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Abstract. This paper deals with optimal control problems described by a controlled version of Moreau’s sweep-
ing process governed by convex polyhedra, where measurable control actions enter additive perturbations. This
class of problems, which addresses unbounded discontinuous differential inclusions with intrinsic state constraints,
is truly challenging and underinvestigated in control theory while being highly important for various applications.
To attack such problems with constrained measurable controls, we develop a refined method of discrete approx-
imations with establishing its well-posedness and strong convergence. This approach, married to advanced tools
of first-order and second-order variational analysis and generalized differentiation, allows us to derive adequate
collections of necessary optimality conditions for local minimizers, first in discrete-time problems and then in the
original continuous-time controlled sweeping process by passing to the limit. The new results include an appro-
priate maximum condition and significantly extend the previous ones obtained under essentially more restrictive
assumptions. We compare them with other versions of the maximum principle for controlled sweeping processes
that have been recently established for global minimizers in problems with smooth sweeping sets by using different
techniques. The obtained necessary optimality conditions are illustrated by several examples.
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1 Introduction and Problem Formulation

This paper addresses the following optimal control problem labeled as (P ):

Minimize the Mayer-type cost functional

J [x, u] := ϕ
(
x(T )

)
(1.1)

over the corresponding (described below) pairs (x(·), u(·)) satisfying{
ẋ(t) ∈ −N

(
x(t);C

)
+ g
(
x(t), u(t)

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C ⊂ Rn,

u(t) ∈ U ⊂ Rd a.e. t ∈ [0, T ],
(1.2)

where the set C is a convex polyhedron given by

C :=
s⋂
j=1

Cj with Cj :=
{
x ∈ Rn

∣∣ 〈xj∗, x〉 ≤ cj} , (1.3)

with ‖xj∗‖ = 1, j = 1, . . . , s, and where N(x;C) stands for the normal cone of convex analysis defined by

N(x;C) :=
{
v ∈ Rn

∣∣ 〈v, y − x〉 ≤ 0, y ∈ C
}

if x ∈ C and N(x;C) := ∅ if x /∈ C. (1.4)

Observe that the second part of definition (1.4) mandatorily yields the presence of the hidden pointwise
state constraints on the trajectories of (1.2):

x(t) ∈ C, i.e. 〈xj∗, x(t)〉 ≤ cj for all t ∈ [0, T ] and j = 1, . . . , s. (1.5)
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Considering the differential inclusion in (1.2) without the additive perturbation term g(x, u), we arrive
at the framework of the sweeping process introduced by Jean-Jacques Moreau who was motivated by
applications to problems of elastoplasticity; see [24]. It has been well recognized that the (uncontrolled)
Moreau’s sweeping process has a unique absolutely continuous (or even Lipschitz continuous) solution for
convex and mildly nonconvex sets C; see, e.g., [14] and the references therein. Thus there is no room
for optimization of the sweeping process unless some additional functions or parameters of choice are
inserted into its description. It is very different from control theory for Lipschitzian differential inclusions

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ Rn, (1.6)

which have multiple solutions. The latter type of dynamics extends the classical ODE control setting
with F (x) := f(x, U) in (1.6), where the choice of measurable controls u(t) ∈ U ⊂ Rd a.e. t ∈ [0, T ]
creates the possibility to find an optimal one with respect to a prescribed performance. The main issue
here is that the normal cone mapping N(·;C) in the sweeping process is highly non-Lipschitzian (even
discontinuous) while being maximal monotone. On the other hand, the well-developed optimal control
theory for differential inclusions (1.6) strongly depends on Lipschitzian behavior of F (·); see, e.g., [22, 27]
with the references therein as well as more recent publications.

Introducing controls into the perturbation term of (1.2) allows us to have multiple solutions x(·) of
this system by the choice of feasible control functions u(·) and thus to minimize the cost functional (1.1)
over feasible control-trajectory pairs. Problems of this type were considered in the literature from the
viewpoint of the existence of optimal solutions and relaxation; see [1, 10, 16, 26] among other publications.

More recently, necessary optimality conditions for local minimizers were derived in [7, 8] by the
method of discrete approximations for problems of type (P ) with smooth (in fact W 2,∞) control functions
without any constraints. Later on these results were further extended in [9] to nonconvex (and hence
nonpolyhedral) problems with prox-regular sets C in the same control setting. Note that both C and
g in (1.2) may be time-dependent; we discuss the autonomous case just for simplicity. The discrete
approximation approach implemented in [7]–[9] was based on the scheme from [12] developed for the
unperturbed sweeping process with controls in the moving set. The later was in turn a sweeping control
version of the original discrete approximations method to derive necessary optimality conditions for
Lipschitzian differential inclusions (1.6) suggested and implemented in [20]; see also [22].

Quite recently, other approximation procedures were developed to derive necessary optimality condi-
tions for global minimizers of (P ) in the class of measurable controls while under rather strong assump-
tions. The first paper [3] assumes, among other requirements, that the boundary of the sweeping set C
in (1.2) is C3-smooth, the control set U is compact and convex, and its image g(x, U) under g is convex
as well. The C3-smoothness assumption on C was relaxed in [15], by employing a smooth approximation
procedure not relying on the distance function as in [3], for the case of C := {x ∈ Rn | ψ(x) ≤ 0}
with ψ being a C2-smooth convex function. The necessary optimality conditions obtained in both pa-
pers [3, 15] can be treated as somewhat different counterparts of the celebrated Pontryagin Maximum
Principle (PMP) for state-constrained controlled differential equations ẋ = f(x, u).

Note that necessary optimality conditions in some other classes of optimal control problems governed
by various controlled versions of the sweeping process were developed in [2, 6, 7, 8, 9, 11, 12, 19].

The main goal of this paper is to derive necessary optimality conditions for local minimizers (in the
senses specified below) of the formulated problem (P ), with the constraint set U in (1.2) given by an arbi-
trary compact and with the (nonsmooth) polyhedral set C from (1.3), by significantly reducing regularity
assumptions on the reference control. Although problem (1.2) is stated in the class of measurable feasible
control actions, we assume that the local optimal control under consideration is of bounded variation,
hence allowing to be discontinuous.

Our approach is based on developing the method of discrete approximations, which is certainly of
its own interest and has never been implemented before in control theory for sweeping processes with
discontinuous controls. The novel results in this direction establish a strong approximation of every
feasible control-state pair for (P ) in the sense of the L2-norm convergence of discretized controls and the
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W 1,2-norm convergence of the corresponding piecewise linear trajectories. Furthermore, we justify such
a strong convergence of optimal solutions for discrete problems to the given local minimizer of (P ).

Dealing further with intrinsically nonsmooth and nonconvex discrete-time approximation problems,
we derive for them necessary optimality conditions of the discrete Euler-Lagrange type by using appropri-
ate unconvexified tools of first-order and second-order variational analysis and generalized differentiation.
Employing these tools and passing to the limit from discrete approximations lead us to new nondegen-
erate necessary optimality conditions for local optimal solutions of the sweeping control problem (P ).
The obtained results significantly extend those recently established in [8] for unconstrained W 2,∞ opti-
mal controls in (P ), contain a maximum condition, while being essentially different from the necessary
optimality conditions derived in [3, 15] for problems of type (P ) with smooth sets C in addition to other
assumptions. We present nontrivial examples that illustrate the efficiency of the new results. Further
applications to some practical models are considered in our subsequent paper [13].

The rest of the paper is organized as follows. In Section 2 we formulate the standing assumptions,
discuss the types of local minimizers under consideration, and present some preliminary results.

Section 3 is devoted to the construction of discrete approximations of the controlled constrained
sweeping dynamics (1.2) that allows us to deal with measurable controls (in fact of bounded variation)
and to strongly approximate any feasible solutions of (P ) as mentioned above. This result plays a major
role in the justification of the developed version the method of discrete approximations for problem (P ).

In Section 4 we construct a sequence of discrete approximation of a given “intermediate” local mini-
mizer for (P ) that occupies an intermediate position between weak and strong minimizers in variational
and control problems. The major result of this section justifies the strong W 1,2×L2 approximation of the
given local minimum pair (x̄(·), ū(·)) by extended optimal solutions to the discretized problems. It makes
a bridge between the continuous-time sweeping control problem (P ) and its discrete-time counterparts.

It occurs that the discrete-time approximating problems are unavoidably nonsmooth and nonconvex,
even when the initial data are differentiable. It is due to the presence of increasingly many geometric
constraints generated by the normal cone graph. To deal with them, we need adequate tools of varia-
tional analysis involving not only first-order but also second-order generalized differentiation. The latter
is because of the normal cone description of the sweeping process. In Section 5 we present the corre-
sponding definitions of the first-order and second-order generalized differential constructions taken from
[21] together with the results of their computations entirely in terms of the given data of (1.2).

Section 6 provides the derivation of necessary optimality conditions for discrete-time problems by
reducing them to problems of nondifferentiable programming with many geometric constraints, using
necessary optimality conditions for them obtained via variational/extremal principles, and then expressing
the latter in terms of the given data of (P ) by employing calculus rules of generalized differentiation.

Section 7 is the culmination. We pass to the limit from the necessary optimality conditions for
discrete-time problems by using stability of discrete approximations, robustness of generalized differential
constructions, and establishing an appropriate convergence of adjoint functions, which is the most difficult
part. In this way we arrive at new necessary conditions for local minimizers of (P ) expressed in terms
of the given data of the original problem. Since signed (not just nonnegative) measures naturally appear
in the resulting optimality conditions, dealing with them creates significant difficulties, which have been
overcome in our device. The usefulness of the nondegenerate optimality conditions obtained in the main
theorem is illustrated in Section 8 by nontrivial examples.

Throughout the paper we use standard notations of variational analysis and optimal control; see, e.g.,
[21, 22]. Recall that B denotes the closed unit ball in Rn) and that N := {1, 2, . . .}.

2 Standing Assumptions and Basic Notions

Dealing with the polyhedron C from (1.3) and having x̄ ∈ C, consider the set of active constraint indices

I(x̄) :=
{
j ∈ {1, . . . , s}

∣∣ 〈xj∗, x̄〉 = cj
}
. (2.1)
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Recall that the positive linear independence constraint qualification (PLICQ) holds at x̄ if[ ∑
j∈I(x̄)

αjx
j
∗ = 0, αj ∈ R+

]
=⇒

[
αj = 0 for all j ∈ I(x̄)

]
, (2.2)

and the linear independence constraint qualification (LICQ) holds if the restriction αj ∈ R+ in (2.2) is
dropped. Our standing assumptions in this paper are as follows:

(H1) The control region U 6= ∅ is a closed and bounded set in Rd.
(H2) The perturbation mapping g : Rn × U → Rn is continuous in (x, u) while being also Lipschitz
continuous with respect to x uniformly on U whenever x belongs to a bounded subset of Rn and satisfies
there the sublinear growth condition

‖g(x, u)‖ ≤ β
(
1 + ‖x‖

)
for all u ∈ U

with some positive constant β.
(H3) The PLICQ condition (2.2) holds along the reference trajectory x̄(t) of (1.2) for all t ∈ [0, T ].

It follows from [16, Theorem 1] that for each measurable control u(·) there is a unique solution
x(·) ∈W 1,2([0, T ],Rn) to the Cauchy problem in (1.2). Thus by a feasible process for (P ) we understand
a pair (x(·), u(·)) such that u(·) is measurable, x(·) ∈W 1,2([0, T ],Rn), and all the constraints in (1.2) are
satisfied. The above discussion tells us that the set of feasible pairs for (P ) is nonempty.

Furthermore, it follows from [16, Theorem 2] that under the assumptions above the sweeping control
problem (P ) admits an optimal solution provided that the image set

g(x, U) :=
{
y ∈ Rn

∣∣ y = g(x, u) for some u ∈ U
}

is convex. Since in this paper we are interested in deriving necessary optimality conditions for a given
local minimizer of (P ), we do not impose the aforementioned convexity assumption.

Let us now specify what we mean by a local minimizer of (P ).

