
2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Learning Common Knowledge Networks Via
Exponential Random Graph Models

1st Xueying Liu
Department of Statistics

Virginia Tech
Blacksburg, USA

xliu96@vt.edu

2nd Zhihao Hu
Department of Statistics

Virginia Tech
Blacksburg, USA
huzhihao@vt.edu

3rd Xinwei Deng
Department of Statistics

Virginia Tech
Blacksburg, USA

xdeng@vt.edu

4th Chris J, Kuhlman
Biocomplexity Institute
University of Virginia
Charlottesville, USA
hugo3751@gmail.com

Abstract—Common knowledge (CK) is a phenomenon where
each individual within a group knows the same information and
everyone knows that everyone knows the information, infinitely
recursively. CK spreads information as a contagion through social
networks in ways different from other models like susceptible-
infectious-recovered (SIR) model. In a model of CK on Facebook,
the biclique serves as the characterizing graph substructure for
generating CK, as all nodes within a biclique share CK through
their walls. To understand the effects of network structure on CK-
based contagion, it is necessary to control the numbers and sizes
of bicliques in networks. Thus, learning how to generate these
CK networks (CKNs) is important. Consequently, we develop
an exponential random graph model (ERGM) that constructs
networks while controlling for bicliques. Our method offers
powerful prediction and inference, reduces computational costs
significantly, and has proven its merit in contagion dynamics
through numerical experiments.

I. INTRODUCTION

A. Background and Motivation

Common knowledge. Common knowledge (CK) emerges
within a group when (i) all individuals possess the same types
of knowledge I, (ii) each member knows her own information
and the information of the other members, and (iii) each
member knows that everyone else knows her information. CK
is an infinite recursion of knowledge [1], [2]. We study CK
among individuals in social networks.

We consider a social network G(V,E) where V is the set
of individuals (i.e., nodes) and E is the set of interactions that
represent pairwise communication between i, j ∈ V such that
undirected edge {i, j} ∈ E. CK enables individuals within
a group to coordinate their actions and act simultaneously
because they can anticipate each other’s actions [3] . We will
make this idea concrete in Section II.

There are several reasons for learning common knowledge
networks (CKNs), i.e., networks that have particular structures

that produce CK. First, CK is active in many socio-economic
situations, including: (i) forming teams [4], (ii) establishing
social norms (e.g., initiating smoking, establishing fear) [5],
and (iii) advertising [6]. Second, CK can explain the spread of
information through a different mechanism compared to clas-
sic mechanisms such as threshold models [7] and susceptible-
infectious-recovered (SIR) models [8]. One key difference
is that CK enables individuals to coordinate their activation
or infection as a group. Another key difference is that CK
can initiate contagion, in addition to propagating it, whereas
classic contagion mechanisms only facilitate transmission to a
single individual and cannot initiate contagion. Third, CK can
explain social phenomena such as preference falsification and
fake news spreading [9].
Common knowledge on the Facebook social network.
Our work is motivated by a model of CK on the Facebook
social media network because of its unique wall or timeline
communication mechanism. Figure 1 shows three individuals
(1, 2, and 3) connected within a larger social network (see
the green edges). Each individual can write to, and read all
information on, their own and their distance-1 neighbors’
walls (blue boxes); these reading and writing actions are
indicated by the black arrows. Therefore, all three individuals,
including 1 and 3—who are not directly connected in the
network—can directly communicate via the wall of 2 (by
writing information to, and reading information from, the
wall of 2). In this way, they possess common information
I=I1∪I2∪I3 via the wall of 2, thus producing CK. The infinite
recursion of “knowing that others know” is produced because
since 1 sees 3’s information I3 on 2’s wall, 1 knows that 3
can see 1’s information I1 on the same wall. Therefore, each
of 1 and 3 knows the other’s information, and each knows
that the other knows that they know. It is this special feature
of Facebook walls that enables nodes at distance-2 to directly
communicate and form CK.

This leads to a unique CK-based model of contagion [10]
which is a coordination game that we formally present in
Section II, called CKF (common knowledge on Facebook).
Central to this work, it is shown in [10] that the biclique (i.e.,
complete bipartite graph, where each node in one bipartition
is connected to every node in the other bipartition) is the
network substructure that produces CK among a collection of
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Fig. 1: Illustration of three nodes (node IDs are 1, 2, and 3) in
the Facebook social media network arranged in a star graph
with green edges, where 2 is the hub node. The Facebook
wall of each node or person is above that person (blue box),
with the information that is written to, and read from, the
wall contained in the box. Information I1, I2, and I3 is
the information provided by nodes 1, 2, and 3, respectively.
Black arrows indicate who can read from/write to each wall.
Persons 1 and 3 can communicate directly through the wall of
person 2 even though there is no edge between them.

nodes. (The graph in Figure 1 is a particular type of biclique:
a star with hub node 2.) Therefore, it is important to learn to
construct CKNs. The crux of this work is to generate networks
with requisite biclique substructures.

