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Abstract

Purpose Carbohydrate-active enzymes (CAZymes)
mediate carbohydrate turnover and play vital roles
in plant- and microbial-derived carbon decompo-
sition. However, the changes of genes that encod-
ing enzymes for plant- and microbial-derived car-
bon decomposition along environmental gradients
remains unclear.

Methods We used metagenomic sequencing to
explore changes in genes encoding enzymes for
carbon decomposition in five forest sites along an
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elevational gradient (1503-3182 m) on Qinling
Mountain, China.

Results The genes encoding CAZymes showed
various patterns along the elevational gradient. In
particular, the abundance of genes encoding auxil-
iary enzymes and glycoside hydrolases decreased
with increasing elevation. The abundance of genes
encoding enzymes for plant- and fungi-derived car-
bon decomposition was higher at low elevations
than at high elevations, whereas the abundance of
genes encoding enzymes for bacteria-derived carbon
decomposition was higher at high elevations than at
low elevations. The results indicate contrasting pat-
terns of fungal- and bacterial-derived carbon decom-
position with elevation. Proteobacteria and Acido-
bacteria were the dominant species that decomposed
dead plant and microbial biomass. Moreover, our
results reveal that soil properties (i.e., ammonium
nitrogen and bulk density) and vegetation properties
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dominated the CAZymes gene distribution along the
elevational gradient.

Conclusion Bacteria- and fungi-derived carbon
decomposition potentials show contrasting eleva-
tional patterns in forest soils; soil and vegetation
properties are common controls for the elevational
patterns.

Keywords Metagenomics - CAZymes - Carbon
cycle - Decomposition - Elevational gradient

Introduction

Forests are important carbon reservoirs in terres-
trial ecosystems, with most carbon stored in the soil
(Grace 2004; Vanguelova et al. 2016. Plant-derived
carbon (cellulose, hemicellulose, and lignin) and
microbial-derived carbon (chitin and glucans for
fungi and peptidoglycan for bacteria) are the major
sources of organic compounds entering the soil
(Gao et al. 2021; Zhang et al. 2022). The degrada-
tion of these compounds is a key step in the forest
soil carbon cycle (Eichorst and Kuske 2012). Micro-
organisms are the primary decomposers of plant-
and microbial-derived carbon and produce various
enzymes (Schimel and Weintraub 2003; Wallenstein
and Weintraub 2008). Recent studies have shown
that bacteria play important roles in the decomposi-
tion of both recalcitrant and simple compounds (Zif-
cakova et al. 2016). In particular, Proteobacteria and
Acidobacteria produce a wide range of enzymes to
decompose organic compounds (Llado et al. 2019). In
particular, some enzymes are involved in the assem-
bly and breakdown of diverse complex carbohydrate
assemblies and breakdowns, collectively designated
as carbohydrate-active enzymes (CAZymes), which
play important roles in Carbon cycling in forest eco-
systems (Lopez-Mondejar et al. 2020; Zifcakova et al.
2017).

