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Abstract

We study the information-theoretic limits of joint communication and sensing when the sensing
task is modeled as the estimation of a discrete channel state fixed during the transmission of an
entire codeword. This setting captures scenarios in which the time scale over which sensing happens is
significantly slower than the time scale over which symbol transmission occurs. The tradeoff between
communication and sensing then takes the form of a tradeoff region between the rate of reliable
communication and the state detection-error exponent. We investigate such tradeoffs for both mono-
static and bi-static scenarios, in which the sensing task is performed at the transmitter or receiver,
respectively. In the mono-static case, we develop an exact characterization of the tradeoff in open-
loop, when the sensing is not used to assist the communication. We also show the strict improvement
brought by a closed-loop operation, in which the sensing informs the communication. In the bi-static
case, we develop an achievable tradeoff region that highlights the fundamentally different nature of the
bi-static scenario. Specifically, the rate of communication plays a key role in the characterization of the
tradeoff and we show how joint strategies, which simultaneously estimate message and state, outperform

successive strategies, which only estimate the state after decoding the transmitted message.

I. INTRODUCTION

A core feature envisioned for the next generation of mobile networks is the convergence of

communication and sensing [2], [3] (also known as integrated communication and sensing),
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motivated in part by the need to offer detection and localization capabilities to interconnected
devices interacting with the real world (robots, UAVs, etc.). This convergence is also enabled by
the shift of communication frequencies towards the mmWave part of the spectrum, which allows a
single Radio-Frequency (RF) hardware to perform both communication and sensing. While joint
communication and sensing has already attracted interest in the context of joint communication
and radar [4]—[6], theoretical, algorithmic, and hardware-related challenges remain and must be
addressed to assess the true potential of joint communication and sensing [3], [7].

The objective of the present work is to further the theoretical understanding of the information-
theoretic limits of joint communication and sensing, and specifically to better understand the
tradeoffs incurred by a joint operation. While information-theoretic models often abstract fine
channel modeling aspects, they provide valuable insights to identify the regimes in which
tradeoffs exist and to quantify their severity. In particular, information-theoretic limits of joint
communication and sensing are naturally approached from the perspective of joint channel
transmission and channel state estimation, where the state simultaneously represents the quantity
of interest for sensing and affects the communication. Early works [8]-[10] have considered state-
dependent channel models with independent and identically distributed (i.i.d.) channel states, in
which the encoder attempts to simultaneously communicate and facilitate the estimation of the
state at the receiver, and have leveraged rate-distortion theory to characterize the optimal tradeoff
between communication rate and state reconstruction accuracy. Recently, [11], [12] have revisited
the model of [10] by shifting the task of estimating the state from the receiver to the transmitter
using generalized feedback, a situation more in line with the scenarios envisioned in the context of
joint communication and sensing, and characterized again the optimal tradeoff between rate and
average state distortion. Extensions to multiple-access channels [13] and broadcast channels [12],
[14] have been investigated, as well, although exact characterizations of the tradeoff remain
elusive. Recent works have also considered secure joint communication and sensing to quantify
and investigate the intrinsic information leakage associated to a joint operation [15]-[17].

A common feature of [10]-[14], [17] is that the i.i.d. nature of the channel state precludes
any prediction. Consequently, state detection and estimation strategies are open-loop and the
tradeoff between communication and sensing reduces to a resource allocation problem, in which

the choice of a channel input distribution dictates the tradeoff.! Furthermore, the i.i.d. model is

IThe situation is more nuanced when introducing secrecy constraints as in [17] as feedback is known to improve secrecy.



not well-suited to applications in which the physical phenomena sensed, such as the presence or
absence of an obstacle that would disrupt line-of-sight communication, evolve on a time scale
that is much slower than the time scale at which communication symbols are transmitted. To
address such applications, one may instead adopt a model in which the channel state remains
constant over the block-length used for communication. Except in rare cases, estimating the
channel state is then always possible so that the tradeoff between communication and sensing
appears between the rate of communication and the accuracy of the state estimation. For the case
of uncountably infinite channel states parameterized by continuous variables, accuracy can be
captured by the Cramer-Rao bound [18]. For the case of finitely many channel states, accuracy
may be captured by the asymptotic state detection error exponent, as studied thereafter and
already reported in our preliminary results [1] concurrently with [19], [20].

Two kinds of joint communication and sensing models are considered in this paper, namely,
mono-static and bi-static models, where we borrow these terminologies from mono-static and
bi-static radars. In both models, there is a transmitter-receiver pair attempting to convey messages
without exact knowledge of the channel state. The difference between these two models is that
sensing is performed at the transmitter in the mono-static model and at the receiver in the bi-static
model. Since the transmitter always knows the codeword, sensing in the mono-static model can
be done coherently with the knowledge of the transmitted waveform. In contrast, the receiver
in the bi-static model needs to simultaneously sense the channel and decode the message (or
waveform).

In what follows, we study the rate/detection-error exponent tradeoff for both mono-static and
bi-static models [2] with fixed channel states. Accordingly, our approach draws on the extensive
literature on controlled sensing [21]-[23] and channel estimation with pilot sequences [24], [25].
Our specific contributions are: 1) we characterize the exact rate-detection exponent tradeoff for
mono-static open-loop joint communication and sensing;?> 2) we show a strict improvement of
the rate-detection exponent tradeoff for mono-static closed-loop joint communication and sensing
through learning the channel state and adapting the channel code; 3) we provide a partial char-
acterization of the rate-detection exponent tradeoff for bi-static open-loop joint communication

and sensing, and show that jointly detecting the state and decoding the code strictly outperforms

>The concurrent works [19], [20] developed characterizations similar to ours in more restricted settings; the results therein

are subsumed by Theorem 3 of the present document and [1, Theorem 1].



the naive successive method, in which the detection of the state follows the decoding of the
channel code. We further illustrate the results with simple examples that capture the essence of
realistic joint communication and sensing scenarios.

The remaining of the paper is organized as follows. We introduce the mono-static and bi-
static models for joint communication and sensing in Section III. We present our main results
in Section IV, along with numerical examples illustrating the joint communication and sensing

tradeoffs. We relegate all proofs to Section V to streamline the presentation.

II. NOTATION

For any set €2, the indicator function is defined as 1(w € Q) = 1 if w € ) and 0 otherwise. For
any discrete set X', Py is the set of all probability distributions on X'. For n € N*, a sequence of
length n is implicitly denoted x £ (21, -- ,x,) € X", while 2° £ (z1,--- ,2;) € X denotes a
sequence of length ¢, and xz = (xj,---,x;) is a sub-sequence of x. For x € X", py denotes the
type of x, i.e., px(z) = = >°" | 1{x; = z}. For any type P, T/ is the corresponding type class,
i.e., the set of all sequences x € X" such that px = P. P% is the set of all possible types for
length n sequences in X™. Let Py x be the set of all conditional probabilities of ¥ € ) given
X € X. Given a sequence x € X" and y € V", we define py |« as the empirical conditional type,
ie., pyx(bla) = >0 H{a; =a,y; =b}/ > 1, 1{x; = a} for all a € X such that pe(a) > 0
and b € ). Let Pg‘ + be the set of all conditional types for length n sequences x € A™ and
y € Y". For any conditional type Py|x € Pg‘ +» we also define T« (Py|x) as the conditional type
class of Py |x, i.e., the set of sequences y € V" such that pyx = Py|x, and define 7;|.(PY‘X)
as the set of sequences x € &A™ such that pyx = Py|x. Given two conditional distributions
Wy |x and Pyx, we set |Wy|X _PY|X‘OO = maXgexpey |Wyx(bla) — Pyx(bla)|. We let
H(Px) £ =Y, c+ Px(z)log Px(z) be the entropy of X ~ Px. If Wy|x is a conditional distribu-
tiononY € Y given X € X, H(Wy x|Px) £ Ep, [H(Wy x(-|X))] is the conditional entropy
of Wy x given an input distribution Py and I(Py, Wy x) £ H(Wyx o Px) — H(Wyx|Px)
is the mutual information between X and Y, where X ~ Px and ¥ ~ Py o Wyx =
> . Px(x)Wy x(-|x). The relative entropy between Py x and Wy x given an input distribution
Px is D(Pyix || Wy x| Px) £ Epy [D(Pyx(-|X) || Wyx(-|X))]. Throughout the paper, log is
with respect to (w.r.t.) base e, and therefore all the information quantities should be understood
in nats. Moreover, for a,b € R such that |a| < [b], we define [a;b] = {|a], |a] +1,---,[b] —

1, [b]}; otherwise [a;b] £ ). In addition, for any = € R, we let |2|" denote max(z,0).



