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A B S T R A C T

The stochastic modeling and calibration of an anisotropic elasto-plastic model for additive manufacturing
materials are addressed in this work. We specifically focus on 316L stainless steel, produced by directed energy
deposition. Tensile specimens machined from two additive manufactured (AM) box-structures were used to
characterize material anisotropy and random spatial variations in elasticity and plasticity material parameters.
Tensile specimens were cut parallel (horizontal) and perpendicular (vertical) to the AM deposition plane and
were indexed by location. These results show substantial variability in both regimes, with fluctuation levels that
differ between specimens loaded in the parallel and perpendicular build directions. Stochastic representations
for the stiffness and Hill’s criterion coefficients random fields are presented next. Information-theoretic models
are derived within the class of translation random fields, with the aim of promoting identifiability with limited
data. The approach allows for the constitutive models to be generated on arbitrary geometries, using the so-
called stochastic partial differential approach (to sampling). These representations are then partially calibrated
using the aforementioned experimental results, hence enabling subsequent propagation analyses. Sampling is
finally exemplified on the considered structure.

1. Introduction

Additive manufacturing (AM), also known as 3D printing, has
emerged over the last decade as a promising manufacturing technique
for producing complex geometries and customized components with
high precision and efficiency (Ian Gibson, 2015). The mechanical
behavior of 3D printed materials is significantly influenced by their
microstructure, and substantial spatial heterogeneity can be intro-
duced due to complex thermal history and phase evolution during
(transient) processing. Such spatial variability translates in spatially-
dependent material properties, which can vary significantly along the
build direction, across layer interfaces, and within each layer (Huang
et al., 2015; Sames et al., 2016; DebRoy et al., 2018). In particular,
plasticity-related properties, such as yield strength, ultimate strength,
and strain hardening, play a crucial role in determining the (potentially
stochastic) mechanical response under external loading. Therefore, the
accurate characterization and prediction of elastoplastic parameters in
AM materials, including 316L stainless steel, are of great significance
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for reliable and efficient design and analysis of AM components (Rosa
et al., 2018; Prabhune and Suresh, 2020).

Accounting for various types of uncertainties is an important chal-
lenge raised by additive manufacturing (Kotha et al., 2020; Mahadevan
et al., 2022). Most of the existing works have focused on the propa-
gation of system-parameter uncertainties in AM process modeling (Hu
and Mahadevan, 2017; Nath et al., 2017; Wang et al., 2019; Supriyo
et al., 2019, 2020) and their impact on macroscale properties (Cai
and Mahadevan, 2016), as well as in the integration of model dis-
crepancy (Arendt et al., 2012) using a predictor–corrector approach
(see, e.g., Hu and Mahadevan (2017), Nath et al. (2017), Wang et al.
(2020)) following the seminal work by Kennedy and O’Hagan (Kennedy
and O’Hagan, 2001). Other studies addressed the modeling of stochas-
tic fluctuations in as-built parts, mostly through multiscale-informed
strategies that couple microstructure description with a homogeniza-
tion scheme (Maloth et al., 2020; Ozturk et al., 2021; Weber et al.,
2022), or prior representations amenable to direct simulations of ran-
dom material parameters at coarser mesoscopic scales (Chu et al.,
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2021). The former have the benefit of solely relying on an end-to-
end computational pipeline that (i) can accommodate any type of
constitutive behaviors and (ii) limits modeling bias to microstructure
reconstruction. However, they may be intractable when nonstationary
effects are pronounced (in which case limited access to microstructure
data becomes a limiting factor), or when concurrent coupling becomes
too computationally intensive. In contrast, the latter may be more
suitable to capture nonstationary effects in the small-data limit, owing
to the regularization enabled by the prior model, but typically intro-
duce approximations within classes of (e.g., translation-type) stochastic
representations.

The aim of this work is to develop and identify prior models for an
anisotropic elastoplastic constitutive model, using physical experiments
capturing spatial variations over the printed structure. This unique
characterization setting allows us to investigate anisotropy in both ma-
terial symmetries (for the elastic component) and covariance structure.
Attention is restricted to 316L stainless steel produced by direct energy
deposition (DED), which is one of the most widely used materials in
additive manufacturing due to its excellent mechanical properties and
corrosion resistance (Guo and Leu, 2013). Our contributions are as
follows:

• We provide and analyze experimental data for both the aniso-
tropic elastic and plasticity properties, investigating anisotropy in
terms of both marginal distributions and correlation structures.

• We derive information-theoretic random field models for the
elastoplastic constitutive model, using a reduced version of Hill’s
yield criterion (inferred from processing conditions).

• We propose a methodology to identify model parameters, includ-
ing hyperparameters in the first-order marginal distributions and
spatial correlation lengths.

The rest of this paper is organized as follows. The additive man-
ufacturing and experimental analysis are first presented in Section 2.
Section 3 is devoted to stochastic modeling. An overview of the frame-
work is provided, and formulations for both the elasticity and plasticity
components are derived. Model calibration is subsequently addressed in
Section 4. Concluding remarks are finally provided in Section 5.

2. Additive manufacturing process and experiments description

In this section, the additive manufacturing and experimental charac-
terization of a box-shaped structure, made up of 316L stainless steel, are
described. Material processing, together with the experimental setup,
are first presented in Section 2.1. The experimental results for the
tensile tests are then discussed in Section 2.2. In particular, Young’s
moduli and yield strengths for specimens loaded parallel (horizontal)
and perpendicular (vertical) to the AM deposition plane are analyzed.

2.1. Description of the experimental setup

Two 316L stainless steel thin-walled boxes (without bottom and top
faces) were printed using Directed Energy Deposition (DED), using a
Lasertec 65 hybrid manufacturing system; see Fig. 1. Basis of the box
is a 166 × 166 [mm] square, height is 130 [mm], and wall thickness
is 3 [mm] (see Iliopoulos et al. (2020b) for details). To ensure similar
thermal loading during processing, deposition was performed

• clockwise for odd-numbered layers, starting from the lower-left-
hand corner of the box; and

• counter-clockwise for the even-numbered layers, starting from the
upper-right-hand corner of the box.

After processing, the four faces were collected on each box and eight
test samples were harvested on each face, using different cutting direc-
tions. Fig. 2 shows the four plates, unfolded from the top of the box,
and dashed lines illustrate the correspondence of the bottom corners

Fig. 1. CAD model of the 3D-printed box, manufactured by Directed Energy Deposition
(DED).

Fig. 2. Definition of the test coupons on all faces.

Source: From Iliopoulos et al. (2020b).

of the plates. Starting from the bottom plate, faces are labeled counter-
clockwise, with faces numbered from 1 to 4. Cutting directions are also
shown in this figure. In particular, Face 1 and Face 2 correspond to
specimens that were cut along the in-plane, horizontal direction (along
the 𝑥-axis for Face 1, and along the 𝑦-axis for Face 2), while Faces 3
and 4 have coupons that were cut along the vertical direction (defined
by the 𝑧-axis). Each box has 32 samples, half of which are associated
with either the (𝑥− 𝑦) deposit plane or the vertical direction (along 𝑧).

Based on the ASTM E8M Standard, subsized (6 mm gage width)
‘‘dog-bone’’ specimens were used. Tensile tests were conducted on an
MTS Insight 100 Test System with a 30 [kN] load cell. Specimens
were held using 100 [kN] mechanical wedge grips, and the strain
was recorded using a video extensometer system. The stress–strain
curves for the 64 samples are provided in Fig. 3. It is seen that the
yield and ultimate strength stresses for the horizontal samples are
generally larger than the ones measured along the vertical directions
while the failure elongations are smaller, hence suggesting pronounced
anisotropy in terms of strength and ductility. The directional yield
stresses also exhibit substantial variability, regardless of the face. This
aspect is investigated from a statistical standpoint in the next section.
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Fig. 3. Stress–strain curves obtained for all 64 samples (2 boxes). Black lines corre-
spond to results collected for Faces 1 and 2, while blue lines are associated with Faces
3 and 4, for the two boxes. Observe the variability exhibited by the results, and the
fact that horizontal (respectively, vertical) samples have higher strength (respectively,
ductility). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Samples of the initial yield strength in [MPa] (tensile test, box 1).

