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Motility induced phase separation of deformable
cells†

Austin Hopkins, *a Benjamin Loewe, b Michael Chiang, b

Davide Marenduzzo b and M. Cristina Marchetti *a

Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness,

affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy,

cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact

that deformability increases the effective duration of collisions. In addition, the dense regions become

increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to

biological systems and have implications for how cells in biological systems may self-organize.

1. Introduction

Self-propelled particles1 have been used as a simple model for
synthetic active swimmers and biological systems, and can des-
cribe collective phenomena such as flocking,2–5 aggregation6,7 and
sorting.8–10 Although biological systems often have complex physi-
cal interactions, it has been shown that motility is sufficient to
induce phase separation of purely repulsive particles. This phe-
nomenon is known as motility induced phase separation (MIPS)
because, unlike in equilibrium systems, the phase separation can
occur without attractive interactions. MIPS has been extensively
studied in the context of self-propelled repulsive spheres, known
as active Brownian Particles (ABPs), and it has been described
in terms of the suppression of the effective motility due to
crowding,11–18 the kinetics and mechanics of the phase-separated
interface,19 and an effective attractive interaction.20 The phase
behavior of rigid, repulsive active particles has been mapped out
as a function of motility and density,21 and the effects of other
properties like polydispersity,22 particle shape,23 friction between
particles,24 and interaction softness25–27 have also been studied.

One shortcoming, however, is that studies have focused on
rigid particles, even though the cells that make up biological
systems can change their shape. Therefore, we study here a system
of deformable active particles to better understand the applic-
ability of MIPS to biological systems, or to cell suspensions. We
find that, at a given density, more deformable particles are more
prone to phase separate than less deformable ones. This result

can be explained by an increase in the duration of two-body
collisions with increasing deformability. We also find that
deformability fundamentally affects the structure of the dense
phase, which is crystalline at low deformability and becomes
glassy with increasing deformability.

In the remainder of the paper we first introduce the phase
field model in Section 2. The results are presented in Section 3,
including the numerically evaluated phase diagram, a phenom-
enological argument that relates the deformability-induced
enhancement of phase separation to the duration of binary
collisions, and an analysis the structural properties of the
dense phase. We conclude with a brief summary and outlook
in Section 4.

2. Model

We model N cells as deformable particles, each described by a
phase field fi(r).

28–37 The phase field model allows us to
describe arbitrary cell shapes and to vary the cell edge tension.
Phase field models have been shown to capture many mechan-
ical properties of tissue monolayers.30,31,34,36,37 The free energy
of the system is

F ¼
XN
i¼1

k
ð
d2r fi

2 fi � 1ð Þ2þx2 rfið Þ2
� ��

þ lpR2 1�
ð
d2r

fi
2

pR2

� �2

þe
XN

io j¼1

ð
d2rfi

2fj
2

#
:

(1)

The first term sets the field fi to be 1 in the interior of the cell
and 0 in the exterior. The second term penalizes gradients in
the field with a stiffness proportional to k. The third term sets
the preferred cell area to that of a circle of radius R. An isolated
cell will be circular, as in Fig. 1(a). The resulting fi profile
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interpolates from 0 outside the cell to 1 inside the cell, as in
Fig. 1(b), with interfacial thickness x. The last term incorpo-
rates steric repulsion by penalizing overlap between different
cells with strength e. When two cells interact, they may overlap
or they may change their shape to avoid overlapping. We define
the deformability d as the ratio of the characteristic energy of
overlap to the characteristic energy of shape deformation:

d ¼ 1

12
ðexRÞ=ðsRÞ ¼ e

4k
. s = kx/3 is the cell-edge tension and

the factor of
1

24
brings this definition in line with previous

work,32 in which d B 1 was shown to result in a qualitative
change in the cellular interactions. Fig. 1(c) qualitatively illus-
trates how varying d changes the interactions between cells. We
also define the cell compressibility w = l/e, which we keep fixed
at w = 50. This value of the compressibility allows for poly-
dispersity while preventing cells from collapsing.

