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Orientational order, encoded in anisotropic fields, plays an important role during
the development of an organism. A striking example of this is the freshwater polyp
Hydra, where topological defects in the muscle fiber orientation have been shown to
localize to key features of the body plan. This body plan is organized by morphogen
concentration gradients, raising the question how muscle fiber orientation, morphogen
gradients and body shape interact. Here, we introduce a minimal model that couples
nematic orientational order to the gradient of a morphogen field. We show that on
a planar surface, alignment to a radial concentration gradient can induce unbinding
of topological defects, as observed during budding and tentacle formation in Hydra,
and stabilize aster/vortex-like defects, as observed at a Hydra’s mouth. On curved
surfaces mimicking the morphologies ofHydra in various stages of development—from
spheroid to adult—our model reproduces the experimentally observed reorganization
of orientational order. Our results suggest how gradient alignment and curvature
effects may work together to control orientational order during development and lay
the foundations for future modeling efforts that will include the tissue mechanics that
drive shape deformations.

orientational order | topological defects | morphogen gradients | body plan patterning

Morphogenesis, the process by which an organism acquires its shape, is evidently a
mechanical process. The physical quantities that describe it—such as displacements,
stresses, and strains—are vectors and tensors which carry orientational information.
The role of such orientational order, or anisotropy, in biological systems has received
substantial attention in recent years. Examples include planar cell polarity (1–3),
directed auxin transport in plants (4), anisotropic myosin-generated stresses driving
tissue elongation (5–8), and orientational order in cell monolayers (9–11). A particularly
striking example is the nematic organization of supracellular actin fibers (known as
myonemes) in the ectoderm and endoderm of Hydra (12). In the ectoderm, the
myonemes are aligned along the body axis, while the endodermal actin fibers are
aligned perpendicular to those in the ectoderm, i.e., azimuthal to the cylindrical body.
Topological defects in the fiber orientation are located at key parts of the body plan
(head, foot, bases, and tips of tentacles) (13). This has sparked growing interest in
nematics on curved and deforming surfaces (14–17). On the other hand, Hydra’s body
plan is known to be organized by the concentration profiles of specific proteins called
morphogens (18–20). Furthermore, experiments indicate that actin fibers inHydramight
align along gradients in a central player of the Wnt-morphogen pathway that sets Hydra’s
up the head-to-foot body axis (21, 22). While the molecular mechanism underlying
this coupling remains to be investigated, these experiments suggest that alignment of
myonemes along morphogen gradients may drive the reorganization of their orientation
during key morphogenetic processes, such as body-plan development and budding in
Hydra (12, 13, 22–24) and other cnidaria (25, 26).

Here, we examine the relative role of morphogen gradients and body shape/topology in
controlling a nematic texture. To this end, we introduce a minimal model for alignment
of a nematic texture, representing the orientational order, to a prescribed morphogen
concentration profile on surfaces of specified shape. Fig. 1 B–E shows the steady-state
configurations predicted by this model on prescribed surfaces mimicking the sequence of
morphologies of regenerating Hydra. These configurations reproduce the salient features
of the reorganization of the myoneme orientational order during Hydra regeneration.

Hydra fully regenerate from small excised tissue fragments which first close into a
spheroid (27, 28). Nematic order of actin fibers is quickly reestablished, giving rise to
four + 1

2 defects (Fig. 1B), while additional pairs of ± 1
2 defects quickly annihilate (13).

Subsequently, two of these defects migrate toward each other and eventually merge
into a +1 defect at a location that coincides with the future formation of the head of
the animal, suggesting that the body axis is already established at this stage (Fig. 1C ).
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Fig. 1. A minimal model coupling nematic orientational to a morphogen gradient on curved surfaces recapitulates the salient features of actin fiber organization
during Hydra regeneration. (A) The directors (myonemes) align parallel or perpendicular to the concentration gradient depending on the sign of the coupling
constant � in Eq. 2. (B) On a sphere, a total defect charge of +2 is required by topology. In the absence of gradient alignment, four + 1

2 defects (orange points)
arrange in a tetrahedral configuration. (C) Alignment to a morphogen gradient drives two + 1

2 defects toward the concentration maximum. (D) After elongation
of the body into an ellipsoid, the + 1

2 defects are attracted to regions of positive Gaussian curvature. For sufficiently high curvature and/or gradient alignment,
two + 1

2 defects merge into a +1 defect. (E) On a surface modeled after the typical morphology of adult Hydra, topological defects localize at the positions
observed in vivo by the interplay of the head organizer morphogen gradient (green shading) and intrinsic curvature (base and tips of tentacles, foot). Note that
each tentacle has a +1 defect at its tip and two − 1

2 defects at its base; cf. Movie S1. (F ) Defect unbinding due to gradient alignment at an incipient bud. (G)
Phalloidin–GFP-stained actin fibers in the ectoderm (vertical orientation) and endoderm (horizontal) at an incipient bud (adapted from ref. 24). (H) Actin fibers
in the ectoderm of an adult Hydra (adapted from ref. 13). (Scale bars, 100 μm.)

