows by modifying
the construction and analysis of Protocol A in the proof of

Proposition 1. We next provide a sketch of the modifications
for a physically-degraded ISAC channel. First, U™ is not used,
i.e., U™ is eliminated from the achievability proof. Second, to
each v™ we assign four random bin indices (£, W, , Wy,, Ly)
such that F, € [1 : 2"®] W, € [1 : 2", W,, €
[1: 27f%] and L, € [1 : 2"f] independently such that
M, =W, and My = (W,,, Ly). As in (17), we impose the
reliability constraint

R, > H(V|Y1,51). (50)
As in (19) and (20), we impose the strong secrecy constraints

619
(52)

Ry, + R, < H(V|Ys, S3),
R, < H(Y1|Ys, S5, V).

Finally, as in (21) we impose the mutual independence and
uniformity constraint

Ry, + Ry, + Ry + Ry < H(V). (53)

We remark that we have H(V|Y2,S2) > H(V|Y7,S1) for
all physically-degraded ISAC channels, i.e.,

[I(V;Y1]S1) — I(V; Ya|S2)]t
W WY, S) — HVIVL, S (54)

where (a) follows because V' is independent of (S7,.52) and
since

V—-X—(Y1,5)—(Y2,52) (55

forms a Markov chain for such ISAC channels. Note that

bace = (Vi Y1|S1) = I(V;Ya|So)| " + H(Y1|Ya, S5, V)

@ H VY, S5) - HV Y, 81) + H(Yi Y, 5, V)

b
Y H(Y1, VY2, 82) — H(V|Y1, 81, Ya, Sa)

= H(Y1|Y2,S2) + I(V;51]Y1,Y2,52)

:H(Y17S].|Y27SQ)_H(51|Y17}/27523V) (56)

where (a) follows by (54) and (b) follows from the Markov
chain in (55).

Applying Fourier-Motzkin elimination [36] to (50)-(53), for
any € > 0 one can achieve

R1 :va ZI(V;Yl,Sl)—QEZI(V;Yl‘Sl)—26 (57)

and for any R; that is less than or equal to (57), one can
simultaneously achieve

Ry = Ry, + R,

= min{R'Zdeg, (I(V;Y1]S1) — R1)} —3e. (58)

The construction of Protocol B, the analysis of achievable
distortions and sufficiency of deterministic estimators, as well
as the derandomization and chaining analysis, follow as in the
proof of Proposition 1 and are omitted for brevity. [ ]

Theorem 2. (Reversely-physically-degraded Channels): For
a reversely-physically-degraded ISAC channel, Rpspor is the



union over all joint distributions Py x of the rate tuples
(R1, Ra, D1, D) satisfying (35), (36), and

Ry <min {H(V1]Y>,52), I(V;Y1|S1) — Ry} (59)
subject to (38) with constant U and (39). One can limit |V| to
min{|X|, [V1[-[S1], [V2l-[S2[} (60)

Proof of Theorem 2: The achievability proof follows from
Proposition 1 after elimination of U from its proof, as in the
proof for Theorem 1. Upon removing U, we obtain from (7)
and (10) the inner bound

(a)
Ry < min {H(Y1|Y2, 55, V),I(V;Y1]S1) — Ry}

b .
© min {H(YV|Y2, $2), I(V;Yi$1) — Ry} (61)

where (a) follows since V' is independent of (Si,S2) and
because H(V|Y1,51) > H(V|Ys,S2) for all reversely-
physically-degraded ISAC channels because of the Markov
chain

V—X—(Y2,5)—(Y1,51) (62)

and (b) follows also because of the Markov chain in (62).

Since the outer bound in Proposition 2 does not assume
any degradedness, the outer bound terms for Ry and D; for
j = 1,2 follow from Proposition 2. Furthermore, by (37) we
obtain the outer bound

(a)
R2 S min{H(YI7SI|}/27SZ) - H(SI‘Y17}/2752)7
I(V;Y1|S1) — R1}
:min{H(Y1|YQ,SQ),I(V;Y1|51) le} (63)

where (a) follows from the Markov chain in (62). [ |

IV. ISAC UNDER FULL SECRECY

We next develop inner and outer bounds for the situa-
tion in which M = M, should be kept secret from the
eavesdropper and M; = @. The definitions of an achiev-
able secrecy-distortion tuple (R, D, Ds) and corresponding
secrecy-distortion region Rpor follow from Definition 1 by
eliminating (M;, R;) and replacing (Ms, R, Rpspor) With
(M, R, Rpor), respectively.