Face # Sample # Yield strength Face # Sample # Yield strength

1 (𝜎̄𝑥𝑥)

1 255.2

3 (𝜎̄𝑧𝑧)

17 252.8
2 264.3 18 253.2
3 268.8 19 248.3
4 266.1 20 261.1
5 265.5 21 251.9
6 255.9 22 249.5
7 256.0 23 248.0
8 274.5 24 252.9

2 (𝜎̄𝑦𝑦)

9 249.4

4 (𝜎̄𝑧𝑧)

25 264.8
10 256.9 26 252.0
11 244.8 27 254.3
12 250.7 28 256.0
13 249.8 29 250.2
14 256.6 30 246.5
15 273.7 31 253.2
16 276.6 32 245.6

2.2. Experimental results

The realizations of the directional yield stresses extracted from the

stress–strain curves (displayed in Fig. 3) are given in Table 1 (box 1)

and Table 2 (box 2), respectively. Note that the experimental value for

sample #30 (box 2) could not be extracted from the experimental curve

properly. The mean values for the yield stress along the 𝑥-, 𝑦-, and

𝑧-axis are estimated to be 266.9149, 256.9128, and 251.9836 [MPa],

respectively. The modeling assumption that the behavior is isotropic in

the deposit plane is made hereinafter, so that results along the 𝑥- and

𝑦-axis are merged, which leads to a mean value of 261.9138 [MPa].

The coefficient of variation in the 𝑥–𝑦 plane is estimated to be 3.68%,

which is higher than the coefficient of variation along 𝑧, estimated to

be 2.17%.

The kernel density estimators (Thompson and Tapia, 1990) esti-

mated with these data are shown in Figs. 4(a) and 4(b). Notice that the

probability density function for the yield stress in the vertical direction

shows slight bimodality that is indeed generated by two realizations

associated with samples located near the boundary of the box.

Table 2
Samples of the initial yield stress in [MPa] (tensile test, box 2).

Face # Sample # Yield strength Face # Sample # Yield strength

1 (𝜎̄𝑥𝑥)

1 269.6

3 (𝜎̄𝑧𝑧)

17 250.0
2 273.5 18 251.8
3 276.3 19 258.5
4 272.7 20 266.5
5 260.9 21 252.8
6 267.3 22 255.2
7 266.8 23 250.3
8 277.0 24 250.5

2 (𝜎̄𝑦𝑦)

9 249.0

4 (𝜎̄𝑧𝑧)

25 252.0
10 251.0 26 245.5
11 251.0 27 243.0
12 254.4 28 250.2
13 253.9 29 251.5
14 260.2 30 \
15 262.7 31 252.0
16 269.8 32 241.2

3. Definition of Stochastic Hill Elastoplasticity on 3D printed ge-
ometries

This section presents the definition of a probabilistic model for the
elasto-plastic behavior of AM materials. An overview of the modeling
strategy to generate non-Gaussian random fields is first provided in
Section 3.1. The construction of the stochastic models for the elastic
and plasticity parameters is next presented in Sections 3.2 and 3.3,
respectively.

3.1. Overview of the stochastic modeling approach

Let 𝛺 ⊂ R
𝑑 , 1 ≤ 𝑑 ≤ 3 be a connected and open domain, with

smooth boundary 𝜕𝛺. Let {𝑷 (𝒙),𝒙 ∈ 𝛺} be the second-order random
field of material properties which are defined on a probability space
(𝛩, ,):

E{‖𝑷 (𝒙)‖2} < +∞ , ∀𝒙 ∈ 𝛺 , (1)

where E is the operator of mathematical expectation and ‖ ⋅ ‖ is the
Euclidean norm. We assume that {𝑷 (𝒙),𝒙 ∈ 𝛺} takes its values in
 ⊂ R

𝑛, where 𝑛 depends on the quantity of interest; 2 ≤ 𝑛 ≤ 21 if
𝑷 gathers linear elastic parameters (in which case 𝑛 depends on the
material symmetry group), for instance.

Since material properties are typically bounded or semi-bounded,
the random field {𝑷 (𝒙),𝒙 ∈ 𝛺} is non-Gaussian (Guilleminot, 2020). A
convenient way to introduce non-Gaussianity while promoting minimal
parameterization is to define {𝑷 (𝒙),𝒙 ∈ 𝛺} as a translation random
field (Grigoriu, 1984):

𝑷 (𝒙) =  (𝜩(𝒙)) , ∀𝒙 ∈ 𝛺 , (2)

where {𝜩(𝒙),𝒙 ∈ R
𝑑} is a normalized (that is, centered and with unit

marginal variance) Gaussian random field with values in R
𝑛 and  is a

measurable mapping such that

𝑷 (𝒙) ∼ 𝜋 , (3)

for any 𝒙 fixed in 𝛺, with 𝜋 a given probability measure (to be defined
momentarily). It is assumed that 𝜋 admits a probability density function
𝑓 with respect to the Lebesgue measure 𝑑𝒑 = 𝑑𝑝1 … 𝑑𝑝𝑛 in R

𝑛, that is,
𝜋(𝑑𝒑) = 𝑓 (𝒑) 𝑑𝒑.

The stochastic modeling of the random field of material parameters
then involves two steps:

1. The first step involves the construction of the latent Gaussian
random field {𝜩(𝒙),𝒙 ∈ R

𝑑} and more specifically, its restriction
to the complex domain 𝛺.
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Fig. 4. Kernel density estimators of the probability density function (PDF) for the yield stress in the deposit plane (left) and along the 𝑧-direction (right).

2. The second step is focused on the definition of the transport map
 (or equivalently, the definition of 𝜋) that pushes forward the
standard Gaussian measure to 𝜋, at any fixed location in 𝛺.

Methods to address these steps are presented in the next two sections.

3.1.1. Definition of the latent Gaussian field
The challenge of modeling 𝜩 on a complex domain 𝛺 lies in the

fact that the covariance operator can hardly be defined a priori, which
makes the use of standard series-based (e.g., Karhunen-Loève) repre-
sentations impractical. To circumvent this difficulty, we rely on the
implicit definition of the independent components of the latent vector-
valued Gaussian field {𝜩(𝒙),𝒙 ∈ 𝛺} as the solution to the following
stochastic partial differential equation (SPDE) (Fuglstad et al., 2015):
(
𝜅2 − ⟨𝛁, [𝐻 (𝑗)(𝒙)]𝛁⟩)𝛼∕2 𝛯𝑗 (𝒙) = ̇(𝒙) , 𝒙 ∈ R

𝑑 , (4)

where 𝜅 is a model parameter, ⟨⋅, ⋅⟩ is the Euclidean inner product in
R
𝑑 , 𝛁 is the nabla (del) operator, [𝐻] is a diffusion field, 𝛼 = 𝜈 + 𝑑∕2

(with 𝜈 the smoothness parameter in the associated Matérn covariance
function), and {̇(𝒙),𝒙 ∈ R

𝑑} is the normalized Gaussian white noise.
The isotropic counterpart of Eq. (4) was originally considered in Whittle
(1954, 1963), and regained attraction recently due to the seminal
work by Lindgren et al. (2011) that described an efficient numerical
strategy to solve the SPDE; see Roininen et al. (2014), Dunlop and
Stuart (2016), Sidén et al. (2017), Roininen et al. (2019), Sidén et al.
(2019), Mejia et al. (2020), Bolin and Lindgren (2011), Staber and
Guilleminot (2017), Guilleminot et al. (2019), Staber and Guilleminot
(2018), Chu and Guilleminot (2019), Bolin and Kirchner (2020), Bolin
and Wallin (2020), Chu et al. (2021) for various applications, as well
as (Lindgren et al., 2022) for a review. In practice, solving Eq. (4) on
the bounded domain 𝛺 requires the choice of appropriate boundary
conditions. While the use of homogeneous Neumann boundary con-
ditions was invoked in Lindgren et al. (2011) to simplify the weak
form obtained in the Galerkin setting, other boundary conditions were
explored in Roininen et al. (2014), Daon and Stadler (2018), Khristenko
et al. (2019) to circumvent boundary effects on the marginal variance
and covariance structure. The above formulation is particularly well
adapted to sampling on complex domains, owing to the capability
of capturing features through an ad hoc definition of the diffusion
coefficient:

[𝐻 (𝑗)(𝒙)] =

𝑑∑
𝑖=1

𝜆
(𝑗)
𝑖

𝒆(𝑖)(𝒙)⊗ 𝒆(𝑖)(𝒙) , ∀𝒙 ∈ 𝛺 , (5)

where the set of coefficients {𝜆
(𝑗)
𝑖
}𝑑
𝑖=1

controls the correlation lengths
in the covariance function of the latent Gaussian field {𝛯𝑗 (𝒙),𝒙 ∈ 𝛺},
1 ≤ 𝑗 ≤ 𝑛, and the orientation, or directional, fields {𝒙 ↦ 𝒆(𝑖)(𝒙)}𝑑

𝑖=1

enforce directions of local noise filtering. Considering deposition paths
for the definition of these orientation fields provides a path towards
the seamless integration of processing conditions within the stochastic
modeling framework. In the case laser trajectory cannot be tracked
during manufacturing, these fields can alternatively be defined by
introducing application-dependent fictitious flow problems (Staber and
Guilleminot, 2017; Guilleminot et al., 2019; Staber and Guilleminot,
2018; Chu and Guilleminot, 2019; Chu et al., 2021). Specifically, each
field is here defined as

𝒆(𝑖)(𝒙) =
1

‖𝛁𝛹𝑖(𝒙)‖𝛁𝛹𝑖(𝒙) , ∀𝒙 ∈ 𝛺 , 1 ⩽ 𝑖 ⩽ 𝑑 , (6)

where 𝛹𝑖 is the solution to the Laplace equation

▵ 𝛹 (𝒙) = 0 , ∀𝒙 ∈ 𝛺 . (7)

The key idea is then to supplement the above equation with problem-
and field-specific Dirichlet boundary conditions that drive the flow
along desired paths, as well as with Neumann boundary conditions that
enforce the normal component of the flow velocity to vanish at inter-
faces with geometrical features. This construction will be exemplified
in Section 4.3.

3.1.2. Construction of the transport map
The definition of the transport map  can be achieved in various

ways, ranging from the simple use of empirical cumulative distribution
functions (CDFs), estimated from the data, to selection within a set
of admissible transformations—which are those compatible with the
information available on the considered material parameters (such
as boundedness). On the one hand, the use of empirical CDFs raises
estimator convergence issues when the number of samples is not large
enough. Additionally, it does not ensure that the aforementioned infor-
mation is satisfied (almost surely). On the other hand, arbitrary model
selection increases bias and may thus be detrimental to the uncertainty
analysis. In this work, we invoke information theory (Jaynes, 1957b,a)
and more specifically, the principle of maximum entropy, as a means
to construct 𝑓 objectively. Assume that the constraint

E{𝛷(𝑷 (𝒙))} = 𝝓 (8)

represents some available information, where 𝛷 is a vector-valued
mapping encoding the information available on 𝑷 (𝒙) (with 𝒙 fixed in𝛺)
and 𝝓 is a given vector. For instance, taking 𝛷 as the identity function
indicates that the mean value of 𝑷 (𝒙) is given (by 𝝓, in this case).
Similarly, defining 𝛷 as 𝛷(𝒑) = vec (𝒑⊗ 𝒑), where ‘‘vec’’ represents the
vectorization function, implies that the correlation matrix of 𝑷 (𝒙) is
known (and given, in vectorized form, by 𝝓). The probability density
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function induced by the principle of maximum entropy is then defined
as

𝑓 = argmax𝑔 ∈𝜋 𝐻{𝑔} , (9)

where 𝜋 represents the set of admissible functions that satisfy the
constraints given by Eq. (8) and 𝐻{𝑔} is the so-called Shannon’s
entropy of 𝑔 (see Shannon (1948a,b)):

𝐻{𝑔} = ∫ 𝑔(𝒑) ln (𝑔(𝒑)) 𝑑𝒑 , (10)

where  is the support of 𝑓 . The solution to the above optimization
problem is easily obtained using the method of Lagrange multipliers
and reads as

𝑓 (𝒑) = 𝐼 (𝒑) × 𝑐 × exp{− < 𝜦, 𝛷(𝒑) >} , (11)

where 𝐼 is the indicator function of , 𝑐 is the normalization constant,
and 𝜦 is the (vector-valued) Lagrange multiplier. Note that while
this strategy is a classical approach for constructing prior models in
Bayesian inference and offers the benefit of reducing modeling bias, it
is not claimed, by no means, that the model thus obtained is the ground
truth. It is, however, fully consistent with the mathematical properties
that are required to ensure well-posedness in the forward propagation
problem, and allows for calibration using a limited amount of data (due
to its low-dimensional parameterization).

In the following, we invoke the information-theoretic framework to
construct stochastic models for the elasticity and plasticity parameters
(see Sections 3.2.2 and 3.3.2, respectively). Since no cross-information
can be introduced between these parameters, it follows that

𝜋 = 𝜋 ⊗ 𝜋 , (12)

where 𝜋 is the joint probability distribution for the elasticity and
plasticity parameters, and 𝜋 and 𝜋 are the marginal probability
distributions for these parameters. The construction can therefore be
completed independently for the two families of material parameters.
Hereinafter, the notation 𝑷 (𝒙) is therefore used as a generic variable to
refer to any set of material parameters (i.e., either elasticity or plasticity
parameters).

3.2. Stochastic elasticity formulation

3.2.1. Preliminaries
We first consider the stochastic modeling of the elasticity tensor.

The information-theoretic modeling of elasticity fields has attracted
much attention over the last two decades, starting from the seminal
work by Soize for purely anisotropic materials (that is, with values in
the triclinic symmetry class) (Soize, 2006) to the latest unified results
for all symmetry classes presented in Staber and Guilleminot (2017);
see Guilleminot (2020) for a review, as well as (Acton and Baxter,
2018) for use in a mesoscale modeling setting and Ostoja-Starzewski
(2007) for an introduction to stochastic multiscale mechanics.

Let [𝑪(𝒙)] be the random matrix representation (in Voigt form)
of the stochastic fourth-order elasticity tensor. Based on processing
conditions, and for a given 𝒙 fixed in 𝛺, we assume that the elasticity
tensor takes values in the setMti(𝒏(𝒙)) of transversely isotropic tensors,
where 𝒏(𝒙) is the unit vector defining the symmetry group at 𝒙 ∈ 𝛺. For
instance, we take 𝒏(𝒙) = (1, 0, 0)𝑇 on faces 1 and 3, while 𝒏(𝒙) = (0, 1, 0)𝑇

on faces 2 and 4. In order to ensure well-posedness, the regularization

[𝑪(𝒙)] =
1

1 + 𝜖
[𝐶]1∕2{𝜖[𝐼6] + [𝑴(𝒙)]}[𝐶]1∕2 , ∀𝒙 ∈ 𝛺 , (13)

is first introduced to recover a uniform coercivity condition, where
[𝐶] = E{[𝑪(𝒙)]} and 0 < 𝜖 ≪ 1 (Nouy and Soize, 2014). In the above
equation, {[𝑴(𝒙)],𝒙 ∈ 𝛺} is an auxiliary, normalized elasticity field
with values in M

ti(𝒏(𝒙)) such that

E{[𝑴(𝒙)]} = [𝐼6] , ∀𝒙 ∈ 𝛺 , (14)

by construction. Notice that the above equation takes the form of
a mathematical expectation and can therefore be accounted for in
the principle of maximum entropy. In addition, it is necessary to
add another constraint to ensure the well-posedness of the associ-
ated stochastic boundary value problem. Following the methodology
proposed in Soize (2006), this can be achieved by considering the
additional constraint

E{log (det([𝑴(𝒙)]))} = 𝜍 , |𝜍| < +∞ , (15)

in which the right-hand is taken as constant without loss of gener-
ality. The next methodological step then consists in expanding the
normalized field as