III. JOINT COMMUNICATION AND SENSING MODELS

A. Mono-Static Model

Fig. 1: Mono-static joint communication and sensing model.

The mono-static joint communication and sensing model is illustrated in Fig. 1, in which a
transmitter attempts to communicate with a receiver over a state-dependent Discrete Memoryless
Channel (DMC), also known as a compound channel, while simultaneously probing the channel
state in a strictly causal manner through a sensing channel. Specifically, the transmitter encodes
a uniformly distributed message W € [1; M] into a length n codeword X", of which symbols
are transmitted over a DMC with transition probability Wy 7 xg. The state .S, a priori unknown
to both the transmitter and the receiver, is assumed to be fixed during the whole duration of
the transmission and takes value in a finite set S. The transmitter has the ability to estimate the
channel state by using past observations obtained from the output Z of the DMC, allowing it to
adapt its transmission in an online fashion. We assume in this paper that Chernoff information

between channels W,y and Wy, x & is non-zero for all s # s, i.e.,
| X, X,

Px €Px L€]0,1]

max max — Z Px(x)log (Z WZX,s(z\x)ZWZXﬁf(z\x)le) > 0.

Formally, the encoder consists of a set of functions

fi(m) :[1; M x Z-t s x - (w,z’lfl) — oz 2 f-(m)(w,zifl)

1

defined for every i € [1;n], while the state estimator is a function

gm XM X 2 = S (2" ") e b



The message decoder is a function
AU Y™ (1 My e b,

A code C'™ then consists of the tuple ({ fl‘(m)}ie[l;n] , g™ b)) as well as the implicitly defined

associated message set [1; M].

B. Bi-Static Model

Yi

Wy xs

_——— ] = = = <

Fig. 2: Bi-static joint communication and sensing model.

As 1illustrated in Fig. 2, the bi-static joint communication and sensing model differs from
the mono-static one in that the receiver should simultaneously sense the state and decode the
message. Specifically, the transmitter encodes a uniformly distributed message W € [1; M| into a
length n codeword X, of which symbols are transmitted over a DMC with transition probability
Wy |xs. We again assume that the a priori unknown state .S is fixed during the whole duration

of the transmission and takes value in a finite set S. The encoder is then defined as
fO M) = X" w = Xy,
while the decoder and the state estimator are the functions
g Y 5 Syt s s,
and
A Y™ (1, My e b,
The code C® in the bi-static model then consists of the tuple (f®) ¢® L"), as well as the

message set [1; M].

Remark 1. A key difference between the mono-static model and the bi-static model is that the

former reduces the coupling of performance between communication and sensing to the type of



the transmitted codewords. Specifically, the mono-static model endows the state estimator with
full knowledge of the transmitted codeword, so that correct decoding is irrelevant to the state
detection performance. In contrast, the bi-static model requires the receiver to perform a joint

estimation of the codeword and of the state.

Remark 2. The model of Fig. 1 differs from the ones in [10], [12], in which the state is i.i.d.
and changing from symbol to symbol. Our model captures a scenario in which the coherence
time of the state is much longer than the duration of a transmission. Since the state does not
change during the transmission, the transmitter can gradually obtain an accurate estimation
about the state and is able to adapt the transmission scheme according to the estimated channel
state. As a result our model also captures the ability to adapt to the channel state in an online
fashion, while the models in [10], [12] only allow for an offline adaptation based on a target
rate/distortion pair. Neither model supersedes the other and both capture scenarios that could

be relevant to next generation communication networks.

C. Performance Evaluation Metrics

The performance of the system is measured in terms of the asymptotic rate of reliable commu-
nication and asymptotic detection-error exponent. Formally, we define the communication-error

probability and the detection-error probability for both mono-static and bi-static cases as follows

« Mono-static case:

PM & max max. P(RU™(Y™) # w|W = w, S = s), (1)
pm & max max P(g"™(X™, Z") # s|W = w, S = s). 2)
« Bi-static case:
P £ max max P(RO(Y™) # w|W =w, S = s), 3)
Pén) = max wrerﬁ}]\z] P(g®(Y™) # s|W = w, S = s). 4)

The rate and the detection-error exponent for both mono-static and bi-static models are

1

——log P{"
n Og d >

1
R™ £ Zlog M and Ec(ln) =
n

respectively.



Definition 1 (Achievability). A rate/detection-error exponent (R, E) is achievable in the mono-
static (bi-static) joint communication model if for any s € S and any € > 0, there exist a

sufficiently large n and a code C™ (C©®)) of length n such that

P < e, )
EYY > E -« 6)
R™ >R —e. (7)

When the encoder does not perform any online adaptation so that fi(m) c [, M] — X s
independent of the observation Z'~!, the scheme is called open-loop. On the other hand, if
the encoder utilizes feedback information, the scheme is called closed-loop. Our objective is to
characterize the set of all achievable rate/detection-error exponent pairs by open-loop strategies
in both mono-static and bi-static models as well as the set of all achievable rate/detection-error

exponent pairs by closed-loop strategies in the mono-static model.

Definition 2. We define CS)?;Q, and C® as the closure of all achievable rate/detection-error
exponent pairs by open strategies in the mono-static and bi-static model, respectively. Similarly,
we define C'™ as the closure of all achievable rate/detection-error exponent pairs by closed-

close

loop strategies in the mono-static model.

IV. MAIN RESULTS

A. Mono-Static Model

We first restrict ourselves to open-loop schemes, which provide a baseline for assessing the
usefulness of adaptation. For simplicity, we denote in this case the encoder that maps a message
w to a codeword of n symbols by f(™ : [1; M] + X™. The following theorem provides an exact

characterization of Clr.

Theorem 3. The closure of all achievable joint communication and sensing rate/detection error

exponent pairs for mono-static open-loop schemes is
(R,E) e R% :
nggl = U R < minges I(Px, Wy |x,s) 8)
P B < g(Py)



where

O(Px) = Isrélg 31;12 421[3’)%] — zx: Px(x)log (222 WZ|X7S(zx)EWZ|X,S/(z|x)1Z) . )
Proof. See Section V-A and Section V-B. [

A couple of comments are in order. First, since open-loop schemes do not exploit the in-
formation about the state contained in past noisy observations of the state, achievable rates
are necessarily upper bounded by the compound channel capacity maxp, minges I(Px, Wy/|x.s).
This is a weakness of all open-loop schemes. Second, because of the open-loop nature of the
coding schemes, the interplay between communication and sensing is captured by the choice of
a distribution Px that governs the empirical statistics of the codewords and is set offline. This is
similar to what is obtained in other information-theoretic approaches based on rate-distortion [10],
[12].

The results in [19] are also special cases of Theorem 3. In [19], the authors consider a
mono-static joint communication and sensing model in which Wy z x5 = Wy xWzx s, 1€,
the communication channel is irrelevant to the state. One of the channel models in [19] is a
binary setting in which X = 2 = S§ = {0,1} and Wy x s = Wyx.g, i.e., at each time ¢ the
state-estimator obtains Z; = X; - S & N;, where @ denotes the modulo-2 sum and N; ~ Ber(q)

for some 0 < ¢ < 1. By specializing Theorem 3, one recovers [19, Theorem 1] as follows.

