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Abstract

We study the information-theoretic limits of joint communication and sensing when the sensing

task is modeled as the estimation of a discrete channel state fixed during the transmission of an

entire codeword. This setting captures scenarios in which the time scale over which sensing happens is

significantly slower than the time scale over which symbol transmission occurs. The tradeoff between

communication and sensing then takes the form of a tradeoff region between the rate of reliable

communication and the state detection-error exponent. We investigate such tradeoffs for both mono-

static and bi-static scenarios, in which the sensing task is performed at the transmitter or receiver,

respectively. In the mono-static case, we develop an exact characterization of the tradeoff in open-

loop, when the sensing is not used to assist the communication. We also show the strict improvement

brought by a closed-loop operation, in which the sensing informs the communication. In the bi-static

case, we develop an achievable tradeoff region that highlights the fundamentally different nature of the

bi-static scenario. Specifically, the rate of communication plays a key role in the characterization of the

tradeoff and we show how joint strategies, which simultaneously estimate message and state, outperform

successive strategies, which only estimate the state after decoding the transmitted message.

I. INTRODUCTION

A core feature envisioned for the next generation of mobile networks is the convergence of

communication and sensing [2], [3] (also known as integrated communication and sensing),
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motivated in part by the need to offer detection and localization capabilities to interconnected

devices interacting with the real world (robots, UAVs, etc.). This convergence is also enabled by

the shift of communication frequencies towards the mmWave part of the spectrum, which allows a

single Radio-Frequency (RF) hardware to perform both communication and sensing. While joint

communication and sensing has already attracted interest in the context of joint communication

and radar [4]–[6], theoretical, algorithmic, and hardware-related challenges remain and must be

addressed to assess the true potential of joint communication and sensing [3], [7].

The objective of the present work is to further the theoretical understanding of the information-

theoretic limits of joint communication and sensing, and specifically to better understand the

tradeoffs incurred by a joint operation. While information-theoretic models often abstract fine

channel modeling aspects, they provide valuable insights to identify the regimes in which

tradeoffs exist and to quantify their severity. In particular, information-theoretic limits of joint

communication and sensing are naturally approached from the perspective of joint channel

transmission and channel state estimation, where the state simultaneously represents the quantity

of interest for sensing and affects the communication. Early works [8]–[10] have considered state-

dependent channel models with independent and identically distributed (i.i.d.) channel states, in

which the encoder attempts to simultaneously communicate and facilitate the estimation of the

state at the receiver, and have leveraged rate-distortion theory to characterize the optimal tradeoff

between communication rate and state reconstruction accuracy. Recently, [11], [12] have revisited

the model of [10] by shifting the task of estimating the state from the receiver to the transmitter

using generalized feedback, a situation more in line with the scenarios envisioned in the context of

joint communication and sensing, and characterized again the optimal tradeoff between rate and

average state distortion. Extensions to multiple-access channels [13] and broadcast channels [12],

[14] have been investigated, as well, although exact characterizations of the tradeoff remain

elusive. Recent works have also considered secure joint communication and sensing to quantify

and investigate the intrinsic information leakage associated to a joint operation [15]–[17].

A common feature of [10]–[14], [17] is that the i.i.d. nature of the channel state precludes

any prediction. Consequently, state detection and estimation strategies are open-loop and the

tradeoff between communication and sensing reduces to a resource allocation problem, in which

the choice of a channel input distribution dictates the tradeoff.1 Furthermore, the i.i.d. model is

1The situation is more nuanced when introducing secrecy constraints as in [17] as feedback is known to improve secrecy.
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not well-suited to applications in which the physical phenomena sensed, such as the presence or

absence of an obstacle that would disrupt line-of-sight communication, evolve on a time scale

that is much slower than the time scale at which communication symbols are transmitted. To

address such applications, one may instead adopt a model in which the channel state remains

constant over the block-length used for communication. Except in rare cases, estimating the

channel state is then always possible so that the tradeoff between communication and sensing

appears between the rate of communication and the accuracy of the state estimation. For the case

of uncountably infinite channel states parameterized by continuous variables, accuracy can be

captured by the Cramer-Rao bound [18]. For the case of finitely many channel states, accuracy

may be captured by the asymptotic state detection error exponent, as studied thereafter and

already reported in our preliminary results [1] concurrently with [19], [20].

Two kinds of joint communication and sensing models are considered in this paper, namely,

mono-static and bi-static models, where we borrow these terminologies from mono-static and

bi-static radars. In both models, there is a transmitter-receiver pair attempting to convey messages

without exact knowledge of the channel state. The difference between these two models is that

sensing is performed at the transmitter in the mono-static model and at the receiver in the bi-static

model. Since the transmitter always knows the codeword, sensing in the mono-static model can

be done coherently with the knowledge of the transmitted waveform. In contrast, the receiver

in the bi-static model needs to simultaneously sense the channel and decode the message (or

waveform).

In what follows, we study the rate/detection-error exponent tradeoff for both mono-static and

bi-static models [2] with fixed channel states. Accordingly, our approach draws on the extensive

literature on controlled sensing [21]–[23] and channel estimation with pilot sequences [24], [25].

Our specific contributions are: 1) we characterize the exact rate-detection exponent tradeoff for

mono-static open-loop joint communication and sensing;2 2) we show a strict improvement of

the rate-detection exponent tradeoff for mono-static closed-loop joint communication and sensing

through learning the channel state and adapting the channel code; 3) we provide a partial char-

acterization of the rate-detection exponent tradeoff for bi-static open-loop joint communication

and sensing, and show that jointly detecting the state and decoding the code strictly outperforms

2The concurrent works [19], [20] developed characterizations similar to ours in more restricted settings; the results therein

are subsumed by Theorem 3 of the present document and [1, Theorem 1].
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the naive successive method, in which the detection of the state follows the decoding of the

channel code. We further illustrate the results with simple examples that capture the essence of

realistic joint communication and sensing scenarios.

The remaining of the paper is organized as follows. We introduce the mono-static and bi-

static models for joint communication and sensing in Section III. We present our main results

in Section IV, along with numerical examples illustrating the joint communication and sensing

tradeoffs. We relegate all proofs to Section V to streamline the presentation.

II. NOTATION

For any set Ω, the indicator function is defined as 1(ω ∈ Ω) = 1 if ω ∈ Ω and 0 otherwise. For

any discrete set X , PX is the set of all probability distributions on X . For n ∈ N
∗, a sequence of

length n is implicitly denoted x ≜ (x1, · · · , xn) ∈ X n, while xi ≜ (x1, · · · , xi) ∈ X i denotes a

sequence of length i, and xij = (xj, · · · , xi) is a sub-sequence of x. For x ∈ X n, p̂x denotes the

type of x, i.e., p̂x(x) =
1
n

∑n
i=1 1{xi = x}. For any type P , T n

P is the corresponding type class,

i.e., the set of all sequences x ∈ X n such that p̂x = P . Pn
X is the set of all possible types for

length n sequences in X n. Let PY|X be the set of all conditional probabilities of Y ∈ Y given

X ∈ X . Given a sequence x ∈ X n and y ∈ Yn, we define p̂y|x as the empirical conditional type,

i.e., p̂y|x(b|a) =
∑n

i=1 1{xi = a, yi = b}/
∑n

i=1 1{xi = a} for all a ∈ X such that p̂x(a) > 0

and b ∈ Y . Let Pn
Y|X be the set of all conditional types for length n sequences x ∈ X n and

y ∈ Yn. For any conditional type PY |X ∈ Pn
Y|X , we also define T·|x(PY |X) as the conditional type

class of PY |X , i.e., the set of sequences y ∈ Yn such that p̂y|x = PY |X , and define Ty|·(PY |X)

as the set of sequences x ∈ X n such that p̂y|x = PY |X . Given two conditional distributions

WY |X and PY |X , we set
∣∣WY |X − PY |X

∣∣
∞

≜ maxa∈X ,b∈Y |WY |X(b|a) − PY |X(b|a)|. We let

H(PX) ≜ −
∑

x∈X PX(x) logPX(x) be the entropy of X ∼ PX . If WY |X is a conditional distribu-

tion on Y ∈ Y given X ∈ X , H
(
WY |X

∣∣PX
)
≜ EPX

[
H
(
WY |X(·|X)

)]
is the conditional entropy

of WY |X given an input distribution PX and I(PX ,WY |X) ≜ H
(
WY |X ◦ PX

)
− H

(
WY |X

∣∣PX
)

is the mutual information between X and Y , where X ∼ PX and Y ∼ PX ◦ WY |X ≜
∑

x PX(x)WY |X(·|x). The relative entropy between PY |X and WY |X given an input distribution

PX is D
(
PY |X

∥∥WY |X

∣∣PX
)
≜ EPX

[
D
(
PY |X(·|X)

∥∥WY |X(·|X)
)]

. Throughout the paper, log is

with respect to (w.r.t.) base e, and therefore all the information quantities should be understood

in nats. Moreover, for a, b ∈ R such that ⌊a⌋ ⩽ ⌈b⌉, we define [a; b] ≜ {⌊a⌋, ⌊a⌋+ 1, · · · , ⌈b⌉ −

1, ⌈b⌉}; otherwise [a; b] ≜ ∅. In addition, for any x ∈ R, we let |x|+ denote max(x, 0).
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III. JOINT COMMUNICATION AND SENSING MODELS

A. Mono-Static Model

f(w, zi−1)

zi−1

WY Z|XS

s

zi

xi

yi

delay

w

h(yn) ŵ

g(xn, zn)ŝ

Fig. 1: Mono-static joint communication and sensing model.