We model cells crawling on a substrate, which leads to the
following evolution equation for the fields

@fi

@t
þ vi � rfi ¼ �1

g
dF
dfi

; (2)

where g is the inverse mobility. We incorporate the cell motility
via the advection term in the field equation. The advection
velocity is determined by self-propulsion and interaction terms
arising from passive forces, which arise from the gradients of
the chemical potential,38

vi ¼ v0p̂i þ
1

GAi
f i; (3)

where p̂i = (cosyi, sinyi) is the cell polarity which determines the
direction of isolated cell motion. The passive forces are given by

f i ¼ �
XN
j

ð
d2rfifjrmj ; (4)

with mj ¼
dF
dfj

the chemical potential of cell j, Aj ¼
Ð
d2rfj

2 the

cell’s area, and G a friction per unit area. We assume that all
cells have the same self-propulsion speed v0. The direction yi
diffuses at a rate Dr, i.e., dyiðtÞ ¼

ffiffiffiffiffiffiffiffi
2Dr

p
dWiðtÞ, where dWi(t) is a

Wiener process. We quantify the activity via the Péclet number
Pe = v0/(RDr), which is the ratio of the cell’s persistence length
cp = v0/Dr to its size. The effect of varying Pe on cell trajectories
is illustrated in Fig. 1(d).

In the following we take R as our unit of length, R/v0 as unit
of time, and eR2 as unit of energy. In these units v0 = 1 and we
fix the interfacial thickness x = 1/8. Our equation then contain a

dimensionless substrate friction per unit area ~G ¼ GRv0=e and
a dimensionless inverse mobility ~g = gv0/(eR). In the following
all quantities are dimensionless and we drop the tilde. All
results are for G = 4.375 � 10�2 and g = 4.375 � 10�2. The
model parameters and their values are summarized in Table 1.

3. Phase separation of
deformable particles

To study motility-induced phase separation, we simulate 2000
cells in a square simulation box of length L = 112.125, giving a

Fig. 1 Illustrations of the model features (a)–(d) along with snapshots of the particles in the full simulations (e)–(h). (a) Shows an isolated cell, which is
circular. (b) Shows a typical profile for the phase field of a cell. (c) Depicts how cells at a low dwill tend to overlap while maintaining a circular shape, while
at a high d cells will change shape to avoid overlapping. (d) illustrates sample trajectories for isolated cells whose Pe differs by a factor of 5. The snapshots
in (e)–(h) show the full system at low and high d and Pe as indicated.
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packing fraction j ¼ NpR2

L2
¼ 0:5. At fixed packing fraction, we

vary both d and Pe. We vary Pe by varying Dr (see Table 1). Since
we work at a fixed interfacial thickness x, we vary d by changing
the cell edge tension s. We show snapshots from several of
these simulations in Fig. 1(e)–(h). At low Pe the system does not
phase separate regardless of the value of d. Fig. 1(g and h). As
Pe is increased, phase separation occurs for both values of
d Fig. 1(e and f). One qualitative difference is that the dense
phase in the high d system takes up less area because the
deformable cells can pack closely, while the rigid disk-like cells
in the low d system cannot pack as tightly.

3.1 Deformability enhances phase separation

We find that, like in studies on rigid particles, phase separation
occurs above a critical Pe. To quantify the onset of phase separation
we divide the system into square subsystems of size 10R and
calculate the local density rL, defined as the area fraction of the
subsystem where the local phase field is greater than 0.5. Examples
of the distributions of rL are shown on the left side of Fig. 2. This
particular definition of the local density captures the fraction of the
area that is excluded by steric interactions. It also allows the most
accurate comparison between low and high d systems because the
values are restricted between 0 and 1, even if the fields in tightly
compressed cells reach values above 1. We have verified that
varying the subsystem size does not qualitatively change the
distributions, as long as the subsystem size remains significantly
larger than R but smaller than L. When the system phase-separates,
the local density distribution changes from unimodal to bimodal.
To quantify this change we use the variance of the distribution and
choose a cutoff of 0.0378 to identify phase separation. The resulting
phase diagram is shown on the right side of Fig. 2, where the
variances have been normalized by this cutoff. As one can see from
the histograms on the left side of Fig. 2, the chosen cutoff separates
the homogeneous and phase separated systems. The required Pe
for phase separation decreases with increasing d.

3.2 Deformability modifies the effective duration of a
collision

Previous work on motility-induced phase separation has shown
that the transition from a homogeneous fluid to a phase

separated state can be captured by continuum models formu-
lated in terms of coarsed grained density and polarity
fields.12,14–16 Interactions renormalize the self-propulsion
speed v0, which becomes v(r), a function of the density. To
capture the deformability dependence of the phase diagram, we
start from the observation that at long times an isolated
ABP behaves as a random walk of step length cp C v0tp, with
tp = Dr