Proposition 3. (Inner Bound): The region Rpor includes the
union over all joint distributions Pyx of the rate tuples
(R, D1, D9) satisfying

D; > E[d;(S;, 5)))] forj=1,2 (64
R <min{R", 1(V;Y1]51)} (65)
where
Py xv,v,8,8, = Py|x PxPs,5, Py, v,|5,5,x s (66)
R" = [I(V;Y1]81) — I(V; Ya|S2)]*
+ H(Y1]Y2,52,V)  (67)
and one can apply the deterministic per-letter estimators
Est;(z, y1,92)
= argmin Y Po,ixv,v, (5517, 51,92) dj(55,5).  (68)

§€S.7 Sj ESJ'
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One can limit |V| to (40).

Proof of Proposition 3: The proof follows by eliminating
U in the proof of Proposition 1, so that R; = R,, = 0 and by
imposing (50)-(53) after replacing R,, with Ry, since for this
case we have M = (W,, Ly). [ |

Proposition 4. (Outer bound): The region Rpor is included in
the union over all Px of the rate tuples (R, D1, D2) satisfying
(64) and

R< min{H(Yl, S1[Va, o) — H(S1|Y1,Ya, Sa, X),
I(X;YlS1)} (69)

where one can apply the deterministic per-letter estimators in

(68).

Proof of Proposition 4: The proof follows from the
proof of Proposition 2 by making appropriate replacements
for the full secrecy scenario, but we provide a new proof
with minor simplifications for completeness. Assume that for
some J,, >0 and n > 1, there exist an encoder, a decoder,
and estimators such that all constraints imposed on the ISAC
problem with perfect output feedback are satisfied for some
tuple (R, Dy, D3). We then obtain

—

a)
nR < I(M;Y{"|ST) + ne,

< Z (H(Y1,i|S1,:) — H(Y1,,|Y{ ™, ST, M, X)) + €5)

@
Il
_

(H(Y1,i|S1,) — H(Y1,i|S1,i, Xi) + €n)

-

@
Il
-

(I(X:;Y1,:51,0) + €n) (70)

|

Il
—

3

where (a) follows because M and ST are independent, and
from Fano’s inequality for an €, > 0 such that ¢, — 0 if
0p, — 0, similar to (41), and (b) follows because

Yii— (Sui Xo) — (Vi1 87V, M) (71)

forms a Markov chain. Furthermore, we also have

(a

nRk S I(Maylnayénas?755) +n€n
H(YY", STY5', S5) + 1(Ys', S5 M)
— H(Y{", ST|YS, S5, M) + ne,

=

(®)

INS

Z H(Y14,51,:|Y2,i,52,:) + 0n

1
o Z H(S17i|Y1n7 }/Qna Sga Ma Si_lv X7) + ney
i=1
2y (H(Yu’ S1ilY2,6, 52,1

i=1

— H(S14V3, Yo S2.6, Xi) + €n ) + 0 + neq (72)

where (a) follows from Fano’s inequality, similar to (41), (b)
follows by (4) and from Remark 1 after replacing My with M
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for the ISAC problem with a single secure message, and (c)
follows because

S1i— (Y1,,Y2,,52,X;) — (Yln\i, an\i’ Sn\l M, S

(73)
forms a Markov chain. Thus, by applying the distortion bounds
in (47) and introducing a uniformly-distributed time-sharing
random variable as in the proof of Proposition 2, we prove
the outer bound for the ISAC problem with a single secure
message and perfect output feedback by letting §,, — 0. H

A. Degraded and Reversely-Degraded Channels Under Full
Secrecy

We next present the exact strong secrecy-distortion regions
for the ISAC problem with a single secure message when the
ISAC channel Py, v, |s, s,x is physically-degraded, as in (43),
or reversely-physically-degraded, as in (49).