The mono-static joint communication and sensing model is illustrated in Fig. 1, in which a

transmitter attempts to communicate with a receiver over a state-dependent Discrete Memoryless

Channel (DMC), also known as a compound channel, while simultaneously probing the channel

state in a strictly causal manner through a sensing channel. Specifically, the transmitter encodes

a uniformly distributed message W ∈ [1;M ] into a length n codeword Xn, of which symbols

are transmitted over a DMC with transition probability WY Z|XS . The state S, a priori unknown

to both the transmitter and the receiver, is assumed to be fixed during the whole duration of

the transmission and takes value in a finite set S . The transmitter has the ability to estimate the

channel state by using past observations obtained from the output Z of the DMC, allowing it to

adapt its transmission in an online fashion. We assume in this paper that Chernoff information

between channels WZ|X,s and WZ|X,s′ is non-zero for all s ̸= s′, i.e.,

max
PX∈PX

max
ℓ∈[0,1]

−
∑

x

PX(x) log

(
∑

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

)
> 0.

Formally, the encoder consists of a set of functions

f
(m)
i : [1;M ]×Z i−1 → X : (w, zi−1) 7→ xi ≜ f

(m)
i (w, zi−1)

defined for every i ∈ [1;n], while the state estimator is a function

g(m) : X n ×Zn → S : (xn, zn) 7→ ŝ.
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The message decoder is a function

h(m) : Yn → [1;M ] : yn 7→ ŵ.

A code C(m) then consists of the tuple ({f
(m)
i }i∈[1;n], g

(m), h(m)), as well as the implicitly defined

associated message set [1;M ].

B. Bi-Static Model

yi
f(w)w

xi

s

WY |XS h(yn)
ŵ

ŝ

Fig. 2: Bi-static joint communication and sensing model.

As illustrated in Fig. 2, the bi-static joint communication and sensing model differs from

the mono-static one in that the receiver should simultaneously sense the state and decode the

message. Specifically, the transmitter encodes a uniformly distributed message W ∈ [1;M ] into a

length n codeword Xn, of which symbols are transmitted over a DMC with transition probability

WY |XS . We again assume that the a priori unknown state S is fixed during the whole duration

of the transmission and takes value in a finite set S . The encoder is then defined as

f (b) : [1;M ] → X n : w 7→ xw,

while the decoder and the state estimator are the functions

g(b) : Yn → S : yn 7→ ŝ,

and

h(b) : Yn → [1;M ] : yn 7→ ŵ.

The code C(b) in the bi-static model then consists of the tuple (f (b), g(b), h(b)), as well as the

message set [1;M ].

Remark 1. A key difference between the mono-static model and the bi-static model is that the

former reduces the coupling of performance between communication and sensing to the type of
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the transmitted codewords. Specifically, the mono-static model endows the state estimator with

full knowledge of the transmitted codeword, so that correct decoding is irrelevant to the state

detection performance. In contrast, the bi-static model requires the receiver to perform a joint

estimation of the codeword and of the state.

Remark 2. The model of Fig. 1 differs from the ones in [10], [12], in which the state is i.i.d.

and changing from symbol to symbol. Our model captures a scenario in which the coherence

time of the state is much longer than the duration of a transmission. Since the state does not

change during the transmission, the transmitter can gradually obtain an accurate estimation

about the state and is able to adapt the transmission scheme according to the estimated channel

state. As a result our model also captures the ability to adapt to the channel state in an online

fashion, while the models in [10], [12] only allow for an offline adaptation based on a target

rate/distortion pair. Neither model supersedes the other and both capture scenarios that could

be relevant to next generation communication networks.

C. Performance Evaluation Metrics

The performance of the system is measured in terms of the asymptotic rate of reliable commu-

nication and asymptotic detection-error exponent. Formally, we define the communication-error

probability and the detection-error probability for both mono-static and bi-static cases as follows

• Mono-static case:

P (n)
c ≜ max

s∈S
max
w∈[1;M ]

P(h(m)(Y n) ̸= w|W = w, S = s), (1)

P
(n)
d ≜ max

s∈S
max
w∈[1;M ]

P(g(m)(Xn, Zn) ̸= s|W = w, S = s). (2)

• Bi-static case:

P (n)
c ≜ max

s∈S
max
w∈[1;M ]

P(h(b)(Y n) ̸= w|W = w, S = s), (3)

P
(n)
d ≜ max

s∈S
max
w∈[1;M ]

P(g(b)(Y n) ̸= s|W = w, S = s). (4)

The rate and the detection-error exponent for both mono-static and bi-static models are

R(n) ≜
1

n
logM and E

(n)
d ≜ −

1

n
logP

(n)
d ,

respectively.
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Definition 1 (Achievability). A rate/detection-error exponent (R,E) is achievable in the mono-

static (bi-static) joint communication model if for any s ∈ S and any ϵ > 0, there exist a

sufficiently large n and a code C(m) (C(b)) of length n such that

P (n)
c ⩽ ϵ, (5)

E
(n)
d ⩾ E − ϵ, (6)

R(n) ⩾ R− ϵ. (7)

When the encoder does not perform any online adaptation so that f
(m)
i : [1;M ] 7→ X is

independent of the observation Zi−1, the scheme is called open-loop. On the other hand, if

the encoder utilizes feedback information, the scheme is called closed-loop. Our objective is to

characterize the set of all achievable rate/detection-error exponent pairs by open-loop strategies

in both mono-static and bi-static models as well as the set of all achievable rate/detection-error

exponent pairs by closed-loop strategies in the mono-static model.

Definition 2. We define C
(m)
open and C(b) as the closure of all achievable rate/detection-error

exponent pairs by open strategies in the mono-static and bi-static model, respectively. Similarly,

we define C
(m)
close as the closure of all achievable rate/detection-error exponent pairs by closed-

loop strategies in the mono-static model.

IV. MAIN RESULTS

A. Mono-Static Model

We first restrict ourselves to open-loop schemes, which provide a baseline for assessing the

usefulness of adaptation. For simplicity, we denote in this case the encoder that maps a message

w to a codeword of n symbols by f (m) : [1;M ] 7→ X n. The following theorem provides an exact

characterization of C
(m)
open.

Theorem 3. The closure of all achievable joint communication and sensing rate/detection error

exponent pairs for mono-static open-loop schemes is

C(m)
open =

⋃

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX ,WY |X,s)

E ⩽ ϕ(PX)





(8)
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where

φ(PX) = min
s∈S

min
s′ ̸=s

max
ℓ∈[0,1]

−
∑

x

PX(x) log

(
∑

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

)
. (9)

Proof. See Section V-A and Section V-B.

A couple of comments are in order. First, since open-loop schemes do not exploit the in-

formation about the state contained in past noisy observations of the state, achievable rates

are necessarily upper bounded by the compound channel capacity maxPX
mins∈S I(PX ,WY |X,s).

This is a weakness of all open-loop schemes. Second, because of the open-loop nature of the

coding schemes, the interplay between communication and sensing is captured by the choice of

a distribution PX that governs the empirical statistics of the codewords and is set offline. This is

similar to what is obtained in other information-theoretic approaches based on rate-distortion [10],

[12].

The results in [19] are also special cases of Theorem 3. In [19], the authors consider a

mono-static joint communication and sensing model in which WY Z|X,S = WY |XWZ|X,S , i.e.,

the communication channel is irrelevant to the state. One of the channel models in [19] is a

binary setting in which X = Z = S = {0, 1} and WZ|X,S = WZ|X·S , i.e., at each time t the

state-estimator obtains Zt = Xt · S ⊕Nt, where ⊕ denotes the modulo-2 sum and Nt ∼ Ber(q)

for some 0 < q < 1. By specializing Theorem 3, one recovers [19, Theorem 1] as follows.

Corollary 4. Let X = Y = Z = S = {0, 1}. When the mono-static joint communication model

satisfies WY Z|XS = WY |XWZ|X·S , where WY |X and WZ|X·S are binary symmetric channels with

cross over probability p and q, respectively, then

C(m)
open =

⋃

α∈[0.5,1]





(R,E) ∈ R
2
+ :

R ⩽ H(Ber(α ∗ p))−H(Ber(p))

E ⩽ αD (Ber(0.5)||Ber(q)) ,





(10)

where α ∗ p = α(1− p) + (1− α) ∗ p.

