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Abstract: Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several
important (patho)physiological processes related to cardiovascular health and disease, including
vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S sup-
plementation is an emerging area of interest, especially for the treatment of cardiovascular-related
diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development
and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability
and to better mimic its natural enzymatic production. Categorizing donors by the biological stimu-
lus that triggers their H2S release, this review highlights the fundamental chemistry and releasing
mechanisms of a range of H2S donors that have exhibited promising protective effects in models
of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxic-
ity, specifically. Thus, in addition to serving as important investigative tools that further advance
our knowledge and understanding of H2S chemical biology, the compounds highlighted in this
review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of
various cardiomyopathies.

Keywords: hydrogen sulfide; H2S donors; cardioprotection; MI/R injury; chemotherapy-induced
cardiotoxicity; H2S codrugs

1. Introduction

Hydrogen sulfide (H2S) is a malodorous, toxic, and flammable gas that was once
disregarded as a mere environmental and industrial pollutant [1–3]. Landmark studies near
the turn of the 20th century [4–6], however, revealed that H2S is also a biologically active
gas that is expressed in mammalian systems, primarily via the enzymatic metabolism of
cysteine and homocysteine [7]. From these reports, a paradigm shift ensued, and today H2S
is regarded as the third gasotransmitter, alongside nitric oxide (NO) and carbon monoxide
(CO) [8–11].

H2S is soluble in water (~80 mM at 37 ◦C [12]) and exhibits weak acidity that gives
rise to an equilibrium between its diprotic (H2S) and hydrosulfide (HS−) forms in an
aqueous environment. With a pKa1 of 6.98 [12], its HS− form dominates at physiological
pH and begets its high reactivity and strong nucleophilic character under biologically
relevant conditions.

In its diprotic form, its lipophilicity, low molecular weight, and gaseous nature enable
H2S to easily traverse the lipid bilayer, allowing it to act on intracellular targets that
mediate numerous physiological and pathophysiological processes within the human
body [13–16]. Its proven ability to reduce oxidative stress and inflammation [17–19], induce
vasodilation [6], and promote angiogenesis [20] underscores the positive influence of H2S
on the cardiovascular system, specifically. Not surprisingly, small molecule donors that
improve the exogenous delivery and bioavailability of H2S are currently being investigated
with great enthusiasm as potential cardioprotective agents [21].
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This review will summarize the structure, reactivity, and mode of delivery for H2S
donors that have displayed promising cardioprotective effects in myocardial ischemia-
reperfusion (MI/R) injury and cancer chemotherapeutic-induced cardiotoxicity models,
in particular. Thus, the compounds reported on herein not only represent important
investigative tools for probing the chemical biology of hydrogen sulfide but may also serve
to unlock its vast therapeutic potential for the treatment of cardiovascular-related diseases.

2. H2S Biosynthesis and Metabolism

In mammals, both enzymatic and nonenzymatic pathways are involved in H2S biosyn-
thesis, with the former being the principal route towards its formation. The use of enzymes
provides strict spatiotemporal control over the production of H2S, resulting in concentra-
tion variances in specific tissues and cellular compartments, and in response to certain
physiological and pathophysiological events. The three enzymes primarily responsible for
H2S biosynthesis are cystathionine β-synthase (CBS) [22], cystathionine γ-lyase (CSE) [23],
and 3-mercaptopyruvate sulfurtransferase (3-MST) [24].

CBS and CSE are ubiquitous enzymes of the transsulfuration pathway that facilitate the
conversion of homocysteine to cysteine via the intermediate cystathionine (Figure 1) [25,26].
Both are pyridoxal 5′-phosphate (PLP)-dependent enzymes that are primarily located in
the cytosol and generate H2S via the direct desulfhydration of cysteine and homocysteine.
In addition to being primarily responsible for H2S biosynthesis in the brain and central
nervous system, CBS is amply expressed in the ileum, kidneys, liver, and uterus [5,27,28].
CSE, on the other hand, exhibits low expression levels in the central nervous system but is
the principal H2S-producing enzyme of the cardiovascular system [29].
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Figure 1. Enzymatic and nonenzymatic production of H2S in mammalian systems. PLP: pyridoxal
5′-phosphate; CBS: cystathionine β-synthase; CSE: cystathionine γ-lyase; CAT: cysteine amino-
transferase; 3-MST: 3-mercaptopyruvate sulfurtransferase; NADPH: nicotinamide adenine dinu-
cleotide phosphate.

Unlike CBS and CSE, 3-MST is a PLP-independent enzyme that is chiefly expressed in
mitochondria and produces H2S from the indirect desulfhydration of cysteine [30]. As de-
picted in Figure 1, in this pathway, cysteine must first be transformed into 3-mercaptopyruvate
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(3MP) via the enzyme cysteine aminotransferase (CAT). Then, using 3MP as a substrate,
3-MST transfers a sulfur atom onto itself forming a hydropersulfide (3-MST-SSH). In the
presence of reductants, 3MST-SSH is reduced, releasing H2S in the process.

