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Using a mean field approach and simulations, we study the non-linear mechanical response of the vertex
model (VM) of biological tissue to compression and dilation. The VM is known to exhibit a transition
between solid and fluid-like, or floppy, states driven by geometric incompatibility. Target perimeter and
area set a target shape which may not be geometrically achievable, thereby engendering frustration.
Previously, an asymmetry in the linear elastic response was identified at the rigidity transition between
compression and dilation. Here we show that the asymmetry extends away from the transition point for
finite strains. Under finite compression, an initially solid VM can completely relax perimeter tension,
resulting in a drop discontinuity in the mechanical response. Conversely, an initially floppy VM under
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dilation can rigidify and have a higher response. These observations imply that re-scaling of cell area shifts
the transition between rigid and floppy states. Based on this insight, we calculate the re-scaling of cell
area engendered by intrinsic curvature and write a prediction for the rigidity transition in the presence of
curvature. The shift of the rigidity transition in the presence of curvature for the VM provides a new metric
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Understanding the emergence of form in organ development
presents a major challenge to current continuum physics
modeling of living systems. Unlike passive materials, biological
tissues may tune their mechanical response to applied strains
and forces by modifying cell shape and thereby be rigid or
floppy. In particular, cell shape as characterized by the shape

index with P and A the cell perimeter and area, has

P
§=—,

VA
been found to serve as a metric for a solid-liquid transition at
constant density in epithelial tissues."

One widely studied model of epithelial tissues is the vertex
model (VM) which describes the epithelium as a collection of
vertices and edges in the 2D plane, reducing the tissue’s structure
to a polygonal tiling with possible edge tension. Unlike conven-
tional spring network models which penalize deviations away
from each edge length, the VM instead only sets a target cell area
due to 3D bulk tissue incompressibility, along with terms captur-
ing cell-cell edge adhesion and cell contractility,” which constrain
the cell’s perimeter. Thus the VM is less constrained than a spring
network, e.g. crystalline solids, and naturally engenders zeros
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for predicting tissue rigidity from image data of curved tissues in a manner analogous to the flat case.

modes for any polygonal tiling.”* Importantly, these zero modes
exist at the level of a single cell. For example, assuming all cell
edges have identical adhesion and contractility, the VM energy
reduces to penalizing harmonic deviations away from a target area
Ay and target perimeter P,. Thus in the VM each cell has 2 shape
constraints, but a general polygon has at least 3 degrees of
freedom such as is the case for triangles.’

Based on constraint counting it seems the VM can never support
a solid state. Nonetheless the VM exhibits a rigidity transition
between solid and floppy states tuned by the target shape index

Py

VAo

constraint set by the isoperimetric inequality which gives a lower

So = at a critical value s.° The transition is due to a geometric

P
bound on the ratio of —= for n-gons admissible on the plane,’

VA

% > 55(n), )

™ . . . . .
where s; = | /4ntan (7) is the isoperimetric quotient. The lower
n

. . . P
bound sets an incompatible regime =2 < sy where polygons
VAo
cannot simultaneously achieve 4, and P, and a compatible regime

P,
\/—2_0 > s; where polygons may achieve both A, and P, This

geometric constraint on shape indicates that rigidity stems from
self-tension due to geometrical incompatibility.

This journal is © The Royal Society of Chemistry 2023
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For VM simulations consisting of ordered tilings (triangles,
squares, hexagons) in the plane the rigidity transition occurs
exactly at s5(n).>” In simulations of disordered VMs the transi-
tion occurs at approximately s (5) ~ 3.81.°

The linear response of the VM to mechanical deformations is
well studied,®**° but the non-linear response relatively less so.
Recent work showed that the VM exhibits shear-thickening in
the compatible regime.*'" In the same vein, our work presents a
careful study of the non-linear elasticity of the VM under finite
dilation and compression via a mean-field approach and simula-
tions. In previous work by the authors, the onset of compatibility
in the VM at s; showed anomalous elasticity as reflected by an
asymmetric bulk modulus under dilation and compression, as
well as coupling between stretching and shear modes.® In this
article, we show that the asymmetry of the bulk modulus extends
away from s; under finite compression and dilation. In particu-
lar, the VM exhibits a dilation-hardening for compatible tissues
and a compression-softening of incompatible tissues for finite
critical strain. The hardening (softening) nonlinear response to
dilation (compression) is reflected by a jump (drop) discontinu-
ity of the bulk modulus and is associated with the sudden lifting
(onset) of zero-modes.