Proof. Since, WY Z|XS = WY |XWZ|X·S , the achievable rate is irrelevant to the state, and for each

PX ∼ Ber(α) we have

min
s∈S

I(PX ,WY |X,s) = I(PX ,WY |X)

= H(PX ◦WY |X)−H(WY |X |PX)
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= H(Ber(α ∗ p))−H(Ber(p)).

Moreover, for such PX , ϕ(PX) can be calculated as follows.

ϕ(PX) = min
s∈S

min
s′ ̸=s

max
ℓ∈[0,1]

−
∑

x

PX(x)× log

(
∑

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

)

= max
ℓ∈[0,1]

−PX(1) log
(
qℓ(1− q)1−ℓ + (1− q)ℓq1−ℓ

)
(11)

= −PX(1) log
(
q1/2(1− q)1/2 + (1− q)1/2q1/2

)
(12)

= αD (Ber(0.5)||Ber(q)) ,

where (12) follows from the fact that ℓ = 1/2 maximizes (11). The corollary follows by taking

the union over all PX .

Remark 3. Note that in the setting considered in Corollary 4, transmitting X = 0 does not help

the performance of the state-estimation, and the detection-error exponent is a monotonously

increasing function of the weight of the codeword.

We also observe that in some cases, there is no tradeoff between maximizing the communi-

cation capacity and the detection-error exponent.

Corollary 5. If there exists x0 ∈ X such that for all x ∈ X there exists a permutation πx on Z

such that for every s ∈ S

WZ|X,s(z|x) = WZ|X,s(πx(z)|x0), (13)

then

C(m)
open =





(R,E) ∈ R
2
+ :

R ⩽ maxPX
mins∈S I(PX ,WY |X,s)

E ⩽ maxPX
ϕ(PX)





(14)

where ϕ(·) is defined in (9).

Proof. For every x ∈ X\{x0},

∑

z∈Z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ =
∑

z∈Z

WZ|X,s(πx(z)|x0)
ℓWZ|X,s′(πx(z)|x0)

1−ℓ (15)

=
∑

π−1
x (z′)∈Z

WZ|X,s(z
′|x0)

ℓWZ|X,s′(z
′|x0)

1−ℓ (16)



11

=
∑

z∈Z

WZ|X,s(z|x0)
ℓWZ|X,s′(z|x0)

1−ℓ. (17)

Thus, we know that the detection-error exponent is invariant to the input type under this scenario.

In other words, when the channel satisfies certain symmetry conditions, there is no tradeoff

between rate and detection-error exponent and one simultaneously achieves the optimal com-

munication rate and the optimal detection performance. One of the compound channel families

that falls into such a category is the set of Binary Symmetric Channels (BSCs). The maximal

detection-error exponent and the compound capacity are then simultaneously achieved with a

uniform input distribution.

We now turn our attention back to the characterization of closed-loop schemes, which exploit

the feedback to adapt to the state. The next theorem characterizes an inner bound of the set

C
(m)
closed.

Theorem 6. The closure of all achievable joint communication and sensing rate/detection error

exponent pairs for mono-static closed-loop schemes satisfies

C
(m)
closed ⊇

⋃

{PX,s′′}s′′∈S∈(PX )|S|





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX,s,WY |X,s)

E ⩽ mins∈S ϕ(PX,s)





(18)

where the notation
⋃

{PX,s′′}s′′∈S∈(PX )|S| means that we are taking the union over all possible

|S|-tuples of probability distributions in PX and (PX )
|S|

is the set of tuples of |S| elements in

PX .

Theorem 6 is obtained by considering a simple strategy in which the transmitter learns the

state, informs the receiver, and uses a code adapted to the learned channel state. The exact

characterization of the optimal tradeoffs for closed-loop schemes remains elusive and presents

non-trivial challenges, chief among them the absence of a known optimal detection error-exponent

for multi-hypothesis controlled sensing [21]. One can conclude that the maximal achievable

detection-error exponent characterized by Theorem 6 is identical to that of the open-loop strategy

by observing the following equality

max
{PX,s′′}s′′∈S∈(PX )|S|

min
s∈S

ϕ(PX,s) = max
PX∈PX

ϕ(PX).
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Therefore, the region characterized in Theorem 6 is sub-optimal because it is already shown

in [21] that there exists a closed-loop method that achieves a better detection-error exponent than

an open-loop scheme. However, the benefit of Theorem 6 is in improving the communication

rate from the compound channel capacity, i.e.,

max
PX∈PX

min
s∈S

I(PX ,WY |X,s)

to the worst-case capacity, i.e.,

min
s∈S

max
PX∈PX

I(PX ,WY |X,s).

Note that the worst-case capacity is exactly the maximal achievable rate described in Theorem 6

because

max
{PX,s′′}s′′∈S∈(PX )|S|

min
s∈S

I(PX,s,WY |X,s) = min
s∈S

max
PX∈PX

I(PX ,WY |X,s).

A similar technique exploiting the feedback to improve the capacity in a compound channel can

be found in [26].

Remark 4. The regions characterized in Theorem 6 and Theorem 3 are identical when the

condition in Corollary 5 is satisfied and the worst-case capacity is equal to the compound

channel capacity.

B. Bi-Static Model

In joint communication and sensing, codewords convey information and induce a codeword-

dependent distribution from which observations are generated and are used to estimate the state.

In the mono-static model, state estimation is performed at the transmitter, which has the access

to the transmitted codeword, so that a likelihood-based state estimation can be performed with

exact knowledge of the transmitted codeword. In the bi-static model, however, the transmitted

codeword is unknown to the state estimator g(b).

A natural method to estimate the state is to use a successive approach, by which one first

estimates the codeword and then performs a maximum likelihood estimation given the decoded

codeword. Denoting by C(b) the closure of all achievable regions in the bi-static model, our next

theorem provides an inner bound of C(b) based on successive schemes.

Theorem 7. The closure region of all achievable joint communication and sensing rate/detection

error exponent pairs for the bi-static joint communication and sensing model satisfies
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C(b) ⊇ Dsucc ≜
⋃

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX ,WY |X,s)

E ⩽ min (ρsucc(PX , R), ϕ(PX))




, (19)

where

ρsucc(PX , R) ≜ min
s∈S

min
P̂∈PY|X

(
D(P̂∥WY |X,s|PX) +

∣∣∣I(PX ; P̂ )−R
∣∣∣
+
)
. (20)

Proof. Theorem 7 is a direct result of the following inequality

P
(n)
d = max

s∈S
max
w∈[1;M ]

P(g(b)(Y n) ̸= s|W = w, S = s)

= max
s∈S

max
w∈[1;M ]

P(g(b)(Y n) ̸= s|h(b) = w,W = w, S = s)P(h(b) = w|W = w, S = s)

+ max
s∈S

max
w∈[1;M ]

P(g(b)(Y n) ̸= s|h(b) ̸= w,W = w, S = s)P(h(b) ̸= w|W = w, S = s)

⩽ max
s∈S

max
w∈[1;M ]

P(g(b)(Y n) ̸= s|h(b) = w,W = w, S = s)

+ max
s∈S

max
w∈[1;M ]

P(h(b)(Y n) ̸= w|W = w, S = s),

where we have bounded the probability of making a wrong state estimation by 1 when the

codeword is decoded incorrectly. Note that the term

max
s∈S

max
w∈[1;M ]

P(h(b)(Y n) ̸= w|W = w, S = s)

is the communication-error probability; it has been shown in [27, Theorem 10.2] that, for all

PX , there exists a constant composition code with type PX such that the communication-error

exponent is lower bounded by ρsucc(PX). Moreover, when the codeword is correctly decoded,

the exponent of

max
s∈S

max
w∈[1;M ]

P(g(b)(Y n) ̸= s|h(b) = w,W = w, S = s)

can be lower bounded by the Chernoff information ϕ(PX) as shown in Lemma 10 in Section V

and proofs therein.

Unfortunately, the loss induced by upper bounding the term P(g(b)(Y n) ̸= s|h(b) ̸= w,W =

w, S = s) by 1 might result in a loose bound on the state exponent. The difficulty of analyzing

the term P(g(b)(Y n) ̸= s|h(b) ̸= w,W = w, S = s) comes from the fact that the receiver does
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not know the conditional type p̂y|xw . By leveraging random constant composition codes and joint

decoding/detection, the following result offers improvements.