This body axis is determined by the “head organizer” (Wnt
pathway) morphogen gradient (green shading), which is partially
inherited from the tissue fragment’s parent animal (22, 29).
Following the establishment of the body axis, the spheroid
elongates into a prolate ellipsoidal shape (Fig. 1D) and finally
attains the morphology of the adult Hydra (Fig. 1 E and H ). At
these later stages, the two remaining + 1

2 defects move toward the
foot (the pole opposite to the head) and eventually merge there.

Topological defects serve as organizational centers for orien-
tational order, making them key to understand orientational
patterning. While the initial phases of regeneration only involve
migration and mergers of existing topological defects, budding
and tentacle formation require unbinding of defects in a previ-
ously defect-free region (Fig. 1 F and G). In the following, we
demonstrate how both the major reorganization of the myoneme
orientational order during regeneration and the budding/tentacle
formation can be attributed to the interplay between fiber
alignment to gradients of a “head organizer” morphogen and
the influence of surface curvature.

To disentangle the interplay between gradient alignment and
curvature effects, we first examine how gradient alignment on
a planar surface can induce i) unbinding of ± 1

2 defect pairs
from a defect-free background and ii) the merger of two + 1

2
defects into a +1 defect. We then turn our attention to simple
curved surfaces, spheres and ellipsoids, to systematically study the
interplay between topology, geometry, and gradient alignment.
Finally, we discuss how this interplay can reproduce the key
features of myoneme reorganization as observed in regenerating
Hydra and argue that gradient alignment of myonemes plays a
key role in this process.

Planar System

The myonemes in Hydra’s ectoderm exhibit strong orientational
order (12, 13, 23, 24, 30), suggesting that neighboring myonemes

align to one another. In our minimal model, we describe this
orientational order on a coarse-grained level using the nematic
tensor Qij = S(ninj − δij/2) which represents the local director
orientation, n, and the local degree of order S. Microscopically,
we can think of the director field as representing the local
orientations of individual myonemes. On a coarse-grained level,
the director indicates the mesoscopic average of myoneme
orientations, and S indicates how well myonemes are aligned
locally. We describe the dynamics of the director field in terms
of a free energy functional E =

∫
dx2( f LdG + fa) whose

minima are the steady-state configurations of the system. The
first contribution to the free energy density, fLdG, is the Landau–
de Gennes free energy density describing local alignment of the
directors:

fLdG =
1
2
(TrQ2

− 1) TrQ2 +
K
2

(∂iQjk)2, [1]

The first term drives the scalar order parameter toward S = 1,
and the second term penalizes bend and splay deformations
of the director field with the single Frank elastic constant K
(one-constant approximation). The second contribution to the
free energy density, fa, captures the tendency of the director to
align with the concentration gradient. The simplest possible such
coupling is

fa = −β Q ij(∇ic)(∇jc) = −βS (n · ∇c)2, [2]

where β denotes the strength of the alignment. For β > 0
(β < 0), this favors parallel (perpendicular) alignment of the
director to the gradient (Fig. 1A).

As the system is invariant under β → −β, Q → −Q
(corresponding by rotating the director by π/2), we will set
β > 0 for the remainder of this paper. Moreover, we will
focus on radially symmetric morphogen concentrations with a
Gaussian profile c(r) = c0 exp[−r2/(2r2

0)]. The precise form of
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the profile is not important as long as it decays monotonically
with a characteristic length scale r0. For instance, the results
do not change qualitatively if one uses an exponential gradient
that results from a source degradation diffusion process (31).
(The case of a profile without a characteristic length scale
as obtained from a purely diffusive process is discussed in
SI Appendix.)

We can fix a length scale by expressing lengths in units of the
nematic coherence length (defect core size) ξ =

√
K , and absorb

a concentration scale factor c0 and the elastic constant K into a
dimensionless alignment strength β̃ = βc2

0/K . Thus, the system
has two dimensionless control parameters, alignment strength β̃
and the morphogen range r̃0.