In addition to the enzymatic routes outlined above, nonenzymatic pathways also
contribute to the endogenous production of H2S in mammals. In general, sulfane sulfur
and other reactive sulfur species (RSS), including hydropersulfides (RSSH), polysulfides
(RSSnR), and thiosulfate (S2O3

2−), serve as effective H2S precursors in the presence of
glutathione and other reductants (Figure 1) [31–33]. To this end, processes that increase the
production of nicotinamide adenine dinucleotide phosphate (NADPH), which facilitates
the recycling of oxidized glutathione back to its reduced form, have been shown to enhance
this nonenzymatic pathway and promote H2S biosynthesis [8].

While less is known about the metabolism and removal of H2S from mammalian
systems, the primary pathways are believed to involve mitochondrial oxidation [34,35],
cytosolic methylation [36], hemoglobin and metalloprotein binding [37], expiration via the
lungs [38], and its storage in proteins as bound sulfane sulfur [39]. The majority of H2S is
ultimately excreted via the kidneys in the form of sulfate (SO4

2−) [40]. This oxidation of
H2S occurs in mitochondria and is facilitated by the enzymes sulfide quinone reductase
(SQR) and rhodanese. This metabolic process also accentuates the biological activity of
H2S and its ability to stimulate oxidative phosphorylation and ATP production through
its donation of electrons to the mitochondrial electron transport chain through SQR and
mitochondrial complex II [41,42].

3. H2S Bioactivity and Its Attenuation of Myocardial Ischemia-Reperfusion Injury

In addition to serving as a mitochondrial protectant and stimulator of mitochondrial
bioenergetics, endogenous H2S has been shown to play a key role in several other phys-
iological and pathophysiological processes [14–16,43–47]. The cardiovascular system, in
particular, appears to be positively influenced by H2S given its involvement in vasodilation
and blood pressure regulation [6,48]; its antioxidative [19], anti-inflammatory [17,49], and
cytoprotective properties [50,51]; and its ability to promote angiogenesis [20]. Additionally,
recent evidence suggests that the co-release of H2S (via the transsulfuration pathway) and
adenosine (via the methionine cycle) may protect the myocardium from injury [52,53].
For these reasons it is theorized that the exogenous delivery of H2S may hold therapeutic
value for the prevention and treatment of various cardiovascular-related diseases [54,55],
including myocardial ischemia-reperfusion (MI/R) injury [56–62] (Figure 2).
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Myocardial ischemia occurs when blood flow to the heart is restricted due to the
buildup of plaque in a coronary artery. If left unchecked, this may lead to myocardial
infarction, or heart attack, which is the leading cause of death worldwide [63,64]. To repair
myocardial structural damage and prevent ischemic progression, reperfusion therapy is
typically employed. This rapid return of blood to ischemic tissue, however, often leads to
(MI/R) injury caused by inflammation and oxidative damage [65,66]. Increased levels of
reactive oxygen species (ROS), coupled with an overwhelmed antioxidant defense, play
a major role in reperfusion injury and can exacerbate cardiac damage that occurs during
ischemia [67].

Intracellular calcium overload, a hallmark of reperfusion injury, stimulates the translo-
cation of CSE from the cytosol to mitochondria, which elevates the production of H2S
within that subcellular space [68]. This innate response of the human body is produced in
an effort to preserve mitochondrial function and protect the myocardium from oxidative
damage, highlighting the potential for therapeutic intervention with H2S delivery. In-
deed, recent studies have highlighted the protective effects of exogenous hydrogen sulfide
during MI/R. One of the earliest examples in vitro was a study conducted by Johansen
and co-workers [69]. Using an isolated perfused heart assay with rats, preconditioning
with 1 µM NaHS (an H2S equivalent in buffer) 10 min prior to coronary occlusion and
up until 10 min post reperfusion, they observed a 20% reduction in infarct size. Pretreat-
ment with Glibenclamide (KATP blocker) nullified the effect of exogenous H2S, which
supports its involvement in KATP channel opening as a primary mechanism of alleviation.
Later studies have shown that H2S promotes the persulfidation (protein-SSH) of Cys43
of the KATP protein, resulting in channel opening, an influx of K+, and vascular smooth
muscle relaxation.

Additionally, sulfide salts have been used to demonstrate the protective effects of
H2S against MI/R injury in vivo. In an early study by Sivarajah et al. [70], mice were
exposed to 25 min of regional myocardial ischemia and 2 h of subsequent reperfusion.
When NaHS (3 mg/kg) was delivered 15 min prior to ischemia, a 26% reduction in infarct
size was reported in comparison to the vehicle control. Subsequently, Elrod and co-workers
investigated the impact of exogenous H2S being delivered at the time of reperfusion rather
than prior to the ischemic event [71]. In their study, mice were subjected to 30 min of
left coronary artery ischemia followed by a 24 h period of reperfusion in the presence
of Na2S (50 µg/kg). Remarkably, they observed a 72% reduction in infarct size under
these conditions.