Definition 2.1 We say that a feasible pair (x̄(·), ū(·)) for (P ) is a W 1,2 × L2-local minimizer in this
problem if there exists ε > 0 such that J [x̄, ū] ≤ J [x, u] for all feasible pairs (x(·), u(·)) satisfying∫ T

0

(
‖ẋ(t)− ˙̄x(t)‖2 + ‖u(t)− ū(t)‖2

)
dt < ε.

For the case of differential inclusions of type (1.6) with no explicit controls, this notion corresponds
to intermediate local minimizers of rank two introduced in [20] and then studied there and in other
publications; see, e.g., [22, 27] and the references therein. Quite recently, such minimizers have been
revisited in [19] for controlled sweeping processes different from (1.2); namely, for those where continuous
control actions enter the moving set C(t) = C(u(t)). It is easy to see that strong C ×L2- local minimizers
of (P ) with x̄(·) ∈W 1,2([0, T ];Rn) fall into the category of Definition 2.1, but not vice versa.

In the general setting of W 1,2 ×L2-local minimizers we need to use a certain relaxation procedure in
the line of Bogolyubov and Young that has been well understood in the calculus of variations and optimal
control; see, e.g., [17, 16, 22, 26, 27] for more recent publications in the case of differential inclusions.
Taking into account the convexity and closedness of the normal cone N(x;C) and the compactness of
the set g(x, U), the relaxed version (R) of problem (P ) consists of minimizing the cost functional (1.1)
on absolutely continuous trajectories of the convexified differential inclusion

ẋ(t) ∈ −N
(
x(t);C

)
+ co g

(
x(t), U

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C ⊂ Rn, (2.3)

where ‘co’ signifies the convex hull of the set. Then we come up with the following notion.
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Definition 2.2 Let (x̄(·), ū(·)) be a feasible pair for (P ). We say that it is a relaxed W 1,2×L2-local
minimizer for (P ) if there is ε > 0 such that

ϕ
(
x̄(T )

)
≤ ϕ

(
x(T )

)
whenever

∫ T

0

(
‖ẋ(t)− ˙̄x(t)‖2 + ‖u(t)− ū(t)‖2

)
dt < ε,

where u(·) is a measurable control with u(t) ∈ coU a.e. on [0, T ], and where x(·) is a trajectory of the
convexified inclusion (2.3) that can be strongly approximated in W 1,2([0, T ];Rn) by feasible trajectories
to (P ) generated by piecewise constant controls um(·) on [0, T ] the convex combinations of which strongly
converges to u(·) in the norm topology L2([0, T ];Rd).

Since step functions are dense in the space L2([0, T ];Rd), we obviously have that there is no difference
between W 1,2×L2-local minimizers for (P ) and their relaxed counterparts provided that the sets g(x, U)
and U are convex, which is not assumed in what follows. Moreover, it is possible to deduce from the
proofs of [16, Theorem 2] and [26, Theorem 4.2] that any strong local minimizer for (P ) is automatically
a relaxed one under the assumptions made, but we are not going to pursue this issue here.

Consider further a set-valued mapping F : Rn × Rd ⇒ Rn defined by

F (x, u) := N(x;C)− g(x, u) (2.4)

and deduce from the Motzkin’s theorem of the alternative the representation

F (x, u) :=
{ ∑
j∈I(x)

λjxj∗

∣∣∣ λj ≥ 0
}
− g(x, u). (2.5)

3 Discrete Approximations of Feasible Solutions

In this section we start developing the method of discrete approximations to study the sweeping control
problem (P ) under our standing assumptions. For simplicity, consider the standard Euler explicit scheme
for the replacement of the time derivative in (1.2) by

ẋ(t) ≈ x(t+ h)− x(t)

h
as h ↓ 0,

which we formalize as follows. For any m ∈ IN denote by

∆m :=
{

0 = t0m < t1m < . . . < t2
m

m = T
}

with hm := ti+1
m − tim =

T

2m

the uniform discrete mesh on [0, T ] and define the sequence of discrete-time systems

xi+1
m ∈ xim − hmF (xim, u

i
m), i = 0, . . . , 2m − 1, x0

m := x0 ∈ C, (3.1)

where we have uim ∈ U due to the definition of F in (2.4). Let Iim := [ti−1
m , tim).

The next result provides a constructive approximation of any feasible process for (P ) by feasible
solutions to a perturbation of (3.1) appropriately extended to the continuous-time interval [0, T ]. This
result plays a major role in the entire subsequent procedure to derive necessary optimality conditions for
(P ) while certainly being of its independent interest. Recall that a representative of a given measurable
function on [0, T ] is a function that agrees with the given one for a.e. t ∈ [0, T ].

Theorem 3.1 Let (x̄(·), ū(·)) be a feasible pair for problem (P ) such that ū(·) is of bounded variation
(BV) while admitting a right continuous representative on [0, T ], which we keep denoting by ū(·). In
addition to (H1) and (H2), suppose that the mapping g(x, u) is locally Lipschitzian in both variables
around (x̄(t), ū(t)) for all t ∈ [0, T ]. Then for each m ∈ N there exist state-control pairs (xm(t), um(t))
and perturbation terms rm(t) ≥ 0 and ρm(t) ∈ B as 0 ≤ t ≤ T satisfying the following:
(a) The sequence of control mappings um : [0, T ]→ U , which are constant on each interval Iim, converges
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to ū(·) strongly in L2([0, T ];Rd) and pointwise on [0, T ].
(b) The sequence of continuous state mappings xm : [0, T ] → Rn, which are affine on each interval Iim,
converges strongly in W 1,2([0, T ];Rn) to x̄(·) while satisfying the state constraints

xm(tim) = x̄(tim) ∈ C for each i = 1, . . . , 2m with xm(0) = x0. (3.2)

(c) For all t ∈ (ti−1
m , tim) and i = 1, . . . , 2m we have the differential inclusions

ẋm(t) ∈ −N
(
xm(tim);C

)
+ g
(
xm(tim), um(t)

)
+ rm(t)ρm(t), (3.3)

where the mappings rm : [0, T ]→ [0,∞) and ρm : [0, T ]→ B are constant on each interval Iim with

rm(·)→ 0 in L2(0, T ) as m→∞. (3.4)

In the proof of Theorem 3.1 we use the following important lemma, which can be distilled from the
book by Brézis [5, Proposition 3.3].

Lemma 3.2 Given a feasible solution (x̄(·), ū(·)) to (P ) under the assumptions of Theorem 3.1, we have:

(i) x̄(·) is Lipschitz continuous on [0, T ] and right differentiable for every t ∈ [0, T );

(ii) the sweeping differential inclusion

˙̄x(t) ∈ −N
(
x̄(t);C

)
+ g
(
x̄(t), ū(t)

)
,

with the right derivative ˙̄x(t) taken from (i) and the right continuous representative of the control ū(t), is
satisfied for each t ∈ [0, T ).

Now we are ready to proceed with the proof of the major Theorem 3.1.

Proof of Theorem 3.1. Fix m ∈ N and for all t ∈ [tim, t
i+1
m ) and i = 0, . . . , 2m − 1 define

um(t) := ū(ti+1
m ), xm(t) := x̄(tim) + (t− tim)

x̄(ti+1
m )− x̄(tim)

hm
.

Then denote by ωm(·) the right derivative of xm(·), for which we have the representation

ωm(t) = ωim :=
x̄(ti+1

m )− x̄(tim)

hm
whenever t ∈ [tim, t

i+1
m ), i = 0, . . . , 2m − 1.

It follows from the right continuity of ū(t) that um(t)→ ū(t) as m→∞ for all t ∈ [0, T ). Hence we get
that um(·) → ū(·) strongly in L2(0, T ) by the Lebesgue dominated convergence theorem, which verifies
(a). To prove (b) and (c), let t̄ be a nodal point of the m-th mesh that by construction remains a nodal
point for all m′-mesh with m′ ≥ m. Denote by im(t̄) the index i such that t̄ = i T2m and deduce that

lim
m→∞

ωim(t̄)
m = ˙̄x(t̄) (3.5)

from Lemma 3.2(i). We claim now that

lim
m→∞

‖ωm − ˙̄x‖L2(0,T ) = 0. (3.6)

Indeed, since x̄ is Lipschitz continuous by (i) in Lemma 3.2, by using the dominated convergence theorem
it is sufficient to prove that ωm(t) → ˙̄x(t) a.e. in [0, T ]. To proceed, set τm(t) to be the unique nodal
point tim such that t ∈ [tim, t

i+1
m ) and then observe that for a.e. t ∈ [0, T ] we have

ωm(t) =
1

hm

(
x̄(τm(t) + hm)− x̄(t)

τm(t) + hm − t
(
τm(t) + hm − t

)
+
x̄(t)− x̄(τm(t))

t− τm(t)

(
t− τm(t)

))
(since x̄ is differentiable at t for a.e. t ∈ [0, T ])

=
1

hm

((
˙̄x(t) + o(1)

)(
τm(t) + hm − t

)
+
(

˙̄x(t) + o(1)
)(
t− τm(t)

))
→ ˙̄x(t)
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as m→∞. This verifies therefore the claimed convergence in (3.6).

Recalling again Lemma 3.2, at each nodal point t̄ we get

lim
m→∞

ωim(t̄)
m = ˙̄x(t̄) ∈ −N

(
x̄(t̄);C

)
+ g
(
x̄(t̄), ū(t̄)

)
.

Pick ζ̄ ∈ N(x̄(t̄);C) with ˙̄x(t̄) = −ζ̄ + g(x̄(t̄), ū(t̄)). Recall that

ωim(t̄)
m + ζ̄ − g

(
xm(t̄), um(t̄)

)
= ωim(t̄)

m + ζ̄ − g
(
xm(t̄), ū(t̄+ hm)

)
.

Remembering that xm(t̄) = x̄(t̄) for each m tells us that the last expression tends to zero as m → ∞
due to the right continuity of ū(t) and to the (Lipschitz) continuity of g. Thus there exists a sequence
{rm(t̄)} such that rm(t̄) ↓ 0 as m→∞ and

ωim(t̄)
m ∈ −N(xm(t̄);C) + g

(
xm(t̄), um(t̄)

)
+ rm(t̄)B.

By choosing an appropriate vector ρm(t̄) ∈ B and extending both rm(t̄) and ρm(t̄) constantly to the

interval I
im(t̄)
m , we complete the proof of the theorem. 2

4 Discrete Approximations of Local Optimal Solutions

As seen above, Theorem 3.1 provides a constructive discrete approximation of any feasible solution to
problem (P ) by feasible solutions to discrete-time problems, with no connections to optimization. The
main goal here is to study a given local optimal solution to (P ) by using discrete approximations as a
vehicle to derive further necessary optimality conditions for it. To proceed in this direction, we construct
a sequence of discrete-time optimization problems such that their optimal solutions always exist and
strongly converge in the sense below to the given local minimizer of the original sweeping control problem.

Our main attention in this section is paid to relaxed W 1,2 × L2-local minimizers (x̄(·), ū(·)) for (P )
introduced in Definition 2.2 while recalling that the relaxation is not needed if either the set g(x, U) is
convex, or (x̄(·), ū(·)) is a strong local minimizer for (P ); see the discussions in Section 2.

Given a relaxed W 1,2 × L2-local minimizer (x̄(·), ū(·)), we construct the following family of discrete-
time problems (Pm), m ∈ IN , where F is defined in (2.4), rm(·) and ρm(·) are as in the statement of
Theorem 3.1, and where ε is taken from the definition of local minimizer:

minimize Jm[xm, um] := ϕ
(
xm(T )

)
+

1

2

2m−1∑
i=0

∫ ti+1
m

tim

(∥∥∥∥xi+1
m − xim
hm

− ˙̄x(t)

∥∥∥∥2

+
∥∥uim − ū(t)

∥∥2

)
dt (4.1)

over all the discrete functions (xm, um) = (x0
m, x

1
m, . . . , x

2m

m , u0
m, u

1
m, . . . , u

2m−1
m ) satisfying the constraints

xi+1
m ∈ xim − hm

(
F (xim, u

i
m)− ρm(tim)rm(tim)

)
=: xim − hmFm(tim, x

i
m, u

i
m) for i = 0, . . . , 2m − 1, (4.2)

where Fm(t, x, u) := F (x, u)− rm(t)ρm(t), and where

〈xj∗, x2m

m 〉 ≤ cj for all j = 1, . . . , s with x0
m := x0 ∈ C, u0

m := ū(0),

2m−1∑
i=0

∫ ti+1
m

tim

(∥∥∥∥xi+1
m − xim
hm

− ˙̄x(t)

∥∥∥∥2

+
∥∥uim − ū(t)

∥∥2

)
dt ≤ ε

2
, (4.3)

uim ∈ U for i = 0, . . . , 2m − 1. (4.4)

Note that the constraints 〈xj∗, xim〉 ≤ cj for all j = 1, . . . , s and i = 0, . . . , 2m− 1 are included in (4.2),
since the validity of (4.2) yields the nonemptiness of N(xim;C) for each i = 0, . . . , 2m − 1, which in turn
implies that xim ∈ C for all i = 0, . . . , 2m − 1.