Defect Unbinding, Merging, and Recombination. The director
field configuration that conforms with the radial concentration
gradient ∇c and therefore minimizes the alignment energy is an
aster-like configuration with a +1 defect at the origin. However,
such configuration incurs an elastic energy since neighboring
directors are not parallel to one another. This implies that the
elastic energy and the gradient alignment compete with each
other. This competition is at the core of the phenomena we
study in the following. For vanishing gradient alignment strength
(β̃ = 0), the steady state is a uniform, defect-free director field.
For a sufficiently large β̃, we expect that the alignment energy
dominates resulting in the aster-like state with a +1 defect at
the origin. Defect charge conservation requires, however, that
the +1 defect charge is balanced by negatively charged defects
with net charge−1. We therefore expect that a defect-unbinding
transition will take place with increasing alignment strength β̃.
We expect that this unbinding takes place near r = r0, where the
gradient magnitude |∇c|2 is maximal (dashed circles in Fig. 2A).

To map out the behavior in the (r̃0, β̃) parameter plane, we
solve the relaxational dynamics of Eq. 1 (Materials and Methods)
using a finite element method (FEniCS) in a square domain
with free (Neumann) boundary conditions and a side length

L � r0 chosen large enough to avoid finite size effects. For
each morphogen range r̃0, we initialize the system at β̃ = 0
in a uniform state and then adiabatically increase the coupling
strength β̃ (red arrows in Fig. 2 C and D). For small β̃, the
director field can minimize its free energy by bending slightly
toward the direction of the morphogen gradient around r̃ ≈ r̃0
while remaining defect free (Fig. 2B and Movie S2). Further
increasing the coupling strength induces more bending which
increases the elastic energy. Above a critical coupling strength
β̃∗unbind (dashed blue line), this trade-off causes unbinding of
two ± 1

2 defect pairs, opposite to each other, along an axis
perpendicular to the initial director field. For large r̃0, the
unbinding transition asymptotically scales as β̃∗unbind ∼ r̃2

0
(Fig. 2C ). This scaling can be rationalized by equating the energy
required for defect unbinding, Eunbind ∼ K , to the alignment
energy from the core region (with areaO(ξ2)) which is the largest
at r = r0 and scales as Ealign ∼ βξ

2/r2
0 .

To further quantify the unbinding, we measure the separation,
d+−, between each ± 1

2 pair and the separation, d++, between
the two + 1

2 defects (Fig. 2D). Notably, after unbinding d+−
immediately jumps to a finite value (∼1.8r0), indicating that the
unbinding transition is discontinuous. As β̃ is increased further,
the distance d+− continues to increase while d++ decreases until
d++ < 2ξ , and the + 1

2 defect cores overlap corresponding
to their merging into a +1 defect at the origin. Unbinding of
neutral pairs occurs where |∇c| is largest, i.e., at r ≈ r0 such
that, upon unbinding, the + 1

2 defects are initially separated by
2r0. Therefore, if r0 < 2ξ , unbinding immediately results in
the +1, 2×− 1

2 configuration. For r0 � 2ξ , a critical alignment
strength β̃∗merge is required for the merging of the two + 1

2 into
a +1 defect. This value increases with r̃0 (dot-dashed green
line) and asymptotically scales as β̃∗merge ∼ r̃4

0 . This scaling
arises from the asymptotic behavior of the + 1

2 defect separation
d++/r0 ∼ β̃−1/4.

A

C

B

D E

Fig. 2. Defect unbinding in planar geometry. (A) Gaussian concentration profile c(r) and its gradient ∇c(r). The gradient magnitude is maximal at r = r0.
(B) Sketches illustrating the steady-state configurations. (C) Phase diagram of steady-state configurations in the (r̃0 , �̃/r̃2

0) parameter plane. In the multistable
region, the defect-free configuration and the unbound defect pairs coexist. (D) Defect separations as a function of �̃ from an adiabatic parameter sweep at
r̃0 = 10 (dotted black line in C and Movie S2). (E) Power law scaling of the + 1

2 defect separation as a function of �̃ for different morphogen ranges r̃0. For large
r̃0, the exponent � approaches the theoretically predicted value 1/4 (gray dashed line).
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Reversing the direction of the adiabatic sweep (decreasing β̃,
blue arrow), the +1 defect splits into two + 1

2 defects. These
defects are tilted relative to the− 1

2 defects (Fig. 2B). This slightly
increases d+− compared to the forward sweep. Upon further
decreasing β̃, the ± 1

2 defect pairs show hysteresis: They persist
beyond the unbinding transition and recombine at a value of β̃ <
β̃∗unbind.. Hence, unbinding and recombination define a hysteresis
loop encircling a bistable region, where the defect-free state and
the defect-pair state coexist. Which of these two states is reached
in the steady state depends on the initial condition. Notably,
the recombination threshold (gray solid line in Fig. 2B) is given
by a constant value of β̃ ≈ 12. The locus of the saddle-node
bifurcation where the 2×± 1

2 is annihilated can be estimated by
a perturbation analysis which yields β̃∗recomb. ≈ 5.4 (SI Appendix).