While sulfide salts, such as NaHS and Na2S, serve as convenient H2S precursors, their
addition to buffered solutions results in a rapid surge in H2S concentration, followed by a
swift decline due to the instability and transient nature of hydrogen sulfide [72]. Moreover,
these characteristics poorly mimic the slow and steady enzymatic production of H2S, which
often leads to adverse side effects when sulfide salts are employed. For these reasons, small
molecule donors designed to release H2S in a controlled fashion, and under biologically
relevant conditions, have been sought to harness the medicinal properties of H2S [73–77].

In the ensuing section, we will highlight examples of small molecule donors that
better mimic the natural biosynthesis of H2S and exhibit promising cardioprotective effects,
especially against myocardial ischemia-reperfusion injury.

4. H2S Donors That Protect against Myocardial Ischemia-Reperfusion Injury

Hydrogen sulfide donors with success at protecting against MI/R injury are high-
lighted in Table 1 and arranged by their mechanism for H2S release. In this section, the H2S
releasing mechanism of each donor will be detailed, and their resulting therapeutic effects
in various MI/R injury models will be summarized.
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Table 1. Synthetic H2S donors with documented protective effects against MI/R injury.

H2S Donor Release Mechanism Preclinical Studies
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4.1. Hydrolysis-Triggered Donors

Morpholin-4-ium 4-methoxyphenyl (morpholino) phosphinodithioate (GYY4137) is
the first and most-researched H2S donor ever developed [78,79]. It was accessed by treating
Lawesson’s reagent with morpholine to impart high water solubility (~30 mg/mL at pH 7.4),
which facilitates its use in biological studies. The proposed H2S releasing mechanism for
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GYY4137 is depicted in Figure 3. From detailed mechanistic work carried out by Alexander
and co-workers [80], a two-step hydrolysis was put forth, which ultimately yields an
arylphosphonate and 2 equiv of H2S. The second hydrolysis step, however, was deemed
to be too slow to be responsible for any of its observed biological activity, suggesting that
GYY4137 primarily undergoes a single hydrolytic P–S bond cleavage event in water to
release 1 equiv of H2S.
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Figure 3. Hydrolysis-triggered H2S release from GYY4137.

In stark contrast to sulfide salts, GYY4137 is recognized for its ability to provide the
slow and continuous release of H2S for up to a week after its introduction to water. In its
first reported study, GYY4137 was shown to relax rat aortic rings due to its activation of
vascular smooth muscle KATP channels [78]. Moreover, unlike sulfide salts whose effects
were brief, GYY4137 was found to be a far more potent vasorelaxant, presumably due
to its sustained release of H2S and extended interaction with aortic rings. Perhaps not
surprisingly, GYY4137 has also exhibited protective effects against MI/R injury [81–83].
Beyond its activation of vascular smooth muscle KATP channels [78,84], additional mecha-
nisms have been invoked which include the ability of GYY4137 to attenuate oxidative stress
and apoptosis through increased Bcl-2 expression and its activation of the Nrf2 signaling
pathway [81,82].

Aside from GYY4137, 1,2-dithiole-3-thiones (DTTs) represent another important H2S
donating scaffold that operates via chemical hydrolysis (Figure 4) [85]. Although detailed
mechanistic studies have yet to be carried out, conventional wisdom suggests that, in
water, DTTs are converted into their corresponding 1,2-dithiole-3-one structure with the
concurrent liberation of H2S.
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ADT and ADT-OH are the most common among this donor class, and their biological
properties have been assessed in numerous disease models [86–91]. Perhaps most notably,
several interesting H2S donor hybrids have been obtained by coupling ADT-OH through its
phenol onto other therapeutically useful drugs [92], yielding compounds such as MADTOH
and ACS14 (Figure 5).
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Impressive drug synergism was observed with MADTOH, a monastrol-H2S-releasing
hybrid, as increased inhibitory effects against L-type calcium channels were observed with
this compound in comparison to both monastrol and ADT-OH alone [93]. L-type calcium
channel blockers hold promise as an effective therapy for several cardiovascular disorders,
including myocardial ischemia [94]. Thus, hybrid molecules, such as MADTOH, may be
especially advantageous in treating MI/R injury and warrant further studies.

