OPTIMIZATION OF A PERTURBED SWEEPING PROCESS
BY CONSTRAINED DISCONTINUOUS CONTROLS
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ABSTRACT. This paper deals with optimal control problems described by a controlled version of Moreau’s sweep-
ing process governed by convex polyhedra, where measurable control actions enter additive perturbations. This
class of problems, which addresses unbounded discontinuous differential inclusions with intrinsic state constraints,
is truly challenging and underinvestigated in control theory while being highly important for various applications.
To attack such problems with constrained measurable controls, we develop a refined method of discrete approx-
imations with establishing its well-posedness and strong convergence. This approach, married to advanced tools
of first-order and second-order variational analysis and generalized differentiation, allows us to derive adequate
collections of necessary optimality conditions for local minimizers, first in discrete-time problems and then in the
original continuous-time controlled sweeping process by passing to the limit. The new results include an appro-
priate maximum condition and significantly extend the previous ones obtained under essentially more restrictive
assumptions. We compare them with other versions of the maximum principle for controlled sweeping processes
that have been recently established for global minimizers in problems with smooth sweeping sets by using different
techniques. The obtained necessary optimality conditions are illustrated by several examples.
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1 Introduction and Problem Formulation

This paper addresses the following optimal control problem labeled as (P):

Minimize the Mayer-type cost functional

Jlru] = o (a(T)) (L.1)

over the corresponding (described below) pairs (x(-), u(-)) satisfying

i(t) € =N (2(t); C) + g(2(t),u(t)) ae. te0,T], x(0)=zy€ C CR", (1.2)
u(t) eU CR? ae. tel0,T), '
where the set C' is a convex polyhedron given by
C:= ﬂ C7 with €7 := {z € R"| (z],z) < ¢}, (1.3)
j=1
with ||:Ei|| =1,j=1,...,s, and where N(z;C) stands for the normal cone of convex analysis defined by
N(z;C):={veR" | (v,y—x) <0,y C}ifx € Cand N(;C) :=0ifx ¢ C. (1.4)

Observe that the second part of definition (1.4) mandatorily yields the presence of the hidden pointwise
state constraints on the trajectories of (1.2):

z(t) € C, ie. (v, 2(t)) <¢j forall t€[0,7] and j=1,...,s. (1.5)
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Considering the differential inclusion in (1.2) without the additive perturbation term g(x,u), we arrive
at the framework of the sweeping process introduced by Jean-Jacques Moreau who was motivated by
applications to problems of elastoplasticity; see [24]. It has been well recognized that the (uncontrolled)
Moreau’s sweeping process has a unigue absolutely continuous (or even Lipschitz continuous) solution for
convex and mildly nonconvex sets C; see, e.g., [14] and the references therein. Thus there is no room
for optimization of the sweeping process unless some additional functions or parameters of choice are
inserted into its description. It is very different from control theory for Lipschitzian differential inclusions

i(t) € F(z(t)) ae. t €[0,T], z(0) = zo € R", (1.6)

which have multiple solutions. The latter type of dynamics extends the classical ODE control setting
with F(x) := f(z,U) in (1.6), where the choice of measurable controls u(t) € U C R? a.e. t € [0,7]
creates the possibility to find an optimal one with respect to a prescribed performance. The main issue
here is that the normal cone mapping N(-;C) in the sweeping process is highly non-Lipschitzian (even
discontinuous) while being mazimal monotone. On the other hand, the well-developed optimal control
theory for differential inclusions (1.6) strongly depends on Lipschitzian behavior of F(+); see, e.g., [22, 27]
with the references therein as well as more recent publications.

Introducing controls into the perturbation term of (1.2) allows us to have multiple solutions x(-) of
this system by the choice of feasible control functions u(-) and thus to minimize the cost functional (1.1)
over feasible control-trajectory pairs. Problems of this type were considered in the literature from the
viewpoint of the existence of optimal solutions and relaxation; see [1, 10, 16, 26] among other publications.

More recently, necessary optimality conditions for local minimizers were derived in [7, 8] by the
method of discrete approzimations for problems of type (P) with smooth (in fact W?2:°°) control functions
without any constraints. Later on these results were further extended in [9] to nonconvex (and hence
nonpolyhedral) problems with prox-regular sets C' in the same control setting. Note that both C and
g in (1.2) may be time-dependent; we discuss the autonomous case just for simplicity. The discrete
approximation approach implemented in [7]-[9] was based on the scheme from [12] developed for the
unperturbed sweeping process with controls in the moving set. The later was in turn a sweeping control
version of the original discrete approximations method to derive necessary optimality conditions for
Lipschitzian differential inclusions (1.6) suggested and implemented in [20]; see also [22].

Quite recently, other approximation procedures were developed to derive necessary optimality condi-
tions for global minimizers of (P) in the class of measurable controls while under rather strong assump-
tions. The first paper [3] assumes, among other requirements, that the boundary of the sweeping set C'
in (1.2) is C3-smooth, the control set U is compact and convex, and its image g(z,U) under g is convex
as well. The C?-smoothness assumption on C was relaxed in [15], by employing a smooth approximation
procedure not relying on the distance function as in [3], for the case of C' := {z € R" | ¢(z) < 0}
with 9 being a C2-smooth convex function. The necessary optimality conditions obtained in both pa-
pers [3, 15] can be treated as somewhat different counterparts of the celebrated Pontryagin Maximum
Principle (PMP) for state-constrained controlled differential equations & = f(x,u).

Note that necessary optimality conditions in some other classes of optimal control problems governed
by various controlled versions of the sweeping process were developed in [2, 6, 7, 8, 9, 11, 12, 19].

The main goal of this paper is to derive necessary optimality conditions for local minimizers (in the
senses specified below) of the formulated problem (P), with the constraint set U in (1.2) given by an arbi-
trary compact and with the (nonsmooth) polyhedral set C from (1.3), by significantly reducing regularity
assumptions on the reference control. Although problem (1.2) is stated in the class of measurable feasible
control actions, we assume that the local optimal control under consideration is of bounded variation,
hence allowing to be discontinuous.

Our approach is based on developing the method of discrete approrimations, which is certainly of
its own interest and has never been implemented before in control theory for sweeping processes with
discontinuous controls. The novel results in this direction establish a strong approximation of every
feasible control-state pair for (P) in the sense of the L?-norm convergence of discretized controls and the



Wh2_norm convergence of the corresponding piecewise linear trajectories. Furthermore, we justify such
a strong convergence of optimal solutions for discrete problems to the given local minimizer of (P).

Dealing further with intrinsically nonsmooth and nonconver discrete-time approximation problems,
we derive for them necessary optimality conditions of the discrete Euler-Lagrange type by using appropri-
ate unconvexified tools of first-order and second-order variational analysis and generalized differentiation.
Employing these tools and passing to the limit from discrete approximations lead us to new nondegen-
erate necessary optimality conditions for local optimal solutions of the sweeping control problem (P).
The obtained results significantly extend those recently established in [8] for unconstrained W2 opti-
mal controls in (P), contain a maximum condition, while being essentially different from the necessary
optimality conditions derived in [3, 15] for problems of type (P) with smooth sets C' in addition to other
assumptions. We present nontrivial examples that illustrate the efficiency of the new results. Further
applications to some practical models are considered in our subsequent paper [13].

The rest of the paper is organized as follows. In Section 2 we formulate the standing assumptions,
discuss the types of local minimizers under consideration, and present some preliminary results.

Section 3 is devoted to the construction of discrete approximations of the controlled constrained
sweeping dynamics (1.2) that allows us to deal with measurable controls (in fact of bounded variation)
and to strongly approximate any feasible solutions of (P) as mentioned above. This result plays a major
role in the justification of the developed version the method of discrete approximations for problem (P).

In Section 4 we construct a sequence of discrete approximation of a given “intermediate” local mini-
mizer for (P) that occupies an intermediate position between weak and strong minimizers in variational
and control problems. The major result of this section justifies the strong W12 x L? approximation of the
given local minimum pair (Z(+), u(-)) by extended optimal solutions to the discretized problems. It makes
a bridge between the continuous-time sweeping control problem (P) and its discrete-time counterparts.

It occurs that the discrete-time approximating problems are unavoidably nonsmooth and nonconvex,
even when the initial data are differentiable. It is due to the presence of increasingly many geometric
constraints generated by the normal cone graph. To deal with them, we need adequate tools of varia-
tional analysis involving not only first-order but also second-order generalized differentiation. The latter
is because of the normal cone description of the sweeping process. In Section 5 we present the corre-
sponding definitions of the first-order and second-order generalized differential constructions taken from
[21] together with the results of their computations entirely in terms of the given data of (1.2).

Section 6 provides the derivation of necessary optimality conditions for discrete-time problems by
reducing them to problems of nondifferentiable programming with many geometric constraints, using
necessary optimality conditions for them obtained via variational /extremal principles, and then expressing
the latter in terms of the given data of (P) by employing calculus rules of generalized differentiation.

Section 7 is the culmination. We pass to the limit from the necessary optimality conditions for
discrete-time problems by using stability of discrete approximations, robustness of generalized differential
constructions, and establishing an appropriate convergence of adjoint functions, which is the most difficult
part. In this way we arrive at new necessary conditions for local minimizers of (P) expressed in terms
of the given data of the original problem. Since signed (not just nonnegative) measures naturally appear
in the resulting optimality conditions, dealing with them creates significant difficulties, which have been
overcome in our device. The usefulness of the nondegenerate optimality conditions obtained in the main
theorem is illustrated in Section 8 by nontrivial examples.

Throughout the paper we use standard notations of variational analysis and optimal control; see, e.g.,
[21, 22]. Recall that B denotes the closed unit ball in R™) and that N := {1,2,...}.

