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Abstract—We analyze a distributed stochastic bandit model in
which an agent controls multiple independent stochastic bandit
machines. At each time step, the agent selects several machines
for parallel exploitation but the arm pulled by each machine may
differ from the command received either randomly (defective
command) or adversarially (corrupted command). Machines
that faithfully execute commands are called honest. We study
situations in which the number of honest machines is either
known or unknown and define appropriate notion of regrets.
With at least one honest machine and a known number of
honest bandits, we provide a simple algorithm that achieves
O(nl/ 2) regrets when commands are corrupted. Lower bounds
on regret established by drawing connections to the problem of
“low probability of detection,” show the near optimality of the
regret achieved by the algorithms.

I. INTRODUCTION

In bandit problems, a player pulls an arm on a bandit
machine at each time instant and obtains a corresponding
reward. A standard objective for the player is to minimize his
regret [1], defined as the difference between his rewards and
those of the best arm pull strategy, over a fixed time horizon.
The player then faces a trade-off between exploiting the most
profitable arm identified from past rewards or exploring new
arms. Standard algorithms, such as Upper Confidence Bound
(UCB) [2] or Active Arm Elimination (AAE) [3], achieve
optimal performance by only devoting a small fraction of the
time to exploration but are vulnerable to corruptions. [4] and
[5] investigate the effect of reward corruption and develop
regret upper bounds that depend on the number of reward
corruptions. Unlike [4], [5], we investigate the problem of
command corruption, i.e., the arms pulled differ from those
determined by the commands. Defective commands are those
that change randomly, while corrupted commands are those
that change adversarially.

Sub-linear regret is not guaranteed with defective or cor-
rupted commands: an adversary may alter all commands to
play sub-optimal arms. For the bandit problem to remain
meaningful, we therefore assume that multiple distributed
bandit machines are present. At each time step, an agent selects
a subset of bandit machines to obtain multiple copies of a
reward. Unlike [6], [7], which allow exchanges of information
between distributed bandit machines, the commands are here
determined locally by each bandit machine. With at least one
honest machine in the environment, i.e., one without corrupted
or defective commands, we shall show that the agent is able
to distinguish corrupted/defective machines from honest ones,

to control the number of corruptions/defections affecting the
commands and achieve sub-linear regret.

Literature Review Different approaches have been pro-
posed to analyze the performance of bandits games in the
presence of adversaries. [4], [5] investigate the regret mini-
mization problem in the stochastic bandit setting with bounded
but unknown number of corruption on rewards, while [8], [9]
studies the best arm identification problem in this setting. [10]
explores the case of adversarial bandit, in which rewards are
fully decided by an adversary, using the EXP3 algorithm. More
works related to corruptions on reward can be found in [11]-
[14]. Additionally, the existence of an adversary can cause
privacy issues if the adversary has access to the rewards or in-
put commands. [15], [16] address this challenge by introducing
differential privacy in the stochastic bandit setting. In contrast,
our model is motivated by distributed sensor networks, in
which an agent probes multiple, possibly malfunctioning, sen-
sors measuring the same physical phenomenon. The objective
of the agent is to obtain the best measurements possible even
in the presence of malfunctions.

The problem formulation of this work is inspired by the
problem of “low probability of detection,” in the communica-
tion system studied by [17]-[19]. Let n be the time duration.
These works show that the fraction of non-innocent symbols
transmitted needs to be at least in for the received outputs
to have a noticeable difference from the outputs when no
communication happens. In the present work, the objective of
the agent in this work is to detect the existence of adversaries
by observing the rewards. A similar square root law, which
says that the number of corruptions/defects on commands
within any time ¢ need to be at least (/%) to have a noticeable
difference in the outputs, can be obtained.

II. PROBLEM FORMULATION

Distributed stochastic bandit model Consider an agent
connected to a set Zy = {0,..., N — 1} of bandit machines
with identical number of arms and reward distributions. Let
K =1{0,..., K — 1} be the set of arms. Upon pulling the kth
arm on machine ¢, the reward is an independent realization of a
Bernoulli random variable with unknown parameter pj. With-
out loss of generality we assume that pg > g1 > -+ > -1,
and we define A = pg — pi as the difference of expected
rewards between arm 0 and arm k. Throughout, we assume
that A, = Q(1) for all k # 0, i.e., Ay is not decreasing w.r.t
the time horizon n for all k # 0.