These results are of particular importance to systems that are
residually stressed, such as cell layers with spatially varying cell
geometry or curved tissue, where they may result in a shift of the
critical s5. In general, understanding the mechanisms through
which tissues fine-tune their rigidity in response to areal re-
scaling is relevant to several biological processes, such as tissue
growth, shrinkage, response to applied deformations, and in
particular to shape changes where 2D tissue layers spontaneously
fold into 3D curved states.’>™** Based on insight from the planar
2D non-linear elasticity, we use mean field theory to predict how
local compression/dilation due to intrinsic curvature shifts the
transition between rigid and floppy states in curved tissue.

The organization of the paper is as follows: in Section 1 we
introduce our mean-field VM, which describes 2D tissue elasticity
at the single cell level. Section 2 outlines the calculation of the
non-linear bulk modulus of the mean-field model and discusses
simulation results. In Section 3 we give a description of comple-
mentary numerical methods used to test our mean field theory. In
Section 4 we present a Landau energy argument to elucidate the
connection between the asymmetry of the bulk modulus and the
finite critical strain that controls the onset/lifting of zero-modes.
Section 5 uses our results from mean field theory to predict the
effective critical shape index for cells on a curved surface. We
show that our prediction for the rigidity transition in curved
geometry agrees well with numerical simulations by Sussman."?
We conclude with a brief discussion in Section 6.

1 Mean-field theory of ordered vertex
model

Our mean field theory considers a uniform regular 2D tiling
where all cells respond identically to applied deformations.
This approximation can capture the response of tissues
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subjected to uniform constraints or loads. The tissue energy
is the sum of the energies of identical individual cells, and
therefore our mean field approach reduces the VM to a single
polygonal cell. All bulk tissue properties, such as elastic mod-
uli, are calculated at the single cell level. Details of the mean
field model are given in Appendix A.3, and a thorough study by
the authors is in ref. 3. The simulations are carried out for a
lattice of regular polygons. For concreteness, our simulations
and mean field theory are for hexagonal cells unless stated
otherwise. All results hold analogously for other polygons.

Lengths are rescaled by /4 and the tissue energy per cell is
rescaled by r,4,°, with x, the area stiffness, such that the
energy per cell contains only two dimensionless free para-
meters and is given by

E =317 +50— ), @)

where r =

K4
index, and a and p are the actual area and perimeter of the cell.
To parameterize cell shape degrees of freedom, we work with
a Cartesian coordinate system (X,Y) encompassing the cell with
Y along the height, and X along the width, as shown in Fig. 1.
The area and perimeter of a cell are purely geometric objects,
and shape changes under various deformations can be com-
puted given a transformation law.
Externally imposed dilation and compression are implemen-
ted via an overall re-scaling of the cell’s height # and width w
via the transformation

Kp . o ey . PO
is the rigidity ratio, sy = ——= the target shape
0 gidity ) VA, g p

w—w(l+e¢), (3)

h— h(l+¢), (4)

with € € (—1,1). In response to the strain, the cell may also
spontaneously shear while maintaining the imposed rescaled
area, as shown in Fig. 1. This “tilt” is a self-shear
parameterized as

w - w+th, (5)

Frustrated compressed state  Relaxed tilted state

Initially undeformed cell

. Fru strated stretched state

CN
Y’Z . />

Fig.1 Under compression/dilation a cell may respond via a self-shear
transformation by tilting either right or left. For example, at the rigidity
transition, sy = s3, both compression and dilation induce perimeter and
area tension. Only under compression, however, cells can relax perimeter
tension by changing shape, while simultaneously preserving area.
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h — h, (6)

where ¢(0) = tan(6) parametrizes the shape degeneracy of cells.
In addition, hexagonal cells can also respond via non-affine
deformations, which are known to reduce the shear and
Young’s moduli in the incompatible regime.'® In this study
we preclude non-affine pathways for cell response as our
previous work showed this approximation captures well the
response to isotropic compression/dilation.’