[𝑴(𝒙)] =

5∑
𝑖=1

𝑀𝑖(𝒙) [𝐸𝑖(𝒙)] , (16)

where {𝑀𝑖(𝒙),𝒙 ∈ 𝛺}, 1 ⩽ 𝑖 ⩽ 5, are scalar-valued random fields
and {[𝐸𝑖(𝒙)]}

5
𝑖=1

constitutes the Walpole basis of M
ti(𝒏(𝒙)) in Voigt

form (Walpole, 1984). The tensor basis writes

[[𝐸1(𝒙)]] = [𝑃 (𝒙)]⊗ [𝑃 (𝒙)] , [[𝐸2(𝒙)]] = ([𝑄(𝒙)]⊗ [𝑄(𝒙)])∕2 ,

[[𝐸3(𝒙)]] = ([𝑃 (𝒙)]⊗ [𝑄(𝒙)] + [𝑄(𝒙)]⊗ [𝑃 (𝒙)]) ∕
√
2 ,

[[𝐸4(𝒙)]] = [𝑄(𝒙)]⊠ [𝑄(𝒙)] − ([𝑄(𝒙)]⊗ [𝑄(𝒙)]) ∕2 ,

[[𝐸5(𝒙)]] = [𝑃 (𝒙)]⊠ [𝑄(𝒙)] + [𝑄(𝒙)]⊠ [𝑃 (𝒙)] ,

(17)

where

[𝑃 (𝒙)] = 𝒏(𝒙)⊗ 𝒏(𝒙) , [𝑄(𝒙)] = [𝐼3] − [𝑃 (𝒙)] (18)

and the symbol ⊠ denotes the symmetric tensor product between
second-order tensors, defined as ([𝑈 ] ⊠ [𝑉 ])𝑖𝑗𝑘𝑙 = (𝑈𝑖𝑘𝑉𝑗𝑙 + 𝑈𝑖𝑙𝑉𝑗𝑘)∕2,
with (𝒂⊗𝒃)𝑖𝑗 = 𝑎𝑖𝑏𝑗 for any vectors 𝒂 and 𝒃, and ([𝐴]⊗ [𝐵])𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙

for any second-order tensors [𝐴] and [𝐵].

The representation in Eq. (16) can be reorganized in the form
of a symbolic representation that reflects the structure of the space
M
ti(𝒏(𝒙)):

[𝑴(𝒙)] =
{
[𝑵(𝒙)],𝑀4(𝒙),𝑀5(𝒙)

}
, (19)

with

[𝑵(𝒙)] =

[
𝑀1(𝒙) 𝑀3(𝒙)

𝑀3(𝒙) 𝑀2(𝒙)

]
. (20)

3.2.2. Information-theoretic stochastic model for the elasticity tensor

It was shown in Staber and Guilleminot (2017) that the information
introduced in Section 3.2.1, given by Eq. (14)–(15), can be transferred
to the elements in the symbolic representation defined in Eq. (19). This
equivalence implies that

E{[𝑵(𝒙)]} = [𝐼2] , E{𝑀4(𝒙)} = 1 , E{𝑀5(𝒙)} = 1 , ∀𝒙 ∈ 𝛺 , (21)

together with

E{log (det([𝑵(𝒙)]))} = 𝜍123 , |𝜍123| < +∞ , (22)

and

E{log
(
𝑀4(𝒙)

)
} = 𝜍4 , |𝜍4| < +∞ , E{log

(
𝑀5(𝒙)

)
} = 𝜍5 , |𝜍5| < +∞ .

(23)

Since the above constraints do not contain cross-information, it can be
deduced that

𝜋 = 𝜋𝑵 ⊗ 𝜋𝑀4 ⊗ 𝜋𝑀5 , (24)

with obvious notation. Using the first equation in Eqs. (21) and (22),
it is found that the random matrix [𝑵(𝒙)] belongs to the set SG+ of
random matrices constructed in Soize (2000), and is thus defined by
the following probability density function:
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𝑝[𝑵(𝒙)]([𝑛]) = 1
R
2×2
≻0

([𝑛]) 𝑐 (det([𝑛]))
3(1−𝛿2

[𝑵]
)∕(2𝛿2

[𝑵]
)
exp

(
−

3

2𝛿2
[𝑵]

tr([𝑛])

)
,

(25)

where 𝑐 is the normalization constant. In the above equation, 𝛿[𝑵]

denotes the coefficient of variation of [𝑵(𝒙)]:

𝛿[𝑵] =
{
1

2
E{‖[𝑵(𝒙)] − [𝐼2]‖2𝐹 }

}1∕2

. (26)

Notice that 𝛿[𝑵] is spatially-varying when the right-hand side in Eq. (22)
depends on location. Following Soize (2000, 2006), the random matrix
[𝑵(𝒙)] can then be written as

[𝑵(𝒙)] = [𝑳(𝒙)]𝑇 [𝑳(𝒙)] , (27)

where for 𝒙 fixed in 𝛺, [𝑳(𝒙)] is an upper-triangular random matrix,
the components of which are defined as

𝐿11(𝒙) =
𝛿[𝑵]√

3

√
2𝐹−1

( 3

2𝛿2
[𝑵]

,1)
(𝐹 (0,1)(𝛯1(𝒙))) , (28)

𝐿22(𝒙) =
𝛿[𝑵]√

3

√
2𝐹−1

( 3

2𝛿2
[𝑵]

−
1
2
,1)
(𝐹 (0,1)(𝛯2(𝒙))) , (29)

𝐿12(𝒙) =
𝛿[𝑵]√

3
𝛯4(𝒙) . (30)

Using the second and third equations in Eq. (21), as well as Eq. (23),
it is found that {𝑀4(𝒙),𝒙 ∈ 𝛺} and {𝑀5(𝒙),𝒙 ∈ 𝛺} are marginally
Gamma distributed and can thus be defined as

𝑀4(𝒙) = 𝐹−1(𝑎4 ,𝑏4)(𝐹 (0,1)(𝛯4(𝒙))) , (31)

and

𝑀5(𝒙) = 𝐹−1(𝑎5 ,𝑏5)(𝐹 (0,1)(𝛯5(𝒙))) , (32)

where (𝑎4, 𝑏4) and (𝑎5, 𝑏5) are the pairs of shape and scale parameters
in the Gamma law associated with 𝑀4 and 𝑀5, respectively.

3.3. Stochastic plasticity formulation

3.3.1. Deterministic plasticity modeling
In this work, the 3D-printed material characterized in Section 2 is

described using Hill’s yield criterion. In the case where the axes (𝑥, 𝑦, 𝑧)
coincide with the axes of orthotropy, the Hill yield function is expressed
by

𝑓 ([𝝈]) = 𝐹 (𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2 + 𝐺(𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2 +𝐻(𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2

+ 2𝐿𝜎2
𝑦𝑧

+ 2𝑀𝜎2
𝑧𝑥

+ 2𝑁𝜎2
𝑥𝑦

− 1 , (33)

where 𝐹 , 𝐺, 𝐻 , 𝐿, 𝑀 , and 𝑁 are Hill’s constants. The latter are
related to yield and ultimate shear stresses, denoted by (𝜎̄𝑥𝑥, 𝜎̄𝑦𝑦, 𝜎̄𝑧𝑧)

and (𝜎̄𝑥𝑦, 𝜎̄𝑥𝑧, 𝜎̄𝑦𝑧), respectively, by the following equations:

𝐹 =
1

2
(
1

𝜎̄2
𝑦𝑦

+
1

𝜎̄2
𝑧𝑧

−
1

𝜎̄2
𝑥𝑥

) , 𝐺 =
1

2
(
1

𝜎̄2
𝑧𝑧

+
1

𝜎̄2
𝑥𝑥

−
1

𝜎̄2
𝑦𝑦

) ,

𝐻 =
1

2
(
1

𝜎̄2
𝑥𝑥

+
1

𝜎̄2
𝑦𝑦

−
1

𝜎̄2
𝑧𝑧

) ,

𝐿 =
1

2(𝜎̄𝑦𝑧)
2
, 𝑀 =

1

2(𝜎̄𝑥𝑧)
2
, 𝑁 =

1

2(𝜎̄𝑥𝑦)
2
.

(34)

Note that the yield function in Eq. (33) can also be expressed in terms
of reference yield and ultimate shear stresses, in which case Hill’s
constants are replaced by dimensionless material parameters.