Over a fixed time horizon n, the agent and the bandit
machines operates at each time ¢ € [1;n] as follows. The
agent sends selection signals to a subset Sy C T of machines
computed according to a policy ;. For every i € &,
the 7th machine uses a local policy 77751) to determines a
command Agi) indicating which arm to pull. A reward Xt(i)
is then obtained and fed back to the agent along with the
command A( The pohcy W,() is allowed to depend on
past commands {A }g<t&3ﬂ3,, rewards {X }€<t&8/31
while the policy v, is allowed to depend on past received
rewards and commands from all machines. Unknown to the
agent, a subset of machines, identified by indices in a subset
Im C In with |Z,,| = m, is malfunctioning. Specifically,
if A € K is the arm pull command of the ith machine
at the time ¢, the actual arm pulled is Agl) + Wt(’), where
for all a,b € K the addition is defined as (a + b) mod K.
The machine ¢ is called honest if W(l) = 0 for all ¢; it is
called defective it W ~ P for all ¢ and PP0) < 1;

and it is called corrupted if W(z) (z) ]P’W< DX AW

i.e., the attack is determined by a policy qbt that depends on
past observations and commands. Note that X,(f_)l is defined
as the vector that contains all the past rewards in the machine
i before the time ¢, i.e., XEZ_)l £ {Xéz)}ge[l;t,l] & S,oi» and
Agi) = {Aéi)}ge[l;t] & S, is defined similarly.

Regret for known number of honest machines. With a
known number of honest machines h = N — m, the agent
should select i machines and we define the expected regret

under the policies {1 }+¢[1;) and {Wii)}iEIN,te[l;n] as

R(Zn, {¥t }reiins {Ft(l)}iez,v,teu;n])
n N-—1

—nh,uo—zz { )lzeSt)} (1)

t=1 =0

Note that (1) depends on the indices of honest machines, so
that a strategy might perform well for a certain hypothesis 7,
but poorly for another. For instance, a strategy that always
chooses the first A machines performs well if the honest
machines are in Z, = {0,...,h — 1} but poorly otherwise
since a corrupted/defective machine is then always selected. A
good strategy should perform well regardless of Z;. Therefore,
we define the universal expected regret under the policies

{wt}te[l;n] and {Wt(i)}iez,\,,te[l;n] as

RUniversal({d}t}te[l;n]a {ng) }iEIN,te[l;n])
= Ima')?l( R(Iha {qpt}té[l;n]a {ﬂ-)gl)}iEIN,tE[l;n]) (2)

h h

where H;, is the collection of all sets 7, C Zy with size h.

Objective. The objective of the proposed algorithm is to de-
vise policies {ﬂ’t}te[l :n) and {7rt }ieTn te[iim] that minimize
the regret defined in (2).

Notation. To streamline the presentation, we introduce the
following notation. We define W = [Wéz)]{g:iegz} as
the sequence of noises perturbing the command sequence
of machine ¢ when the machine ¢ is selected. Additionally,

{ngz)}gel\] be the series of noises that are added to the kth
arm of the ¢th machine. The number of commands for pulhng
arm k issued by machine i up to time ¢ is denoted as T ( ),
ie., T( () = > prensms,si | 1(A" = k). The tilde Landau

notation, i.e., O,6,€, @, and ©, are defined in the same way
as conventional Landau notations but ignoring logarithmic
factors. For simplicity, we assume Ay = Q(1) for all k # 0,
so the dependency on Ay are also hidden in the expression
of Landau notations. Apj, = ming-g Ag. All the Landau
notation mentioned in this paper are asymptotic relative to the
time horizon n.

Discussion on the definition of regrets. There is always
a certain cost related to choosing a specific arm. When the
value of h is known, nhpy is the maximal possible expected
rewards obtainable without the influence of corruptions, i.e.,
rewards are generated from the arms indicated by the agent’s
commands. One can obtain expected rewards more than nhg
by choosing more than h machines, but it would make the
“costs” related to choosing arms not as efficient due to poten-
tial corruptions from adversary. Therefore, the regret defined
in (2) measures the difference between the maximal expected
reward obtainable without the influence of corruptions, i.e.
nhp, and the expected reward obtained by a specific strategy
that chooses h machines.