The deformed energy of an isotropically dilated or com-
pressed cell is then given by

1

E(e, 0;50,1) = 3

[P+ =1 +5lp(e 0.0 =], (7)

where /(so,r) is the rescaled undeformed characteristic cell size
(see Appendix A.3 for details) and the deformed perimeter is

p(e,0,0) = %(1 +¢) (2\/1 +1(0)? + \/1 + (1(0) — V3)?

/1 (10) +\/§)2>.
(8)

If we set ¢ = 0 and minimize with respect to 0 we recover the
results of ref. 3: the ground state energy is gapped for sy < sj
and vanishes for sy > s, with a manifold of degenerate shapes,
or zero-modes, parametrized by 6. To study the response to e#0
we minimize 0 as a function of applied strain in a manner
analogous to our study of the linear response.”> Formally, the
energetic response is given by

E= mﬁin E(e, 0;50,7). 9)

Because height and width are fixed by dilation/compression the
energy minimization is 1D and corresponds to solving,

OE op

% = - S())—

o 20 = 0. (10)

50,15€

This equation has two solutions: either a cell utilizes shape
degeneracy via 6 so that the perimeter accommodates both
dilation/compression and target shape index s,, or the perimeter
is totally set by dilation/compression with no tilt response. The
relevant energy minimizing solution is a function of s,, r and e.

2 Nonlinear elasticity

The non-linear response under finite dilation and compression
is characterized by the bulk modulus, defined as

1 (a—zmin E(e, 0:50, r)) (11)

201t \ O Onmin 50,5€

where aq = #@2 is the rescaled cell area. Evaluating eqn (11)

at ¢ = 0 yields the linear response, whereas a finite ¢ gives the
non-linear response under finite strains. The minimization
with respect to 0 must be carried out before differentiation
because the self-shear is implicitly dependent on ¢ via eqn (10).
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Compression softening at So = 3.4 < 5¢(6) Dilation hardening at Sy = 4 > 50(6)
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Fig. 2 Panel A shows the mean field non-linear bulk modulus versus
compressive strain in the incompatible regime for r = 1, 10, 100. A sudden
discontinuous softening occurs at a critical strain ¢.. Panel B shows the
hardening of the mean field bulk modulus at a critical dilation in the
compatible regime. Note that in the incompatible regime ¢, depends on r
and is thereby sensitive to the balance between perimeter and areal
elasticity, whereas in the compatible regime, the critical strain is only a
function of the shape index. Panel C compares the mean field model (solid
line) to simulation (dots) and shows the difference in the linear response
between dilation and compression for strain magnitudes ¢ = |0.01/, [0.006],
|0.002| in red, blue and green, respectively. The asymmetry of the
response decays continuously away from the critical shape index. Panels
A, B, and C corresponds to hexagons. Panel D shows the effective critical

/N
shape index for a random tiling of N cells on a sphere of radius Rg = =
T

The mean field prediction is for pentagons, whereas the simulation data
are for a disordered VM taken from ref. 15.

In the incompatible solid state, (so < s), we find that the
mean field model and simulations exhibit a discontinuous
drop in the bulk modulus at a critical compression. The
discontinuity occurs due to a spontaneous self-shear of the cell
which allows the perimeter tension to vanish. Conversely,
under dilation the bulk modulus remains continuous as a
function of strain, as shown in Fig. 2(A). Increasing r shifts
the critical strain to higher values, reflecting how a higher
perimeter tension may support higher compression before
giving way to spontaneous self-shear.

In the compatible floppy state, (so > ), the bulk modulus is
continuous under any finite compression but exhibits a dis-
continuous jump at a critical strain upon dilation, as shown in
Fig. 2(B). At sufficient dilation, the zero-modes of the degen-
erate ground state are ‘“‘exhausted”, resulting in a frustrated
and thereby rigid state. Unlike the incompatible state, the
critical dilation is insensitive to r.