Microbial CAZymes are classified into a hierar-
chy of families based on their structure and function,
including glycosyl transferases (GTs), glycosyl hydro-
lases (GHs), carbohydrate esterases (CEs), auxiliary
activities (AAs), polysaccharide lyases (PLs), and
carbohydrate-binding modules (CBMs) (Lombard
et al. 2014). Their action within microbial communi-
ties typically results in the decomposition of a variety
of substrates and the production of specific polymers
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and sugar-modified proteins or metabolites (Gomez-
Silva et al. 2019). For example, some GHs (e.g., cel-
lulases, glucosidases, and hemicellulases), AAs (e.g.,
peroxidases, oxidoreductases, and laccases), and CEs
are crucial for the degradation of plant-derived car-
bon (Bomble et al. 2017; Levasseur et al. 2013). Sev-
eral GHs, including chitinases and peptidoglycan lytic
transglycosylases, are involved in the degradation of
fungi- and bacteria-derived carbon (Lopez-Mondejar
et al. 2020; Zifcakova et al. 2017). Additionally, the
composition of CAZymes genes reflects the abil-
ity of microorganisms to utilise various compounds,
thereby affecting the accumulation of soil organic
carbon (SOC) pools (Frey et al. 2022). Previous
studies have shown lower soil carbon, soil C/N, and
CAZymes gene abundance and diversity in forest-
harvesting soils, indicating a lower potential for bio-
mass decomposition (Cardenas et al. 2015). Ren et al.
(2021) found that the abundance of CAZymes genes
were associated with microbial metabolic activity and
higher SOC in afforestation soil. Therefore, study-
ing CAZymes is key to clarifying the cycling of soil
nutrients in forest ecosystems. However, soil micro-
bial community and function are affected by a wide
array of factors, and the environmental factors con-
trolling the genes encoding CAZymes for plant and
microbial biomass decomposition remain unknown.
An elevational gradient can provide various envi-
ronmental gradients that shape microbial properties
and gene abundance, further influencing the decom-
position capacity (Stokes et al. 2021). Ren et al.
(2018) found that microbial alpha diversity was sig-
nificantly affected by soil chemical properties (e.g.,
SOC and total nitrogen [TN]) and vegetation prop-
erties with elevation. Yang et al. (2022) found that
the contribution of microbial residues to soil organic
carbon showed a declining trend along an eleva-
tional gradient and was influenced by the interaction
between vegetation and soil properties. In our recent
study, Zhao et al. (2022) highlighted that the soil envi-
ronment is a major factor influencing microbial func-
tional genes, driving the positive priming effect along
an elevational gradient. Zhou et al. (2015) found
that temperature controls litter decomposition rates,
with decomposition rates decreasing with increasing
elevation. In this case, changes in soil environmental
parameters can alter microbial potential decomposi-
tion, affecting carbon cycling in forest soils. Dai et al.
(2021) found that microbial functional potential may
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decline with the loss of microbial diversity along an
elevational gradient. However, the potential decom-
position of carbon by soil microorganisms derived
from different sources and their influencing factors
along an elevational gradient are unclear.

To fill the current knowledge gaps, we performed
soil sampling and characterised CAZyme genes and
soil and vegetation properties at five sites along an
elevational gradient in a temperate forest. We hypoth-
esised that the biomass carbon decomposition poten-
tial would be higher at low elevations than at high
elevations, because Ren et al. (2018) found a decreas-
ing trend in enzyme activity along an elevational gra-
dient. Our aims were to (i) determine the trends of the
microbial CAZymes genes pool along an elevational
gradient, (ii) and investigate major factors affecting
microbial CAZymes genes.

Materials and methods
Study area

The elevational transect in this study was located
on the north-facing aspect of Taibai Mountain
(33°45’-34°10° N and 107°19°-107°58" E), the
main peak of the Qinling Mountains in Central
China.. The annual mean temperature is 11.4 °C and
the mean annual precipitation is 910.6 mm (Zhang
et al. 2019). Taibai Mountain has rich vegetation
types that cover an extensive area. The typical verti-
cal vegetation belts from bottom to top are Quercus
aliena var. acuteserrata (1100-1800 m), Quercus
wutaishanica (1800-2200 m), Betula albosinensis
(2200-2600 m), Betula utilis (2600-2800 m), Abies
fargesii  Franch (2800-3000 m), Larix chinensis
Beissn (3000-3400 m), and alpine shrub meadow
(>3400 m).

Soil sampling and processing

Soil samples were collected from five elevation sites:
low elevation (1503 m), low-mid elevation (1915 m),
mid-elevation (2451 m), mid-high elevation
(2753 m), and high elevation (3182 m) (Table S1).
At each elevation, we randomly set three repli-
cate plots (20X 30 m). Surface litter and the humus
layer were removed, and 0—10 cm surface soil sam-
ples were collected from 10 soil cores (5.0 cm inner

diameter) in each replicate stand according to the "S"
sampling method. We then mixed the 10 soil cores
to get a composite sample. Finally, we obtained 15
soil samples (five elevation sites X three replicates).
We removed rocks, roots, plant, animal residues,
and other sundries from the soils, and filtered them
through a 2-mm sieve. We used 60 g dry soil (calcu-
lated by fresh soil) to analyse basic soil properties;
part of the fresh soil was stored in a—80°C refrigera-
tor for metagenomic sequencing.