�1. Following the argument given in ref. 15, we note that
an ABP will be slowed down by collisions during each step of
length cp, resulting in a reduction of the effective step length
c(r)o cp. Denoting by nc the number of collisions in tp, and by
ts the typical stalling time associated with each collision, the
effective step length can be written as c(r) = v0(tp � ncts). The
effective self-propulsion speed is then given by v(r) = c(r)/tp.
We estimate the number of collisions in a time tp as nc C
tp/tmft, where tmft is the mean free time between collisions.
This is controlled by the scattering cross section and for
circular particles can be written in terms of the number density
r as tmft = 1/(2Rv0r). The effective propulsive speed can then be
written as16

vðrÞ ’ v0 1� ts
tmft

� �
: (5)

This derivation makes sense at low densities, where tmft c ts,
and two body collisions are the primary cause of velocity slow-
down. Eqn (5) predicts a linear dependence of velocity on
density. This has been observed empirically to hold to a good
approximation up to much larger densities which might be a
priori expected on the basis of this simple derivation.15

Previous work12,14–16 on continuum models of MIPS has
shown that the onset of phase separation can be understood
qualitatively by a linear instability associated with the vanish-
ing of an effective diffusion coefficient, given by16

DðrÞ ¼ v2ðrÞ
2Dr

1þ d ln vðrÞ
d ln r

� �
: (6)

Table 1 Value(s) of the parameters used in the simulations

Parameter Interpretation Dimensions Value(s)

d Deformability — 0.1–10
R Cell radius [L] 1
x Cell interface thickness [L] 1/4
e Strength of repulsion [E] [L]�2 1
w Cell compressibility — 50
g Inverse mobility [E][T][L]�2 4.375 � 10�2

G Substrate friction density [E][T][L]�4 4.375 � 10�2

v0 Cell self-propulsion speed [L][T]�1 1
Dr Polarity diffusion rate [T]�1 1/75–1/15
dt Time step [T] 2.1875 � 10�4

dx Lattice size [L] 1/8
Lsub Cell subdomain size [L] 4.375
L Simulation box size [L] 112.125
j Packing fraction — 0.5

Fig. 2 Left: Local density curves for two different d, showing the differ-
ence in the distribution below and above the empirically determined
cutoff. Right: Phase diagram based on the variance of the local density
distributions, with a fit based on the deformability dependence of the
duration of two-body collisions. The stars indicate the deformabilities
corresponding to the distributions on the left. The variance is normalized
by the empirically chosen cutoff for phase separation.
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Within our approximation in eqn (5), MIPS ensues when
ts B tmft, which is also when such an approximation breaks
down, suggesting that many-body collisions become important.

To estimate the stalling time ts, and hence the onset of MIPS
in our deformable droplet system, we note that the latter is
mainly controlled by two processes: the reorientation that
occurs at rate Dr and the fact that collisions among deformable
particle have a finite duration tc. Assuming that ts is controlled
by the faster of these two processes, we write ts

�1 = a1Dr +
a2tc

�1, with a1 and a2 fitting parameters expected to be of order
one. We then estimate the deformability dependence of tc, i.e.,
the time it takes for particles to move past one another due to
interactions, by examining numerically two body simulations of
nearly head-on collisions in the limit Dr = 0, where particles
cannot escape the collision by turning their nose. We find that
tc depends strongly on deformability (Fig. 3). Using this esti-
mate in the instability condition tmft(r) = ts(d) we obtain the
dashed line in Fig. 2, with a1 = 3.70 and a2 = 1.42. Therefore we
find that the criterion ts = tmft predicts well the onset of MIPS,
so that the strong dependence of the stalling time on deform-
ability obtained from two body collisions captures the increas-
ing propensity of more deformable particles to phase separate.

3.3 Structure of the dense phase

The dense phase becomes more disordered as deformability
increases. This is evident from Fig. 4(a) and (b), where we show
snapshots in which the cells are colored by their number of
neighbors as determined by a Voronoi construction of their
centers of mass. Clearly the number of structural defects
increases with deformability. To quantify the structure, we

define the bond-orientational order of a cell j as C6; j ¼

1

Nnn;i

P
k2nn

ei6yj;k ; where the sum is over the k nearest neighbors

and yj,k is the angle between the center of mass of cell j and cell

k. We define the local bond-orientational order |C6|loc as the
average of C6,j over the cells within a subsystem of size 10R. We
show the distributions of this quantity in Fig. 4, for low (c) and
high (d) deformability. At low deformability the distribution
has a peak near |C6|loc B 1, corresponding to local hexatic
order of the dense clusters, and a second peak at a small values
of |C6|loc arising from the disordered low density gas. For high
deformability, however, there is no local heaxatic order in the
dense clusters, and the distribution has a single peak at low
|C6|loc. The increase in disorder as a function of deformability
is similar to the change seen in the confluent deformable
particle monolayer studied in previous work.35

4. Summary

In summary, we have characterized numerically the phase
diagram of a system of purely repulsive deformable active
particles as a function of their deformability and motility. This
case is an important one to consider when the applicability of
motility-induced phase separation to biological systems, such
as cell suspensions, is considered: indeed, cells behave differ-
ently from colloidal rigid particles, and can be better repre-
sented by deformable droplets.