2 Standing Assumptions and Basic Notions

Dealing with the polyhedron C from (1.3) and having Z € C, consider the set of active constraint indices

I(z):={je{l,....s}| (&].2) = ¢; }. (2.1)



Recall that the positive linear independence constraint qualification (PLICQ) holds at Z if

{ Z a;xl =0, a; € RJF} = [a; =0 for all j € I(z)], (2.2)
jel(z)

and the linear independence constraint qualification (LICQ) holds if the restriction a; € Ry in (2.2) is
dropped. Our standing assumptions in this paper are as follows:

(H1) The control region U # () is a closed and bounded set in R.

(H2) The perturbation mapping g: R™ x U — R™ is continuous in (x,u) while being also Lipschitz
continuous with respect to x uniformly on U whenever x belongs to a bounded subset of R™ and satisfies
there the sublinear growth condition

lg(@,u)|| < B(1+|z|) foral weU

with some positive constant 3.
(H3) The PLICQ condition (2.2) holds along the reference trajectory Z(t) of (1.2) for all ¢ € [0,T].

It follows from [16, Theorem 1] that for each measurable control wu(-) there is a unique solution
z(-) € WH2([0,T],R™) to the Cauchy problem in (1.2). Thus by a feasible process for (P) we understand
a pair (z(-),u(+)) such that u(-) is measurable, z(-) € W2([0,T],R"), and all the constraints in (1.2) are
satisfied. The above discussion tells us that the set of feasible pairs for (P) is nonempty.

Furthermore, it follows from [16, Theorem 2] that under the assumptions above the sweeping control
problem (P) admits an optimal solution provided that the image set

g(z,U) :={y e R" ’ y = g(z,u) for some u € U}

is convex. Since in this paper we are interested in deriving necessary optimality conditions for a given
local minimizer of (P), we do not impose the aforementioned convexity assumption.

Let us now specify what we mean by a local minimizer of (P).

Definition 2.1 We say that a feasible pair (Z(-),u(-)) for (P) is a W12 x L2-LOCAL MINIMIZER in this
problem if there exists € > 0 such that J[Z,u] < J[x,u] for all feasible pairs (x(-),u(-)) satisfying

/OT <||9'c(t) _ I + [u(t) _ﬂ(t)”2) e

For the case of differential inclusions of type (1.6) with no explicit controls, this notion corresponds
to intermediate local minimizers of rank two introduced in [20] and then studied there and in other
publications; see, e.g., [22, 27] and the references therein. Quite recently, such minimizers have been
revisited in [19] for controlled sweeping processes different from (1.2); namely, for those where continuous
control actions enter the moving set C(t) = C(u(t)). It is easy to see that strong C x L?- local minimizers
of (P) with z(-) € WL2([0, T]; R™) fall into the category of Definition 2.1, but not vice versa.

In the general setting of W12 x L2-local minimizers we need to use a certain relaxation procedure in
the line of Bogolyubov and Young that has been well understood in the calculus of variations and optimal
control; see, e.g., [17, 16, 22, 26, 27] for more recent publications in the case of differential inclusions.
Taking into account the convexity and closedness of the normal cone N(x;C) and the compactness of
the set g(z,U), the relazed version (R) of problem (P) consists of minimizing the cost functional (1.1)
on absolutely continuous trajectories of the convexified differential inclusion

i(t) € =N (2(t);C) + cog(x(t),U) ae. t€[0,T], z(0) =z € C CR", (2.3)

where ‘co’ signifies the convex hull of the set. Then we come up with the following notion.



Definition 2.2 Let (Z(-),u(+)) be a feasible pair for (P). We say that it is a RELAXED W12 x L2-LOCAL
MINIMIZER for (P) if there is € > 0 such that

o((T)) < (x(T)) whenever /O (H:‘r(t)—i(t)||2+||u(t)—ﬂ(t)||2) dt < e,

where u(-) is a measurable control with u(t) € coU a.e. on [0,T], and where x(-) is a trajectory of the
convezified inclusion (2.3) that can be strongly approzimated in W12([0,T];R™) by feasible trajectories
to (P) generated by piecewise constant controls u,,(-) on [0,T] the convex combinations of which strongly
converges to u(-) in the norm topology L([0,T]; RY).

Since step functions are dense in the space L?([0, T]; R¢), we obviously have that there is no difference
between W12 x L2-local minimizers for (P) and their relaxed counterparts provided that the sets g(z, U)
and U are convex, which is not assumed in what follows. Moreover, it is possible to deduce from the
proofs of [16, Theorem 2] and [26, Theorem 4.2] that any strong local minimizer for (P) is automatically
a relaxed one under the assumptions made, but we are not going to pursue this issue here.

Consider further a set-valued mapping F': R” x R¢ = R” defined by
F(z,u) :== N(z;C) — g(z,u) (2.4)

and deduce from the Motzkin’s theorem of the alternative the representation

F(x,u) = { Z Nl ‘ N > O} —g(z,u). (2.5)

JEI(z)

3 Discrete Approximations of Feasible Solutions

In this section we start developing the method of discrete approximations to study the sweeping control
problem (P) under our standing assumptions. For simplicity, consider the standard Euler explicit scheme
for the replacement of the time derivative in (1.2) by

i(t)zwash¢0,

which we formalize as follows. For any m € IN denote by

Ay = {0=10 <tl <...<tZ =T} with hy, =t — !, = —

m 2m
the uniform discrete mesh on [0, 7] and define the sequence of discrete-time systems
et e gl — hF(zlul), i=0,...,2" 1, 2% =€ C, (3.1)

where we have u’, € U due to the definition of F in (2.4). Let I} := [ti-1 ¢ ).

The next result provides a constructive approximation of any feasible process for (P) by feasible
solutions to a perturbation of (3.1) appropriately extended to the continuous-time interval [0,7]. This
result plays a major role in the entire subsequent procedure to derive necessary optimality conditions for
(P) while certainly being of its independent interest. Recall that a representative of a given measurable
function on [0, 7] is a function that agrees with the given one for a.e. t € [0,T].

Theorem 3.1 Let (Z(-),u(-)) be a feasible pair for problem (P) such that a(-) is of bounded variation
(BV) while admitting a right continuous representative on [0,T], which we keep denoting by u(-). In
addition to (H1) and (H2), suppose that the mapping g(z,u) is locally Lipschitzian in both variables
around (Z(t),u(t)) for allt € [0,T]. Then for each m € N there exist state-control pairs (zm(t), um(t))
and perturbation terms ry,(t) > 0 and py(t) € B as 0 < ¢ < T satisfying the following:

(a) The sequence of control mappings uy,: [0, T] — U, which are constant on each interval I:

ms converges



to u(-) strongly in L%([0,T); R?) and pointwise on [0,T].
(b) The sequence of continuous state mappings ., : [0,T] — R™, which are affine on each interval I},
converges strongly in W12([0, T]; R™) to Z(-) while satisfying the state constraints

T (th) = Z(t!) € C for eachi=1,...,2™ with x,,(0) = 0. (3.2)

(c) Forallt e (t:;1,t8) and i =1,...,2™ we have the differential inclusions

mo Y Ym
Sbm(t) € *N(zm(tin); C) + Q(Im(tin)a“m(t)) + Tm(t)pm(t)v (3"?’)
where the mappings Ty, : [0,T] — [0,00) and pp: [0,T] — B are constant on each interval I', with

() = 0 in L*(0,T) as m — oo. (3.4)

In the proof of Theorem 3.1 we use the following important lemma, which can be distilled from the
book by Brézis [5, Proposition 3.3].

Lemma 3.2 Given a feasible solution (Z(-),a(-)) to (P) under the assumptions of Theorem 3.1, we have:
(1) &(-) is Lipschitz continuous on [0,T] and right differentiable for every t € [0,T);

(ii) the sweeping differential inclusion
z(t) € =N (z(t); C) + g(z(t), u(t)),

with the right derivative T(t) taken from (i) and the right continuous representative of the control u(t), is
satisfied for each t € [0,T).

Now we are ready to proceed with the proof of the major Theorem 3.1.

Proof of Theorem 3.1. Fix m € N and for all t € [t} ,tiF1) and i = 0,...,2™ — 1 define

m>‘m
ot t) — 2(t,)

U (1) = A(t5TY), () = T(E,) + (t —18) e

Then denote by wy,(-) the right derivative of z,,(-), for which we have the representation

o (LY iy
Wi (t) = Wt = Tl ) = () whenever t € [t! tit1) i=0,...,2™ —1.
b,
It follows from the right continuity of @(¢) that w,,(t) — @(t) as m — oo for all ¢t € [0,T). Hence we get
that w,,(-) — a(-) strongly in L?(0,7) by the Lebesgue dominated convergence theorem, which verifies
(a). To prove (b) and (c), let £ be a nodal point of the m-th mesh that by construction remains a nodal
point for all m/-mesh with m’ > m. Denote by i,,(f) the index 7 such that ¢ = 22% and deduce that

lim wim® = () (3.5)
m— o0
from Lemma 3.2(i). We claim now that
im lwm — Z[| 20,1y = 0. (3.6)

Indeed, since  is Lipschitz continuous by (i) in Lemma 3.2, by using the dominated convergence theorem
it is sufficient to prove that w,,(t) — Z(t) a.e. in [0,7]. To proceed, set 7,,(t) to be the unique nodal
point ¢, such that t € [t!,, 1) and then observe that for a.e. t € [0,T] we have

anlt) = oo (MO IO )y 0+ T =IO )
(since Z is differentiable at ¢ for a.e. ¢ € [0,T])

- i ((a*c(t) +0(1)) (T () + . — t) + (2(t) + 0(1)) (t — Tm(t))) i)



as m — oo. This verifies therefore the claimed convergence in (3.6).

Recalling again Lemma 3.2, at each nodal point ¢ we get

lim wir® =3(f) € =N (z(2); C) + g(z(), a(f)).

m—o0

Pick ¢ € N(z(f); C) with 2(f) = —C + g(z(f), u(f)). Recall that
W:ﬁn(a "’5_ Q(Im(ﬂyum(a) = wirrf(ﬂ +€_ g(xm(f),ﬂ(f—k hm))

Remembering that z,,(t) = Z(t) for each m tells us that the last expression tends to zero as m — oo
due to the right continuity of @(¢) and to the (Lipschitz) continuity of g. Thus there exists a sequence
{rm(t)} such that r,,(¥) } 0 as m — oo and

wip® € =N (@ (8); C) + g(m (), um (D)) + 1 (B)B.