Soil and vegetation properties analysis

The soil moisture (SM) and soil temperature (ST)
were measured using temperature and humidity sen-
sors. Soil bulk density (BD) was calculated from
the volume of the core sampler before and after
oven drying at 105 °C for 24 h to assess the vol-
ume of each core (De Vos et al. 2005). Soil pH was
estimated using a pH meter at a soil:water ratio of
1:2.5 (Zhang et al. 2016). SOC and TN were deter-
mined as described by Zhang et al. (2011). Ammo-
nium nitrogen (NH,*) and nitrate nitrogen (NO;7)
were extracted from samples using a 2 mol-L~! KCI
solution and Dionex ICS 1500 ion chromatograph
(Dionex Co., Sunnyvale, CA) (Zhang et al. 2014). To
determine the vegetation cover of each plot, quadrats
were randomly selected near each elevation plot to
determine the Arbor—Shannon index and canopy den-
sity using the method described by Zhao et al. (2015,
2022).

DNA extraction and sequencing

Total genomic soil DNA was extracted from a 0.5 g
fresh soil sample using the FastDNA spin kit for soil
(MP Biomedicals, Cleveland, United States), accord-
ing to the manufacturer’s protocol. To obtain sufficient
DNA for whole-genome shotgun (WGS) sequencing,
six replicates of each soil sample were analysed and a
NanoDrop spectrophotometre was used to assess the
quality and integrity of the DNA extracts. Extracted
microbial DNA was processed to construct metagen-
omic shotgun sequencing libraries with an insert size
of 400 bp. Each library was sequenced using an Illu-
mina HiSeq and the PE150 strategy. The sequences
were obtained from the National Center for Biotech-
nology Information (NCBI) website SRP345989.
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Sequence quality control

The original data (FASTQ format) were used to deter-
mine the sequencing amount and high-quality base
proportion. We also used FastQC (http://www.bioin
formatics.babraham.ac.uk/projects/fastqc/) to control
the quality of the original data generated by sequenc-
ing, including the base mass distribution, sequence
average quality distribution, base content distribution,
and GC content distribution. The valid sequences
were screened and filtered. Cutadapt (v1.2.1) and a
sliding-window algorithm were used to obtain a clean
dataset for subsequent analysis, with a minimum
sequence length of 50 bp and no fuzzy bases in the
sequence.

Metagenome assembly

We used Megahit (https://hku-bal.github.io/megab
ox/) for the de novo assembly splicing of each sam-
ple’s paired-end sequence. The Kaiju (https://github.
com/bioinformatics-centre/kaiju) software was used
to compare the effective sequences with the protein
sequences of bacteria, archaea, fungi, viruses, and
other micro-eukaryotes in the NCBI-NR database.
The contigs obtained by splicing were aligned with
NT using blastn (e-value of 0.001), the top5 hit were
selected, and the LCA method was used to annotate
the contigs to remove metazoans and greenery only.
We then used MetaEuk to predict bacterial and fun-
gal genes (e-value of 107) and MetaGeneMark to
predict bacterial genes (Zhu et al. 2010; Karin et al.
2020). After merging and removing redundancy from
the prediction genes, the taxonomical annotation
of the non-redundant proteins was performed using
mmseqs2 (Steinegger and Soeding 2017) with the
‘easy-taxonomy’ mode and NR database. Information
on the metagenome sequencing of samples from each
elevation site is shown in Supplementary Table S2.