Theorem 8. The closure region of all achievable joint communication and sensing rate/detection

error exponent pairs for the bi-static joint communication and sensing model satisfies

C(b) ⊇ Djoint ≜
⋃

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX ,WY |X,s)

E ⩽ min (ρjoint(PX , R), ϕ(PX))




, (21)

where

ρjoint(PX , R) ≜ min
s∈S

min
P̂∈PY|X

(
D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+)
, (22)

and

Ps,s′(P̂ , PX , R) ≜

{
P ′ ∈ PY|X : D(P ′∥WY |X,s′ |PX) +H(P ′|PX)

⩽ min
(
β(P̂ , PX , R, s),D(P̂∥WY |X,s|PX) +H(P̂ |PX)

)
, PX ◦ P ′ = PX ◦ P̂

}
,

where

β(P̂ , PX , R, s) ≜ min
P ′′∈PY|X :I(PX ,P

′′)<R,

PX◦P ′′=PX◦P̂

D(P ′′∥WY |X,s|PX) +H(P ′′|PX). (23)

The calculation of ρjoint(PX , R) in (22) involves a minimization over P̂ ∈ PY|X and P ′ ∈

Ps,s′(P̂ , PX , R). In Corollary 9, we provide a lower bound on ρjoint(PX , R) to simplify the

expression and show that it is greater than or equal to the compound channel communication-

error exponent ρsucc(PX , R).

Corollary 9. For all PX , it holds that ρjoint(PX , R) ⩾ ρsucc(PX , R), and hence, Djoint ⊇ Dsucc.

Moreover, ρjoint(PX , R) is lower bounded by

ρjoint(PX , R) ⩾ min
s

min

(
min

P̂∈P ′
Y|X

(PX ,R,s)
γ1(P̂ , R, s), min

P̂∈P ′′
Y|X

(PX ,R,s)
γ2(P̂ , R, s)

)
, (24)

where for all P̂ and s,

γ1(P̂ , R, s) ≜ D(P̂∥WY |X,s|PX) +
∣∣∣I(PX , P̂ )−R

∣∣∣
+
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γ2(P̂ , R, s) ≜ D(P̂∥WY |X,s|PX) +

∣∣∣∣∣D(P̂∥WY |X,s|PX) +H(PX ◦ P̂ )− β(P̂ , PX , R, s)−R

∣∣∣∣∣

+

,

and

P ′
Y|X (PX , R, s) ≜ {P̂ ∈ PY|X : max

s′′∈S
β(P̂ , PX , R, s

′′) ⩾ D(P̂∥WY |X,s|PX) +H(P̂ |PX)}

P ′′
Y|X (PX , R, s) ≜ {P̂ ∈ PY|X : max

s′′∈S
β(P̂ , PX , R, s

′′) < D(P̂∥WY |X,s|PX) +H(P̂ |PX)}.

Note that ρsucc(PX , R) can be expressed as minimizing γ1(P̂ , R, s) over all possible P̂ and

all s. Therefore, we can show that ρjoint is larger than ρsucc if γ2(P̂ , R, s) ⩾ γ1(P̂ , R, s) for all

P̂ ∈ P ′′
Y|X (PX , R, s). When P̂ ∈ P ′′

Y|X (PX , R, s), one can observe that

D(P̂∥WY |X,s|PX) +H(PX ◦ P̂ )− I(PX , P̂ ) = D(P̂∥WY |X,s|PX) +H(P̂ |PX)

is greater than β(PX , R, s) and hence, γ2(P̂ , R, s) ⩾ γ1(P̂ , R, s). Therefore,

ρjoint(PX , R) ⩾ min
s

min

(
min

P̂∈P ′
Y|X

(PX ,s)
γ1(P̂ , R, s), min

P̂∈P ′′
Y|X

(PX ,s)
γ1(P̂ , R, s)

)
(25)

= ρsucc(PX , R). (26)

Remark 5. It is known that the communication-error exponent is zero when one transmits at

the rate of compound channel capacity. Recall that ρsucc is calculated by upper bounding the

detection-error probability by 1 when the message decoding error happens. Therefore, ρsucc

is also zero when R = mins∈S I
(
PX ,WY |X,s

)
. In contrast, ρjoint can be positive even when

R = mins∈S I
(
PX ,WY |X,s

)
. This can be seen from the expression of γ2(P̂ , R, s) in Corollary 9,

and we will illustrate this by an example given in the next sub-section.

C. Numerical Examples

a) Mono-Static Model

We first consider the channel WY Z|X,S defined in Table I. In this example, Y = Z = X =

{0, 1} and WZ|X,S = WY |X,S . Note that transmitting the symbol X = 1 is most useful to identify

the channel state because this is the situation in which the output distributions corresponding

to different states are most distinguishable. However, if the transmitter only transmits X = 1,

the communication rate would become zero as seen in Fig. 3a. Therefore, the tradeoff between

maximizing the detection-error exponent and maximizing the communication rate can be clearly
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for all w ∈ [1;M ], where

ψs(PX) ≜ min
s′ ̸=s

max
ℓ∈[0,1]

−
∑

x

PX(x) log

(
∑

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

)
. (29)

Taking the union over all possible PX leads to the region in (8).

B. Converse Proof of Theorem 3

Assume that the rate/detection-error exponent pair (R,E) is achievable. Then, for all ϵ > 0,

there exists n sufficiently large and a codebook C(m) such that

log |C(m)|

n
⩾ R− ϵ

max
s∈S

max
w∈[1;M ]

P(h(Y n) ̸= w|W = w, S = s) ⩽ ϵ

−
1

n
logmax

s∈S
max
w∈[1;M ]

P(g(Zn) ̸= s|W = w, S = s) ⩾ E − ϵ.

Since there is at most a polynomial number of types, there exists a set of types T such that, for

all PX ∈ T , the subcode CPX
≜ {f(w) : p̂f(w) = PX} ⊂ C(m) satisfies

max
s∈S

max
w∈f−1(CPX

)
P(h(Y n) ̸= w|W = w, S = s) ⩽ ϵ (30)

and

log |CPX
|

n
>

log |C(m)|

n
− δ ⩾ R− ϵ− δ (31)

for some δ vanishing with ϵ. Fix any PX ∈ T . Let

P̃ n
X(x) ≜

1

|CPX
|

∑

x̃∈CPX

1{x = x̃}.

Observe that

PX(x) ≜
1

n

n∑

i=1

P̃Xi
(x) = PX(x), (32)

where P̃Xi
is the i-th marginal distribution of P̃ n

X . Then, for any state s,

(1− ϵ) log |CPX
| − hb (ϵ)

(a)

⩽ I

(
P̃ n
X ,W

⊗n
Y |X,s

)

(b)

= H(Y n)−
∑

x∈Xn

P̃ n
X(x)H(Y n|Xn = xn, s)

= H(Y n)−
∑

x∈Xn

P̃ n
X(x

n)
n∑

i=1

H
(
Yi|X

n = xn, Y i−1, s
)
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=
n∑

i=1

H
(
Yi|Y

i−1
)
−

n∑

i=1

∑

xi∈X

P̃Xi
(xi)H(Yi|Xi = xi, s)

⩽

n∑

i=1

I

(
P̃Xi

,WY |X,s

)

(c)

⩽ nI
(
PX ,WY |X,s

)
(33)

where hb (·) is the binary entropy function, (a) follows from Fano’s inequality and standard

techniques, (b) follows by identifying Y n ∼ P̃ n
X◦W

⊗n
Y |X,s and the definition of mutual information,

and (c) follows from the concavity of mutual information in the input distribution. Then, we

obtain

log |CPX
|

n
⩽

I
(
PX ,WY |X,s

)
+ 1

n

1− ϵ
, (34)

where we have used (32).

Since (34) is valid for any ϵ and state s, the size of sub-codebook CPX
is upper bounded by

the mutual information in a compound channel, i.e.,

log |CPX
|

n
< min

s∈S
I(PX ,WY |X,s) + τ (35)

for some τ > 0 vanishing with ϵ. On the other hand, for this PX ∈ T ,

E − ϵ

⩽ −
1

n
logmax

s∈S
max
w∈[1;M ]

P(g(Zn) ̸= s|W = w, S = s)

(a)

⩽ −
1

n
logmax

s∈S
max

w∈f−1(CPX
)
P(g(Zn) ̸= s|W = w, S = s)

(b)

⩽ ϕ(PX) + δ, (36)

where (a) follows by restricting the set to only the terms corresponding to messages in CPX
; (b)

follows since the detection error is upper bounded by ϕ(PX) for any message with type PX by

Lemma 10. Combining (35) and (36) and choosing P ∗
X ≜ argminPX∈T ϕ(PX), we conclude that

for all ϵ > 0, there exist τ, δ > 0 vanishing with ϵ such that

R ⩽ min
s

I(P ∗
X ,WY |X,s) + τ + ϵ+ δ (37)

E ⩽ ϕ(P ∗
X) + δ + ϵ. (38)

Since ϵ, τ, δ can be chosen arbitrarily small as the block length n goes to infinity, E is upper

bounded by ϕ(PX) for some PX ∈ PX and the rate R is achieved by this PX . Taking the union

over all possible PX completes the result of converse of Theorem 3.
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C. Proof of Theorem 6

1) Definition of the Code

Before the protocol starts, we fix n ∈ N
∗, ∆1,∆2 ∈ (0, 1) such that ∆1 + ∆2 < 1, and we

also fix some |S|-tuple {PX,s′′}s′′∈S ∈
(
P

(1−∆1−∆2)n
X

)|S|
, where

(
P

(1−∆1−∆2)n
X

)|S|
is the set of

tuples of types in P
(1−∆1−∆2)n
X , as well as the number of messages M as

M = n(1−∆1 −∆2)×

(
min
s′′∈S

I(PX,s′′ ,WY |X,s′′)− δ

)
(39)

for some δ > 0.