By choosing an appropriate vector p,,(f) € B and extending both 7,,(#) and p,,,(t) constantly to the

interval , we complete the proof of the theorem. O

4 Discrete Approximations of Local Optimal Solutions

As seen above, Theorem 3.1 provides a constructive discrete approximation of any feasible solution to
problem (P) by feasible solutions to discrete-time problems, with no connections to optimization. The
main goal here is to study a given local optimal solution to (P) by using discrete approximations as a
vehicle to derive further necessary optimality conditions for it. To proceed in this direction, we construct
a sequence of discrete-time optimization problems such that their optimal solutions always exist and
strongly converge in the sense below to the given local minimizer of the original sweeping control problem.

Our main attention in this section is paid to relazed W2 x L?-local minimizers (Z(-),u(-)) for (P)
introduced in Definition 2.2 while recalling that the relaxation is not needed if either the set g(z,U) is
convex, or (Z(-),u(-)) is a strong local minimizer for (P); see the discussions in Section 2.

Given a relaxed W12 x L2-local minimizer (Z(-), @(-)), we construct the following family of discrete-
time problems (P,), m € IN, where F is defined in (2.4), r,,(-) and p,,(-) are as in the statement of
Theorem 3.1, and where € is taken from the definition of local minimizer:

2 —1 ‘+1 l+1 :L'i 2 )
minimize Jo, [T, Um] 1= @ (@ (T Z / < ™ —2(t)|| 4 ||ub, — )| ) dt (4.1)
t’L
over all the discrete functions (L, uny) = (29,2t ... 22" wl ul ... w2 ~1) satisfying the constraints
gttt e al, — b (F(2h,, uby) — p(toy)rm (th,)) =t @by — han F (th,, @by, uby) for i=0,...,2™ =1, (4.2)
where Fp,(t,z,u) := F(x,u) — 7, (t) pm (t), and where
(21,22 < ¢; forall j=1,...,s with 2% := 1z € C, u, := (0),
2™m_1 7+1 ’LJrl i 2
T =T ; €
Z / < —&(t)|| + ||uh, —a)]| ) <3 (4.3)
ul, €U for i=0,...,2™ —1. (4.4)

Note that the constraints (), 2% ) < ¢; forall j =1,...,s and i =0,...,2™ — 1 are included in (4.2),
since the validity of (4.2) yields the nonemptiness of N( zi C) for each i =0,...,2™ — 1, which in turn
implies that ¢, € C for all i =0,...,2™ — 1.

To implement the method of discrete approximation, we have to make sure that each problem (P,,)
admits an optimal solution. By taking into account Theorem 3.1, we deduce it from the classical Weier-
strass existence theorem in finite dimensions due to the construction of (P,,) and the assumptions made.



Proposition 4.1 In addition to the assumptions of Theorem 3.1, suppose that the cost function ¢ is
lower semicontinuous (l.s.c.) on R™. Then each problem (Py,) admits an optimal solution provided that
m € IN is sufficiently large.

Proof. It follows from Theorem 3.1 that the set of feasible solutions (z,, um) to (Py,) is nonempty for
any large m. It follows from the constraint structures in (P,,) and the assumptions imposed on U and
g that the feasible sets are closed. Furthermore, it easy to deduce from the localization in (4.3) that
the feasible sets are bounded as well. Thus the lower semicontinuity assumption on the cost function ¢
ensures the existence of optimal solutions to (P,,) by the Weierstrass theorem. o

Now we are ready to derive the main result of this section that establishes the strong W12 convergence
of any sequence (Z,(+), Um(-)) of optimal solutions to (P,,), which are extended to the entire interval
[0,T7, to the given local minimizer (Z(-), u(-)) for the original problem (P).

Theorem 4.2 Let (Z(-),u(-)) be a relazed W2 x L?-local minimizer for the sweeping control problem
(P), and let ¢ be continuous around T(T) in addition to the assumptions of Theorem 3.1. Consider any
sequence of optimal solutions (T, (), Um(:)) to problems (Py,) and extend them to [0, T piecewise linearly
for T, (+) and piecewise constantly for iy, (-) without relabeling. Then we have the convergence

(Zm (), U (1)) = (Z(-),a(")) as m — oo
in the strong topology of W2([0,T]; R™) x L2([0, T]; R%).

Proof. It is sufficient to show that
T
. - KX 2 _ — 2
Jm | () = 20 + lan(t) = a(|)) dt = 0. (4.5)
Arguing by contradiction, suppose that there exists a subsequence of the integral values v, in (4.5) that
converges, without relabeling, to some number v > 0. Due to (4.3), the sequence of extended optimal
solutions {(Z (), um(-))} to (Pm) is bounded in the reflexive space L2([0,T];R"™) x L2([0,T]; R?), and
thus it contains a weakly converging subsequence in this product space, again without relabeling. Denote
by (v(-),@(-)) the limit of the latter subsequence and then let

t
Z(t) = xo —|—/ v(r)dr for all t e [0,T).
0

Since Z(t) = v(t) for a.e. t € [0,T], we have that
(5:7n(~),12m(-)) — (5(),6()) as m — oo

in the topology of W12([0,T];R™) x L2([0,T];RY). Invoking the Mazur weak closure theorem tells us
that there is a sequence of convex combinations of (Z,(+), @m(+)), which converges to (Z(-), u(-)) strongly
in Wh2([0,T];R™) x L2([0, T);RY), and thus (Zp,(t), @m(t)) — (Z(t),u(t)) for ae. t € [0,T] along a
subsequence. Furthermore, we can clearly replace above the piecewise linear extensions of the discrete
trajectories Z,, (-) to the interval [0, T] by the trajectories of (1.2) generated by the controls @, () piecewise
constantly extended to [0,T]. The obtained pointwise convergence of convex combinations allows us to
conclude that @(t) € coU for a.e. t € [0,T] and that Z(-) satisfies the convexified differential inclusion
(2.3). Passing now to the limit as m — oo in the cost functional and constraints (4.1)—(4.4) of problem
(Py,) with taking into account the assumed local continuity of ¢ and the constructions above, we conclude
that the pair (Z(-),u(-)) belongs to the prescribed W2 x L2-neighborhood of the given local minimizer
(Z(-),u(-)) and satisfies the inequality

J[z,u)+v/2 < J[z, 0] = J[Z,u| < J[Z, 4] (4.6)

due to the strong convergence of (Z,,(-), um(:)) to (Z(-),u(-)) and the structure of (4.1). Appealing to
Definition 2.2 tells us that (4.6) contradicts the very fact that (Z(-),u(-)) is a relaxed W12 x L?-local
minimizer of (P). Thus we get (4.5) and complete the proof of the theorem. O

Recalling the discussion after Definition 2.2 leads us to the following consequence of Theorem 4.2,
which provides the strong approximation of local minimizers for (P) without an explicit relaxation.



Corollary 4.3 In addition to the assumptions of Theorem 4.2, suppose that the sets g(x,U) and U are
convex. Then the convergence result of Theorem 4.2 holds true.

5 Tools of Variational Analysis

The results of Section 4 make a bridge between the given local minimizer (Z(-),a(-)) of the original
problem (P) and (global) optimal solutions for the sequence of discrete approximations (P,,) that exist
by Proposition 4.1 and strongly converge to (Z(-),a(-)) by Theorem 4.2. This supports our approach
to derive necessary optimality conditions for (Z(-),u(-)) by establishing firstly necessary conditions for
optimal solutions to the discrete-time problems (P,,) and then passing to the limit in them as m — co.

Looking at the structures of each problem (P,,) and the equivalent problem of finite-dimensional math-
ematical programming defined in Section 6, we observe that they are always nonsmooth and nonconvex,
even when the initial data of (P) possess these properties. This is due to the graphical set constraints
associated with the discrete-time inclusions (4.2) that are generated by the normal cone mapping in (2.4).

To proceed with deriving necessary optimality conditions for (P,,,) and then for (P) by passing to the
limit, we have to employ appropriate generalized differential constructions of variational analysis. These
constructions should be robust, enjoy comprehensive calculus rules, and such that the corresponding
normal cone is not too large while being applied to—specifically—graphical sets. It does hold, in particular,
for the Clarke normal cone N, which is always a linear subspace of a maximum dimension for sets that are
graphically homeomorphic to graphs of Lipschitzian functions; see [21, 25] for more details and references.
For example, we have N((0,0);gph|z|) = R? for the graph of the simplest convex function on R.

All the required properties are satisfied for the generalized differential constructions initiated by the
second author. Elements of the first-order theory and various applications can be found by now in many
books; see, e.g., [21]-[23], [25], [27]. We refer the reader to [22, 23] and the bibliographies therein for
second-order constructions used in what follows.

To briefly overview the needed notions, recall first the (Painlevé-Kuratowski) outer limit of a set-valued
mapping/multifunction F': R" = R™ at & with F(Z) # 0 given by

Lim sup F(z) := {y eRrR™ | 3 sequences xp — T, yr — y such that yi € F(ay), k € ]N} (5.1)

T—T

Given now a set  C R” locally closed around Z € Q, we define by using (5.1) the (basic, limiting,
Mordukhovich) normal cone to  at T by

N(z;9Q) = No(z) := Lim sup{cone[z — II(z; Q)] }. (5.2)

T—T

where II(z; Q) := {u € Q | ||z — ul| = dist(2;)} is the Euclidean projection of z onto €, and where
‘cone’ stands for the (nonconvex) conic hull of the set. When  is convex, (5.2) reduces to the normal
cone of convex analysis, but it is often nonconvex otherwise.

