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Abstract—We analyze a distributed stochastic bandit model in
which an agent controls multiple independent stochastic bandit
machines. At each time step, the agent selects several machines
for parallel exploitation but the arm pulled by each machine may
differ from the command received either randomly (defective
command) or adversarially (corrupted command). Machines
that faithfully execute commands are called honest. We study
situations in which the number of honest machines is either
known or unknown and define appropriate notion of regrets.
With at least one honest machine and a known number of
honest bandits, we provide a simple algorithm that achieves

Õ(n1/2) regrets when commands are corrupted. Lower bounds
on regret established by drawing connections to the problem of
“low probability of detection,” show the near optimality of the
regret achieved by the algorithms.

I. INTRODUCTION

In bandit problems, a player pulls an arm on a bandit

machine at each time instant and obtains a corresponding

reward. A standard objective for the player is to minimize his

regret [1], defined as the difference between his rewards and

those of the best arm pull strategy, over a fixed time horizon.

The player then faces a trade-off between exploiting the most

profitable arm identified from past rewards or exploring new

arms. Standard algorithms, such as Upper Confidence Bound

(UCB) [2] or Active Arm Elimination (AAE) [3], achieve

optimal performance by only devoting a small fraction of the

time to exploration but are vulnerable to corruptions. [4] and

[5] investigate the effect of reward corruption and develop

regret upper bounds that depend on the number of reward

corruptions. Unlike [4], [5], we investigate the problem of

command corruption, i.e., the arms pulled differ from those

determined by the commands. Defective commands are those

that change randomly, while corrupted commands are those

that change adversarially.

Sub-linear regret is not guaranteed with defective or cor-

rupted commands: an adversary may alter all commands to

play sub-optimal arms. For the bandit problem to remain

meaningful, we therefore assume that multiple distributed

bandit machines are present. At each time step, an agent selects

a subset of bandit machines to obtain multiple copies of a

reward. Unlike [6], [7], which allow exchanges of information

between distributed bandit machines, the commands are here

determined locally by each bandit machine. With at least one

honest machine in the environment, i.e., one without corrupted

or defective commands, we shall show that the agent is able

to distinguish corrupted/defective machines from honest ones,

to control the number of corruptions/defections affecting the

commands and achieve sub-linear regret.

Literature Review Different approaches have been pro-

posed to analyze the performance of bandits games in the

presence of adversaries. [4], [5] investigate the regret mini-

mization problem in the stochastic bandit setting with bounded

but unknown number of corruption on rewards, while [8], [9]

studies the best arm identification problem in this setting. [10]

explores the case of adversarial bandit, in which rewards are

fully decided by an adversary, using the EXP3 algorithm. More

works related to corruptions on reward can be found in [11]–

[14]. Additionally, the existence of an adversary can cause

privacy issues if the adversary has access to the rewards or in-

put commands. [15], [16] address this challenge by introducing

differential privacy in the stochastic bandit setting. In contrast,

our model is motivated by distributed sensor networks, in

which an agent probes multiple, possibly malfunctioning, sen-

sors measuring the same physical phenomenon. The objective

of the agent is to obtain the best measurements possible even

in the presence of malfunctions.

The problem formulation of this work is inspired by the

problem of “low probability of detection,” in the communica-

tion system studied by [17]–[19]. Let n be the time duration.

These works show that the fraction of non-innocent symbols

transmitted needs to be at least 1√
n

for the received outputs

to have a noticeable difference from the outputs when no

communication happens. In the present work, the objective of

the agent in this work is to detect the existence of adversaries

by observing the rewards. A similar square root law, which

says that the number of corruptions/defects on commands

within any time t need to be at least Ω(
√
t) to have a noticeable

difference in the outputs, can be obtained.

II. PROBLEM FORMULATION

Distributed stochastic bandit model Consider an agent

connected to a set IN = {0, ..., N − 1} of bandit machines

with identical number of arms and reward distributions. Let

K = {0, ...,K − 1} be the set of arms. Upon pulling the kth

arm on machine i, the reward is an independent realization of a

Bernoulli random variable with unknown parameter µk. With-

out loss of generality we assume that µ0 > µ1 > · · · > µK−1,

and we define ∆k = µ0 − µk as the difference of expected

rewards between arm 0 and arm k. Throughout, we assume

that ∆k = Ω(1) for all k ̸= 0, i.e., ∆k is not decreasing w.r.t

the time horizon n for all k ̸= 0.