At the transition, s;, both dilation hardening and compres-
sion softening are present for arbitrarily small strains, and
reflect an asymmetry of the response to area rescaling. To
quantify the asymmetry of the response, we show in Fig. 2(C)
the difference between dilation and compression bulk modulus
AK as a function of s, for various values of the dilation/
compression strain. For s, near the critical value, s;, the

This journal is © The Royal Society of Chemistry 2023
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asymmetry persists away from the critical point even for modest
values of the strain (>0.002). Note that the curve AK vs. s, is
also not symmetric about the sy = s; axis; this is due to the fact
that the critical strain depends on r in the incompatible state,
but not in the compatible state.

The origin of the bulk modulus discontinuity can be in part
understood by writing the explicit expression for K obtained
from eqn (11)

1
K= @ + r[p(Omin) — s
20acel) [p( ) 0

82p(gmin) ap(emin) 2
]
T2 T r( Oe ) ’

(12)

The contribution due to perimeter tension, 7{(p(0min) — So), in the
solid phase vanishes if cells can accommodate target perimeter
and imposed compression simultaneously via self-shear, result-
ing in a discontinuous drop of the bulk modulus. Conversely, in
the floppy phase sufficient dilation will result in a sudden
contribution from perimeter tension. In the following section,
we formulate a Landau-type energy analysis to understand how
dilation/compression can trigger or suppress zero-modes asso-
ciated with shape deformation under dilation and compression.

3 Simulation protocol

We perform numerical simulations of the deformation protocol in
the incompatible regime (sy < s4(6)) using a tissue of 4 hexago-
nal cells in a periodic box of lengths L, and L,. We use regular
hexagons with /; =, = [; determined by energy minimization. This
also determines the periodic box lengths. We apply a strain of size
¢ by mapping all vertex positions x — x(1+¢)andy — y(1 +¢) and
the box L, — Ly(1 + &), L, —» Ly(1 + ). We then minimize energy
with respect to the vertex positions with the new box size. We

1 23FE
L, — where OF is the

change in minimum energy before and after strain. The simula-
tions were performed with the Surface Evolver software.'”

measure the bulk modulus as K =

4 Landau energy expansion

To understand how compression or dilation may trigger or lift
shape degeneracy we treat 0 as an order parameter for the onset
of shape degeneracy. In other words, a finite 0 signals that cells
can adjust their shape to accommodate imposed strains, while
0 = 0 when cells remain rigid and do not change shape in
response to external strain.

We expand the energy given by eqn (7) in power of 0 to
quartic order,

B

E(c,0;50,7) = E(c, 50,7) + ;92 +50° 4+ 0(0%), (13)
where

o =33, (e( - i) 14

55(6) (1)
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107+/3 89 s
ﬁ - 32 ”'Z( (ﬁ( _msé(6)): (15)

and /. = ¢(1 4 ¢). Minimization of this approximate §* energy

o
gives two solutions: (i) Opin = 0 for o > 0, and (ii) Omin = = l2]

p

for o < 0. The Landau expansion highlights the role of strain ¢
as tuning parameter between the cell responding with 0,,;, = 0

or by spontaneously tilting via a shear of Omin = +4 /%. The

form of o reflects an asymmetric response between compres-
sion versus dilation. From o we can extract the critical strain, ¢,,
which controls the onset/lifting of shape degeneracy.

S0
55(6)

The vanishing of the critical strain at the critical shape index
coincides with the failure of linear elasticity for any applied
strain.> Note that our expansion implies a tricritical point.
Specifically, f < 0 occurs around the transition point s, ~
3.72 either for large compression of ¢ ~¥ —0.17, or for smaller
strains deep in the floppy/compatible regime, around s, =
4.47. However, our Landau expansion only considers a single
pathway, via 0, by which cells may respond to moderately
imposed strains. To handle larger deformations we would need
to increase the expansion and/or incorporate other affine and
non-affine pathways of cell-level response. Thus we take f > 0
to define the limits for which our expansion is valid.

In the compatible regime / = 1 because target area is always
achieved and ¢, is independent of the rigidity ratio r. Whereas
in the incompatible regime ¢, depends on r through /.

We input the cell response via 6., into the energy and
expand in powers of strain .