Given further a set-valued mapping F': R" = R™ with its domain and graph
dom F := {x € R" | F(z) # 0} and gphF := {(z,y) e R" xR™ | y € F(x)}
locally closed around (Z,3) € gph F', the coderivative of F at (Z, %) is generated by (5.2) as
D*F(z,§)(u) := {v € R" | (v,—u) € N((&,7);gph F)}, ueR™. (5.3)
When F: R® — R™ is single-valued and continuously differentiable (C'-smooth) around Z, we have
D*F(z)(u) = {VF(z)*u} forall ueR™

via the adjoint/transposed Jacobian matrix VF(Z)*, where § = F(Z) is omitted.

Let ¢: R® — R := (—00, 00] be an extended-real-valued Ls.c. function with

dom ¢ := {z € R" | p(z) < 0o} and epi¢ = {(z,a) e R""' | a > ¢(x)}



standing for its domain and epigraph. The (first-order) subdifferential of ¢ at T € dom¢ is defined
geometrically via the normal cone (5.2) by

9¢(z) == {v eR™ | (v,—1) € N((Z,¢(2));epi¢) } (5.4)

while admitting equivalent analytic representations; see, e.g., [21, 25]. Note that N(Z; Q) = 95(Z; Q) for
any Z € §, where §(z; ) denotes the indicator function of Q equal to 0 for z € Q and oo otherwise.
Then given a subgradient v € 9¢(Z) and following [21, 23], we define the second-order subdifferential (or
generalized Hessian) of ¢ at T relative to ¥ by

0*¢(z,0)(u) := (D*0)(%,7)(u), u€R™,

via the coderivative (5.3) of the first-order subdifferential mapping x +— 9¢(x) from (5.4). If the function
¢ is C2-smooth around z, then we have the representation

O*¢(z,0)(u) = {V?¢(z)u} for all ueR",

where V2¢(z) stands for the classical (symmetric) Hessian of ¢ at z with v = V¢(z). If ¢(z) =
§(z;Q), then 9%p(z,0)(u) = (D*Ng)(z,v)(u) for any v € N(7;Q) and u € R™. The latter second-order
construction is evaluated below in the case of the polyhedral set = C from (1.3). To proceed, define
the index sets corresponding to the generating vectors x in (1.3) by

Iy(w) == {j € I(z) | (z,w) = ¢;} and I.(w):={j € I(z) ]| (xl,w) >c;}, weR™ (5.5)

where I(z) is taken from (2.1) with Z := 2 € C. The next theorem provides an effective upper estimate

of the coderivative of F},, from (4.2) with ensuring the equality under an additional assumption on 7.

Theorem 5.1 Given F,, in (4.2) with C from (1.3), denote G(x) := N(x;C) and suppose in addition
to standing assumptions that g is Ct-smooth around the reference points. Then for any (t,z,u) € [0,T] x
C xU and w+ g(z,u) + rm () pm(t) € G(x) we have the (x,u)-coderivative upper estimate

D Fult,z,u,w)(w) € {z= (= Vaglw,w'w+ Y el -Vagl@ww)},  (56)
JE€Io(w)UI> (w)

where w € dom D*G(z,w+g(x, ) +7m (t) pm (1)), where Io(w) and I (w) are taken from (5.5), and where
v € R forj € In(w), while ¥ > 0 for j € I (w). Furthermore, (5.6) holds as an equality and the domain
dom D*G(z,w + g(x,u) + rm () pm (t)) can be computed by

dom D*G (z, w+g(z, u)+7m (t) pm(t)) = {w‘EI)\j > 0 with w+g(z,u) = Z Mgl M >0= (2d,w) = 0}
jel(z)

provided that the generating vectors {xl | j € I(x)} of the polyhedron C are linearly independent.

Proof. Picking any w € dom D*G(z,w + g(z,u) + 7 (t)pm(t)) and z € D*F,, (¢, z,u,y)(w) and then
denoting G(z,u) := G(x) and f(x,u) = —g(z,u), we deduce from [22, Theorem 1.62] that

2 € Vf(z,u)"w + DGz, u,w + g(a,u) + 1 (£) pm(t)) (w).

Observe then the obvious composition representation

G(z,u) = Gog(z,u) with g(z,u):= =z,

where the latter mapping has the surjective derivative. It follows from [22, Theorem 1.66] that

z € Vf(z,u)'w+ Vg(z,u) D*G(z,w + g(z,u) + rm(t) pm(t)) (w). (5.7)

Employing now in (5.7) the coderivative estimate for the normal cone mapping G obtained in [18, Theo-
rem 4.5] with the exact coderivative calculation given in [18, Theorem 4.6] under the linear independence
of the generating vectors 2J and also taking into account the structure of the mapping f in (5.7), we
arrive at (5.6) and the equality therein under the aforementioned assumption. O
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6 Necessary Optimality Conditions for Discrete-Time Problems

Here we derive necessary optimality conditions for solutions to each problem (P,,), m € IN, formulated in
(4.1)—(4.4). Tt is done by reducing each (P,,) to a nondynamic problem of nondifferentiable programming
with functional and many geometric constraints, then employing necessary optimality conditions for
the latter problem obtained in terms of generalized differential constructions of Section 5, and finally
expressing the obtained conditions in terms of the given data of (P,,) by using calculus rules of generalized
differentiation. In this way we arrive at the following necessary conditions, which will be further specified
below by applying the second-order calculations presented in Section 5.

Theorem 6.1 Let (T, ) = (2°,,...,22 @0, ..., a2 1) be an optimal solution to problem (Py,)

along which the general assumptions of Theorem 5.1 are satisfied. Suppose in addition that the cost
function ¢ is Lipschitz continuous around the point T.,(T). Then there are elements Ay, > 0, ¥, =

(W0, .. 2" = Y) with i, € N(al,;U), asi=0,...,2™ —1, & = (EL,...,€5) € RS, and p!,, € R™ as
1=0,...,2™ satisfying the conditions
2m-1
A+ &mll + D Pkl + loml # 0, (6.1)
i=0
n((alan) =) =0, j=1...5 (6.2)
2 = A2+ Zgﬂ xl with 92 € dp(z2), (6.3)
Jj=1
itl gy 1 1 . ,
(pm DPm 77}\m92u 7/\m07ly 7pz$1)
fim fom fom il _ i (6.4)
Tl — 1
€ ( 1/fm,0)+N<( L m);gpth)
fori=0,...,2™ — 1, where we use the notation
i (gl i tm
0i, = (0,0) = ( i — TR (@, — a(t)) dt). (6.5)
ti, hm thn
Proof. Denote z := (20, ...,22" w0, ... u2 =1 0 ... 42 1) € RZ2"+Un+2"d where the starting

point 20, is fixed. Taking € > 0 from (P,,), consider the following problem of mathematical programming
(M P) with respect to the variable z:

2 —1 tl+1

minimize ¢o(z) := ¢ Z /t — Z(t), ul, — u(t)) H2 dt

subject to finitely many equality, inequality, and geometric constraints given by
t1+1

z 16k~ G s e § <o

i
m

gl(z):xgl_x;z_hmyinzoa i:O,,..’Qm_]_,
hj(z) := (xd, 22" —-¢ <0, j=1,...,s,

2= {7 ERETIIIIN | il € Bty i)} 1200271

z € Zgm = {(a} 0 L yE Tl e RE2THDn+2Td f 20, is fixed},

ze Q= {(ad, ... y3 T e REFTHIFZTA | i e Ul i =0,...,2™ — 1.
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Necessary optimality conditions for (M P) in terms of the generalized differential tools reviewed above
can be deduced from [23, Proposition 6.4 and Theorem 6.5]. We specify them for the optimal solution

(=0 =2™ -0 2m—-1 -0 o™
zZ = (zm,...,xm,um,...,um U s Ui )

o (MP). It follows from Theorem 4.2 that the inequality constraint in (M P) defined by ¢ is inactive
for large m, and so the corresponding multiplier does not appear in the optimality conditions. Thus we
can find A, >0, & = (&,,...,€5,) €RS, pl, e R" asi=1,...,2™, and

o
* * * * * * * * ;o m
z; = (ajOi,...,;C2mi,u0i,...,u(2m71)i7y0i,y1i,...,y(szl)i), 1=0,...,2",

which are not zero simultaneously while satisfying the conditions

. N(zE;) + N(zQ;) if i €{0,...,2m -1},
% € { N(%E,) if i=2m, (6.6)
2m—1
—2 — = Zhm € AmOdo(Z) + Zgﬂ Vh,( Z Vgi(2)*pitt,
& hi(2)=0, j=1,...,s. (6.7)

Note that the first line in (6.6) comes by applying the normal cone intersection formula from [21, Corol-
lary 3.5] to 2 € Q; NZ,; for i =0,...,2™ — 1, where the required qualification condition

N(z Q)N (- N(zE)) ={0}, i=0,...,2m -1,

follows directly from the coderivative estimate (5.6) of Theorem 5.1 under the imposed PLICQ. We deduce
from the structure of €2; and =Z; that the inclusions in (6.6) can be equivalently written as

) , g+l _gi
(‘T:ivu;‘kif ;m*y;(i) 6N(< m?uinv mhi) gphF ( m» a)) for ’L':O,...,mel (68)
with every other components of 2} equal to zero, where i€ N(ui,;U) foralli=0,...,2™ —1. Observe

furthermore that z{,, and u,, determined by the normal cone to Zym are the only nonzero components
of z3.. This implies by using (6.6) and (6.7) that

—25 — . = Zom € A0 (2 +Z§f Vh;( Z Vgi(2) pt!

with f%((zfnzm,x%n> — cngm) =0, j=1,...,s. Using the expressions for ¢q, g;, and h; above together
with the elementary subdifferential sum rule from [21, Proposition 1.107] gives the calculations

(Ceavn@),, - (Xaa).
j=1 " j=1

2m 1 —pL if i =0,

(ZV% W) =P i =12
m p2 if i=2m,

o

(X Vo), = (ot~

N A

(B 0, — o) o

i
m

1 2m -1
060(2) = 0p() + 3 3 Vila) with ()= [
i=0 t
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The set \,,,0¢¢(Z) is represented as the collection of
A (0,0, 0,927,000 . 0@ D g0v L 9R" 1Y) with 92, € dp(a2 ),

m 7 m
ti+1

i ' titt Fi+l i )
(032, 01) = ./ (@ o) ar, [ (LI ) ar) =02
ti ti, m

m

Thus we obtain the following relationships

—5’330 — Thom = —Pp» (6.9)

0= At +p2" +Zgﬂ 2l with 92 € dp(z2)), (6.11)
—ufy = A0 and —ul = A0, i=1,...,2" -1, (6.12)
5 = A0 — Bttt i=0,...,2m -1, (6.13)

which allow us to arrive at all the necessary optimality conditions claimed in the theorem. Indeed, observe
first that (6.7) yields (6.2). Extending p,, by p%, := 2j,m ensures that (6.3) follows from (6.11). Then
we deduce from (6.10), (6.12), and (6.13) that

x;‘kz pﬁl in u;,kz 1 U yj;i 3 i+1
— Pm_ " Pm = —— A", and _ 1y g1y 4 pitl,
B h by R S A A P

Substituting this into the left-hand side of (6.8) justifies the discrete-time adjoint inclusion (6.4).