Remark 1 (Why not forcing the algorithm to learn h).
Defining the regret properly when the number of honest
machines is unknown is challenging. Specifically, as pointed
out in Section IV, the corrupted/defective machines might be
impossible to detect, which happens for instance when the
number of corruptions/defect is low. Therefore, we fix the
number of chosen machines in (1) to make the regret well-
defined and study the impact of corrupted/defective commands
in this scenario.

Remark 2 (Relation to covert communication). In covert
communication, the number of transmitted messages should
obey the square-root law in order to make the warden unaware
of the transmission. Similarly, if the number of corruptions
introduced by the adversaries does not follow the square-root
law, the agent is able to detect them and avoid selecting those
corrupted machines.

Due to the page limit, we only show the results related
to corruption machines in this paper. Results on defective
machines will be available in the our full paper.

III. REGRET UPPER BOUNDS

A. Known Corruption

We first modify the UCB algorithm to obtain an algorithm
that folerates a certain number of corruptions on commands.
Specifically, we say that an algorithm tolerates a certain
number of corruptions if the number of sub-optimal commands
generated by the algorithm has the same order as the number
of corruptions. The formal definition is given below



Algorithm 1: Corrupt-Tolerant-UCB (CT-UCB)
Input: i, \, a,n, t )
1 Define ¢; £ (2 + \A)

2 Let
» oo if T\ (t—1)=0.
ANt -1) =< ¢ cin®logn .
e ( ) u?(t—l)—&- ﬁ otherwise.

3 The arm chosen is Agi) = arg maxXgec A Agj)(t —1).
Output: A" = CT-UCB(i, , a,n, t).

Definition 1 (Tolerance). Let n be the time duration. A
multi-arm bandit algorithm {7rt }ee[1;n), which determines the
commands on the machine i, tolerates C(n) corruptions if

E[T," (n)] = O(C(n)) 3)

for all k € K\ {0} and for all W) that satisfy the inequality
[[W@||g < C(n) for all sufficiently large n.

The algorithm, named Corruption-Tolerant-UCB, is shown
in Algorithm 1. The idea of the algorithm is to enlarge the
confidence region so that the true mean is within the upper
confidence bound with high probability, even if the arms pulled
are perturbed by the corruptlons Specifically, let ué)( t) =
™G 2 o S X '1(A E = k) be the observed empirical mean

of the output d1str1but10n of the arm k € K obtained from
observing the rewards from the machine 7. Note that ,u,(c)(t)
is not the true empirical mean of the arm k because X, might
be generated from different arms. Then, the upper confidence
bound A (¢) is defined as

oo if T (t—1) =0.

~ (1) cin®logn
t—1) 4 [enloan
fu,( ) T (t—1)

D 1y
Ay (t—1) otherwise,

where the value of o and ¢; depends on how tolerant we
want the algorithm to be. When the machine determines the
commands by using the Corruption-Tolerant-UCB algorithm,
the expected number of commands for pulling each arm k €
K\ {0} is given in Theorem 2.

Theorem 2. Assume I 2 1 (IW@|lg < An®logn) con-
verges to 1 almost surely for all i € Iy when n — oo for
some A>0and 0 < a <1, ie,

1> =1.

Assume the value of A\ and o is known. Then, the average
number of commands for pulling arm k € K\ {0} for the
machine 1 is

WOl
4
<n%oo An“logn — @

E[T}” (n)] )

regardless of the policy {1t }ic[1;n) when the machine deter-
mines the commands by the CT-UCB algorithm defined in
Algorithm 1.

=0 (n“logn)

Theorem 2 implies that Algorithm 1 is An® log n tolerating,
and the expected number of commands for pulling the arm
k # 0 is upper bounded by O(n®log n). One can immediately
conclude that the universal expected regret is u;))per bounded
by O(n®logn) for any policy ¢;c[1;,] and {7rt
characterized by Algorithm 1.

Corollary 3. If I\ 2 1 (W 1lg < An®logn) converges to
1 almost surely for all © € Iy when n — oo for some A > 0
and 0 < o < 1, then

Runiversat ({01 Viezn vefiim]s {me Yeepim]) < O(n® logn)
(1)

for any 1y when for all t € [1;n] and i € S;, the policy m;
is characterized by CT-UCB(i, \, a, n, ).

