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The rheology of biological tissue is key to processes such as embryo development, wound healing, and cancer
metastasis. Vertex models of confluent tissue monolayers have uncovered a spontaneous liquid-solid transition
tuned by cell shape; and a shear-induced solidification transition of an initially liquidlike tissue. Alongside this
jamming/unjamming behavior, biological tissue also displays an inherent viscoelasticity, with a slow time and
rate-dependent mechanics. With this motivation, we combine simulations and continuum theory to examine
the rheology of the vertex model in nonlinear shear across a full range of shear rates from quastistatic to fast,
elucidating its nonlinear stress-strain curves after the inception of shear of finite rate, and its steady state flow
curves of stress as a function of strain rate. We formulate a rheological constitutive model that couples cell shape
to flow and captures both the tissue solid-liquid transition and its rich linear and nonlinear rheology.
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The rheology of biological tissue is crucial to processes
such as morphogenesis, wound healing, and cancer metasta-
sis. On short timescales, tissues withstand stress in a solidlike
way. On longer timescales, they reshape via internally active
processes such as cell shape change, rearrangement, division,
and death [1,2]. Tissues are thus viscoelastic [3]. Power-law
stress relaxation [4,5] and slow oscillatory cell displacements
[6] after straining underline their rate-dependent mechanics.
Tissues furthermore undergo spontaneous solid-liquid transi-
tions [7–11] driven by both active processes, such as fluctua-
tions of cell-edge tensions, motility and alignment, and geo-
metric constraints [12], with important implications for mor-
phogenesis and cancer progression. Nonlinear rheological re-
sponse to tensile stretching includes stiffening [13] or fluidiza-
tion [14] of single cells, and stiffening then rupture of tissue
monolayers [15]. Internal activity can likewise induce nonlin-
ear phenomena such as superelasticity [16] and fracture [17].

Understanding tissue rheology theoretically is thus of
major importance. Well-studied vertex and Voronoi models
[9,18,19] of confluent tissue, with no gaps between cells,
represent a two-dimensional (2D) tissue monolayer as a tiling
of polygonal cells. They capture a density-independent solid-
liquid transition tuned by a parameter characterizing the target
cell shape, which in turn embodies the competition between
cortex contractility and cell-cell adhesion [7–9]. Vertex mod-
els have also been used to study the linear mechanics of tissues
[20–22], and their response to nonlinear stretch [23] and shear
[24–27]. Recently, vertex model simulations of a tissue that is
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fluidlike in zero shear demonstrated a shear-induced rigidity
transition above a critical strain, applied quasistatically [27].

While vertex models and other mesoscopic models have
played an important role in advancing our understanding
of tissue mechanics, it is also helpful to develop coarse-
grained continuum rheological constitutive models. Early
work formulated a continuum model that couples cell shape
and cell motility, capturing some of the glassy dynamics of
tissue [28]. Inspired by early hydrodynamic theories of ac-
tive fluids and gels [29,30], continuum constitutive models
have been developed to characterize the role of cell shape
change, rearrangements, division, and death in morphogenesis
[2,25,31–35].

Still lacking, however, is a continuum hydrodynamic con-
stitutive model capable of describing both the spontaneous
solid-liquid transition of confluent tissues and its rheological
response to external deformation and flow. Inspired by mean-
field theories of cell-shape driven transitions [22,27,28] and
by fluidity models of the rheology of dense soft suspensions
[36], we introduce such a model.

The key new insights of our approach are as follows. First,
we distinguish the role of geometric frustration (encoded in
the cell perimeter p), from that of T1 topological rearrange-
ments (encoded in our fluidity variable a). The former is key
to the zero-shear liquid-solid transition and (when coupled to
our orientation tensor σi j) strain stiffening at small to modest
imposed strains [27]. The latter cause the plasticity associated
with the stress overshoot at imposed strains O(1), and the ulti-
mate steady flowing state. Second, in modeling the geometric
frustration, we distinguish a tensor characterizing individual
cell shape (of which p is the trace), and a tensor characterizing
the average cell orientation at the tissue scale [28].

We furthermore submit this new continuum model to strin-
gent comparison with simulations across a full range of shear
rates from quasistatic to fast. We demonstrate our continuum
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model to capture both the zero-shear solid-liquid transition
and strain stiffening transitions reported in Ref. [27], the full
nonlinear stress vs strain behavior after the inception of shear,
and the steady-state flow curves of stress vs shear rate.