Finally, to verify (6.1) we argue by contradiction and suppose that \,, = 0,&,, = 0,%,, = 0, and
pl, =0asi=0,...,2™ —1, which yield z3y. = p%, = 0. Then it follows from (6.11) that p2," = 0, and so
pt, = 0 whenever i = 0,...,2™. By (6.9) and (6.10) we get z}; =0 for all i = 0,...,2™ — 1. Using (6.12)
tells us that uf; =0asi=1,...,2™ — 1. Since the first condition in (6.12) yields also ug, = 0, it follows
that ), = 0 for ¢ = 0,...,2™ — 1. In addition we have by (6.13) that y5; = 0 for all 4 =0,...,2™ — 1.

Remembering that the components of z} different from (x};, u};, y;) are zero for i = 0,...,2™ — 1 ensures
that zf = 0 for ¢ = 0,...,2™ — 1 and similarly 23, = 0. Therefore 27 = 0 for all = 0,...,2™, which
violates the nontriviality condition for (M P) and thus completes the proof. O

The next theorem applies to (6.4) the calculation result of Theorem 4.2 and provides in this way
necessary optimality conditions for problem (P,,) expressed entirely via its initial data.

Theorem 6.2 Let (T, U) be an optimal solution to problem (Py,) formulated in (4.1)—(4.4), where
the cost function ¢ is locally Lipschitzian around Z,,(T'), and where the sweeping mapping F is defined
n (2.4). Using the notation and assumptions of Theorem 5.1, take (01 0%) from (6.5). Then for all
m € IN there exist dual elements (N, ¥m,pm) as in Theorem 6.1 together with vectors nt, € RS for

i=0,...,2™ and v}, € R® fori=0,...,2™ — 1 satisfying the nontriviality conditions

2m—1
Mo 02 ||+ D2 ol + el £ 0, (6.14)
=0

the primal-dual relationships given for all i =0,...,2" —1land j=1,...,s by

i,z-&-l — 7t

rin ()i () = = g (T, ) = > il (6.15)
JEI(ZE,)
7+1 7
pm pm _ _vzg( m7 m)*(_ 7)\ 911/ +p1+1)
Bm hon
+ > . (6.10)
FE€Io (P =7 A 03 UTs (P — - A 07F)
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1 . 1 . .
I U i at ) ( = zy z+1

with ¢, € N(a!,;U) asi=0,...,2™ — 1 taken from Theorem 6.1, the transversality condition
—p2 = N0 +Zn2 Igd with 92 € dp(z2) (6.18)

and such that the following implications hold for i =0,...,2m —1 and j=1,...,s

[(al,ah) < o) = mid = (6.19)
i+1_ Ly gy ij
[geI( . 0)}:>vm20,
1 1 , g (6.20)
[ ¢ I — —Anbi) UL (05 — Amajg)} — il = .
We also have the complementary slackness condition (6.2) together with
2,3 ) < e = Y, = or 1=20,..., —1 and 7=1,...,s, .
A y U=0 f 0 2m —1 d 1 6.21
[(xi, ’m Y < c]] - 77,27;1 =0 for j=1,. (6.22)
Furthermore, the linear independence of the vectors {xl| j € I(z!,)} ensures the implication
g 1 A
mi > 0= [(alpi = = Anbi) = 0] (6.23)

Assuming in addition that the matrices V,g(Z!,,ul,) are of full rank for alli =0,...,2™ —1 and m € IN

m7 m

sufficiently large, we get the enhanced nontriviality condition

A+ [P0 + [ # 0. (6.24)

Proof. Using the necessary optimality conditions of Theorem 6.1, we can rewrite (6.4) as
7+1

Pm _p:'n 1 iu 1 z) ( —i 'f%i_l 5:m> i i+1
T —— )\ 0 — — D*F,, Uy ———— —/\ Gy 6.25
(P =l — i) € o s =~ A ) (629)

for all i =0,...,2™ — 1 by the coderivative definition (5.3). Taking into account that

with G(z) = N(z;C), we find vectors }, € R% as i = 0,...,2™ — 1 such that conditions (6.15) and
(6.19) hold. Employing now the coderivative evaluation (5. 6) from Theorem 5.1 with z := #! , u:= !,
=i+l _ =i
w = —m"J"rh_mm, and w = — mbY +pitt for i =0,...,2™ — 1 gives us v, € R® and the relationships
7+1 7 1 ) u
(pm T wm>
hm, hm hum
~V.g(zt )*(_ hi)\ m0Y +pz+1> + Z Vgl
= Jelo(zf+1 T Am O ) UL (D = 7= A 077 ;

—Vug(Zh,, m)*<— = Am0Y +p’“)

i e N(a',;U) as i=0,...,2™ — 1.
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This ensures the validity of all the conditions in (6.16), (6.17), (6.20), and (6.21). Denoting 72, := &,
with &, taken from Theorem 6.1, we get %, € RS for all i =0,...,2™ and deduce (6.14) and (6.18) from
those in (6.1) and (6.3). Implications (6.22) follow directly from (6.2) and the definition of 72, .

Assume finally that the generating vectors {2 | j € I(z )} are linearly independent. In this case we
deduce from (6.15) and (6.25) and the domain formula in Theorem 5.1 that condition (6.23) is satisfied.
It remains to verify the enhanced nontriviality (6.24) under the additional assumption on the full rank of
the matrices V,g(Z?,,u!,). Suppose on the contrary that \,, = 0, p¥ =0, and t,,, = 0. Then pit! =0
asi=0,...,2™ — 1 by (6.17). Then it follows from (6.16) the equality

Z ﬂ,{xi =0.

FELo (Pt = Am O UTs (pid ' — 22 A 03

" hm " hm

Invoking now (6.18) and p2. = 0 tells us that ijl n2" 7z = 0. This implies by definition (2.1) of the
active constraint indices and the imposed linear independence of 2J over this index set that nn: " =0.
Thus (6.14) is violated, which verifies (6.24) and completes the proof of the theorem. O

7 Optimality Conditions for the Controlled Sweeping Process

In this section we derive necessary optimality conditions for the local minimizer under consideration in
the original problem (P) by passing to the limit as m — oo in the necessary optimality conditions of
Theorem 6.1 for the discrete-time problems (P,,). Furnishing the limiting procedure requires the usage
of Theorem 4.2 and the tools of generalized differentiation reviewed in Section 5.

Theorem 7.1 Let (Z(-),(-)) be a relaved W12 x L2-local minimizer of problem (P) such that u(-) is
of bounded variation and admits a right continuous representative on [0,T]. In addition to (H1)-(H3),
suppose that g(-,-) is Ct-smooth around (z(t),u(t)) with the full rank of the matrices V., g(Z(t),u(t)) on
[0,T], and that ¢ is locally Lipschitzian around T(T). Then there exist a multiplier X > 0, a signed
vector measure v = (y*,...,v%) € C*([0,T];R®) as well as adjoint arcs p(-) € W2([0,T];R") and
q(-) € BV([0,T];R™) such that the following conditions are fulfilled:

(i) The PRIMAL-DUAL DYNAMIC RELATIONSHIPS consisting of:

e The PRIMAL ARC REPRESENTATION
—z(t) = an(t)xl —g(z(t),u(t)) for ae tel0,T), (7.1)
j=1

where the functions n?(-) € L*([0,T);R) are uniquely determined for a.e. t € [0,T) by representation
(7.1). In fact, (7.1) holds at all t € [0,T) provided that Z(t) denotes the right derivative.

e The ADJOINT DYNAMIC SYSTEM

p(t) = ~Vag (2(t),u(t)) (1) for ae. te[0,7), (7.2)

where the right continuous representative of q(-), with the same notation, satisfies

a(t) = p(t) - /( S dy (), (7.3)

t,T] =1

for allt € [0,T] except at most a countable subset, and moreover p(T') = q(T).

e The LOCAL MAXIMUM PRINCIPLE
P(t) := Vug(fc(t),ﬂ(t))*q(t) € coN(a(t);U) forae. tel0,T], (7.4)
which gives us the GLOBAL MAXIMIZATION CONDITION

(p(t),u(t)) = max (p(t),u) for a.e. te0,T] (7.5)
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provided that the control set U is conver.

e The DYNAMIC COMPLEMENTARY SLACKNESS CONDITIONS
(21,2(t)) <c; =1’ (t) =0 and /(t) > 0= (2,q(t)) =0 (7.6)
for a.e. t €[0,T) and all j =1,...,s provided that LICQ at Z(t) is additionally imposed.
(ii) The ENDPOINT RELATIONSHIPS consisting of:
e The TRANSVERSALITY CONDITIONS: there exist numbers n(T) > 0 for j € I1(z(T)) such that
—p(T) = Y. 7 (D)2l € Xp(x(T)) and Y ' (T)z] € N(z(T);C). (7.7)
JeI(®(T)) JEI(z(T))
e The ENDPOINT COMPLEMENTARY SLACKNESS CONDITIONS
<x1, jj(T)> <c = W (T) =0, (7.8)
with the numbers n/ (T') are from (7.7).