}ZEIN,tE[l in]

Proof. 1t follows directly from Theorem 2 and the upper bound
W@ ||y < An®logn. O

B. Unknown Corruption and Known Number of Corrupted

Machines

The CT-UCB algorithm and Theorem 2 in the previous
section require knowledge of A\ and a. When the attack is
adversarial, knowing the value of A and « is not possible
without properly designing the selection rule {9 }ie[1;n)-
Moreover, the adversarial attacks may completely change the
performance of each arm, i.e., the adversary can control the
actual arm pulled A; @4 Wt( 2 corresponding to the command
A(l) To control the number of sub-optimal commands in
th1s_ case, we first extend Theorem 2 in Coroll_ary 4. Let
N (0) = Ticppon 5,50 LA = kAP + W 0) be
the number of pulls on sub-optimal arms when the command

is pulling the arm k, and let L*(n) = ”%#m Define the
event "
g a) 1 5 ( ‘>+k#0)>\/a+\/§
o L*(n) — we ~— logn
mdﬁ%mzL%m}U{d%m<L%m}
where ¢; = (241v/\)2. Then, we have the following corollary.

Corollary 4. Fix any i € L. Assume there exists a sequence
of non-empty sets of indices {IC}(n)}nen depending on i such
that 1 (N,gL) (n) < An%logn for all kf € Kf(n)) converges
to 1 almost surely when n — oo for some > 0 and

0 <a<]l Ifevent

(ﬁke;c\{lc:(n)}gl(iw

happens for all but finitely many n, then the average number
of commands for pulling arm k € K\ ICf(n) for machine i is

E[T}" (n)] = O (n"(log n)?) (©6)

when the machine determines the commands by the UCB
algorithm defined in Algorithm 1 with the knowledge of «
and \.

Corollary 4 extends Theorem 2 with the following modified
conditions.



o We do not need an assumption on |[W®||y. Instead, we
only require the existence of some arm k; € Kf(n) that
behaves like an optimal arm, i.e., Né?
n is sufficiently large.

« We require that the number of pulls on sub-optimal arms

corresponding to commands of pulling any arm k& € K\

KC¥(n) is greater than L*(n) ‘/5%5 if T,Ei)(n) > L*(n).

Note that we do not demand K}(n) to be {0} because, in
the presence of corruptions, any arm may behave like an
optimal arm. When the first condition is satisfied, there exists
some arm that behaves like an optimal arm after corruption.
Moreover, the second condition ensures that the difference
between empirical means of any k£ € K \ Kf(n) and any
k¥ € Kj(n) is large enough so that the algorithm has no
ambiguity in identifying arms behaving like an optimal one.
When the two conditions in Corollary 4 are satisfied, fix any
te[l;n] i

kr € Ki(n), we define the following event
'u’kL*(n) Ho ¢ 5

where for any L € N, the notation jiyy, is the empirical mean
calculated from the L copies of rewards when the command
is pulling arm k. One can observe that

P (1) > L*(m)) <P ((G")).
Proving Corollary 4 is then equivalent to proving that
g,i” happens with low probability for all & € K \
Kf(n). The first condition and the second condition
are used to show that {,uOZminte[lm] A,(:)(t)} and

~(2) cin®logn

{,uk Lo T T+ (n) > Mo} happens with low probability,
respectively. If all the conditions in Corollary 4 are sat-
isfied, we can upper bounded the regret contributed from
each machine i € Iy by N\ (n) + Dkernkr(m) L W) <
O(n*(log n)?). The design philosophy of our algorithm for the
policy vy, called Algorithm 2, is then to assume a predefined
value of A and « in the CT-UCB algorithm and exclude the
corrupted machines as quickly as possible before the condition
in Corollary 4 fails.