Theorem 3. (Physically-degraded Channels): For a physically-
degraded ISAC channel, Rpor is the union over all probability
distributions Px of the rate tuples (R, D1, Dy) satisfying (64)
and (69), where we have (68).

Proof of Theorem 3: Since the bound given in Proposi-
tion 4 is valid for any ISAC channel, the proof for the outer
bound follows from Proposition 4. Furthermore, the achiev-
ability proof follows by modifying the proof of Theorem 1
such that we assign V"(k) = X™(k) for all k = [1 : b
and then apply the same OSRB steps for X" (k) rather than
V" (k), i.e., replace V with X in the inner bound terms given
in Proposition 3. Note that

Rdeg [ (X;Yllsl)_I(X;Yé‘SQ)]+

W 1(X; Y1, 81|Ya, S5) + H(Y1|Ya, Sa, X)

= H(Y1,51|Y2,52) — H(51|Y1,Y2, 5, X)

+ H(Y1|Y2, 52, X)

(74)

where (a) follows because the ISAC channel is physically-
degraded, and since X is independent of (Si,S3). Thus, by
(65), we have

R < min{Rj,, [(X;Y1]S1)} (75)

which proves the achievability bound. ]

Theorem 4. (Reversely-physically-degraded Channels): For
a reversely-physically-degraded ISAC channel, Rpor is the
union over all probability distributions Px of the rate tuples
(R, D1, D) satisfying (64) and

where one can apply the deterministic per-letter estimators in
(68).

Proof of Theorem 4: We assign V' = X" in the
achievability proof, i.e., we choose V = X as allowed by
(66). From (65) we obtain the inner bound

(a)
R < mm{H Y1|Y2, S2, X), I(X; Yl\Sl)}

()

== HllIl{H Y1|Y2,SQ)7I(X;Y1|51)} (77)

where (a) follows since X is independent of (Si,S2) and
because H(X|Y1,51) > H(X|Y3,S2) for all reversely-
physically-degraded ISAC channels because of the Markov
chain in (62), and (b) follows also because of the same Markov
chain in (62).

Since the outer bound in Proposition 4 does not assume any
degradedness, the outer bound terms for D; for j = 1, 2 follow
from Proposition 4. Furthermore, by (69), we obtain the outer
bound

- H(Sl‘}/lany‘sé)a

(XY, |Sl)}
(78)

(@)
R < min {H(Yl, S [Ya, S5)

= min {H(Y1|Y2, S2), I(X;Y1]51)}

where (a) follows from the Markov chain in (62). |

V. ISAC CHANNELS WITH BERNOULLI STATES
A. Binary Noiseless ISAC Channels with Bernoulli States

We next consider a scenario with perfect output feedback
and single secure message, in which channel input and output
alphabets are binary with multiplicative Bernoulli states. The
model serves as a coarse approximation of fading channels
with high signal-to-noise ratio. Specifically, we have

=5-X =5-X (79)
and
PSlsz( ) (1 q) PS152(131):qa
P5152(0 ) 0, PS152(1a0):q(1_a) (80)

for fixed ¢, € [0,1], so the ISAC channel is stochastically-
degraded, i.e., there exists a marginal probability distribution
such that the ISAC channel can be represented as in (48). The
constraints (2)-(5) in Definition 1 only depend on the marginal
probability distributions of (X,Y7,57) and (X,Y2,S2) when
per-letter estimators of the form Est;(x,y;) are imposed for
7 = 1,2, so the secrecy-distortion region given in Theorem 3
is also valid for stochastically-degraded ISAC channels.

Lemma 1. The strong secrecy-distortion region Rpor for a
binary ISAC channel with multiplicative Bernoulli states char-
acterized by parameters (q,«) and with Hamming distortion
metrics is the union over all p € [0,1], where X ~ Bern(p),
of the rate tuples (R, D1, Do) satisfying

R < min { (q(l — a)Hy(p) +p(1 — qa)Hb((l(l_qZ;D’

qu(P)} C1Y)

(82)
(83)

Dy > (1 -p) min{g, (1-q)}
Dy = (1 —p) - min{ga, (1—qa)}.

