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Abstract

The varying coefficient model is a potent dimension reduction tool for nonpara-
metric modeling and has received extensive attention from researchers. Most existing
methods for fitting this model utilize polynomial splines with equidistant knots and
treat the number of knots as a hyperparameter. However, imposing equidistant knots
tends to be overly rigid, and systematically determining the optimal number of knots
is also challenging. In this article, we address these challenges by employing polyno-
mial splines with adaptively selected and predictor-specific knots to fit the varying
coefficients in the model. We propose an efficient dynamic programming algorithm
to find the optimal solution. Numerical results demonstrate that our new method
achieves significantly smaller mean squared errors for coefficient estimations com-
pared to the equidistant spline fitting method. An implementation of our method in
R is available at https://github.com/wangxf0106/vcmasf. Proofs of the theorems
are provided in the online supplementary materials.
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1 Introduction

The accurate estimation of the relationship between a response variable and multiple pre-

dictor variables is a fundamental challenge in statistical machine learning and various sci-

entific applications. Linear regression, among parametric models, is a simple yet powerful

approach. However, its linearity assumption is often violated in real-world applications,

limiting its effectiveness.

Nonparametric models, on the other hand, do not assume any specific relationship be-

tween the response and predictors, allowing for greater flexibility in modeling nonlinear

relationships. However, fitting nonparametric models requires imposing local smoothness

conditions, typically achieved using specific kernels or spline basis functions. This is neces-

sary to avoid the overfitting issue, where the model becomes too complex and performs well

on the training data but poorly on new, unseen data. Unfortunately, this general strategy

is susceptible to the curse of dimensionality, especially when dealing with high-dimensional

datasets. In such cases, these methods become ineffective in capturing the true relationship

and computationally expensive.

Addressing these challenges is essential to develop robust and efficient models capable

of handling complex data relationships. Researchers are actively exploring novel techniques

and algorithms to overcome the limitations of linear regression’s linearity assumptions and

the curse of dimensionality in nonparametric models.

The varying coefficient model (Hastie and Tibshirani, 1993) serves as a bridge between

linear and nonparametric models, offering an appealing compromise between simplicity and

flexibility. In this class of models, regression coefficients are not fixed constants; instead,

they vary as a function of certain conditioners, resulting in a more flexible approach due

to the infinite dimensionality of the corresponding parameter space. Varying coefficient

modeling presents a powerful strategy to address the curse of dimensionality, setting it

apart from standard nonparametric approaches. Additionally, it inherits advantages from

linear models, such as simplicity and interpretability.

A typical setup for the varying coefficient model is as follows: given the response variable

y ∈ R and predictors X = (x1, . . . , xp)
⊤ ∈ Rp, the model assumes the relationship: y =
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∑p
j=1 βj(u)xj + ϵ, where u is the conditional random variable, typically represented as a

scalar. This modeling approach has found diverse applications across various data types,

including longitudinal data (Huang et al., 2004; Tang and Cheng, 2012), functional data

(Zhang and Wang, 2014; Hu et al., 2019), spatial data (Wang and Sun, 2019; Finley and

Banerjee, 2020), and can be naturally extended to address different types of time series

data (Huang and Shen, 2004; Lin et al., 2019).

There are three major approaches to estimating the coefficients βj(u) (j = 1, . . . , p).

One widely acknowledged approach is the smoothing spline method proposed by Hastie

and Tibshirani (1993), with recent follow-up work using P-spline by Jullion et al. (2009).

Another approach, proposed by Fan and Zhang (1999) and Fan and Zhang (2000), is

the predictor-specific kernel method for coefficient estimation. This method involves local

linear smoothing to model function βj(u) in the first step, followed by applying local cubic

smoothing on the residuals in the second step. A recent adaptation of their work is an

adaptive estimator by Chen et al. (2015).

The third approach involves approximating the coefficient functions using a basis expan-

sion, such as polynomial B-splines. This method has gained popularity due to its simplicity

in estimation and inference, along with good theoretical properties. Compared to smooth-

ing spline and kernel methods, the polynomial spline method with a finite number of knots

strikes a balance between model flexibility and interpretability. Huang et al. (2002), Huang

and Shen (2004), and Huang et al. (2004) utilized a set of polynomial estimators, assum-

ing equidistant knots and choosing the number of knots such that the bias terms become

asymptotically negligible to ensure local asymptotic normality.