Along those lines, ACS14 is an H2S-releasing, nonsteroidal anti-inflammatory hybrid
that combines aspirin and donor ADT-OH. Originally reported on in 2009 [95], ACS14
was first developed in an effort to reduce the gastric toxicity of aspirin by combatting
redox imbalance through its release of H2S and subsequent increase in heme oxygenase-1
expression. Since this initial report, the cardioprotective effects of ACS14 have also been
highlighted in later studies, including its ability to reduce MI/R injury in buthionine
sulfoximine-treated rats [96,97].

Similarly, AP39 is an ADT-OH conjugate with impressive therapeutic effects in cardio-
vascular disease models (Figure 5) [98,99]. By combining ADT-OH with a triphenylphos-
phonium moiety through an ester linkage, AP39 effectively targets mitochondria, which
significantly improves its potency. This was first established in a study aimed at assessing
its effects on mitochondrial bioenergetics, which noted that only nanomolar concentrations
of AP39 were required to observe stimulatory effects whereas micromolar doses of other
H2S donors are typically required to evoke similar results. The selective delivery of H2S to
mitochondria may also heighten its cardioprotective qualities. Indeed, later studies have
showcased the ability of AP39 to protect myocardium from ischemia-reperfusion injury by
significantly attenuating mitochondrial ROS production and through its stabilization of
mitochondrial membrane potentials [100–102].
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4.2. pH-Triggered Donors

JK donors are a class of pH-triggered, H2S-releasing compounds developed by Xian
and co-workers [103]. By appending different amino acids, a series of phosphorothioate-
based donors were accessed that undergo an intramolecular cyclization reaction that
liberates H2S with high efficiency in weakly acidic (pH 5–6) environments (Figure 6). This
pathway, however, appears to be inoperable under neutral to slightly basic conditions
(pH 7–8), which provides greater spatiotemporal control over their delivery of hydrogen
sulfide. These observations are likely to stem from the fact that under weakly acidic
conditions, the phosphorothiol moiety is protonated and functions as a good leaving group,
while the carboxylate component still resides in its deprotonated, nucleophilic form.
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Figure 6. pH-triggered H2S release from JK donors.

Since numerous pathological conditions are known to lead to a reduction in pH
(inflammation, cancer, and cardiovascular disorders), JK donors have the potential to
selectively deliver H2S under conditions in which a therapeutic benefit is likely to arise.
In their original study, the authors successfully demonstrated that both JK-1 and JK-2
(Figure 7) could provide significant cardioprotection in both cellular and in vivo murine
models of MI/R injury [103].
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It is worth noting that additional donors of this type have been prepared by further
modifying the amino acid substituent. Phosphorothioate 18 (Figure 7), for example, was
recently accessed and found to protect H9c2 cardiomyocytes from hypoxia-reoxygenation
(H/R) injury [104]. In addition, JK-1 was shown to exhibit low toxicity and good pharma-
cokinetic properties, accentuating the fact that further structure–activity relationship (SAR)
studies and additional therapeutic and preclinical profiling within this series is likely to
be advantageous.

4.3. Thiol-Triggered Donors

H2S donors selectively responsive to biologically abundant thiols, such as cysteine
and glutathione, have also exhibited promising cardioprotective effects. Figure 8 outlines
specific compounds within this series that have displayed promising protective effects in
MI/R injury models.
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Among the first to be examined were a series of N-mercapto-based donors (NSHDs)
developed by Zhao et al. (Figure 8) [105]. These compounds were shown to be stable in
buffer and require the presence of cysteine to effectively deliver H2S in aqueous media.
Specifically, within this donor class, NSHD-1, NSHD-2, and NSHD-6 demonstrated cyto-
protective effects against H2O2-induced damage in H9c2 cardiomyocytes. Furthermore,
NSHD-1 and NSHD-2 also exhibited potent cardioprotective effects in a murine model of
MI/R injury.

Additionally, acyl perthiols, allyl thioesters, and perthiocarbamates are responsive to
cellular thiols and have established cardioprotective effects in H9c2 cardiomyocytes and
other MI/R injury models as a result of their H2S release. In the case of acyl perthiols,
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compounds 8a and 8l demonstrated notable reductions in infarct size relative to vehicle-
treated mice in a murine MI/R injury model [58]. Moreover, a significant reduction in
circulating cardiac troponin I was observed in both 8a- and 8l-treated mice, which supports
the involvement of an H2S-related mechanism in their cardioprotection. Within the allyl
thioester series, 5e was shown to be the most potent donor in cardiomyocyte (H9c2) models
of oxidative damage [106]. It also displayed protective qualities in an in vivo mouse
model, reducing infarct size and cardiomyocyte apoptosis. Similarly, perthiocarbamate 7b
showcased impressive cardioprotective effects in a Langendorff model of MI/R [107].