€ =

-1 (16)

)=

E(e;s0,71) = m{)m E(e, 0;50,1) 17)

= moin E(c,s0,7) + %92 + 594 +0(0°,€%) (18)
_ 1 (O*E(Omin)\ » 3

= Ey +§<T)F +O(€ ) (19)

In the final line the harmonic coefficient contains contribu-
tions from 6 which reduce the overall response of the tissue. If
we do not minimize over 6 before expanding in ¢, the resultant
deformed energy does not incorporate the self-shear response
due to cell shape changes. A summary of the consequences of
the additional degree of freedom 0 on the response are as
follows: in the incompatible regime, the 6,,;,, = 0 solution
corresponds to a linear response in the solid state (see
Fig. 4), whereas Oy, = £ % corresponds to the softer renor-
malized nonlinear response at critical compression strain. On
the other hand, in the compatible regime, the linear response is

Soft Matter, 2023,19, 7744-7752 | 7747
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always given by Opnin = + Lﬁ‘ which allows the perimeter ten-
sion to vanish. The hardening under finite dilation occurs
at a critical dilative strain ¢, and corresponds to a switch from
Omin = £ J2] to Omin = 0, resulting in a higher response. This

p

hardening phenomena is due to the cell’s inability to access
degenerate ground states to accommodate large dilation.

4.1 Strain dependent critical shape index

So far our mean-field model has predicted how compression
(dilation) controls the onset (lifting) of shape degeneracy. The
rigidity of the solid is defined by the absence of zero modes at
the single-cell level. Therefore the mean field treatment sug-
gests that dilation and compression shift the rigidity transition
of the VM.

The shifted critical shape index is determined by the condi-
tion «(sg,€) = 0. Solving for s, yields a simple linear relation-
ship between the effective critical point and strain

sl = syn)e(1 + ), (20)

where we used the modified version of eqn (14) for n-gons (see
Appendix A.3). Note that the absence of rigidity does not mean
absence of residual stresses, as area tension is still finite. This is
reminiscent of the simultaneous existence of zero-modes and
states of self stress,'® as well as the simultaneous onset of soft
modes and geometric frustration.'®° From eqn (20) we construct
a phase diagram in Fig. 3 showing how both tuning target shape
index and imposed areal strain can control the onset of rigidity.

So far we discussed the effect of finite strains on the value of
the effective critical shape parameter, regardless of the origin of
strain. One possible source of strain that is highly relevant to
biological tissue is curvature, as is the case in bronchial
epithelial tissue and early stage embryos."> A simple toy model
to understand the effect of curvature is a two-dimensional
spherical tissue model. The sphere radius may induce effective
tension or compression on cells depending on their total
preferred area which may be smaller or larger than 4nR>.

s5(6) =~ 3.722

strain €

floppy phase

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

target shape index sy

Fig. 3 Phase diagram detailing how both target shape index and imposed
compression/dilation control the floppy-rigid transition for hexagons as
described by eqgn (20) for rigidity ratio r » 1.
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Simulations of the VM constrained on a sphere have in fact
reported that the rigidity transition signaled by the critical
target shape index is sensitive to curvature with s; shifts
depending on curvature magnitude and relative cell size.'?

In the rest of this article, we examine the effective dilation/
compression induced by curvature by calculating the cell area
on a curved surface relative to its flat counterpart. Utilizing
eqn (20), we then predict the critical target shape index for
solid-liquid transition of curved 2D tissues.

5 Rigidity transition in the presence of
curvature

We extend the mean field treatment by perturbatively calculat-
ing cell area on surfaces of constant curvature in powers of
GReai?, where G is the Gaussian curvature, and R..; the cell
radius. Regular polygons of fixed radius (defined as the dis-
tance of the centroid to a vertex) differ in area depending on the
surface on which they are embedded. The mismatch in area
between curved and flat cells engenders an effective strain.

All geometric information of a surface M is encoded in the
metric tensor g. For a general shape/cell on a surface, Dc M, the
area is defined as

A= J /det gdx (21)

The determinant of the metric serves as a weight which accounts
for the local compression/dilation between points. Unlike the
planar setting of the mean field model where g;; = d;; the metric
on curved surfaces — even uniformly curved - is not homoge-
neous but a function of space. Nonetheless, the metric always
admits a local expansion in normal coordinates, (x,, x') which are
defined by the condition that geodesics can be locally parame-
terized as straight lines, i.e. y(7) = (x'4,x>/). In these coordinates,
a series expansion of the metric in powers of curvature yields

x>+ O(|xP). (22)

X

det(g) =1 7%

The expansion reflects how variations of the metric are tied to
curvature, and is locally approximated as flat with higher order
corrections. The derivation of eqn (22) is given in Appendix A.1.