The CK phenomenon has been identified and observed by
social scientists (e.g., [3], [6]). CK has also been documented
in historical contexts [5]. CK is closely aligned with the
concepts of theory of mind [11]; informally, the study of what
an individual understands about others’ thoughts. Recently,
controlled laboratory experiments on human subjects in a
Facebook-like [12] and other [13] settings have demonstrated
that groups can produce CK.

In this section, we have identified practical situations in
which CK is operative and research studies that observe CK.
A unique CK-based contagion model has been developed [10]
to quantify information contagion, but sensitivity studies of
the effect of network structure on contagion spreading have
not been done; controlling biclique substructures in networks
is the first step in studying these contagions. Hence, there is
ample motivation to study the construction of CKNs.

B. Research Questions and Our Contributions

Research questions and technical challenges. Exponential
random graph models (ERGMs) are used to construct networks
and use relatively simple graph structures for motifs, such as
Path3 and triangle substructures [14], [15]. See Figure 2 for an
overview of the process. Bicliques, with their large numbers
of variants, are comparatively complex structures and have
not been used as characterizing subgraphs in ERGMs. (For
example, a set of r nodes generates nbic = Σ

⌊r/2⌋
k=1

(
r
k

)
possible

bicliques; if r = 5 then nbic = 15.) Question 1: Can an ERGM
be developed to generate CKNs, controlling for bicliques?

ERGMs do not typically scale well to large graph sizes.
Typical undirected network sizes generated with ERGMs are
roughly from a few tens of nodes (e.g., [16]–[19]) up to
100,000 nodes in one recent work [20]. Question 2: Can
methods be devised to generate large networks (e.g., 100,000-
node) with ERGMs?

Once CKNs are generated, they must be evaluated to
determine whether local network structures from ERGMs are
consistent with realistic CKNs. Question 3: How do ERGM-
generated CKNs compare with realistic or mined networks?
Our contributions. To address the above questions, we de-
velop an ERGM to construct networks while controlling for bi-
cliques. The learning of numbers and distributions of bicliques
in social networks can be comprehensively investigated using
the proposed method. Moreover, the proposed ERGM method
has a parsimonious parametric model formulation with power-
ful prediction and inference for generating networks. The ma-
jor contributions of this work are summarized as follows. First,
the proposed ERGM for bicliques uses a simple but effective
qualitative change statistic, leading to accurate predictions of
CKNs. In addition, theoretical properties are established to
enable faster calculation of the qualitative change statistics.
Second, we use subgraphs of the observed (original) network
to construct ERGMs using far less computation time (often,
reductions in time by an order of magnitude or more) while
preserving comparable prediction accuracy. Third, the effec-
tiveness of the ERGM is evaluated comprehensively in terms
of comparisons of degree distributions, k-core distributions,
and biclique distributions to demonstrate accurate network
predictions. Moreover, we evaluate contagion dynamics on
these ERGM-generated networks using an agent-based CKF
model to simulate information spreading on Facebook, thereby
testing the effect of network structure on dynamics. Contagion
spreading on these multiple networks is very similar.

Because no work like ours has been undertaken, as a first
step, we focus on generating and evaluating Erdős-Rényi
(ER) random graphs. ER graphs represent several real-world
systems, such as child friendship networks [21] and commu-
nications among people in a work room or classroom [22].

Estimation 
Process

Prediction 
Process

Original 
graph ERGM

New 
network 
instances

Fig. 2: The ERGM graph generation process where a network
instance (at left) is used to estimate an ERGM (center). This
model is then used to predict (generate) new graph instances
(at right) that are similar to the original graph.