To implement the method of discrete approximation, we have to make sure that each problem (Pm)
admits an optimal solution. By taking into account Theorem 3.1, we deduce it from the classical Weier-
strass existence theorem in finite dimensions due to the construction of (Pm) and the assumptions made.
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Proposition 4.1 In addition to the assumptions of Theorem 3.1, suppose that the cost function ϕ is
lower semicontinuous (l.s.c.) on Rn. Then each problem (Pm) admits an optimal solution provided that
m ∈ IN is sufficiently large.

Proof. It follows from Theorem 3.1 that the set of feasible solutions (xm, um) to (Pm) is nonempty for
any large m. It follows from the constraint structures in (Pm) and the assumptions imposed on U and
g that the feasible sets are closed. Furthermore, it easy to deduce from the localization in (4.3) that
the feasible sets are bounded as well. Thus the lower semicontinuity assumption on the cost function ϕ
ensures the existence of optimal solutions to (Pm) by the Weierstrass theorem. 2

Now we are ready to derive the main result of this section that establishes the strong W 1,2 convergence
of any sequence (x̄m(·), ūm(·)) of optimal solutions to (Pm), which are extended to the entire interval
[0, T ], to the given local minimizer (x̄(·), ū(·)) for the original problem (P ).

Theorem 4.2 Let (x̄(·), ū(·)) be a relaxed W 1,2 × L2-local minimizer for the sweeping control problem
(P ), and let ϕ be continuous around x̄(T ) in addition to the assumptions of Theorem 3.1. Consider any
sequence of optimal solutions (x̄m(·), ūm(·)) to problems (Pm) and extend them to [0, T ] piecewise linearly
for x̄m(·) and piecewise constantly for ūm(·) without relabeling. Then we have the convergence(

x̄m(·), ūm(·)
)
→
(
x̄(·), ū(·)

)
as m→∞

in the strong topology of W 1,2([0, T ];Rn)× L2([0, T ];Rd).

Proof. It is sufficient to show that

lim
m→∞

∫ T

0

(
‖ ˙̄xm(t)− ˙̄x(t)‖2 + ‖ūm(t)− ū(t)‖2

)
dt = 0. (4.5)

Arguing by contradiction, suppose that there exists a subsequence of the integral values γm in (4.5) that
converges, without relabeling, to some number γ > 0. Due to (4.3), the sequence of extended optimal
solutions {( ˙̄xm(·), ūm(·))} to (Pm) is bounded in the reflexive space L2([0, T ];Rn) × L2([0, T ];Rd), and
thus it contains a weakly converging subsequence in this product space, again without relabeling. Denote
by (ṽ(·), ũ(·)) the limit of the latter subsequence and then let

x̃(t) := x0 +

∫ t

0

ṽ(τ)dτ for all t ∈ [0, T ].

Since ˙̃x(t) = ṽ(t) for a.e. t ∈ [0, T ], we have that(
x̄m(·), ūm(·)

)
→
(
x̃(·), ũ(·)

)
as m→∞

in the topology of W 1,2([0, T ];Rn) × L2([0, T ];Rd). Invoking the Mazur weak closure theorem tells us
that there is a sequence of convex combinations of (x̄m(·), ūm(·)), which converges to (x̃(·), ũ(·)) strongly

in W 1,2([0, T ];Rn) × L2([0, T ];Rd), and thus ( ˙̄xm(t), ūm(t)) → ( ˙̃x(t), ũ(t)) for a.e. t ∈ [0, T ] along a
subsequence. Furthermore, we can clearly replace above the piecewise linear extensions of the discrete
trajectories x̄m(·) to the interval [0, T ] by the trajectories of (1.2) generated by the controls ūm(·) piecewise
constantly extended to [0, T ]. The obtained pointwise convergence of convex combinations allows us to
conclude that ũ(t) ∈ coU for a.e. t ∈ [0, T ] and that x̃(·) satisfies the convexified differential inclusion
(2.3). Passing now to the limit as m → ∞ in the cost functional and constraints (4.1)–(4.4) of problem
(Pm) with taking into account the assumed local continuity of ϕ and the constructions above, we conclude
that the pair (x̃(·), ũ(·)) belongs to the prescribed W 1,2 × L2-neighborhood of the given local minimizer
(x̄(·), ū(·)) and satisfies the inequality

J [x̃, ũ] + γ/2 ≤ J [x̄, ū] =⇒ J [x̃, ũ] < J [x̄, ū] (4.6)

due to the strong convergence of (x̄m(·), ūm(·)) to (x̃(·), ũ(·)) and the structure of (4.1). Appealing to
Definition 2.2 tells us that (4.6) contradicts the very fact that (x̄(·), ū(·)) is a relaxed W 1,2 × L2-local
minimizer of (P ). Thus we get (4.5) and complete the proof of the theorem. 2

Recalling the discussion after Definition 2.2 leads us to the following consequence of Theorem 4.2,
which provides the strong approximation of local minimizers for (P ) without an explicit relaxation.
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Corollary 4.3 In addition to the assumptions of Theorem 4.2, suppose that the sets g(x, U) and U are
convex. Then the convergence result of Theorem 4.2 holds true.

5 Tools of Variational Analysis

The results of Section 4 make a bridge between the given local minimizer (x̄(·), ū(·)) of the original
problem (P ) and (global) optimal solutions for the sequence of discrete approximations (Pm) that exist
by Proposition 4.1 and strongly converge to (x̄(·), ū(·)) by Theorem 4.2. This supports our approach
to derive necessary optimality conditions for (x̄(·), ū(·)) by establishing firstly necessary conditions for
optimal solutions to the discrete-time problems (Pm) and then passing to the limit in them as m→∞.

Looking at the structures of each problem (Pm) and the equivalent problem of finite-dimensional math-
ematical programming defined in Section 6, we observe that they are always nonsmooth and nonconvex,
even when the initial data of (P ) possess these properties. This is due to the graphical set constraints
associated with the discrete-time inclusions (4.2) that are generated by the normal cone mapping in (2.4).

To proceed with deriving necessary optimality conditions for (Pm) and then for (P ) by passing to the
limit, we have to employ appropriate generalized differential constructions of variational analysis. These
constructions should be robust, enjoy comprehensive calculus rules, and such that the corresponding
normal cone is not too large while being applied to–specifically–graphical sets. It does hold, in particular,
for the Clarke normal cone N , which is always a linear subspace of a maximum dimension for sets that are
graphically homeomorphic to graphs of Lipschitzian functions; see [21, 25] for more details and references.
For example, we have N((0, 0); gph |x|) = R2 for the graph of the simplest convex function on R.

All the required properties are satisfied for the generalized differential constructions initiated by the
second author. Elements of the first-order theory and various applications can be found by now in many
books; see, e.g., [21]–[23], [25], [27]. We refer the reader to [22, 23] and the bibliographies therein for
second-order constructions used in what follows.

To briefly overview the needed notions, recall first the (Painlevé-Kuratowski) outer limit of a set-valued
mapping/multifunction F : Rn ⇒ Rm at x̄ with F (x̄) 6= ∅ given by

Lim sup
x→x̄

F (x) :=
{
y ∈ Rm

∣∣ ∃ sequences xk → x̄, yk → y such that yk ∈ F (xk), k ∈ IN
}

(5.1)

Given now a set Ω ⊂ Rn locally closed around x̄ ∈ Ω, we define by using (5.1) the (basic, limiting,
Mordukhovich) normal cone to Ω at x̄ by

N(x̄; Ω) = NΩ(x̄) := Lim sup
x→x̄

{
cone[x−Π(x; Ω)]

}
. (5.2)

where Π(x; Ω) :=
{
u ∈ Ω

∣∣ ‖x − u‖ = dist(x; Ω)
}

is the Euclidean projection of x onto Ω, and where
‘cone’ stands for the (nonconvex) conic hull of the set. When Ω is convex, (5.2) reduces to the normal
cone of convex analysis, but it is often nonconvex otherwise.

Given further a set-valued mapping F : Rn ⇒ Rm with its domain and graph

domF :=
{
x ∈ Rn

∣∣ F (x) 6= ∅} and gphF :=
{

(x, y) ∈ Rn × Rm
∣∣ y ∈ F (x)

}
locally closed around (x̄, ȳ) ∈ gphF , the coderivative of F at (x̄, ȳ) is generated by (5.2) as

D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rm. (5.3)

When F : Rn → Rm is single-valued and continuously differentiable (C1-smooth) around x̄, we have

D∗F (x̄)(u) =
{
∇F (x̄)∗u

}
for all u ∈ Rm

via the adjoint/transposed Jacobian matrix ∇F (x̄)∗, where ȳ = F (x̄) is omitted.

Let φ : Rn → R := (−∞,∞] be an extended-real-valued l.s.c. function with

domφ :=
{
x ∈ Rn

∣∣ ϕ(x) <∞
}

and epiφ :=
{

(x, α) ∈ Rn+1
∣∣ α ≥ φ(x)

}
9



standing for its domain and epigraph. The (first-order) subdifferential of φ at x̄ ∈ domφ is defined
geometrically via the normal cone (5.2) by

∂φ(x̄) :=
{
v ∈ Rm

∣∣ (v,−1) ∈ N
(
(x̄, φ(x̄)); epiφ

)}
(5.4)

while admitting equivalent analytic representations; see, e.g., [21, 25]. Note that N(x̄; Ω) = ∂δ(x̄; Ω) for
any x̄ ∈ Ω, where δ(x; Ω) denotes the indicator function of Ω equal to 0 for x ∈ Ω and ∞ otherwise.
Then given a subgradient v̄ ∈ ∂φ(x̄) and following [21, 23], we define the second-order subdifferential (or
generalized Hessian) of φ at x̄ relative to v̄ by

∂2φ(x̄, v̄)(u) := (D∗∂φ)(x̄, v̄)(u), u ∈ Rn,

via the coderivative (5.3) of the first-order subdifferential mapping x 7→ ∂φ(x) from (5.4). If the function
φ is C2-smooth around x̄, then we have the representation

∂2φ(x̄, v̄)(u) =
{
∇2φ(x̄)u

}
for all u ∈ Rn,

where ∇2φ(x̄) stands for the classical (symmetric) Hessian of φ at x̄ with v̄ = ∇φ(x̄). If φ(x) :=
δ(x; Ω), then ∂2ϕ(x̄, v̄)(u) = (D∗NΩ)(x̄, v̄)(u) for any v̄ ∈ N(x̄; Ω) and u ∈ Rn. The latter second-order
construction is evaluated below in the case of the polyhedral set Ω = C from (1.3). To proceed, define
the index sets corresponding to the generating vectors xj∗ in (1.3) by

I0(w) :=
{
j ∈ I(x)

∣∣ 〈xj∗, w〉 = cj
}

and I>(w) :=
{
j ∈ I(x)

∣∣ 〈xj∗, w〉 > cj
}
, w ∈ Rn. (5.5)

where I(x) is taken from (2.1) with x̄ := x ∈ C. The next theorem provides an effective upper estimate
of the coderivative of Fm from (4.2) with ensuring the equality under an additional assumption on xj∗.