(iii) The MEASURE NONATOMICITY CONDITION: Ift € [0,T) and (xl,Z(t)) <c¢; forallj=1,...,s,
then there exists a neighborhood Vi of t in [0,T) such that v(V') =0 for all the Borel subsets V of V;.

(iv) The NONTRIVIALITY RELATIONSHIPS consisting of:

e The GENERAL NONTRIVIALITY CONDITIONS: we always have

(Avpa H’YHTV) 7é Oa (79)

which is equivalent to (A, p,q) # 0 provided that LICQ holds at Z(t) on [0,T].
e The ENHANCED NONTRIVIALITY CONDITION

(Ap) #0 (7.10)
holds provided that (x],Z(t)) < ¢; for all t € [0,T) and all indices j =1,...,s.

Proof. Given the local minimizer (Z(-),a(-)) for (P), construct the discrete-time problems (P,,) for
which optimal solutions (Z,(+), @m(-)) exist by Proposition 3.1 and converge to (Z(-), @(-)) in the sense
of Theorem 4.2. We derive each of the claimed necessary conditions in (P) by passing to the limit from
those in Theorem 6.1. Let us split the derivation into several steps.

Step 1: Verifying the primal equation and the dynamic complementary slackness conditions. First we
prove (7.1) together with the first complementarity condition in (7.6). Based on (6.5), define the functions

i

0 ) .
O (1) ::h—m for t € t! t"™Yand i=0,...,2™ —1

m?'m
m

on [0,T] whenever m € IN. It is easy to see that

2
T 2m-1 0}}{‘ 1 2 gitt Fitl _ g 2
Y (t)||>dt = < — (/ B(t) — = mdt)
| 1enol S s 2 (7 o
2m -1 gt i+l _ =i 2 T
E LTy = — Ty = s 2
< ¥ / |t~ T =T dt:/o 13(8) — G ()2 dt.
i=0 “Ytm m

Using the strong convergence (T, (+), @m(-)) = (Z(+),a(-)) in Theorem 4.2 ensures that
T T )
/ 62 (8)]) dt < / |Z(t) — Zm(t)]|” dt — 0 as m — oco. (7.11)
0 0
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This implies that a subsequence of {6Y,(t)} converges, without relabeling, to zero a.e. on [0, T]. Likewise

GutHdt: = / a(t)|| dt
| [eno g < Z ~ (o)
2m 1 i1
s — 2
< X[ N ) o = / Jia(8) — (1)
i=0
which tells us, again by using Theorem 4.2, that
T T
/ IIGL‘@(t)IIthS/ [T (t) — @(t)|* dt — 0 as m — oo, (7.12)
0 0

and so 0% (t) — 0 for a.e. t € [0,T] along a subsequence. The assumed PLICQ along Z(-) and the
robustness of this condition yields by the choice of 22 and the convergence in Theorem 4.2 that the vectors
{21 | j e I(&)} are positively linearly independent for each i = 1,...,2™ and m € IN sufficiently large.

Taking 7%, € R% from Theorem 6.2, we construct the piecewise constant functions n,,(-) on [0,T') by
Nm(t) :=nt, for t € [ti tiF1) as i =0,...,2™ — 1. It follows from (6.15) that

m?)“m

—Z (1) = ann(t):ﬁ]*' — g(@m(th,), Um (th,)) =T (th,) pm (th,) whenever t € (¢, t4T1), m e IN. (7.13)

m’'m

Furthermore, we get —Z(t) € G(Z(t)) — g(Z(t), u(t)) for a.e. t € [0,T) with the mapping G(-) = N(-;C),
which is measurable by [25, Theorem 4.26]. The well-known measurable selection result (see, e.g., [25,
Corollary 4.6]) allows us to find nonnegative measurable functions 7?(:) on [0,7) for j = 1,...,s such
that equation (7.1) holds. Combining (7.13) and (7.1) ensures that

B(t) = 2m(t) = Y [mn(8) = 07 (1)) 2L + g(2(2), alt) = 9(@mn(th), Tn (t1)) = 7 () P (£7,)

Jj=1

for t € (t¢,,tiF1) and i = 0,...,2™ — 1. It follows from the imposed PLICQ that the functions n?,(t)

and 77 (t) are uniquely defined for a.e. t € [0,T) and belong to L?([0,7); R, ). The constructions and
arguments presented above readily imply the estimate

H Z LIOREAGIE:

whenever t € (t!  ti+1). Passing to the limit therein with the usage of Theorem 4.2 gives us

m’'m

* .

o S lEm@® =2@e + [l9(2(t), a(t) = 9(@m(8), wm ()| 12 +rm(£,)

Z [0 (t) =), (t)]z] = 0 as m — oo for ae. t€[0,T)
JEI(Z(1))

and yields the a.e. convergence 7,,(t) — n(¢) on [0,7) by the imposed (robust) LICQ in this case. Then
the first complementary slackness condition in (7.6) follows from (6.19).

Step 2: Continuous-time extensions of approximating dual elements. In the notation of Theorem 6.2,
define ¢,,,(t) by extending p?, piecewise linearly on [0, 7] with g,,(t%,) := p¢, for i =0,...,2™. Construct
further vy, () and ¥y, (¢) on [0,T] by

Y () =70, Um(t) = h—w’ for ¢t € [t!,, t:) and i=0,...,2™ — 1 (7.14)
m
with v, (T') := 0 and 9., (T") := 0. Define now the functions
Vi (t) := max {t},| t, <t, 0<i<2™ —1} forall t€[0,T], me N,
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and deduce respectively from (6.16) and (6.17) that

qm(t) = *Vrg(jm(Vm(t)), ﬁm(’/m(t)))*( - )\mﬁﬁn(t) + Qm(Vm(t) + hm))
. . 7.15
+ )3 wvel, aa TP
FE€Io (= Am 0% () +aqm (Vm (8)+hm ) )UTs (= A 05 (£) +qm (Vim () +him))
A0 () = Vi (t) = =V ug (Zim (Vi () T (Vi (£))) (= An0% (8) + @ (Vi (8) + b)) (7.16)
for every t € (t¢,,ti1) and i = 0,...,2™ — 1. Next we define the adjoint arcs p,,(-) to [0,7] by
T, s '
P (t) := qm (¥) +/ (Zﬂn(r)xi)dr for every t € [0,T]. (7.17)
t N
This shows that p,(T) = ¢, (T) and that
s . .
Pralt) = () = S5 (027 ae. e [0,7], (7.18)
j=1
The latter implies due to (7.15), (6.20), and the index definitions in (5.5) that
Pm(t) = —Vzg(jm(l/m(t)), i (Vi (1)) (= A8 (1) + @ (Vi (8) + him)) (7.19)
for every t € (t{,tiF1) and i = 0,... — 1. Define now the vector measures v/ on [0, 7] by
m 1

/ et = / > (O, ()t (7.20)

for every Borel subset B C [0, 7], where 1g signifies the characteristic function of the set Q that equals
to 1 on € and to 0 otherwise. We drop for simplicity the index “mes” in what follows if no confusion
arises. Since all the expressions in the statement of Theorem 6.1 are positively homogeneous of degree
one with respect to (Am, Pm, Yms ¥m), the enhanced nontriviality condition (6.24) and the constructions
above allow us to normalize them by imposing the sequential equality

s 2M—1 T
A+ P (T + gm0+ > |7$%|+/0 [Ym(®)[ldt =1, m e NN, (7.21)
j=1 i=0

which tells us, in particular, that all the terms in (7.21) are uniformly bounded.

Step 3: Verifying the dual dynamic relationships and the mazimization conditions. By (7.21), suppose
without loss of generality that A,,, = A as m — oo for some A > 0. To prove the uniform boundedness of
the sequence {p® ..., p2 Ymew foralli=0,...,2™ — 1, m € N, observe first from (6.16) that

7+1 —7 \* 7 i+1 )
m *pmfh vacg( T m) (7h7)‘ 9y+p )+h Z’szj
forall t =0,...,2™ — 1. This implies that

1930l 151+ Bl Vg @l )| (= A+ ”1)U+hmHZvW

= (L4 bl Vag @ @) D) 95|+ B A 82 85 | - 1V 29 (@ @) |+hmuzmﬁ
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whenever i = 0,...,2™ — 1. It follows from (7.11), (7.21), and (H2) that the quantities V,g(Z%,,ut,),
Am0% are uniformly bounded for i = 0,...,2™ — 1. Thus we find a constant M; > 0 such that

ti+1

Wl =My [ I8RO

m

e (|05, (E) |- | V29 (@ 00"

forallt=0,...,2™ —1 and m € IN. It implies that
1 T
S et 81,5 [t )| < 1) [ 1607 e 0 as m s oo,
— 0

On the other hand, we get due to (7.21) that

T s
i Z H va — [ X ma (7.22)
o "4
Considering now the numbers
Al = o [0, ()| - Vg (s a)* || + hmH szm
for i = O — 1 and using the aforementioned uniform boundedness, find a constant Ms > 0 such
that Z A’ < Ms. Combining the latter with the estimates above tells us that
D5 [l < (14 Mihy) [l + A5, i=0,...,2™ — 1. (7.23)

Proceeding further step by step, we get the inequalities

2™ —1
Iphll < (14 Mih)® T2+ S AL (L + Mihy,)
j=t
< MTLMT N AL <eM(14 M) for i=2,...,2" — 1,
=0

which imply in turn the estimate
Ipt,|| < Mz for some Mz >0 and all i=2,...,2™ —1.