We first define gML,i as the maximum likelihood estimator at each time i ∈ N
∗, i.e.,

gML,i(x
i, zi) ≜ argmax

s∈S

i∏

ℓ=1

WZ|X,s(zℓ|xℓ).

Then, the code C(m) = ({fi}i∈[1;n], g
(m), h(m)) is defined through the following steps.

a) Initial Estimation

We define P#
X = argmax

PX∈P
∆1n
X

ϕ(PX) and pick any length n∆1 sequence v = (v1, ..., v∆1n)

from the type class TP#
X

. Then, for 1 ⩽ i ⩽ ∆1n, the encoder is defined as

fi(w, z
i−1) = vi (40)

for all w ∈ [1;M ] and zi−1 ∈ Z i−1. At time ∆1n+1, the transmitter estimates the state by using

the maximum likelihood estimator s̃ = gML,∆1n(x
∆1n, z∆1n).

b) State Information Transmission

The transmitter then conveys the information of the estimated state to the receiver by encoding

the estimated state s̃ into a codeword. Since |S| does not grow with n, there exists a length ∆2n

channel code (f̂ , ĝ) with arbitrarily small error probability, where f̂ : S 7→ X∆2n is the encoder

and ĝ : Y∆2n 7→ S is the decoder. Denoting x̂(s̃) = (x̂1(s̃), ..., x̂∆2n(s̃)) = f̂(s̃) the codeword

corresponding to s̃. Then, for ∆1n < i ⩽ (∆1 +∆2)n, the encoder is defined as

fi(w, z
i−1) = x̂i−∆1n(gML,∆1n(x

∆1n, z∆1n)) (41)

for all w ∈ [1;M ] and zi−1 ∈ Z i−1.

c) Message Transmission

It is known that for every P̄X ∈ PX , there exists a channel code with arbitrarily small error

probability ϵ > 0 such that the rate is at least I(P̄X ,WY |X,s)−2τ for any τ > 0 when the channel

state is s ∈ S and the number of channel uses is large enough. Therefore, for any s ∈ S , there
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exist an ((1−∆1−∆2)n, ϵ) constant composition code with the type PX,s for the state s channel

with rate mins′′∈S I(PX,s′′ ,WY |X,s′′) − δ for any ϵ > 0, where the set of types {PX,s′′}s′′∈S ∈(
P

(1−∆1−∆2)n
X

)|S|
is fixed at the beginning of the protocol. Let the channel code for the channel

with state s be characterized by (f̃s, h̃s), where f̃s : [1;M ] 7→ X (1−∆1−∆2)n is the encoder and h̃s :

Y(1−∆1−∆2)n 7→ [1 : M ] is the decoder. Denoting x̃(w, s) = (x̃1(w, s), ..., x̃(1−∆1−∆2)n(w, s)) =

f̃s(w) the codeword corresponding to the message w ∈ [1;M ]. Then, for (∆1 +∆2)n < i ⩽ n,

we define the encoder as

fi(w, z
i−1) = x̃i−(∆1+∆2)n(w, gML,∆1n(x

∆1n, z∆1n)) (42)

for all w ∈ [1;M ] and zi−1 ∈ Z i−1.

d) Message Decoding and State Estimation

Finally, the message decoder is

h(m)(yn) = h̃
ĝ(y∆2n

∆1n+1)

(
yn(∆1+∆2)n+1

)
(43)

for all yn ∈ Yn, and the state estimator is

g(m)(xn, zn) = argmax
s∈S

n∏

ℓ=(∆1+∆2)n+1

WZ|X,s(zℓ|xℓ) (44)

for all xn ∈ X n and zn ∈ Zn. Note that we only use the subsequences xn(∆1+∆2)n+1 and

zn(∆1+∆2)n+1 for the state estimation in (44).

2) Analysis of the Communication Rate and Detection-Error Exponent

a) Rate Analysis

For any s ∈ S any w ∈ [1;M ], the error probability of communication is

P(h(Y n) ̸= W |W = w, S = s)

⩽ P(gML,∆1n(X
∆1n, Z∆1n) ̸= s|W = s, S = s) + P(ĥ(Y ∆2n

∆1n+1) ̸= s, s̃ = s|W = s, S = s)

+ P

(
h̃s
(
Y n
(∆1+∆2)n+1

)
̸= w, s̃ = s, ĥ(Y ∆2n

∆1n+1) = s
∣∣∣W = w, S = s

)
, (45)

where we have applied the union bound. The first term of (45) comes from the event in which

the initial estimation of the state s̃ is incorrect; the second term of (45) is the event in which the

decoding of the initial estimated state s̃ is incorrect; the last term of (45) is the decoding error

probability. For any s ∈ S and w ∈ [1;M ], all terms on the right-hand side of (45) are arbitrarily

small when n is sufficiently large by our construction of the code. The rate of communication

is

R =
1

n
log en(1−∆1−∆2)(mins′′∈S I(PX,s′′ ,WY |X,s′′ )−δ) = (1−∆1 −∆2)

(
min
s′′∈S

I(PX,s′′ ,WY |X,s′′)− δ

)
.
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By making ∆1,∆2 and δ arbitrarily small, we conclude that mins′′∈S I(PX,s′′ ,WY |X,s′′) is achiev-

able.

b) Detection-Error Exponent Analysis

The error probability of detection is

P
(n)
d = max

s∈S
max
w∈[1;M ]

P(g(m)(Xn, Zn) ̸= s|W = w, S = s)

= max
s∈S

max
w∈[1;M ]

P


argmax

s∈S

n∏

ℓ=(∆1+∆2)n+1

WZ|X,s(zℓ|xℓ) ̸= s

∣∣∣∣∣∣
W = w, S = s


 . (46)

Note that argmaxs∈S
∏n

ℓ=(∆1+∆2)n+1WZ|X,s(zℓ|xℓ) ̸= s is the error event of applying the ML

estimator when the type of the input sequence is p̂Xn
(1−∆1−∆2)n+1

= PX,s̃. For all t ∈ [n(∆1 +

∆2)+1;n], the channel input Xt is chosen without using the feedback Zn
n(∆1+∆2)+1. Moreover, for

any w ∈ [1;M ], the sequence Xn
n(∆1+∆2)+1 has a constant type, which depends on s̃. Therefore,

we can apply Lemma 10 and the law of total probability to upper bound the error probability

of (46) as

P
(n)
d ⩽ max

s∈S
max
w∈[1;M ]

∑

s′′∈S

P (s̃ = s′′|W = w, S = s)×Θn(1)× e−n(1−∆1−∆2)ψs(PX,s′′ ) (47)

⩽ max
s∈S

Θn(1)× e−n(1−∆1−∆2)mins′′∈S ψs(PX,s′′ ) (48)

= Θn(1)× e−n(1−∆1−∆2)mins∈S mins′′∈S ψs(PX,s′′ ) (49)

= Θn(1)× e−n(1−∆1−∆2)mins′′∈S ϕ(PX,s′′ ), (50)

where in (48) we lower bound the exponent ψs(PX,s′′) by the minimum one and Θn(1) is some

constant, and in (50) we swap the order of mins∈S and mins′′∈S and apply the definition of ϕ.

Then, we have shown that

E
(n)
d ⩾ (1−∆1 −∆2)min

s∈S
ϕ(PX,s). (51)

By taking the union over all possible choices of {PX,s′′}s′′∈S ∈
(
P

(1−∆1−∆2)n
X

)|S|
and making

∆1,∆2 arbitrarily small, we conclude that the following region is achievable.

⋃

{PX,s′′}s′′∈S∈
(
P

(1−∆1−∆2)n
X

)|S|





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX,s,WY |X,s)

E ⩽ mins∈S ϕ(PX,s)





(52)
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To recover the result of Theorem 6, note that for any PX ∈ PX , there exists some type P̂X ∈

P
(1−∆1−∆2)n
X such that

∣∣∣PX(x)− P̂X(x)
∣∣∣ ⩽ η for any x ∈ X and η > 0 for some n large enough.