Most polynomial spline approaches involve optimizing a set of finite-dimensional classes

of functions, such as the space of polynomial B-splines with L equally spaced knots. How-

ever, if the real turning points of the coefficients are not equidistant, using equally spaced

knots requires selecting a sufficiently large L to capture the resolution of the coefficients

accurately. In practice, determining the value of L involves a parameter search process,

alongside the estimation of other parameters. This comparison is necessary to identify the

optimal fixed number of knots. Selecting too few knots might overlook the high-frequency
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information of βj(u), whereas selecting too many knots could lead to overfitting in regions

where the coefficients barely change. Moreover, when the number of predictors is very

large, and possibly even exceeds the sample size, dealing with the issue of variable selection

can further complicate the matter.

In this paper, we propose two adaptive algorithms for fitting piece-wise linear functions

with automatically selected turning points for the univariate conditioner variable u. These

algorithms offer significant advantages over existing methods, as they can automatically

determine the optimal positions of knots, which model the turning points of the true

coefficients. We demonstrate that our methods select knots that are almost surely the true

change points when the coefficients are piece-wise linear in u. Additionally, we show that

the residual variance of the fitted model converges to the true data variance. To address

high-dimensional settings, we combine the knots selection algorithms with the adaptive

group LASSO method for variable selection, inspired by the idea of Wei et al. (2011) who

applies the adaptive group LASSO to basis expansions of predictors.

In our simulation studies, we illustrate that the new adaptive method achieves smaller

mean squared errors (MSEs) for estimating coefficients compared to available methods and

also improves variable selection performance. Finally, we apply the method to two real

datasets: (a) a COVID-19 infection dataset for the state of New York, where we observe

that the association between environmental factors and COVID-19 infected cases varies over

time; (b) the Boston Housing data (Harrison and Rubinfeld, 1978), where we investigate

how factors affecting housing prices vary in effect along with the educational level of the

location.

2 Methods and theory for adaptive spline fitting

2.1 Knots selection for polynomial spline

In varying coefficient models, each coefficient βj(u) is a function of the conditional variable

u, which we estimate by fitting a polynomial spline on u. In this paper, we assume that u is

a univariate variable. Let Xi = (xi,1, . . . , xi,p)
⊤ ∈ Rp, ui, and yi denote the ith observations
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of the predictor vector, the conditional variable, and the response variable, respectively,

respectively, for i = 1, . . . , n.

We suppose that the knots are common to all coefficients and located at d1 < . . . < dL,

with the corresponding B-splines of order D denoted as Bk(u) (k = 1, . . . , D + L), which

are piece-wise polynomials of degree D − 1. Each varying coefficient can be represented

as βj(u) =
∑D+L

k=1 hj,kBk(u), where the coefficients hj,k are estimated by minimizing the

following sum of squared errors:

n∑
i=1

{
yi −

p∑
j=1

xi,j

D+L∑
k=1

hj,kBk(ui)

}2

. (1)

In previous work, the knots for polynomial splines were typically chosen as equidistant

quantiles of u and were the same for all predictors. While the approach is computation-

ally straightforward, the knots chosen in this way cannot adequately reflect the varying

smoothness between and within the coefficients. To address this limitation, we propose an

adaptive knot selection approach where the knots can be interpreted as turning points of

the coefficients.

For knots d1 < . . . < dL, we define the segmentation scheme S = {s1, . . . , sL+1} for

the observed samples ordered by u, where sℓ = {i | dℓ−1 < ui ≤ dℓ}, with d0 = −∞ and

dL+1 = max{u}. If the true coefficients β(ui) = (β1(ui), . . . , βp(ui))
⊤ ∈ Rp form a linear

function of u within each segment s, i.e., β(ui) = as+bsui for as, bs ∈ Rp, then the observed

response satisfies:

yi = a⊤s Xi + b⊤s (uiXi) + ϵi, ϵi ∼ N(0, σ2
s). (2)

Thus, the coefficients can be estimated by maximizing the log-likelihood function, which is

equivalent to minimizing the loss function:

Loss(S) =
∑
s∈S

|s| log σ̂2
s , (3)

where |s| denotes the number of data points in segmentation s, and σ̂2
s is the residual

variance obtained by regressing yi over (xi,1, . . . , xi,p, uixi,1, . . . uixi,p)
⊤ for i ∈ s. We also

use |S| to denote the number of segments in S (which is equal to L+ 1).