Corollary 4. Let X =Y = Z =S = {0,1}. When the mono-static joint communication model
satisfies Wy z1xs = Wy |xWz x5, where Wy x and Wy x.5 are binary symmetric channels with
cross over probability p and q, respectively, then
(R,E) e R% :
cia= |J { R<HBer(a*p)) — H(Ber(p)) (10)
O3 B < oD (Ber(0.5)|[Ber(q))

where avxp = a(l —p) + (1 — a) *p.

Proof. Since, Wy zxs = Wy xWz x.s, the achievable rate is irrelevant to the state, and for each

Px ~ Ber(a)) we have

min I(Px, Wy x,s) = I(Px, Wy |x)

seS

= H(PX o WY\X) - H(WY|X‘PX)



= H(Ber(a * p)) — H(Ber(p)).

Moreover, for such Py, ¢(Px) can be calculated as follows.

¢(Px) = min min max — ZPX x log (Z Wzix,s(2 z|z) Wzix,s (2 E2 ke )

s€S s'#s Le[0,1]

= max —Px(1)log (-9 + (1 -9 ¢ (11)
= —Px(1)log (q1/2(1 - q)1/2 +(1-— q)1/2q1/2) (12)

= oD (Ber(0.5)|Ber(q))

where (12) follows from the fact that ¢ = 1/2 maximizes (11). The corollary follows by taking

the union over all Px. O

Remark 3. Note that in the setting considered in Corollary 4, transmitting X = 0 does not help
the performance of the state-estimation, and the detection-error exponent is a monotonously

increasing function of the weight of the codeword.

We also observe that in some cases, there is no tradeoff between maximizing the communi-

cation capacity and the detection-error exponent.

Corollary 5. If there exists vy € X such that for all x € X there exists a permutation 7, on Z

such that for every s € S

Waixs(2lx) = Wazix,s(me(2)]20), (13)
then
(R, FE) € R?
CS;ZH =< R <maxp, mingesI(Px, Wy|x.s) (14)
E < maxp, ¢(Px)
where ¢(-) is defined in (9).
Proof. For every x € X\{xo},
ZWZ|X5 2|2) Wy x o (2]2)' ZWZ|XS 72(2)|70) Wax o (T2(2) | 00)° (15)
z€Z 2€Z
> Waralla) Waxw (o) = (16)

7 (21)eZ



= Warx.s(2l70) Wix,e (2]20) . (17)

z€EZ

Thus, we know that the detection-error exponent is invariant to the input type under this scenario.

]

In other words, when the channel satisfies certain symmetry conditions, there is no tradeoff
between rate and detection-error exponent and one simultaneously achieves the optimal com-
munication rate and the optimal detection performance. One of the compound channel families
that falls into such a category is the set of Binary Symmetric Channels (BSCs). The maximal
detection-error exponent and the compound capacity are then simultaneously achieved with a

uniform input distribution.

We now turn our attention back to the characterization of closed-loop schemes, which exploit
the feedback to adapt to the state. The next theorem characterizes an inner bound of the set

C(m)

closed*

Theorem 6. The closure of all achievable joint communication and sensing rate/detection error

exponent pairs for mono-static closed-loop schemes satisfies

(R,E) € R2 :
Ciy 2 U R < min,es I(Px., Wy x.s) (18)

~
|S| .
{Px ¢1}s11cs€(Px) FE < MiNges qb(PX,s)

where the notation | J (Py \s| means that we are taking the union over all possible

//}511656(73;()
|S|-tuples of probability distributions in Py and (PX)|S‘ is the set of tuples of |S| elements in

Px.

Theorem 6 is obtained by considering a simple strategy in which the transmitter learns the
state, informs the receiver, and uses a code adapted to the learned channel state. The exact
characterization of the optimal tradeoffs for closed-loop schemes remains elusive and presents
non-trivial challenges, chief among them the absence of a known optimal detection error-exponent
for multi-hypothesis controlled sensing [21]. One can conclude that the maximal achievable
detection-error exponent characterized by Theorem 6 is identical to that of the open-loop strategy

by observing the following equality

max  mino(P.) = max o(Py).
{PX,s”}sNESG(,PX)lS‘ s€S ° PxePx



Therefore, the region characterized in Theorem 6 is sub-optimal because it is already shown
in [21] that there exists a closed-loop method that achieves a better detection-error exponent than
an open-loop scheme. However, the benefit of Theorem 6 is in improving the communication

rate from the compound channel capacity, i.e.,

max minlI(Px, Wy x
Px€ePyx seS ( ’ | ’S)

to the worst-case capacity, i.e.,

min max I(Px, Wy|x).
s€S Px€Px ’

Note that the worst-case capacity is exactly the maximal achievable rate described in Theorem 6

because

max min I(Px s, Wy|x,s) = min max I(Px, Wy|x).
{PX,S/’}S”ESE(PX)lsl s€S s€S PXEPX

A similar technique exploiting the feedback to improve the capacity in a compound channel can

be found in [26].

Remark 4. The regions characterized in Theorem 6 and Theorem 3 are identical when the
condition in Corollary 5 is satisfied and the worst-case capacity is equal to the compound

channel capacity.

B. Bi-Static Model

In joint communication and sensing, codewords convey information and induce a codeword-
dependent distribution from which observations are generated and are used to estimate the state.
In the mono-static model, state estimation is performed at the transmitter, which has the access
to the transmitted codeword, so that a likelihood-based state estimation can be performed with
exact knowledge of the transmitted codeword. In the bi-static model, however, the transmitted
codeword is unknown to the state estimator ¢().

A natural method to estimate the state is to use a successive approach, by which one first
estimates the codeword and then performs a maximum likelihood estimation given the decoded
codeword. Denoting by C®) the closure of all achievable regions in the bi-static model, our next

theorem provides an inner bound of C) based on successive schemes.

Theorem 7. The closure region of all achievable joint communication and sensing rate/detection

error exponent pairs for the bi-static joint communication and sensing model satisfies



(R,E) e R :
C(b) 2 Dsucc £ U R < minsES ]I(PXa WY\X,S) ) (19)

Pxepa E < min (psucc(PX7 R)a ¢(PX))
where
A . . D D -
poce( P, ) £ min min (ID(PWy x| Px) + [1(Px; P) = R| ). 0
se§ PePyx

Proof. Theorem 7 is a direct result of the following inequality

Py rgl;gxwrg%]ﬂg (Y") #s|W=w,S5 =s)

— max max P(g®(Y") # s|h® =w, W =w, S = s)P(hY) = w|W =w, S = s)

s€S we[l;M]

+ max max P(¢®(Y") # s|h® £ w, W =w, S = s)P(h®Y) £ w|W =w, S = s)

s€ES well;M]

< P(g®(y™ O =w, W =w,S =
max max. (g7 (Y") # 5| w, w, S =)

P(R® (Y™ W=uw,S=
+r§§}$xwgfg>ﬂ<ﬂ( (Y") # wl w, S =s),

where we have bounded the probability of making a wrong state estimation by 1 when the

codeword is decoded incorrectly. Note that the term

max max P(h®(Y") # w|W = w, S = s)

s€S well;M]
is the communication-error probability; it has been shown in [27, Theorem 10.2] that, for all
Py, there exists a constant composition code with type Px such that the communication-error
exponent is lower bounded by pg..(Px). Moreover, when the codeword is correctly decoded,
the exponent of

P(q®(y™ O — . W =w. S =
max max, (g7 (Y™") # 5| w, w, S =)

can be lower bounded by the Chernoff information ¢(Px) as shown in Lemma 10 in Section V

and proofs therein. [

Unfortunately, the loss induced by upper bounding the term P(¢(Y™) # s|h® # w, W =
w, S = s) by 1 might result in a loose bound on the state exponent. The difficulty of analyzing
the term P(g®(Y™) # s|h® # w, W = w, S = s) comes from the fact that the receiver does



not know the conditional type py/x,. By leveraging random constant composition codes and joint

decoding/detection, the following result offers improvements.