In our calculation we restrict attention to surfaces of uniform
curvature — constant G — and hence we only consider flat, spherical,
and saddle-like surfaces. Of course, real curved biological tissues are
not uniform either due to boundary conditions or heterogeneities.
Our approximation is controlled by the dimensionless geometric
parameter 7 set by the radius R. of the cell over the radius of
curvature Rg, n = @, where G = ii. Our mean field result will

|Rg| Rg?

hold best for tissues with moderate curvature or relativity small cells.

This journal is © The Royal Society of Chemistry 2023
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5.1 Area of cells on curved surfaces

Upon series expansion of the metric, the area to quadratic order
is given by,

A :J \/detgd’x
D

(23)
~ 2. 9 242
~| d°x |x|~d"x,
D 6Jp

The first term yields the flat area. We generalize our calculation
to n-sided polygons for easy comparison of various tilings. To
parameterize the polygonal n-sided cell D we decompose it into
2n triangles about the centroid as illustrated in Fig. 4. Details
are given in Appendix A.2. To quadratic order the area is

A= /‘i (1 — %Rcellzf(n) + O(Rce114)>7 (24)

_ 2
where A = nR.2 cos (E> tan (E) is the flat area of the cell, and
n n

2 1
f(n) = cos? <g) <§ +3 sec? (g) ) . In the limit of either very small

cell size or very small curvature, the area reduces to the flat

case. In the limit n —» oo the first correction yields %rcRceuz,

which reproduces the classical result of Bertand-Diguet-Pui-
seux on the area comparison of 2D geodesic balls of radius Ry
between curved and flat spaces.>!

5.2 Shift of the rigidity transition

From eqn (24) and the form of the deformed area term in
eqn (7) we may write the induced dilation/compression strain
set by curvature as

873(/1) = — 14+ 1-— %Rceuzf(n)

= -1+ \/1 — cos? (g) <§+%secz (g))%Rwuz.

The effective strain depends on the number of edges due to the
discrete rotational symmetry of polygons: points on each edge
are weighted according to their distance from the centroid. The

(25)

n(n—2)
p= 2n
0 T Rcell
“n 2o = 2Rgey Sind
Rcen cosO
a .\ b
Ags [axb|

Fig. 4 The shape of a regular polygon can be determined by the number
of edges and the length of each edge. To modify and aide our calculation
for various n-gons, we decompose a polygon into n triangular wedges as
illustrated in the figure. Thus one may specify a regular polygon by the
number edges and either the edge length 7o or cell radius Rey.
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predicted shift in the critical shape index is

siteal (0. G) = sp(n)l(n)(1 + ¢g(n))
(26)

~esi(n)(1 -+ eg(n))

where we have set / ~ 1, which restricts our prediction near the
planar critical target shape index or large rigidity ratio r > 1.

5.3 Comparison with simulation

In recent work by Sussman'® a disordered vertex model of N

cells on a uniform sphere of radius Rg = ‘/% was simulated

for various N. At the onset of rigidity the critical shape index
was extracted and reported to vary as a function of N, which
monotonically increased until plateauing at s;(5) ~ 3.812 for
large N (see Fig. 2(D)).

To compare with simulation'® we re-cast GR.y> in terms of
N and consider the mean field treatment for pentagons, n = 5,
corresponding to the rigidity of a disordered VM in the flat

[N
case. Sussman considered a sphere of radius Rg = e with
T

. , N

average cell area set to unity, i.e. Ae = Pk 1. Our mean
T

field calculation is for a single cell and so we take Rcen

2
corresponding to a pentagon. Thus 5Ree? cos(%) tan (g) =

1
N a7 (see eqn (40)).

Therefore the relative ratio of cell size to radius of curvature

1= Rcell 2

Re>  4m 1 L ; iti
_Rg"z m2.37;7 v This yields the predicted critical

shape index

goes as

L. 2
sgmlcal(n _ 57N) ~ 3.8]2(] — %) . (27)

A comparison of our results to the simulations of ref. 15 is
shown in Fig. 2(D).

