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A B S T R A C T

Traditional linear subspace-based reduced order models (LS-ROMs) can be used to significantly
accelerate simulations in which the solution space of the discretized system has a small
dimension (with a fast decaying Kolmogorov 𝑛-width). However, LS-ROMs struggle to achieve
speed-ups in problems whose solution space has a large dimension, such as highly nonlinear
problems whose solutions have large gradients. Such an issue can be alleviated by combining
nonlinear model reduction with operator learning. Over the past decade, many nonlinear
manifold-based reduced order models (NM-ROM) have been proposed. In particular, NM-ROMs
based on deep neural networks (DNN) have received increasing interest. This work takes
inspiration from adaptive basis methods and specifically focuses on developing an NM-ROM
based on Convolutional Neural Network-based autoencoders (CNNAE) with iteration-dependent
trainable kernels. Additionally, we investigate DNN-based and quadratic operator inference
strategies between latent spaces. A strategy to perform vectorized implicit time integration is
also proposed. We demonstrate that the proposed CNN-based NM-ROM, combined with DNN-
based operator inference, generally performs better than commonly employed strategies (in
terms of prediction accuracy) on a benchmark advection-dominated problem. The method also
presents substantial gain in terms of training speed per epoch, with a training time about one
order of magnitude smaller than the one associated with a state-of-the-art technique performing
with the same level of accuracy.

1. Introduction

1.1. Background

In many decision-making applications, e.g. inverse problem, optimal control, uncertainty quantification, etc., the outer loop
requires a large number of forward evaluations of the full order model (FOM). However, oftentimes a high-fidelity model, in the
form of coupled partial differential equations (PDEs), is computationally prohibitive as a feasible forward simulation within the outer
loop. To avoid evaluating the expensive high-fidelity model in a forward simulation, a reduced order model (ROM) can be trained
as its surrogate with reasonable accuracy, hence significantly reducing the computational cost of the decision-making applications.

Nonlinear PDEs describe a wide spectrum of engineering problems. High-fidelity numerical solvers based on high-dimensional
spatial discretizations are prohibitively expensive in many-query settings. Intrusive and non-intrusive LS-ROMs reduce the dimen-
sionality of the model by projecting the solution of the high-dimensional model onto a linear subspace. Several approaches to
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defining the approximation subspace have been proposed (see e.g. [1] for a review). A common empirical choice is the proper
orthogonal decomposition (POD) subspace, which spans the leading principal components of an available set of state data [2–4].
For PDEs with only linear and polynomial terms, the projection-based reduced model admits an efficient low-dimensional numerical
representation that can be cheaply evaluated at a cost independent of the dimension of the original model [5,1,6–8]. For PDEs
with more general nonlinear terms, an additional level of approximation, e.g., interpolation [9–15], is generally needed to achieve
computational efficiency. Alternatively, the works in [5,7,16,17] transform PDEs with general nonlinear terms to representations
with only quadratic nonlinearities via the use of structure-exposing lifting transformations, and then project the quadratic operators
of the resultant lifted PDE to obtain a reduced model.

In spite of its many successes, the linear subspace solution representation suffers from the inability to represent certain physical
imulation solutions with a small basis dimension, such as advection-dominated problems whose solutions possess large spatial
radients. This is because linear subspace can only retain a small dimensionality for problems with a fast decaying Kolmogorov 𝑛-

width, i.e., the solution can be well-represented by a small number of basis functions. Problems with a slowly decaying Kolmogorov
𝑛-width include, but are not limited to, the hyperbolic equations with high Reynolds number, the Boltzmann transport equations,
and the traffic flow simulations. As one way to alleviate such issue, there have been many attempts to replace the linear subspace
solution representation with nonlinear manifolds (see also [18] for another closure strategy). In recent years, machine learning based
approaches to NM-ROMs have received an increasing interest. Some treat the weights and biases of a deep neural network (DNN)
as unknowns in the solution process [19–22], while others incorporate physical laws into DNN-based surrogates whose weights and
biases are determined in the training phase [23–29]. Recently, a physics-informed NM-ROM was proposed in [30], where a shallow
masked autoencoder and hyper-reduction techniques are used to achieve a speed-up of the NM-ROM compared to the corresponding
FOM. However, results provided by standard DNN-based NM-ROM remain hard to analyze beyond accuracy evaluation, due to the
lack of interpretability in deep learning models. As a result, it is difficult to determine the structure and parameters of the DNNs a
priori, and a huge amount of effort has to be made to tune the NM-ROMs to achieve good performance.

In this work, we devise a novel structure for the decoder in the NM-ROM, such that the underlying nonlinear mapping closely
resembles the formulation of adaptive basis methods. In essence, the non-linearity in the proposed NM-ROM is introduced through a
DNN in the smoothing kernels. The nonlinear manifolds suggested by the trained NM-ROM allows one to gain additional insight into
the nonlinearities of the corresponding FOM. We also propose a DNN-based reduced operator inference that learns from the latent
space for full models based on time-dependent partial differential equations. Note that the issue of learning operators associated with
ordinary and partial differential equations (in physical or latent spaces) has attracted much attention over the last decade. Providing
an exhaustive review on – and a fair numerical comparison between – all existing approaches is outside the scope of the present
work (if at all possible); see [31–34,25,26,35–46] to list a few, as well as [47,48] for comparisons between some operator learning
techniques (see Section 5.1 in [47] and Section 7.2.2 in [48], in particular, for results on a one-dimensional Burgers’ equation in
a diffusion-dominated regime). Note that the above frameworks typically perform on fixed spatial domains, under given boundary
conditions. In this context, a framework to address transfer across domains and boundary conditions was proposed in [49]. Finally,
we discuss algorithmic issues for online computations and propose a strategy for vectorized implicit time integration.

This paper is organized as follows. The formulation is first presented in Section 2. We introduce the initial boundary value
problem (IBVP) in a generic form. We then review commonly employed autoencoders and derive the architecture for a convolutional
neural network-based autoencoder with adaptive kernels. Next, we present operator learning strategies in the latent space, including
the operator inference approach recently proposed in [50] and the DNN-based approach. We also provide an algorithm for enhanced
implicit time integration. Application to a 2D Burgers’ equation in an advection-dominated regime is subsequently presented in
Section 4. Convergence in training cost and accuracy for both the autoencoders and operator inference is specifically discussed. The
performance of the vectorized implicit time integration is also assessed on various GPUs. Concluding remarks are finally provided
in Section 5.

1.2. Nomenclature

We use the following nomenclature/abbreviation for various autoencoders throughout the paper:

• LAE: linear autoencoder
• POD: proper orthogonal decomposition
• NAE: nonlinear autoencoder
• DAE: nonlinear deep autoencoder
• LE-DAE: nonlinear deep autoencoder with linear encoder
• NE-DAE: nonlinear deep autoencoder with nonlinear encoder
• SAE: nonlinear sparse autoencoder
• LE-SAE: nonlinear sparse autoencoder with linear encoder
• NE-SAE: nonlinear sparse autoencoder with nonlinear decoder
• CNNAE: nonlinear convolutional autoencoder
• LE-CNNAE: nonlinear convolutional autoencoder with linear encoder
• NE-CNNAE: nonlinear convolutional autoencoder with nonlinear encoder

The above autoencoders form a hierarchy that is depicted in 1. Two non-intrusive operator inference techniques are used to solve
the reduced-order formulation in this work, namely
2
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Fig. 1. The figure shows the hierarchy of several autoencoders. This paper contributes to the development of CNNAE that achieve both speedup and accuracy
with the NM-ROM (following the path highlighted in blue). Throughout the paper, we will compare the performance of LAE and NAEs. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of main symbols.