Because any almost-everywhere continuous function can be approximated by piece-wise

linear functions, we can employ the estimation framework in (2) and (3). Since Loss(S)
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in (3) always decreases as we break one of its segments arbitrarily into two, we need to

penalize the number of segments |S| while ensuring that the number of data points |s|

within a segment s is greater than a lower bound ms = nα (0 < α < 1):

Loss(S, λ0) =
∑
s∈S

|s| log σ̂2
s + λ0|S| log(n). (4)

Here, λ0 > 0 represents the penalty strength. The optimal segmentation scheme is the one

that minimizes the penalized loss function (4), and the corresponding knots are referred

to as the selected knots. When λ0 is very large, this strategy tends to select no knots,

whereas when λ0 approaches 0, it can select as many knots as ⌊n1−α⌋ − 1. We determine

the optimal λ0 by minimizing the Bayesian information criterion (Schwarz et al., 1978) of

the fitted model.

Given a particular λ0, let L(λ0) be the number of knots finally proposed, and the

resulting fitted polynomial spline model with these knots is denoted as f̂(X, u). Then, we

have

BIC(λ0) = n log

[
1

n

n∑
i=1

(
yi − f̂(Xi, ui)

)2
]
+ p (L(λ0) +D) log(n). (5)

The optimal λ0 is determined by searching over a grid to minimize BIC(λ0). We refer to

this procedure as the global adaptive knots selection strategy, as it assumes that all the

coefficient functions have the same set of knots. In Section 3.2, we will discuss how to allow

each coefficient function to have its own set of knots.

Here we only use the piece-wise linear model (2) and loss function (4) for knots selection,

but we will fit the varying coefficients with B-splines derived from the resulting knots via

minimizing (1). In this way, the fitted varying coefficients are smooth functions and the

smoothness is determined by the order of the splines. This method is referred to as the

global adaptive spline fitting throughout the paper.

2.2 Theoretical properties of the selected knots

The proposed method is invariant to the marginal distribution of u. Without loss of

generality, we assume that u follows a uniform distribution on the interval [0, 1]. Below

we introduce Definition 1 and Condition 1. Definition 1 characterizes a turning point as a
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local maximum or minimum of βj(u). Under Condition 1, we show in Theorem 1 that the

adaptive knots selection approach can almost surely detect all the turning points of β(u).

Definition 1. We call 0 < t1 < . . . < tT < 1 (T < ∞) the turning points of β(u) for

u ∈ (0, 1), if, for any tτ−1 < u1 < u2 < tτ < u3 < u4 < tτ+1 (τ = 1, . . . , T ),

[βj(u1)− βj(u2)][βj(u3)− βj(u4)] < 0,

for some index j, where t0 = 0 and tT+1 = 1.

Condition 1. Let 0 < t1 < . . . < tT < 1 (T < ∞) be the turning points of β(u) for

u ∈ (0, 1); and set t0 = 0 and tT+1 = 1. For each turning point tτ (τ = 1, . . . , T ) and

coefficient function βj(u) (j = 1, . . . , p), there exist constants ϕ > 0 and χ ≥ 0 such that:∣∣∣∣cov(βj(u), u | u ∈ I)

var(u | u ∈ I)

∣∣∣∣ ≥ ϕ|I|χ, (6)

where I = (v, tτ ] for v ∈ (tτ−1, tτ ) or I = (tτ , v] for v ∈ (tτ , tτ+1).

Inequality (6) implies that the varying coefficient functions βj(u) cannot be too flat

within each segment between two adjacent turning points. For example, if k is the smallest

integer such that the k-th derivative at tτ , Dk
uβj(u)|u=tτ ̸= 0, then we can do a local

polynomial approximation to βj(u) in I, which leads to that χ = k − 1.