In Hydra, tentacle formation and budding require the de novo
formation of a +1 defect flanked by two − 1

2 defects in the actin
orientation. These defects will sit at the tip and the base of the
future tentacle/bud, respectively (12, 24). Spot-like morphogen
concentrations determine the sites of tentacle and bud formation
(24, 32, 33), suggesting that gradient alignment–induced defect
unbinding might drive the actin reorganization during these
morphogenetic processes (cf. Fig. 1F ).

Asymptotic Scaling of + 1
2 Defect Separation. After defect un-

binding, numerical simulations show that gradient alignment
drives the two + 1

2 defects toward the concentration maximum
where the director is aligned with the radial gradient. The steady-
state defect separation is set by the balance of the gradient
alignment force and the repulsive force of the + 1

2 defects.
To estimate the defect separation, we consider the regime

d++/2 � r0 which allows us to use a perturbative ap-
proach. When β = 0, the configuration of the director field
n = (cosψ , sinψ) is governed by the elastic energy Eel =
K
2
∫

dx2
|∇n|2 = K

2
∫

dx2
|∇ψ |2. The director angle, ψ , that

minimizes this energy for two + 1
2 defects at a distance d is given

by

ψ(x, y) =
1
2

arctan(x − d/2, y) +
1
2

arctan(x + d/2, y), [3]

and has an elastic energy Eel = −πK2 log(d/ξ) which is anal-
ogous to the electrostatic energy of a pair of electric charges.
To estimate the energy of alignment with the gradient, Ea, we
consider the regions near the defects and far from the defects
separately: Ea = E<a +E>a =

∫ λ
0 dr

∫
dφfa+

∫
∞

λ
dr
∫

dφfa, where
λ is an intermediate scale d/2 � λ � r0. In the following, we
perform a scaling analysis. The full calculation is presented in
SI Appendix. In the outer region, the deviation of the director
orientation from the radial gradient δψ = ψ − φ ∼ (d/r)2 is
small and hence fa = β|∇c|2 cos(δψ)2

≈ β|∇c|2(d/r)4+const.
Since |∇c|2 reaches its maximum value c2

0/r
2
0 at r = r0, we

can estimate E>a ∼ βc2
0(d/r0)4. On the other hand, near the

defects (r ≈ d ) δψ = O(1) and |∇c|2 ≈ c2
0r

2/r4
0 . Therefore, the

director field is only weakly perturbed by the alignment interac-
tion, which justifies estimating Ea and Eel using the unperturbed
director field Eq. 3. The alignment energy in the inner region can
then be estimated as E<a ∼ βc

2
0
∫ d

0 drr r2/r4
0 ∼ βc

2
0(d/r0)4 and

exhibits the same scaling as the outer contribution, E>a . Hence,
Fa = −∂dEa ∼ −βc2

0d
3/r4

0 . The defect separation in the steady
state is such that the alignment-mediated force balances the elastic

repulsion Fel = −∂dEel ∼ K /d . Therefore, in the steady state,
we expect d++/r0 ∼ (βc2

0/K )−1/4 = β̃−1/4.
We tested this prediction by fitting a power law d++/r0 ∼

β̃−ν to data from numerical simulations (Fig. 2E). For large r0,
we find that ν approaches 1/4 as predicted from the perturbation
theory. For small morphogen range r0, the power law exponent ν
increases, and eventually, the scaling breaks down once the defect
cores start overlapping, i.e., d ≈ ξ .

Curved Surfaces

Biological tissues, such as the ectoderm of regenerating Hydra,
often form closed surfaces that have the topology of a sphere.
This has two important consequences for nematic textures on
the surface. First, the topology of a sphere necessitates a net
defect charge of +2. Second, curvature modifies the nematic free
energy, and topological defects are attracted to regions with like-
signed Gaussian curvature (34). Motivated by the evolution of
Hydra’s body shape during regeneration, we study the interplay
between changes in texture induced by geometry and topology
and those driven by a morphogen gradient on curved surfaces.
We generalize the planar elastic free energy to curved surfaces
in a minimal way by replacing the partial derivatives with the
covariant derivatives. Including coupling to extrinsic curvature
(35, 36) and going beyond the one elastic constant approximation
(37) are beyond the scope of this work but will be interesting
direction for future research.