Adopting a standard Voigt representation for stresses, defined as

𝝈 = (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑦𝑧, 𝜎𝑥𝑧, 𝜎𝑦𝑧)
𝑇 , (35)

the yield function reads as

𝑓 (𝝈) = 𝝈𝑇 [𝐴]𝝈 − 1 , (36)

where [𝐴] is the symmetric matrix given by

[𝐴] =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐺 +𝐻 −𝐻 −𝐺 0 0 0

−𝐻 𝐹 +𝐻 −𝐹 0 0 0

−𝐺 −𝐹 𝐹 + 𝐺 0 0 0

0 0 0 2𝐿 0 0

0 0 0 0 2𝑀 0

0 0 0 0 0 2𝑁

⎤⎥⎥⎥⎥⎥⎥⎦

. (37)

Since the behavior and microstructural features are found to be
similar along the 𝑥 and 𝑦 axes in the experiments, it is assumed that
𝜎̄𝑥𝑥 = 𝜎̄𝑦𝑦 and 𝜎̄𝑦𝑧 = 𝜎̄𝑥𝑧 (Iliopoulos et al., 2020a). Under these
assumptions, the yield criterion can be simplified to

𝑓 ([𝝈]) = 𝑈 [(𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2] + 𝑉 (𝜎𝑥𝑥 − 𝜎𝑦𝑦)
2

+ 2𝑀(𝜎2
𝑦𝑧

+ 𝜎2
𝑥𝑧
) + 2𝑁𝜎2

𝑥𝑦
− 1 , (38)

where 𝑈 and 𝑉 are the material parameters defined as

𝑈 =
1

2(𝜎̄𝑧𝑧)
2
, 𝑉 =

1

(𝜎̄𝑥𝑥)
2
−

1

2(𝜎̄𝑧𝑧)
2
. (39)

Since the ultimate shear stresses could not be characterized in the
experiments, the standard assumptions 𝜎̄𝑦𝑧 = 𝜎̄𝑥𝑧 = 𝜎̄𝑧𝑧∕

√
3 and 𝜎̄𝑥𝑦 =

𝜎̄𝑥𝑥∕
√
3 (obtained by requiring the criterion to coincide with the von

Mises stress in the isotropic case) are retained, so that [𝐴] finally reads
as

[𝐴] =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑈 + 𝑉 −𝑉 −𝑈 0 0 0

−𝑉 𝑈 + 𝑉 −𝑈 0 0 0

−𝑈 −𝑈 2𝑈 0 0 0

0 0 0 6𝑈 0 0

0 0 0 0 6𝑈 0

0 0 0 0 0 3(𝑈 + 𝑉 )

⎤⎥⎥⎥⎥⎥⎥⎦

. (40)

The construction of a probabilistic model for the material parameters
𝑈 and 𝑉 is addressed in the next section.

3.3.2. Information-theoretic stochastic model for reduced Hill’s coefficients
In this section, we consider the stochastic modeling of the reduced

Hill’s coefficients 𝑈 and 𝑉 , viewed as random fields. We, therefore,
introduce the random field of plasticity parameters {(𝑈 (𝒙), 𝑉 (𝒙))𝑇 ,𝒙 ∈

𝛺}, defined on a given probability space. Following the methodology
presented in Section 3, a translation model is introduced as

(𝑈 (𝒙), 𝑉 (𝒙))𝑇 =  (𝜩(𝒙)) , ∀𝒙 ∈ 𝛺 . (41)

To construct the pushforward transformation  , we observe that con-
straints related to the definition of [𝐴] (see Section 3.3.1) write

𝑈 > 0 , 𝑈 + 𝑉 > 0 . (42)

It is thus convenient to introduce the random field {𝑊 (𝒙),𝒙 ∈ 𝛺}, with

𝑊 (𝒙) = 𝑈 (𝒙) + 𝑉 (𝒙) , (43)

so that the stochastic model can be defined on {𝑷 (𝒙) = (𝑈 (𝒙),𝑊 (𝒙))𝑇 ,

𝒙 ∈ 𝛺}. In this case, the transport map can be defined by imposing

E{𝑷 (𝒙)} = 𝒑 (44)

and

|E{log𝑃𝑖(𝒙)}| < +∞ , 𝑖 = 1, 2 , (45)

with

𝑃𝑖(𝒙) > 0 , 𝑖 = 1, 2 . (46)

Note that these constraints also imply that both 𝜎̄𝑥𝑥(𝒙) and 𝜎̄𝑧𝑧(𝒙) are
second-order random variables, ∀𝒙 ∈ 𝛺, and that the consideration of
additional information (e.g., the existence of an upper bound) would
lead to other probability distributions (e.g., a truncated Gaussian dis-
tribution; see Pokusiński and Kamiński (2023) for an example, as well
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Table 3
Samples of the horizontal Young’s modulus in [GPa] (tensile test).

Batch # Sample # 𝐸
𝓁
[GPa] Batch # Sample # 𝐸

𝓁
[GPa]

1

1 131

3

17 124
2 122 18 137
3 132 19 153
4 130 20 126
5 110 21 129
6 112 22 136
7 118 23 139
8 114 24 122

2

9 112

4

25 112
10 128 26 94.5
11 109 27 96.0
12 108 28 119
13 117 29 123
14 113 30 123
15 128 31 109
16 124 32 129

as Kamiński (2021) for yet another way to use the maximum entropy
principle). This case is formally analogous to the one presented in
Section 3.1.1, which leads us to consider

𝜋 = 𝜋𝑈 ⊗ 𝜋𝑊 (47)

with obvious notation, where

𝑃1(𝒙) = 𝐹−1

(1∕𝛿2
𝑈
,𝑢𝛿2

𝑈
)

(
𝐹 (0,1)

(
𝛯1(𝒙)

))
, ∀𝒙 ∈ 𝛺 , (48)

and

𝑃2(𝒙) = 𝐹−1

(1∕𝛿2
𝑊

,𝑤𝛿2
𝑊

)

(
𝐹 (0,1)

(
𝛯2(𝒙)

))
, ∀𝒙 ∈ 𝛺 , (49)

where the hyperparameters were expressed in terms of the mean values
𝑢 and 𝑤, and coefficients of variations 𝛿𝑈 and 𝛿𝑊 . Note that 𝑈 (𝒙) and
𝑉 (𝒙) are statistically dependent owing to the change of variables.

Remark 1. Following Hun et al. (2019), cross-correlation between the
plasticity parameters can be introduced through the transport maps

𝑃1(𝒙) =

(
𝐹−1

(1∕𝛿2
𝑈
,𝑢𝛿2

𝑈
)
◦𝐹 (0,1)

)(
𝛯1(𝒙)

)
, ∀𝒙 ∈ 𝛺 , (50)

and

𝑃2(𝒙) =

(
𝐹 −1

(1∕𝛿2
𝑊

,𝑤𝛿2
𝑊

)
◦𝐹 (0,1)

)(
𝜌𝑈𝑊 𝛯1(𝒙) +

√
1 − 𝜌2

𝑈𝑊
𝛯2(𝒙)

)
, ∀𝒙 ∈ 𝛺 ,

(51)

where 𝜌𝑈𝑊 ∈ [−1, 1] is the Pearson correlation coefficient between
𝑈 and 𝑊 . In practice, it is useful to express some of the above
statistical parameters in terms of the ones associated with 𝑈 (𝒙) and
𝑉 (𝒙). Denoting by 𝑣 and 𝛿𝑉 the mean and coefficient of variation of
𝑉 (𝒙), and using ‘‘sd’’ to denote the standard deviation, it follows from
straightforward algebra that

𝛿𝑊 =
1

𝑤

√
2sd𝑈

(
sd𝑈 + 𝜌𝑈𝑉 sd𝑉

)
+ sd2

𝑉
− sd2

𝑈
(52)

and

𝜌𝑈𝑊 =
sd2

𝑈
+ 𝜌𝑈𝑉 sd𝑈 sd𝑉

sd𝑈 sd𝑊
, (53)

where sd𝑊 = 𝑤𝛿𝑊 , 𝜌𝑈𝑉 is the (target) Pearson correlation coefficient
between 𝑈 (𝒙) and 𝑉 (𝒙), and use was made of the equality Var(𝑉 ) =

Var(𝑊 −𝑈 ) = Var(𝑊 )−2Cov(𝑊 ,𝑈 )+Var(𝑈 ). In the present work, such
cross-correlation is not introduced due to data limitation, given that
the directional yield stresses are not characterized at the same location
(hence leaving 𝜌𝑈𝑉 , or equivalently 𝜌𝑈𝑊 , undetermined).

Table 4
Samples of the transverse Young’s modulus in [GPa] (tensile test).