Theorem 5.1 Given Fm in (4.2) with C from (1.3), denote G(x) := N(x;C) and suppose in addition
to standing assumptions that g is C1-smooth around the reference points. Then for any (t, x, u) ∈ [0, T ]×
C × U and ω + g(x, u) + rm(t)ρm(t) ∈ G(x) we have the (x, u)-coderivative upper estimate

D∗Fm(t, x, u, ω)(w) ⊂
{
z =

(
−∇xg(x, u)∗w +

∑
j∈I0(w)∪I>(w)

γjxj∗,−∇ug(x, u)∗w
)}
, (5.6)

where w ∈ domD∗G(x, ω+g(x, u)+rm(t)ρm(t)), where I0(w) and I>(w) are taken from (5.5), and where
γj ∈ R for j ∈ I0(w), while γj ≥ 0 for j ∈ I>(w). Furthermore, (5.6) holds as an equality and the domain
domD∗G(x, ω + g(x, u) + rm(t)ρm(t)) can be computed by

domD∗G
(
x, ω+g(x, u)+rm(t)ρm(t)

)
=
{
w
∣∣∣∃λj ≥ 0 with ω+g(x, u) =

∑
j∈I(x)

λjxj∗, λ
j > 0 =⇒ 〈xj∗, w〉 = 0

}
provided that the generating vectors {xj∗ | j ∈ I(x)} of the polyhedron C are linearly independent.

Proof. Picking any w ∈ domD∗G(x, ω + g(x, u) + rm(t)ρm(t)) and z ∈ D∗Fm(t, x, u, y)(w) and then

denoting G̃(x, u) := G(x) and f̃(x, u) := −g(x, u), we deduce from [22, Theorem 1.62] that

z ∈ ∇f̃(x, u)∗w +D∗G̃
(
x, u, ω + g(x, u) + rm(t)ρm(t)

)
(w).

Observe then the obvious composition representation

G̃(x, u) = G ◦ g̃(x, u) with g̃(x, u) := x,

where the latter mapping has the surjective derivative. It follows from [22, Theorem 1.66] that

z ∈ ∇f̃(x, u)∗w +∇g̃(x, u)∗D∗G
(
x, ω + g(x, u) + rm(t)ρm(t)

)
(w). (5.7)

Employing now in (5.7) the coderivative estimate for the normal cone mapping G obtained in [18, Theo-
rem 4.5] with the exact coderivative calculation given in [18, Theorem 4.6] under the linear independence

of the generating vectors xj∗ and also taking into account the structure of the mapping f̃ in (5.7), we
arrive at (5.6) and the equality therein under the aforementioned assumption. 2
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6 Necessary Optimality Conditions for Discrete-Time Problems

Here we derive necessary optimality conditions for solutions to each problem (Pm), m ∈ IN , formulated in
(4.1)–(4.4). It is done by reducing each (Pm) to a nondynamic problem of nondifferentiable programming
with functional and many geometric constraints, then employing necessary optimality conditions for
the latter problem obtained in terms of generalized differential constructions of Section 5, and finally
expressing the obtained conditions in terms of the given data of (Pm) by using calculus rules of generalized
differentiation. In this way we arrive at the following necessary conditions, which will be further specified
below by applying the second-order calculations presented in Section 5.

Theorem 6.1 Let (x̄m, ūm) = (x̄0
m, . . . , x̄

2m

m , ū0
m, . . . , ū

2m−1
m ) be an optimal solution to problem (Pm)

along which the general assumptions of Theorem 5.1 are satisfied. Suppose in addition that the cost
function ϕ is Lipschitz continuous around the point x̄m(T ). Then there are elements λm ≥ 0, ψm =
(ψ0
m, . . . , ψ

2m−1
m ) with ψim ∈ N(ūim;U), as i = 0, . . . , 2m − 1, ξm = (ξ1

m, . . . , ξ
s
m) ∈ Rs+, and pim ∈ Rn as

i = 0, . . . , 2m satisfying the conditions

λm + ‖ξm‖+
2m−1∑
i=0

∥∥pim∥∥+ ‖ψm‖ 6= 0, (6.1)

ξjm
(
〈xj∗, x2m

m 〉 − cj
)

= 0, j = 1, . . . , s, (6.2)

−p2m

m = λmϑ
2m

m +

s∑
j=1

ξjmx
j
∗ with ϑ2m

m ∈ ∂ϕ(x̄2m

m ), (6.3)

(pi+1
m − pim
hm

,− 1

hm
λmθ

iu
m ,

1

hm
λmθ

iy
m − pi+1

m

)
∈
(

0,
1

hm
ψim, 0

)
+N

((
x̄im, ū

i
m,−

x̄i+1
m − x̄im
hm

)
; gphFm

) (6.4)

for i = 0, . . . , 2m − 1, where we use the notation

θim =
(
θiym, θ

iu
m

)
:=
(∫ ti+1

m

tim

(
x̄i+1
m − x̄im
hm

− ˙̄x(t)

)
dt,

∫ ti+1
m

tim

(
ūim − ū(t)

)
dt
)
. (6.5)

Proof. Denote z := (x0
m, . . . , x

2m

m , u0
m, . . . , u

2m−1
m , y0

m, . . . , y
2m−1
m ) ∈ R(2·2m+1)n+2m·d, where the starting

point x0
m is fixed. Taking ε > 0 from (Pm), consider the following problem of mathematical programming

(MP ) with respect to the variable z:

minimize φ0(z) := ϕ
(
x(T )

)
+

1

2

2m−1∑
i=0

∫ ti+1
m

tim

∥∥(yim − ˙̄x(t), uim − ū(t)
)∥∥2

dt

subject to finitely many equality, inequality, and geometric constraints given by

φ(z) :=
2m−1∑
i=0

∫ ti+1
m

tim

∥∥(yim, uim)− ( ˙̄x(t), ū(t)
)∥∥2

dt− ε

2
≤ 0,

gi(z) := xi+1
m − xim − hmyim = 0, i = 0, . . . , 2m − 1,

hj(z) := 〈xj∗, x2m

m 〉 − cj ≤ 0, j = 1, . . . , s,

z ∈ Ξi :=
{

(x0
m, . . . , y

2m−1
m ) ∈ R(2·2m+1)n+2m·d

∣∣∣ − yim ∈ Fm(tim, x
i
m, u

i
m)
}
, i = 0, . . . , 2m − 1,

z ∈ Ξ2m :=
{

(x0
m, . . . , y

2m−1
m ) ∈ R(2·2m+1)n+2m·d ∣∣ x0

m is fixed
}
,

z ∈ Ωi :=
{

(x0
m, . . . , y

2m−1
m ) ∈ R(2·2m+1)n+2m·d ∣∣ uim ∈ U}, i = 0, . . . , 2m − 1.
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Necessary optimality conditions for (MP ) in terms of the generalized differential tools reviewed above
can be deduced from [23, Proposition 6.4 and Theorem 6.5]. We specify them for the optimal solution

z̄ :=
(
x̄0
m, . . . , x̄

2m

m , ū0
m, . . . , ū

2m−1
m , ȳ0

m, . . . , ȳ
2m−1
m

)
to (MP ). It follows from Theorem 4.2 that the inequality constraint in (MP ) defined by φ is inactive
for large m, and so the corresponding multiplier does not appear in the optimality conditions. Thus we
can find λm ≥ 0, ξm = (ξ1

m, . . . , ξ
s
m) ∈ Rs+, pim ∈ Rn as i = 1, . . . , 2m, and

z∗i =
(
x∗0i, . . . , x

∗
2mi, u

∗
0i, . . . , u

∗
(2m−1)i, y

∗
0i, y

∗
1i, . . . , y

∗
(2m−1)i

)
, i = 0, . . . , 2m,

which are not zero simultaneously while satisfying the conditions

z∗i ∈
{
N(z̄; Ξi) +N(z̄; Ωi) if i ∈

{
0, . . . , 2m − 1

}
,

N(z̄; Ξi) if i = 2m,
(6.6)

−z∗0 − . . .− z∗2m ∈ λm∂φ0(z̄) +
s∑
j=1

ξjm∇hj(z̄) +
2m−1∑
i=0

∇gi(z̄)∗pi+1
m ,

ξjmhj(z̄) = 0, j = 1, . . . , s. (6.7)

Note that the first line in (6.6) comes by applying the normal cone intersection formula from [21, Corol-
lary 3.5] to z̄ ∈ Ωi ∩ Ξi for i = 0, . . . , 2m − 1, where the required qualification condition

N(z̄; Ωi) ∩
(
−N(z̄; Ξi)

)
= {0}, i = 0, . . . , 2m − 1,

follows directly from the coderivative estimate (5.6) of Theorem 5.1 under the imposed PLICQ. We deduce
from the structure of Ωi and Ξi that the inclusions in (6.6) can be equivalently written as

(
x∗ii, u

∗
ii − ψim,−y∗ii

)
∈ N

((
x̄im, ū

i
m,−

x̄i+1
m − x̄im
hm

)
; gphFm(tim, ·, ·)

)
for i = 0, . . . , 2m − 1 (6.8)

with every other components of z∗i equal to zero, where ψim ∈ N(ūim;U) for all i = 0, . . . , 2m−1. Observe
furthermore that x∗0m and u∗0m determined by the normal cone to Ξ2m are the only nonzero components
of z∗2m . This implies by using (6.6) and (6.7) that

−z∗0 − . . .− z∗2m ∈ λm∂φ0(z̄) +

s∑
j=1

ξjm∇hj(z̄) +

2m−1∑
i=0

∇gi(z̄)∗pi+1
m

with ξjm
(
〈zj2m

m , x2m

m 〉 − cj2
m

m

)
= 0, j = 1, . . . , s. Using the expressions for φ0, gi, and hj above together

with the elementary subdifferential sum rule from [21, Proposition 1.107] gives the calculations( s∑
j=1

ξjm∇hj(z̄)
)
x2m
m

=
( s∑
j=1

ξjmx
j
∗

)
,

( 2m−1∑
i=0

∇gi(z̄)∗pi+1
m

)
xi
m

=


−p1

m if i = 0,
pim − pi+1

m if i = 1, . . . , 2m − 1,
p2m

m if i = 2m,( 2m−1∑
i=0

∇gi(z̄)∗pi+1
m

)
yim

=
(
−hmp1

m,−hmp2
m, . . . ,−hmp2m

m

)
,

∂φ0(z̄) = ∂ϕ(x̄mm) +
1

2

2m−1∑
i=0

∇ρi(z̄) with ρi(z̄) :=

∫ ti+1
m

tim

∥∥∥( x̄i+1
m − x̄im
hm

− ˙̄x(t), ūim − ū(t)
)∥∥∥2

dt.
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The set λm∂φ0(z̄) is represented as the collection of

λm
(
0, . . . , 0, ϑ2m

m , θ0u
m , . . . , θ(2m−1)u

m , θ0y
m , . . . , θ

(2m−1)y
m

)
with ϑ2m

m ∈ ∂ϕ(x̄2m

m ),

(θium , θ
iy
m) =

(∫ ti+1
m

tim

(
ūim − ū(t)

)
dt,

∫ ti+1
m

tim

(
x̄i+1
m − x̄im
hm

− ˙̄x(t)

)
dt

)
, i = 0, . . . , 2m − 1.

Thus we obtain the following relationships

−x∗00 − x∗02m = −p1
m, (6.9)

−x∗ii = pim − pi+1
m , i = 1, . . . , 2m − 1, (6.10)

0 = λmϑ
2m

m + p2m

m +
s∑
j=1

ξjmx
j
∗ with ϑ2m

m ∈ ∂ϕ(x̄2m

m ), (6.11)

−u∗00 = λmθ
0u
m and − u∗ii = λmθ

iu
m , i = 1, . . . , 2m − 1, (6.12)

−y∗ii = λmθ
iy
m − hmpi+1

m , i = 0, . . . , 2m − 1, (6.13)

which allow us to arrive at all the necessary optimality conditions claimed in the theorem. Indeed, observe
first that (6.7) yields (6.2). Extending pm by p0

m := x∗02m ensures that (6.3) follows from (6.11). Then
we deduce from (6.10), (6.12), and (6.13) that

x∗ii
hm

=
pi+1
m − pim
hm

,
u∗ii
hm

= − 1

hm
λmθ

iu
m , and

y∗ii
hm

= − 1

hm
λmθ

iy
m + pi+1

m .