Let us start with a spherical surface, where, in the absence
of gradient alignment, a nematic liquid crystal has four + 1

2
defects arranged in a tetrahedral configuration that maximizes
their separation (Fig. 3 A, Leftmost panel) (37, 38).

The spherical symmetry allows this configuration to be freely
rotated. Any small gradient alignment breaks the symmetry,
causing the tetrahedral defect arrangement to rotate such that one
of the + 1

2 defects is pinned at the location of maximum |∇c|, with
its tail pointing down gradient (Fig. 3D). For sufficiently small
values of the range of the morphogen gradient (r0 & R/3), only
one defect is attracted, while the defects remain in a tetrahedral
configuration relative to each other even as the alignment strength
is increased (Fig. 3B) For larger r0, in contrast, the gradient
alignment attracts two defects simultaneously, causing them to
converge toward the concentration maximum with increasing β̃.
Eventually, they merge into a +1 defect as their separation drops
below the defect core size.

This suggests that the migration and eventual merger of
two + 1

2 defects at the future head of the animal is driven
by alignment to gradients of the head organizer morphogen.
Alternatively, for sufficiently strong gradient alignment, a +1
defect can directly form from an initially disordered state.
Importantly, the range of the morphogen gradient needs to be
sufficiently large (r0 & R/3) to capture two + 1

2 defects and
induce the formation of a +1 defect for strong alignment.

The remaining two + 1
2 defects, by contrast, move only

slightly toward the opposite pole and remain well separated
for all β̃ (Fig. 3D). This is in agreement with experimental
observations showing that the merger of the + 1

2 defects near
the foot takes place at a much later stage where the body shape
has attained significant nonuniform curvature (13). Previous
analytical studies (14, 34, 39, 40) have shown that topological
defects are attracted to regions of like-signed Gaussian curvature.
We therefore hypothesize that, while the merger of defects at the
head is driven by morphogen gradients, the migration and merger
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A

D

B C E

Fig. 3. Gradient alignment drives topological defect positioning and merger on spherical and ellipsoidal shells. (A) Defect configurations on a sphere with radius
R = 6� for increasing gradient alignment strength �̃. (B and C) Separation of Top (B) and Bottom (C) defect pairs, dT, dB, as a function of �̃/r̃2

0 and r̃0. For defect
separations below the defect core size, the pair of + 1

2 defects is classified as a +1 defect (region above the green dashed line). For small gradient ranges (region
left of the blue dashed line), only one defect is pinned by the morphogen gradient, while the other defects remain in an approximately tetrahedral configuration
(D). As a consequence, the defect distance remains approximately constant despite the increasing alignment strength. The Bottom defect separation is only
weakly affected by gradient alignment. (E) Quantification of the bottom defects to the Bottom pole on ellipsoids with varying aspect ratios � = b/a. Both gradient
alignment and the Gaussian curvature gradient drive the Bottom two defects closer to the pole. For aspect ratios � & 2, curvature effects dominate. For aspect
ratios � > 3.3 (vertical dot-dashed line), the defects merge to a +1 defect at the pole. (The alignment strength was set to ensure a +1 defect at the Top: �̃ = 10 r̃2

0 .)

of the + 1
2 defects near the foot is a consequence of geometrical

changes and increased curvature. To test this, we performed
simulations on ellipsoids of varying aspect ratio α = b/a while
keeping the surface area constant. For α . 2, the morphogen
gradient centered at the future location of the head repels the
Bottom two defects, driving them slightly closer toward the pole
(Fig. 3E). For larger aspect ratios (α & 2), the curvature effect
near the pole of the ellipsoid dominates and the defect separation
becomes independent of r0, confirming our hypothesis that the
merging of the + 1

2 defects at the foot of Hydra is driven by the
increased curvature there independently of the head organizer
gradient. Of course, this does not exclude the possibility that an
additional “foot organizer” morphogen gradient may drive the
defect merger at the foot.