Vertex model simulations. The vertex model [18,19] rep-
resents the tightly packed confluent cells of a 2D tissue
monolayer as c = 1 · · ·Nc polygons that tile the plane. Each
cell is defined by the location of its nc = 1 · · · νc vertices, with
any two neighboring vertices α and β connected by an edge
of length �αβ . The elastic energy of the tissue is controlled by
the interplay of pressure within each cell and tension along
the cell edges. Assuming the cell-edge tension per unit length
is uniform across the tissue, the energy can be written as

E = 1

2

∑

c

[κA(Ac − Ac0)
2 + κP(Pc − Pc0)

2], (1)

where each cell experiences an energy cost for deviation of
its area Ac and perimeter Pc from target values Ac0 and Pc0,
with area and perimeter stiffness κA and κP. The first term
on the right hand side models three-dimensional (3D) cell
volume incompressibility via an effective 2D area elasticity
[19,37]. The second describes the competition between cell
cortical contractility and adhesion between neighboring cells
in controlling cell-edge tension and perimeter [7,19,37].

We denote by �Fn = − δE
δ�xn the total force on the nth vertex of

the tiling at position �xn due to interactions with all other ver-
tices. In an applied shear of rate γ̇ , with flow direction x and
shear gradient y, we assume overdamped dynamics with drag
ζ , d�xn

dt = ζ−1 �Fn + γ̇ yn �̂x, with Lees-Edwards periodic bound-
ary conditions. The cells also undergo T1 topological neighbor
exchanges that allow the tissue to plastically relax stresses
[9,38–40].

To focus on amorphous tissue structures, we simulate a
50 : 50 bidisperse tiling of Nc = 4096 cells of target areas
A0 = 1, 1.4 (which sets our length unit) and adjust Pc0 for
the two cell populations to maintain the target cell shape
p0 = Pc0/

√
Ac0 the same for all cells. We choose units in

which the area stiffness κA = 1 and the friction coefficient
ζ = 1. We set the value of the perimeter stiffness κP = 1.0
throughout and we vary p0 and the imposed shear rate γ̇ .
As an initial condition, we seed a planar Voronoi tiling then
evolve the above dynamics to steady state in zero shear. At
time t = 0, we switch on shear and measure the shear stress
�i j (t ) = 1

N

∑N
n=1 Fnixn j , where the sum is over all N vertices

in the tiling, and the mean cell perimeter p(t ) = 1
Nc

∑Nc
c=1 pc.

Denoting by �t nc the unit vector along the edge of length lnc
between the ncth and (nc + 1)th vertices of cell c, we define
a single-cell shape tensor σ c

i j = 1
νc

∑νc
n=1 lnct

nc
i t ncj , where the

sum is over the νc vertices of the cth cell, and the tissue-
scale averaged orientation tensor σi j = 1

Nc

∑Nc
c=1 σ c

i j . We use
the same notation �i j, σi j, p for the counterpart coarse-
grained quantities in our constitutive model below.

In the absence of external stress, the vertex model exhibits
a liquid-solid transition as a function of the target shape p0
[7,41]. For p0 < p∗

0 the energy barriers to T1 transitions are
finite and the system is a solid with a finite zero-frequency
linear shear modulus. At the critical value p∗

0, the mean
energy barrier for T1 transitions vanishes, giving liquid re-
sponse for p0 > p∗

0. For our bidisperse tiling p∗
0 = 3.85. For

monodisperse disordered polygons p∗
0 � 3.81, a value close

to that of a regular pentagon [7]. This value is renormalized
by motility [9] and by cell alignment with local spontaneous
shear [42]. It was recently realized that this transition has a
geometric origin associated with the underconstrained nature
of the energy in Eq. (1) [20,22,43]. For regular hexagons the

transition occurs at the isoperimetric value piso =
√
8
√
3 �

3.722. Below this value it is not possible to satisfy both target
area and perimeter and the ground state has p = p∗

0 and finite
energy. This is the solid or incompatible state. For p0 > piso
there is a family of zero-energy area and perimeter preserving
ground states, with p = p0. The system can accommodate an
externally applied linear shear by adjusting its shape within
this degenerate manifold [22]. The compatible system is there-
fore a liquid with zero-shear modulus, although it stiffens and
acquires rigidity at finite strains [27].