A similar continuity argument can be used to guarantee that the rate and exponent derived by

P̂X would be ξ(η)-close to the result obtained by PX , where the difference ξ(η) vanishes with

n. By taking the union of all {PX,s}s∈S , we conclude that the closure of all achievable regions

is at least

⋃

{PX,s′′}s′′∈S∈P
|S|
X





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX,s,WY |X,s)

E ⩽ mins∈S ϕ(PX,s)




, (53)

which completes the proof.

D. Proof of Theorem 8

We first construct the code by the following steps. Fix a specific type PX . The length n

codeword corresponds to the message w ∈ [1;M ] is xw and is uniformly drawn from the type

class T n
PX

. The message decoder and the state estimator are jointly defined as

(ŵ, ŝ) = argmax
w∈[1;M ],s∈S

P (y|S = s,Xn = xw) . (54)

The message decoder h(b) and the state estimator g(b) are then well-defined by (54). Note that the

codewords {xw}w∈[1;M ] are random and so is the code C(b). Since we have fixed the definition

of h(b) and g(b), with a slight abuse of notation, we denote C(b) = {xℓ}ℓ∈[1;M ] as the set of

codewords in the derivation below. We next derive the detection-error exponent when averaging

over C(b), which codewords are drawn uniformly from T n
PX

.

a) Detection-error Analysis

Without loss of generality we assume that the message w = 1 is transmitted and the state

S = s for some s ∈ S . The error event is the set of all received y that would result in detection

errors and is defined as

E ≜ {y ∈ Yn : max
i∈[1;M ]

P(y|S = s,Xn = xi) < max
j∈[1;M ]

P(y|S = s′, Xn = xj) for some s′ ̸= s}.

For any P̂Y |X ∈ Pn
Y|X , it is known from [28] that the probability of receiving y ∈ T·|x1(P̂Y |X)

is upper bounded by

P

(
y ∈ T·|x1(P̂Y |X)

∣∣∣Xn = x1, S = s
)
⩽ e−nD(P̂Y |X∥WY |X,s|PX). (55)
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For all y ∈ Yn and for any k ̸= 1, we define the random variable

Ik(y)

≜ 1

(
max
ℓ̸=k

P(y|S = s,Xn = xℓ) ⩽ P(y|S = s′, Xn = xk) for some s′ ̸= s

)

= 1

(
∃s′ ̸= s s.t en

∑
x,y PX(x)p̂y|xk (y|x) logWY |X,s′ (y|x) ⩾ max

ℓ̸=k
en

∑
x,y PX(x)p̂y|xℓ (y|x) logWY |X,s(y|x)

)
,

as well as the variable

J1(y) ≜ 1
(
∃s′ ̸= s s.t en

∑
x,y PX(x)p̂y|x1 (y|x) logWY |X,s′ (y|x) ⩾ en

∑
x,y PX(x)p̂y|x1 (y|x) logWY |X,s(y|x)

)
.

(56)

The randomness of the variables Ik(y) and J1(y) comes from the random coding, i.e., the type

p̂y|xk
is random. Ik(y) is equal to one when there exists some state s′ ̸= s such that the likelihood

calculated according to the state s′ and the codeword k is greater than the maximal possible

likelihood according to the state s. Then, the average detection error probability can be upper

bounded by the following

EC(b) [P (ŝ ̸= s|Xn = x1, S = s)]

⩽
1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)P(error|Xn = x1, S = s, Y n = y) (57)

⩽
1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)
∑

k ̸=1

EC(b)\x1
[Ik(y)|X

n = x1, S = s]

+
1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)J1(y), (58)

where the expectation is taken over all possibilities of codewords {xℓ}ℓ̸=1. Note that Ik(y) is

random because the codewords {xℓ}ℓ̸=1 are drawn from T n
PX

uniformly, and hence, {p̂y|xℓ
}ℓ̸=1

are random, as well.

The difficulty of analyzing Ik(y) comes from the term maxℓ̸=k e
n
∑

x,y PX(x)p̂y|xℓ (y|x) logWY |X,s(y|x),

which involves a maximization over exponentially many indices ℓ. Observe that

max
ℓ ̸=k

en
∑

x,y PX(x)p̂y|xℓ (y|x) logWY |X,s(y|x) = max
ℓ̸=k

e−n(D(p̂y|xℓ∥WY |X,s|PX)+H(p̂y|xℓ |PX)). (59)

Note that the type p̂y|x1 is fixed when y ∈ T·|x1(P̂
(1)
Y |X) for some P̂

(1)
Y |X ∈ Pn

Y|X . Therefore, in the

following we define a set Ak of conditional types
{
{P̂

(ℓ)
Y |X}ℓ/∈{1,k}

}
∈
(
Pn

Y|X

)2nR−2

. such that

when xℓ ∈ Ty|·(P̂
(ℓ)
Y |X) for all ℓ ̸= {1, k}, we can control the right-hand side of (59). Moreover,
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Ak needs to have the property that
{
{p̂y|xℓ

}ℓ/∈{1,k}
}
∈ Ak with high probability. Specifically, we

define

Ak(P̂
(1)
Y |X , PX , R) ≜

{
{P̂

(ℓ)
Y |X}ℓ/∈{1,k} ∈

(
Pn

Y|X

)2nR−2
: ∀P ′′ ∈ Pn

Y|X s.t. I(PX , P
′′) < R

and PX ◦ P ′′ = PX ◦ P̂
(1)
Y |X ∃j /∈ {1, k} s.t P̂

(j)
Y |X = P ′′, P̂

(j)
Y |X ◦ PX = P̂

(1)
Y |X ◦ PX ∀j /∈ {1, k}

}
,

as the set of conditional types such that for all P ′′ ∈ Pn
Y|X satisfying I(PX , P

′′) < R there exists

some index j /∈ {1, k} such that the corresponding conditional type P̂
(j)
Y |X = P ′′. The constraint

P̂
(j)
Y |X ◦ PX = P̂

(1)
Y |X ◦ PX for all j /∈ {1, k} comes from the fact that when y ∈ T·|x1(P̂

(1)
Y |X), the

type of y is P̂
(1)
Y |X ◦ PX , and hence P(xℓ ∈ Ty|·(P̂

(ℓ)
Y |X)) = 0 if P̂

(ℓ)
Y |X ◦ PX ̸= P̂

(1)
Y |X ◦ PX .

Then, by using the law of total probability, we have

EC(b)\x1
[Ik(y)|X

n = x1, S = s]

=
∑

{P̂
(ℓ)
Y |X

}ℓ/∈{1,k}

∏

ℓ/∈{1,k}

P(xℓ ∈ Ty|·(P̂
(ℓ)
Y |X))Exk

[
Ik (y)

∣∣∣Xn = x1, S = s, p̂y|xℓ
= P̂

(ℓ)
Y |X∀ℓ /∈ {1, k}

]

⩽
∑

{P̂
(ℓ)
Y |X

}ℓ/∈{1,k}

∈Ak(P̂
(1)
Y |X

,PX ,R)

∏

ℓ/∈{1,k}

P(xℓ ∈ Ty|·(P̂
(ℓ)
Y |X))Exk

[
Ik (y)

∣∣∣Xn = x1, S = s, p̂y|xℓ
= P̂

(ℓ)
Y |X∀ℓ /∈ {1, k}

]

+
∑

{P̂
(ℓ)
Y |X

}ℓ/∈{1,k} /∈Ak(P̂
(1)
Y |X

,PX ,R)

∏

ℓ/∈{1,k}

P(xℓ ∈ Ty|·(P̂
(ℓ)
Y |X)).

Note that when {P̂
(ℓ)
Y |X}ℓ/∈{1,k} ∈ Ak(P̂

(1)
Y |X , PX , R), it holds that

min
ℓ/∈{k,1}

D(P̂
(ℓ)
Y |X∥WY |X,s|PX) +H(P̂

(ℓ)
Y |X |PX)

⩽ min
P ′′∈Pn

Y|X
:I(PX ,P ′′)<R,PX◦P ′′=PX◦P̂

(1)
Y |X

D(P ′′∥WY |X,s|PX) +H(P ′′|PX) (60)

≜ βn(P̂
(1)
Y |X , PX , R, s), (61)

where (60) follows since for every P ′′ ∈ Pn
Y|X , there is some P̂

(ℓ)
Y |X such that P̂

(ℓ)
Y |X = P ′′ by

definition of Ak. Then, for y ∈ T·|x1(P̂
(1)
Y |X), it holds that

max
ℓ ̸=k

en
∑

x,y PX(x)p̂y|xℓ (y|x) logWY |X,s(y|x)

⩾ max
(
e−nβn(P̂

(1)
Y |X

,PX ,R,s), e−nD(P̂
(1)
Y |X

∥WY |X,s|PX)+H(P̂
(1)
Y |X

|PX)
)

by applying the right-hand side of (59) and (61). Therefore, when {P̂
(ℓ)
Y |X}ℓ/∈{1,k} ∈ Ak(P̂

(1)
Y |X , PX , R)

and y ∈ T·|x1(P̂
(1)
Y |X), the indicator function Ik can be upper bounded by
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Ik(y) ⩽
∑

s′ ̸=s

1
(
xk ∈ Ty|.(P

′
Y |X) for some P ′

Y |X ∈ Pn
s,s′(P̂

(1)
Y |X , PX , R)

)
, (62)

where

Pn
s,s′(P̂

(1)
Y |X , PX , R) ≜

{
P ′
Y |X ∈ Pn

Y|X : en
∑

x,y PX(x)P ′
Y |X

(y|x) logWY |X,s′ (y|x)

⩾ e
−nmin

(
βn(P̂

(1)
Y |X

,PX ,R,s),D(P̂
(1)
Y |X

∥WY |X,s|PX)+H(P̂
(1)
Y |X

|PX)
)

, P ′
Y |X ◦ PX = P̂

(1)
Y |X ◦ PX

}
.