Besides expanding to higher order, the calculation can be
improved by computing the ground state characteristic cell size
/o for curved vertex models, but this is beyond our mean field
approach. Additionally,'® reports that the shape index distribu-
tion broadens for larger R..;>G (smaller N) reflecting a greater
diversity of polygons at the rigidity transition than the flat
counterpart. Taking into account this greater diversity could
help refine the curvature correction in eqn (27). In particular,
for large curvature other polygonal shapes besides the penta-
gon could be relevant for disordered systems.

6 Discussion

Utilizing a mean field model we showed that the asymmetry of
the linear response of the vertex model under dilation and
compression extends away from the critical shape index for
finite strains. The asymmetry reflects how an initially rigid
tissue may be sufficiently compressed to induce shape degen-
eracy and thereby relax perimeter tension, yielding a softer bulk
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modulus. Conversely, sufficient dilation applied to a compati-
ble (floppy) cell lifts shape degeneracy, yielding an increase of
the bulk modulus. Thus applied dilation and compression shift
the rigidity of the VM in 2D.

Using this insight, we extend our mean field theory to
calculate the effective dilation/compression engendered by
intrinsic curvature and predict the curvature-induced shift of
the rigidity transition by calculating the effective critical shape
index. We compare our result to simulations by"> and find good
agreement.

Our mean field prediction provides a metric which can be
applied to studying the rigidity transition in curved biological
tissues in a manner analogous to studies in the flat case.
Additionally, the shift of rigidity upon compression/dilation
could be tested, for instance, in experiments such as those of
ref. 22, where an epithelial monolayer is compressed or
stretched via an underlying deformable substrate.

During the preparation of this manuscript, the authors
became aware of a recent manuscript by ref. 23 which further
verifies the role of curvature in the rigidity transition of the
vertex model and also provides a complementary mean field
theory on the rigidity transition.
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Appendices

A Appendix
A.1 Details about metric expansion

The purpose of this appendix is to give a brief explanation of
the series expansion of the metric in terms of curvature. A
complete and rigorous treatment may be found in many text-
books on Riemannian geometry such as in ref. 24-26. The
metric is a second order symmetric tensor whose components
are spatially dependent function of the surface. It governs all
geometric data in that the distance between any two points is
given by the line element

ds® = g;(x)dx'dx’. (28)

In general, about a given point x,eM the components of the
metric may be approximated as constants to 1st order. One may
diagonalize this approximation such that the metric at x, is
given by ;. However, expanding to 2nd order the metric’s
components are not necessarily also constant. In fact, if there
exist coordinates such that the metric’s expansion is constant
up to 2nd order then the metric is totally flat in the neighbor-
hood, which we will briefly show below. Normal coordinates
about a point x, are defined as coordinates which parametrize a
geodesic curve, yi, as a straight line, ie. local coordinates x'
such that y(1) = x'2, where y(0) = x,. In these coordinates the
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Christoffel symbols are extracted from the geodesic equation

_ d2}'i ; dyk dyl

0 — 29
oz Theearan (29)

Utilizing normal coordinates, eqn (29) implies I'i/(x,) = 0.
Differentiation also yields the differential constraint equation.

O es(x0) + Ol (x0) + O, ia(x0) = 0 (30)
The Riemann curvature tensor is defined as
Ry = Oty — Oujg + Tl %y + Tyl % (31)

From the differential constraint and the definition of R;:kl’ one
can show

1
k k k
ol = *g(Ri// + R/ﬂ)' (32)
Symmetry of the metric implies the covariant derivative of the
metric vanishes, i.e. Vg = 00;g;; — I'igi» — I'gjp = 0. The second
derivative of the metric in normal coordinates is

1
gy = —S(szg/ + Rjic).- (33)
The Taylor expansion of the metric in normal
coordinates yields
1 . 0
gij = (31']' - gngle‘xé + O(|x 2). (34)