The above results suggest that gradient alignment and nonuni-
form curvature have similar effects on existing defects. With this
in mind, we return to the question of unbinding of new defects
and ask what the role of curvature might be during budding
and tentacle formation. Indeed, localized Gaussian curvature has
been shown to drive unbinding of topological defects in the
context of crystal dislocations and superfluid vortices (40–43). In
analogy with the Gaussian concentration profile, we performed
simulations on surfaces with a Gaussian-shaped height profile
h(r) = h0 exp[−r2/(2r2

0)]; Fig. 4. Starting from a uniform
configuration on a planar surface, the bump height is adiabatically
increased (Materials and Methods for details). Above a critical
bump height, a ± 1

2 defect pair unbinds, with the + 1
2 defect

localized at the tip of the bump, where the Gaussian curvature
is positive, and the − 1

2 defect near the base, where the Gaussian
curvature is negative (Fig. 4B and Movie S3). Only for larger
bump heights, a second unbinding occurs forming a +1 defect

at the tip and an additional − 1
2 at the base (Fig. 4C ). This is in

marked contrast to gradient alignment which induces unbinding
of two ± 1

2 pairs (cf. Fig. 2 B and C ) without an intermediate
regime of a single ± 1

2 pair. The reason for this difference is that
Gaussian curvature drives defect unbinding as a consequence
of angular deficiency (i.e. angles do not add up to 360◦ when

0 1 2 3 4 5 6
0

5

10

15A B

C

Fig. 4. Curvature-driven defect unbinding. (A) Phase diagram of defect
unbinding and recombination transitions in the r̃0-h0/r0 parameter plane.
Solid lines show the bump heights where ± 1

2 defect pairs unbind on
an adiabatically growing bump (Movie S3). Starting from the defect-free
configuration, the first unbinding transition (orange line, •) gives rise to a + 1

2
defect at the tip and a − 1

2 defect at the base (B). The second unbinding
transition (magenta line, �) results in a parity symmetric configuration with
a +1 defect at the tip flanked by− 1

2 defects at the base (C). The corresponding
recombination transitions (blue and green dashed lines) on an adiabatically
shrinking bump take place at lower bump heights, indicating hysteresis
(Movie S4).
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going around a circle) without imposing a preferred director
orientation. The angular deficiency can be accommodated by
first unbinding a single± 1

2 defect pair. By contrast, alignment to
a radial gradient is accommodated by a radially oriented director
field which requires either a +1 defect or a pair of + 1

2 defects.
Unbinding of a single ± 1

2 defect pair has not been observed
during budding and tentacle formation in Hydra, suggesting that
curvature may play only a minor role in the initial reorganization
of myonemes during these morphogenetic processes. During later
stages, curvature can help to stabilize the +1 defects at the tip of
a bud or tentacle (cf. Fig. 1E). In future work, further analytic
insight into the curvature-induced unbinding transition could be
gained using the methods developed in ref. 40.

Discussion

Our minimal model shows how coupling of nematic orientational
order to a morphogen gradient and to curvature can together
recapitulate the nematic organization of actin fibers in Hydra
during regeneration (Fig. 1 B–E) and budding (Fig. 1F ).
Specifically, we show that these mechanisms can overcome the
elastic energy that prefers parallel alignment of fibers, driving both
the merging of two + 1

2 defects into a +1 and defect unbinding
from a uniform background. Our results suggest that alignment
to morphogen gradients, rather than curvature effects, takes the
leading role in these processes. Once the body morphology
has been established, curvature can then stabilize topological
defects.

Here, we have examined a minimal model which lays the
foundation for future extensions. Going forward, it will be inter-
esting to go beyond the one Frank elastic constant approximation
to account for different responses to bend, splay, twist, and
biaxial splay deformations (37, 44). Other natural extensions
include coupling to extrinsic curvature (35, 36), endowing the
morphogen field(s) with dynamics and feedback from texture
deformations (33, 45–47). It will also be interesting to study
gradient alignment on deforming elastic shells, where the nematic
order determines the local stresses that drive deformations
(15, 16, 48–52). Since defects act as organizational centers
for anisotropy fields, they naturally emerge as points with
special mechanical properties, such as a concentration of active
stresses (10, 53).

From a broader perspective, our work addresses the question
of how the local gradient of scalar morphogen concentration
fields can (re)organize spatial anisotropy encoded by vectorial and
tensorial fields. We have shown how this reorganization is gov-
erned by the competition between alignment to the gradient and
alignment to neighbors (elastic energy) while it is topologically
constrained by defect charge conservation. The importance of
orientational information encoded in anisotropy fields is evident
in the mechanical programs underlying morphogenesis (4–8)
and in cell polarity (1, 2). We therefore expect that our findings
will help understand how morphogens, tissue curvature, and
anisotropic fields are coupled in a broad range of systems.