Symbol Description

𝛺 Bounded domain in R𝑑 with smooth boundary 𝜕𝛺
𝑢 𝑑-dimensional physical state
𝑢0 Initial condition, 𝑢0(⋅) = 𝑢(⋅, 𝑡0)
𝑓 Spatial differential operator
 and 0 Function spaces for 𝑢 and 𝑢0
 𝑟 and  𝑟

0 Reduced latent spaces associated with  and 0
† Flow map operator from 0 to 
 Flow map operator from  𝑟

0 to  𝑟

𝐸 Encoder from  to  𝑟

𝐷 Decoder from  𝑟 to 
u⟨𝑚⟩(𝑢(𝓁)0 ) Discretized solution vector for initial condition 𝑢(𝓁)0 at 𝑚th time step
û⟨𝑚⟩(𝑢(𝓁)0 ) Latent solution vector for initial condition 𝑢(𝓁)0 at 𝑚th time step
ũ⟨𝑚⟩(𝑢(𝓁)0 ) Approximated solution vector for initial condition 𝑢(𝓁)0 at 𝑚th time step
̇̂u⟨𝑚⟩(𝑢(𝓁)0 ) Time derivative of the latent solution vector û⟨𝑚⟩(𝑢(𝓁)0 )

• OpInf (quadratic operator inference) and
• DNNOp (deep-neural-network-based operator learning).

Autoencoders were implemented in JAX, while operator learning techniques were developed in PyTorch. The main symbols used
in this paper are provided in Table 1.

2. Theory

2.1. Problem statement

We consider the initial boundary value problem
𝜕𝑢
𝜕𝑡

= 𝑓 (𝑢) in 𝛺 × (𝑡0, 𝑡𝑓 ] , (1a)

𝑢(𝑥, 𝑡0) = 𝑢0(𝑥) on 𝛺 , (1b)

where 𝑢 ∶ 𝛺 × (0, 𝑡𝑓 ] → R𝑑 is the unknown 𝑑-dimensional physical state, 𝑓 is a spatial differential operator, 𝛺 is a bounded domain
in R𝑑 with smooth boundary 𝜕𝛺, (0, 𝑡𝑓 ] denotes the time interval of interest, and 𝑢0 ∶ 𝛺 → R𝑑 is the initial condition. The solution
𝑢 and initial condition 𝑢0 are assumed to belong to ad hoc (separable Hilbert) function spaces, denoted by  and 0, respectively.
Eq. (1) is referred to as the full-order model (FOM).

In this work, we seek to approximate the flow map operator † ∶ 0 →  mapping the initial condition to the solution at time 𝑡.
To this end, we introduce spatial encoders for  and  , denoted by 𝐸 and 𝐸, respectively. Similarly, 𝐷 and 𝐷 are the associated
3
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Fig. 2. Mappings used to approximate the flow map 𝑢0 ↦ 𝑢(⋅, 𝑡), 𝑡 > 0 (inspired by [51]).

spatial decoders such that 𝐷0◦𝐸0 ≈ 𝐼0 and 𝐷◦𝐸 ≈ 𝐼 , where 𝐼0 and 𝐼 are the identity operators in 0 and  , respectively. We further
introduce the operator  approximating the flow map between the latent spaces  𝑟0

0 and  𝑟 (in time domain). The construction
f the surrogate operator then proceeds with the definition of 𝐸0, 𝐷, and  such that  = 𝐷◦◦𝐸0 is an accurate approximation
o †; see Fig. 2. The definition of the encoder 𝐸0 and decoder 𝐷 is first addressed in Section 2.2. A non-exhaustive list of possible

strategies for operator learning is then presented in Section 2.3.

2.2. Autoencoders

Consider a spatial discretization of 𝛺, defined by a collection of points {x𝑖}
𝑁𝑠
𝑖=1, and a time discretization {𝑡𝑚 = 𝑚𝛥𝑡}𝑁𝑡

𝑚=0 of the
time interval [0, 𝑡𝑓 ], with 𝛥𝑡 the step size and 𝑡𝑓 = 𝑁𝑡𝛥𝑡. For a given initial condition 𝑢(𝓁)0 , 1 ⩽ 𝓁 ⩽ 𝑁𝑖𝑐 and 1 ⩽ 𝑚 ⩽ 𝑁𝑡, let

u⟨0⟩(𝑢(𝓁)0 ) = (𝑢0(x1; 𝑢
(𝓁)
0 )𝑇 ,… , 𝑢0(x𝑁𝑠

; 𝑢(𝓁)0 )𝑇 )𝑇

and denote by

u⟨𝑚⟩(𝑢(𝓁)0 ) = (𝑢(x1, 𝑡𝑚; 𝑢
(𝓁)
0 )𝑇 ,… , 𝑢(x𝑁𝑠

, 𝑡𝑚; 𝑢
(𝓁)
0 )𝑇 )𝑇

the vector in R𝑁 (with 𝑁 = 𝑑𝑁𝑠) containing the solution at all points at the 𝑚th time step. Consider the mean over all time steps
and initial conditions:

ū = 1
𝑁𝑠𝑛𝑝

𝑁𝑖𝑐
∑

𝓁=1

𝑁𝑡
∑

𝑚=0
u⟨𝑚⟩(𝑢(𝓁)0 ) , (2)

with 𝑁𝑠𝑛𝑝 = 𝑁𝑖𝑐 (𝑁𝑡 + 1). We then introduce the matrix of solution snapshots U ∈ R𝑁×𝑁𝑠𝑛𝑝 as

U = [u⟨0⟩(𝑢(1)0 ) − ū,… ,u⟨𝑁𝑡⟩(𝑢(1)0 ) − ū,… ,u⟨0⟩(𝑢(𝑁𝑖𝑐 )
0 ) − ū,… ,u⟨𝑁𝑡⟩(𝑢(𝑁𝑖𝑐 )

0 ) − ū] . (3)

It what follows, we discuss various strategies to construct 𝐸 and 𝐷, and use 𝐸 to encode in 0 (i.e., we take 𝐸0 = 𝐸 and 𝑟0 = 𝑟).
Note that this choice is generally acceptable since the solution 𝑢 typically exhibits less regularity than 𝑢0, and becomes licit for
encoding–decoding approaches involving function bases (e.g., for the POD approach in Section 2.2.1). We let 𝑢̂(𝑡) = 𝐸(𝑢(𝑥, 𝑡)) and
̃(𝑥, 𝑡) = 𝐷(𝑢̂(𝑡)) = 𝐷(𝐸(𝑢(𝑥, 𝑡))), with 𝑢̃ ≈ 𝑢, and carry this convention over all forms of representation without adjusting notation for
operators, for ease of presentation (i.e., we consider û⟨𝑚⟩ = 𝐸(u⟨𝑚⟩) and ũ⟨𝑚⟩ = 𝐷(û⟨𝑚⟩) after discretization).

Classical autoencoders are reviewed below as a baseline for comparison (see Sections 2.2.1, 2.2.2, and 2.2.3), and a new decoding
strategy, inspired by adaptive basis methods, is proposed (see Section 2.2.4). Note that for nonlinear reduction techniques involving
neural networks, hidden layers with or without nonlinear activation functions (here, the swish activation function 𝑎 defined as
𝑎(𝑥) = 𝑥∕(1 + exp(−𝑥))) are considered. Such architectures are identified with the prefixes ‘‘NE’’ and ‘‘LE’’, respectively. Activation
functions are used in the hidden layers in all nonlinear decoders (except for the output layer).