Substituting this into the left-hand side of (6.8) justifies the discrete-time adjoint inclusion (6.4).

Finally, to verify (6.1) we argue by contradiction and suppose that λm = 0, ξm = 0, ψm = 0, and
pim = 0 as i = 0, . . . , 2m−1, which yield x∗02m = p0

m = 0. Then it follows from (6.11) that p2m

m = 0, and so
pim = 0 whenever i = 0, . . . , 2m. By (6.9) and (6.10) we get x∗ii = 0 for all i = 0, . . . , 2m− 1. Using (6.12)
tells us that u∗ii = 0 as i = 1, . . . , 2m − 1. Since the first condition in (6.12) yields also u∗00 = 0, it follows
that u∗ii = 0 for i = 0, . . . , 2m − 1. In addition we have by (6.13) that y∗ii = 0 for all i = 0, . . . , 2m − 1.
Remembering that the components of z∗i different from (x∗ii, u

∗
ii, y
∗
ii) are zero for i = 0, . . . , 2m−1 ensures

that z∗i = 0 for i = 0, . . . , 2m − 1 and similarly z∗2m = 0. Therefore z∗i = 0 for all i = 0, . . . , 2m, which
violates the nontriviality condition for (MP ) and thus completes the proof. 2

The next theorem applies to (6.4) the calculation result of Theorem 4.2 and provides in this way
necessary optimality conditions for problem (Pm) expressed entirely via its initial data.

Theorem 6.2 Let (x̄m, ūm) be an optimal solution to problem (Pm) formulated in (4.1)–(4.4), where
the cost function ϕ is locally Lipschitzian around x̄m(T ), and where the sweeping mapping F is defined
in (2.4). Using the notation and assumptions of Theorem 5.1, take (θium , θ

iy
m) from (6.5). Then for all

m ∈ IN there exist dual elements (λm, ψm, pm) as in Theorem 6.1 together with vectors ηim ∈ Rs+ for
i = 0, . . . , 2m and γim ∈ Rs for i = 0, . . . , 2m − 1 satisfying the nontriviality conditions

λm +
∥∥∥η2m

m

∥∥∥+
2m−1∑
i=0

∥∥pim∥∥+ ‖ψm‖ 6= 0, (6.14)

the primal-dual relationships given for all i = 0, . . . , 2m − 1 and j = 1, . . . , s by

rm(tim)ρm(tim)− x̄i+1
m − x̄im
hm

+ g(x̄im, ū
i
m) =

∑
j∈I(x̄i

m)

ηijmx
j
∗, (6.15)

pi+1
m − pim
hm

= −∇xg(x̄im, ū
i
m)∗

(
− 1

hm
λmθ

iy
m + pi+1

m

)
+

∑
j∈I0(pi+1

m − 1
hm

λmθ
iy
m )∪I>(pi+1

m − 1
hm

λmθ
iy
m )

γijmx
j
∗,

(6.16)
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− 1

hm
λmθ

iu
m −

1

hm
ψim = −∇ug(x̄im, ū

i
m)∗

(
− 1

hm
λmθ

iy
m + pi+1

m

)
(6.17)

with ψim ∈ N(ūim;U) as i = 0, . . . , 2m − 1 taken from Theorem 6.1, the transversality condition

−p2m

m = λmϑ
2m

m +
s∑
j=1

η2mj
m xj∗ with ϑ2m

m ∈ ∂ϕ(x̄2m

m ) (6.18)

and such that the following implications hold for i = 0, . . . , 2m − 1 and j = 1, . . . , s:[
〈xj∗, x̄im〉 < cj

]
=⇒ ηijm = 0, (6.19)

[
j ∈ I>(pi+1

m − 1

hm
λmθ

iy
m)
]

=⇒ γijm ≥ 0,[
j /∈ I0(pi+1

m − 1

hm
λmθ

iy
m) ∪ I>(pi+1

m − 1

hm
λmθ

iy
m)
]

=⇒ γijm = 0.
(6.20)

We also have the complementary slackness condition (6.2) together with[
〈xj∗, x̄im〉 < cj

]
=⇒ γijm = 0 for i = 0, . . . , 2m − 1 and j = 1, . . . , s, (6.21)[

〈xj∗, x̄2m

m 〉 < cj
]

=⇒ η2mj
m = 0 for j = 1, . . . , s, (6.22)

Furthermore, the linear independence of the vectors {xj∗| j ∈ I(x̄im)} ensures the implication

ηijm > 0 =⇒
[〈
xj∗, p

i+1
m − 1

hm
λmθ

iy
m

〉
= 0
]

(6.23)

Assuming in addition that the matrices ∇ug(x̄im, ū
i
m) are of full rank for all i = 0, . . . , 2m−1 and m ∈ IN

sufficiently large, we get the enhanced nontriviality condition

λm + ‖p0
m‖+ ‖ψm‖ 6= 0. (6.24)

Proof. Using the necessary optimality conditions of Theorem 6.1, we can rewrite (6.4) as(pi+1
m − pim
hm

,− 1

hm
λmθ

iu
m −

1

hm
ψim

)
∈ D∗Fm

(
x̄im, ū

i
m,−

x̄i+1
m − x̄im
hm

)(
− 1

hm
λmθ

iy
m + pi+1

m

)
(6.25)

for all i = 0, . . . , 2m − 1 by the coderivative definition (5.3). Taking into account that

rm(tim)ρm(tim)− x̄i+1
m − x̄im
hm

+ g(x̄im, ū
i
m) ∈ G(x̄im) for i = 0, . . . , 2m − 1 (6.26)

with G(x) = N(x;C), we find vectors ηim ∈ Rs+ as i = 0, . . . , 2m − 1 such that conditions (6.15) and
(6.19) hold. Employing now the coderivative evaluation (5.6) from Theorem 5.1 with x := x̄im, u := ūim,

ω := − x̄
i+1
m −x̄i

m

hm
, and w := − 1

hm
λmθ

iy
m + pi+1

m for i = 0, . . . , 2m − 1 gives us γim ∈ Rs and the relationships

(pi+1
m − pim
hm

,− 1

hm
λmθ

iu
m −

ψium
hm

)

=

−∇xg(x̄im, ū
i
m)∗

(
− 1

hm
λmθ

iy
m + pi+1

m

)
+

∑
j∈I0(pi+1

m − 1
hm

λmθ
iy
m )∪I>(pi+1

m − 1
hm

λmθ
iy
m )

γijmx
j
∗,

−∇ug(x̄im, ū
i
m)∗

(
− 1

hm
λmθ

iy
m + pi+1

m

)
 ,

ψim ∈ N(ūim;U) as i = 0, . . . , 2m − 1.
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This ensures the validity of all the conditions in (6.16), (6.17), (6.20), and (6.21). Denoting η2m

m := ξm
with ξm taken from Theorem 6.1, we get ηim ∈ Rs+ for all i = 0, . . . , 2m and deduce (6.14) and (6.18) from

those in (6.1) and (6.3). Implications (6.22) follow directly from (6.2) and the definition of η2m

m .

Assume finally that the generating vectors {xj∗ | j ∈ I(x̄im)} are linearly independent. In this case we
deduce from (6.15) and (6.25) and the domain formula in Theorem 5.1 that condition (6.23) is satisfied.
It remains to verify the enhanced nontriviality (6.24) under the additional assumption on the full rank of
the matrices ∇ug(x̄im, ū

i
m). Suppose on the contrary that λm = 0, p0

m = 0, and ψm = 0. Then pi+1
m = 0

as i = 0, . . . , 2m − 1 by (6.17). Then it follows from (6.16) the equality∑
j∈I0(pi+1

m − 1
hm

λmθ
iy
m )∪I>(pi+1

m − 1
hm

λmθ
iy
m )

γijmx
j
∗ = 0.

Invoking now (6.18) and p2m

m = 0 tells us that
∑s
j=1 η

2mj
m xj∗ = 0. This implies by definition (2.1) of the

active constraint indices and the imposed linear independence of xj∗ over this index set that η2m

m = 0.
Thus (6.14) is violated, which verifies (6.24) and completes the proof of the theorem. 2

7 Optimality Conditions for the Controlled Sweeping Process

In this section we derive necessary optimality conditions for the local minimizer under consideration in
the original problem (P ) by passing to the limit as m → ∞ in the necessary optimality conditions of
Theorem 6.1 for the discrete-time problems (Pm). Furnishing the limiting procedure requires the usage
of Theorem 4.2 and the tools of generalized differentiation reviewed in Section 5.

Theorem 7.1 Let (x̄(·), ū(·)) be a relaxed W 1,2 × L2-local minimizer of problem (P ) such that ū(·) is
of bounded variation and admits a right continuous representative on [0, T ]. In addition to (H1)–(H3),
suppose that g(·, ·) is C1-smooth around (x̄(t), ū(t)) with the full rank of the matrices ∇ug(x̄(t), ū(t)) on
[0, T ], and that ϕ is locally Lipschitzian around x̄(T ). Then there exist a multiplier λ ≥ 0, a signed
vector measure γ = (γ1, . . . , γs) ∈ C∗([0, T ];Rs) as well as adjoint arcs p(·) ∈ W 1,2([0, T ];Rn) and
q(·) ∈ BV ([0, T ];Rn) such that the following conditions are fulfilled:

(i) The primal-dual dynamic relationships consisting of:

• The primal arc representation

− ˙̄x(t) =
s∑
j=1

ηj(t)xj∗ − g
(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ), (7.1)

where the functions ηj(·) ∈ L2([0, T );R+) are uniquely determined for a.e. t ∈ [0, T ) by representation
(7.1). In fact, (7.1) holds at all t ∈ [0, T ) provided that ˙̄x(t) denotes the right derivative.

• The adjoint dynamic system

ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ], (7.2)

where the right continuous representative of q(·), with the same notation, satisfies

q(t) = p(t)−
∫

(t,T ]

s∑
j=1

dγj(τ)xj∗, (7.3)

for all t ∈ [0, T ] except at most a countable subset, and moreover p(T ) = q(T ).

• The local maximum principle

ψ(t) := ∇ug
(
x̄(t), ū(t)

)∗
q(t) ∈ coN

(
ū(t);U

)
for a.e. t ∈ [0, T ], (7.4)

which gives us the global maximization condition〈
ψ(t), ū(t)

〉
= max

u∈U

〈
ψ(t), u

〉
for a.e. t ∈ [0, T ] (7.5)
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provided that the control set U is convex.

• The dynamic complementary slackness conditions〈
xj∗, x̄(t)

〉
< cj =⇒ ηj(t) = 0 and ηj(t) > 0 =⇒

〈
xj∗, q(t)

〉
= 0 (7.6)

for a.e. t ∈ [0, T ) and all j = 1, . . . , s provided that LICQ at x̄(t) is additionally imposed.

(ii) The endpoint relationships consisting of:

• The transversality conditions: there exist numbers ηj(T ) ≥ 0 for j ∈ I(x̄(T )) such that

−p(T )−
∑

j∈I(x̄(T ))

ηj(T )xj∗ ∈ λ∂ϕ
(
x̄(T )

)
and

∑
j∈I(x̄(T ))

ηj(T )xj∗ ∈ N
(
x̄(T );C

)
. (7.7)

• The endpoint complementary slackness conditions〈
xj∗, x̄(T )

〉
< cj =⇒ ηj(T ) = 0, (7.8)

with the numbers ηj(T ) are from (7.7).

(iii) The measure nonatomicity condition: If t ∈ [0, T ) and 〈xj∗, x̄(t)〉 < cj for all j = 1, . . . , s,
then there exists a neighborhood Vt of t in [0, T ) such that γ(V ) = 0 for all the Borel subsets V of Vt.

(iv) The nontriviality relationships consisting of:

• The general nontriviality conditions: we always have

(λ, p, ‖γ‖TV ) 6= 0, (7.9)

which is equivalent to (λ, p, q) 6= 0 provided that LICQ holds at x̄(t) on [0, T ].

• The enhanced nontriviality condition

(λ, p) 6= 0 (7.10)

holds provided that 〈xj∗, x̄(t)〉 < cj for all t ∈ [0, T ) and all indices j = 1, . . . , s.