Theorem 1. Suppose y = β(u)⊤X + ϵ, where u ∼ Unif(0, 1), ϵ ∼ N(0, σ2), X ∈ Rp is

a bounded vector, β(u) ∈ Rp is a bounded continuous function, and X, u, ϵ are mutually

independent. Let 0 < t1 < . . . < tT < 1 be the turning points of β(u) defined by Definition 1,

which satisfies Condition 1. Suppose d1 < . . . < dL are the selected knots with ms = nα

(where 4χ+8
4χ+9

≤ α < 1). For each turning point tτ , minL
l=1 |dl− tτ | is its closest distance with

the selected knots. Then for any 0 < γ < 1 − α and λ0 > 0, the closest distance for each

turning point tτ will converge to 0, and the number of selected knots is greater than T . In

other words,

pr

(
L ≥ T,

T
max
τ=1

L

min
l=1

|dl − tτ | < n−γ

)
→ 1, n → ∞.
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Details of the proof are provided in Section 1 of the supplementary materials. Although

the adaptive spline fitting method is motivated by a piece-wise linear model, Theorem 1

demonstrates that, with probability approaching 1, we can accurately detect all the turning

points for general varying coefficient functions. Consequently, the selected knots are likely

to form a superset of the real turning points, especially when λ0 is small. We tune λ0 using

BIC (5) to find the optimal set for the given data.

If the underlying varying coefficients are piece-wise linear and not necessarily contin-

uous, Definition 2 provides further characterization of a change point for β(u). In this

context, a change point refers to a point where the linear function varies. It is important to

note that for piece-wise linear function β(u), a change point may not be a turning point as

it can represent a connecting point of two lines with slopes of the same signs (thus neither

a local maximum nor a minimum). In Theorem 2, we demonstrate that the adaptive knots

selection method can almost surely discover the change points of β(u) without false positive

selection.

Definition 2. We refer to 0 < c1 < . . . < cT < 1 (T < ∞) as the change points of β(u)

for u ∈ (0, 1) if the coefficient β(u) = (β1(u), . . . , βp(u))
⊤ can be almost surely defined as

β(u) = aτ + ubτ , cτ−1 < u ≤ cτ , τ = 1, . . . , T + 1,

where c0 = 0, cT+1 = 1 and aτ , bτ ∈ Rp. Moreover, for τ = 1, . . . , T , we have

(aτ − aτ+1)
⊤(aτ − aτ+1) + (bτ − bτ+1)

⊤(bτ − bτ+1) > 0.

Theorem 2. Suppose (X, y, u) follows the same assumptions as in Theorem 1, except that

β(u) is a piece-wise linear function of u and not necessarily continuous. Let 0 < c1 < . . . <

cT < 1 be the change points defined in Definition 2, and let d1 < . . . < dL be the selected

knots with ms = nα (8
9
≤ α < 1). Similarly, for each change point cτ , minL

l=1 |dl − cτ | is its

closest distance with the selected knots. Then for 0 < γ < 1 − α and λ0 > 120p(T + 2)2,

the closest distance for each change point cτ will converge to 0, and the number of selected

knots will be exactly T . In other words,

Pr
(
L = T,

T
max
τ=1

|dτ − cτ | < n−γ
)
→ 1, n → ∞.
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Details of the proof are provided in Section 2.1 of the supplementary materials. The the-

orem demonstrates that if the varying coefficient function is piece-wise linear, the method

can discover all the change points with almost 100% accuracy. The corollary below is a

special case of Theorem 2 when the true coefficient β(u) is 0.

Corollary 1. Suppose x is a bounded univariate independent variable, u ∼ Unif(0, 1), the

response y ∼ N(0, σ2), and x, u, y are mutually independent. Then, for λ0 > 120, with

probability greater than 1 − 3n8+2(1−α)−λ0/12, the adaptive knots selection method will not

select any knots for ms = nα (8
9
≤ α < 1).

2.3 Theoretical properties of the residual variance

In Theorem 3, we demonstrate that when the true underlying varying coefficients are

continuous and bounded, the residual variance of the varying coefficient model fitted by

the optimal segmentation scheme converges to the true error variance. It is important

to note that the piece-wise linear coefficients are fitted within each segment individually

and may not be continuous at the knots. In Theorem 4, we will show that when the true

coefficients are continuous piece-wise linear, we can refit the coefficient with an order-2

polynomial spline, and the residual variance will still converge to the true error variance.