Hence the boundedness of {p®,} and {p},} follows from (7.23) and the boundedness of {p’, }a<;<2m, which

om

thus justifies the boundedness of the entire bundle {(p?,,...,p2 )}men-

To verify the uniform boundedness properties of g,,(+), derive from their constructions and (6.16) that

-1
2 am(@™) = am Gl < Z Vg (@ )" (= A3 (£) + i)

(7.24)
) 1 4
and observe furthermore that
2m_1
Y (4L i+1 < Y (4L 3+1
o 3 ¥ 0" (B0 1 < T, e (W, ) (=m0 + 25501
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The latter ensures the boundedness of the first term on the right-hand side of (7.24) due to the bound-
edness of {p!, } e, while the boundedness of the second term therein follows from (7.22). Thus we get
from (7.24) that the functions g, (-) on [0, T] are of uniform bounded variation on [0, 7] and that

2{lgm @) = llgm O) | = llgm (T < [lgm(#) = @m (O} + llgm (T) = gm (B[] < var(gm; [0,T])

for all t € [0,T]. Thus the sequence {gn(-)} is bounded on [0, T] since the boundedness of {¢,,(0)} and
{gm(T)} follows from (7.21). Applying now Helly’s selection theorem gives us a function of bounded
variation ¢(-) such that ¢,,(t) — ¢(t) as m — oo pointwise on [0, T.

We see from (6.16), (7.20) and (7.21) that the measure sequence {7} is bounded in C*([0,T7]; R?).
Thus the weak® sequential compactness of bounded sets in this space allows us to find a measure v €
C*([0,T7;R?) such that {v,,} weak* converges to v in C*([0,T]; R®) along a subsequence. It follows from
(7.19), (7.21), and the uniform boundedness of g,,(-) on [0,T] that the sequence {p,,(-)} is bounded in
W12([0,T]; R™) and thus weakly compact in this space. By Mazur’s theorem we conclude that a sequence
of convex combinations of p,,(-) converges to some p(-) € L2([0,T]; R™) a.e. pointwise on [0,7]. This
gives us (7.2) by passing to the limit along (7.19) as m — oo with the usage of (7.11) up to choosing the
right continuous representation of ¢q. Note also that

H/Tivfn(f)xidT—/ Zdv
st (1] ;

for all ¢ € [0,T] except a countable subset of [0, T] by the weak* convergence of the measures v, to v in
C*([0,T];R™); cf. [27, p. 325] for similar arguments. Hence we get the convergence

T s
/ Z’yfn( xjd7—>/ Zdw Yzl on [0,T] as m — oo
et (

7] 523

and thus arrive at (7.3) by passing to the limit in (7.17). The claimed condition p(T") = ¢(T) in (i) follows
directly by passing to the limit in the equalities p,,(T) = ¢m(T), m € IN. The second complementary
slackness condition in (7.6) follows from (6.23) under LICQ while arguing by contradiction with the usage
of the established a.e. pointwise convergence of the functions involved therein.

To finish the proof of (i), it remains to verify the validity of the local maximum principle in (7.4)
and the global maximization condition (7.5) with referring the reader to Remark 7.2 for more discussions
about the terminology. We get (7.4) by passing to the strong L2-limit as k — oo in the relationships
(6.17) and in the inclusions ¢¢, € N(u,;U), i = 0,...,2™ — 1, of Theorem 6.2 as k — oo. This is
achieved by employing the strong convergence of the discrete optimal solutions from Theorem 4.2, the
convergence of (0¥ (t),0% (t)) — (0,0) for a.e. t € [0,T] obtained above as well as the robustness of the
normal cone (5.2). If U is convex, the maximization condition (7.5) follows directly from (7.4) due to the
structure (1.4) of the normal cone to convex sets.

Step 4: Verifying the endpoint relationshz’ps Relying on the discrete necessary optimality conditions of
Theorem 6.2, define 7,,(T) := 72, and deduce from the normalization of the nontriviality cond1t1ons in
(6.14) that the sequence {12} converges, along a subsequence, to some vector (n*(T),...,n*" (T)). It
follows from (6.18) and representation (2.5) that

_p%’;ﬁ; Am’lgz"’L Z 772"77. 277l — Z 77727’;".sz"72 e N(jfr/;"'; C), (7.25)
JEN@L")
where n2, 7 =0 for j € {1,...,s}\ I(z%"). Denoting ¢, := > jerm) n2"iz2" | observe that a subse-

quence {(;,} converges to some ¢ € R"™ due to the boundedness of A,, by (7.21) and the convergence of
{p2"} and {z2"} with taking into account the robustness of the subdifferential. Tt follows from the ro-
bustness of the normal cone in (7.25), the convergence of z2," — #(T), and the inclusion I(z2 ) C I(z(T))
for all m sufficiently large, that ¢ € N(Z(T); C). Thus we get from (6.18) that

P2 — G € AmOp(z2") for all m € IN.
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Passing now to the limit therein as m — oo verifies both transversality inclusions in (7.7). The fulfillment
of the claimed endpoint complementary slackness conditions in (7.8) follows from the above proof by
passing to the limit as m — oo in their discrete counterparts established in (6.22) of Theorem 6.2.

Step 5: Verifying measure nonatomicity. Take t € [0,T) with (xi,i(t)) <c¢jforall j=1,...,5 and by
continuity of Z(-) find a neighborhood V; of ¢ such that (zl,Z(7)) < ¢; whenever 7 € V; and j =1,...,s.

Invoking Theorem 4.2 tells us that (21, Z,,(t},)) < ¢; if t!, € V; forall j = 1,...,s and m € IN sufficiently
large. Then we deduce from (6.21) that 7,,(t) = 0 on any Borel subset V of V;. Hence

| (V) = /V Al = /V Iy (8) 1 = 0 (7.26)

by the construction of ~,, in (7.20). Passing now to the limit therein and taking into account the measure
convergence obtained above, we get ||7]|(V) = 0, which justifies the claimed measure nonatomicity.

Step 6: Verifying nontriviality conditions. We begin with the proof of the nontriviality condition (7.9)
under the general assumptions of the theorem. Arguing by contradiction, suppose that A = 0, p(t) = 0 for
all t € [0,T), and ||y||7v = 0. This implies by (7.3) that ¢(¢) = 0 for the right continuous representative
of g(-). The assumed negation of nontriviality tells us that A,, — 0 and p,,(¢) — 0 for all ¢t € [0,T].
Furthermore, with the usage of (7.17) and the convergence result from [27, p. 325], we get that

T s
lim g, (t) = lUm | pn(t) —/ Zvﬂﬁ(r)mi—dr
T s .
= lim pm(t)—/ Zv(T)midT:&
et

Combining this with (7.16), we deduce that ¢/, (t) — 0 a.e. t € [0, 7], which implies that >°7_, Z?:O_l |vid

1 as m — oo due to (7.21). Define now the sequence of measurable mappings a, : [0,7] — R? as follows:

if v (t)#0 and o (t):=0 if 42 (t)=0,i=1,...,s, forall t€[0,T].

Taking into account the Jordan measure decompositions ¥, = (ym)" — (Ym)™ and v = v — vy~ as well
as the separability of C*([0,T]; R?), we find a subsequence of measures {7, } with the weak* convergence

{(w)*} = 4" and {(vm)"} =47 in C* ([0, TR).
Since the sequence {a;,(+)} is bounded on [0, 7], a straightforward application of [27, Proposition 9.2.1]

(where our index m corresponds to the index ¢ in that result) with A = A,, := [-1,1]® for all m € IN
therein yields the existence of Borel measurable vector functions o™, a™ : [0,T] — R® satisfying

{ady (i) T (@) () and {al, (1)} (@) (v ), i= 1, .
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With the understanding that, in the sequel of this proof, for s-dimensional vectors o and measures -y, we
mean ady = (a'dy', ..., a*dy®), the following relationships hold:

- - = lim m + o —
|/[O,T]\Sa+(t)d7+(t)_/[O,T]\Sa (tdy~ ()] = 1 /OT}\S (t)d (ym) T (t) / () (Ym)

= lim / Qo (B)dry (1)

m—r 00

— lim /OT t)dy, (1), ... o (t)dvfn(t))H

m— oo

2m_1 2m _1
~ i (wa SN )||

s [2m—1
= lim E "
m—r 00

j=1 L i=0

s 2m_1

2”}5%0*2 Y il =

3110

where S C [0,T] is a countable set. On the other hand, we have

a* ) - o - at + o _
H/[OvTJ\S S /[O,T]\S R /[o,T]\s R /[o,ﬂ\s (B)dr(2)
+ _
< /[O,T]\sd”” 0l + /[O,T]\sd”” ol

< H’YJFHTV + H’Y_HTV = Vllpy -

+

Combining the above inequalities gives us ||y||,, > 0, which contradicts the assumed fact that |||/, = 0.
Hence we justify the fulfillment of the general nontriviality condition (7.9).

To compare (7.9) with (A, p,q) # 0, we immediately deduce from (7.3) that [(\,p,q) # 0] =(7.9).
The converse implication is also clear under the additional LICQ assumption.

It remains to verify the validity of the enhanced nontriviality condition (7.10) under the interiority
assumption made therein. Suppose on the contrary that A = 0 and p(t) = 0 for all ¢ € [0,7] while
(x1,7(t)) < ¢j for all t € [0,T) and j = 1,...,s. It follows from the discrete endpoint complementary
slackness condition (6.21), the arguments in Step 5 together with (7.3) and (7.26) that

/ Zdv )zl =0 for all t € [0,T]\ A, (7.27)
(1) 5=

where A C [0,T] is a countable set. Since ¢(-) is right continuous, we always have ¢(t) = 0 in (7.27)
and thus show in this way that the failure of (7.10) contradicts the validity of the general nontriviality
condition (7.9). This completes the proof of the theorem. O

Remark 7.2 Note that we use the terminology of the local mazimum principle for (7.4), since it plays
a role similar to the conventional maximum principle around the optimal control @(t) and reduces to the
global maximization condition (7.5) if the set U is convex. In the broad case of the duality correspondence

N(a(t);U) = T*(a(t); U) == {v € R"| (v,u) <0 forall we T(a(t);U)}
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between the normal cone in question and some tangent cone T'(u(t); U) to U at u(t), the local condition
(7.4) reads as the (global) maximization

(p(t),u(t)) = ueTI?aa(}t();U) ((t),u) forae. tel0,T]

of the linearized Hamilton-Pontryagin function (1(t), u) over the tangent cone T'(@(t); U) without assum-
ing the convexity of either the control set U or the cone T'(u(t); U).