Proof of Lemma 1: The proof follows by evaluating the
strong secrecy-distortion region Rpop defined in Theorem 3.
Proofs for (82) and (83) follow by choosing Est;(1,y,) = y;
and Est;(0,y;) = 1{Pr[S; = 1] > 0.5} for j = 1,2 that
can be obtained as in (68), which are equivalent to the proofs



for [37, Egs. (27¢) and (27d)]. We next have I(X;Y7|S;) =
qHy(p), which is equivalent to the proof for [37, Eq. (27a)]
with » = 1. Furthermore, we obtain

H(Y1751|}/27S2) - H(Sl‘Y1,}/2,SQ,X)

W H(51]85) + H(Y1|Sy, Va, S2) — H(S1/S5)

+ I(Sl,YlaX“Sé)
(®)

= Ps,5,(1,0)H(Y1]S1 = 1,52 = 0) + H(X)
+H(Y1|X7SQ) _H(Y17X|52751)

< Py,s,(1,0)H(X) + H(X)

+ Px(l)P52 (O)H(Yl‘X =1,5 = 0)

+ Px(1)Ps,()HM1|X = 1,5, =1) — H(X)
(d) q(1 — )
D (1= a)H, 1— qa)H, (7)

q(1 — a)Hy(p) + p(1 — qa)H, (1= q0)

where (a) follows since S;—S2—Y3 and S;— (Y1, S92, X)—Y;
form Markov chains for the considered ISAC channel, (b)
follows since if S; = 0, then Y; = 0; if (S1,52) = (1,1),
then Y7 = Y5 = X; and if S = 0, then Y5 = 0, and
because X is independent of S, (¢) follows since Y; = X if
S1 = 1, because X is independent of (S, S3), since Y1 =0
if X = 0, and because (S, X ) determine Y7, and (d) follows
since S; = 1 if So = 1 due to (80) and because (S1,X)
determine Y;. Therefore, we have

R < min {H(Y1751|Y2752) — H(S1|Y1,Y3,52, X),

(84)

I(X;Yl\Sl)}

= min { (q(l —a)Hy(p) +p(1 - qa)Hb(q(la))> ,

(1—gqa)

qHy(p) } (85)

|
The securely-transmitted message rate for ISAC sce-
narios under full secrecy is upper bounded both by
(H(Yl, Sl|Y27 SQ) — H(Sl|Y1, YQ, SQ, X)) and I(X, Y1|Sl),
the latter of which is the upper bound for the rate when there
is no secrecy constraint [37, Corollary 4]. Thus, secrecy might
incur a rate penalty for this example. Nevertheless, ISAC meth-
ods achieve significantly better performance than separation-
based secure communication and state-sensing methods. One
can illustrate this by showing that time sharing between the
operation point with the maximum secrecy rate and the point
with the minimum distortions results in a region that is strictly
smaller than the one identified in Lemma 1; see Fig. 2
for the boundary of the secrecy-distortion region Rpor for
a binary ISAC channel with multiplicative Bernoulli states
characterized by parameters (¢ = 0.65,«« = 0.21). These
analyses are analogous to the comparisons between joint and
separation-based secrecy and reliability methods for the secret
key agreement problem, as discussed in [38]-[40].

B. BEC-BSC ISAC Channels with State-Dependent Inputs

We next illustrate an achievable rate region for a noisy ISAC
channel. Consider a binary-input ISAC channel with binary
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Fig. 2. Boundary of the secrecy-distortion region Rpor for a binary ISAC
channel with multiplicative Bernoulli states characterized by parameters
(¢ = 0.65,a = 0.21) and with Hamming distortion metrics, as well as
the separation-based region boundary.

channel states such that

X ~ Bern(p), (86)
X, =5 X, Xy =55 X, (87)
Py, x, ~BEC(7), (88)
Py, |x, ~ BSC(p) (89)

for v, 3 € (0,1), p € [0,1], and the binary states (S7,S2) are
again distributed according to the joint probability distribution
in (80). We remark that (88) and (89) impose the following
Markov chains
Yl - (S17X) - (}/2352)7
Yy — (82, X) — (Y1, 51).