Outline of Algorithm 2: In Algorithm 2, the commands
are determined by the CT-UCB with parameter A\ = 2 and
a =1/2 for all ¢ € [1;n] and for all machines, i.e., we expect
that there exists some arm k] such that N, lgl) < 2n'/2logn for
all 7 € Zy. At each time t, the algorithmlselects h machines
uniformly from the active set A;. If machine ¢ € Zy fails the
first condition in Corollary 4, its maximum empirical mean,
Al(mzx( t) £ maxgei ﬂ,(j)(t), is very likely to have a detectable
difference from the mean of the arm 0, po, at some time ¢ €
[1; n]. Hence, we should exclude the machine 7 from the active
set if the difference between ﬂ,(,fgx(t) and pg is greater than a
threshold 7;. Moreover, if the second condition in Corollary 4
does not hold, there exists some arm &k ¢ K} (n) such that its
empirical mean at some time T, ﬂg) (7), is close to 1, where
T is the time such that T;*(7) = L*(n). Therefore, we should

() < An®logn when

éfj) 4 {,uo < min A(*( )}

cin®logn
L*(n)

also exclude the machine ¢ from the active set, if there exists

some k ¢ K (n) such that the difference between 1 and the

empirical mean ﬂg)(t) is less than a threshold (; for some

t > y/nlogn. However, there are some challenges to make

such comparison.

« For simplicity, we have assumed that arm 0 is the one
with the highest mean. However, this information is actually
unknown to the algorithm so is the value of .

o We do not know the set of indices K} (n).

e The thresholds 7; and (; need to be chosen properly. If
7 is too small, there might be a honest machine excluded
from the active set. On the other hand, if 7, is too large, a
corrupted machine which does not satisfy the first condition
in Corollary 4 might not be excluded. A similar trade-off
also happens for the choice of (;.

¢ We need to ensure that no honest machine is excluded from
the active set.

We solve the first challenge by comparing [Lfﬁgx( t) to AN (¢) £

maxpei Max;e A, ﬂ,(;)(t) foreach: € Zy and t > /nlogn as

shown in line 11 in Algorithm 2. Owing to the fact that there is
always an honest machine in our setting, the value of i2%(¢) is
not far from p if the number of arm pulled is large enough. In
order to have a good estimate of the empirical means, we need
to ensure that the number of commands for pulling each arm is
not too small and Lemma 5, with proof omitted, provides such
guarantee. Therefore, Algorithm 2 starts excluding machines

when t > \/nlogn.
Lemma 5. Forall j € Iy, k € K and t > \/nlogn,

. 0

if Algorithm 2 is applied.

The second challenge comes from the fact that we do
not require K (n) = {0}, and hence the set K \ K£}(n) is
unknown. We solve this by comparing uk)( t) to ,ul(m)lx( t) for
all k € IC\ {Amdx t)}, where AI(HZX( t) £ argmaxgex /l,(;) (t)
is the empirical best arm of the machine ¢ at the time ¢. If
any k € K\ Kf(n) does not satisfy the second condition in
Corollary 4, then the machine ¢ must be in the active set A(7)
for some 7 > y/nlogn such that Téz)(T 1) = L*(n) — 1
and YT w4k 2 _0) < L*(n)% for some
k € K\ K5 (n). This means ﬂ,(rfgx(T -1)

_ — (1) 2 G
for all k € K\ {AI(IQX(T — 1)}, and we show in the proof of
Lemma 7 that this happens with low probability.

The thresholds defined below have a good balance between

excluding corrupted machines and maintaining honest ma-
chines as shown in the proof of Lemma 6 and Lemma 7.

i —1/2
IR (TA(n(t)(t)) log T, ), (8) (M
e £ max ;) ®)
o [ Va+V2
=4 <\/@ ) . ©)



Line 15-16 in Algorithm 2 means that the empirical best
arm for any machine that remains in the active set should not
change. This modification is made mainly to solve a technical
issue in the proof of Lemma 7, by which results Afﬁgx(t) might
not be belong to the set K} (n) for some ¢ > /nlog n. Finally,
Lemma 6 ensures that no honest machine is excluded.
Lemma 6. [f Algorithm 2 is applied, no honest machine is

excluded from the active set A; for all time t when n — oo.
Specifically, defining the event

N ﬂ({Am = ARt -1}

t>\/nlogn i€y
fmax (8)| <1 and T, i) () =

t
m{um\x( ) \/@}

{0 = a0 ®) = ¢ vk € K\ {AR (¢ )}>,

v, &

then P (NS, UX_ V) = 1.

Lemma 7. Fix any i € Zy. For any attack policy, there exists
a sequence of non-empty sets of indices {C; (n) }nen such that

1(N () < 2012 logn for all k; € K7 (n)) 5 1 when

n — oo and mkelc\{)c*(n)} B,(Clzl happens for infinitely many n
if Algorithm 2 is applied with parameter o = 1/2 and A = 2.