2.2.1. POD autoencoder
The Proper Orthogonal Decomposition (POD) is arguably the most widely used linear approach to encode and decode in high-

dimensional state spaces, due to its amenability for analysis and ease of use. In this method, the encoder 𝐸 ∶ R𝑁 → R𝑟, 𝑟 ≪ 𝑁 , is
given by

û⟨𝑚⟩ = 𝐸(u⟨𝑚⟩) = (⟨u⟨𝑚⟩,ϕ1⟩R𝑁 ,… , ⟨u⟨𝑚⟩,ϕ𝑟⟩R𝑁 )𝑇 , (4)

where ⟨⋅, ⋅⟩R𝑁 is the standard Euclidean inner product in R𝑁 and ϕ1,… ,ϕ𝑟 are the left singular vectors associated with the largest
singular values in the singular value decomposition of the snapshot matrix (see Eq. (3)):

U = 𝚽𝜮V𝑇 , (5)

where 𝚽 = [ϕ1,… ,ϕ𝑁 ] ∈ R𝑁×𝑁 and V ∈ R𝑁𝑠𝑛𝑝×𝑁𝑠𝑛𝑝 are real orthogonal matrices, and 𝜮 ∈ R𝑁×𝑁𝑠𝑛𝑝 is the matrix containing the
singular values (ranked in non-increasing order) on the diagonal. The decoder 𝐷 ∶ R𝑟 → R𝑁 then defines the approximation in the
span of the POD modes ϕ1,… ,ϕ𝑟:

ũ⟨𝑚⟩ =
𝑟
∑

⟨u⟨𝑚⟩,ϕ𝑖⟩R𝑁ϕ𝑖 . (6)
4
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The above formulation is optimal in the 𝐿2 sense in terms of projection error, for a given reduced dimension 𝑟. The advantages
and limitations of this method are well established. In particular, the POD-based approach can be used to significantly accelerate
simulations when the solution space of the discretized system exhibits a fast decaying Kolmogorov 𝑛-width, but struggles to achieve
speed-ups in highly nonlinear problems, the solutions to which have large gradients. Strategies to address the irreducibility issue
can be found in [18] and the references therein, for instance.

2.2.2. Deep autoencoder
We first consider a simple Deep Autoencoder (DAE), defined through a composite mapping with fully connected layers:

𝐸 = 𝐸(𝑛𝑒)◦𝐸(𝑛𝑒−1)◦⋯◦𝐸(1) , (7)

where 𝑛𝑒 denotes the number of layers in the encoder. As previously indicated, we denote by NE-DAE and LE-DAE the encoder with
or without activation functions, respectively. In the former case, each hidden layer is defined as

𝐸(𝑖)(x) = 𝑎(W(𝑖)
𝑒 x + b

(𝑖)
𝑒 ) , 𝑖 < 𝑛𝑒 , (8)

here W(𝑖)
𝑒 ∈ R𝑝×𝑞 and b(𝑖)𝑒 ∈ R𝑝 are the matrix of weights and vector of biases in the 𝑖th layer with input dimension 𝑞 and output

imension 𝑝, respectively, and the swish activation function acts component-wise. For LE-DAE, the above equation becomes

𝐸(𝑖)(x) =W(𝑖)
𝑒 x + b

(𝑖)
𝑒 , 𝑖 < 𝑛𝑒 , (9)

nd 𝐸 can be reduced to a single-layer neural network. The decoder in both DAEs is defined as

𝐷 = 𝐷(𝑛𝑑 )◦𝐷(𝑛𝑑−1)◦⋯◦𝐷(1) , (10)

here 𝑛𝑑 is the number of layers in the decoder and

𝐷(𝑖)(x) =
{

W(𝑖)
𝑑 𝑥 + b(𝑖)𝑑 , 𝑖 = 𝑛𝑑 ,

𝑎(W(𝑖)
𝑑 𝑥 + b(𝑖)𝑑 ), 𝑖 < 𝑛𝑑 .

(11)

he DAE is trained by minimizing the classical mean squared loss function

𝑙mse
DAE(𝜣𝑒,𝜣𝑑 ) =

1
𝑁𝑠𝑛𝑝

𝑁𝑖𝑐
∑

𝓁=1

𝑁𝑡
∑

𝑚=0

‖

‖

‖

u⟨𝑚⟩(𝑢(𝓁)0 ) − ū −𝐷(𝐸(u⟨𝑚⟩(𝑢(𝓁)0 ) − ū;𝜣𝑒);𝜣𝑑 )
‖

‖

‖

2
, (12)

where 𝜣𝑒 and 𝜣𝑑 contain all trainable parameters in the encoder and decoder, respectively.

2.2.3. Sparse autoencoder
One approach to reduce the computational cost and increase the efficiency of the autoencoder is to use sparse neural networks—

a type of neural network that utilizes only a fraction of the available connections between neurons. By reducing the number
of parameters needed to train a model, such models can lead to faster convergence rate and reduced memory requirements. In
addition, sparse neural networks can improve model interpretability by highlighting the most relevant features and reducing the
noise caused by irrelevant connections. These benefits make sparse neural networks an attractive option for applications with limited
computational resources and/or where model interpretability is important.

In [30], a Sparse Autoencoder (SAE) with a special sparsity pattern in the nonlinear decoder was proposed. Such a sparsity
pattern mimics that of a diffusion operator in numerical discretization methods, such as the finite difference method (FDM). A
masked autoencoder is introduced by adding a so-called mask matrix S which contains either zero or one to create a sparsely
connected layer for the decoder:

S = heaviside(CB) , B =
∑

𝑖

∑

𝑗
𝑏𝑖𝑗e𝑖e𝑗 , 𝑏𝑖𝑗 =

{

1 , 𝑖𝛿 ⩽ 𝑗 ⩽ 𝑖𝛿 + 𝑏 ,
0 , otherwise ,

(13)

where C ∈ R𝑁×𝑁 is the nodal connectivity matrix (e.g., in the FDM), {e𝑖}𝑁𝑖=1 are one-hot vectors in R𝑁 , 𝑏 is the bandwidth of the
parsity, and 𝛿 = ⌊(𝑀−𝑏)∕(𝑁−1)⌋ is the average shift per neuron, where 𝑀 is the size of the last hidden layer in the sparse decoder.

sparse weight matrix is then obtained using the Hadamard (element-wise) product:

W(𝑛𝑑 ) =W(𝑛𝑑 )
dense ⊙ S , (14)

o that the mask is only applied at the last hidden layer of the decoder. Fig. 3 shows an example of the mask matrix S, the nodal
onnectivity matrix C, and the base matrix B for a 2D problem with 𝑁 = 16, 𝑀 = 81, 𝑏 = 6, and 𝛿𝑏 = 5.

Following our convention, sparse autoencoders with or without activation functions in the encoder are denoted by NE-SAE and
5
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Fig. 3. Mask matrix S, nodal connectivity matrix C, and base matrix B for 𝑁 = 16, 𝑀 = 81, 𝑏 = 6, and 𝛿𝑏 = 5.

2.2.4. Convolutional autoencoder with enhanced adaptivity
In this section, we propose to utilize Convolutional Neural Networks (CNNs) in the decoder to promote adaptivity. This choice

is motivated by the fact that for PDEs with sharp solution gradients, the localization induced by convolutional filters helps extract
local information from neighboring points, hence enabling high-quality reconstruction from the low-dimensional latent space  𝑟.
Our aim is to enhance adaptivity by considering trainable kernels in the convolution operator.

We define the decoder as

𝐷(û⟨𝑚⟩) =
𝑟
∑

𝑖=1
𝐷𝑖(𝑢̂

⟨𝑚⟩
𝑖 ; û⟨𝑚⟩) , (15)

where 𝐷𝑖 ∶ R→ R𝑁 is a lifting function defined as

𝐷𝑖(𝑢̂
⟨𝑚⟩
𝑖 ; û⟨𝑚⟩) = (𝑃◦𝐶𝜅𝑖 (⋅ ; û

⟨𝑚⟩)◦𝑅◦𝑆𝑖)(𝑢̂
⟨𝑚⟩
𝑖 ) , (16)

where each term in the right-hand side is defined below.