Over a fixed time horizon n, the agent and the bandit

machines operates at each time t ∈ [1;n] as follows. The

agent sends selection signals to a subset St ⊂ IN of machines

computed according to a policy ψt. For every i ∈ St,

the ith machine uses a local policy π
(i)
t to determines a

command A
(i)
t indicating which arm to pull. A reward X

(i)
t

is then obtained and fed back to the agent along with the

command A
(i)
t . The policy π

(i)
t is allowed to depend on

past commands {A(i)
ℓ }ℓ<t & Sℓ∋i, rewards {X(i)

t }ℓ<t & Sℓ∋i

while the policy ψt is allowed to depend on past received

rewards and commands from all machines. Unknown to the

agent, a subset of machines, identified by indices in a subset

Im ⊂ IN with |Im| = m, is malfunctioning. Specifically,

if A
(i)
t ∈ K is the arm pull command of the ith machine

at the time t, the actual arm pulled is A
(i)
t + W

(i)
t , where

for all a, b ∈ K the addition is defined as (a + b) mod K.

The machine i is called honest if W
(i)
t = 0 for all t; it is

called defective if W
(i)
t ∼ P

(i)
W for all t and P

(i)
W (0) < 1;

and it is called corrupted if W
(i)
t ∼ φ

(i)
t ≜ P

W
(i)
t |X(i)

t−1A
(i)
t

,

i.e., the attack is determined by a policy φ
(i)
t that depends on

past observations and commands. Note that X
(i)
t−1 is defined

as the vector that contains all the past rewards in the machine

i before the time t, i.e., X
(i)
t−1 ≜ {X(i)

ℓ }ℓ∈[1;t−1] & Sℓ∋i, and

A
(i)
t ≜ {A(i)

ℓ }ℓ∈[1;t] & Sℓ∋i is defined similarly.

Regret for known number of honest machines. With a

known number of honest machines h = N − m, the agent

should select h machines and we define the expected regret

under the policies {ψt}t∈[1;n] and {π(i)
t }i∈IN ,t∈[1;n] as

R(Ih, {ψt}t∈[1;n], {π(i)
t }i∈IN ,t∈[1;n])

≜ nhµ0 −
n
∑

t=1

N−1
∑

i=0

E

{

X
(i)
t 1(i ∈ St)

}

. (1)

Note that (1) depends on the indices of honest machines, so

that a strategy might perform well for a certain hypothesis Ih
but poorly for another. For instance, a strategy that always

chooses the first h machines performs well if the honest

machines are in Ih = {0, ..., h − 1} but poorly otherwise

since a corrupted/defective machine is then always selected. A

good strategy should perform well regardless of Ih. Therefore,

we define the universal expected regret under the policies

{ψt}t∈[1;n] and {π(i)
t }i∈IN ,t∈[1;n] as

RUniversal({ψt}t∈[1;n], {π(i)
t }i∈IN ,t∈[1;n])

≜ max
Ih∈Hh

R(Ih, {ψt}t∈[1;n], {π(i)
t }i∈IN ,t∈[1;n]) (2)

where Hh is the collection of all sets Ih ⊂ IN with size h.

Objective. The objective of the proposed algorithm is to de-

vise policies {ψt}t∈[1;n] and {π(i)
t }i∈IN ,t∈[1;n] that minimize

the regret defined in (2).

Notation. To streamline the presentation, we introduce the

following notation. We define W
(i) = [W

(i)
ℓ ]{ℓ:i∈Sℓ} as

the sequence of noises perturbing the command sequence

of machine i when the machine i is selected. Additionally,

{W (i)
kℓ }ℓ∈N be the series of noises that are added to the kth

arm of the ith machine. The number of commands for pulling

arm k issued by machine i up to time t is denoted as T
(i)
k (t),

i.e., T
(i)
k (t) =

∑

{ℓ∈[1;t]:Sℓ∋i} 1(A
(i)
t = k). The tilde Landau

notation, i.e., Õ, õ, Ω̃, ω̃, and Θ̃, are defined in the same way

as conventional Landau notations but ignoring logarithmic

factors. For simplicity, we assume ∆k = Ω(1) for all k ̸= 0,

so the dependency on ∆k are also hidden in the expression

of Landau notations. ∆min = mink ̸=0 ∆k. All the Landau

notation mentioned in this paper are asymptotic relative to the

time horizon n.