Proof. Given the local minimizer (x̄(·), ū(·)) for (P ), construct the discrete-time problems (Pm) for
which optimal solutions (x̄m(·), ūm(·)) exist by Proposition 3.1 and converge to (x̄(·), ū(·)) in the sense
of Theorem 4.2. We derive each of the claimed necessary conditions in (P ) by passing to the limit from
those in Theorem 6.1. Let us split the derivation into several steps.

Step 1: Verifying the primal equation and the dynamic complementary slackness conditions. First we
prove (7.1) together with the first complementarity condition in (7.6). Based on (6.5), define the functions

θm(t) :=
θim
hm

for t ∈ [tim, t
i+1
m ) and i = 0, . . . , 2m − 1

on [0, T ] whenever m ∈ IN . It is easy to see that

∫ T

0

‖θym(t)‖2 dt =

2m−1∑
i=0

∥∥∥θiym∥∥∥2

hm
≤ 1

hm

2m−1∑
i=0

(∫ ti+1
m

tim

∥∥∥∥ ˙̄x(t)− x̄i+1
m − x̄im
hm

∥∥∥∥ dt)2

≤
2m−1∑
i=0

∫ ti+1
m

tim

∥∥∥ ˙̄x(t)− x̄i+1
m − x̄im
hm

∥∥∥2

dt =

∫ T

0

‖ ˙̄x(t)− ˙̄xm(t)‖2 dt.

Using the strong convergence (x̄m(·), ūm(·))→ (x̄(·), ū(·)) in Theorem 4.2 ensures that∫ T

0

‖θym(t)‖2 dt ≤
∫ T

0

‖ ˙̄x(t)− ˙̄xm(t)‖2 dt→ 0 as m→∞. (7.11)
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This implies that a subsequence of {θym(t)} converges, without relabeling, to zero a.e. on [0, T ]. Likewise

∫ T

0

∥∥∥θum(t)
∥∥∥2

dt =
2m−1∑
i=0

∥∥∥θium∥∥∥2

hm
≤ 1

hm

2m−1∑
i=0

(∫ ti+1
m

tim

∥∥ūim − ū(t)
∥∥ dt)2

≤
2m−1∑
i=0

∫ ti+1
m

tim

∥∥ūim − ū(t)
∥∥2
dt =

∫ T

0

‖ūm(t)− ū(t)‖2 dt,

which tells us, again by using Theorem 4.2, that∫ T

0

‖θum(t)‖2 dt ≤
∫ T

0

‖ūm(t)− ū(t)‖2 dt→ 0 as m→∞, (7.12)

and so θum(t) → 0 for a.e. t ∈ [0, T ] along a subsequence. The assumed PLICQ along x̄(·) and the
robustness of this condition yields by the choice of xj∗ and the convergence in Theorem 4.2 that the vectors
{xj∗ | j ∈ I(x̄im)} are positively linearly independent for each i = 1, . . . , 2m and m ∈ IN sufficiently large.

Taking ηim ∈ Rs+ from Theorem 6.2, we construct the piecewise constant functions ηm(·) on [0, T ) by
ηm(t) := ηim for t ∈ [tim, t

i+1
m ) as i = 0, . . . , 2m − 1. It follows from (6.15) that

− ˙̄xm(t) =
s∑
j=1

ηjm(t)xj∗−g
(
x̄m(tim), ūm(tim)

)
−rm(tim)ρm(tim) whenever t ∈ (tim, t

i+1
m ), m ∈ IN. (7.13)

Furthermore, we get − ˙̄x(t) ∈ G(x̄(t))− g(x̄(t), ū(t)) for a.e. t ∈ [0, T ) with the mapping G(·) = N(·;C),
which is measurable by [25, Theorem 4.26]. The well-known measurable selection result (see, e.g., [25,
Corollary 4.6]) allows us to find nonnegative measurable functions ηj(·) on [0, T ) for j = 1, . . . , s such
that equation (7.1) holds. Combining (7.13) and (7.1) ensures that

˙̄x(t)− ˙̄xm(t) =
s∑
j=1

[
ηjm(t)− ηj(t)

]
xj∗ + g

(
x̄(t), ū(t)

)
− g
(
x̄m(tim), ūm(tim)

)
− rm(tim)ρm(tim)

for t ∈ (tim, t
i+1
m ) and i = 0, . . . , 2m − 1. It follows from the imposed PLICQ that the functions ηjm(t)

and ηj(t) are uniquely defined for a.e. t ∈ [0, T ) and belong to L2([0, T );R+). The constructions and
arguments presented above readily imply the estimate∥∥∥ s∑

j=1

[
ηj(t)− ηjm(t)

]
xj∗

∥∥∥
L2
≤ ‖ ˙̄xm(t)− ˙̄x(t)‖L2 +

∥∥g(x̄(t), ū(t)
)
− g
(
x̄m(t), ūm(t)

)∥∥
L2 + rm(tim)

whenever t ∈ (tim, t
i+1
m ). Passing to the limit therein with the usage of Theorem 4.2 gives us∑
j∈I(x̄(t))

[
ηj(t)− ηjm(t)

]
xj∗ → 0 as m→∞ for a.e. t ∈ [0, T )

and yields the a.e. convergence ηm(t)→ η(t) on [0, T ) by the imposed (robust) LICQ in this case. Then
the first complementary slackness condition in (7.6) follows from (6.19).

Step 2: Continuous-time extensions of approximating dual elements. In the notation of Theorem 6.2,
define qm(t) by extending pim piecewise linearly on [0, T ] with qm(tim) := pim for i = 0, . . . , 2m. Construct
further γm(t) and ψm(t) on [0, T ] by

γm(t) := γim, ψm(t) :=
1

hm
ψim for t ∈ [tim, t

i+1
m ) and i = 0, . . . , 2m − 1 (7.14)

with γm(T ) := 0 and ψm(T ) := 0. Define now the functions

νm(t) := max
{
tim
∣∣ tim ≤ t, 0 ≤ i ≤ 2m − 1

}
for all t ∈ [0, T ], m ∈ IN,
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and deduce respectively from (6.16) and (6.17) that

q̇m(t) = −∇xg
(
x̄m(νm(t)), ūm(νm(t))

)∗(− λmθym(t) + qm(νm(t) + hm)
)

+
∑

j∈I0(−λmθ
y
m(t)+qm(νm(t)+hm))∪I>(−λmθ

y
m(t)+qm(νm(t)+hm))

γjm(t)xj∗, and
(7.15)

−λmθum(t)− ψm(t) = −∇ug
(
x̄m(νm(t)), ūm(νm(t))

)∗(− λmθym(t) + qm(νm(t) + hm)
)

(7.16)

for every t ∈ (tim, t
i+1
m ) and i = 0, . . . , 2m − 1. Next we define the adjoint arcs pm(·) to [0, T ] by

pm(t) := qm(t) +

∫ T

t

( s∑
j=1

γjm(τ)xj∗

)
dτ for every t ∈ [0, T ]. (7.17)

This shows that pm(T ) = qm(T ) and that

ṗm(t) = q̇m(t)−
s∑
j=1

γjm(t)xj∗ a.e. t ∈ [0, T ]. (7.18)

The latter implies due to (7.15), (6.20), and the index definitions in (5.5) that

ṗm(t) = −∇xg
(
x̄m(νm(t)), ūm(νm(t))

)∗(− λmθym(t) + qm(νm(t) + hm)
)

(7.19)

for every t ∈ (tim, t
i+1
m ) and i = 0, . . . , 2m − 1. Define now the vector measures γmesm on [0, T ] by∫

B

dγmesm :=

∫
B

2m−1∑
i=0

1

hm
γm(t)1Iim(t)dt (7.20)

for every Borel subset B ⊂ [0, T ], where 1Ω signifies the characteristic function of the set Ω that equals
to 1 on Ω and to 0 otherwise. We drop for simplicity the index “mes” in what follows if no confusion
arises. Since all the expressions in the statement of Theorem 6.1 are positively homogeneous of degree
one with respect to (λm, pm, γm, ψm), the enhanced nontriviality condition (6.24) and the constructions
above allow us to normalize them by imposing the sequential equality

λm + ‖pm(T )‖+ ‖qm(0)‖+
s∑
j=1

2m−1∑
i=0

∣∣γijm∣∣+

∫ T

0

‖ψm(t)‖ dt = 1, m ∈ IN, (7.21)

which tells us, in particular, that all the terms in (7.21) are uniformly bounded.

Step 3: Verifying the dual dynamic relationships and the maximization conditions. By (7.21), suppose
without loss of generality that λm → λ as m→∞ for some λ ≥ 0. To prove the uniform boundedness of
the sequence {p0

m, . . . , p
2m

m }m∈IN for all i = 0, . . . , 2m − 1, m ∈ N, observe first from (6.16) that

pi+1
m = pim − hm∇xg(x̄im, ū

i
m)∗

(
− 1

hm
λmθ

iy
m + pi+1

m

)
+ hm

s∑
j=1

γijmx
j
∗

for all i = 0, . . . , 2m − 1. This implies that

‖pim‖ ≤ ‖pi+1
m ‖+ hm‖∇xg(x̄im, ū

i
m)∗‖ ·

∥∥∥(− 1

hm
λmθ

iy
m + pi+1

m

)∥∥∥+ hm

∥∥∥ s∑
j=1

γijmx
j
∗

∥∥∥
=
(
1 + hm‖∇xg(x̄im, ū

i
m)∗‖

)
‖pi+1
m ‖+ hmλm‖θym(tim)‖ · ‖∇xg(x̄im, ū

i
m)∗‖+ hm

∥∥∥ s∑
j=1

γijmx
j
∗

∥∥∥
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whenever i = 0, . . . , 2m − 1. It follows from (7.11), (7.21), and (H2) that the quantities ∇xg(x̄im, ū
i
m),

λmθ
iy
m are uniformly bounded for i = 0, . . . , 2m − 1. Thus we find a constant M1 > 0 such that

hmλm
∥∥θym(tim)

∥∥ · ∥∥∇xg(x̄im, ū
i
m)∗

∥∥ ≤M1hm
∥∥θym(tim)

∥∥ = M1

√√√√hm

∫ ti+1
m

tim

‖θym(t)‖2 dt

for all i = 0, . . . , 2m − 1 and m ∈ IN . It implies that

2m−1∑
i=0

hmλm
∥∥θym(tim)

∥∥ · ∥∥∇xg(x̄im, ū
i
m)∗

∥∥ ≤M1

√∫ T

0

‖θym(t)‖2 dt→ 0 as m→∞.

On the other hand, we get due to (7.21) that

hm

2m−1∑
i=0

∥∥∥ s∑
j=1

γijmx
j
∗

∥∥∥ =

∫ T

0

∥∥∥ s∑
j=1

γjm(t)xj∗

∥∥∥dt ≤ 1. (7.22)

Considering now the numbers

Aim := hmλm
∥∥θym(tim)

∥∥ · ∥∥∇xg(x̄im, ū
i
m)∗

∥∥+ hm

∥∥∥ s∑
j=1

γijmx
j
∗

∥∥∥
for i = 0, . . . , 2m − 1 and using the aforementioned uniform boundedness, find a constant M2 > 0 such

that
∑2m−1
i=0 Aim ≤M2. Combining the latter with the estimates above tells us that

‖pim‖ ≤
(
1 +M1hm

)
‖pi+1
m ‖+Aim, i = 0, . . . , 2m − 1. (7.23)

Proceeding further step by step, we get the inequalities

‖pim‖ ≤
(
1 +M1hm

)2m−i‖p2m

m ‖+
2m−1∑
j=i

Ajm(1 +M1hm)j−i

≤ eM1T + eM1T
2m−1∑
i=0

Aim ≤ eM1(1 +M2) for i = 2, . . . , 2m − 1,

which imply in turn the estimate

‖pim‖ ≤M3 for some M3 > 0 and all i = 2, . . . , 2m − 1.

Hence the boundedness of {p0
m} and {p1

m} follows from (7.23) and the boundedness of {pim}2≤i≤2m , which
thus justifies the boundedness of the entire bundle {(p0

m, . . . , p
2m

m )}m∈IN .