II. PRELIMINARIES

This section presents a formal description of the CKF
model [10], focusing on contagion dynamics of bicliques,
and an example. A human social network is represented by
a communication network G(V,E), where V = {1, 2, . . . , n}
is the node set of n people. Each person i ∈ V is in a state
si(t) ∈ {0, 1} at each time t. If si(t) = 0, then person i
is in the unactivated state, and if si(t) = 1, then i is in the
activated state. Each node i has a threshold τi that indicates its
resistance to activation. Given person i’s threshold τi and the



system state at t, denoted by st = (s1(t), s2(t), . . . , sn(t)),
her utility is given by

Uit =


0 if si(t) = 0
1 if si(t) = 1 ∧

∣∣{j\i ∈ V : sj(t) = 1}
∣∣ ≥ τi

−z if si(t) = 1 ∧
∣∣{j\i ∈ V : sj(t) = 1}

∣∣ < τi

,

(1)
where −z < 0 is the penalty she gets if she activates and
not enough people join her. A person always gets utility 0
by staying in state 0, regardless of what others do since free-
riding problems are not considered. When she transitions to
the activated state, she gets utility 1 if the total number of other
people activated at t is at least τi. (Note that these “others” do
not have to be neighbors of i, as in threshold models, e.g., [7].)
We use progressive dynamics [23], such that once in state 1,
nodes do not transition back to 0.

Equation (1) clearly shows that node state transitions within
a biclique is a coordination game because a collection of indi-
viduals is making decisions based on each individual’s payoff
(utility) and those of others. Also, Equation (1) describes
how individuals reason about what they and others will do
in the future and simultaneously make decisions because i, in
determining its next state at the next time t must infer what
other nodes j will also do at the upcoming (next) time t. In
contrast, in threshold [24] and SIR [25] models, agents make
decisions based on what their neighbors have already done at
previous times t∗ < t.

Simulations of these systems use discrete time to advance
the simulation “clock” from time t = 0 to tmax, where t ∈ N
can have any unit, although we typically use units of day,
i.e., one time tick is one day. At each time, Equation (1) is
evaluated for each node i ∈ V that is in state 0 to determine
whether it transitions to state 1; once a node i reaches si(t∗) =
1, the activated state, the node is assumed to remain active
for all t > t∗. Two other mechanisms, not associated with
bicliques, are also assessed at each time; see [10] for details.

Figure 3 provides an example of CKF model contagion dy-
namics and a contrast with threshold collective action models.
The K3,2 biclique, with three nodes in one bipartition (nodes 1
through 3) and two nodes in the second bipartition (nodes 4
and 5), represents five individuals. First, this graph generates
CK among all five nodes, as now explained. The star subgraph
centered at node 4 generates CK among nodes {1, 2, 3, 4}
because all of these nodes can read from and write to node 4’s
wall. Similarly, the star subgraph centered at node 5 generates
CK among nodes {1, 2, 3, 5} because all of these nodes can
read from and write to node 5’s wall. To complete CK among
all five nodes we need nodes 4 and 5 to know about each other,
together with each of the other three nodes: this happens on
the walls of nodes 1, 2, or 3. For example, the wall of node 2
generates CK among nodes {2, 4, 5}. Hence, CK is generated.

The dynamics of contagion that is initiated and spread by
CK in Figure 3 is now addressed. The information Ii that each
person (node i) shares on these walls is the triple (i, τi, si(t)).
At t = 0, all nodes i ∈ V are in state si(0) = 0 (shown as
filled red symbols). With all nodes i having τi = 4, each i

requires four other nodes to activate in order for i to activate,
so each node’s threshold can be satisfied by the other four
members of the CK set. Thus, every i can reason about what
it will do next, and because of CK, can reason about what each
of the other four nodes will do next. Each node will realize
that if all five nodes activate, then everyones’ thresholds will
be met. Hence, to maximize utility, all nodes will transition
to state 1 per Equation (1) in one timestep (green symbols).

This description explains why most contagion simulations
use no seed nodes—seed nodes are not needed because CK
can initiate contagion where none previously existed. And this
is possible because nodes can coordinate their behaviors and
act simultaneously.

This behavior can be contrasted with the Granovetter-type
threshold model [24], [26]. In that model, a node i in state 0
will transition to state 1 if at least a threshold τi number of
its neighbors are already in state 1; otherwise i will remain
in state 0. Once a node reaches state 1, it remains in state 1
(a progressive model). In our example in Figure 3, no node
will transition state 0 → 1 without some seed nodes, which
is different from the CKF model. Furthermore, regardless of
how many nodes are seeded, there will be no contagion spread
because no node has degree of four, so no node has enough
neighbors to meet its threshold. Therefore, the only way to
have all nodes in state 1 at t = 1 is to seed all nodes. Relative
threshold models [7], [27] behave in this same way.
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Fig. 3: Example of contagion dynamics on a biclique K3,2,
using the CKF model. All nodes are assigned thresholds;
all five nodes have threshold τ = 4 in this example. For
these conditions, all nodes transition to state 1 (in green)
in one timestep. In contrast, under the Granovetter threshold
model [24], no node will transition state, no matter how many
nodes are seeded at time t = 0.