Theorem 3. Suppose y = β(u)⊤X + ϵ, where u ∼ Unif(0, 1), ϵ ∼ N(0, σ2), X is bounded,

X, u, ϵ are mutually independent. Additionally, β(u) is a bounded continuous function

differentiable almost everywhere with a bounded first derivative. For ms = nα (2
3
≤ α < 1)

and a given λ0 > 0, let S∗ be the optimal segmentation scheme obtained by minimizing

(3), and β̂(u) be the fitted piece-wise linear coefficient. Then, the corresponding residual

variance σ̂2 = n−1
∑n

i=1

(
yi − β̂(ui)

⊤Xi

)2

converges to σ2 in probability.

Details of the proof are provided in Section 3 of the supplementary materials. When

the true underlying coefficients β(u) are continuous piece-wise linear functions, we can gen-

eralize the conclusion of Theorem 3 by replacing the fitted coefficients with the polynomial

spline of order 2 (a continuous piece-wise linear function), and the residual variance will

still converge to the ground truth data variance.
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Theorem 4. Suppose (X, y, u) follows the same assumption as in Theorem 3, except that

β(u) is a continuous piece-wise linear function of u. For ms = nα (8
9
≤ α < 1), let β̃(u)

be the fitted piece-wise linear coefficients from (1) with knots from the optimal segmenta-

tion scheme. Then the corresponding residual variance σ̃2 = n−1
∑n

i=1

(
yi − β̃(ui)

⊤Xi

)2

converges to σ2 in probability when λ0 > 120p(T + 2)2.

The proof is available in Section 4 of the supplementary materials. This theorem guar-

antees that replacing the piece-wise linear coefficients with splines does not harm the per-

formance. Moreover, it makes more sense to provide an estimated coefficient with the same

continuity as the underlying coefficients, and that’s why we propose to refit the coefficients

with polynomial splines.

3 Efficient computation in low and high dimensions

3.1 Dynamic programming for adaptive knots selection

The brute force algorithm to compute the optimal knots has a computational complexity of

O(2n) and is impractical for large n. As presented in Algorithm 1, a dynamic programming

algorithm with a computational complexity of order O(n2) can be implemented to find the

optimal solution exactly, which is a significant improvement in efficiency. If we further

assume that the knots can only be chosen from a predetermined set M, such as M =

{u(m) : m = ⌈j
√
n⌉, j = 1, . . . , ⌊

√
n⌋ − 1}, the computational complexity can be further

reduced to O(|M|2). This reduction in complexity is particularly useful when dealing with

large datasets. It’s worth noting that the algorithm presented in Section 2.4 of Wang et al.

(2017) is a special case with x = u.

When the algorithm is run with a grid of λ0, we repeat Steps 2 and 3 for all the λ0’s,

and return the final model with the minimum BIC(λ0).

3.2 Predictor specific adaptive knots selection

The global adaptive knots selection method described in Section 2.1 assumes a common

set of knot locations for all coefficient functions, similar to most existing methods for
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Algorithm 1 Dynamic Programming for Optimal Knots Selection

1. Data preparation: Arrange the data (Xi, yi, ui)
n
i=1 in ascending order of ui, without

loss of generality, such that u1 < u2 < · · · < un.

2. Forward recursion to find the minimum loss:

(a) Set ms = ⌈nα⌉ be the smallest segment size and define λ = λ0 log(n).

(b) Initialize a 2× n array {(Lossi,Previ)⊤}ni=1 with Loss0 = Prev0 = 0.

(c) For i ranging from ms to n, performing the following recursive updates:

Lossi = min
i′∈Ii

(Lossi′−1 + ℓi′:i + λ), Previ = argmin
i′∈Ii

(Lossi′−1 + ℓi′:i + λ),

where Ii = {1} ∪ {ms + 1, . . . , i −ms + 1} and ℓi′:i = (i − i′ + 1) log σ̂2
i′:i where

σ̂2
i′:i is the residual variance of regressing yi0 on (Xi0 , ui0Xi0) (i0 = i′, . . . , i).