CAZymes annotation and selection

HMMER3 (Eddy 2011) based on the profile-hidden
Markov model (Profile HMMs) sequence spectrum
annotated the protein sequence set in dbCAN (http://
csbl.bmb.uga.edu/dbCAN/) (Yin et al. 2012). To
evaluate the abundance of these genes, salmon was
used to map the high-quality sequence of each sample
in order to the predicted gene sequences (Patro et al.
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2017); TPM (transcripts per kilobase per million
mapped reads) was used to normalise the abundance
value in the metagenome. Specific CAZyme families
were selected according to CAZy (http://www.CAZy.
org) to link genes with plant-, bacteria-, and fungi-
derived carbon decomposition (Lopez-Mondejar et al.
2020; Ren et al. 2021).

Statistical analyses

Data analyses were completed using Microsoft Excel
2016 and R4.0.2; visualization was performed using
R4.0.2 and the ‘ggplot2’ package. One-way analysis
of variance (ANOVA) was used to assess the o diver-
sity of whole CAZymes genes, soil properties, veg-
etation properties, and microbial taxa of CAZymes
genes based on the ‘stats’ package. Non-metric mul-
tidimensional scaling (NMDS) ordination analysis
of the Bray—Curtis distances was performed in R
using the ‘vegan’ package (Dixon 2003). Spearman
correlations were used to examine the relationships
between the abundance and environmental factors of
the six CAZymes family classes. Principal coordinate
analysis (PCoA) was used to analyse the dissimilar-
ity in genes-encoding enzymes for plant-, fungi-,
and bacteria-derived carbon decomposition among
the elevation sites. Permutational multivariate analy-
sis of variance (PERMANOVA) was used to assess
the significance of the observed PCoA differences,
based on Adonis function using the ‘vegan’ pack-
age. Relationships between the composition of gene
encoding enzymes for plant-derived and microbial-
derived carbon decomposition and soil physical, soil
chemical, and vegetation properties were revealed
by partial Mantel test with the packages of ‘LinkET’
(Huang 2021). Variation partitioning analysis, using
the ‘varpart’ function of the R ‘vegan’ package, was
performed to determine the relative importance of
the environmental variables (soil physical, chemical
properties, and vegetation properties), and their con-
tribution to gene composition as described above.

Results
CAZymes genes along the elevational gradient

In total, we obtained 1,323,164,024 proteins from
the entire metagenome and identified 50,883,616
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CAZyme read counts, accounting for 3.85% of the
total proteins. Among these, 66.71% and 0.04% were
assigned to bacteria and fungi, respectively, whereas
the remainder were assigned to ‘other’ or ‘unknown’.
In general, all CAZymes were identified as belong-
ing to 128 GHs families, 12 AAs families, 53 CBMs
families, 16 CEs families, 12 GTs families, and 26
PLs families. It was apparent that each elevation site
was significantly different in the CAZymes (Fig. S1).
The a diversity was higher at low elevation and lower
at high elevation (p<0.05) (Table S3). The gene
abundance of GHs, AAs, CBMs, and PLs showed
significant differences among sites along the eleva-
tional gradient (Fig. 1). The gene abundance of GHs
and AAs declined with elevation, with GHs ranging
from 5,763 at the low-elevation site to 5,132 at the
high-elevation site, and AAs from 832 at the low-ele-
vation site to 561 at the high-elevation site. AAs and
GHs had significant negative relationships with SM,
SOC, TN, and CD, and positive relationships with
ST, NH4+, and NO;~ (p<0.05) (Fig. S2). The gene
abundance of PLs increased with elevation, from 98

Fig.1 The abundance
(TPM: transcripts per kilo-

at the low-elevation site to 115 at the high-elevation
site. Gene abundance of CBMs did not show eleva-
tional trends from low to mid-high elevation sites
(1331-1387) (p>0.05), but decreased significantly
at the high elevation site (1,367) compared with sites
at other elevations (p <0.05). The gene abundance of
GTs showed a U-shaped pattern with elevation, with
a peak at the low-elevation site. The gene abundance
of CEs did not show an elevational trend and was not
related to environmental factors (p > 0.05).