Theorem 8. The closure region of all achievable joint communication and sensing rate/detection

error exponent pairs for the bi-static joint communication and sensing model satisfies
(R,E) e RY :
C"® 2 Djgin = U R < minges I(Px, Wy |x,s) , (21)
Px€P .
U E < min (pjoin(Px, R), ¢(Px))
where
_l’_
> , (22)

min min I(Px,P")—R

Pioint(Px, R) £ min _min (D(ﬁHWHX,s’PX) + |1 1
s'#s peP, ./ (P,Px,R)

seS ﬁE'Py‘X

and

Ps,s’(ﬁa Px,R) & {Pl € Pyx : D(P'||Wyx,¢|Px) + H(P'|Px)

< min (ﬁ(ﬁ, Px, R, s),D(P|[Wy x| Px) + H(ﬁ|PX)) ,PyoP' =Pxo 13},
where

B(P,Px,R,s) 2 min D(P"||Wy x| Px) + H(P"|Py). (23)
P//G,Py|xl]1(PX7PH)<R,

PxoP"=PxoP

The calculation of pjoini(Px, R) in (22) involves a minimization over Pc Pyx and P’ €
77375/(ﬁ7 Px,R). In Corollary 9, we provide a lower bound on pjn(Px, R) to simplify the
expression and show that it is greater than or equal to the compound channel communication-

error exponent pge.(Py, R).

Corollary 9. For all P, it holds that pjoin(Px,R) = psc(Px, R), and hence, Dijoini 2 Dyyce-
Moreover, pioin(Px, R) is lower bounded by

Pioint(Px, R) > min min < min yl(ﬁ, R, s), min 72(?, R, s)) , (24)

s PePy, (Px,R,s) PPy, . (Px,R.s)

where for all P and s,

~ ~ ~ +
(P, R, 5) £ D(P|Wypxs | Px) + [I(Px, P) - R



+
(P, R, s) 2 D(P||Wy x.,| Px) + [D(P| Wy x.|Px) + H(Px o P) — B(P, Px,R,s) — R| ,

and

Pyx(Px, R, 8) 2 {P € Pyjx : max B(P, Px, R, s") > D(P||Wyx,|Px) + H(P|Px)}

s"eS

Py x(Px, R, 8) 2 {P € Pyjx : max B(P, Px, R, s") < D(P||Wyx,|Px) + H(P|Px)}.

s"eS

Note that pce(Px, R) can be expressed as minimizing 7, (P, R, s) over all possible P and
all s. Therefore, we can show that pjiy is larger than pgy if 'yz(ﬁ, R,s) > fyl(ﬁ, R, s) for all
Pec 773§|X(PX, R,s). When Pc P§|X(PX7 R, s), one can observe that

D(P||Wy|x.s| Px) + H(Px o P) — I(Px, P) = D(P||Wy|x.s| Px) + H(P|Px)

is greater than 3(Px, R, s) and hence, 72(13, R,s) > vl(ﬁ, R, s). Therefore,

Pioint(Px, R) > min min <A min 71(13, R, s), min 71(13, R, s)) (25)
PeP.

s 52 (Pxss) PePY, (Px.s)
- psucc<PX7 R) (26)

Remark 5. It is known that the communication-error exponent is zero when one transmits at
the rate of compound channel capacity. Recall that pg.. is calculated by upper bounding the
detection-error probability by 1 when the message decoding error happens. Therefore, pgycc
is also zero when R = mingg ]I(PX,WY| X,s)- In contrast, pjsine can be positive even when
R = minges ]I(PX, Wy|X,s). This can be seen from the expression of 72(13, R, s) in Corollary 9,

and we will illustrate this by an example given in the next sub-section.

C. Numerical Examples

a) Mono-Static Model
We first consider the channel Wy 7 x ¢ defined in Table L. In this example, YV = Z = X =
{0,1} and Wy x s = Wy|x,s. Note that transmitting the symbol X = 1 is most useful to identify
the channel state because this is the situation in which the output distributions corresponding
to different states are most distinguishable. However, if the transmitter only transmits X = 1,
the communication rate would become zero as seen in Fig. 3a. Therefore, the tradeoff between

maximizing the detection-error exponent and maximizing the communication rate can be clearly



seen in Fig. 3a. On the other hand, the difference between CS,}Z@L and the inner bound of Cégs)ed
given in Theorem 6 is shown in Fig. 3b, illustrating how the communication rate is increased.
Indeed, the inner bound region for ngs)ed is larger than CE);ZL because the compound capacity
is here strictly less than the worst-case capacity.

In contrast to the channel given in Table I, for which the tradeoff between sensing and
communication exists, the channel given in Table II is a BSC for which, according to Corollary 5,
the best error exponent of detection is always achieved regardless of the type of codewords. The

result of Theorem 3 for this channel is illustrated in Fig. 4.

TABLE I: Table for Wy x s(0) = Wy |x,s(0) for all X € {0,1} and S € {0, 1,2}.

X
0 1
S
0 0.95 | 045
1 0.9 0.2
2 0.5 | 0.03
0.035 1 — Open Loop 0.025 -\I\
5 =)
= 0030 = 0.020 :
£ 002 g |
3 g 0.015
2 2
F 0020 i I
i < £
Z 0015 Z 0010 |
3 g !
:tl: 0.010 ;5 I
00051 __
0.005 1 Open Loop
me== Closed Loop I
0.000 T T T T T T T T 0.000 T T T T T — T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.1500 0.1525 0.1550 0.1575 0.1600 0.1625 0.1650 0.1675 0.1700
Achievable Rate (bits per channel use) Achievable Rate (bits per channel use)
m m . m
(a) C(()pe% (b) C(()pe,)~l and the inner bound of Cglos)ed

Fig. 3: Closure region C'roy and inner bounds for C") | corresponding to the channel of Table I.

b) Bi-Static Model
For the bi-static model, we present a numerical example as defined in Table III. Here, ) =
Z =X =1{0,1} and S = {0,1}. When S = 0, the channel Wy x, is a BSC with cross-over
probability 0.3, and Wy x ; is a BSC with cross-over probability 0.6. From Fig. 5, one observes
that Djuy, is strictly larger than Dy, especially when the code rate is high. When the rate is

low, the exponent pjoin is dominated by the Chernoff information ¢(Px ), which is approximately



TABLE II: Table for Wy x,s(0) = Wy|x,s(0) for all X € {0,1} and S € {0,1,2}.

X
0 1
S
0 09 | 0.1
1 0.8 | 0.2
2 0.7 | 0.3

0.007 A

0,006 T

(AU
o
(=3
=3
(2]

0.004 A+

0.003 ~+

0.002 A+

Achievable Exponent

0.001 4

0.000 T T T T T T T T
0.00  0.01 0.02  0.03 0.04 0.05 0.06 0.07 0.08

Achievable Rate (nats per channel use)

Fig. 4: Closure region C(();ZL corresponding to the channel of Table II.

0.048 in this example. When the rate is high, the exponent is dominated by a rate-dependent
term, capturing the fact the receiver’s inability to easily decode the transmitted sequence is what
drives performance. By the definition of pg,, the value of pg.. is zero when the code rate is at
the compound channel capacity. However, the joint detection scheme reaches a positive exponent
even when transmitting at the compound capacity, highlighting the benefits of joint detection

over successive decoding.

TABLE III: Table for Wy x s(0) for all X € {0,1} and S € {0, 1}.

X
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£ 0.03 1
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i TR

" ey .
0.00 T T T T I S e
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Fig. 5: Region Dy, and Dy corresponding to Table III.