Although very electrophilic, isothiocyanates are another class of thiol-activated donors
with promising cardioprotective characteristics. In Langendorff-perfused rat hearts, 4CPI
was shown to improve post-ischemic recovery through its attenuation of oxidative stress
and activation of mitoKATP channels [108]. Through an extensive SAR study, 3-pyridyl-
isothiocynante was identified as another potent donor within this series, exhibiting max-
imum myocardial protection in an in vivo rat model for acute myocardial infarction at a
dose of just 20 µg/kg and from its activation of mitoKATP channels [109].

Arylthioamides are the final donor class that we will touch upon within this section.
What makes arylthioamides distinct from the donors mentioned above is that their release
of H2S is extremely slow and inefficient, even with the addition of nucleophilic thiols [110].
Moreover, the release of H2S from this scaffold proceeds through an unidentified mechanis-
tic pathway. Nevertheless, two hybrid adenine-containing donors, arylthioamide 4 and 11,
appear to show synergistic cardioprotective effects by activating the PKG/PLN pathway in
ischemic myocardium [111].

Pathways for thiol-triggered release of H2S have been explored with these donors.
Plausible mechanisms put forth by the authors, based on detailed mechanistic studies, the
identification of reaction intermediates, and established organic reactivity, are presented below.

As depicted in Figure 9, NSHDs initially undergo a nucleophilic acyl substitution with
cysteine to form a thioester and an N-mercapto (N-SH) species. Although this first step
is reversible, the ensuing thioester undergoes a rapid S-to-N-acyl transfer that essentially
renders this step irreversible. In the presence of excess cysteine, the N-mercapto species is
transformed into a primary amide, forming cysteine persulfide in the process. Cysteine
persulfide then reacts further with cysteine to generate cystine and free H2S. From a
detailed SAR analysis, it was discovered that both electronic and steric effects at R1 (but
not R2) influence the rate of H2S release [105]. In general, NSHDs with smaller electron-
withdrawing substituents at this position exhibited faster kinetics.
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H2S can be released from acyl perthiols through an initial thioester exchange reaction
that liberates a persulfide [58] (Figure 10). The ensuing hydropersulfide can then undergo
an additional thiol exchange reaction to form a disulfide while generating H2S.
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Figure 10. Thiol-triggered H2S release from acyl perthiols.

Similarly, allyl thioesters liberate H2S by undergoing an initial thioester exchange reac-
tion to generate an allylic thiol, which then oxidizes to form a diallyl disulfide (Figure 11).
Diallyl disulfides are known H2S donors that are likely to operate through a hydropersul-
fide intermediate [112–118].
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Within this series of donors, perthiocarbamates are unique in their ability to generate
H2S from two distinct pathways: hydropersulfide formation and carbonyl sulfide (COS)
liberation [107]. As outlined in Figure 12, the COS delivery pathway is initiated by a
thiol–disulfide exchange reaction that yields an unstable carbamic thioacid that quickly
decomposes and gives rise to COS. In the presence of the ubiquitous enzyme carbonic
anhydrase (CA), COS is quickly transformed into H2S [119]. Alternatively, perthiocar-
bamates can liberate H2S from a hydropersulfide intermediate that is generated from an
intramolecular cyclization reaction that bypasses the need for a specific stimulus to trigger
the event.

The mechanism of H2S liberation from isothiocyanates has been carefully investigated
by Lin and co-workers [120]. As delineated in Figure 13, they propose that the reaction
commences with the nucleophilic attack by cysteine to form a dithiocarbamate. This
intermediate then undergoes an intramolecular cyclization that forms a 5-membered ring
and assists in the elimination of H2S.

4.4. Enzyme-Triggered Donors

Hydrogen sulfide donors that are selectively responsive to specific enzymes have also
been developed. Those that have displayed promising protective effects in MI/R injury
models are featured below.



Antioxidants 2023, 12, 650 12 of 25

Antioxidants 2023, 12, 650 12 of 26 
 

anhydrase (CA), COS is quickly transformed into H2S [119]. Alternatively, 
perthiocarbamates can liberate H2S from a hydropersulfide intermediate that is generated 
from an intramolecular cyclization reaction that bypasses the need for a specific stimulus 
to trigger the event. 

 
Figure 12. Thiol-triggered H2S release from perthiocarbamates. 

The mechanism of H2S liberation from isothiocyanates has been carefully 
investigated by Lin and co-workers [120]. As delineated in Figure 13, they propose that 
the reaction commences with the nucleophilic attack by cysteine to form a 
dithiocarbamate. This intermediate then undergoes an intramolecular cyclization that 
forms a 5-membered ring and assists in the elimination of H2S. 

 
Figure 13. Thiol-triggered H2S release from isothiocyanates. 

4.4. Enzyme-Triggered Donors 
Hydrogen sulfide donors that are selectively responsive to specific enzymes have 

also been developed. Those that have displayed promising protective effects in MI/R 
injury models are featured below. 