CAZymes families participating in plant- and
microbial-derived carbon decomposition

Our study showed that the abundance of CAZyme family
genes encoding enzymes for plant-, fungi-, and bacteria-
derived carbon decomposition exhibited different trends
along the elevational gradient (Fig. 2). The abundance
of the CAZyme gene for plant-derived carbon decom-
position significantly decreased from 2,725 at the low-
elevation site to 2,493 at the high-elevation site (p <0.05)
(Fig. 2a). Specifically, the abundance of the CAZyme
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Fig. 2 The abundance (TPM: transcripts per kilobase per
million mapped reads) of gene encoding enzymes for plant-
derived (a), fungi-derived (b), and bacteria-derived (c) car-
bon decomposition along the elevational gradient. Error bar
means +SE; Different lowercase letters represent significant
differences at 0.05 level. Principal coordinate analysis (PCoA)

genes for plant-derived cellulose and hemicellulose
decomposition showed no significant elevational trend;
however, plant-derived lignin decomposition showed
a significant decreasing trend (p<0.05) (Fig. S4), and
all AA families associated with lignin decomposition
showed a decreasing trend with elevation (Fig. S3a).
The abundance of the CAZyme genes for fungi-derived
carbon decomposition decreased from 461 at the low-
elevation site to 414 at the high-elevation site (p <0.05)
(Fig. 2b), with most families (e.g., GH19, GH55, GH20,
GH17, GH18, and GH120) showing a decreasing trend
(Fig. S3b). However, chitin decomposition did not
change significantly with elevation (Fig. S4). Moreover,
the abundance of the CAZyme gene for bacteria-derived
carbon decomposition increased from 651 at the low-
elevation site to 693 at the high-elevation site (p <0.05)
(Fig. 2¢); GH23 was the most abundant family gene,
which showed an increasing trend along the elevational
gradient (Fig. S3c). The composition of CAZyme genes
shifted with elevation based on PCoA plotted using the
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PCoA 1 (64.3%)

PCoA 1 (66.7%)

of CAZyme family gene encoding enzymes for plant-derived
(d), fungi-derived (e), and bacteria-derived (f) carbon decom-
position along the elevational gradient based on Bray—Curtis
dissimilarity. Percentages indicate the amount of that variabil-
ity explained by the corresponding axis

Bray—Curtis distance (Fig. 2d, e, f). PERMANOVA
showed that the compositional dissimilarities among ele-
vations were significant (plant-derived carbon, R>=0.87,
p=0.001; fungi-derived carbon, R%>=0.74, p=0.001;
bacteria-derived carbon, R?=0.71, p=0.002).
Proteobacteria and Acidobacteria were the domi-
nant bacterial phyla in the study area; Proteobacteria
accounted for more than half of the bacteria respon-
sible for bacteria-derived carbon decomposition, and
had the highest relative abundance at lower elevation
sites (Fig. 3). Furthermore, the relative abundance of
Proteobacteria was highest at the low-mid elevation
site for the decomposition of plant-derived carbon
and highest at the high elevation site for the decom-
position of fungi-derived carbon. Verrucomicrobia
are important bacteria in the decomposition of fungi-
derived carbon. The relative abundance of Acido-
bacteria, Actinobacteria, Firmicutes, Bacteroidetes,
Verrucomicrobia, Candidatus Rokubacteria, and
Gemmatimonadetes were lower at lower elevation
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Taxon

Firmicutes

- Proteobacteria

. Acidobacteria . Bacteroidetes

. Actinobacteria . Verrucomicrobia

Fig. 3 Ring diagram showed the relative abundance of micro-
bial taxon for decomposing plant-derived (a), fungi-derived
(b), and bacteria-derived (c) carbon along the elevational gra-

sites than at higher elevation sites for decomposing
biomass carbon.