(90)
oD

We next establish the set of (y,3) parameters such that the
BEC-BSC ISAC channel is more-capable, as defined below.

Definition 3. An ISAC channel Py,y,|s, s, x is more-capable
if we have for all Px

I(X,Yl,Sl) ZI(X,YQ,SQ) (92)

O

The set of more-capable channels is strictly larger than
the set of degraded channels. Furthermore, (92) is equivalent
to I(X;Y1|S1) > I(X;Y3|S2) since X is independent of
(51, S2) for ISAC models.

Lemma 2. BEC-BSC ISAC channels with state-dependent
inputs, as defined in (86)-(89), are more-capable if we have

v <1—a(l - Hy(B)). 93)

We present the proof of Lemma 2 in Appendix.

We next evaluate an inner bound for the strong secrecy-
distortion region of more-capable BEC-BSC ISAC channels.
For simplicity in the bound below for Ds, suppose 8 € (0, 0.5].
The results for S € (0.5,1) follow by symmetry.

Lemma 3. For more-capable BEC-BSC ISAC channels with
state-dependent inputs, defined in (86)-(89) for v € (0,1) and
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B € (0,0.5], satisfying (93), and with Hamming distortion which minimizes the probability of error given (z,y2). One
metrics, Rpor includes the union over all p € [0,1] of the rate can show that
tuples (R, D1, Ds) satisfying

1{Pr[Sy=1|Ya=1, X =1]>0.5} =1{ga > B}, (100)
R < q(Hy(p)(1 —7) + a(Hy(8) — Hy(p * 8))) OB 1{Pr[Sy=1|Y2=0, X =1]>0.5} =1{ga > (1-B)}. (101)
g; i 8 B z)_‘_rp;,rr)l{;nc:,ng?—(;a)f)} ©) Thus, by using (64), (100), and (101), we obtain
qo if qa<B Dy > E[d(S3, Esty(X,Y2))]
+p-{ (qaxfrqa) if B<qa<(1—5) 96)  =Px(0)-E[d(S2,1{qa > 0.5})]
(1 —qa) if qa>(1-0). + Pxvy,(1,1) - E[d(S2, 1{ga > 5})]

Proof of Lemma 3: Consider the inner bound given in + Pxy;(1,0) - E[d(S2, T{ga > (1= §)})]
Proposition 3 that is valid for all ISAC channels with single (@) (1 —p) - min{ge, (1 —qa)}
secure message and perfect output feedback. Choose V = X + plga * B) E[d(S 1{ga > 5})]
: 2,

in (65), which is allowed by (66), so we obtain
. N + p(1 — gax B) - E[d(S2, 1{qa > (1 — 8)})] (102)
R<min{([I(X;Y1]S1)—I(X;Y2[S2)]F +H(Y1|Yz, S2, X)), . o
[(X;Y1|S1)) where (a) follows by applying a similar step to (99)(b).
Furthermore, we have

—

W min{ (I1(X; Y1|S1) — I(X; Ya|S2) + H(Y1]S2, X)), ,
qo if ga<p

I(X: 1150} ©7  E[d(S2, 1{ga > p})] = {(1 “gqa)  if qa>

where (a) follows by (92) since the BEC-BSC ISAC channel E[d(Sy, 1{ga > (1 - B)})]
is more-capable and from the Markov chain in (91). Using >

(103)

(109), we obtain _ {QCY if ga < (1-p5) (104)
(I(X:VA|Sh) — I(X: Y] S5)) (1-qa) if ga>(1-75).
= q(Hy(p)(1 — ) + a(Hy(B) — Hy(p * B))). (98) Therefore, since we assume that 8 € (0,0.5], i.e., we have

< (1-—p), usi 102)-(104 h
We remark that the calculation of the term H(Y1]S2, X) in f < (1= F), using (102)-(104) we have

(97) is cumbersome, so we omit it for simplicity since the rate Dy > (1 — p) - min{qa, (1 — qa)}
region given in Iiemn?a 3 is an inner bound. We next calculate (ga * B)ga + (1 — ga  B)ga
the achievable distortions. .