• The function 𝑆𝑖 is lifting 𝑢̂⟨𝑚⟩𝑖 to a vector in R𝑁 through the learnable mapping

𝑆𝑖(𝑢̂
⟨𝑚⟩
𝑖 ) =W𝑖𝑢̂

⟨𝑚⟩
𝑖 + b𝑖 , (17)

where W𝑖 ∈ R𝑁 and b𝑖 ∈ R𝑁 are weights and bias of the fully connected layer.
• 𝑅 reshapes a vector in R𝑁 into a matrix in R𝑛1×⋯×𝑛𝑑 , where 𝑛𝑖 specifies the number of degrees of freedom along the 𝑖th direction

in the physical domain.
• The convolution function 𝐶𝜅𝑖 ∶ R

𝑛1×⋯×𝑛𝑑 → R𝑛1×⋯×𝑛𝑑 introduces adaptive spatial smoothing to capture localization. To define
𝐶𝜅𝑖 , we first introduce the kernel 𝜅𝑖 ∶ R𝑟 → R𝜇𝑑 through the composite mapping

𝜅𝑖 = 𝑅𝜅◦(𝐾
(𝑛𝑘)
𝑖 ◦𝐾 (𝑛𝑘−1)

𝑖 ◦⋯◦𝐾 (1)
𝑖 ) , (18)

where 𝐾 (𝑛𝑘)
𝑖 ◦𝐾 (𝑛𝑘−1)

𝑖 ◦⋯◦𝐾 (1)
𝑖 is a neural network with (𝑛𝑘 − 1) hidden layers (with activation functions), i.e.,

𝐾 (𝓁)
𝑖 (x) =

{

W(𝓁)
𝑖 x + b(𝓁)𝑖 , W(𝓁)

𝑖 ∈ R𝜇𝑑×𝑞𝓁−1 , b(𝓁)𝑖 ∈ R𝜇𝑑 , 𝓁 = 𝑛𝑘 ,
𝑎(W(𝓁)

𝑖 x + b(𝓁)𝑖 ) , W(𝓁)
𝑖 ∈ R𝑝𝓁×𝑞𝓁 , b(𝓁)𝑖 ∈ R𝑝𝓁 , 𝓁 < 𝑛𝑘 ,

(19)

where 𝑞1 = 𝑟 and the sets {𝑝𝓁}
𝑛𝑘−1
𝓁=1 and {𝑞𝓁}

𝑛𝑘−1
𝓁=2 are user-specified. The function 𝑅𝜅 ∈ R𝜇𝑑 ↦ R

⨉𝑑
𝑗=1 𝜇 reshapes a vector into a

matrix of size 𝜇×⋯×𝜇 (𝑑 times). The function 𝐶𝜅𝑖 then performs the discrete linear convolution of (𝑅◦𝑆𝑖)(𝑢̂
⟨𝑚⟩
𝑖 ) with 𝜅𝑖(û

⟨𝑚⟩).
• 𝑃 projects back from a matrix representation in R𝑛1×⋯×𝑛𝑑 into a vector in R𝑁 .

In the above, and in contrast with strategies where the CNN is trained once for all, the trainable parameters in the kernel of the CNN
are defined as the output of an auxiliary neural network and are, by construction, iteration-dependent: they evolve as a function of
the latent solution vector to capture non-smoothness, hence promoting adaptivity.

The structure of the decoder 𝐷 is depicted in Fig. 4. This convolutional autoencoder (denoted by CNNAE, with the LE-CNNAE
and NE-CNNAE variations depending on whether activation functions are used in the encoder) is also trained by minimizing the
mean squared loss given by Eq. (12).

2.3. Strategies for operator learning between latent spaces

We now turn to the construction of the surrogate operator  ∶  𝑟
0 →  𝑟 mapping û0 = 𝐸(𝑢0) to û = 𝐸(u). To this end, we

consider the reduced-order model
𝜕û(𝑡)
𝜕𝑡

= 𝐹 (û(𝑡)) , û(0) = û0 , (20)

where the operator 𝐹 in the right-hand side is learned through an ad hoc technique. We restrict the discussion below to two classes
of techniques. The first class involves so-called quadratic operator inference [50], which is an efficient operator learning method
6
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Fig. 4. General description of the CNN-based autoencoder: u⟨𝑚⟩ is encoded into a latent vector û⟨𝑚⟩ by the encoder. The latent vector is then decoded by the
decoder to get ũ⟨𝑚⟩. A smoothing convolutional layer is added after the single dense layer at the beginning of the decoder to introduce nonlinearity into the
decoder.

that does not necessitate the definition and training of a deep learning model. This approach is briefly introduced in Section 2.3.1.
The second approach involves a simple feedforward neural network model, detailed in Section 2.3.2. Regarding time integration,
we rely on the implicit backward Euler method, combined with a standard Newton–Raphson solver.

2.3.1. Quadratic operator inference
Following [50], the operator inference (OpInf) approach approximates a reduced operator of the polynomial form (with linear and

quadratic reduced operators). It then casts PDEs with more general nonlinear terms through the use of lifting variable transformations
which expose quadratic structure in the PDE.

OpInf seeks a linear operator A and a quadratic operator H by minimizing the approximation error in the least-squares sense

min
A∈R𝑟×𝑟 , H∈R𝑟×𝑟2

1
𝑁𝑠𝑛𝑝

𝑁𝑖𝑐
∑

𝓁=1

𝑁𝑡
∑

𝑚=0

‖

‖

‖

‖

Aû⟨𝑚⟩(𝑢(𝓁)0 ) +H
(

û⟨𝑚⟩(𝑢(𝓁)0 )⊗ û⟨𝑚⟩(𝑢(𝓁)0 )
)

− ̇̂u⟨𝑚⟩(𝑢(𝓁)0 )
‖

‖

‖

‖

2
, (21)

with the corresponding matrix algebraic form

D
[

A𝑇

H𝑇

]

= ̇̂U , (22)

where the least-squares data matrix 𝐷 ∈ R𝑟×(𝑟+𝑟2) and the right-hand side ̇̂U ∈ R𝑟×𝑁𝑠𝑛𝑝 are given by

D =

[

û⟨0⟩(𝑢(1)0 ) … û⟨𝑁𝑡⟩(𝑢(1)0 ) … û⟨𝑁𝑡⟩(𝑢(𝑁𝑖𝑐 )
0 )

û⟨0⟩(𝑢(1)0 )⊗ û⟨0⟩(𝑢(1)0 ) … û⟨𝑁𝑡⟩(𝑢(1)0 )⊗ û⟨𝑁𝑡⟩(𝑢(1)0 ) … û⟨𝑁𝑡⟩(𝑢(𝑁𝑖𝑐 )
0 )⊗ û⟨𝑁𝑡⟩(𝑢(𝑁𝑖𝑐 )

0 )

]𝑇

(23)

and
̇̂U =

[

̇̂u⟨0⟩(𝑢(1)0 ) … ̇̂u⟨𝑁𝑡⟩(𝑢(1)0 ) … ̇̂u⟨𝑁𝑡⟩(𝑢(𝑁𝑖𝑐 )
0 )

]

, (24)

respectively. The reduced operator is then given by

𝐹 (û⟨𝑚⟩) = Aû⟨𝑚⟩ +H
(

û⟨𝑚⟩ ⊗ û⟨𝑚⟩
)

. (25)

The combination of the above operator with the time integration scheme defines the surrogate operator .

2.3.2. Deep neural network-based operator
In addition to the above OpInf framework, we also explore the use of a simple deep neural network to approximate the reduced

operator 𝐹 . The DNN-based operator (DNNOp) is defined as

𝐹 (û⟨𝑚⟩) = 𝑂(û⟨𝑚⟩), (26)

where 𝑂 ∶ R𝑟 → R𝑟 is a deep neural network

(𝑛𝑜) (𝑛𝑜−1) (1)
7

𝑂 = 𝑂 ◦𝑂 ◦⋯◦𝑂 , (27)
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with (𝑛𝑜 − 1) hidden layers (with activation functions), i.e.,

𝑂(𝓁)(x) =
{

W(𝓁)x + b(𝓁) , W(𝓁) ∈ R𝑟×𝑞𝓁−1 , b(𝓁) ∈ R𝑟 , 𝓁 = 𝑛𝑜 ,
𝑎(W(𝓁)x + b(𝓁)) , W(𝓁) ∈ R𝑝𝓁×𝑞𝓁 , b(𝓁)𝑖 ∈ R𝑝𝓁 , 𝓁 < 𝑛𝑜 ,

(28)

with 𝑞1 = 𝑟. The dimensions in the hidden layers {𝑝𝓁}
𝑛𝑘−1
𝓁=1 and {𝑞𝓁}

𝑛𝑘−1
𝓁=2 are chosen while devising the architecture.