Discussion on the definition of regrets. There is always

a certain cost related to choosing a specific arm. When the

value of h is known, nhµ0 is the maximal possible expected

rewards obtainable without the influence of corruptions, i.e.,

rewards are generated from the arms indicated by the agent’s

commands. One can obtain expected rewards more than nhµ0

by choosing more than h machines, but it would make the

“costs” related to choosing arms not as efficient due to poten-

tial corruptions from adversary. Therefore, the regret defined

in (2) measures the difference between the maximal expected

reward obtainable without the influence of corruptions, i.e.

nhµ0, and the expected reward obtained by a specific strategy

that chooses h machines.

Remark 1 (Why not forcing the algorithm to learn h).

Defining the regret properly when the number of honest

machines is unknown is challenging. Specifically, as pointed

out in Section IV, the corrupted/defective machines might be

impossible to detect, which happens for instance when the

number of corruptions/defect is low. Therefore, we fix the

number of chosen machines in (1) to make the regret well-

defined and study the impact of corrupted/defective commands

in this scenario.

Remark 2 (Relation to covert communication). In covert

communication, the number of transmitted messages should

obey the square-root law in order to make the warden unaware

of the transmission. Similarly, if the number of corruptions

introduced by the adversaries does not follow the square-root

law, the agent is able to detect them and avoid selecting those

corrupted machines.

Due to the page limit, we only show the results related

to corruption machines in this paper. Results on defective

machines will be available in the our full paper.

III. REGRET UPPER BOUNDS

A. Known Corruption

We first modify the UCB algorithm to obtain an algorithm

that tolerates a certain number of corruptions on commands.

Specifically, we say that an algorithm tolerates a certain

number of corruptions if the number of sub-optimal commands

generated by the algorithm has the same order as the number

of corruptions. The formal definition is given below



Algorithm 1: Corrupt-Tolerant-UCB (CT-UCB)

Input: i, λ, α, n, t

1 Define c1 ≜

(

2 +
√
λ
)2

2 Let

Λ
(i)
k (t− 1) =







∞ if T
(i)
k (t− 1) = 0.

µ̂
(i)
k (t− 1) +

√

c1nα logn

T
(i)
k

(t−1)
otherwise.

3 The arm chosen is A
(i)
t = argmaxk∈A Λ

(i)
k (t− 1).

Output: A
(i)
t = CT-UCB(i, λ, α, n, t).

Definition 1 (Tolerance). Let n be the time duration. A

multi-arm bandit algorithm {π(i)
t }t∈[1;n], which determines the

commands on the machine i, tolerates C(n) corruptions if

E[T
(i)
k (n)] = O(C(n)) (3)

for all k ∈ K\{0} and for all W(i) that satisfy the inequality

||W(i)||0 ≤ C(n) for all sufficiently large n.

The algorithm, named Corruption-Tolerant-UCB, is shown

in Algorithm 1. The idea of the algorithm is to enlarge the

confidence region so that the true mean is within the upper

confidence bound with high probability, even if the arms pulled

are perturbed by the corruptions. Specifically, let µ̂
(i)
k (t) ≜

1

T
(i)
k

(t)

∑t
ℓ=1X

(i)
ℓ 1(A

(i)
ℓ = k) be the observed empirical mean

of the output distribution of the arm k ∈ K obtained from

observing the rewards from the machine i. Note that µ̂
(i)
k (t)

is not the true empirical mean of the arm k because Xℓ might

be generated from different arms. Then, the upper confidence

bound Λ
(i)
k (t) is defined as

Λ
(i)
k (t− 1) =







∞ if T
(i)
k (t− 1) = 0.

µ̂
(i)
k (t− 1) +

√

c1nα logn

T
(i)
k

(t−1)
otherwise,

where the value of α and c1 depends on how tolerant we

want the algorithm to be. When the machine determines the

commands by using the Corruption-Tolerant-UCB algorithm,

the expected number of commands for pulling each arm k ∈
K \ {0} is given in Theorem 2.