8 Numerical Examples

In this section we consider two examples illustrating some characteristic features and strength of the
necessary optimality conditions for the sweeping control problem (P) obtained in Theorem 7.1.

Prior to dealing with specific examples, let us present the following useful assertion, which is a con-
sequence of the measure nonatomicity condition.

Proposition 8.1 Assume that (z*,%Z(7)) < ¢; for all T € [t1,t2] with t1,t2 € [0,T) and some vector
¥ € {xl | j=1,...,s}, and that the measure nonatomicity condition of Theorem 7.1 is satisfied with
the measure . Then we have vy([t1,t2]) = 0 and v({7}) = 0 whenever T € [t1,t2], and so v((t1,t2)) =

Y([t1,t2)) = v((t1,t2]) = 0.

Proof. Pick any 7 € [t1,to] with (z},Z(t)) < ¢; and find by the measure nonatomicity condition a
neighborhood V; of 7 in [0,T] such that v(V) = 0 for all the Borel subsets V' of V;; in particular,
v({r}) = 0. By [t1,t2] C U, ey, 4, V- and the compactness of [t1,t2] we find 7,...,7 € [t1,t2] with

[t1,t) € U\, Vi Fixi=1,...,0 — 1 and take 7; € V;, N V,,,, with [1;,7%] C V4, and [, 7i41) C Vi,
where 7 :=t1 and 7 := t5. Then we arrive at the equahtles

p—1 p—1

At ta)) =7 (U 7 U 7)) = X (3007 70) + (7)) = 0,
i=1 i=1
which verify the claimed properties of the measure. O

Our first example is two-dimensional with respect to both state and control variables.

Example 8.2 Consider the sweeping control problem of minimizing the cost functional

x1(1) + 22(1) subject to

()=~ (()e)+ () -
it () - (1)

where C := {(z1,22) € R? | 25 > 0} and (u1,us) € U := [~1,1] x [~1,1]. We rewrite the dynamics as

(ﬁ;) (t) = (Z;) () +n(t) (2) n(t) >0 ae tel01]

A direct checking shows that if 29 > 1 then the constraint is irrelevant and the optimal control is constant
being equal to (—1,—1). If instead 0 < 2§ < 1, then the optimal couple is () = —1 together with any
measurable component @z (t) such that Z2(1) = 0.

The conditions of Theorem 7.1 tell us that:

(1) p= (Z;) is constant on [0, 1] (by (7.2));

@ ()~ (L) = () 220 0o (700
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3) (A, [vllzv) # 0 (by (7.9));

0 U

W) =p= [ a1 (§) =00 € Nass (1) 0 (70) ana (73

(5) 22(t) > 0Vt € [0,T) = A+ [Ip| > 0 (by (7.10));
(6) n(t) = 0 for a.e. t € [0,1] with Z»(t) > 0 and [n(t) >0 = q(t) <‘f) = o} ae. t€[0,1] (by (7.6));

(7) d’y|{t | 22()>0} = 0 (by the measure nonatomicity condition).

To apply these conditions, consider first the case where x9 > 1 in which the constraint is automatically
satisfied for all the trajectories. Since Zo(1) > 0, we get n(1) = 0 from (6). If A = 0, then p = 0 and the

C ”» . -1 .
nontriviality condition (3) is violated. Thus we can suppose that A = 1, and so p = _1). Condition

(7) implies that dy = 0 on the set in question; hence ¢ = p = (:}) = ). This shows that ¢ = (:1)

. U . N -1 . .
Since ¥ € Nj_qy,1)2 (gl), the optimal control is a(t) = ( 1). It confirms that in this case we do not
) _

loose information with respect to the classical PMP.

Consider now the case where 0 < 29 < 1. Assuming that z2(1) > 0 yields n(1) = 0 by (7.8).
1) on [0, 1] while implying
that x2(1) = 0, a contradiction. Thus we get z2(1) = 0, and actually all controls us satisfying this
property are optimal. In particular, we obtain that %z = —1 in the case where 2§ = 1. Let us now
deal with the first component wu;, which instead reveals a kind of degeneracy in the necessary conditions.
Indeed, the following two cases may occur. First the reference trajectory touches the boundary only at
the final time. In this case the enhanced nontriviality condition (4) holds, and the analysis goes along
the same lines as for 2 = 1. Instead, when the reference trajectory remains on the boundary on a set of
positive measure, the case (p,A\) = (0,0) is possible (with v # 0), but then the first components of both
(2) and (4) provide no information on u;. This difficulty can be overcome in this case thanks to the fact
that the two variables £ and zs can be made uncoupled. Indeed the problem is equivalent to minimizing
x1 and x5 separately, each variable being subject to the dynamics given by the correspondent component
of (8.1). Then the problem involving z; is classical, and the optimal control u; = —1 is easily obtained.
On the contrary, the problem involving zs is of the sweeping type, and its analysis can be performed
according to the previous arguments. This verifies the optimality of any control us such that z(1) = 0.

Repeating the above arguments with the usage of (4) gives us the control (:

Note that system (8.1) was also treated in [3], and the given discussion allows us to compare the two
sets of necessary conditions: those obtained in [3] and in this paper. The conditions in [3] are generally
different from the ones we establish here. Let us mention to this end that those presented here deal only
with reference trajectories where the control has bounded variation, but are more detailed in comparison
with the conditions in [3] and are more effective for the control us while being more difficult to use for
uy. This difference can be explained by the methods that are used to obtain the necessary conditions.
Actually the arguments presented here take into account the constraint at all the steps of the procedure.
On the contrary, the method used in [3] is based on penalization, and so it does not see the hard constraint
in the approximation steps. This explains why it behaves well with respect to w1, which is not influenced
by the constraint (indeed, the multiplier A corresponding to the terminal cost is nondegenerate), while
obtaining some information on us is more difficult. Observe finally that the method developed here
allows us to treat also nonconvex control sets. For example, we can consider the minimization of the
same terminal cost subject to (8.1) but with the control set given by

Uy = {-1,1} x {-1,1}.

This problem enjoys relaxation stability (because the value of the nonconvex problem is the same as the
convex one), and the above analysis can be performed in the same way with U; in place of U.
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The next example is also two-dimensional while addressing a more complicated polyhedral set C' in
comparison with the halfspace in Example 8.2.

Example 8.3 Consider problem (P) with the following initial data:

1 1

2
L1 _ el
27 2

nzmzZ,T:l,xm:(— 5

), zl:=(1,0), 22:=(0,1), c1 =3 =0, o(x) : g(u) = u,

where feasible controls u(t) = (u'(t),u?(t)) € U a.e. t € [0,1] take values in the unit square U :=
[—1,1] x [-1,1] € R?. Applying necessary optimality conditions of Theorem 7.1, we seek for solutions to
(P) satistying the properties

(21,2(t)) < c; =0 forall te[0,1), j=1,2, (8.2)

and show that (8.2) holds for Z(-) that is determined below. In the case of (P) under consideration these
conditions say that there exist A > 0 together with adjoint vectors p and ¢ and n(-) = (n*(-),n%(-)) €
L%([0,1];R2) well defined at t = 1 such that:

(1

(3,2(t)) <cj = (t) =0 for j = 1,2 and a.e. t € [0,1] including ¢ = 1;

)
) —x(t) = (= z(t), —22(t)) = (n* (1), n(t)) — (a(t),u?(t)) for ae. t €[0,1];
) (p*(®),p%(t)) = (0,0) for a.e. t € [0,1];
4 (1), (1) = (¢'(t), (1) € N (a(t); U) for ae. t € [0, 1];
) alt) = plt) — (¢, 1]) for aue. £ € [0,1];
) = (1),p*(1) = A1), 22(1)) + (n'(1),n*(1)) with (n'(1),7%(1)) € N(2(1); O);
) (A, p) # 0 due to (8.2) and (7.10).
Employing the first condition in (8.2) together with (1) and (2), gives us z(t) = u(t) for a.e. t € [0, 1].

It also follows from (4) and (5) that ¢ can be written in the maximization form (7.5). It follows from (3)
that p(-) is constant on [0, 1], i.e., p(t) = p(1). This allows us to deduce that

q(t) =p(1) = 7((t,1]) = p(1) —7({1}) for ae. ¢€0,1]

by using the measure nonatomicity condition of Theorem 7.1 and Proposition 8.1. Several cases may
occur. If A > 0 and p = n(1) = (0,0), then (6) implies that (1) = 2%(1) = 0. In this case the terminal
cost is zero. Thus each measurable control pair (u1,us) that steers the initial point to (0,0) exactly in
time t = 1 is optimal, as it is expected. A similar argument shows that if A = 0, then at least one
component must vanish at the final time. In the case where both A and p do not vanish, and is easy to
see that any final point satisfies necessary conditions.

Summarizing, necessary conditions may exhibit degeneracy. Finding sufficient conditions to avoid this
behavior is therefore the next major challenge that must be addressed. All the results that are presented
in the literature (see, e.g., [27] and the very recent survey [4]) dealing with classical control problems
with state constraints do not apply to our setting, because they are designed for more regular dynamics.

Acknowledgements. The authors are grateful to Tan Cao for many useful discussions. We also much
appreciate helpful comments made by both anonymous referees that led us to the essential improvement
of the original presentation.
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