Materials and Methods

Relaxational Dynamics. The relaxational dynamics of the Q-tensor field as it
approaches a (local) energy minimum is given by

γ ∂tQ = −

(
δE
δQ

)ST
, [4]

where γ the damping coefficient, and the superscript ST denotes the symmetric
and traceless part of a tensor. Explicitly evaluating the functional derivative gives

γ ∂tQij = −(2 TrQ2
− 1)Qij + K ∇2Qij

− β

[
(∇ic)(∇jc)−

1
2
δij|∇c|

2
]
. [5]

The damping coefficientγ defines the timescaleτ = γ−1 of the relaxational
dynamics.

In the planar domain, the symmetric, traceless Q-tensor has only two degrees
of freedom, i.e., it can be written as

Q =

(
q1 q2
q2 −q1

)
. [6]

The resulting PDEs for q1, q2 were simulated using FEniCS.

Surface Finite Element Implementation of Q-TensorModel. We formulate
the covariant Q-tensor model on a curved surface as a surface finite element
problem following the approach introduced in ref. 54. The central idea is to
represent tensor fields in the surface’s tangent bundle by tensor fields in the
embedding Euclidean space and penalize out-of-surface components during the
time evolution.

Let S be a surface (two-dimensional manifold) embedded in three-
dimensional Euclidean space R3. Locally, the surface is described in terms
of a parametrization X(ξ1, ξ2) ∈ S . In the following, we will denote vectors in
the embedding space, R3, in bold font. Vectors and tensors in the surface will
be denoted by their components in the local parametrization.

The local basis vectors ei := ∂iX = ∂ξiX, i = 1, 2, span the local tangent
space. We can now find the metric tensor gij = ei · ej, where · denotes

the standard inner product in R3. The dual basis vectors ei are defined via the
orthonormality conditionsei ·ej = δij . The surface normal vector field is given by

� =
e1 × e2
|e1 × e2|

. [7]

Using the normal vector field, we can define the second fundamental form
(curvature tensor) bij = � · ∂iej.

Vector fields in the tangent bundle ofS can be represented by vector fields in
the embedding space viau = uiei (and analogously for tensor fields). This allows
one to implement the numerical simulation without explicitly parametrizing the
surface. However, due to numerical inaccuracies, the out-of-surface component
of the representing vector will never be exactly zero. To account for this, we write
the approximate representing vector as ũ = uiei + ũn�. To keep ũn small, one
introduces a penalty force p(ũ) ∝ 5[ũ]− ũ = (ũ · �)� in the dynamics. For
a detailed discussion, ref. 54.

Given a vector ũ in the embedding space, the corresponding surface vector
can be found by projection into the local tangent space with the projector

5 = I3 − � ⊗ �. [8]

Going from the planar geometry to a curved surface, the gradient operator∇
needs to be replaced by the covariant derivative. For scalar fields, this is simply
the partial derivative in the surface coordinates ∇φ = ei∂iφ. However, for
vector and tensor fields, extra terms appear because of parallel transport:

∇iu
j = (∂iu) · e

j = ∂iu
j + 0ik

juk , [9]

with the Christoffel symbols 0kij = 0kji = (∂iej) · ek . We use Einstein
summation convention for repeated indices. While finite element methods such
as FEniCS supply the (componentwise, noncovariant) surface gradient operator
∇̃S := ei∂i, they do not supply covariant derivatives. To relate ∇̃S to ∇ , we
explicitly calculate

∇̃S ũ = ei ⊗ ∂i(u
jej + ũn�)

=
(
∇iu

j
− ũnbi

j
)
ei ⊗ ej +

(
biku

k + ∂i ṽn
)
ei ⊗ �, [10]
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where we used the relations ∂iej = 0kijek + bij� and ∂i� = −bi jej. We can
now project to the tangent space and reorganize to find an expression for the
covariant derivative in terms of the embedded vector

(∇iu
j) ei ⊗ ej = 5[∇̃S ũ] + (� · ũ) B, [11]

where we introduced the curvature matrix B = b ji e
i
⊗ ej. Enforcing

tangentiality of ũ with a sufficiently strong normal penalty allows one to
neglect the second term, which simplifies the numerical implementation. Note
that numerical errors due to spatial and temporal discretization will always
lead to a small, nonzero out-of-surface component of ṽ. Therefore, higher
numerical accuracy can be achieved by including the explicit curvature coupling
term (54).