The CKF model and the example make clear the prominent
role that bicliques play in quantifying CK in Facebook social
media networks. Our contributions focus on generating these
networks.

III. RELATED WORK

References on common knowledge were given in the Intro-
duction. Here we focus on graph generation methods.

Models for generating property-preserving and property-
varying networks enable hypothesis testing, sensitivity anal-
ysis, and benchmark testing [15], [28], and exploration of
counterfactuals. Several other reasons for researching network
generation methods are given in [17]. Studies on the effects
of systematically varying network properties include edge
shuffling or swapping [29] and using the largest eigenvalue of



an adjacency matrix representation of a graph to characterize
epidemic thresholds [30], [31].

There are graph construction methods that use a single
graph instance (an observed network) to learn a (stochastic)
model. The model can then be used to produce multiple
additional instances, presumably from the same family of
graphs. Methods include stochastic block models [32] and
Kronecker graphs [33]. More recent work includes models that
account for node attributes in addition to graph structure [15].

In this work, we focus on a different model of generating
multiple graphs from a single graph instance, namely ERGMs
[17]. ERGMs have been used to study various problems,
including identifying roles of nodes in networks, in addition
to their connectivity [34]. Various network substructures (e.g.,
triangles, paths, stars) have been modeled with ERGMs [14],
[16], [17]. None of these structures are as complicated as
general bicliques, as we analyze here.

IV. NETWORK GENERATION MODEL

In this section, we detail the proposed method of estimating
ERGMs that produce biclique structures in social networks.

Consider a set B of m bicliques B = {B1, B2, . . . , Bm}
in graph G(V,E). Each biclique Bj , 1 ≤ j ≤ m, consists
of two bipartitions Pj,1 and Pj,2. Each bipartition is a proper
subset of nodes in V of G, with cardinalities nj,1 = |Pj,1|
and nj,2 = |Pj,2|. Let Pj,1 = {k1, k2, . . . , knj,1

} and let
Pj,2 = {ℓ1, ℓ2, . . . , ℓnj,2}. The biclique has edges from each
node ki ∈ Pj,1, 1 ≤ i ≤ nj,1, to every node ℓr ∈ Pj,2,
1 ≤ r ≤ nj,2.

Throughout this section, we focus on bicliques where each
bipartition has at least two nodes. This is because if one
bipartition has one node, then the biclique has a star structure,
with the hub node being the sole node in one bipartition and
the leaves of the star being the nodes in the other bipartition.
These star bicliques are trivial to identify in a graph G because
each node i ∈ V is the hub node of a star subgraph.

A. Exponential Random Graph Model (ERGM)

The ERGM is a probabilistic model for networks. Let us
denote a network of n nodes as an adjacency matrix Gadj =
(gij) ∈ {0, 1}n×n, where gij ∈ {0, 1} for all i, j ∈ V =
{1, . . . , n}. Here gij = 1 means that there is an undirected
edge eij = {i, j} between nodes i and j, while gij = 0 means
that the two nodes are not directly connected. We have gii = 0
for all i ∈ {1, . . . , n}. Furthermore, we define the set of all
possible simple networks of n nodes as G(n) := {Gadj ∈
{0, 1}(n×n) : gij ∈ {0, 1}, gii = 0}.

Generally, the probability function of the ERGM is

Pθ(G
adj) =

exp(θTΓ(Gadj))∑
G∗∈G(n) exp(θTΓ(G∗))

, (2)

where θ ∈ Rq is a q-dimensional vector of parameters. Func-
tion Γ(·) maps the adjacency matrix Gadj to a user-defined
q−dimensional vector Γ(Gadj) = (Γ1(G

adj), . . . ,Γq(G
adj))T

of different network statistics. For example, Γ1(G
adj) can be

the number of edges in a network G, and Γ2(G
adj) can be the

number of bicliques in a network. The normalization constant
c(θ) :=

∑
G∗∈G(n) exp(θT · Γ(G∗)) in Equation (2) ensures

that it defines a probability function on G.
Evaluating c(θ) is very computationally expensive since

it needs to enumerate all possible networks of n nodes.
Hence, we use the maximum pseudolikelihood estimation
(MPLE) [35] for estimating θ, as it is much more approach-
able. With MPLE, we utilize the pseudolikelihood function
Pθ(G

adj) =
∏

ij Pθ(gij |Gadj
−ij) for parameter estimation,

where Gadj
−ij represents the adjacency matrix excluding el-

ement gij . We defined the vector of change statistics as
δ(gij) = (δ1(gij), . . . , δq(gij))