Effects of soil and vegetation properties on microbial
CAZymes genes

Mantel test analysis showed that soil physical prop-
erties (BD, SM, and ST) were significantly related to
genes encoding enzymes for plant-derived decompo-
sition (Mantel’s r>0.5, Mantel’s p<0.05) (Fig. 4a,
Table S4). Soil NH,* content is an important fac-
tor among soil chemical properties and had a strong
correlation with genes encoding enzymes for plant-
derived carbon decomposition (Mantel’s r=0.89,
Mantel’s p <0.05). Soil BD (Mantel’s r=0.64, Man-
tel’s p<0.05) and NH,© (Mantel’s r=0.75, Mantel’s
p <0.05) were significantly related to genes encoding
enzymes involved in fungi-derived carbon decompo-
sition. Soil BD (Mantel’s r=0.74, Mantel’s p <0.05)
and the Arbor-Shannon index (Mantel’'s r=0.63,
Mantel’s p<0.05) were significantly related to
gene-encoding enzymes for bacteria-derived carbon
decomposition. Furthermore, TN was significantly
associated with the gene pools (Mantel’s p <0.05).
To further determine the relative importance of these
variables, we conducted variation partitioning analysis to

(b)

. Gemmatimonadetes

Candidatus Rokubacteria X\ low elevation
low-mid elevation

mid elevation
mid-high elevation

Bacteria Others high elevation

dient. The rings from inner to outer represent sites from low
elevation to high elevation

investigate their relative effects on the CAZyme genes.
Variation partitioning analysis indicated that soil chemi-
cal properties explained a much greater portion of
the variance (6.11%) in the genes encoding enzymes
for plant-derived carbon decomposition than did soil
physical (1.96%) and vegetation properties (1.41%)
(Fig. 4b). For genes encoding enzymes involved in fungi-
derived carbon decomposition, soil chemical proper-
ties explained a much greater proportion of the variance
(5.28%) (Fig. 4c). Soil physical properties explained a
much greater proportion of the variance in genes-encod-
ing enzymes for bacteria-derived carbon decomposition
(16.16%) than did soil chemical (8.80%) and vegetation
properties (9.52%) (Fig. 4d). In addition, the three types
of properties could interactively explain the variance in
genes encoding enzymes for plant-, fungi-, and bacteria-
derived carbon decomposition by 35.02%, 46.42%, and
47.31, respectively (Fig. 4b, c, d).

Discussion

Microbial CAZymes family genes variation along the
elevational gradient

Our result showed that CAZymes gene o and f diver-
sity differed among the elevation sites, especially
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Fig. 4 CAZyme genes were related to each environmental fac-
tor by partial Mantel test (a). Edge width corresponds to the
Mantel’s r statistic for the corresponding distance correlations,
and edge color denotes the statistical significance. Spearman’s
correlation based on pairwise comparisons of environmental

between low and high elevation sites, indicating
variation of function along the elevational gradient
(Table S3, Fig. S2). The abundance of genes encod-
ing AAs, CBMs, and GHs decreased along the ele-
vational gradient (Fig. 1). This indicates high meta-
bolic activity of anabolic and catabolic processes
at low-elevation sites. One possible explanation is
that higher temperatures and lower water availabil-
ity cause higher oxygen concentrations in the soil at
lower elevations, which may be responsible for higher
microbial activities, resulting in higher microbial
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factors. * p<0.05; ** p<0.01; *** p<0.001. And variation
partitioning analysis (VPA) was conducted to identify the vari-
ance in gene encoding enzymes for plant-derived carbon (b),
fungi-derived carbon (c), bacteria-derived carbon (d) decom-
position