The operator is trained by minimizing the projection error defined as

𝑙proj
DNNOp(Û;𝜣𝑜) =

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0

‖

‖

‖

̇̂u⟨𝑚⟩(𝑢(𝓁)0 ) − O(û⟨𝑚⟩(𝑢(𝓁)0 );𝜣𝑜)
‖

‖

‖

2

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0

‖

‖

‖

̇̂u⟨𝑚⟩(𝑢(𝓁)0 )‖‖
‖

2
, (29)

where 𝜣𝑜 contains all trainable parameters in the reduced operator. The use of the approximation in Eq. (26) with the time integrator
defines the DNNOp variant for .

3. Vectorized implicit time integration

Ultimately, the surrogate of the flow map operator is applied to find solutions to the FOM at various times with different initial
conditions. To that end, numerical time integration methods are used. Many of the physical systems with sharp gradients (such as
the Burger’s equation considered in this work) are ‘‘stiff’’ and numerically unstable. If an explicit time integration method is used,
a prohibitively small time step size is often required to obtain an accurate solution. Furthermore, due to intrinsic dependence on
time step size (as illustrated in Section 4.4), the same time step sizes used in the offline training phase are preferred. Given these
considerations, all online evaluations in this work are performed using the implicit backward Euler time integration.

On the other hand, since General-Purpose Graphics Processing Unit (GPGPU)-enabled computing devices are used in the offline
training process, it is preferable to take advantage of the hardware acceleration also in the online evaluation phase. However, a
conundrum arises:

• The discretized surrogate of the map operator is by definition small, i.e. the solution vector in the latent space is of size 𝑟 ≪ 𝑁 ,
and the linearized system is of size 𝑟 × 𝑟, and the solution at time step 𝑚 depends on the solution from 𝑚 − 1.

• Modern GPGPU-enabled computing devices rely on being able to handle a large amount of workload in a vectorized fashion.

In other words, the effective and accurate surrogate operator will unfortunately starve the computing device for work. To address
this issue, we propose a new technique to effectively ‘‘vectorize’’ the time integration in parallel, in order to increase the workload,
i.e. from a system of size 𝑟 × 𝑟 to a system of size 𝑚𝑐 × 𝑟 × 𝑟, where 𝑚𝑐 ⩽ 𝑚 is the number of ‘‘chunked’’ time steps to be explained
momentarily. The basic idea/algorithm is to assemble 𝑚𝑐 linearized systems in a vectorized fashion, form an implicit system of size
𝑚𝑐𝑛×𝑚𝑐𝑛, and then solve the system of equations again in a vectorized fashion by exploiting its special block-bidiagonal structure.
Each step of the algorithm is described in the following paragraphs.

Increasing the size of the linearized system. Consider a ‘‘chunk’’ of 𝑚𝑐 time steps integrating the surrogate flow map from time 𝑡𝑖 to
time 𝑡𝑖+𝑚𝑐

. Recast the solution at each of these time steps in an incremental form as

û𝑖+𝑗 = û𝑖 + 𝛥û𝑗 . (30)

That is, the solution û𝑖+𝑗 at a given time is equal to the solution û𝑖 at the start of the chunk of time steps plus an increment 𝛥û𝑗 .
With this rearrangement, we can write the implicit time integration equations for the entire chunk of 𝑚𝑐 steps as

⎡

⎢

⎢

⎢

⎢

⎣

𝐹
(

û𝑖, û𝑖 + 𝛥û1, 𝑡𝑖+1, 𝑡𝑖
)

𝐹
(

û𝑖 + 𝛥û1, û𝑖 + 𝛥û2, 𝑡𝑖+2, 𝑡𝑖+1
)

⋮
𝐹
(

û𝑖 + 𝛥û𝑗 , û𝑖 + 𝛥û𝑗−1, 𝑡𝑖+𝑗 , 𝑡𝑖+𝑗−1
)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝟎. (31)

r, specifically for the backward Euler scheme1:

⎡

⎢

⎢

⎢

⎢

⎣

𝛥û1 − ℎ
(

û𝑖 + 𝛥û1, 𝑡𝑖+1; 𝑝
)

𝛥𝑡𝑖+1
𝛥û2 − 𝛥û1 − ℎ

(

û𝑖 + 𝛥û2, 𝑡𝑖+2; 𝑝
)

𝛥𝑡𝑖+2
⋮

𝛥û𝑗 − 𝛥û𝑗−1 − ℎ
(

û𝑖 + 𝛥û𝑗 , 𝑡𝑖+𝑗 ; 𝑝
)

𝛥𝑡𝑖+𝑗

⎤

⎥

⎥

⎥

⎥

⎦

= 𝟎. (32)

n the simple, serial time integration scheme the nonlinear system has dimension 𝑟. The nonlinear system for this vectorized time
ntegration scheme (Eq. (32)) has dimension 𝑚𝑐×𝑟. Clearly this approach can fully consume the available bandwidth of the computing

1 The algorithm is derived based on the backward Euler scheme but can be trivially generalized to other (higher order) variants.
8
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device with a sufficiently large 𝑚𝑐 . Eq. (32) is still nonlinear. Applying the Newton–Raphson method provides the update algorithm

⎡

⎢

⎢

⎢

⎢

⎣

𝑘+1𝛥û1
𝑘+1𝛥û2

⋮

𝑘+1𝛥û𝑗

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝛥û1
𝑘𝛥û2
⋮

𝑘𝛥û𝑗

⎤

⎥

⎥

⎥

⎥

⎦

− 𝑘𝐽
−1
𝑖+1

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝛥û1 − ℎ
(

û𝑖 + 𝑘𝛥û1, 𝑡𝑖+1; 𝑝
)

𝛥𝑡𝑖+1
𝑘𝛥û2 − 𝑘𝛥û1 − ℎ

(

û𝑖 + 𝑘𝛥û2, 𝑡𝑖+2; 𝑝
)

𝛥𝑡𝑖+2
⋮

𝑘𝛥û𝑗 − 𝑘𝛥û𝑗−1 − ℎ
(

û𝑖 + 𝑘𝛥û𝑗 , 𝑡𝑖+𝑗 ; 𝑝
)

𝛥𝑡𝑖+𝑗

⎤

⎥

⎥

⎥

⎥

⎦

(33)

where the chunked discrete Jacobian has a bidiagonal form

𝑘𝐽 𝑖+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐼 − 𝑘𝐽
†
𝑖+1 0 ⋯ 0 0

−𝐼 𝐼 − 𝑘𝐽
†
𝑖+2 0 ⋯ 0

0 −𝐼 𝐼 − 𝑘𝐽
†
𝑖+3 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 −𝐼 𝐼 − 𝑘𝐽

†
𝑖+𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

where 𝑘𝐽
†
𝑖+𝑗 is the ODE Jacobian evaluated at the current values of the state û𝑖 + 𝑘𝛥û𝑗 , and 𝐼 is the identity matrix. The key

linear algebra kernel for the vectorized time integration is solving potentially batched, block-bidiagonal2 systems of this type
(Eq. (35)) to update the current Newton–Raphson iterate for the incremental solution. The following two paragraphs discuss two
viable algorithms, namely Thomas’s algorithm and parallel cyclic reduction (PCR), to efficiently solve systems of this type.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1
𝐵1 𝐴2

𝐵2 𝐴3
⋱ ⋱

𝐵𝑛−1 𝐴𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(35)

Thomas algorithm. The Thomas algorithm sweeps down the diagonal blocks of the matrix, solving for each block of unknown solution
û𝑖 one-by-one. Algorithm 1 summarizes the process. All the matrix operations in this algorithm can be batched over an additional
batch dimension, e.g. for different initial conditions.

Algorithm 1 Thomas algorithm for solving batched, block-bidiagonal matrix systems.