Batch # Sample # 𝐸𝑡 [GPa] Batch # Sample # 𝐸𝑡 [GPa]

1

1 108

3

17 109
2 112 18 102
3 107 19 102
4 112 20 0.985
5 120 21 102
6 108 22 108
7 118 23 117
8 105 24 108

2

9 127

4

25 114
10 104 26 124
11 104 27 104
12 109 28 108
13 104 29 115
14 102 30 \
15 102 31 101
16 111 32 121

4. Model calibration and simulations

We first address, in Section 4.1, the calibration of the parameters

in the first-order marginal distribution for the elasticity and plasticity

models. We next identify, in Section 4.2, some of the spatial correlation

lengths for the plasticity model. Sampling is finally illustrated with the

calibrated model in Section 4.3.

4.1. Calibration of first-order marginal distribution

4.1.1. Stochastic elasticity model

Following the formulation presented in Section 3.2, we seek to

calibrate the mean model and coefficients of variation defining the

first-order marginal distribution. The correlation lengths for the latent

Gaussian random fields cannot be estimated due to data limitation

(which raises non-uniqueness issues given that the Walpole compo-

nents are not directly observed). The database consists of samples of

restrictions of the random fields, namely

• {𝐸𝓁(0,−𝐿12∕2, 𝑥3), 𝑥3 ∈ 𝛺3}, characterized on Face 1;

• {𝐸𝓁(𝐿12∕2, 0, 𝑥3), 𝑥3 ∈ 𝛺3}, characterized on Face 2;

• {𝐸𝑡(𝑥1, 𝐿12∕2, 𝐿3∕2), 𝑥1 ∈ 𝛺1} characterized on Face 3;
• {𝐸𝑡(−𝐿12∕2, 𝑥2, 𝐿3∕2), 𝑥2 ∈ 𝛺2} characterized on Face 4;

where 𝐸𝓁 and 𝐸𝑡 are the horizontal and vertical Young’s moduli,

indexing domains {𝛺𝑖}
3
𝑖=1

are defined with respect to faces (see Fig. 2),

and 𝐿12 = 166 [mm] and 𝐿3 = 130 [mm] are the width and height of

the box. The realizations extracted from the stress–strain curves shown

in Fig. 3 are provided in Tables 3 and 4.

To proceed with the calibration of the hyperparameters in the

first-order marginal distribution, consider (1, 0, 0)𝑇 as the unit vector

defining the symmetry class. The stochastic elasticity matrix can then

be expressed in terms of Walpole components as

[𝑪] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑀1

√
2𝑀3

2

√
2𝑀3

2
0 0 0√

2𝑀3

2

𝑀2

2
+

𝑀4

2

𝑀2

2
−

𝑀4

2
0 0 0√

2𝑀3

2

𝑀2

2
−

𝑀4

2

𝑀2

2
+

𝑀4

2
0 0 0

0 0 0
𝑀4

2
0 0

0 0 0 0
𝑀5

2
0

0 0 0 0 0
𝑀5

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (54)
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or equivalently as [𝑪] = [𝑺]−1, where [𝑺] is the stochastic compliance
matrix given in terms of so-called (stochastic) engineering constants:

[𝑺] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝐸𝓁

−
𝜈𝓁t

𝐸𝓁

−
𝜈𝓁t

𝐸𝓁

0 0 0

−
𝜈𝓁t

𝐸𝓁

1

𝐸𝑡
−

𝜈𝑡

𝐸𝑡
0 0 0

−
𝜈𝓁t

𝐸𝓁

−
𝜈𝑡

𝐸𝑡

1

𝐸𝑡
0 0 0

0 0 0
2(1+𝜈𝑡)

𝐸𝑡
0 0

0 0 0 0
1

𝐺𝓁

0

0 0 0 0 0
1

𝐺𝓁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where 𝐺𝓁 is the stochastic horizontal shear modulus, 𝜈𝓁t and 𝜈𝑡 are
the stochastic out-of-plane and in-plane Poisson ratios. Recall that 𝐸𝓁

and 𝐸𝑡 are the stochastic horizontal and transverse Young’s moduli.
Imposing almost sure equality between the two forms then yields

𝐸𝓁 = −
𝑀2

3
−𝑀1 𝑀2

𝑀2

, (56)

𝐸𝑡 = −
2𝑀4

(
𝑀2

3
−𝑀1 𝑀2

)

−𝑀2
3
+𝑀1 𝑀2 +𝑀1 𝑀4

, (57)

𝐺𝓁 =
𝑀5

2
, (58)

𝜈𝓁𝑡 =

√
2𝑀3

2𝑀2

, (59)

𝜈𝑡 = −
𝑀2

3
−𝑀1 𝑀2 +𝑀1 𝑀4

−𝑀2
3
+𝑀1 𝑀2 +𝑀1 𝑀4

. (60)

and

𝑀1 =
𝐸2
𝓁
𝜈𝑡 − 𝐸2

𝓁

2𝐸𝑡 𝜈
2
𝓁t

− 𝐸𝓁 + 𝐸𝓁 𝜈𝑡

, (61)

𝑀2 = −
𝐸𝓁 𝐸𝑡

2𝐸𝑡 𝜈
2
𝓁t

− 𝐸𝓁 + 𝐸𝓁 𝜈𝑡

, (62)

𝑀3 = −

√
2𝐸𝓁 𝐸𝑡 𝜈𝓁t

2𝐸𝑡 𝜈
2
𝓁t

− 𝐸𝓁 + 𝐸𝓁 𝜈𝑡

, (63)

𝑀4 =
𝐸𝑡

𝜈𝑡 + 1
, (64)

𝑀5 = 2𝐺𝓁 . (65)

These relationships show the nonlinearities arising from the transfor-
mation from the Walpole form to the form expressed with engineering
constants (note that in the above equations, spatial indexation was
dropped to simplify notation). This implies that statistical moments
estimated on the engineering constants 𝐸𝓁 and 𝐸𝑡 cannot be used to
estimate the corresponding moments (such as means) for the Walpole
components. Given that the available data are limited, and on the ac-
count of the above equations, identification of hyperparameters for𝑀5

is not pursued and we consider the calibration of the hyperparameters
associated with 𝑀1, 𝑀2, 𝑀3, and 𝑀4 (which are related to 𝐸𝓁 and
𝐸𝑡) only. Let 𝐸𝓁

and 𝐸
𝑡
denote the mean values of the horizontal and

vertical Young’s moduli. In addition, it is assumed that the mean values
for the Poisson coefficients are such that 𝜈

𝓁
= 𝜈

𝓁𝑡
= 0.3 (see Li et al.

(2020)). We then define the mean values for the considered Walpole
coefficients as

𝑀
1
=

𝐸2
𝓁
𝜈
𝑡
− 𝐸2

𝓁

2𝐸
𝑡
𝜈2
𝓁t

− 𝐸
𝓁
+ 𝐸

𝓁
𝜈
𝑡

, (66)

𝑀
2
= −

𝐸
𝓁
𝐸

𝑡

2𝐸
𝑡
𝜈2
𝓁t

− 𝐸
𝓁
+ 𝐸

𝓁
𝜈
𝑡

, (67)

𝑀
3
= −

√
2𝐸

𝓁
𝐸

𝑡
𝜈
𝓁t

2𝐸
𝑡
𝜈2
𝓁t

− 𝐸
𝓁
+ 𝐸

𝓁
𝜈
𝑡

, (68)

𝑀
4
=

𝐸
𝑡

𝜈
𝑡
+ 1

. (69)

The above equations constitute approximations, due to the nonlinear
nature of the mappings, and are introduced to reduce the size of the
calibration problem. In this setting, the only parameters that remain to
be identified are the coefficients of variation 𝛿[𝑵] and 𝛿𝑀4

. Here we rely
on the maximum likelihood method, using a regular mesh in the search
space. Once samples of the Walpole are generated for given values of
the coefficients, using the stochastic model presented in Section 3.2,
the associated samples of the horizontal and vertical Young’s moduli
are computed and used in a kernel density estimator. It is found that
optimal values given the experimental dataset are given by

𝛿[𝑵] = 0.12 , 𝛿𝑀4
= 0.08 . (70)

The kernel density estimators corresponding to these two values, to-
gether with the experimental results are shown in Fig. 5. These figures
illustrate good qualitative agreement between the experimental data
and the calibrated models, and show that the experimental distributions
associated with the two elastic moduli present skewness coefficients
with opposite signs. Note, however, that the number of experimen-
tal samples is not large enough to ensure complete convergence in
the estimators (and therefore, to draw firm conclusions regarding,
e.g., skewness).