T where δk(gij) (1 ≤ k ≤ q)
is the difference in the value of network statistic Γk(G) when
gij is toggled from 0 to 1 (i.e. δk(gij) = Γk(G

adj |gij =
1)− Γk(G

adj |gij = 0)). Note that

Pθ(gij = 1|Gadj
−ij) =

exp(θTΓ(Gadj |gij = 1))

c(θ)
,

and the normalization constant c(θ) cancels out if we divide
the probabilities of gij being 1 by the probability of being 0:

Pθ(gij = 1|Gadj
−ij)

Pθ(gij = 0|Gadj
−ij)

=
exp(θTΓ(Gadj |gij = 1))

exp(θTΓ(Gadj |gij = 0))
= exp(θT δ(gij)).

Since gij ∈ {0, 1}, Pθ(gij = 0|Gadj
−ij) = 1 − Pθ(gij =

1|Gadj
−ij), the conditional probability Pθ(gij = 1|Gadj

−ij) can be
expressed as a logistic regression of the form

Pθ(gij = 1|Gadj
−ij) =

exp(θT δ(gij))
1 + exp(θT δ(gij))

.

It implies that one can maximize the pseudolikelihood function
for the ERGM parameter estimation based on the logistic
regression, in which the dependent variable is given by the
elements of the adjacency matrix, and the covariates are given
by the values of the change statistics corresponding to each
element of the adjacency matrix.

B. The Proposed ERGM for Bicliques

An ERGM for bicliques presents several challenges in
model formulation, estimation, and computation because bi-
cliques are very complex substructures. Different from sub-
structures like triangles, where there is only one configuration
given three nodes, bicliques vary in their sizes and structures.
Thus, the identification of node-maximal bicliques (an NP-
hard problem) [36] and the calculation of change statistics are
computationally challenging. For example, in an n = 10000
node graph, there are 108 node pairs for evaluating change
statistics.

To address the above challenges, we propose a parsimo-
nious ERGM for bicliques. The proposed method has two
key strategies. The first is to identify all bicliques in the
network. We use an existing code for this [37]. Using the
identified bicliques in the network greatly reduces the number
of change statistics to be computed. Based on the identified
bicliques, our second strategy is to consider a qualitative
change statistic for the bicliques in the ERGM. Separating
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Fig. 4: (a) Removing/adding an edge between two nodes
where at least one of them does not belong to any biclique.
(b) Removing/adding an edge between two nodes that belong
to different bicliques. (c) Removing/adding an edge between
two nodes that belong to the same biclique and the same
bipartition. (d) Removing/adding an edge between two nodes
that belong to the same biclique but different bipartitions. In
(d), the node-maximum biclique on the left-hand side has 3
nodes in each bipartition, and there are two node-maximum
bicliques with 2 nodes and 3 nodes in the bipartitions on the
right-hand side.

these two steps also enables study of multiple change statistics
without recomputing the bicliques.

Definition 1. [Qualitative change statistic] For bicliques, let
δbc(gij) ∈ {0, 1} be the qualitative change statistic for the ijth

dyad gij in the graph G. δbc(gij) = 1 means the existence of
an edge between ith and jth nodes does affect the bicliques in
G, either in number or size. δbc(gij) = 0 means the existence
of an edge between ith and jth nodes does not affect the
bicliques in the current network.

First, we illustrate cases to evaluate. Figures 4a through 4d
enumerate the cases for adding and removing edges of biclique
substructures in a graph. These are the cases that must be
addressed in producing an ERGM based on change statistics.
Each figure shows one or two bicliques on each side of two
arrows. Each biclique on the left-hand side in these examples
is a K3,3, with a set of three red nodes in one bipartition
and a set of three green nodes in the other bipartition. Edges
between nodes of the bipartitions are in blue and there is one
black edge that is deleted on the right side of the arrows. In the
first three of these figures, removal of the black edge produces
no change to the number and size of bicliques. Hence, these
node pairs have a change statistic of zero, with respect to
bicliques. In the last figure, Figure 4d, removal of the black
edge causes an increase in the number of bicliques from one
to two, and a decrease in their size, from six on the left to
two size-five bicliques on the right. Hence, this black edge
has a change statistic of one, with respect to bicliques, per
Definition 1. Each of these figures also has an arrow from
right to left, indicating that in addition to deleting the black

edge, it may also be inserted. The process of deletion and
insertion are complements.