We have shown that, like rigid APBs, deformable particles
phase separate into a dilute and dense phase for sufficiently
persistent motility. However, we found that deformability has
two important effects on motility-induced phase separation.
First, deformable particles are able to phase separate at a
significantly lower motility than rigid ones. This effect can be

Fig. 3 The collision duration tc as measured from two body simulations
of nearly head-on collisions with Dr = 0 increases with increasing particle
deformability. See Appendix B for more details.

Fig. 4 Top row: Snapshots of the phase-separated system with some of
the particles in the dense phase colored by the number of neighbors as
determined by a Voronoi diagram of the centers of mass for low ((a),
d = 0.1) and high ((b), d = 10) deformability. Bottom row: corresponding
(time-averaged) distributions of the local bond-orientational order para-
meter |F6|loc for low ((c), d = 0.1) and high ((d), d = 10) deformability.
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explained by the fact that deformability increases the duration
of two-body collisions, thereby enhancing the slow-down of
motility induced by crowding. Second, deformability strongly
affects the nature of the high-density phase, which is glassy for
squishy (more deformable) particles, which become polydis-
perse, and near-crystalline for rigid (less deformable) particles.
It would be of interest to study in the future the dynamics
within the high-density phase, to assess whether the structural
differences we have observed translate into a dynamical phase
transition between the two regimes.

We stress that increasing deformability in our work has a
distinctly different effect from the softening of the repulsive
interaction. Previous work on simulations of rigid repulsive
ABPs has shown that softening the repulsive interaction sup-
presses both motility-induced phase separation and bond
orientational order.25 Phase separation in that context is sup-
pressed because softer repulsive interactions allow particles to
overlap, which reduces the amount that particles are slowed
down due to collisions. In contrast, deformability, as imple-
mented in our work, suppresses overlap and enhances the slow
down due to collisions, which promotes phase separation.

Future work will be needed to further connect MIPS to
biological systems. Additional interactions beyond steric repul-
sion, such as differential adhesion,39 as well as chemically
mediated interactions,40,41 may enhance cell aggregation or
affect pattern formation in real systems. A further interesting
generalization would be to consider mixtures of deformable
and rigid particles, which could lead to sorting between cells
within the high-density phase.
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Appendices
Appendix A Role of interaction forces in the advection equation

Phase field models used in previous literature have either
included30,31 or neglected32,37 the passive interaction forces in
eqn (3) for the cell advection velocity. These interaction forces
arise from cellular stresses when the 3D force balance equation
is averaged over the cell thickness to obtain a 2D model of cells
coupled to a substrate.42 We show here that the presence/
absence of these forces has a significant effect on MIPS.
Specifically, the effect of deformability on MIPS is reversed
when the passive interaction forces are not included in the

Fig. 5 (a) Phase diagram obtained simulations using the model of ref. 32
without passive forces in eqn (3). Colorbar: variance of the local packing
fraction, normalized by a cutoff 0.0252, which corresponds to the difference
between a unimodal and bimodal distribution in this model. In the absence of
passive forces, deformability suppresses phase separation. (b) Cell velocity as
a function of local packing fraction for cells without passive forces. Increasing
deformability reduces the slow-down induced by crowding, thus suppressing
MIPS. (c) Snapshot of phase separated states with and without passive forces
at the same deformability andmotility (d = 0.1, Pe = 75). Passive forces lead to
a more spread-out spatial distribution of cells.
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force balance equation for the advection of velocity. In this
case, increasing deformability suppresses rather than enhances
phase separation even at high motility. To understand this we
recall that MIPS occurs when crowding suppresses motility. For
rigid particles with purely repulsive interactions the reduction of
the motility of particle i is given by the component of the
repulsive force on that particle along its direction of self propul-
sion and can be estimated to linear order in density, as shown in
ref. 14. When passive forces are neglected in the force balance
equation, there are simply no interactions that can renormalize
the motility. Increasing deformability then allows cells to more
easily squeeze through their neighbors, slightly increasing the
particles’ effective motility (Fig. 5(b)) and suppressing MIPS. This
effect can also be observed by visually inspecting the phase
separated system (see Fig. 5(c)): passive forces help cells keep
away from each other, leading to larger clusters. In their absence,
the same deformability and motility lead to sparser clusters.