4.1.2. Stochastic plasticity model

Here, we address the calibration of the hyperparameters in the
stochastic model for the random field {𝑷 (𝒙) = (𝑈 (𝒙),𝑊 (𝒙))𝑇 ,𝒙 ∈ 𝛺},
presented in Section 3.3. Following the description of the experiments
provided in Section 2.2, the database is composed of 4 samples for each
field, each of which is associated with one realization of the box and
a specific face on the latter (see Fig. 2). For a given face, 8 samples
are collected with a space step size of 10 [mm]. The realizations
thus obtained on the two boxes for restrictions of the random fields
{𝑈 (𝒙),𝒙 ∈ 𝛺} and {𝑊 (𝒙),𝒙 ∈ 𝛺} are shown in Figs. 6 and 7. More
specifically, we consider:

• the restrictions {𝑈 (𝑥1, 𝐿12∕2, 𝐿3∕2), 𝑥1 ∈ 𝛺1} and {𝑈 (−𝐿12∕2, 𝑥2,

𝐿3∕2), 𝑥2 ∈ 𝛺2} of random field {𝑈 (𝒙),𝒙 ∈ 𝛺}, characterized on
Faces 3 and 4; and

• the restrictions {𝑊 (0,−𝐿12∕2, 𝑥3), 𝑥3 ∈ 𝛺3} and {𝑊 (𝐿12∕2, 0, 𝑥3),

𝑥3 ∈ 𝛺3} of random field {𝑊 (𝒙),𝒙 ∈ 𝛺}, characterized on Faces
1 and 2.

Substantial variability is observed for both fields, following the
fluctuations observed in Tables 1 and 2 (see Eqs. (39) and (43) as well).
In the following, we further simplify notation and use {𝑈 (𝑥1), 𝑥1 ∈ 𝛺1},
{𝑈 (𝑥2), 𝑥2 ∈ 𝛺2}, and {𝑊 (𝑥3), 𝑥3 ∈ 𝛺3} to denote the aforementioned
restrictions.

Given that the directional yield stresses were not characterized
jointly, we select 𝜌𝑈𝑊 = 0 in accordance with information theory and
hence, the two non-Gaussian fields are written as

𝑃1(𝑥𝑖) =

(
𝐹−1

(1∕𝛿2
𝑈
,𝑢𝛿2

𝑈
)
◦𝐹 (0,1)

)(
𝛯1(𝑥𝑖)

)
, ∀𝑥𝑖 ∈ 𝛺𝑖 , 𝑖 = 1, 2 , (71)

and

𝑃2(𝑥3) =

(
𝐹−1

(1∕𝛿2
𝑊

,𝑤𝛿2
𝑊

)
◦𝐹 (0,1)

)(
𝛯2(𝑥3)

)
, ∀𝑥3 ∈ 𝛺3 , (72)

where the mean values and coefficients of variation are estimated as

𝑢 = 7.8929 , 𝑤 = 14.6350 , (73)

in [GPa−2], and

𝛿𝑈 = 0.0422 , 𝛿𝑊 = 0.0736 , (74)

respectively. Based on the database, we will seek plausible values for
the correlation lengths of the latent Gaussian fields 𝛯1 and 𝛯2 in the
next section.
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Fig. 5. Kernel density estimators of the probability density functions for the horizontal and vertical Young’s moduli obtained from the calibrated model and from experiments.

Fig. 6. Realizations of restrictions {𝑈 (𝑥1 , 𝐿12∕2, 𝐿3∕2), 𝑥1 ∈ 𝛺1} and {𝑈 (−𝐿12∕2, 𝑥2 , 𝐿3∕2), 𝑥2 ∈ 𝛺2} (left panel), and {𝑊 (0,−𝐿12∕2, 𝑥3), 𝑥3 ∈ 𝛺3} and {𝑊 (𝐿12∕2, 0, 𝑥3), 𝑥3 ∈ 𝛺3} (right
panel) on Box 1 (in [GPa−2]).

Fig. 7. Realizations of restrictions {𝑈 (𝑥1 , 𝐿12∕2, 𝐿3∕2), 𝑥1 ∈ 𝛺1} and {𝑈 (−𝐿12∕2, 𝑥2 , 𝐿3∕2), 𝑥2 ∈ 𝛺2} (left panel), and {𝑊 (0,−𝐿12∕2, 𝑥3), 𝑥3 ∈ 𝛺3} and {𝑊 (𝐿12∕2, 0, 𝑥3), 𝑥3 ∈ 𝛺3} (right
panel) on Box 2 (in [GPa−2]).
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4.2. Calibration of the spatial correlation length

4.2.1. Strategy
In order to partially calibrate the correlation lengths, the inverse

translation model is considered:

𝜩(𝒙) =  −1(𝑷 (𝒙)) , ∀𝒙 ∈ 𝛺 , (75)

Let 𝐿
(𝑘)

𝑖
, 1 ≤ 𝑘 ≤ 2 be the upper bound on the correlation length

associated with the 𝑘th component {𝛯𝑘(𝑥𝑖), 𝑥𝑖 ∈ 𝛺𝑖} of {𝜩(𝑥𝑖), 𝑥𝑖 ∈ 𝛺𝑖}.
Recall that in the considered experimental setting:

• Samples of 𝜎̄𝑧𝑧 are characterized along 𝛺1 and 𝛺2, and can thus
be used to compute samples of the restrictions {𝑈 (𝑥1), 𝑥1 ∈ 𝛺1}

and {𝑈 (𝑥2), 𝑥2 ∈ 𝛺2}; see Eq. (39). Using Eq. (75) and owing
to the postulated invariance in the (𝑥 − 𝑦) plane, these samples
can be used to obtain and merge the samples of the restrictions
{𝛯1(𝑥1), 𝑥1 ∈ 𝛺1} and {𝛯1(𝑥2), 𝑥2 ∈ 𝛺2} (with the transport map
identified in Section 4.1.2).

• Similarly, samples of 𝜎̄𝑥𝑥 and 𝜎̄𝑦𝑦 are characterized along 𝛺3, and
allow for the estimation of the samples of {𝑊 (𝑥3), 𝑥3 ∈ 𝛺3};
see Eq. (43), with Eq. (39). These samples can, in turn, be used
to compute the samples of {𝛯2(𝑥3), 𝑥3 ∈ 𝛺3} (merging samples
collected on all faces corresponding to 𝛺1 and 𝛺2), using the
results calibrated in Section 4.1.2.

Let 𝝃exp,𝑖𝑘 be the (deterministic) vector gathering the experimental
realization of {𝛯𝑘(𝑥𝑖), 𝑥𝑖 ∈ 𝛺𝑖} at the experimentally sampled points.
Let {𝛯mod(𝑥𝑖), 𝑥𝑖 ∈ 𝛺𝑖} be a scalar-valued, centered Matérn Gaussian
random field, with 𝛼 = 1∕2 and correlation length 𝐿. This model
is chosen for the sake of calibration, given that the latent Gaussian
fields will effectively be simulated with the SPDE approach recalled
in Section 3.1.1. Similarly, let 𝜩mod(𝐿) be the Gaussian random vector
gathering the values of {𝛯mod(𝑥𝑖), 𝑥𝑖 ∈ 𝛺𝑖} at the sampled points. This
random vector is here interpreted as a function of 𝐿 for calibration
purposes. Consider

𝜩mod(𝐿) =

[
𝜩mod

1
(𝐿)

𝜩mod
2

(𝐿)

]
, (76)

where 𝜩mod
1

(𝐿) and 𝜩mod
2

(𝐿) are random vectors of lengths (𝑁𝑝 −𝑁𝑓 )

and 𝑁𝑓 , respectively, where 𝑁𝑝 denotes the number of points where
samples are collected, and 𝑁𝑓 is a user-specified number of points. No-
tice that the above partition is not necessarily contiguous and ordered
in space. Let

𝝃exp,𝑖𝑘 =

[
𝝃
exp,𝑖𝑘
1

𝝃
exp,𝑖𝑘
2

]
(77)

be the partition of experimental data, defined as in Eq. (76). Since
𝜩mod(𝐿) is Gaussian, we have that 𝜩mod