To verify the uniform boundedness properties of qm(·), derive from their constructions and (6.16) that

2m−1∑
i=0

∥∥qm(ti+1
m )− qm(tim)

∥∥ ≤ hm
2m−1∑
i=0

‖∇xg(x̄im, ū
i
m)∗(−λmθym(ti) + pi+1

m )‖

+

∫ T

0

∥∥∥ s∑
j=1

γjm(t)xj∗

∥∥∥dt (7.24)

and observe furthermore that

hm

2m−1∑
i=0

‖∇xg(x̄im, ū
i
m)∗(−λmθym(ti) + pi+1

m )‖ ≤ T max
0≤i≤2m−1

{
‖∇xg(x̄im, ū

i
m)∗(−λmθym(ti) + pi+1

m )‖
}
.
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The latter ensures the boundedness of the first term on the right-hand side of (7.24) due to the bound-
edness of {pim}m∈IN , while the boundedness of the second term therein follows from (7.22). Thus we get
from (7.24) that the functions qm(·) on [0, T ] are of uniform bounded variation on [0, T ] and that

2 ‖qm(t)‖ − ‖qm(0)‖ − ‖qm(T )‖ ≤ ‖qm(t)− qm(0)‖+ ‖qm(T )− qm(t)‖ ≤ var(qm; [0, T ])

for all t ∈ [0, T ]. Thus the sequence {qm(·)} is bounded on [0, T ] since the boundedness of {qm(0)} and
{qm(T )} follows from (7.21). Applying now Helly’s selection theorem gives us a function of bounded
variation q(·) such that qm(t)→ q(t) as m→∞ pointwise on [0, T ].

We see from (6.16), (7.20) and (7.21) that the measure sequence {γm} is bounded in C∗([0, T ];Rs).
Thus the weak∗ sequential compactness of bounded sets in this space allows us to find a measure γ ∈
C∗([0, T ];Rs) such that {γm} weak∗ converges to γ in C∗([0, T ];Rs) along a subsequence. It follows from
(7.19), (7.21), and the uniform boundedness of qm(·) on [0, T ] that the sequence {pm(·)} is bounded in
W 1,2([0, T ];Rn) and thus weakly compact in this space. By Mazur’s theorem we conclude that a sequence
of convex combinations of ṗm(·) converges to some ṗ(·) ∈ L2([0, T ];Rn) a.e. pointwise on [0, T ]. This
gives us (7.2) by passing to the limit along (7.19) as m→∞ with the usage of (7.11) up to choosing the
right continuous representation of q. Note also that∥∥∥ ∫ T

t

s∑
j=1

γjm(τ)xj∗dτ −
∫

(t,T ]

s∑
j=1

dγj(τ)xj∗

∥∥∥→ 0 as m→∞

for all t ∈ [0, T ] except a countable subset of [0, T ] by the weak∗ convergence of the measures γm to γ in
C∗([0, T ];Rn); cf. [27, p. 325] for similar arguments. Hence we get the convergence∫ T

t

s∑
j=1

γjm(τ)xj∗dτ →
∫

(t,T ]

s∑
j=1

dγj(τ)xj∗ on [0, T ] as m→∞

and thus arrive at (7.3) by passing to the limit in (7.17). The claimed condition p(T ) = q(T ) in (i) follows
directly by passing to the limit in the equalities pm(T ) = qm(T ), m ∈ IN . The second complementary
slackness condition in (7.6) follows from (6.23) under LICQ while arguing by contradiction with the usage
of the established a.e. pointwise convergence of the functions involved therein.

To finish the proof of (i), it remains to verify the validity of the local maximum principle in (7.4)
and the global maximization condition (7.5) with referring the reader to Remark 7.2 for more discussions
about the terminology. We get (7.4) by passing to the strong L2-limit as k → ∞ in the relationships
(6.17) and in the inclusions ψim ∈ N(ūim;U), i = 0, . . . , 2m − 1, of Theorem 6.2 as k → ∞. This is
achieved by employing the strong convergence of the discrete optimal solutions from Theorem 4.2, the
convergence of (θym(t), θum(t)) → (0, 0) for a.e. t ∈ [0, T ] obtained above as well as the robustness of the
normal cone (5.2). If U is convex, the maximization condition (7.5) follows directly from (7.4) due to the
structure (1.4) of the normal cone to convex sets.

Step 4: Verifying the endpoint relationships. Relying on the discrete necessary optimality conditions of
Theorem 6.2, define ηm(T ) := η2m

m and deduce from the normalization of the nontriviality conditions in
(6.14) that the sequence {η2m

m } converges, along a subsequence, to some vector (η1(T ), . . . , η2m

(T )). It
follows from (6.18) and representation (2.5) that

−p2m

m − λmϑ2m

m =

s∑
j=1

η2mj
m x2m

∗ =
∑

j∈I(x̄2m
m )

η2mj
m x2m

∗ ∈ N(x̄2m

m ;C), (7.25)

where η2mj
m = 0 for j ∈ {1, . . . , s} \ I(x̄2m

m ). Denoting ζm :=
∑
j∈I(x̄2m

m ) η
2mj
m x2m

∗ , observe that a subse-

quence {ζm} converges to some ζ ∈ Rn due to the boundedness of λm by (7.21) and the convergence of
{p2m

m } and {x̄2m

m } with taking into account the robustness of the subdifferential. It follows from the ro-
bustness of the normal cone in (7.25), the convergence of x̄2m

m → x̄(T ), and the inclusion I(x̄2m

m ) ⊂ I(x̄(T ))
for all m sufficiently large, that ζ ∈ N(x̄(T );C). Thus we get from (6.18) that

−p2m

m − ζm ∈ λm∂ϕ(x̄2m

m ) for all m ∈ IN.
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Passing now to the limit therein as m→∞ verifies both transversality inclusions in (7.7). The fulfillment
of the claimed endpoint complementary slackness conditions in (7.8) follows from the above proof by
passing to the limit as m→∞ in their discrete counterparts established in (6.22) of Theorem 6.2.

Step 5: Verifying measure nonatomicity. Take t ∈ [0, T ) with 〈xj∗, x̄(t)〉 < cj for all j = 1, . . . , s and by

continuity of x̄(·) find a neighborhood Vt of t such that 〈xj∗, x̄(τ)〉 < cj whenever τ ∈ Vt and j = 1, . . . , s.

Invoking Theorem 4.2 tells us that 〈xj∗, x̄m(tim)〉 < cj if tim ∈ Vt for all j = 1, . . . , s and m ∈ IN sufficiently
large. Then we deduce from (6.21) that γm(t) = 0 on any Borel subset V of Vt. Hence

‖γm‖(V ) =

∫
V

d‖γm‖ =

∫
V

‖γm(t)‖dt = 0 (7.26)

by the construction of γm in (7.20). Passing now to the limit therein and taking into account the measure
convergence obtained above, we get ‖γ‖(V ) = 0, which justifies the claimed measure nonatomicity.

Step 6: Verifying nontriviality conditions. We begin with the proof of the nontriviality condition (7.9)
under the general assumptions of the theorem. Arguing by contradiction, suppose that λ = 0, p(t) = 0 for
all t ∈ [0, T ], and ‖γ‖TV = 0. This implies by (7.3) that q(t) = 0 for the right continuous representative
of q(·). The assumed negation of nontriviality tells us that λm → 0 and pm(t) → 0 for all t ∈ [0, T ].
Furthermore, with the usage of (7.17) and the convergence result from [27, p. 325], we get that

lim
m→∞

qm(t) = lim
m→∞

pm(t)−
∫ T

t

s∑
j=1

γjm(τ)xj∗dτ


= lim
m→∞

pm(t)−
∫ T

t

s∑
j=1

γ(τ)xj∗dτ = 0.

Combining this with (7.16), we deduce that ψm(t)→ 0 a.e. t ∈ [0, T ], which implies that
∑s
j=1

∑2m−1
i=0

∣∣γijm∣∣→
1 as m→∞ due to (7.21). Define now the sequence of measurable mappings αm : [0, T ]→ Rs as follows:

αim(t) :=
γim(t)

|γim(t)|
if γim(t) 6= 0 and αim(t) := 0 if γim(t) = 0, i = 1, . . . , s, for all t ∈ [0, T ].

Taking into account the Jordan measure decompositions γm = (γm)+ − (γm)− and γ = γ+ − γ− as well
as the separability of C∗([0, T ];Rs), we find a subsequence of measures {γm} with the weak∗ convergence

{(γm)+} w
∗

→ γ+ and {(γm)−} w
∗

→ γ− in C∗ ([0, T ];Rs) .

Since the sequence {αm(·)} is bounded on [0, T ], a straightforward application of [27, Proposition 9.2.1]
(where our index m corresponds to the index i in that result) with A = Am := [−1, 1]s for all m ∈ IN
therein yields the existence of Borel measurable vector functions α+, α− : [0, T ]→ Rs satisfying

{αim(γim)+} w
∗

→ (α+)i(γ+)i and {αim(γim)−} w
∗

→ (α−)i(γ−)i, i = 1, . . . , s.
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With the understanding that, in the sequel of this proof, for s-dimensional vectors α and measures γ, we
mean αdγ = (αidγi, . . . , αsdγs), the following relationships hold:∥∥∥∥∥
∫

[0,T ]\S
α+(t)dγ+(t)−

∫
[0,T ]\S

α−(t)dγ−(t)

∥∥∥∥∥ = lim
m→∞

∥∥∥∥∥
∫

[0,T ]\S
αm(t)d (γm)

+
(t)−

∫
[0,T ]\S

αm(t)d (γm)
−

(t)

∥∥∥∥∥
= lim
m→∞

∥∥∥∥∥
∫

[0,T ]\S
αm(t)dγm(t)

∥∥∥∥∥
= lim
m→∞

∥∥∥∥∥
∫

[0,T ]\S

(
α1
m(t)dγ1

m(t), . . . , αsm(t)dγsm(t)
)∥∥∥∥∥

= lim
m→∞

∥∥∥∥∥
(

2m−1∑
i=0

∣∣γi1m∣∣ , . . . , 2m−1∑
i=0

∣∣γism∣∣
)∥∥∥∥∥

= lim
m→∞

√√√√√ s∑
j=1

[
2m−1∑
i=0

∣∣∣γijm∣∣∣]2

≥ lim
m→∞

1√
s

s∑
j=1

2m−1∑
i=0

∣∣γijm∣∣ =
1√
s
> 0,

where S ⊂ [0, T ] is a countable set. On the other hand, we have∥∥∥∥∥
∫

[0,T ]\S
α+(t)dγ+(t)−

∫
[0,T ]\S

α−(t)dγ−(t)

∥∥∥∥∥ ≤
∥∥∥∥∥
∫

[0,T ]\S
α+(t)dγ+(t)

∥∥∥∥∥+

∥∥∥∥∥
∫

[0,T ]\S
α−(t)dγ−(t)

∥∥∥∥∥
≤
∫

[0,T ]\S
d‖γ+(t)‖+

∫
[0,T ]\S

d‖γ−(t)‖

≤
∥∥γ+

∥∥
TV

+
∥∥γ−∥∥

TV
= ‖γ‖TV .

Combining the above inequalities gives us ‖γ‖TV > 0, which contradicts the assumed fact that ‖γ‖TV = 0.
Hence we justify the fulfillment of the general nontriviality condition (7.9).

To compare (7.9) with (λ, p, q) 6= 0, we immediately deduce from (7.3) that [(λ, p, q) 6= 0] =⇒(7.9).
The converse implication is also clear under the additional LICQ assumption.