Higher order terms can be generated iteratively by calculating
higher order differential constraint equations from eqn (30)
and Vg = 0. For 2D surfaces the Riemann curvature tensor only
has a single d.o.f. and admits the representation®

Ry = G(gw&y — gij&ki)- (35)

Where G is the Gaussian curvature. From this the Ricci tensor
follows R;; = gk Rix; = Ggyj. Using the expansion of the metric,
we have to lowest order

Ry = G(8uy — 05011) + O(|x|*) (36)

Rjj = Go; + O(|x*) (37)

These expressions reflect that locally any surface looks either
flat (G = 0), spherical (G > 0), or saddle-like (G < 0). To lowest
order the metric expansion about p becomes

1
g = 05 = 39(0udy — 50a)x"x' + O(|xf) (38)
and determinant yields

2+ O(Ix) (39)

det(g) =1 —%gx
which shows how curvature induces local compression or
dilation. Higher order terms contain gradients and higher
order invariants of Ry, and are completely determined by G.
It follows that if the quadratic contribution vanishes, then the
metric is totally flat locally.
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A.2 Perturbative polygon area expansion

To explicitly parameterize the polygonal cell D, we will consider
a regular n-gon and decompose it into 2n-triangles about its
centroid as pictured in Fig. 4. Working in terms of polar
coordinates, this yields for the first term

. % Reell cos(%) sec
‘ d’x = 2nJ [ dordr
JD 0J0 (40)

T 2 b
= cheuz cos <7) tan (7)
n n

In the limit of n - o0 we get TRee1’, as expected for circles.
Using the same coordinate system, we compute the first
correction due to curvature

I Reen cos(ﬂ) secl
QJ |x|2d2x:g2anJ Y dordr
6Jp 6 Jolo

- tsod G () o)

A.3 Mean-field vertex model

(41)

The mean field model is defined by the area and perimeter of a
single cell, which is parameterized by n-edges v, given by

Uy, =4 (cos (zﬂ), sin ({qﬂ) ) (42)

where /7, the characteristic cell edge length. The perimeter is
the sum of each edge length

p= E NG (43)

Under an affine transformation, denoted as the matrix F, the
deformed perimeter is given by

p= Z VFD,) - (F7). (44)

The area can be calculated by the cross product

A= J dx? = n|@ x b (45)
D

where @ and b are defined in Fig. 4.
The deformed are is straightforward to calculate by using

the identity |(F) x (Fb)| = det(F)|@ x 5. Thus under an affine
transformation the deformed area can be written as

—

A = det(F)n|@ x b| (46)
= det(F)ZZo2 cot (g) . (47)

The energy per cell is cast as

= (O
oy 2 (48)
(v )
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To non-dimensionalize we define reference lengths /4 and /p
such that

Ay = ZZi cot (g) (49)

Py =nlp (50)

And rescale energy by x,4,°, yielding
n 2
E= %(zz det(F) — 1)2% (ZZ V(¥5,) - (FD,) — so) (51)

Kp P() . .
where r = ——, 5o = —— is the target shape index, and / =
ZO KAA() 0 \/A() & P
———= is the re-scaled characteristic cell edge length. In the
VAo

incompatible state, the ground state corresponds to a regular
polygon with /, defined to minimize the energy. This involves

E
solving the cubic equation defined 607=0. The relevant

solution obeys the inequality / < 1 for all 5o <sj. In the
compatible state energy minimization yields / = 1 for choices
of r and 59 > 5.

A.4 Inputting deformations

We model all cell shape distortions due to both applied defor-
mations and cell response of the cell by linear affine transforma-
tion F. For example, compression/dilation correspond to

1+e¢ 0
F, = . (52)
0 1+e¢

We also parametrize a self-shear corresponding to the cell
adjusting its perimeter without changing the imposed re-scaled
area by enforcing the constraint det(F*") = 1. This only fixes a
single degree of freedom, leaving in principle three components
of F. free. For simplicity, we only consider the cell’s response by

tilting through a simple shear transformation

1 tan(0)
w0 ) &
0 1

We set the overall transformation in the mean field model as

1 tan(6)
F_Fge“-F,,—(lJrs)(O 1 ) (54)
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