Theorem 2. Assume I
(i)
n ≜ 1

(

||W(i)||0 ≤ λnα log n
)

con-

verges to 1 almost surely for all i ∈ IN when n → ∞ for

some λ > 0 and 0 ≤ α < 1, i.e.,

P

(

lim
n→∞

||W(i)||0
λnα log n

≤ 1

)

= 1. (4)

Assume the value of λ and α is known. Then, the average

number of commands for pulling arm k ∈ K \ {0} for the

machine i is

E[T
(i)
k (n)] = O (nα log n) (5)

regardless of the policy {ψt}t∈[1;n] when the machine deter-

mines the commands by the CT-UCB algorithm defined in

Algorithm 1.

Theorem 2 implies that Algorithm 1 is λnα log n tolerating,

and the expected number of commands for pulling the arm

k ̸= 0 is upper bounded by O(nα log n). One can immediately

conclude that the universal expected regret is upper bounded

by O(nα log n) for any policy ψt∈[1;n] and {π(i)
t }i∈IN ,t∈[1;n]

characterized by Algorithm 1.

Corollary 3. If I
(i)
n ≜ 1

(

||W(i)||0 ≤ λnα log n
)

converges to

1 almost surely for all i ∈ IN when n → ∞ for some λ > 0
and 0 ≤ α < 1, then

RUniversal({ψt}i∈IN ,t∈[1;n], {π(i)
t }t∈[1;n]) ≤ O(nα log n)

for any ψt when for all t ∈ [1;n] and i ∈ St, the policy π
(i)
t

is characterized by CT-UCB(i, λ, α, n, t).

Proof. It follows directly from Theorem 2 and the upper bound

||W(i)||0 ≤ λnα log n.

B. Unknown Corruption and Known Number of Corrupted

Machines

The CT-UCB algorithm and Theorem 2 in the previous
section require knowledge of λ and α. When the attack is
adversarial, knowing the value of λ and α is not possible
without properly designing the selection rule {ψt}t∈[1;n].
Moreover, the adversarial attacks may completely change the
performance of each arm, i.e., the adversary can control the

actual arm pulled A
(i)
t +W

(i)
t corresponding to the command

A
(i)
t . To control the number of sub-optimal commands in

this case, we first extend Theorem 2 in Corollary 4. Let

N
(i)
k (n) =

∑

t∈[1;n],St∋i 1(A
(i)
t = k,A

(i)
t + W

(i)
t ̸= 0) be

the number of pulls on sub-optimal arms when the command

is pulling the arm k, and let L∗(n) = nα(logn)2

∆2
min

. Define the

event

B(i)
k,n ≜

{

1

L∗(n)

L∗(n)
∑

ℓ=1

1(W
(i)
kℓ + k ̸= 0) ≥

√
c1 +

√
2√

log n

and T
(i)
k (n) ≥ L

∗(n)

}

⋃

{

T
(i)
k (n) < L

∗(n)
}

,

where c1 = (2+
√
λ)2. Then, we have the following corollary.

Corollary 4. Fix any i ∈ IN . Assume there exists a sequence

of non-empty sets of indices {K∗
i (n)}n∈N depending on i such

that 1
(

N
(i)
k∗

i
(n) ≤ λnα log n for all k∗i ∈ K∗

i (n)
)

converges

to 1 almost surely when n → ∞ for some λ > 0 and

0 ≤ α < 1. If event
(

∩k∈K\{K∗

i
(n)}B(i)

k,n

)

happens for all but finitely many n, then the average number

of commands for pulling arm k ∈ K \K∗
i (n) for machine i is

E[T
(i)
k (n)] = O

(

nα(log n)2
)

(6)

when the machine determines the commands by the UCB

algorithm defined in Algorithm 1 with the knowledge of α
and λ.

Corollary 4 extends Theorem 2 with the following modified

conditions.



• We do not need an assumption on ||W(i)||0. Instead, we

only require the existence of some arm k∗i ∈ K∗
i (n) that

behaves like an optimal arm, i.e., N
(i)
k∗

i
(n) ≤ λnα log n when

n is sufficiently large.

• We require that the number of pulls on sub-optimal arms

corresponding to commands of pulling any arm k ∈ K \
K∗

i (n) is greater than L∗(n)
√
c1+

√
2√

logn
if T

(i)
k (n) ≥ L∗(n).