From these observations, we formalize the computations of
change statistics. First, we define the overlap between two
bicliques with respect to two nodes i and j.

Definition 2 (Overlap). Consider bicliques Bk and Bℓ and
their two bipartitions Pk,1 and Pk,2, and Pℓ,1 and Pℓ,2,
respectively. Bicliques Bk and Bℓ overlap with respect to
nodes i and j if and only if there exists an assignment
of partitions Pk,1 and Pk,2, and Pℓ,1 and Pℓ,2, such that
Pℓ,1 ∪ {i} = Pk,1 and Pk,2 ∪ {j} = Pℓ,2, and there exists
a biclique Bint under Pk,2 and Pℓ,1 as a subgraph of the
intersection (or overlap) of Bk and Bℓ.

A detailed example of the terms in this definition are
provided in Figure 5.

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

!" !# !$%& !'%$(%

Fig. 5: In the definition of overlap, bicliques Bk and Bℓ over-
lap with respect to node i = 3 and node j = 6. Bipartitions
for Bk and Bℓ are Pk,1 = {1, 2, 3} and Pk,2 = {4, 5}, and
Pℓ,1 = {1, 2} and Pℓ,2 = {4, 5, 6}, respectively.

The proposed qualitative change statistic for bicliques
avoids the complications of quantifying changes in terms of
numbers and sizes of bicliques, but still captures the effect
of changes using the binary quantity. It pursues a simple
and effective change statistic for bicliques in the ERGM.
Moreover, we can establish the following properties for the
proposed qualitative change statistic for bicliques, suggested
by Figure 4.

Lemma 1. Given two nodes i, j and an edge eij = {i, j}
between them. Removing edge eij will only affect bicliques
that contain eij . Consider each biclique that contains edge
eij . Removing eij will affect the number of bicliques and the
sizes of the bicliques.

Lemma 2. Given two disconnected nodes i, j that belong to
two bicliques Bk and Bℓ, respectively. If there are no bicliques
Bh ∈ B in which both nodes i and j are a part of (i.e., ∄Bh

such that both i ∈ Bh and j ∈ Bh), but Bk and Bℓ overlap,
then adding an edge eij = {i, j} between them will create
one new biclique from Bk and Bℓ.

Now we can establish the following theorem to show the
merits of using the proposed qualitative change statistic for
bicliques.

Theorem 1 (Qualitative Change Statistic for Bicliques). Given
a graph G with n nodes and m identified bicliques, B =
{B1, B2, . . . , Bm}. Then the change statistic for dyad gij can
be determined as,



(a) If node i and j are in the same biclique but different biparti-
tions, then the change statistic for dyad gij is δbc(gij) = 1.

(b) If node i and j are in different bicliques Bk and Bℓ, respec-
tively, and Bk and Bℓ overlap, then δbc(gij) = 1.

(c) Otherwise, the change statistic δbc(gij) = 0.

Algorithm 1 Qualitative Change Statistics for all Bicliques in
a Network

Inputs: G(V,E) and set B of bicliques of G.
Outputs: δbc(gij) for all edges {i, j} ∈ E.
Steps:
Set δbc(gij) = 0 for all edges eij ∈ E.
for (each Bk ∈ B) do

for (nodes i and j in different bipartitions of Bk) do
Set the change statistic δbc(gij) = 1.

end for
for (Bℓ ∈ B where Bk and Bℓ overlap (per Definition 2)
with respect to i and j) do

Set the change statistic δbc(gij) = 1.
end for

end for

Algorithm 1 shows the computation of the change statistic
for bicliques. The proposed qualitative change statistics for
bicliques describe whether the bicliques in a network change
given a pair of nodes i, j. Our Algorithm 1 offers an efficient
computational method for the qualitative change statistic,
surpassing the brute force approach that examines all

(
n
2

)
node

pairs for biclique changes.
For the proposed ERGM for bicliques, we fit the model with

the network statistics (1) number of edges and (2) number of
bicliques in the network. Then the conditional probability is

Pθ(gij = 1|Gadj
−ij) =

exp[θ1δe(gij) + θ2δbc(gij)]

1 + exp[θ1δe(gij) + θ2δbc(gij)]
, (3)

where δe(gij) is the change statistic of the edge for the
dyad gij , i.e., the difference in the total number of edges
in G when i and j are connected versus disconnected, and
δbc(gij) is the qualitative change statistic of the biclique.
This proposed ERGM is a parsimonious parametric model
with only two parameters. Moreover, one can conduct model
estimation using a subgraph of the original graph, as shown
in the next section. After MPLE, we can make predictions of
new networks based on the fitted ERGM in Equation (2) or (3)
using Markov chain Monte Carlo (MCMC) techniques [38].