Then,

∑

{P̂
(ℓ)
Y |X

}ℓ/∈{1,k}

∈Ak(P̂
(1)
Y |X

,PX ,R)

∏

ℓ/∈{1,k}

P(xℓ ∈ Ty|·(P̂
(ℓ)
Y |X))Exk

[
Ik (y)

∣∣∣Xn = x1, S = s, p̂y|xℓ
= P̂

(ℓ)
Y |X∀ℓ /∈ {1, k}

]

⩽
∑

s′ ̸=s

∑

P ′
Y |X

∈Pn
s,s′

(P̂
(1)
Y |X

,PX ,R)

P
(
xk ∈ Ty|·(P

′
Y |X)

)
(63)

⩽ exp

(
−nmin

s′ ̸=s
min

P ′
Y |X

∈Pn
s,s′

(P̂
(1)
Y |X

,PX ,R)

(I(PX , P
′
Y |X)− on(1))

)
, (64)

where we have used the fact [29, (41)] that

P
(
xk ∈ Ty|·(P

′
Y |X)

)
=

∣∣∣T n
PXP

′
Y |X

∣∣∣
∣∣T n
PX

∣∣
∣∣∣T n
PX◦P ′

Y |X

∣∣∣
⩽ exp

(
−nI(PX , P

′
Y |X)

)
,

and |Pn
s,s′(P̂

(1)
Y |X , PX , R)| ⩽ poly(n). Moreover, for all P ′′ ∈ Pn

Y|X such that I(PX , P
′′) < R and

for all ℓ /∈ {1, k}, it holds that

P
(
xℓ /∈ Ty|·(P

′′)
)
⩽ 1− e−n(I(PX ,P

′′)+on(1)) (65)

⩽ e−e
−n(ξ+on(1))

, (66)

for some ξ < R, where in (65) we lower bound P

(
xk ∈ Ty|·(P

′′
Y |X)

)
by e−n(I(PX ,P

′′)+on(1)) [29,

(14)] and in (66) we use the fact that 1− x ⩽ e−x for all x ∈ R. Then,

∑

{P̂
(ℓ)
Y |X

}ℓ/∈{1,k}

/∈Ak(P̂
(1)
Y |X

,PX ,R)

∏

ℓ/∈{1,k}

P(xℓ ∈ Ty|·(P̂
(ℓ)
Y |X)) ⩽

∑

P
′′
∈Pn

Y|X
:I(PX ,P

′′)<R,

PX◦P ′′=PX◦P̂
(1)
Y |X

∏

ℓ/∈{1,k}

P(xℓ /∈ Ty|·(P
′′

)) (67)

⩽ |Pn
Y|X |

(
e−e

−n(ξ−on(1))
)enR

(68)

⩽ enon(1) × e−e
−n(ξ−R−on(1))

, (69)
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which has the double exponential form and decays much faster than the right-hand side of

(64), where (67) follows since {P̂
(ℓ)
Y |X}ℓ/∈{1,k} /∈ Ak(P̂

(1)
Y |X , PX , R) implies that there exists some

P
′′
∈ Pn

Y|X such that I(PX , P
′′) < R,PX ◦P ′′ = PX ◦ P̂

(1)
Y |X but no xℓ lies in Ty|·(P

′′). Therefore,

for y ∈ T·|x1(P̂
(1)
Y |X), it holds that

EC(b)\x1
[Ik(y)|X

n = x1, S = s] ⩽ exp

(
−nmin

s′ ̸=s
min

P ′
Y |X

∈Pn
s,s′

(P̂
(1)
Y |X

,PX ,R)

(I(PX , P
′
Y |X)− on(1))

)
.

(70)

By applying inequality (70) to the first term on the right-hand side of (58) and using (55), we

obtain

1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)
∑

k ̸=1

EC(b)\x1
[Ik(y)|X

n = x1, S = s]

⩽ poly(n)

× exp

(
−nmin

P̂
(1)
Y |X

(
D(P̂

(1)
Y |X∥WY |X,s|PX) + min

s′ ̸=s
min

P ′
Y |X

∈Pn
s,s′

(P̂
(1)
Y |X

,PX ,R)

(I(PX , P
′
Y |X)− on(1))−R

))
.

(71)

Besides, the term

1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)J1(y)

is the detection-error probability by using the ML detector when the codeword is known. From

Lemma 10, we have

1

|T n
PX

|

∑

x1∈T n
PX

∑

P̂
(1)
Y |X

∑

y∈T·|x1 (P̂
(1)
Y |X

)

P(y|Xn = x1, S = s)J1(y) ⩽ e−nϕ(PX) (72)

Combining (58), (71), (72), we have

EC(b) [P (ŝ ̸= s|Xn = x1, S = s)] ⩽ e−nmin(ϕ(PX),ρjoint(PX ,R)−ϵ(n)), (73)

where ϵ(n) → 0 when n → ∞. The definition of ρjoint(PX , R) involves the optimization over

conditional distributions, i.e., minP̂∈PY |X
and minP ′∈Ps,s′ (P̂ ,PX ,R), but the result we obtained in

(71) involves optimization over conditional types of length n sequences. However, when n is

sufficiently large, any conditional distribution in PY|X can be approximated by conditional types

in Pn
Y|X with some deviation δ(n) with limn→∞ δ(n) = 0. Since all the functions in the definition
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of ρjoint(PX , R) is continuous in the conditional distribution, the difference between the right-

hand side of (71) and ρjoint(RX , R) can be bounded by some ϵ(δ(n)) and again vanishes with

n. The right-hand side of (73) is irrelevant to the message and the state, and hence,

EC(b)

[
1

M

∑

w

P (ŝ ̸= s|Xn = xw, S = s)

]
⩽ e−nmin(ϕ(PX),ρjoint(PX ,R)−ϵ(δ)) (74)

for all s ∈ S by the linearity of expectation.

b) Communication-error Analysis

By [27, Lemma 10.1 and Theorem 10.2], we have that,

EC(b)

[
max
s

max
w

P(ŵ ̸= w|Xn = xw, S = s)
]
⩽ e−n(ρsucc(PX ,R)−κ),

where κ vanishes with n.

c) Derandomization and Expurgation

By the Markov’s inequality, we have for any ζ1 > 0

PC(b)

(
∃s ∈ S s.t

1

M

∑

w

P (ŝ ̸= s|Xn = xw, S = s) > e−n(min(ϕ(PX),ρjoint(PX ,R)−ϵ(δ))−ζ1)

or max
s

max
w

P(ŵ ̸= w|Xn = xw, S = s) ⩾ e−n(ρsucc(PX ,R)−ζ2)

)

⩽ |S|
EC(b)

[
1
M

∑
w P (ŝ ̸= s|Xn = xw, S = s)

]

e−n(min(ϕ(PX),ρjoint(PX ,R)−ϵ(δ))−ζ1)
+

EC(b) [maxsmaxw P(ŵ ̸= w|Xn = xw, S = s)]

e−n(ρsucc(PX ,R)−ζ2)

(75)

⩽ |S|e−nζ1 + e−nζ2 , (76)

which goes to zero when n→ ∞. Therefore, there exists some code C(b) such that

max
s

1

M

M∑

w=1

P (ŝ ̸= s|Xn = xw, S = s) < e−n(min(ϕ(PX),ρjoint(PX ,R)−ϵ(δ))−ζ1), (77)

max
s

max
w

P(ŵ ̸= w|Xn = xw, S = s) < e−n(ρsucc(PX ,R)−ζ2) (78)

when n is sufficiently large. By the codebook expurgation argument, there exists a code C̄(b) ≜

{x̄w} ⊂ C(b) with size |C̄(b)| = |C(b)|/2 such that

max
s

max
w

P (ŝ ̸= s|Xn = x̄w, S = s) < 2e−n(min(ϕ(PX),ρjoint(PX ,R)−ϵ(δ))−ζ1), (79)

max
s

max
w

P(ŵ ̸= w|Xn = xw, S = s) < e−n(ρsucc(PX ,R)−ζ2). (80)
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For every R < mins I(PX ,WY |X,s), there exists some ζ2 small enough such that ρsucc(PX , R)−

ζ2 > 0. Therefore, for every R < mins I(PX ,WY |X,s) there exists a code C̄(b) with rate R−on(1)

such that

−
1

n
logmax

s
max
w

P (ŝ ̸= s|Xn = x̄w, S = s) ⩾ min(ϕ(PX), ρjoint(PX , R))− ϵ, (81)

max
s

max
w

P(ŵ ̸= w|Xn = x̄w, S = s) < ϵ (82)

for any ϵ > 0 whenever n is sufficiently large. The theorem is proved by taking the union over

all possible PX .