𝑥1 = 𝐴−1
1 𝑦1

𝑖 ← 1
while 𝑖 < 𝑚𝑐 do

𝑥𝑖+1 ← 𝐴−1
𝑖+1

(

𝑦𝑖+1 − 𝐵𝑖𝑥𝑖
)

𝑖 ← 𝑖 + 1
end while

Parallel cyclic reduction (PCR). Parallel cyclic reduction is a divide-and-conquer algorithm that recursively splits a (batched, blocked)
bidiagonal matrix into two independent bidiagonal linear systems. The following equations give the basic update, splitting a single
bidiagonal system

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1 0 0 0
𝐵1 𝐴2 0 0
0 𝐵2 𝐴3 0
0 0 𝐵3 𝐴4

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3
𝑦4

⎤

⎥

⎥

⎥

⎥

⎦

(36)

nto two independent bidiagonal systems

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1 0 0 0
0 𝐴2 0 0

−𝐵2𝐴−1
2 𝐵1 0 𝐴3 0
0 −𝐵3𝐴−1

3 𝐵2 0 𝐴4

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1
𝑦2 − 𝐵1𝐴−1

1 𝑦1
𝑦3 − 𝐵2𝐴−1

2 𝑦2
𝑦4 − 𝐵3𝐴−1

3 𝑦3

⎤

⎥

⎥

⎥

⎥

⎦

(37)

here the first subsystem corresponds to (𝑥1, 𝑥3), and the second subsystem corresponds to (𝑥2, 𝑥4). PCR then recursively applies this
plitting formula to further subdivide the matrices until it reaches a block diagonal form. Algorithm 2 describes the complete process.
he key point in PCR is that the new matrices produced by each application of the splitting formula can be factored independently,

n parallel.

2 We note that the system is lower-block-bidiagonal. However, in the case of integrating the surrogate flow operator ‘‘backward’’ in time for solving an
9

djoint problem, the system is upper-block-bidiagonal. Both Thomas’s algorithm and PCR work in these two cases.
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Algorithm 2 Parallel cyclic reduction algorithm for solving batched, block-bidiagonal matrix systems.
𝑖 ← 1
while 𝑖 < log2 𝑚𝑐 do

Form 2𝑖 submatrices by taking every 2𝑖th row
for submatrix 𝑗 = 1 to 𝑗 = 2𝑖 do ⊳ This loop can be vectorized

for index 𝑘 ∈ submatrix 𝑗 do
𝐵𝑘 ← −𝐵𝑘𝐷−1

𝑘 𝐵𝑘−1
𝑦𝑘 ← 𝑦𝑘 − 𝐵𝑘𝐷−1

𝑘−1𝑦𝑘−1
end for

end for
𝑖 ← 𝑖 + 1

end while
return 𝑥 ← 𝑦

Remark. Naturally, a third option could be to start solving the system with PCR, but halt the recursive subdivision before reducing
the system to a series of diagonal blocks and instead solve the remaining, unreduced sets of independent equations using Thomas
algorithm. This approach has an extra parameter controlling the heuristic, the number of iterations after which to switch from PCR
to Thomas, 𝑚̄.

Time complexities of vectorized time integration algorithms. Without considering parallelization and vectorization over the batched
matrix operations, the Thomas algorithm is serial with time complexity 𝑂(𝑚𝑐𝑟3), including the cost of back propagation loop and
he cost of factorizing the diagonal blocks. Note this is considerably cheaper than solving the full dense matrix, which would be
(𝑚3

𝑐 𝑟
3). PCR, on the other hand, has time complexity 𝑂(log2(𝑚𝑐 )𝑚𝑐𝑟3 +𝑚𝑐𝑟3). However, if the computing device can accommodate

the full amount of available parallel work (𝑚𝑐 submatrices on the final iteration), which is a reasonable assumption for a GPU and
the size of the discretized flow map surrogate, the time complexity becomes 𝑂(𝑚𝑐𝑟3). The two algorithms therefore have the same
asymptotic performance dominated by the cost of factorizing the diagonal blocks, assuming perfect vectorization of PCR. However,
in practice, as explored in the timing studies, the two algorithms are competitive depending on the size of the system (defined by
𝑚𝑐 and 𝑟, as suggested by the differing complexity of the reduction/back-propagation part of the analysis).

4. Application to 2D Burgers’ equation

4.1. Description of the problem

Consider the parameterized 2D viscous Burgers’ equation

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= 1
𝑅𝑒

(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

, (38a)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= 1
𝑅𝑒

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

, (38b)

(𝑥, 𝑦) ∈ 𝛺 = [0, 1] × [0, 1], 𝑡 ∈ [0, 2] , (38c)

where 𝑢, 𝑣 ∶ 𝛺 × 𝑇 ↦ R are scalar-valued time-dependent velocities in the 𝑥 and 𝑦 directions, respectively, and 𝑅𝑒 is the Reynolds
umber. In this work, we consider 𝑅𝑒 = 10000 to enforce sharp gradients in the solution. We note that standard values used to
enchmark learning methods are in the range 𝑅𝑒 ∈ [10, 5000], with a larger representation of low Reynolds numbers (e.g., 𝑅𝑒 = 100
n [47,48]). The initial conditions are given as

𝑢(𝑥, 𝑦, 0;𝜇) =

{

𝜇 sin(2𝜋𝑥) sin(2𝜋𝑦) , if (𝑥, 𝑦) ∈ [0, 0.5] × [0, 0.5] ,
0 , otherwise ,

(39a)

𝑣(𝑥, 𝑦, 0;𝜇) =

{

𝜇 sin(2𝜋𝑥) sin(2𝜋𝑦) , if (𝑥, 𝑦) ∈ [0, 0.5] × [0, 0.5] ,
0 , otherwise ,

(39b)

ith zero boundary conditions on the edges. The spatial domain 𝛺 is discretized into (𝑛𝑥 − 1) and (𝑛𝑦 − 1) uniform meshes with
linear quadrilateral elements in 𝑥 and 𝑦 directions, respectively, with 𝑛𝑥 = 60, 𝑛𝑦 = 60. The number of uniform time steps 𝑛𝑡 = 1500.

To enable fair comparison and reproducibility, the solution snapshots used by the authors in [30] were used for 𝜇 =
{0.9, 0.95, 1.05, 1.1}. A separate dataset obtained with 𝜇 = 1.0 was used for testing the generalization ability of the models (test
10

ataset).



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116684P. Chen et al.
Fig. 5. Loss (training and validation) history (𝑟 = 20) for the deep autoencoder (DAE), the sparse autoencoder (SAE), and the proposed convolutional autoencoder
(CNNAE) with linear (a) and nonlinear encoder (b). Savitzky–Golay filter is applied to the loss history for better visualization, with filter window length equals
to 15, the order of the polynomial used to fit the loss is 1, and the extension contains the nearest input value.

4.2. Training of autoencoders

Autoencoders are trained using 90% of the reference solution from the training dataset, while the remaining 10% data points
are considered as the validation dataset. The test dataset is not used during the offline training process and is used for performance
comparison between all autoencoders and reduced operators.

For the deep autoencoders (LE-DAE and NE-DAE), we use a hidden layer of size 𝑀1 = 6728 in the encoder, and a hidden layer
of size 𝑀2 = 33730 in the decoder. For the sparse autoencoders (LE-SAE and NE-SAE), we use the same neural network structure
with the shallow mask built as shown in (13), with bandwidth 𝑏 = 70, and shift 𝛿 = ⌊(𝑀 − 𝑏)∕(𝑁 − 1)⌋ = 10. For the convolutional
autoencoders (LE-CNNAE and NE-CNNAE), we use one hidden layer of size 𝑀𝑒 = 200 in the encoder, and the nonlinear mapping for
the smoothing kernels are obtained by a deep neural network with one hidden layer of size 𝑀𝜇 = 200, with the size of the kernel
𝜇 = 5. We use the whole training dataset to learn the bases of the POD, and evaluate it on the test dataset as well.

For the training strategies, we employ the Adam optimizer [52], which is a variant of stochastic gradient descent (SGD), with
an initial learning rate set to 0.001. For the deep and sparse autoencoders, we split the training dataset into 𝑛batch = 22 batches,
and use maximum patience of 100 epochs such that the learning rate will decrease by a factor of 10 when a training loss stagnates
for 100 successive training epochs. For the convolutional autoencoders, we split the training dataset into 𝑛batch = 240 batches
and use maximum patience of 100 epochs as well. We experimented model training with different batch sizes, and choose different
batch sizes for the deep/sparse autoencoder and the convolutional based autoencoder based on best performances. We consider four
different latent space dimensions: 𝑟 ∈ {5, 10, 15, 20}. The train and validation loss (mean-squared error) histories for all autoencoders
with 𝑟 = 20 are shown in Fig. 5. The training and validation losses are fairly close to each other showing good balance between
accuracy and overfitting.