if qa <P,

Choose the first estimator as
(gax B)(1 — ga) + (1 — g * B)qa

Esty(z,y1) +p- it B<qa<(l-p),
_ {]I{Pr[Sl =1]> 0.5} if (z,y1)=(0,0) or (-, e) (qax B8)(1 — ga) + (1 — ga x B)(1 — qav)
v1 if (z,y1) = (1,1) or (1,0) if ga>(1-0)
which minimizes the probability of error given (z,y1). Thus, which is equal to (96). n

by using (64) we obtain
Dy > E[d(S,Est;(X,Y1))] REFERENCES
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APPENDIX
Proof of Lemma 2: We follow steps similar to the proofs
of [41, Claims 3 and 4]. Define
D(p) = I(X;Y1]51) — I(X;Y2]S2)

< Hy(p) - H(X |11, 5)
— H(Y2|S2) + H(Y2|S2, X) (105)

where (a) follows since X ~ Bern(p) is independent of S.
First, we have
H(X[Y1,81) ' Hy(p) (Pis, (0.0) + P ()
= Hy(p)((1 = )1 =) +7)
= Hy(p)(1 =g +a7)
where (a) follows since H(X|Y; = 0,5 =
H(X|Y1 = 1,5’1 = 1) =0 and Pylgl(l,O =
Second, we have
H(Y2]S5) = Ps, (0)H(Ya|S = 0) + Pe, (1) H (Y]S5 = 1)

@ (1 — qa)Hy(B) + qaHy(p * B)

where (a) follows since we obtain
Py,|5,(0[1) = Px(0) Py, x,(0[0) + Px (1) Py, x,(0[1)
=px*(1-p)

and because the binary entropy function is symmetric around
0.5.
Third, we have

(106)

1) is equal to
0.

(107)

H(Y2[S2, X) = Hy(B). (108)
Therefore, by combining (105)-(108), have
D(p) = q(Hy(p)(1 — ) + a(Hy(B) — Hy(p* 3))). (109)

We next establish the set of (v, 5) parameters such that the
BEC-BSC ISAC channel is more-capable by finding the set of
parameters such that D(p) > 0 for all p € [0, 1].
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Since D(p) given in (109) is symmetric around 0.5, which
follows from the symmetry of the binary entropy function
around 0.5, we can consider the range p € [0, 0.5] rather than
p € [0, 1]. Similarly, we can consider the range 8 € (0, 0.5] due
to symmetry. One can show that D(0) = 0, and D(0.5) > 0
if

v <1—a(l—HypB)). (110)
Moreover, we have
d
—D
o (p)
B 1-p 1—pxp
 o(1oe (22) 1) -t (2521 -2
(111)
that is non-negative for all p € [0, 0.5] if
7<1-a(l-2p) (112)

which follows because log((1 — p)/p) is non-negative and
px 8 > pforall p € [0,0.5] and any S € (0,0.5]. Thus, if the
parameters satisfy (112), D(p) is non-decreasing and is non-
negative for p € [0, 0.5] since D(0) = 0, which proves that the
BEC-BSC ISAC channel is more-capable for the parameters
that satisfy (112).

Next, we consider the case

v>1—a(l-28). (113)
Define
I—n
=— 114
T ol —25) (1)
such that using (111) we obtain
d 1—p\c¢ 1—pxp
— > ) > (=7
dpD(p)_0<:>( P ) _( px* 3 )
-1
1— c
—s pxfB> (—p) 1 (115)
p

with equality if p = 0.5. We remark that 0 < ¢ < 1 when we
consider (113), which does not allow o« = 0 or 3 = 0.5 since

v € (0,1). Furthermore, the function
-1

(1;1?)0 +1

p

is proved in [41, pp. 10] to be concave in p in the range [0, 0.5]
if 0 < ¢ < 1, which indicates that there can be at most two
values of p that achieves equality in (115). Since equality is
achieved when p = 0.5, the other possible value of p that

achieves equality in (115) must be in the range (0,0.5). Note
that we have

(116)

lim iD(p) =00 (117)

p—0+ dp
so we can conclude that D(p) first increases and then decreases
in p in the range p € [0,0.5] for the parameters that satisfy
(113). Combining the conditions in (110) and (113), as well
as the results for the condition in (112), the proof follows. H
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