V. DETAILED PROOFS

A. Achievability Proof of Theorem 3

We show that all (R, ') pairs within the region ngé)n are achievable. Since we restrict ourselves
to open-loop schemes, we may fix Py as the type of all codewords. Fix any € > 0. By [27,
Theorem 10.2], there exists a code with encoder f(™) and decoder A" such that f™ (w) € Py
for all w, the rate is at least min,es I(Px, Wy|x ) — €, and max,, P(h(Y") # w|S = 5) < € for

all s € S. Then, the detection-error exponent ¢(Py) is given by Lemma 10 adapted from [21,

Theorem 1].

Lemma 10. Suppose that the the codeword corresponding to the message w € [1; M| has type
Px € Pu, the conditional detection-error exponent Ey,, = —% log maxges P(g(Z") # s|S =

s,W = w) in an open-loop scheme is asymptotically upper bounded by

s s'#s £€[0,1]

¢(Px) £ min min max — Z Px(x)log (Z WZ|X,S(Z|x)lWZ|X,s/(Z|x)1—£> ‘

Moreover, it is also asymptotically achievable by a maximum likelihood estimator gy. Specif-

ically,
m%XP (gmL(Z™) # s|S = s, W =w) < @n(l)e_¢(PX) (27)
sE

for all w € [1; M), and for all s € S

P (gue(Z") # s|S =5, W = w) < O,(1)e¥:Ix), (28)



for all w € [1; M], where

1s(Px) £ min max — ZPX ) log (Z Wzix,s(2 z|x)* Wzix,s (2 E2 k. ) ) (29)

s'#s £€]0,1]

Taking the union over all possible Px leads to the region in (8).

B. Converse Proof of Theorem 3

Assume that the rate/detection-error exponent pair (R, E') is achievable. Then, for all € > 0,
there exists n sufficiently large and a codebook C™ such that
log |C(™)]|
n
max max P(h(Y") #w|W =w,5 =s) <e

s€S we[l;M]

>R —¢

1
2 P(g(Z") % s|W = w,S = s) > E — .
n o8 r?e%)(wgl[%\(/[} (9(27) 7 51 “ °) ‘

Since there is at most a polynomial number of types, there exists a set of types 7 such that, for

all Py € T, the subcode Cp, = {f(w) : Pyw) = Px} C C"™ satisfies

I?e%xwe}?f%px)lp(h(yn) FwlW =w,5=s) <e (30)
and
log (Cry| _ log|c™)
n n

—0>2R—-€—9 (31)

for some ¢ vanishing with €. Fix any Px € T. Let

Observe that
Px(z) 2 1 Z Px.(z) = Px(x), (32)
where ﬁxi is the ¢-th marginal distribution of ﬁgg. Then, for any state s,
(1 - €)log [Cr| — A (€) < T( P, Wit )

_HY" — > PRx)HY"|X" =a",s)

xXEX™

— > Py(a" ZHY|X"_x Yitls)

XEX™ i=1
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Il

s
I
—

H(Y;[y*1) —ZZPX (z)H(Y}| X; = 24, 5)

i=1 x;€X

N

1P, Wyix.)

=1

(©) _
< nl(Px, Wy|x.s) (33)

where hy (+) is the binary entropy function, (a) follows from Fano’s inequality and standard
techniques, (b) follows by identifying Y™ ~ P” oWEh YIXs and the definition of mutual information,
and (c) follows from the concavity of mutual information in the input distribution. Then, we

obtain

I(Py, Wyxs) + +
10g|CPX| < ( X Y‘Xv)—i_n’ (34)

n h 1—e¢
where we have used (32).

Since (34) is valid for any e and state s, the size of sub-codebook Cp, is upper bounded by

the mutual information in a compound channel, i.e.,
log ’CPX ‘

n
for some 7 > 0 vanishing with €. On the other hand, for this Px € T,

< melgl I(Px, Wy|x,s) + T (35)

E—e€
< —llo max max P(g(Z") # s|W =w,S = s)
no  seS well;M]
(2 —llogmax max  P(g(Z") # s|W =w,S = s)
n s€S wef~1(Cpy)
(0)
< o(Px) +6, (36)

where (a) follows by restricting the set to only the terms corresponding to messages in Cp,; ()
follows since the detection error is upper bounded by ¢(Pyx) for any message with type Px by
Lemma 10. Combining (35) and (36) and choosing Py = argminp, c7 ¢(Px), we conclude that

for all € > 0, there exist 7,6 > 0 vanishing with € such that
R < msin I(Px, Wy|x,s) +T+e€+0 (37)
E < ¢(Py)+6+e. (38)
Since €, 7,0 can be chosen arbitrarily small as the block length n goes to infinity, F is upper

bounded by ¢(Pyx) for some Px € Py and the rate R is achieved by this Py. Taking the union

over all possible Py completes the result of converse of Theorem 3.
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C. Proof of Theorem 6

1) Definition of the Code
Before the protocol starts, we fix n € N*, A, Ay € (0,1) such that A; + Ay < 1, and we
(1-A1—Ag)n\ IS NN
also fix some |S|-tuple {Px ¢ }sres € ( Px , where (P is the set of

tuples of types in PS_A“AQ)", as well as the number of messages M as
M = 77,(1 — Al — Ag) X (mi%H(PX’su, WY|X,S”> — (5) (39)
s'e

for some § > 0.

We first define gmr; as the maximum likelihood estimator at each time ¢ € N*, i.e.,
7

gmri(7', 2) = argmax H Waix,s(ze]we).
seS =1

Then, the code C™ = ({fi}icjim, 9™, B™) is defined through the following steps.
a) Initial Estimation
We define P} = argmax , _pan ¢(Px) and pick any length nA; sequence v = (v1, ..., van)
X

from the type class 7;,;?. Then, for 1 < i < A;n, the encoder is defined as
fi(w, 271 = v, (40)

for all w € [1; M] and 2! € Z71. At time A;n+ 1, the transmitter estimates the state by using
the maximum likelihood estimator § = gy a,n (2217, 2517).
b) State Information Transmission
The transmitter then conveys the information of the estimated state to the receiver by encoding
the estimated state 5 into a codeword. Since |S| does not grow with n, there exists a length Agn
channel code ( f , §) with arbitrarily small error probability, where f : S+ X227 is the encoder

and § : Y22" S is the decoder. Denoting %(3) = (21(3), ..., #a,n(3)) = f(5) the codeword

corresponding to §. Then, for Ajn < ¢ < (A1 + As)n, the encoder is defined as

filw, 271 = & apn(gue.agn (@27, 227)) (41)

for all w € [1; M] and 2! € Zi71,
c) Message Transmission
It is known that for every Py € Py, there exists a channel code with arbitrarily small error
probability € > 0 such that the rate is at least ]I(PX, Wy x.s)— 27 for any 7 > 0 when the channel

state is s € S and the number of channel uses is large enough. Therefore, for any s € S, there
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exist an ((1—A; —Ag)n, €) constant composition code with the type Py s for the state s channel
with rate mingrcsI(Px g7, Wy|x,¢) — ¢ for any € > 0, where the set of types {Px ¢ }ocs €
<73)((1 7A17A2)"> . is fixed at the beginning of the protocol. Let the channel code for the channel
with state s be characterized by ( fs, BS), where f; : [1; M] s X0~81782)n i5 the encoder and hs :
Y=Ai=a2)n s 11 M] is the decoder. Denoting X(w, s) = (Z1(w, 8), ..., Z(1-A, - ag)n (W, 8)) =
fs(w) the codeword corresponding to the message w € [1; M]. Then, for (A; + Ag)n < i < n,

we define the encoder as
filw, 271 = Fis Ay 1200 (W, gy g (217, 2517)) 42)
for all w € [1; M] and 2~ € Z°L.
d) Message Decoding and State Estimation

Finally, the message decoder is

h(m) <yn) = hg(yﬁfz+1) (y?A1+A2)n+1) (43)
for all y" € )", and the state estimator is
g™ (2", 2") = argmax H Wzix,s(2e|2e) (44)
s€S Z:(Al—‘rAg)’n—l-l
for all 2" € AX™ and 2" € Z". Note that we only use the subsequences TN+ A 41 and