The above derivation generalizes to tensor fields Q = Qijei ⊗ ej and

their approximate representation Q̃, s.t. 5[Q̃] = Q. The surface nematic
tensor must be a traceless, symmetric tensor. In the surface, the trace is
given by

0 !
= TrS Q = gijQij = ei · Q · ej

= ei ·5[Q̃] · ej = Tr Q̃− � · Q̃ · �. [12]

To ensure that Tr Q̃ = 0 entails TrS Q = 0, we define a projector into the
space of traceless surface tensors

5T[Q̃] := 5[Q̃] +
1
2
(� · Q̃ · �) g, [13]

whereg = gij ei⊗e j. The penalty force corresponding to this projector is given
by

PT(Q̃) ∝ 5T[Q̃]− Q̃ = � ⊗ (� · Q̃) + (Q̃ · �)⊗ �

−
1
2
(� · Q̃ · �) (� ⊗ � + I). [14]

The identity matrix introduced in the last term makes the projection trace free
(Tr PT = 0).

We can now write the dynamics in weak form, which can be straightforwardly
implemented in a finite element solver:∫

S
dA (∂tQ̃) : Q̃test =

∫
S

dA
[
(Tr Q̃2

− 1)Q̃ : Q̃test

+ K5[∇̃S Q̃] : 5[∇̃S Q̃test]

+ β G : Q̃test + ω PT(Q̃) : Q̃test
]
, [15]

where : denotes a full contraction of tensors. Since the projection operator5 is
idempotent, the elastic energy term can be simplified to K5[∇̃S Q̃] : ∇̃S Q̃test.
ω is the penalty strength which we set to 1,000 (54). Q̃test is a test function from
the space of symmetric, traceless tensor fields in R3 with appropriate continuity
and differentiability constraints. The tensor G is the traceless, symmetric tensor
representation of the concentration gradient

G = ∇c ⊗∇c −
I3
3
|∇c|2. [16]

Since the traceless, symmetric Q-tensor has only five independent compo-
nents, we can write it as

Q̃ =

q1 q2 q3
q2 q4 q5
q3 q5 −q1 − q4

 , [17]

and analogously for Q̃test. The degrees of freedom in the numerical simulation
are then qi, i = 1...5.

The time derivative on the left-hand side of Eq.15 is discretized using a simple
forward (explicit) Euler scheme. The numerical simulations were implemented
in Python 3.8 using FEniCS (55). Planar meshes were generated with FEniCS-
mshr, and the curved surface meshes (sphere, ellipsoid, and Gaussian bump)
were generated using the Gmsh-python API. The Hydra-shaped surface was
modeled in Blender, and the exported mesh was cleaned up in MeshLab using
the LS3Loop filter. The mesh sizes were chosen sufficiently small to avoid
discretization artifacts.

Ellipsoid Geometry. In the parameter sweeps varying the aspect ratio of
the ellipsoid, we keep the surface area fixed. This is motivated by the fact
that there is no significant cell proliferation during regeneration of Hydra, such
that the surface of the epithelium remains approximately constant.

The surface area of a prolate ellipsoid with semiminor axis a and semimajor
axis b ≥ a is given by

A = 2πa2
(

1 +
b
aε

arcsin ε
)

where ε2 = 1−
a2

b2
. [18]

Thus, a prolate ellipsoid with a given aspect ratio α = b/a and area
A = 4πR2 (equal to that of a reference sphere with radius R) has semi axes

a =
b
α

=

√
2R√

1 + α
ε arcsin ε

where ε2 = 1−
1

α2
. [19]

Gaussian Bump. We parametrize the radially symmetric Gaussian bump with
height function h(r) = h0 exp[−(x2 + y2)/(2r20)]. Adiabatic sweeps of the
bump height were performed in COMSOL Multiphysics using the Deformed
Geometry and Auomatic Remeshing features on a disk geometry with Neumann
boundary conditions. For the growing bump sweeps, the director field was
initialized uniformly aligned on a flat disk, and the bump height was increased
as h0(t)/r0 = 0.5 × 10−4 t (time, t, in units of the nematic relaxation
time) up to h0 = 15r0. For the shrinking bump, the initial height was set to
h0(t = 0) = 10 r0, and the director field was initialized pointing along the
x-axis. This initial configuration rapidly relaxes to a steady state with a +1 defect
at the tip and two− 1

2 defects at the base. The bump height was adiabatically

lowered [h0(t)/r0 = 10 (1− 0.5× 104 t)].

Data, Materials, and Software Availability. Python code and COMSOL
simulation files have been deposited in Zenodo (10.5281/zenodo.7663170).
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