1
(𝐿)|𝜩mod

2
(𝐿) = 𝝃

exp,𝑖𝑘
2

is dis-
tributed according to

 ([𝛴mod
12

(𝐿)][𝛴mod
22

(𝐿)]−1𝝃
exp,𝑖𝑘
2

, [𝛴mod
11

(𝐿)]

− [𝛴mod
12

(𝐿)][𝛴mod
22

(𝐿)]−1[𝛴mod
21

(𝐿)]) , (78)

where  is the Gaussian distribution and the covariance matrix of
𝜩mod(𝐿) is given by

[𝛴mod(𝐿)] =

[
[𝛴mod

11
(𝐿)] [𝛴mod

12
(𝐿)]

[𝛴mod
21

(𝐿)] [𝛴mod
22

(𝐿)]

]
, (79)

with a block structure induced by the above partition (see Eq. (76)).
An upper bound for the correlation length 𝐿

(𝑘)
𝑖
can then be identified

by the maximum likelihood method:

𝐿
(𝑘)

𝑖
= argmax𝐿>0

𝑁𝑝−𝑁𝑓∏
𝑗=1

𝑓
𝛯mod
1,𝑗

(𝐿)
(𝜉
exp,𝑖𝑘
1,𝑗

) , (80)

where

• 𝜉
exp,𝑖𝑘
1,𝑗

is the 𝑗th component of 𝝃exp,𝑖𝑘
1

; and

Fig. 8. Realization of the latent Gaussian random field {𝛯1(𝑥2), 𝑥2 ∈ 𝛺2} obtained by
pulling back the sample of the restriction {𝑈 (−𝐿12∕2, 𝑥2 , 𝐿3∕2), 𝑥2 ∈ 𝛺2} on Box 1 (see
Fig. 6). Here, red and orange circular markers indicate points where conditioning is
performed and where the likelihood function is computed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

• the probability density function 𝑓
𝛯mod
1,𝑗

(𝐿)
defining the 𝑗th com-

ponent of 𝜩mod
1

(𝐿) is obtained by the Monte Carlo approach
and nonparametric kernel estimation (for a given 𝐿). In the
applications presented below, a QR factorization technique was
employed for sampling purposes, to ensure stability over the
considered range of correlation lengths, and the estimators were
computed using 10,000 independent samples.

The rationale behind the above strategy is that values of 𝐿 that are
larger than the sought-after correlation length lead to low likelihood
values (with a monotonic decrease trend), since spatial variations can-
not be captured accurately. On the other hand, the likelihood function
exhibits small fluctuations and/or a plateau for values that are smaller
than the most plausible value of the correlation length (which supports
the consideration of an upper bound, rather than a point estimate, for
the considered correlation length).

In practice, the choice of the 𝑁𝑓 points upon which conditioning is
performed is guided by the local monotonicity of the experimental sam-
ples. In particular, non-negligible variations should exist around the𝑁𝑓

selected points, so that the likelihood estimator becomes informative.

4.2.2. Results

One experimental sample of the latent Gaussian random field
{𝛯1(𝑥2), 𝑥2 ∈ 𝛺2} is shown in Fig. 8, together with the definition of the
points used for conditioning and estimating the likelihood function.

Figs. 9(a) and 9(b) show the evolution of the likelihood functions
in terms of the correlation length 𝓁.

Possible values for the correlation length along 𝑥1 and 𝑥2, associated
with the random field 𝑈 (and the directional yield stress 𝜎̄𝑧𝑧), lie within
the range 5–8 [mm], while plausible values for the correlation length
along 𝑥3, associated with the random field𝑊 (and the directional yield
stresses 𝜎̄𝑥𝑥 and 𝜎̄𝑦𝑦), are between 18 and 22 [mm].

While the above ranges may not be compared with one another
without caution, given that they were identified on two different ran-
dom fields (and with a very limited number of samples), they tend to
suggest pronounced anisotropy in the correlation structure (as induced
by processing conditions).
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Fig. 9. Plot of the log-likelihood function as a function of the correlation length 𝓁 in the Matérn covariance function (with 𝜈 =
1

2
) for the restriction of 𝑈 (left) and 𝑊 (right).

Fig. 10. Finite element mesh of the CAD model for the box.

4.3. Simulations of the calibrated model

In this section, we perform sampling of the calibrated stochastic
model to exemplify the structure of the directional yield stress fields.
Since the dataset does not allow for the calibration of all hyperpa-
rameters, and specifically for the estimation of the correlation lengths
along 𝑥3 for 𝜎̄𝑧𝑧 and along 𝑥1 and 𝑥2 for 𝜎̄𝑥𝑥 and 𝜎̄𝑦𝑦, we assume that
the correlation lengths, while direction-dependent, are the same for all
directional yield stresses. We thus retain the following values for the
correlation lengths:

𝐿
(𝑘)

1
= 𝐿

(𝑘)

2
= 6 , 𝐿

(𝑘)

3
= 20 , (81)

in [mm], regardless of the latent Gaussian field (that is, ∀𝑘 ∈ {1, 2}).

4.3.1. Construction of the orientation fields
In this application, the directional fields are computed as follows.

First, an orientation field, here taken as 𝒆(2), is computed by solving the
Laplace problem (see Eq. (7)) with 𝛹 = 0 and 𝛹 = 1 on the inner and
outer surface of the box, respectively. The vertical directional field is
then defined as 𝒆(3) = (0, 0, 1)𝑇 , and the last field 𝒆(1) is finally computed
by taking the cross product between 𝒆(2) and 𝒆(3).

We consider a discretization of the domain using 73,472 linear
tetrahedral elements (24,401 nodes), shown in Fig. 10.

Since the mesh is too dense to visualize the directional fields over
the whole domain, nodes were uniformly selected over the domain and
plots of the directional fields 𝒆(1) and 𝒆(2) are shown in Fig. 11.

4.3.2. Generating samples of the calibrated plasticity model

Following the results presented in the previous sections, the stochas-

tic fields of plasticity parameters can be simulated by defining the latent

Gaussian fields through the SPDE approach with the diffusion field (see

Eq. (5))

[𝐻 (𝑘)(𝒙)] =

3∑
𝑖=1

𝜆
(𝑘)
𝑖

𝒆(𝑖)(𝒙)⊗ 𝒆(𝑖)(𝒙) , ∀𝒙 ∈ 𝛺 , (82)

where {𝜆
(𝑘)
𝑖
} satisfy

𝐿
(𝑘)
𝑖

=

√
𝜆
(𝑘)
𝑖

𝜅
, (83)

with 𝜅 = 1 and 𝑳 = (6, 6, 20) (in [mm]), regardless of the plasticity

parameter. It should be noticed that it is implicitly assumed that

the plasticity parameters exhibit the same correlation lengths along

each direction—an assumption that may be relaxed, should further

experiments be conducted to characterize all correlation lengths.

Samples of the non-Gaussian fields 𝑈 and 𝜎𝑧𝑧 are shown in Fig. 12.

Samples of the non-Gaussian fields 𝑊 and 𝜎𝑥𝑥 are shown in Fig. 13.

5. Conclusion

In this work, the construction and partial identification of a stochas-

tic elasto-plastic constitutive model were addressed. The model ac-

counts for the anisotropy observed in physical tensile experiments

on both the elastic and plastic response (specifically, on the horizon-

tal and vertical Young’s moduli, as well as on the directional yield

strengths). Variability ranging from three to twelve percent is ob-

served, depending on the property. An information-theoretic stochastic

framework was leveraged to derive admissible probabilistic models

involving a low-dimensional parameterization. These representations

were subsequently calibrated utilizing the experimental results, using

statistical estimators for the hyperparameters in the transport maps

and a maximum-likelihood-based methodology to estimate spatial cor-

relation lengths. Good quantitative agreement is observed in terms

of first-order marginal distributions. Results related to the covariance

structure suggest strong anisotropy as well. While these findings re-

quire additional experiments, given the anisotropy in both the yield

criterion and covariance structure, the overall approach paves the way

for simulating elasticity and plasticity material parameters on complex

geometries produced by additive manufacturing.
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Fig. 11. Orientation fields 𝒆(1) and 𝒆(2) for the box model.

Fig. 12. Sample of 𝑈 in [GPa−2] and associated sample of 𝜎̄𝑧𝑧 in [Pa].

Fig. 13. Sample of 𝑊 in [GPa−2] and associated sample of 𝜎̄𝑥𝑥 in [Pa].
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