Z(A 4+ A0)n41 for the state estimation in (44).
2) Analysis of the Communication Rate and Detection-Error Exponent
a) Rate Analysis

For any s € S any w € [1; M], the error probability of communication is
P(R(Y™) #W|W =w,S = s)
< P(gueam(X 3, Z87) # s|W = 5,8 = ) + P(W(YA2,,) # 5,5 = s|W = 5,5 = 5)
P (s (Yo, agpun) 7 0,5 = 5, h(VRZL) = 8| W = w, 8 = s). 45)

where we have applied the union bound. The first term of (45) comes from the event in which
the initial estimation of the state s is incorrect; the second term of (45) is the event in which the
decoding of the initial estimated state s is incorrect; the last term of (45) is the decoding error
probability. For any s € S and w € [1; M|, all terms on the right-hand side of (45) are arbitrarily
small when n is sufficiently large by our construction of the code. The rate of communication
is

1 .
R = = log "= Aa)(minres {Px oWy x 0=8) — (1 = Ay — A,) (min]I(PXﬁu, Wy x,s) — 5) .
n

s"eS
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By making A, A, and ¢ arbitrarily small, we conclude that mingregs I( Py g, Wy x,s) is achiev-
able.
b) Detection-Error Exponent Analysis

The error probability of detection is

chn) = max max P(¢™ (X", Z") # s|W =w, S = s)

s€S we[l;M]
= P | argma Wzixs W=w,S = . 46
max max gmax 11 21x.5(2e|T0) # 5 w s (46)

é:(A1+A2)n+1
Note that argmax,cs [[/_(a, 1+ apni1 Wzixs(2¢|ve) # s is the error event of applying the ML

estimator when the type of the input sequence is px»
(1-A1—Ag)n+1

= PX,§' For all ¢t € [H(Al +
Ay)+1;n], the channel input X, is chosen without using the feedback Z;‘( Ar+A)+1- Moreover, for

any w € [1; M|, the sequence Xg( has a constant type, which depends on s. Therefore,

Ar+A2)+1
we can apply Lemma 10 and the law of total probability to upper bound the error probability

of (46) as

P < max max SO P(E =W =w,5 =) x 0,(1) x eI 47)
s"’eS

< max O,(1) x e "I-Ai=Az)mingres ¥s(Px o) 48)

= 0,(1) x ¢ "I-A1-Az)minses minyres s (Px ) 49)

0y (1) x ¢SSl min (P ) o

where in (48) we lower bound the exponent ¢;(Px ¢#) by the minimum one and ©,,(1) is some
constant, and in (50) we swap the order of mings and ming s and apply the definition of ¢.

Then, we have shown that
EM > (1-A —Ay) min ¢(Py.s). (51)
se

A A IS )
By taking the union over all possible choices of {Px ¢ }srcs € (73)((1 A1=42) ) and making

A1, Ay arbitrarily small, we conclude that the following region is achievable.
(R,E) e R% :
U R < minges [(Pxs, Wyx.s) (52)

~
—Aq—Ao)n\IS] .
{PX,S//}S//ES€<P§(1 S1782) ) E g mlnSGS ¢(PX,S>
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To recover the result of Theorem 6, note that for any Px € Py, there exists some type ﬁX S
77 (1817820 qich that Px(x) — ﬁX(a:) < nforany x € X and n > 0 for some n large enough.
A similar continuity argument can be used to guarantee that the rate and exponent derived by
Py would be ¢ (n)-close to the result obtained by Py, where the difference £(n) vanishes with
n. By taking the union of all {Px s}scs, we conclude that the closure of all achievable regions
is at least
(R,E) e R :
U R < minges I(Pxo, Wy (x.0) ¢ - (53)
Pt Pyl | E < minges ¢(Py.)

which completes the proof.

D. Proof of Theorem 8

We first construct the code by the following steps. Fix a specific type Px. The length n
codeword corresponds to the message w € [1; M] is x,, and is uniformly drawn from the type
class T2, . The message decoder and the state estimator are jointly defined as

(w,8) = argmax P(y|S=s X" =xy,). (54)

we[l;M],s€S
The message decoder h(*) and the state estimator ¢g(*) are then well-defined by (54). Note that the
codewords {X'w}we[l; M) are random and so is the code C®. Since we have fixed the definition
of h® and ¢, with a slight abuse of notation, we denote C) = {x,}scp.ar as the set of
codewords in the derivation below. We next derive the detection-error exponent when averaging
over C), which codewords are drawn uniformly from 7'15‘X.
a) Detection-error Analysis

Without loss of generality we assume that the message w = 1 is transmitted and the state

S = s for some s € S. The error event is the set of all received y that would result in detection

errors and is defined as

ES{yeY: max P(y|S = s, X" =x;) < max P(y|S =5, X" = x;) for some s’ # s}.
1;M] JEL;M]

For any Py| x € Py, it is known from [28] that the probability of receiving y € ﬂxl(ﬁy‘ x)

is upper bounded by

P (y € T (Pyix)| X" =%, 8 = 8) < e TP EPrixl Wyl Px) (55)
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For all y € Y™ and for any k # 1, we define the random variable

Ii(y)

£1 (IE?XP(}’|S =35 X" =% <P(y|S =¢,X" =x;) for some s’ # s)

=1 (33 7é s s.t " 2wy Px(@)Py|xy (ylz) log Wy x o (y]2) > maxe ZzyPX(I)pyxg(ylx)IOgWY|Xs(yx)) ’
£k
as well as the variable
Ji(y) 21 (33/ £ s st e 2,y PX @)Dy x, (y]2) log Wy x o (yl) > " 2,y PX @)Dy, (y]2) 10gWY\x,s(ylw)> )
(56)
The randomness of the variables /;(y) and J;(y) comes from the random coding, i.e., the type
PDy|x, is random. [;,(y) is equal to one when there exists some state s # s such that the likelihood
calculated according to the state s’ and the codeword k is greater than the maximal possible
likelihood according to the state s. Then, the average detection error probability can be upper

bounded by the following
Ec(b) [P( S|X = Xq, S )]

Z Z Z P(y| X" =x;1,5 = s)P(error| X" =x;,5 =5, Y" =y) (57)

x1€7~ P(l) y€T|x1 (Pyl\)x)

Z YooY PEIX"=x1,5=5)Y Eeony, Ly)X" =x1,5 =3

P n
X x1€TH P() y€7'|x1( Y\X) k#1

Z Z Z (len =x1,5 = S)Jl(Y)v (58)

XIETIQ P() yGT‘xl(

Al
where the expectation is taken over all possibilities of codewords {x,},.1. Note that I;(y) is
random because the codewords {x;}¢,; are drawn from 7z uniformly, and hence, {py|x, }ex1
are random, as well.

The difficulty of analyzing I;,(y) comes from the term maxg., ¢ 2-=v PX (©)Pylx, (W) 108 Wy x5 (o)

which involves a maximization over exponentially many indices ¢. Observe that

r?ggi e 2,y PX @)Dy, (y|2) log Wy x s (ylz) _ I?j;g( e—n(D(ﬁyW Wy x| Px ) +H(By x| Px)) ' (59)

Note that the type pDyx, is fixed when y € T, ( Y‘)X) for some Px(/|)x € P3x- Therefore, in the

2nf_2
following we define a set A;, of conditional types {{ VI X}@¢{1 k}} <73y‘ X) . such that
when x; € Ty. (PB(,K‘)X) for all ¢ # {1, k}, we can control the right-hand side of (59). Moreover,
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Ay, needs to have the property that {{Py|x, }e¢(1.4} } € Ai with high probability. Specifically, we
define

./4 (P}(/LX)PX) ) {{ |X}£¢{1 k} € (Pylx) - ZVP,/ € PSZ;‘X S.t. ]I(PX,P”) < R
and Py o P" = Py o P\ 3j ¢ {1,k} st Py = P", P}y o Py = Py o Px ¥j ¢ {1, k:}} ,

as the set of conditional types such that for all P” € Py, , satisfying I(Px, P") < R there exists

some index j ¢ {1, k} such that the corresponding conditional type P)(,l)X = P". The constraint

P;RX oPx = P)(,RX o Px for all j ¢ {1,k} comes from the fact that when y € T, ( y|X) the
type of y is Px(fﬂx o Py, and hence P(x; € Ty.( Y‘X)) =0 if P}(f'X o Py # P}(}'X o Py.