decomposition potential (Mou et al. 2021). The tem-
perature limitations of microbial and enzyme activi-
ties at higher elevation sites can cause a decline in
the genes associated with enzymes (Liu et al. 2019).
Our results also suggest strong correlations between
ST and SM, with the genes encoding AAs, CBMs,
and GHs (Fig. S2). Microbial GHs are key genes
involved in the decomposition of SOM. However,
Dai et al. (2021) reported that the abundance of GHs
was higher at high-elevation sites, and there were no
relationships between GHs and climatic, edaphic, and
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vegetation variables, which was consistent with the
lack of responses of overall organic C decomposition
to the elevational gradient in their study area. A pos-
sible reason for this may be the response of organic
decomposition to elevational gradients. In our recent
study, Zhao et al. (2022) found a decline in the posi-
tive priming effect along an elevational gradient.
Here, the gene for microbial anabolic activities (GTs)
showed a U-shaped pattern along the elevational gra-
dient, with the highest abundance in low elevation
sites and a significant correlation with pH. In line
with our results, Yang et al. (2022) found that pH was
an important factor affecting microbial-derived car-
bon. This is not difficult to explain because pH plays
an important role in influencing microbial community
composition and diversity, thereby influencing func-
tional genes (Li et al. 2018; Zhao et al. 2022).

Changes in plant- and microbial-derived carbon
decomposition along the elevational gradient

The abundance of CAZyme genes encoding plant-
derived carbon showed a declining trend along the
elevational gradient, indicating that the potential for
plant-derived carbon degradation decreases with
increasing elevation (Fig. 2). One possible reason
for this negative elevational trend is the higher plant-
derived carbon input at lower elevation sites with
vegetated deciduous broadleaf trees than at those with
vegetated coniferous trees (Zhu et al. 2017). Studies
have confirmed that an increase in plant residue input
can increase the abundance of CAZyme genes (Ren
et al. 2021; Yin and Zhang 2022).

Moreover, fungi-derived compounds had higher
decomposition potentials at low elevations than at
high elevations, whereas bacteria-derived com-
pounds had higher decomposition potentials at
higher elevations than at lower elevations (Fig. 2).
In line with our results, previous evidence has indi-
cated that the turnover of fungal and bacterial cell
walls differs (Gunina et al. 2017). This can be attrib-
uted to three factors. First, microbes enhance their
decomposition potential to meet their metabolic
demand when the temperature declines and nutri-
ents are limited at high elevation sites, resulting in
faster turnover of dead bacterial biomass because
bacteria-derived peptidoglycan is more readily
decomposed and utilised by soil microbes (He et al.
2011; Hu et al. 2020; Liu et al. 2019). Second,

some-glucans may indirectly increase the decom-
posability of dead fungal biomass by affecting water
availability. Glucans can increase the water-holding
capacity of the fungal cell wall, which is critically
important when water availability is a limiting fac-
tor (e.g., at low elevation sites) (Fernandez et al.
2016; Kyanko et al. 2013). Finally, the acidic soils
of coniferous forests favour fungi with larger resi-
dence times at higher elevations, indicating a slow
turnover of fungal biomass (He and Xu 2021; Rousk
and Baath 2011). Slower fungal biomass turnover
leads to a lower fungal neuroma production rate,
causing the decomposition capacity to decline (Fer-
nandez et al. 2019; Wang et al. 2021, 2020).

Our results showed that most genes encoding
enzymes for decomposing plant- and microbial-
derived carbon belonged to Proteobacteria and Aci-
dobacteria (Fig. 3), which have been widely shown
to produce CAZymes (Ivanova et al. 2016; Zifca-
kova et al. 2016). This may be due to the high per-
centage of bacteria that potentially decompose cel-
lulose found in forest soils, and the high frequency
of genes involved in the decomposition of structural
plant polysaccharides found in bacterial genomes
(Lopez-Mondejar et al. 2020). Generally, Proteo-
bacteria thrive in environments with high carbon
utilisation because they are symbiotic bacteria that
grow rapidly (Fierer et al. 2007). However, the rela-
tive abundance of Proteobacteria was inconsistent
along the elevational gradient for fungi- and bacte-
ria-derived compound decomposition, highlighting
the critical role of Proteobacteria in biomass car-
bon decomposition. Acidobacteria are acidophilic
and show an increasing trend with decreasing pH
along the elevational gradient. This is in line with
a previous study that reported a negative correlation
between the abundance of Acidobacteria and soil
pH (Sait et al. 2006). Overall, our results indicate
the role of bacteria in biomass decomposition along
an elevational gradient.