Note that we do not demand K∗
i (n) to be {0} because, in

the presence of corruptions, any arm may behave like an
optimal arm. When the first condition is satisfied, there exists
some arm that behaves like an optimal arm after corruption.
Moreover, the second condition ensures that the difference
between empirical means of any k ∈ K \ K∗

i (n) and any
k∗i ∈ K∗

i (n) is large enough so that the algorithm has no
ambiguity in identifying arms behaving like an optimal one.
When the two conditions in Corollary 4 are satisfied, fix any
k∗i ∈ K∗

i (n), we define the following event

G̃(i)
k ≜

{

µ0 < min
t∈[1;n]

Λ
(i)
k∗

i
(t)

}

⋂

{

µ̂
(i)

kL∗(n) +

√

c1nα log n

L∗(n)
< µ0

}

,

where for any L ∈ N, the notation µ̂kL is the empirical mean

calculated from the L copies of rewards when the command

is pulling arm k. One can observe that

P

(

T
(i)
k (n) > L∗(n)

)

≤ P

((

G̃(i)
k

)c)

.

Proving Corollary 4 is then equivalent to proving that

G̃(i)
k happens with low probability for all k ∈ K \

K∗
i (n). The first condition and the second condition

are used to show that
{

µ0 ≥ mint∈[1;n] Λ
(i)
k∗

i
(t)
}

and
{

µ̂
(i)
kL∗(n) +

√

c1nα logn
L∗(n) ≥ µ0

}

happens with low probability,

respectively. If all the conditions in Corollary 4 are sat-

isfied, we can upper bounded the regret contributed from

each machine i ∈ IN by N
(i)
k (n) +

∑

k∈K\K∗

i
(n) T

(i)
k (n) ≤

O(nα(log n)2). The design philosophy of our algorithm for the

policy ψt, called Algorithm 2, is then to assume a predefined

value of λ and α in the CT-UCB algorithm and exclude the

corrupted machines as quickly as possible before the condition

in Corollary 4 fails.

Outline of Algorithm 2: In Algorithm 2, the commands

are determined by the CT-UCB with parameter λ = 2 and

α = 1/2 for all t ∈ [1;n] and for all machines, i.e., we expect

that there exists some arm k∗i such that N
(i)
k∗

i
≤ 2n1/2 log n for

all i ∈ IN . At each time t, the algorithm selects h machines

uniformly from the active set At. If machine i ∈ IN fails the

first condition in Corollary 4, its maximum empirical mean,

µ̂
(i)
max(t) ≜ maxk∈K µ̂

(i)
k (t), is very likely to have a detectable

difference from the mean of the arm 0, µ0, at some time t ∈
[1;n]. Hence, we should exclude the machine i from the active

set if the difference between µ̂
(i)
max(t) and µ0 is greater than a

threshold ηt. Moreover, if the second condition in Corollary 4

does not hold, there exists some arm k /∈ K∗
i (n) such that its

empirical mean at some time τ , µ̂
(i)
k (τ), is close to µ0, where

τ is the time such that T ∗
k (τ) = L∗(n). Therefore, we should

also exclude the machine i from the active set, if there exists

some k /∈ K∗
i (n) such that the difference between µ0 and the

empirical mean µ̂
(i)
k (t) is less than a threshold ζt for some

t ≥ √
n log n. However, there are some challenges to make

such comparison.

• For simplicity, we have assumed that arm 0 is the one

with the highest mean. However, this information is actually

unknown to the algorithm so is the value of µ0.

• We do not know the set of indices K∗
i (n).

• The thresholds ηt and ζt need to be chosen properly. If

ηt is too small, there might be a honest machine excluded

from the active set. On the other hand, if ηt is too large, a

corrupted machine which does not satisfy the first condition

in Corollary 4 might not be excluded. A similar trade-off

also happens for the choice of ζt.
• We need to ensure that no honest machine is excluded from

the active set.

We solve the first challenge by comparing µ̂
(i)
max(t) to µ̂max

max(t) ≜

maxk∈K maxi∈At
µ̂
(i)
k (t) for each i ∈ IN and t ≥ √

n log n as

shown in line 11 in Algorithm 2. Owing to the fact that there is

always an honest machine in our setting, the value of µ̂max
max(t) is

not far from µ0 if the number of arm pulled is large enough. In

order to have a good estimate of the empirical means, we need

to ensure that the number of commands for pulling each arm is

not too small and Lemma 5, with proof omitted, provides such

guarantee. Therefore, Algorithm 2 starts excluding machines

when t >
√
n log n.