V. NUMERICAL EVALUATION OF ERGMS

We evaluate the proposed ERGM in two ways. First, we
quantitatively compare the structural properties of ERGM-
generated networks versus those of original graphs. We also
present a method to generate these graphs faster using a
subgraphing procedure. Second, we compare CKF model
contagion dynamics on these networks. The computations
determine whether generated networks and original networks
produce similar contagion dynamics.

A. Comparison of Graph Structures and Computation

To evaluate the performance of the proposed ERGM model
for bicliques, we generate a set of ER graphs G with the same
average degree of dave = 18 as shown in Table I.

TABLE I: Erdős-Rényi (ER) random graphs with average
degree of dave = 18.

Num
Nodes

Num
Edges

Edge Prob-
ability

Ave
Deg.

Max
Deg.

Max
K-core

2000 18000 9.0×10−3 18 32 12
5000 45000 3.6×10−3 18 39 12
10000 90000 1.8×10−3 18 36 12
20000 180000 9.0×10−4 18 36 12
50000 450000 3.6×10−4 18 39 12
100000 900000 1.8×10−4 18 45 12

For each ER graph G, we first fit the proposed ERGM on it
and then make a prediction of a new graph Ĝ. Moreover, we
extract one instance of random subgraphs G0.2, . . . , G0.9 from
G where Gs has a fraction s of the number of nodes of G,
determined uniformly at random. Then for each subgraph Gs,
s = 0.2, . . . , 0.9, we fit the proposed ERGM and predict a new
graph Ĝs with the same size (i.e., the same number of nodes)
as G. For convenience, we denote Ĝ1.0 for Ĝ. With these
graphs, three types of comparisons between original graphs G
and ERGM-generated graphs Ĝs are presented next.

We investigate whether the proposed ERGM estimated
from subgraphs of G can capture the characteristics of the
original graph G. Figure 6 shows the numbers of edges and
bicliques in the ERGM-predicted graphs Ĝs, s = 0.2, ..., 1.0,
in comparison with those from the original graph G. For the
results in Figure 6 for all network sizes, it is seen that all Ĝs

produce a similar number of edges as the original graph G.
When s ≥ 0.5, the Ĝs also give a similar number of bicliques
as in the original graph G. For the 20000-, 50000- and 100000-
node ER graphs, subgraphs Gs of all fractions produce similar
numbers of edges and bicliques as those in the original ER
graphs. These results imply that the proposed ERGM can make
accurate predictions of graphs. More specifically, the results
imply, first, that the proposed ERGM with qualitative change
statistics can generate a network Ĝ1.0 with similar numbers of
edges and bicliques by using the original graph to fit a model
(i.e., use the original G as input to construct an ERGM and
then produce Ĝ ≡ Ĝ1.0). And second, that subgraphs of G can
be used to construct ERGMs that then can be used to produce
Ĝs that have similar numbers of edges and bicliques as the
original G, particularly for n ≥ 20000 nodes.

We also evaluate our ERGMs using different network met-
rics. Specifically, we compare four properties of the related
networks: degree distribution, K-core distribution, biclique
size distribution, and node participation distribution (i.e., the
distribution of number of bicliques that nodes participate in).

Figures 7a through 7c and Table II show results for the
50000-node dave = 18 ER graph G in comparison with
those from Ĝ0.2, Ĝ0.5, and Ĝ1.0. Figure 7d provides the node
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Fig. 6: (a) Number of edges, and (b) number of bicliques,
in ERGM-generated graphs Ĝs, s = 0.2, . . . , 1.0, using
subgraphs of the original graphs G (”Orig”) from Table I.

TABLE II: Kullback–Leibler (K-L) divergence of the node
participation distribution and biclique size distribution of each
generated graph Ĝ1.0, Ĝ0.5, and Ĝ0.2 compared to those of the
original n = 50000 graph G. Mean and standard deviation are
calculated for 5 replications of graph generation procedure.