Algorithm 2:
Input: n,h,m
Initialization: A; = Zpn
1 while t < n do

2 if t < \/nlogn then

3 Ay = Ay

4 Choose h machines out of A; uniformly.

s | Forallic S, A" = CT-UCB(4,2,1/2,n,t).

6 else
Amax _ NOY 1

7 fmax = maxgex (maxiea,_, fy, (t—1)).

8 Vie Ai_q, u,(nq),((t—l)*maxke;cu (t—1),
AS (¢ — 1) = argmaxgex i) (t— 1)

9 Let 7 = 0.

10 for i € A;_1 do

n if | (¢ — 1) — AR (t — 1) | > m-1 or

Ta@-nt =D < gy then
12 L J =Ju{i}.
13 if ﬂr(na)x(t —-1)— ﬂ,(j)(t — 1) < {¢—1 for some
ke K\ {A{(t — 1)} then

14 | J=Ju{i}.

15 if A,(,f“( 1) # Afnlgx(t — 2) then

16 | J=JU{i}.

17 Ay = A1\ T

18 Choose h machines out of A; uniformly.

19 | Forallie S, A = CTUCB(4,2,1/2,n,t)

Upper Bounds of Regret for Algorithm 2

Theorem 8. The universal expected regret defined in
(2) achieved by Algorithm 2 is upper bounded by

O (n'/?(logn)?) for all adversarial attack policies
{]P)Wt('i)‘Xii_)lAi?l}iEIm’te[l;n]'

Sketch Proof of Theorem 8: The proof of Theorem 8
follows directly from Lemma 6 and Lemma 7. Lemma 6
guarantees that no honest sensor is excluded from the active
set A; for all ¢ € [1;n], while Lemma 7 says that the two
conditions in Corollary 4 are satisfied for all machines with
a =1/2 and A = 2. The theorem is then proved by applying
the result in Corollary 4.

IV. REGRET LOWER BOUNDS

Theorem 9. There exist attack policies
{IPW(-)‘X(-) A<‘>}ieI ste[1;n] Such that the universal expected

regret defined in (2) is at least Q( 1/2) for any policies
{7Tt }LEIN,tE 1;n) a”d {Ye i

Sketch of Proof We prove Theorem 9 by contradiction.
If there exists an algorithm such that the universal expected
regret is 6(n'/?) for all attack policies, then the regret is
O(n®) for all attack policies and for some o < 1/2. However,
we can show that there exists an attack policy such that
the regret is at least w(n®) whenever @ < 1/2, and this
complete the proof. To begin with, we define the attack policy

P i) A as follows.
”t( )‘}(531A§21
(w) 1—nf1 fw=0
P )@ A (W)= B—1
W X A n .
oK ALY -1 if w 7& 0,

for all ¢ € Z,, and ¢t € [1;n] and for some 1/2 > (§ >
a > 0. Note that by the Chernoft bound, HW(()Z)HO = Q(n?)
with probability arbitrarily close to 1 for any ¢ € Z,,. This
implies that if the algorithm cannot exclude the machine ¢ €
I, from the active set before time n for all possible Z,,, then
the expected accumulated regret is at least Q(n®) = &(n®).
By denoting X* and A? as all rewards and commands from
all machines before the time ¢, if there exists an (Zj,Z},) pair
and a positive sequence {d;} such that

P(yy(X* ™1 AT = T[Ty

+ P (XL AT =T,|7) > 6 (10)

for all ¢ € [1;n], where 6, > § > 0 for all ¢ € [1;n] and for
some d > 0, we show in supplementary document that

RUniversal({wt}te[l;nb {’”gl)}iEIN,tE[l in] ) > gQ( )
The condition in (10) implies that the algorithm cannot distin-
guish between the hypothesis Z;, and Z;, and hence, there
is a non-zero probability that a defective machine remains
in the active set. Note that P(yy(X'~!, A1) = T/ |7;,) +
]P’(wt(Xt,At) = Ih‘I},L) Z 1-— D(thuhHth‘I;L). There-
fore, it suffices to show that the divergence D(Px:|z, |[Pxt|z; )
is small for all ¢ € [1;n]. Finally, we show in the supple-
mentary document that D(Px:z,||Pxtz;) = o(1) for all
t € [1;n] whenever 8 < 1/2, which completes the proof.
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