It remains to verify the validity of the enhanced nontriviality condition (7.10) under the interiority
assumption made therein. Suppose on the contrary that λ = 0 and p(t) = 0 for all t ∈ [0, T ] while
〈xj∗, x̄(t)〉 < cj for all t ∈ [0, T ) and j = 1, . . . , s. It follows from the discrete endpoint complementary
slackness condition (6.21), the arguments in Step 5 together with (7.3) and (7.26) that

q(t) = −
∫

(t,T ]

s∑
j=1

dγj(τ)xj∗ = 0 for all t ∈ [0, T ] \A, (7.27)

where A ⊂ [0, T ] is a countable set. Since q(·) is right continuous, we always have q(t) = 0 in (7.27)
and thus show in this way that the failure of (7.10) contradicts the validity of the general nontriviality
condition (7.9). This completes the proof of the theorem. 2

Remark 7.2 Note that we use the terminology of the local maximum principle for (7.4), since it plays
a role similar to the conventional maximum principle around the optimal control ū(t) and reduces to the
global maximization condition (7.5) if the set U is convex. In the broad case of the duality correspondence

N(ū(t);U) = T ∗(ū(t);U) :=
{
v ∈ Rn

∣∣ 〈v, u〉 ≤ 0 for all u ∈ T
(
ū(t);U

)}
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between the normal cone in question and some tangent cone T (ū(t);U) to U at ū(t), the local condition
(7.4) reads as the (global) maximization〈

ψ(t), ū(t)
〉

= max
u∈T (ū(t);U)

〈
ψ(t), u

〉
for a.e. t ∈ [0, T ]

of the linearized Hamilton-Pontryagin function 〈ψ(t), u〉 over the tangent cone T (ū(t);U) without assum-
ing the convexity of either the control set U or the cone T (ū(t);U).

8 Numerical Examples

In this section we consider two examples illustrating some characteristic features and strength of the
necessary optimality conditions for the sweeping control problem (P ) obtained in Theorem 7.1.

Prior to dealing with specific examples, let us present the following useful assertion, which is a con-
sequence of the measure nonatomicity condition.

Proposition 8.1 Assume that 〈x∗, x̄(τ)〉 < cj for all τ ∈ [t1, t2] with t1, t2 ∈ [0, T ) and some vector

x∗ ∈ {xj∗ | j = 1, . . . , s}, and that the measure nonatomicity condition of Theorem 7.1 is satisfied with
the measure γ. Then we have γ([t1, t2]) = 0 and γ({τ}) = 0 whenever τ ∈ [t1, t2], and so γ((t1, t2)) =
γ([t1, t2)) = γ((t1, t2]) = 0.

Proof. Pick any τ ∈ [t1, t2] with 〈x∗1, x̄(t)〉 < cj and find by the measure nonatomicity condition a
neighborhood Vτ of τ in [0, T ] such that γ(V ) = 0 for all the Borel subsets V of Vτ ; in particular,
γ({τ}) = 0. By [t1, t2] ⊂

⋃
τ∈[t1,t2] Vτ and the compactness of [t1, t2] we find τ1, . . . , τl ∈ [t1, t2] with

[t1, t2] ⊂
⋃l
i=1 Vτi . Fix i = 1, . . . , l − 1 and take τ̃i ∈ Vτi ∩ Vτi+1

with [τi, τ̃i] ⊂ Vτi and [τ̃i, τi+1] ⊂ Vτi+1
,

where τ1 := t1 and τl := t2. Then we arrive at the equalities

γ([t1, t2]) = γ
( p−1⋃
i=1

[τi, τ̃i) ∪ [τ̃i, τi+1)
)

=

p−1∑
i=1

(
γ([τi, τ̃i)) + γ([τ̃i, τi+1))

)
= 0,

which verify the claimed properties of the measure. 2

Our first example is two-dimensional with respect to both state and control variables.

Example 8.2 Consider the sweeping control problem of minimizing the cost functional

x1(1) + x2(1) subject to
(
ẋ1

ẋ2

)
= −N

((
x1

x2

)
;C

)
+

(
u1

u2

)
with

(
x1

x2

)
(0) =

(
0
x0

2

) (8.1)

where C := {(x1, x2) ∈ R2 | x2 ≥ 0} and (u1, u2) ∈ U := [−1, 1]× [−1, 1]. We rewrite the dynamics as(
ẋ1

ẋ2

)
(t) =

(
u1

u2

)
(t) + η(t)

(
0
1

)
, η(t) ≥ 0 a.e. t ∈ [0, 1].

A direct checking shows that if x0
2 ≥ 1 then the constraint is irrelevant and the optimal control is constant

being equal to (−1,−1). If instead 0 ≤ x0
2 < 1, then the optimal couple is ū1(t) ≡ −1 together with any

measurable component ū2(t) such that x̄2(1) = 0.

The conditions of Theorem 7.1 tell us that:

(1) p =

(
p1

p2

)
is constant on [0, 1] (by (7.2));

(2)

(
−p1

−p2

)
−
(

0
−η(1)

)
=

(
λ
λ

)
, λ ≥ 0 (by (7.7));
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(3) (λ, p, ‖γ‖TV ) 6= 0 (by (7.9));

(4) q(t) = p−
∫

(t,1]

dγ(τ)

(
0
1

)
= ψ(t) ∈ N[−1,1]2

(
ū1

ū2

)
(by (7.4) and (7.3));

(5) x2(t) > 0 ∀t ∈ [0, T ) =⇒ λ+ ‖p‖ > 0 (by (7.10));

(6) η(t) = 0 for a.e. t ∈ [0, 1] with x̄2(t) > 0 and
[
η(t) > 0 =⇒ q(t)

(
0
1

)
= 0
]

a.e. t ∈ [0, 1] (by (7.6));

(7) dγ
∣∣
{t | x̄2(t)>0} = 0 (by the measure nonatomicity condition).

To apply these conditions, consider first the case where x0
2 > 1 in which the constraint is automatically

satisfied for all the trajectories. Since x̄2(1) > 0, we get η(1) = 0 from (6). If λ = 0, then p ≡ 0 and the

nontriviality condition (3) is violated. Thus we can suppose that λ = 1, and so p =

(
−1
−1

)
. Condition

(7) implies that dγ = 0 on the set in question; hence q ≡ p =

(
−1
−1

)
≡ ψ. This shows that ψ =

(
−1
−1

)
.

Since ψ ∈ N[−1,1]2

(
ū1

ū2

)
, the optimal control is ū(t) ≡

(
−1
−1

)
. It confirms that in this case we do not

loose information with respect to the classical PMP.

Consider now the case where 0 ≤ x0
2 ≤ 1. Assuming that x2(1) > 0 yields η(1) = 0 by (7.8).

Repeating the above arguments with the usage of (4) gives us the control

(
−1
−1

)
on [0, 1] while implying

that x2(1) = 0, a contradiction. Thus we get x2(1) = 0, and actually all controls u2 satisfying this
property are optimal. In particular, we obtain that ū2 ≡ −1 in the case where x0

2 = 1. Let us now
deal with the first component u1, which instead reveals a kind of degeneracy in the necessary conditions.
Indeed, the following two cases may occur. First the reference trajectory touches the boundary only at
the final time. In this case the enhanced nontriviality condition (4) holds, and the analysis goes along
the same lines as for x0

2 = 1. Instead, when the reference trajectory remains on the boundary on a set of
positive measure, the case (p, λ) = (0, 0) is possible (with γ 6= 0), but then the first components of both
(2) and (4) provide no information on u1. This difficulty can be overcome in this case thanks to the fact
that the two variables x1 and x2 can be made uncoupled. Indeed the problem is equivalent to minimizing
x1 and x2 separately, each variable being subject to the dynamics given by the correspondent component
of (8.1). Then the problem involving x1 is classical, and the optimal control u1 ≡ −1 is easily obtained.
On the contrary, the problem involving x2 is of the sweeping type, and its analysis can be performed
according to the previous arguments. This verifies the optimality of any control u2 such that x2(1) = 0.

Note that system (8.1) was also treated in [3], and the given discussion allows us to compare the two
sets of necessary conditions: those obtained in [3] and in this paper. The conditions in [3] are generally
different from the ones we establish here. Let us mention to this end that those presented here deal only
with reference trajectories where the control has bounded variation, but are more detailed in comparison
with the conditions in [3] and are more effective for the control u2 while being more difficult to use for
u1. This difference can be explained by the methods that are used to obtain the necessary conditions.
Actually the arguments presented here take into account the constraint at all the steps of the procedure.
On the contrary, the method used in [3] is based on penalization, and so it does not see the hard constraint
in the approximation steps. This explains why it behaves well with respect to u1, which is not influenced
by the constraint (indeed, the multiplier λ corresponding to the terminal cost is nondegenerate), while
obtaining some information on u2 is more difficult. Observe finally that the method developed here
allows us to treat also nonconvex control sets. For example, we can consider the minimization of the
same terminal cost subject to (8.1) but with the control set given by

U1 = {−1, 1} × {−1, 1}.

This problem enjoys relaxation stability (because the value of the nonconvex problem is the same as the
convex one), and the above analysis can be performed in the same way with U1 in place of U .
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The next example is also two-dimensional while addressing a more complicated polyhedral set C in
comparison with the halfspace in Example 8.2.

Example 8.3 Consider problem (P ) with the following initial data:

n = m = 2, T = 1, x0 :=
(
− 1

2
,−1

2

)
, x1
∗ := (1, 0), x2

∗ := (0, 1), c1 = c2 = 0, ϕ(x) :=
‖x‖2

2
, g(u) = u,

where feasible controls u(t) = (u1(t), u2(t)) ∈ U a.e. t ∈ [0, 1] take values in the unit square U :=
[−1, 1]× [−1, 1] ⊂ R2. Applying necessary optimality conditions of Theorem 7.1, we seek for solutions to
(P ) satisfying the properties

〈xj∗, x̄(t)〉 < cj = 0 for all t ∈ [0, 1), j = 1, 2, (8.2)

and show that (8.2) holds for x̄(·) that is determined below. In the case of (P ) under consideration these
conditions say that there exist λ ≥ 0 together with adjoint vectors p and q and η(·) =

(
η1(·), η2(·)

)
∈

L2([0, 1];R2
+) well defined at t = 1 such that:

(1) 〈x∗j , x̄(t)〉 < cj =⇒ ηj(t) = 0 for j = 1, 2 and a.e. t ∈ [0, 1] including t = 1;

(2) − ˙̄x(t) =
(
− ˙̄x1(t),− ˙̄x2(t)

)
= (η1(t), η2(t))−

(
ū1(t), ū2(t)

)
for a.e. t ∈ [0, 1];

(3)
(
ṗ1(t), ṗ2(t)

)
=
(
0, 0
)

for a.e. t ∈ [0, 1];

(4)
(
ψ1(t), ψ2(t)

)
= (q1(t), q2(t)) ∈ N (ū(t);U) for a.e. t ∈ [0, 1];

(5) q(t) = p(t)− γ((t, 1]) for a.e. t ∈ [0, 1];

(6) −(p1(1), p2(1)) = λ
(
x̄1(1), x̄2(1)

)
+
(
η1(1), η2(1)

)
with

(
η1(1), η2(1)

)
∈ N

(
x̄(1);C

)
;

(7) (λ, p) 6= 0 due to (8.2) and (7.10).

Employing the first condition in (8.2) together with (1) and (2), gives us ˙̄x(t) = ū(t) for a.e. t ∈ [0, 1].
It also follows from (4) and (5) that q can be written in the maximization form (7.5). It follows from (3)
that p(·) is constant on [0, 1], i.e., p(t) ≡ p(1). This allows us to deduce that

q(t) = p(1)− γ((t, 1]) ≡ p(1)− γ({1}) for a.e. t ∈ [0, 1]

by using the measure nonatomicity condition of Theorem 7.1 and Proposition 8.1. Several cases may
occur. If λ > 0 and p = η(1) = (0, 0), then (6) implies that x1(1) = x2(1) = 0. In this case the terminal
cost is zero. Thus each measurable control pair (u1, u2) that steers the initial point to (0, 0) exactly in
time t = 1 is optimal, as it is expected. A similar argument shows that if λ = 0, then at least one
component must vanish at the final time. In the case where both λ and p do not vanish, and is easy to
see that any final point satisfies necessary conditions.

Summarizing, necessary conditions may exhibit degeneracy. Finding sufficient conditions to avoid this
behavior is therefore the next major challenge that must be addressed. All the results that are presented
in the literature (see, e.g., [27] and the very recent survey [4]) dealing with classical control problems
with state constraints do not apply to our setting, because they are designed for more regular dynamics.
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appreciate helpful comments made by both anonymous referees that led us to the essential improvement
of the original presentation.
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[5] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions les Espaces de Hilbert,
North-Holland, Amsterdam, 1973.
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