Lemma 5. For all j ∈ IN , k ∈ K and t >
√
n log n,

P

(

lim
n→∞

1

(

T
(j)
k (t)

n1/2 log n
> 0

)

= 1

)

= 1

if Algorithm 2 is applied.

The second challenge comes from the fact that we do

not require K∗
i (n) = {0}, and hence the set K \ K∗

i (n) is

unknown. We solve this by comparing µ̂
(i)
k (t) to µ̂

(i)
max(t) for

all k ∈ K \ {A(i)
max(t)}, where A

(i)
max(t) ≜ argmaxk∈K µ̂

(i)
k (t)

is the empirical best arm of the machine i at the time t. If

any k ∈ K \ K∗
i (n) does not satisfy the second condition in

Corollary 4, then the machine i must be in the active set A(τ)

for some τ ≥ √
n log n such that T

(i)
k (τ − 1) = L∗(n) − 1

and
∑L∗(n)−1

ℓ=1 1(W
(i)
kℓ + k ̸= 0) < L∗(n)

√
c1+

√
2√

logn
for some

k ∈ K\K∗
i (n). This means µ̂

(i)
max(τ − 1)− µ̂

(i)
k (τ − 1) ≥ ζτ−1

for all k ∈ K \ {A(i)
max(τ − 1)}, and we show in the proof of

Lemma 7 that this happens with low probability.
The thresholds defined below have a good balance between

excluding corrupted machines and maintaining honest ma-
chines as shown in the proof of Lemma 6 and Lemma 7.

η
(i)
t ≜ 4

(

T
A

(i)
max(t)

(t)
)−1/2√

log T
A

(i)
max(t)

(t) (7)

ηt ≜ max
i∈At

η
(i)
t (8)

ζt ≜ 4

(√
c1 +

√
2√

log n

)

. (9)



Line 15-16 in Algorithm 2 means that the empirical best

arm for any machine that remains in the active set should not

change. This modification is made mainly to solve a technical

issue in the proof of Lemma 7, by which results A
(i)
max(t) might

not be belong to the set K∗
i (n) for some t >

√
n log n. Finally,

Lemma 6 ensures that no honest machine is excluded.

Lemma 6. If Algorithm 2 is applied, no honest machine is
excluded from the active set At for all time t when n → ∞.
Specifically, defining the event

Vn ≜
⋂

t≥√
n logn

⋂

i∈Ih

(

{

A
(i)
max(t) = A

(i)
max(t− 1)

}

⋂

{

|µ̂(i)
max(t)− µ̂

max
max(t)| < ηt and T

A
(i)
max(t)

(t) ≥ t√
log t

}

⋂

{

µ̂
(i)
max(t)− µ̂

(i)
k (t) ≥ ζt ∀k ∈ K \ {A(i)

max(t)
}

)

,

then P (∩∞
n=1 ∪∞

m=n Vm) = 1.

Lemma 7. Fix any i ∈ IN . For any attack policy, there exists

a sequence of non-empty sets of indices {K∗
i (n)}n∈N such that

1
(

N
(i)
k∗

i
(n) ≤ 2n1/2 log n for all k∗i ∈ K∗

i (n)
)

a.s−→ 1 when

n→ ∞ and
⋂

k∈K\{K∗

i
(n)} B

(i)
k,n happens for infinitely many n

if Algorithm 2 is applied with parameter α = 1/2 and λ = 2.

Algorithm 2:

Input: n, h,m
Initialization: A1 = IN

1 while t ≤ n do

2 if t ≤ √
n logn then

3 At = A1

4 Choose h machines out of At uniformly.

5 For all i ∈ St, A
(i)
t = CT-UCB(i, 2, 1/2, n, t).

6 else

7 µ̂max
max = maxk∈K

(

maxi∈At−1
µ̂
(i)
k (t− 1)

)

.