E. Proof of Corollary 9

Recall that the definition of ρjoint(PX , R) is

ρjoint(PX , R) ≜ min
s∈S

min
P̂

(
D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+)
. (83)

For any P̂ , PX , s ∈ S and s′ ̸= s, the definition of Ps,s′(P̂ , PX , R) is

Ps,s′(P̂ , PX , R) ≜

{
P ′ : D(P ′∥WY |X,s′ |PX) +H(P ′|PX)

⩽ min
(
β(P̂ , PX , R, s),D(P̂∥WY |X,s|PX) +H(P̂ |PX)

)
, PX ◦ P ′ = PX ◦ P̂

}
.

The value of min
(
β(P̂ , PX , R, s),D(P̂∥WY |X,s|PX) +H(P̂ |PX)

)
depends on P̂ , s and PX .

Therefore, for each s ∈ S and PX , we partition the set PY|X into P ′
Y|X (PX , s) and P ′′

Y|X (PX , s),

where

P ′
Y|X (PX , R, s) ≜ {P̂ ∈ PY|X : max

s′′∈S
β(P̂ , PX , R, s

′′) ⩾ D(P̂∥WY |X,s|PX) +H(P̂ |PX)}

P ′′
Y|X (PX , R, s) ≜ {P̂ ∈ PY|X : max

s′′∈S
β(P̂ , PX , R, s

′′) < D(P̂∥WY |X,s|PX) +H(P̂ |PX)}.

For each s ∈ S , and PX , we define

ρ̂(PX , R, s, P̂ ) ≜ D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+

. (84)

The exponent ρjoint(PX , R) is then

ρjoint(PX , R) = min
s∈S

min

(
min

P̂∈P ′
Y|X

(PX ,R,s)
ρ̂(PX , R, s, P̂ ), min

P̂∈P ′′
Y|X

(PX ,R,s)
ρ̂(PX , R, s, P̂ )

)
. (85)
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We first analyze the term minsminP̂∈P ′
Y|X

(PX ,R,s)
ρ̂(PX , R, s, P̂ ). Let the arguments of the min-

imization of the term

min
P̂∈P ′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+

.

be achieved by the tuple (P̂ , s′, P ′), where P̂ , s′ and P ′ are the minimizer corresponding to

minP̂∈P ′
Y|X

(PX ,R,s)
, mins′ ̸=s and minP ′∈Ps,s′ (P̂ ,PX ,R), respectively. Given the tuple (P̂ , s′, P ′), if

I(PX , P
′) ⩾ I(PX , P̂ ), then

min
P̂∈P ′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+

= D(P̂∥WY |X,s|PX) + |I(PX , P
′)−R|

+

⩾ D(P̂∥WY |X,s|PX) +
∣∣∣I(PX , P̂ )−R

∣∣∣
+

⩾ min
P̂∈P ′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +
∣∣∣I(PX , P̂ )−R

∣∣∣
+

.

On the other hand, if the minimizer P ′ satisfies I(PX , P
′) < I(PX , P̂ ), then by definition of

Ps,s′(P̂ , PX) and the fact that P̂ ∈ P ′
Y|X (PX , R, s) it holds that

D(P̂∥WY |X,s|PX) ⩾ D(P ′∥WY |X,s′ |PX)

Moreover, since P ′ ∈ Ps,s′(P̂ , PX , R), it holds that

D(P ′∥WY |X,s′ |PX) +H(P ′|PX) ⩽ β(P̂ , PX , R, s) (86)

= β(P ′, PX , R, s) (87)

⩽ max
s′′∈S

β(P ′, PX , R, s
′′), (88)

where in (87) we use the fact that PX ◦P ′ = PX ◦ P̂ . Therefore, by definition of P ′
Y|X and (88),

it holds that P ′ ∈ P ′
Y|X (PX , R, s

′). Then,

min
P̂∈P ′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX)

I(PX , P
′)−R

∣∣∣∣∣

+

(89)

= D(P̂∥WY |X,s|PX) + |I(PX , P
′)−R|

+
(90)

⩾ D(P ′∥WY |X,s′ |PX) + |I(PX , P
′)−R|

+
(91)

⩾ min
P ′∈P ′

Y|X
(PX ,R,s′)

D(P ′∥WY |X,s′ |PX) + |I(PX , P
′)−R|

+
. (92)
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Taking the minimum over both cases of I(PX , P
′) ⩾ I(PX , P̂ ) and I(PX , P

′) < I(PX , P̂ ) and

all possible s ∈ S , we obtain that

min
s

min
P̂∈P ′

Y|X
(PX ,R,s)

ρ̂(PX , R, s, P̂ ) ⩾ min
s

min
P̂∈P ′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +
∣∣∣I(PX , P̂ )−R

∣∣∣
+

.

(93)

Our next step is to analyze minsminP̂∈P ′′
Y|X

(PX ,R,s)
ρ̂(PX , R, s, P̂ ). We assume again that the

minimization of the term

min
P̂∈P ′′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+

is achieved by the tuple (P̂ , s′, P ′).

Given the tuple (P̂ , s′, P ′), if D(P̂∥WY |X,s|PX) ⩾ D(P ′∥WY |X,s′ |PX), then

min
P̂∈P ′′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX ,R)

I(PX , P
′)−R

∣∣∣∣∣

+

(94)

= D(P̂∥WY |X,s|PX) + |I(PX , P
′)−R|

+
(95)

⩾ D(P ′∥WY |X,s′ |PX) + |I(PX , P
′)−R|

+
(96)

⩾ min
P ′∈P ′

Y|X
(PX ,R,s′)

D(P ′∥WY |X,s′ |PX) + |I(PX , P
′)−R|

+
, (97)

where (97) follows from the fact that P ′ ∈ P ′
Y|X (PX , R, s

′) and has the same form as the

right-hand side of (93). On the other hand, if D(P̂∥WY |X,s|PX) < D(P ′∥WY |X,s′ |PX), we have

min
P̂∈P ′′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣min
s′ ̸=s

min
P ′∈Ps,s′ (P̂ ,PX)

I(PX , P
′)−R

∣∣∣∣∣

+

= D(P̂∥WY |X,s|PX) + |I(PX , P
′)−R|

+

⩾ D(P̂∥WY |X,s|PX) +
∣∣D(P ′∥WY |X,s′ |PX) +H(PX ◦ P ′)− D(P ′∥WY |X,s′ |PX)−H(P ′|PX)−R

∣∣+

(a)

⩾ min
P̂∈P ′′

Y|X
(PX ,R,s)

D(P̂∥WY |X,s|PX) +

∣∣∣∣∣D(P̂∥WY |X,s|PX) +H(PX ◦ P̂ )− β(P̂ , PX , R, s)−R

∣∣∣∣∣

+

,

(98)

where (a) follows since P ′ ∈ Ps,s′(P̂ , PX , R) implies that −D(P ′∥WY |X,s′ |PX) − H(P ′|PX) ⩾

−β(P̂ , PX , R, s) and we use the fact that PX ◦ P ′ = PX ◦ P̂ .
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Finally, by taking the minimum over all s and applying the fact that ρjoint(PX , R) is the

minimum of the right-hand sides of (93) and (98), we conclude that

ρjoint(PX , R) ⩾ min
s

min

(
min

P̂∈P ′
Y|X

(PX ,R,s)
γ1(P̂ , R, s), min

P̂∈P ′′
Y|X

(PX ,R,s)
γ2(P̂ , R, s)

)
, (99)

where for all P̂ , R and s,

γ1(P̂ , R, s) ≜ D(P̂∥WY |X,s|PX) +
∣∣∣I(PX , P̂ )−R

∣∣∣
+

γ2(P̂ , R, s) ≜ D(P̂∥WY |X,s|PX) +

∣∣∣∣∣D(P̂∥WY |X,s|PX) +H(PX ◦ P̂ )− β(PX , R, s)−R

∣∣∣∣∣

+

.
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