Graph
Node Participation

Distribution
Biclique Size
Distribution

Mean SD Mean SD
Ĝ1.0 7.8×10−5 3.3×10−5 4.3×10−6 4.8×10−6

Ĝ0.5 6.8×10−4 9.6×10−5 7.8×10−6 1.1×10−5

Ĝ0.2 1.7×10−3 2.0×10−4 1.7×10−6 2.0×10−6

participation distribution for the 100000-node ER graph. It is
seen that Ĝ1.0 can produce similar characteristics as observed
in G. Moreover, the data reveal that the proposed ERGM
based on subgraphs, i.e., Ĝ0.2, Ĝ0.5, also retains the essential
properties and biclique structure of the original graph G. In
Table II, the K-L divergence values nearing zero indicate a
strong similarity between the distributions of G and Ĝs.

These results for Ĝ0.2, Ĝ0.5 are important for another rea-
son, beyond accuracy. For G0.2 and G0.5, ERGM estimation
times (see “Estimation Process” in Figure 2) are only 0.7% and
2% of that for the original 50000-node graph (Figure 8a). The
time needed for finding bicliques in subgraphs also decreases
significantly, taking only 2% and 17% of the time compared
to the original 50000-node graph (Figure 8b). These fractions
are even smaller for the 100000-node ER graph. Therefore,
our proposed ERGM with subgraphs offers both accurate
prediction and computational efficiency.

B. Common Knowledge Simulations

The final part of validation of our ERGM is to compare
contagion dynamics that are produced on sets of four net-
works (the originally constructed network and three ERGM-
generated networks). Here we use the CKF contagion model
[10] with the focus on the CK mechanism, as in Section II.
Our simulation procedures are described in [10].

Agent-based simulations (ABSs) were performed on G,
Ĝ0.2, Ĝ0.5, and Ĝ1.0 for both n = 20000 and 50000 node
graphs. Our focus was on bicliques where each bipartition has
a minimum of two nodes, matching the type predicted by the
ERGM. We vary node thresholds τi and online probabilities
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Fig. 7: Structural analysis results for two networks. For
the 50000-node network: (a) degree distributions, (b) K-core
distributions, and (c) node participation distributions. (d) Node
participation distributions for the n = 100000 node network.
Each bar depicts the count of nodes that participate in a spe-
cific number of bicliques. “Original” is the network provided
in Table I, and the three ERGM-generated graphs Ĝ0.2, Ĝ0.5,
and Ĝ1.0 are generated using subgraphs of the original graph
with fractions of graph nodes of 0.2, 0.5, and 1.0.
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Fig. 8: (a) ERGM estimation times and (b) times for finding
bicliques in average degree dave = 18 ER graphs between
2000 and 100000 nodes, and their subgraphs.

po,i (po,i is the probability that an agent is actively partic-
ipating on Facebook on a particular day of the simulation),
conducting 100 simulation instances for each condition to
evaluate stochasticity. Each instance progressed from day 0
to day 50, advancing one day at a time.

Figure 9 contains results. The plots are contagion histories
where the x-axis is time, in days, and the y-axis is the
cumulative fraction of agents that are in state 1 at that time.
Various po are used, per the legends. In each plot, there are
four curves of each color; each curve of one color corresponds
to a different graph and is the average of 100 simulation
instances. The tight groupings of the four curves of one color
indicate that time-wise contagion dynamics are very similar



(a) n = 20000, Ki,j bicliques (b) n = 50000, Ki,j bicliques

Fig. 9: ABS results for the CKF model using only bicliques
where each bipartition is of size at least two, denoted Ki,j .
Fraction of agents (nodes) in state 1 is a function of time in
days. The data span t = 0 to 50, but the x-axes extend to 100
to show legends on the plots without overlapping the curves.
(a) and (b) use n = 20000 and n = 50000 node graphs,
respectively, where τi = 1 for all nodes and po varies per
the legend. In each plot, there are four curves for each color,
corresponding to ERGM 0.2 (dashed); ERGM 0.5 (dash-dot);
ERGM 1.0 (dot); and the original graph (solid).

on the four graphs (the mean absolute differences between the
100 simulation instances of G and each of Ĝ0.2, Ĝ0.5, and
Ĝ1.0 are between 0.003 and 0.043). The two plots include only
bicliques with at least two nodes per bipartition; the po = 1.0
curve in Figure 9b shows that about 30% of nodes are not in
these bicliques and so cannot change state to 1.

VI. SUMMARY

In this work, we develop exponential random graph models
(ERGMs) on the biclique substructures to learn common
knowledge networks. This is the first work that uses ERGMs
in controlling biclique structures in networks, motivated by
the importance of studying the social behavior of common
knowledge. Future work includes extending the model and
analyses to other classes of networks, and to compare our
results with other methods that produce these CKFs.
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