Constitutive model. We now construct a continuum model
that accounts for the mean-field liquid-solid transition, and
also captures the key rheological features of the vertex model:
(i) reversibility of linear response to small strains, (ii) strain
stiffening at intermediate strains, (iii) plastic relaxation at
larger strains, due to T1 cell rearrangements, and (iv) a yield
stress in the steady state flow curve �(γ̇ ), as obtained in
Ref. [27]. Although our model below is cast in frame-invariant
form, capable of addressing any flow, we focus on response to
simple shear, to compare with our vertex model simulations.

We assume dynamics of the cell perimeter governed by

ṗ+ vk∇k p = γ̇ − 1

τp
(p− p0)(p− p∗

0 − ασi jσi j ), (2)

with α and τp constants and invariant strain rate γ̇ =√
2Di jDi j . In the absence of shear, p relaxes on a timescale

τp to a steady state that displays a transcritical bifurcation
as a function of the target cell perimeter p0, with p = p∗

0
in the solid phase p0 < p∗

0 and p = p0 in the liquid phase
p0 > p∗

0, capturing the liquid-solid transition [7]. The same
transcritical structure emerges by writing exact equations for
the relaxation of a single cell modeled as a regular n-sided
polygon according to the vertex model dynamics prescribed
above.

In shear, the perimeter is advected by flow and stretched by
the shear rate γ̇ . In addition, the coupling ασi jσi j captures a
key intuition of our approach: that a shear-induced global cell
orientation σi j provides an effective mean field that distorts the
individual cell’s shape p away from its zero-shear value. As a
result, in the solid phase p increases relative to its zero-shear
value p = p∗

0 from the outset of straining. In the liquid phase,
p increases relative to its zero-shear value p = p0 only after
a critical strain amplitude γc, capturing the strain-induced
stiffening transition [27]. The behavior introduced by the cou-
pling of single-cell shape, as quantified by the mean perimeter
p, to the tissue-scale cell shape σi j is analogous to the in-
fluence of cell alignment due to internally generated stresses
in Drosophila germband extension [42]. Indeed, the form of
coupling of p to σi j in Eq. (2) is justified both by experiment
[42] and mean-field theory [22,27].

The cell orientation tensor is taken to obey an evolution
equation of the widely used Maxwellian form

σ̇i j + vk∇kσi j = σikKk j + Kkiσk j + 2Di j − aσi j, (3)

L042602-2



CONSTITUTIVE MODEL FOR THE RHEOLOGY OF … PHYSICAL REVIEW E 108, L042602 (2023)

where Ki j = ∂ jvi is the strain rate tensor and Di j = 1
2 (Ki j +

Kji ). The last term in Eq. (3) describes plastic relaxation. It
vanishes in linear response (small strains), where a = 0 (see
below), allowing the orientation tensor σi j to build linearly
and reversibly with strain, as expected in the absence of plastic
T1 events.

Consistent with previous studies of the vertex model
[19,22,38] we write the deviatoric stress tensor

�̃i j = C(p− p0)
(
σi j − 1

2δi jσkk
)
. (4)

Here C is constant and p0 the target cell perimeter. In linear
response (small strains), the effective modulus G0 = C(p−
p0) is nonzero in the solid phase, where p > p0, and zero in
the liquid phase, where p = p0.

Were the factor a on its right hand side a constant inverse
relaxation time, Eq. (3) would be the widely used Maxwell
model, capturing viscoelasticity, but not the irreversible plas-
ticity of T1 events. To model plasticity, we take a to be a
fluiditylike variable [36] with dynamics

ȧ + vk∇ka = γ̇ [−a + f (γ̇ )], (5)

with f (γ̇ ) = βγ̇ /(1 + 1
2τ0γ̇ ), in which β is constant and τ0

a microscopic time. As suited to an athermal tissue, with
no relaxation events induced by temperature or activity (no
cell motility, division or death), this is a purely strain-driven
dynamics. In linear response, a = 0, giving a reversible de-
pendence of σi j on strain. In weak shear, a builds on a strain
O(1) to model the plasticity of T1 events via the final term
in Eq. (3). In steady weak shear a = f (γ̇ ) ≈ βγ̇ , giving a
divergent relaxation time 1/a as γ̇ → 0, and a yield stress in
the steady state flow curve.