Esterase enzymes are omnipresent in human cells and, as their name implies, 
catalyze the hydrolysis of esters [121]. Not surprisingly, H2S liberation from a donor that 
is initiated by esterase-catalyzed hydrolysis is a common approach [122–127]. In general, 
the molecular framework is designed in such a way that upon ester hydrolysis, the 
resultant alcohol undergoes a self-immolative step that results in the eventual release of 
H2S. Donor P2 (Figure 14) illustrates this approach, as an unstable hydroxymethyl 
persulfide is unveiled after esterase-catalyzed hydrolysis [128]. This intermediate quickly 
decomposes to generate acetaldehyde and a hydropersulfide, which serves as an effective 
H2S precursor under biological conditions. Donor P2 was used in a murine model of MI/R 
injury and displayed promising protective effects with a bell-shaped therapeutic profile. 

Figure 12. Thiol-triggered H2S release from perthiocarbamates.

Antioxidants 2023, 12, 650 12 of 26 
 

anhydrase (CA), COS is quickly transformed into H2S [119]. Alternatively, 
perthiocarbamates can liberate H2S from a hydropersulfide intermediate that is generated 
from an intramolecular cyclization reaction that bypasses the need for a specific stimulus 
to trigger the event. 

 
Figure 12. Thiol-triggered H2S release from perthiocarbamates. 

The mechanism of H2S liberation from isothiocyanates has been carefully 
investigated by Lin and co-workers [120]. As delineated in Figure 13, they propose that 
the reaction commences with the nucleophilic attack by cysteine to form a 
dithiocarbamate. This intermediate then undergoes an intramolecular cyclization that 
forms a 5-membered ring and assists in the elimination of H2S. 

 
Figure 13. Thiol-triggered H2S release from isothiocyanates. 

4.4. Enzyme-Triggered Donors 
Hydrogen sulfide donors that are selectively responsive to specific enzymes have 

also been developed. Those that have displayed promising protective effects in MI/R 
injury models are featured below. 

Esterase enzymes are omnipresent in human cells and, as their name implies, 
catalyze the hydrolysis of esters [121]. Not surprisingly, H2S liberation from a donor that 
is initiated by esterase-catalyzed hydrolysis is a common approach [122–127]. In general, 
the molecular framework is designed in such a way that upon ester hydrolysis, the 
resultant alcohol undergoes a self-immolative step that results in the eventual release of 
H2S. Donor P2 (Figure 14) illustrates this approach, as an unstable hydroxymethyl 
persulfide is unveiled after esterase-catalyzed hydrolysis [128]. This intermediate quickly 
decomposes to generate acetaldehyde and a hydropersulfide, which serves as an effective 
H2S precursor under biological conditions. Donor P2 was used in a murine model of MI/R 
injury and displayed promising protective effects with a bell-shaped therapeutic profile. 

Figure 13. Thiol-triggered H2S release from isothiocyanates.

Esterase enzymes are omnipresent in human cells and, as their name implies, catalyze
the hydrolysis of esters [121]. Not surprisingly, H2S liberation from a donor that is initiated
by esterase-catalyzed hydrolysis is a common approach [122–127]. In general, the molecular
framework is designed in such a way that upon ester hydrolysis, the resultant alcohol
undergoes a self-immolative step that results in the eventual release of H2S. Donor P2
(Figure 14) illustrates this approach, as an unstable hydroxymethyl persulfide is unveiled
after esterase-catalyzed hydrolysis [128]. This intermediate quickly decomposes to generate
acetaldehyde and a hydropersulfide, which serves as an effective H2S precursor under
biological conditions. Donor P2 was used in a murine model of MI/R injury and displayed
promising protective effects with a bell-shaped therapeutic profile.
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injury models.

Donors selectively responsive to the enzyme β-galactosidase have also displayed
favorable cardioprotective effects. The NO-H2S donor hybrid depicted in Figure 15 is an
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example of such a design [129]. In the presence of β-galactosidase, the glycosidic bonds
in the molecule are cleaved, producing an unstable intermediate that further unravels to
liberate H2S (via COS hydrolysis) and nitric oxide (NO). To underline its cardioprotective
effects, this hybrid prodrug was used in a rat model of heart failure. In general, it was
shown that administration of the NO-H2S donor hybrid noticeably improved cardiac
function post myocardial infarction, and especially in comparison to NO or H2S treatment
alone, highlighting the effectiveness of a hybrid approach.
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4.5. ROS-Triggered Donors

H2S donors selectively responsive to elevated levels of ROS have been shown to
be especially advantageous at combatting oxidative stress-related diseases [130–134], in-
cluding MI/R injury. Within the structural framework of these donors, an O- or S-alkyl
thiocarbamate is often linked to an aryl boronate ester, which serves as an ROS-responsive
trigger [135–137]. In the presence of ROS (especially hydrogen peroxide or peroxyni-
trite), the aryl boronate ester is quickly oxidized to an unstable phenol that undergoes
a 1,6-elimination to provide H2S through carbonic anhydrase catalyzed COS hydrolysis
(Figure 16).