8 ∀i ∈ At−1, µ̂
(i)
max(t− 1) = maxk∈K µ̂

(i)
k (t− 1),

A
(i)
max(t− 1) = argmaxk∈K µ̂

(i)
k (t− 1)

9 Let J = ∅.
10 for i ∈ At−1 do

11 if |µ̂(i)
max(t− 1)− µ̂max

max(t− 1)| ≥ ηt−1 or

T
A

(i)
max(t−1)

(t− 1) < t−1√
log(t−1)

then

12 J = J ∪ {i}.

13 if µ̂
(i)
max(t− 1)− µ̂

(i)
k (t− 1) < ζt−1 for some

k ∈ K \ {A(i)
max(t− 1)} then

14 J = J ∪ {i}.

15 if A
(i)
max(t− 1) ̸= A

(i)
max(t− 2) then

16 J = J ∪ {i}.

17 At = At−1 \ J .
18 Choose h machines out of At uniformly.

19 For all i ∈ St, A
(i)
t = CT-UCB(i, 2, 1/2, n, t)

Upper Bounds of Regret for Algorithm 2

Theorem 8. The universal expected regret defined in

(2) achieved by Algorithm 2 is upper bounded by

O
(

n1/2(log n)2
)

for all adversarial attack policies

{P
W

(i)
t |X(i)

t−1A
(i)
t−1

}i∈Im,t∈[1;n].

Sketch Proof of Theorem 8: The proof of Theorem 8

follows directly from Lemma 6 and Lemma 7. Lemma 6

guarantees that no honest sensor is excluded from the active

set At for all t ∈ [1;n], while Lemma 7 says that the two

conditions in Corollary 4 are satisfied for all machines with

α = 1/2 and λ = 2. The theorem is then proved by applying

the result in Corollary 4.

IV. REGRET LOWER BOUNDS

Theorem 9. There exist attack policies

{P
W

(i)
t |X(i)

t−1A
(i)
t

}i∈Im,t∈[1;n] such that the universal expected

regret defined in (2) is at least Ω̃(n1/2) for any policies

{π(i)
t }i∈IN ,t∈[1;n] and {ψt}nt=1.

Sketch of Proof We prove Theorem 9 by contradiction.

If there exists an algorithm such that the universal expected

regret is õ(n1/2) for all attack policies, then the regret is

Õ(nα) for all attack policies and for some α < 1/2. However,

we can show that there exists an attack policy such that

the regret is at least ω̃(nα) whenever α < 1/2, and this

complete the proof. To begin with, we define the attack policy

P
W

(i)
t |X(i)

t−1A
(i)
t−1

as follows.

P
W

(i)
t |X(i)

t−1A
(i)
t−1

(w) =

{

1− nβ−1 if w = 0
nβ−1

K−1 if w ̸= 0,

for all i ∈ Im and t ∈ [1;n] and for some 1/2 > β >

α > 0. Note that by the Chernoff bound, ||W(i)
0 ||0 = Ω(nβ)

with probability arbitrarily close to 1 for any i ∈ Im. This

implies that if the algorithm cannot exclude the machine i ∈
Im from the active set before time n for all possible Im, then

the expected accumulated regret is at least Ω(nβ) = ω̃(nα).
By denoting X

t and A
t as all rewards and commands from

all machines before the time t, if there exists an (Ih, I ′
h) pair

and a positive sequence {δt} such that

P(ψt(X
t−1,At−1) = I ′

h|Ih)
+ P(ψt(X

t−1,At−1) = Ih|I ′
h) ≥ δt (10)

for all t ∈ [1;n], where δt > δ > 0 for all t ∈ [1;n] and for

some δ > 0, we show in supplementary document that

RUniversal({ψt}t∈[1;n], {π(i)
t }i∈IN ,t∈[1;n]) ≥

δ

2
Ω(nβ).

The condition in (10) implies that the algorithm cannot distin-

guish between the hypothesis Ih and I ′
h, and hence, there

is a non-zero probability that a defective machine remains

in the active set. Note that P(ψt(X
t−1,At−1) = I ′

h|Ih) +
P(ψt(X

t,At) = Ih|I ′
h) ≥ 1 −

√

D(PXt|Ih
||PXt|I′

h
). There-

fore, it suffices to show that the divergence D(PXt|Ih
||PXt|I′

h
)

is small for all t ∈ [1;n]. Finally, we show in the supple-

mentary document that D(PXt|Ih
||PXt|I′

h
) = o(1) for all

t ∈ [1;n] whenever β < 1/2, which completes the proof.
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