Then, by using the law of total probability, we have
Econ, Ik(¥)X" =x1,8 = 5]

= Y TI Pee TP B [T ()| X" = %1, = 5,5y, = PNV ¢ {18}

{ﬁ}(fl)x}“{m} £¢{1,k}

E ~ : A AZ
) IT Ploxe€ T (BB, I ()| X" = 31,5 = 5.y, = BV ¢ {1,1)]
{AY\X}ZQU k) £¢{1,k}

APy Px . R)

+ > [T Pexe e T (PEX)).

{ﬁ1(/2|))(}€§5{1,k}$Ak(P;(/|)X Py R) (E{1k}

Note that when {ﬁx(f|x}€¢{17k} € Ak(Pl(/‘}(, Px, R), it holds that

min_ D( Y|X||Wy|XS|PX)+H( |X]PX)

0¢{k,1}

< min D(P"||Wyxs|Px) + H(P"|Px) (60)
PPy, A(Px,P")<R,PxoP"=PxoP{y

_ﬁn( y|X7PXaR S) (61)

where (60) follows since for every P’ € P;l - there is some P( ) such that PY

Y|X Y|X = = P" by

definition of Aj. Then, for y € T|xl( Vi X) it holds that

max e” > e,y Px @)Dy x, (y|z) log Wy | x s (y]2)
s

> max( ~nBn(Py Pxos) o =nD(PY Wy x5l Po)+H( le\P;a)

by applying the right-hand side of (59) and (61). Therefore, when { X} g1k} € Ak( Y| X, Px,R)
and y € T\xl( v X) the indicator function [; can be upper bounded by
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Ii(y) < Z 1 (Xk € 7;'\.<P),/|X) for some PXI/\X € Py (AY|X7 Px, R>) ; (62)
s'#s
where

/\

PRk P ) 2 { % € P - ¢" T PR 3 ) by .1

S o mmin (B (P P R) ORI Wy x| Pox) y‘X|PX)) !y 0 Px = ]31(/1|>X o Px}.

Then,

Z H P(x; € Ty).( Y\X)) X}, []k (Y)‘Xn =x1,5 =5, Dyx, = PY|XV€ ¢ {1, k}]
{ y|X}i§E{1 k} Eﬁé{l k}

APy Px.R)

< > P (xx € Ty.(Pyix)) (63)

7S Py €P (P Px R)

Y|X
< exp | —mmin min (I(Px, Pyx) —on(1)) |, (64)
78 Py €PT (P Px,R)
where we have used the fact [29, (41)] that
Thers
P (Xk € Ty (P Y|X SRR < exp ( nl(Px, Y|X))
“onpl ‘

Y|X
and \Pgs,(ﬁf/ll)x, Px, R)| < poly(n). Moreover, for all P” € Py, such that I(Px, P") < R and
for all ¢ ¢ {1,k}, it holds that

P (x¢ ¢ Ty.(P")) < 1 — e PP )ron(V) (65)

—n(&+on(1))

<e® , (66)

for some £ < R, where in (65) we lower bound P (xk € 7;|,(P¥‘X)> by e~n(UPx.P")+on(1) 29,
(14)] and in (66) we use the fact that 1 — x < e for all 2 € R. Then,

> [T Pexee Ty (PY)) < > [T PGxe ¢ T5.(P")) (67

{Ay‘X}Zg{l,k} {1k} P'epn  I(Px,P")<R, tE{1k}

MES
EA(PY)y . Px ,R) PxoP"=PxoP{)y
nR
< |pn _e—n(E—on(1)\ € 63
< | y|X| € (68)

L enon(l) y gme T (69)

)



28

which has the double exponential form and decays much faster than the right-hand side of
(64), where (67) follows since {ﬁi(/e')X}gg{Lk} ¢ Ak(Ai(,l‘)X, Py, R) implies that there exists some
P" € Py, such that I(Py, P") < R, Pxo P" = Pxo P\ but no x; lies in Ty.(P"). Therefore,
fory € Tix, ( Y|X) it holds that

Econg, Le(y)| X" =x1,8 = s] < exp (—nmln min (I(Px, Pyx) — on(l))) :
SES Py €PT (P Px,R)
(70)
By applying inequality (70) to the first term on the right-hand side of (58) and using (55), we
obtain
| Px x;’” A%): Z » P(y[X" =x1,5 = s) ;Ec@)\xl e (y)| X" = %1, 5 = 5]
x Py ¥E€T 5, (PY‘X)
< poly(n)
X exp (—n IAI%11>II <D(ﬁ§(/1|)x||WYX7S\PX) + II/llIl min (I( Py, P1//|X) —o0,(1)) — R)) )
PO, 78 Py €PT(PY)y Px R)
(71)
Besides, the term
Z P(y|X" =x1,5 = 5)Ji(y)
SThy Py yET e, (PUy)

is the detection-error probability by using the ML detector when the codeword is known. From

Lemma 10, we have

Z YD PEIXT=x1,8 =8)A(y) < e ) (72)

P n
X x1€TH P() yGT\xl( Y\X)

Combining (58), (71), (72), we have
Eew [P (5 # 5| X" =x1,8 = 5)] < e*nmin(¢(Px)7pjoim(Px,R)*e(n)), (73)

where €(n) — 0 when n — oo. The definition of pjsn(Px, R) involves the optimization over
conditional distributions, i.e., minﬁepm and min, eP, +(P.Px.R) but the result we obtained in
(71) involves optimization over conditional types of length n sequences. However, when n is
sufficiently large, any conditional distribution in Py, x can be approximated by conditional types

in Py, ,, with some deviation §(n) with lim,, o d(r) = 0. Since all the functions in the definition
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of pjoim(PX, R) is continuous in the conditional distribution, the difference between the right-
hand side of (71) and pjein(Rx, R) can be bounded by some €(d(n)) and again vanishes with

n. The right-hand side of (73) is irrelevant to the message and the state, and hence,

1 .
Eee) i Zp (84 s|X" =x,,5 = s)] < e min(¢(Px) pjoin (Px . R)—(6)) (74)

for all s € S by the linearity of expectation.
b) Communication-error Analysis

By [27, Lemma 10.1 and Theorem 10.2], we have that,
Eew |max maxP(i # w|X™ = X, S = s5)| < e MPuePx.R)=r)

where x vanishes with n.
¢) Derandomization and Expurgation

By the Markov’s inequality, we have for any (; > 0

1 .
Pc(b) (35 - S S.t M gp (§ ;é S|Xn = qu S — S) > efn(mln((ls(PX)ﬂpjoim(PX7R)75(5))7C1)

or max max P(w # w| X" =x,,5 = s) > e_”(”“““(PX’R)_CZ))
S w

Eew |17 2w P (8 # s| X" =%, S =5)]  Eop [max, max, P( # w| X" = x,, S = s)]

<|S
< IS] e—n(min((ﬁ(Px),pjuim(PX,R)—e(ﬁ))—ﬁ) e—"(psuce(Px ,R)—(2)
(75)
<[Sle™™ + e, (76)
which goes to zero when n — oo. Therefore, there exists some code C®) such that
M
HlélX = Z P (5 s|X" =x,,5 = s) < 6—n(m1n(¢(PX)7pjoim(PX,R)—E(5))_Cl)’ (717)
w=1
max max P(i # w| X" = x,, S = 5) < e "Puce(Px. ) =C2) (78)
when n is sufficiently large. By the codebook expurgation argument, there exists a code C'®) £
{%,} C CY with size |[C®| = |C?)|/2 such that
maxmaxP (§ # s| X" = %,,5 = s) < 2e—n<min(¢(PX)7Pjoim(PX,R)—E((S))_Cl)’ (79)

max max P(i # w| X" = x,, S = 5) < ¢ "Puec(Px,R)=C2), (80)
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For every R < min, I(Px, Wy|x ), there exists some (, small enough such that pgcc(Px, R) —
(2 > 0. Therefore, for every R < min, I( Py, Wy x.s) there exists a code C'® with rate R—o0,(1)

such that

1
——logmaxmaxP (5 # s| X" = X,,, S = 5) > min(¢(Px), pjoinc(Px, R)) — €, (81)
n

S w

max max P(w # w| X" =x,,5 =s) <e¢ (82)

for any € > 0 whenever n is sufficiently large. The theorem is proved by taking the union over

all possible Px.