We explore different values of shear rate γ̇ and the target
perimeter p0 relative to the transition p∗

0. (See Appendix for
model parameters.) We prescribe as initial condition to shear
a perimeter p(t = 0) equal to its steady state value in zero
shear, an orientation tensor σi j (t = 0) = 0, and fluidity a(t =
0) = 0. We then switch on a simple shear Ki j = γ̇ δiyδ jx at
time t = 0 and track the evolution of p, σxy, and �xy as a
function of time t or equivalently (to within a constant factor
γ̇ ) accumulating strain γ = γ̇ t . Hereafter we drop the xy
subscript, writing σxy = σ and �xy = �.

Results. Our constitutive model captures the liquid-solid
transition as a function of target cell shape in zero shear
[7] and the shear-induced rigidity transition of the liquidlike
tissue, above a critical shear strain, applied quasistatically
γ̇ → 0 [27]. See Fig. 1(a), which shows the shear stress �

vs strain γ in shear at rate γ̇ = 10−6. At small strains, just
after the inception of shear, the modulus G0 = d�/dγ |γ=0 is
finite (solidlike) for p0 < p∗

0 but zero (liquidlike) for p0 > p∗
0

[Fig. 1(b), dashed line]. In the liquid phase, the stress � and
slope d�/dγ first become nonzero above a nonlinear critical
shear strain γc, heralding a strain-induced stiffening transition
[solid line in Fig. 1(b), defined as the strain at which the stress
first exceeds 10−5 at any p0].

Having explored quasistatic shear, we now consider non-
linear shear flow across a full range of shear rates from
quasistatic to fast. The evolution of �, σ , and p as a function
of strain since the inception of shear is shown in Fig. 2, for
a range of p0 below and above p∗

0. The left column shows
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FIG. 1. Constitutive model in slow shear γ̇ = 10−6 probing the
quasistatic limit γ̇ → 0. (a) Stress vs strain after the switch on
of shear, target perimeter p0 = 3.80, 3.85 · · · 4.10 in curves down-
wards. (b) Linear elastic modulus G0 = d�/dγ |γ=0 (dashed line)
and strain γc at the shear-induced solidification transition (solid line).
(c) Shear stress in the limit of steady shear γ → ∞.

the results of vertex model simulations. The right shows the
predictions of our constitutive model, which performs well in
capturing all the qualitative features of the simulations.

At small strains, just after shearing starts, the effective
modulus G0 = d�/dγ |γ=0 is finite in the solid phase p0 <

p∗
0, but small in the liquid phase p0 > p∗

0. Indeed, repeating
the simulations for progressively lower strain rates γ̇ → 0 in
the solid phase, G0 tends to a nonzero constant G0(p0, γ̇ →
0), consistent with the quasistatic results discussed above. In
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FIG. 2. Rheological behavior of the vertex model (left) and con-
stitutive model (right) in shear startup at a shear rate γ̇ = 10−3

for values of the target perimeter p0 = 3.50, 3.55, 3.60 · · · 4.00 (in
black, red, green · · · orange curves downwards; curve for p∗

0 = 3.85
in purple). Shown is the evolution of the shear stress (top), shear
component of the orientation tensor (middle) and cell perimeter
(bottom) as a function of accumulating strain γ = γ̇ t .
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FIG. 3. Steady-state (t → ∞) dependence of the shear stress
(top), shear component of the orientation tensor (middle) and cell
perimeter (bottom) for the same values of the target perimeter p0 as
in Fig. 2, with the same line color coding. Results are shown for the
vertex model in the left column and the constitutive model in the right
column.

the liquid phase G0 → 0 as γ̇ → 0, again consistent with the
quasistatic results.

At higher strains γ = O(1), strain stiffening is observed:
the slope of � vs γ increases with increasing γ . This is
particularly pronounced in the liquid phase p0 > p∗

0, where
the effective modulus d�/dγ was very small at small strains
(tending to zero as γ̇ → 0, as just discussed), but becomes
appreciable after a strain γ = O(1) (even in the limit γ̇ → 0).
After this regime of strain stiffening, the stress overshoots
slightly before declining to a constant in the final state of
steady flow.