To demonstrate the effect of the passive forces on the
effective velocity vi of a cell, we have performed simulations
of the head-on collision dynamics of two particles at various
values of the substrate friction G. It is clear from the force
balance equation, eqn (3), that increasing G reduces the impor-
tance of the passive forces, which eventually drop out entirely
for G-N, where vi E v0p̂i. We show in Fig. 6 the duration of a
binary collision as a function of deformability for various values
of G. It is evident that while at small G the duration of collision
increases with deformability, as shown in the main text, this
behavior is reversed at high G, where the collision is only
indirectly slowed down by shape changes in the evolution of
the phase fields, eqn (2). In this case more deformable particles
can squeeze more easily around the obstacle provided by
another particle. The small nonmonotonic region at intermedi-
ate G (green dots in Fig. 6) and small deformability is due to the
competing effects of the particle shape changes and passive
forces on the collision duration. Initially, the shape changes
allow the particles to move past one another more quickly.
However, as deformability increases further, the shape changes

result in greater passive forces along the direction of the
collision, thus slowing the particles down.

Appendix B Details of two-body collisions

We consider two particles, initially isolated and circular, which
propel towards each other in a head-on collision. All the cell
parameters are as in the main text, except Dr = 0 to eliminate
rotational noise. We offset the particles by one lattice point (impact

parameter b ¼ 1

8
R) so that they are nearly head-on, but are still able

to move past one another in the absence of noise. We focus on
nearly head-on collisions because those are the ones which signifi-
cantly slow down a particle, and hence are the most important for
cluster formation.We choose a cutoff off1 + f2 = 0.1 to define when
the two particles are in contact with one another, and measure the
collision duration as the total time the particles are in contact. As can
be seen in Fig. 7, when particles with high d collide (bottom row),
their shape changes, which slows their motion past one another.

Appendix C Table of parameters and simulation details

We have chosen the preferred cell radius as unit of length
(R = 1), R/v0 as unit of time (v0 = 1), and the repulsion strength
over cell area as unit of energy (eR2 = 1) (Table 1). To compare
with a physical system of cells, we can match the cell radius and
self-propulsion speed to the data for isolated cells in Table 1 of
ref. 9 for keratocytes. This results in a radius RB 10 mm, and v0
B 558 mm h�1.

We simulate eqn (2) using finite differences, and a 3rd order
upwind scheme for the advection velocity. The simulation lattice
spacing is dxB 1.25 mmwith a total box size LB 0.1 cm and the
time unit is 64 s, with a time step of dt B 14 ms and a total
simulation time of B35 h. As in previous work, we compute an

auxiliary field hð~rÞ ¼
PN
i

fi
2, which allows us to solve for the

individual phase field in parallel on their own
subdomains.28,31,32 We choose a subdomain of size Lsub � Lsub,
where Lsub = 35, which is larger than a single cell but smaller
than the whole system, with fixed boundary conditions (fi = 0)
on the boundary of the subdomain. As in previous work,32 we
keep the cell in the center of its subdomain by shifting its
position when it has moved more than 2 lattice units in any
direction, and we correspondingly update the position of the

Fig. 6 Duration tc of a two-body collision as a function of deformability
for different values of the substrate friction G. As the substrate friction is
increased, the passive forces become less important than the self-
propulsion velocity in determining the effective velocity vi of a cell (see
eqn (3)) and tc switches from increasing with deformability to decreasing
with deformability.

Fig. 7 Snapshots of two-body collisions. Frames in which the cells are not
in contact are colored in black and white. When the cells are in contact,
the frames are colored in purple and yellow and are also indicated by a star
in the top left corner.
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subdomain relative to the whole lattice. On the full simulation
box, the boundary conditions are periodic. We initialize
the system with cells that are placed randomly but non-
overlapping, with a random initial velocity direction. On each
sublattice, the field of the cell is initialized as a circle of radius
R, with fi = 1 inside the circle and fi = 0 outside, centered at the
center of the subdomain. We evolve the system without motility
(v0 = 0) for 10 000 time steps before turning on motility (v0 a 0).
This passive run allows the cells to develop a finite interface
width and reach their equilibrium shape before turning on
activity. We run the active simulations for 1.1 � 107 time steps
on 12 processors, parallelized with OpenMP.

We have included videos of the system at d = 0.1 and 10.0 with
Pe = 75 to show the system at various values of deformability.
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