Factors affecting microbial CAZymes genes along
elevational gradient

Our results demonstrate that soil and vegetation prop-
erties primarily control the distribution of micro-
bial CAZyme genes encoding plant- and micro-
bial-derived C decomposition in forest soils along
an elevational gradient (Fig. 4). On the one hand,
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vegetation can create microenvironments that influ-
ence soil microbial activity and functional diversity
along an elevational gradient (Herndndez-Céceres
et al. 2022). On the other hand, vegetation mainly
shapes soil microbial biomass, growth, composi-
tion, and turnover (Lange et al. 2015; Prommer et al.
2020; Ren et al. 2018). Therefore, vegetation proper-
ties interact with soil properties to mediate microbial
CAZyme genes (Liu et al. 2021; Tkacz et al. 2015).
Among these properties, soil chemical properties
play an important role (Fig. 4, Table S4). Consist-
ent with our results, previous studies have shown
that soil chemical properties and the diversity of
microbial communities are significantly correlated
(Fierer and Jackson 2006; Shen et al. 2013). Nota-
bly, the chemical properties related to nitrogen (TN,
NH,*, and NO;") are significantly associated with
the gene pools. This may be because the soil nitro-
gen content regulates microbial diversity and compo-
sition (Luo et al. 2017; Shi et al. 2018; Tkacz et al.
2015), thereby influencing microbial CAZyme genes
(Zhao et al. 2022). In addition, He et al. (2020) indi-
cated that TN and soil microbial biomass were sig-
nificantly correlated along an elevational gradient.
Therefore, with the increase in TN along the eleva-
tional gradient in our study, we observed a significant
effect on CAZymes. In particular, NH,* is strongly
correlated with genes encoding microbial-derived
carbon decomposition. Previous studies have shown
that NH,* is preferred by microorganisms and affects
the production of microbial residues (He et al. 2011).
Furthermore, we observed the important role of soil
physical properties on CAZyme genes production,
with BD significantly influencing CAZyme genes
function along an elevational gradient. This is con-
sistent with our recent study showing that BD affects
functional genes and alters the soil decomposition
capacity of forest soils (Zhao et al. 2022). This may
be because BD influences soil porosity and oxygen
in the soil, and causes differences in soil temperature
and moisture, both of which affect microbial com-
munity structure and function (Zhong et al. 2018).
Therefore, BD is an important factor that influences
CAZyme genes. ST is another important factor affect-
ing CAZyme genes, which was confirmed by recent
studies showing that temperature changes can alter
the carbohydrate degradation potential in temper-
ate forest soils (Pold et al. 2016). Overall, our results
highlight that soil and vegetation properties drive the

@ Springer

expression of microbial CAZyme genes associated
with dead biomass decomposition in forest soils.

Conclusion

This study investigated functional genes relevant to
C decomposition in forest soils along an elevational
gradient. The key findings were as follows: 1) the
genes encoding GHs and AAs decline with increasing
elevation; 2) plant- and fungi-derived carbon decom-
position potentials are higher at low elevation than at
high elevation; 3) contrary to bacteria-derived car-
bon, fungi-derived carbon have higher decomposition
potential at low elevation compared with high eleva-
tion; 4) dominant bacteria, such as Proteobacteria and
Acidobacteria, play an important role in decomposing
plant and microbial dead biomass; and 5) edaphic and
vegetation factors primarily affect the distribution of
microbial CAZyme genes. These findings advance
our understanding of functional genes in association
with ecosystem functions; the contrasting patterns
of the functional genes of bacteria and fungi provide
direct evidence of the different roles of microbes in
decomposing dead biomass, which calls for model
improvements in representing microbial community
structure.
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