This rich behavior is readily understood within our simple
constitutive model. The initial fluidlike behavior for p0 > p∗

0
arises because p = p0 before shearing commences, giving
zero effective modulus in Eq. (4). As strain increases, tissue
deformation is captured by the growth of σ , which in turn
yields an increase of p relative to its equilibrium value due
to the coupling term in α in Eq. (2). This is also responsible
for the less pronounced strain stiffening in the solid phase
p0 < p∗

0. The subsequent overshoot in stress � (and perimeter
p) at larger strains is caused by the overshoot in the cell
orientation σ seen in the middle panels of Fig. 2. The stress
declines after overshoot arises in the vertex model from plastic
relaxation via T1 events, an effect captured in the constitutive
model via an increase of fluidity awith shear. The tissue shape
tensor σ is essentially independent of p0 in the vertex model
(at low strain rates), consistent with the lack of any coupling
of the evolution equation for σi j to p in the constitutive model.

At long times t → ∞, after many strain units γ = γ̇ t →
∞, a state of final plastic flow is reached in which each
of �, σ , and p attains a steady value. This is reported as a
function of γ̇ in Fig. 3, for the vertex model (left column),
and constitutive model (right), with good semiquantitative

agreement. In rheological parlance, the steady-state relation-
ship � = �(γ̇ ) is termed the “flow curve.” The vertex model
flow curves show a dynamical yield stress: a nonzero limiting
intercept limγ̇→0 �(γ̇ ) = �Y 
= 0. Importantly, this is true
both for p0 < p∗

0 and for p0 > p∗
0: whereas liquid and solid

states are distinct and separated by a transition at small strains,
in steady nonlinear shear, however slow, the vertex model dis-
plays a nonzero yield stress up to a larger p0 = p∗∗

0 > p∗
0 [27],

as also seen in Fig. 1. This is easily understood within our con-
stitutive model. In steady shear, Eq. (5) predicts the fluidity
a = f (γ̇ ) = βγ̇ /(1 + 1

2τ0γ̇ ). Combining with Eq. (3) for the
orientation gives σ = γ̇ /a = 1

β
(1 + 1

2τ0γ̇ ). Were we to as-
sume p− p0 = 1, independent of strain rate, we would obtain
a flow curve�(γ̇ ) = C

β
(1 + 1

2τ0γ̇ ), with a yield stress σY = C
β

as γ̇ → 0 and Newtonian behavior � ∝ γ̇ as γ̇ → ∞. The
actual flow curve is modified somewhat in comparison, due to
the strain rate dependence of p− p0. Importantly, however, it
retains a yield stress because p 
= p0 in steady flow, even in the
limit γ̇ → 0: the perimeter is always strongly perturbed from
its unsheared value, due to the coupling ασi jσi j in Eq. (2).
Intuitively, the key effect of a steady shear, even when applied
quasistatically, is to deform cells away from their target shape
such that they carry a stress and the liquid phase seen at small
strains is destroyed.

Conclusions. We have presented a continuum constitutive
model for the rheology of confluent 2D biological tissue and
demonstrated it to capture the rich rheophysics seen in simu-
lations of the vertex model under applied shear. This includes
strain stiffening of the liquid above a critical strain, a stress
overshoot at larger strains due to the plasticity of T1 rearrange-
ments, and a finite yield stress in steady shear, even in the
(zero-shear) liquid phase. Our model includes the effects of
cell shape change and rearrangements on mechanical behav-
ior, and will provide a useful phenomenological framework
for modeling the rheology of biological tissue. Elucidating
its predictions in deformation protocols besides simple shear
is left to future work, as are extensions to incorporate other
active processes such as cell motility, division, and death.
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Appendix: Model and simulation parameters. Model pa-
rameters are the moduluslike quantityC, the microscopic time
τ0, and the parameter β in the function f for the fluidity, the
transition value of the target perimeter p∗

0, the coupling of
perimeter to orientation α, and the perimeter relaxation time
τp. We choose units C = 1 and τ0 = 1, and treat p∗