An advantage of donors that proceed through the COS/H2S pathway is their concur-
rent release of an aryl amine (or aryl alcohol) which affords an easy opportunity to access
self-reporting donors that can track their H2S delivery via fluorescence spectroscopy and
other imaging techniques [134,138–140]. HSD-B and HSD-R (Figure 17) serve as examples
of this, due to there being a latent fluorescent reporter embedded within their O-alkyl
thiocarbamate framework. Moreover, these compounds were rationally designed to target
mitochondria, thanks to their lipophilicity and cationic charge, which are likely to con-
tribute to their pronounced cardioprotective effects that have been observed in H/R injury
models [139,140]. HSD-B, for example, was shown to provide protection in a H9c2 cellular
model of H/R injury, while HSD-R exhibited anti-apoptotic (inhibition of pro-apoptotic
genes, including Bid, Apaf-1, and P53), anti-inflammatory, and pro-angiogenic effects in a
rat MI/R injury model.
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5. Chemotherapy-Induced Cardiotoxicity

Chemotherapy-induced cardiotoxicity is a serious complication that affects the long-
term survival of cancer patients and often manifests itself several years to several decades af-
ter the completion of treatment [141,142]. By convention, chemotherapy-induced cardiotoxi-
city is sorted into two distinct categories: type I, which is more severe, dose-dependent, and
triggered by anthracycline-based drugs [143–145], and type II, which is less severe, believed
to be reversible upon the cessation of treatment, and associated with cisplatin, alkylating
agents, antimetabolites, and other non-anthracycline-based chemotherapeutics [146].

Anthracyclines, such as doxorubicin (DOX) and daunorubicin, are among the most
effective anticancer agents in clinical use [147]. Their planar anthraquinone tetracyclic
structure allows them to insert between DNA base pairs and interfere with the enzyme
topoisomerase II, which, in turn, prevents the DNA unwinding and replication that ulti-
mately induces apoptosis in proliferating cancer cells [148]. However, the same chemical
features that give rise to DNA intercalation also predispose anthracyclines to redox cycling
that generates superfluous levels of ROS within a cellular environment and, specifically, in
mitochondria [149,150]. With increased mitochondrial density and a relatively deficient
antioxidant defense system in place, cardiomyocytes are especially susceptible to oxidative
injury [151,152]. Therefore, while other mechanisms may be in play, the uncontrolled pro-
duction of ROS is believed to be primarily responsible for the dose-dependent, irreversible
heart damage that is observed with anthracycline-based chemotherapeutics [153–155].

Given the significance of anthracyclines in the fight against cancer, it comes as no
surprise that new therapeutic strategies are being extensively explored in an effort to
diminish their cardiotoxic side effects. To this end, it has been suggested that the co-
administration of H2S—with its impressive antioxidative, anti-inflammatory, and anti-
apoptotic effects—may offer an effective solution [156]. This hypothesis was first explored
by Su and co-workers in 2009, using a DOX-treated rat model [157]. Employing NaHS as
an H2S donor, the attenuation of DOX-induced mitochondrial injury was in fact observed,
along with significant improvements in overall cardiac function. Subsequent investigations
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have corroborated these initial findings, and the beneficial effects of H2S are now well-
established for combatting chemotherapy-induced cardiotoxicity of both type 1 and type 2
through various mechanisms (Figure 18) [158–162].
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While the co-administration of H2S appears to be a promising approach for reducing
the cardiotoxic profile of drug molecules, efforts to improve absorption and target delivery
have led to the emergence of a new codrug design in which a known H2S-donating moiety
is directly linked to a chemotherapeutic agent of interest. This strategy is akin to the
ABT-OH donor hybrids discussed earlier (Section 4.1) and has proven to be especially
beneficial for mitigating DOX-induced cardiotoxicity, in particular. Therefore, given their
obvious translational potential and clever chemical design, these hybrid DOX molecules
are detailed below.

6. H2S Conjugated Codrugs That Combat Anthracycline-Induced Cardiotoxicity

Chegaev and co-workers were the first to synthesize and assess a series of H2S-
releasing, DOX hybrid codrugs (termed H2S-DOXOs) [163]. To accomplish this, they
appended known H2S-donating motifs via an ester bond at C-14 of DOX. As seen in
Figure 19, the affixed H2S-donating moieties included DTT derivative (H2S-DOXOs 10–13),
allyl sulfide (H2S-DOXO 14), allyl disulfide (H2S-DOXO 15), and an aryl thioamide (H2S-
DOXO 16).