E. Proof of Corollary 9

Recall that the definition of pjoin(Px, R) is

min min I(Px,P")—R
s'#s P’EPSVS/(P,P)(,R)

n
> . (83)

seS

Pioint(Px, R) £ min mfin (D(ﬁHan,s’PX) +

For any 18, Px, s € S and §' # s, the definition of 73575/(16, Px,R) is

Puw(P,Px,R) £ {P’ tD(P[Wy x| Px) + H(P'|Px)

< min <B(ﬁ7PX7R7S)vﬂ)(ﬁHWY|X,s|PX>+H(ﬁ|PX>> 7PXOP/:PXOP\}-

The value of min (5(18, Px,R,S),D(ﬁHWy|X75|Px) +]I-]I(ﬁ|PX)> depends on P, s and Py.
Therefore, for each s € S and Py, we partition the set Pyjx into Py, 1 (Px, s) and Py, (P, s),

where

Pya(Px, R, 8) 2 {P € Pyjx : max (P, Px, R, s") > D(P||Wyx,|Px) + H(P|Px)}

s"eS

Y(Px, Rys) £ (P € Pyy : max (P, Px, R.s") < D(P||Wy x| Px) + H(P|Px)}.

For each s € S, and Px, we define
+

p(Px, R, s, P) 2 D(P||Wy|x.s|Px) + |min min I(Px,P')— R

(84)
s'#s p'eP, ./ (P,Px,R)

The exponent pjine(Px, R) is then

Pioint(Px, R) = min min ( min p(Px, R, s, ﬁ), min p(Px, R, s, ﬁ)) . (85)

s€S PPy, (Px,R.s) PePY, (Px,R,s)
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We first analyze the term min, minp_p, (Px.R.s) p(Px, R, s, 16) Let the arguments of the min-
le b k)

imization of the term
+
min ]D(PHWyp(,slP)() +

PEPS}‘X(P)(,R,S)

min min I(Px,P)—R
s'#s P'eP, ./ (P,Px,R)

be achieved by the tuple (13, s', P'), where P, s and P’ are the minimizer corresponding to

mins, o,
Pepy, "

I(Pyx, P') > I(Py, P), then

(Py sy TDs/ 2 and min, eP, +(P.Px.R)’ respectively. Given the tuple ( ﬁ, s, P, if

+
min D(ﬁHWY|X,s’PX) +

PEP&‘X(P)(,R,S)

min min I(Py,P)—R

s'#s PIEIPS’S/ (P,Px,R)

= D(P|Wy x| Px) + [I(Px, P') — R|*
~ ~ +
> D(P||[Wyx,s| Px) + ‘H(P)m P) — R‘
~ ~ +
> min D(P|Wy x| Px) + ‘]I(PX,P) _R

PG’PS}‘X(P)(,R,S)

~

On the other hand, if the minimizer P’ satisfies I(Px, P') < I(Px, P), then by definition of
Py (P, Px) and the fact that P € P5, (Px, R, s) it holds that

D(P||Wy|x,s| Px) = D(P'|Wyx,¢|Px)

Moreover, since P’ € 735,5/(}3, Py, R), it holds that

D(P'||Wy x.¢|Px) + H(P'|Px) < B(P, Px, R, 5) (86)
:/B(P/7PX7R78) (87)
< mafsc B(P', Px,R,s"), (88)

s''e

where in (87) we use the fact that Py o P’ = Px o P. Therefore, by definition of 735,‘ + and (83),
it holds that P € Py, (Px, R, s'). Then,

+
~ min D(P||Wyxs|Px)+ [min  min  I(Px,P)-R (89)
PG'PS}‘X(P)(,R,S) s'#s PIGPS,SI(P,PX)
= D(P|| Wy x| Px) + [I(Px, P') = R[" (90)
> D(P'|Wypx.o |Px) + [I(Px, P') = R|" O1)
> min D(P'||Wyx.«|Px) + [I(Px, P") — R|". (92)
P'ePl, .. (Px,R,s")

y|x
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~ ~

Taking the minimum over both cases of I(Px, P') > I(Px, P) and I(Px, P’) < I(Px, P) and
all possible s € S, we obtain that

~ ~ ~ +
min _ min p(Px, R, s, P) > min min D(P||Wyx,s|Px) + [I(Px, P) — R

PEPY x (Px ,R,s) S PePY, v (Px,Ris)

(93)

Our next step is to analyze min, minp,p, (Px.R.s) p(Px, R, s, ﬁ) We assume again that the
y‘X ) bl

minimization of the term

+
~ min D(P|Wyxs|Px)+ |min  min  I(Py,P)—R
PEPy (Px R.s) s'#3 P'eP, 4(P,Px,R)
is achieved by the tuple (P, s, P').
Given the tuple (P, s, P'), if D(P||Wy x| Px) = D(P'|Wy|x.«|Px), then
+
~ min D(P|Wyxs|Px)+ |min  min  I(Px,P)-R (94)
PEPY, ,(Px,R,s) s'#s peP, ./ (P,Px,R)
— D(P||Wy x4 Px) + [I(Px, P") — R|* (95)
> D(P'||Wy|x.«|Px) + |I(Px, P') — R|" (96)
> min  D(P||Wyxe|Px)+ [I(Px, P) = R|", 97
P'eP}, o (Px,Rys")

where (97) follows from the fact that P' € Py, (Px, R,s') and has the same form as the
right-hand side of (93). On the other hand, if ]D)(]3HWy|X’s\PX) < D(P'||Wyx,#|Px), we have

+
min  min  I(Px,P')— R

s'#s P'eP, 4(PPx)

min D(ﬁ||WY\X,s|PX) +

P€P§|X(PX7R75)

= D(P|Wy x| Px) + [I(Px,P') — R|"

> D(ﬁHwa,s\PX) + ‘D(P’||WY|X78/|PX) + H(Px o P') — D(P'||Wy x,s|Px) — H(P'|Px) — R|+
+

(@ ~ ~ ~ ~
2 min ]D)(PHWY|X,S‘PX) + D<PHWY\X,S‘PX) +H(PX op) - ﬁ(Pa PX7R>S) - R )

ﬁePﬁﬁ‘X(Px,R,s)

(98)

where (a) follows since P’ € P, (P, Px, R) implies that —D(P'||Wyx.«|Px) — H(P'|Px) >
—5(13, Px, R, s) and we use the fact that Py o P’ = Py o p.
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Finally, by taking the minimum over all s and applying the fact that pjn(Px, R) is the

minimum of the right-hand sides of (93) and (98), we conclude that

~

Pioint(Px , R) > min min min (P, R,s), min 72(]3, R,s) |, (99)

s PePS, (Px,R.s) PPy, . (Px,R.s)

where for all 18, R and s,

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

~ ~ +
(P, R, s) £ D(P|Wy|xs|Px) + |I(Px,P) — R
Jr
D(P[[Wyx s|Px) + |D(P[Wy|xs|Px) + H(Px o P) — B(Px, R,s) — R

)
(V)
e
kv
=
>
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