0, α, β,
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and τp as fitting parameters in comparing our constitutive
model with the vertex model simulations. We have found
p∗
0 = 3.85, α = 0.36, β = 2.0, and τp = 0.1 to give the best

fit. Among these, p∗
0 is the value of p0 at the (zero-shear)

liquid-solid transition. Accordingly, we set the value of p∗
0 in

our continuum model to that value found in our vertex model
simulations. β sets the quasistatic limit of the shear compo-
nent of cell orientation tensor limγ̇→0 σxy = 1/β with β = 2.0
in our vertex model simulations. α sets the effective modulus
G(p− p0) in the shear-induced solid phase, with p− p0 =

p∗
0 − p0 + ασi jσi j as γ̇ → 0, and accordingly sets the flow

curve’s yield stress limγ̇→0 �(γ̇ ). We choose α to give the
best fit of the continuum model’s yield stress to that of the
vertex model simulations. Finally, τp controls the steepness of
the flow curve at high strain rates (where the vertex model
is likely to become less reliable) and the small finite value
∼γ̇ τp of the stress before the true quasistatic strain-stiffening
transition. The numerical timestep is Dt = D̃t lmin/Fmax with
lmin the minimum edge length, Fmax the maximum vertex
force, and D̃t = 0.01. T1 events are triggered below a critical
edge length lc = 0.01.
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[32] N. A. Dye, M. Popović, K. V. Iyer, J. F. Fuhrmann, R. Piscitello-
Gómez, S. Eaton, and F. Jülicher, Self-organized patterning
of cell morphology via mechanosensitive feedback, Elife 10,
e57964 (2021).

[33] D. Grossman and J.-F. Joanny, Instabilities and geometry of
growing tissues, Phys. Rev. Lett. 129, 048102 (2022).

[34] S. Ishihara, P. Marcq, and K. Sugimura, From cells to tissue:
A continuum model of epithelial mechanics, Phys. Rev. E 96,
022418 (2017).

[35] N. Murisic, V. Hakim, I. G. Kevrekidis, S. Y. Shvartsman,
and B. Audoly, From discrete to continuum models of three-
dimensional deformations in epithelial sheets, Biophys. J. 109,
154 (2015).

[36] G. Picard, A. Ajdari, L. Bocquet, and F. Lequeux, Simple model
for heterogeneous flows of yield stress fluids, Phys. Rev. E 66,
051501 (2002).

[37] D. B. Staple, R. Farhadifar, J. C. Röper, B. Aigouy, S. Eaton,
and F. Jülicher, Mechanics and remodelling of cell packings in
epithelia, Eur. Phys. J. 33, 117 (2010).

[38] X. Yang, D. Bi, M. Czajkowski, M. Merkel, M. L. Manning,
andM. C.Marchetti, Correlating cell shape and cellular stress in
motile confluent tissues, Proc. Natl. Acad. Sci. USA 114, 12663
(2017).

[39] A. Das, S. Sastry, and D. Bi, Controlled neighbor exchanges
drive glassy behavior, intermittency, and cell streaming in ep-
ithelial tissues, Phys. Rev. X 11, 041037 (2021).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.L042602 for a discussion of our vertex
model simulations, and for the continuum constitutive equations
written componentwise in simple shear.

[41] L. Yan and D. Bi, Multicellular rosettes drive fluid-solid transi-
tion in epithelial tissues, Phys. Rev. X 9, 011029 (2019).

[42] X. Wang, M. Merkel, L. B. Sutter, G. ErdemciTandogan, M. L.
Manning, and K. E. Kasza, Anisotropy links cell shapes to
tissue flow during convergent extension, Proc. Natl. Acad. Sci.
USA 117, 13541 (2020).

[43] M. Merkel and M. L. Manning, A geometrically controlled
rigidity transition in a model for confluent 3D tissues, New J.
Phys. 20, 022002 (2018).

L042602-6

https://doi.org/10.1103/PhysRevLett.128.178001
https://doi.org/10.1039/C8SM00446C
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1038/nphys3224
https://doi.org/10.1073/pnas.1011086107
https://doi.org/10.7554/eLife.57964
https://doi.org/10.1103/PhysRevLett.129.048102
https://doi.org/10.1103/PhysRevE.96.022418
https://doi.org/10.1016/j.bpj.2015.05.019
https://doi.org/10.1103/PhysRevE.66.051501
https://doi.org/10.1140/epje/i2010-10677-0
https://doi.org/10.1073/pnas.1705921114
https://doi.org/10.1103/PhysRevX.11.041037
http://link.aps.org/supplemental/10.1103/PhysRevE.108.L042602
https://doi.org/10.1103/PhysRevX.9.011029
https://doi.org/10.1073/pnas.1916418117
https://doi.org/10.1088/1367-2630/aaaa13