After verifying H2S liberation from H2S-DOXOs in cell culture media, an LDH assay
was used to assess their cytotoxic effects in H9c2 cardiomyocytes in culture. Compared to
DOX, H2S-DOXOs 10–14 were found to be significantly less cytotoxic, and the addition of
the H2S scavenger hydroxocobalamin confirmed that their release of hydrogen sulfide was
responsible for their reduced cardiotoxicity.

Perhaps most notably, however, H2S-DOXOs 10 and 11 simultaneously displayed
impressive anticancer activity in human osteosarcoma cells (U-20S), even compared to the
parent drug. Follow-up studies with H2S-DOXO 10 indicated that the increased potency
is likely to stem from their disruption of drug efflux by Pgp [164], which increases their
cellular concentration. Thus, the appendage of an H2S donor to DOX appears to impart
several distinct advantages, including improved functional activity against multidrug-
resistant cancers in addition to a reduced cardiotoxic profile.

Since this initial study, H2S-DOXO 10 (or Sdox) has undergone additional preclinical
studies (Table 2) [165–167]. In a DOX-resistant prostate cancer mouse model, treatment
with Sdox led to significantly reduced tumor volumes and improved safety. Conversely,
DOX-treated mice exhibited reduced body weight and cardiotoxicity, which was assessed
by measuring troponin plasma levels and left-ventricular-wall thickness.
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In a similar fashion, Hu et al. recently reported on an H2S-releasing, DOX hybrid
codrug (c1, Figure 20) [168]. However, unlike H2S-DOXOs, c1 is a prodrug that only
liberates active DOX and H2S under conditions of oxidative stress.
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Figure 20. ROS-triggered H2S release from c1, an ROS-responsive DOX hybrid prodrug with reduced
cardiotoxicity in rat cardiomyocytes in culture.

Elevated levels of ROS are found in most cancers for a variety of reasons [169]. Conse-
quently, ROS-inducible anticancer prodrugs have emerged as a promising design strategy
for improving the therapeutic index of anticancer chemotherapeutic agents [170–173]. Thus,
the design of c1 represents a novel strategy that imparts both tumor-selective activation
and H2S delivery in combination to further reduce the cardiotoxic side effects of DOX.

As highlighted in Figure 20, c1 utilizes an aryl boronate ester as an H2O2-selective
trigger. Upon its oxidation by peroxide, the ensuing phenol undergoes a 1,6-elimination
that releases both H2S (by way of COS hydrolysis) and DOX. The authors confirmed this
mechanism through LCMS studies and verified the selective release of both DOX and H2S
in response to H2O2.

The toxicity of c1 was assessed in rat cardiomyocytes in culture (Table 2). Using
this model, c1 exhibited reduced cardiotoxicity compared to that of DOX. By enlisting
an H2O2-activated DOX prodrug as a control, which provided CO2 release rather than
COS, it was concluded that the protective effects of c1 are likely to stem from its co-release
of H2S. Cells treated with c1 also evinced significantly higher Nrf2 activation and heme
oxygenase-1 expression compared to controls, providing a likely mechanism of cellular
protection [174–177].

Notably, c1 also appeared to maintain the antitumor effects of DOX in a 4T1 mouse
breast-cancer cell line. Therefore, while further preclinical profiling—especially in vivo—is
required, the selective tumor activation and H2S liberation provided by c1 offer further
promising options for overcoming DOX-derived cardiotoxicity in the clinic.
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7. Conclusions

Once regarded as merely a toxic and foul-smelling gas, H2S has more recently been
recognized as a key signaling molecule and important endogenous mediator of numerous
physiological and pathophysiological processes within mammalian systems. Its positive
influence on the cardiovascular system, in particular, is rooted in its involvement in va-
sodilation (activation of KATP channels and the PI3K/Akt signaling pathway) [178–181],
as well as its anti-inflammatory (inhibition of the p38 MAPK/NF-κB pathway) [182,183],
antioxidative (activation of the Nrf2 signaling pathway) [59,168,184], and anti-apoptotic
(suppression of pro-apoptotic genes Bid, Apaf-1, and p53) [140] properties, which have
been extensively reviewed elsewhere in the literature [54,55,116,185].

Exogenous supplementation with H2S has been shown to vastly improve outcomes in
various in vitro and in vivo cardiovascular disease models. In this review, its effectiveness
at combating MI/R injury and chemotherapy-induced cardiotoxicity was explored, along
with the fundamental chemistry and H2S releasing mechanism of the donor molecules that
were utilized in these studies. The continued development and refinement of H2S-releasing
compounds is critical to unlocking the translational therapeutic potential of hydrogen
sulfide, by augmenting its delivery and bioavailability while better mimicking its natural
and prolonged enzymatic production. Thus, the compounds reported on herein not only
represent important investigative tools for probing the chemical biology of hydrogen sulfide
but may also one day serve as important therapeutic agents for the treatment of MI/R
injury and anthracycline-induced cardiotoxicity.
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