We consider the projection errors of the autoencoders defined as

𝑙proj
LAE(U;𝚽) =

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0
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‖

‖

u⟨𝑚⟩(𝑢(𝓁)0 ) − ū −
∑𝑟

𝑖=1⟨u⟨𝑚⟩(𝑢
(𝓁)
0 ) − ū,ϕ𝑖⟩R𝑁ϕ𝑖

‖

‖

‖

2

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0

‖

‖

‖

u⟨𝑚⟩(𝑢(𝓁)0 )‖‖
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2
(40)

and

𝑙proj
NAE(U;𝜣𝑒,𝜣𝑑 ) =

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0

‖

‖

‖

u⟨𝑚⟩(𝑢(𝓁)0 ) − ū −𝐷(𝐸(u⟨𝑚⟩(𝑢(𝓁)0 ) − ū;𝜣𝑒);𝜣𝑑 )
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, (41)

for the linear and nonlinear autoencoders, respectively. The projection error for all autoencoders on the test dataset (𝜇 = 1.0) over
different latent space dimensions 𝑟 ∈ {5, 10, 15, 20} is summarized in Fig. 6(b).

4.3. Training of reduced operators

We consider two strategies for operator learning between latent spaces. For OPInf, we solve Eq. (22) for the linear and quadratic
reduced operators. For DNNOp, we use 5 hidden layers with sizes of 𝑀 = 50, and the swish function as the activation function. The
11
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Fig. 6. (a) Projection error over different latent space dimensions on training data with 𝜇 = {0.9, 0.95, 1.05, 1.1}; (b) Projection error over different latent space
dimensions on test data with 𝜇 = 1.0.

Fig. 7. Loss (training and validation) history (𝑟 = 20) of DNNOp paired with linear (a) and nonlinear encoders (b) as well as POD (a). Savitzky–Golay filter is
applied to the loss history for better visualization, with filter window length equals to 15, the order of the polynomial used to fit the loss is 1, and the extension
contains the nearest input value.

model is trained for 2000 epochs, using the Adam optimizer and an initial learning rate set to 0.01. We split the training dataset
into 𝑛batch = 100 batches, and use maximum patience of 100 epochs such that the learning rate will decrease by a factor of 10 when
the maximum patience is reached. The reduced operators are trained and paired with the autoencoders given different latent space
dimensions, and the training and validation loss (projection error on the rate between latent spaces) histories with r = 20 for all
autoencoders paired with the reduced operator are shown in Fig. 7. Again, it is seen that the training and validation losses exhibit
very similar trends and magnitudes, with a good balance between accuracy and overfitting. In Fig. 8, we summarize the projection
error of the trained reduced operator given different latent space dimensions. The projection error between latent spaces of the
reduced operator is defined as

𝑙proj
LQ (Û;A,H) =

√

∑𝑁𝑖𝑐
𝑙=1

∑𝑁𝑡
𝑚=0

‖

‖

‖

‖

̇̂u⟨𝑚⟩(𝑢(𝓁)0 ) − Aû⟨𝑚⟩ −H
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𝑚=0
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‖

2
, (42)

and

𝑙proj
DNNOp(Û;𝜣𝑜) =
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, (43)

for the quadratic operator inference and DNN-based operator, respectively.
12
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Fig. 8. Projection error of the trained reduced operator 𝐹 in the latent spaces for (a) quadratic operator inference; and (b) DNN-based operator on the training
dataset with 𝜇 = {0.9, 0.95, 1.01, 1.1}.

We evaluate the reduced operators’ performances between the latent spaces (i.e., the flow map 𝑢0 ↦ 𝑢(⋅, 𝑡), 𝑡 > 0) on the test
dataset using the errors given by

𝑙proj
𝑟𝑜𝑚 (Û; û0,𝜣𝑜) =
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, (44)

where û⟨𝑚⟩𝑟𝑜𝑚(𝑢
(𝓁)
0 ) = (û0(𝑢

(𝓁)
0 );𝜣𝑜, 𝑡𝑚) is the approximated latent solution at a given time step 𝑚. We solve the reduced order model

using the Newton–Raphson method. We evaluate the reduced-order model solution obtained by combining the surrogate operator
 with any of the autoencoders with a projection error in the original high dimensional space, using the error defined as

𝑙proj
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and
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for the linear and nonlinear autoencoders, respectively, with û0(𝑢
(𝓁)
0 ) = 𝐸(u0(𝑢

(𝓁)
0 );𝜣𝑒).

In Fig. 9, we show the projection error for the reduced-order model solution over all latent dimensions with different pairs of
autoencoders and operators. Note that quadratic operator inference fails to solve this 2D Burger’s problem with an error blowing
up for 𝑚 > 200 approximately.

The projection error of the reduced-order model for the nonlinear autoencoders is lower than for the linear autoencoders. We
summarized ROM solution and their absolute errors of the POD method in Fig. 10 for four latent space dimensions.

Both NE-SAE and NE-CNNAE have a projection error around 2 × 10−3 and deliver the most accurate predictions. Their ROM
solutions and associated absolute errors are shown in Figs. 11 and 12.

The absolute errors decrease together when latent dimension increases. However, oscillations in the ROM solution of the POD
method can still be observed for 𝑟 = 20. These oscillations can also be observed from the ROM solution with the LE-DAE and NE-DAE,
but are not present for NE-CNNAE and NE-SAE when 𝑟 ∈ {15, 20}.

The adaptivity in the bases promoted in the CNNAE approach is illustrated in Fig. 13, which shows how one particular basis
(here, 𝐷4) evolves as a function of time (similar responses are obtained for the other bases). This adaptivity mechanism helps capture
the features exhibited by the solution as the simulation progresses, hence facilitating interpretation.

The performance of vectorized implicit time integration was assessed by measuring the computational cost of flow map estimation
for 1500 time steps, using wall-clock time and multiple GPUs—as speed up also varies based on the hardware itself. The timing is
obtained by performing calculations on NVIDIA RTX A4500 (64 bits, 33 MHz, 20 GB), and NVIDIA RTX A6000 (64 bits, 33 MHz,
48 GB), NVIDIA GeForce 4080 (64 bits, 33 MHz, 16 GB). The wall-clock times are provided in Table 2. The algorithm improves
performance for 𝑟 ⩾ 15, regardless of chunk size, with a maximum speed-up of 25.48 when solving the reduced order model in the
13
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Fig. 9. (a) Projection error between the latent spaces obtained from the surrogate operator ; and (b) projection error of the reduced order model solution on
the test dataset with 𝜇 = 1.0 over different latent space dimension.

Fig. 10. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for POD-DNNOp with different latent space dimensions.

latent space (as compared to serial solving for the ROM). Observe that 𝑟 ⩾ 15, speed-ups do not decrease as the chunk size reaches
100. This implies that memory limitation (hardware limitation) was not reached for any of the GPUs, which indicates that the tested
chunk sizes may be suboptimal. For 𝑟 = 10 and a chunk size equal to 100, speed-ups decrease for all configurations, which suggests
that for this specific case, the required number of nonlinear iterations is larger than for the other cases. For this choice of parameters,
the solver eventually fails, hence resulting in infinite projection errors (as shown in Table 2). To further support this explanation,
the maximum number of Newton–Raphson (N–R) iterations required for each chunk when solving the adjoint integration problems
is also reported. It is seen that when 𝑟 = 10 and for a chunk size equal to 100, the number of nonlinear iterations reaches its
maximum allowed value (set to 100), for all GPUs. This behavior is a manifestation of the interplay between the chunk size, the
initial guess in the Newton–Raphson solver, and the latent space dimension. When the dimension 𝑟 are large enough, the solution
can be obtained even under poor initialization: the number of solver iterations then increases together with the chunk size. This
can be seen in Table 2: when the chunk size equals 1, around 2 iterations are necessary to reach convergence, while around 10
iterations are needed for a chunk size set to 100.

We also evaluated the performance of NE-CNNAE on other datasets beyond the range of the training dataset, for 𝜇 = 1.11, 1.12,
1.13, 1.14, 1.15. The projection errors of the reduced-order model and the projection error between the latent spaces of NE-CNNAE
with 𝑛 = 20 are shown in Fig. 14. This figure illustrates how the accuracy decreases in the extrapolation regime, with an increase
of almost one order of magnitude between 𝜇 = 1.1 (included in the training dataset) and 𝜇 = 1.15.
14
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Fig. 11. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for NE-SAE-DNNOp with different latent space dimensions.

Fig. 12. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for NE-CNNAE-DNNOp with different latent space dimensions.

Fig. 13. This figure illustrates adaptivity by showing the evolution of the fourth basis in Eq. (15). Here, we take the basis at the 101st time step as reference,
and plot the evolution of the difference 𝛥𝐷4(𝑀) = 𝐷4(𝑢̂

⟨𝑀⟩

4 ; û⟨𝑀⟩)−𝐷4(𝑢̂
⟨101⟩
4 ; û⟨101⟩) at selected time steps (namely, 201, 601, 1001, and 1401). Note that the basis

is shown in physical space to enable proper visualization.
15



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116684P. Chen et al.
Table 2
Wall-clock times at different latent space dimensions and chunk size on NVIDIA RTX A4500, NVIDIA RTX A6000, and NVIDIA GeForce 4080 for 1500 time
steps on the test dataset (𝜇 = 1.0). The shortest wall-clock time is obtained when 𝑟 = 15 using NVIDIA RTX A6000 with 1.32 s.

NVIDIA RTX A4500

Reduced dimension 𝑟 10 15 20

Chunk size 1 10 50 100 1 10 50 100 1 10 50 100

Projection error (%) 0.33 0.33 0.33 INF 0.34 0.34 0.34 0.34 0.23 0.23 0.23 0.23
N–R iterations # 2 3 6 100 3 3 5 7 3 4 7 12
Wall time (s) 34.08 5.10 1.61 6.94 34.65 5.06 1.62 1.36 34.46 5.07 1.78 1.48
Speed-up 1 6.68 21.17 4.91 1 6.85 21.39 25.48 1 6.80 19.36 23.28

NVIDIA RTX A6000

Reduced dimension 𝑟 10 15 20

Chunk size 1 10 50 100 1 10 50 100 1 10 50 100

Projection error (%) 0.33 0.33 0.33 INF 0.34 0.34 0.34 0.34 0.23 0.23 0.23 0.23
N–R iterations # 2 3 6 100 3 3 5 6 2 3 6 8
Wall time (s) 10.49 2.4 1.2 5.87 10.72 2.34 1.42 1.32 14.19 2.26 2.08 1.38
Speed-up 1 4.37 8.74 1.79 1 4.58 7.55 8.12 1 6.59 7.16 10.80

NVIDIA GeForce 4080

Reduced dimension 𝑟 10 15 20

Chunk size 1 10 50 100 1 10 50 100 1 10 50 100

Projection error (%) 0.33 0.33 0.33 INF 0.34 0.34 0.34 0.34 0.23 0.23 0.23 0.23
N–R iterations # 2 3 6 100 3 3 5 7 2 3 5 7
Wall-clock time (s) 14.74 1.37 0.73 8.69 13.02 2.59 1.50 1.51 13.52 2.62 1.64 1.64
Speed-up 1 10.76 20.19 1.67 1 5.03 8.67 8.62 1 5.16 8.24 8.24

Fig. 14. Projection error between the latent spaces obtained from the surrogate operator  and projection error of the reduced-order model solution on the
test dataset with 𝜇 = 1.11, 1.12, 1.13, 1.14, 1.15 when 𝑛 = 20 of NE-CNNAE.

4.4. Remarks on complexity and time step size dependency

For nonlinear autoencoders, the number of trainable parameters can be considered as a measure of model complexity. For the
above numerical example, with a latent dimension equal to 20, DAE has around 140 millions of trainable parameters, SAE has
around 25 millions of trainable parameters, and the proposed CNNAE (which achieves best performance, together with SAE) has
around 1 million trainable parameters. When training the models for 22 batches per epoch on NVIDIA RTX A4500 (64 bits, 33 MHz,
20 GB), with each batch containing approximately 246 time steps of solutions with a latent dimension set to 20, LE-DAE requires
14.70 seconds, LE-SAE 14.96 seconds, LE-CNNAE 1.56 seconds, NE-DAE 14.72 seconds, NE-SAE 14.98 seconds, and NE-CNNAE
requires 1.58 seconds per epoch (average wall-clock time over 100 epochs).

It should be noticed that the considered operator learning strategies are, by construction, dependent on the time step size used for
the training dataset. To quantify this effect, projection errors (in latent space and for the reduced-order model) obtained with NE-SAE
and NE-CNNAE, and refined step sizes, are shown in Fig. 15. Here, the surrogates were trained with a time step size denoted by 𝛥𝑡,
and the projection errors are evaluated by running both the FOM and ROMs with decreasing time step sizes: {𝛥𝑡, 𝛥𝑡∕2, 𝛥𝑡∕4, 𝛥𝑡∕8}. It
is seen that both errors substantially increase as the time resolution is refined, which is consistent with results reported elsewhere
16
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Fig. 15. (a) Projection error of the solution in the latent space; and (b) projection error of the reduced-order model with 𝑟 = 20 on the test dataset over different
time step sizes. Here, 𝛥𝑡 is the time step size used for training the autoencoders and the reduced operators.

Fig. A.16. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for LE-DAE-DNNOp with different latent space dimensions.

(see, e.g., [53] for similar behavior with space discretization). The increase in the ROM projection error is larger for CNNAE than
for SAE (see the right panel in Fig. 15), which may be attributed to the fact that the adaptive basis is constructed for a given time
step size.

5. Conclusion

An operator learning strategy for flow maps exhibiting sharp gradients was proposed. State-of-the-art linear and nonlinear
reduction techniques were first reviewed. We then devised a new Convolutional Neural Network (CNN)-based autoencoder. Taking
inspiration from adaptive basis methods, the proposed architecture involves iteration-dependent trainable kernels at the decoding
stage. Quadratic operator inference and a Deep Neural Network (DNN)-based operator inference model were next investigated to
learn the flow map in latent space. We also proposed a strategy to accelerate reduced-order model solving through vectorized implicit
time integration. The set of operator learning methods and algorithms thus obtained was benchmarked on an advection-dominated
problem (here, a 2D Burgers’ equation). It was found that the sparse autoencoder and the proposed CNN-based autoencoder generally
perform better in terms of prediction accuracy. It is noticeable however that the latter strategy achieves such performance with
much fewer trainable parameters (typically, one order of magnitude less). Regarding operator learning between the latent spaces,
quadratic operator inference performed fairly well at the training stage, but was found unstable on the test case. On the contrary,
the DNN-based strategy delivered accurate predictions during both training and testing. Finally, it was shown that the vectorized
17
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Fig. A.17. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for LE-SAE-DNNOp with different latent space dimensions.

Fig. A.18. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for LE-CNNAE-DNNOp with different latent space dimensions.

implicit time integration enables substantial speed-ups as the latent space dimension increases. The main limitation of the proposed
method lies in time-resolution dependency. A possible way to circumvent this issue is to finite-dimensionalize in time domain, in
the spirit of the PCA-Net framework introduced by Stuart and coworkers. Such developments, together with application to other
problems presenting non-smooth solution fields, are left for future work.
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Fig. A.19. Solutions (a, b, c, d) and pointwise errors (e, f, g, h) for NE-DAE-DNNOp with different latent space dimensions.
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Appendix. Reduced-order model solutions

In this Appendix, additional solution snapshots are provided, together with absolute errors, to assess the accuracy of the presented
frameworks (see Figs. A.16–A.19).
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