3. Backward tracing to find knots: Let P = Prevn. If P = 1, no knot is needed, and the

process ends; otherwise, add 0.5(uP−1 + uP) as a new knot and update P = PrevP;

repeat the process until P = 1.

polynomial spline fitting. However, in some cases, different coefficients may have varying

degrees of smoothness relative to u, making it preferable to have a different set of knots

for each predictor. To address this, we propose a predictor-specific adaptive spline fitting

algorithm on top of the global knot selection. Suppose the fitted model for the global

adaptive spline fitting is f̂(X, u) =
∑p

j=1 β̂j(u)xj, where X = (X1, . . . , Xn)
⊤ ∈ Rn×p

represents the predictor matrix and xj is its jth column. Additionally, let y be the response

vector, and u be the conditioner vector. As shown in Algorithm 2, we update the knots for

each coefficient function of predictor xj by using the same knots selection procedure with

the residual vector:

r−j = y −
∑
ℓ̸=j

β̂ℓ(u) ◦ xℓ. (7)

as the response and xj as the only predictor, where β̂ℓ(u) ◦ xℓ represents the element-wise

product. We then check if the updated knots lead to an improved BIC value for the model
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and repeat this step until no further improvement is achieved.

Algorithm 2 Predictor-specific Knots Selection

1. Run Algorithm 1 for the full data (X,y,u) to obtain the fitted model f̂(X, u) and

compute its BIC with (5).

2. Update knots: For j ranging from 1 to p,

(a) Compute residual r−j using Equation (7), and run Algorithm 1 with the data

(xj, r−j,u) to obtain the new fitted model f̂ j(X, u). Then, compute its BICj.

(b) If minBICj < BIC and j∗ = argminBICj, update the current model by setting

f̂(X, u) = f̂ j∗(X, u); otherwise do nothing.

3. Repeat Step 2 until no BIC improvements, return f̂(X, u).

In Step 2 of the algorithm, when computing the BIC for the updated model, each

predictor may have a different number of knots, so the term p (L(λ0) +D) log(n) in (5) is

replaced by
(∑p

j=1 Lj(λ0) + pD
)
log(n), where Lj(λ0) is the number of knots for predictor

xj. An alternative approach to model the heterogeneity among the coefficients is to replace

the initial model in Step 1 with f̂(X, u) = 0, and continue with the algorithm. However,

starting from the global model is preferred because fitting to the residual instead of the

original response minimizes the mean squared error (MSE) more efficiently. Section 4.1

demonstrates that the predictor-specific knots can further reduce the MSE for the fitted

coefficients compared with the global knot selection approach.

3.3 Knots selection in sparse high-dimensional problems

When dealing with a large number of predictors, and when only a small subset of predictors

have non-zero varying coefficients, we perform variable selection for all the predictors. For

each predictor, we first conduct marginal knots selection and fitting by running Algorithm

1 on data (xj,y,u) and obtaining the B-spline functions {Bj,k(u)}
Lj+D
k=1 , where Lj is the

number of knots and D is the order of the B-splines. Next, we apply the variable selection
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method proposed by Wei et al. (2011), which is a generalization of the group and adaptive

LASSO methods (Yuan and Lin, 2006; Zou, 2006). The group LASSO tends to over-select

variables, and the adaptive group LASSO was introduced as a remedy (Wei et al., 2011). In

their original algorithm, the knots for each predictor are chosen as equidistant quantiles and

are not predictor-specific. However, our Algorithm 3 allows for more flexible and optimal

knot selections, improving the variable selection performance in high-dimensional settings.

Algorithm 3 Variable Selection for Fitting Varying Coefficients

1. Select knots for each predictor: Run Algorithm 1 for each predictor xj, and obtain

the B-splines coefficient functions
{
{Bj,k(u)}

Lj+D
k=1

}p

j=1
, where Lj is the number of

knots for xj and D is the order of splines.

2. Run group LASSO for variable selection under the following loss function

1

n

n∑
i=1

yi −
p∑

j=1

xi,j

Lj+D∑
k=1

hj,kBj,k(ui)

2

+ λ1

p∑
j=1

(h⊤
j Rjhj)

1/2, λ1 > 0,

where hj = (hj,1, . . . , hj,Lj+D)
⊤ and Rj is the kernel matrix whose (k1, k2) element is

E[Bj,k1(u)Bj,k2(u)]. Denote the fitted coefficients as h̃j,k.

3. Run adaptive group LASSO for the updated loss function

1

n

n∑
i=1

yi −
p∑

j=1

xi,j

Lj+D∑
k=1

hj,kBj,k(ui)

2

+ λ2

p∑
j=1

ωj(h
⊤
j Rjhj)

1/2, λ2 > 0,

with weight ωk = ∞ if h̃⊤
j Rjh̃j = 0; and ωk = (h̃⊤

j Rjh̃j)
−1/2 otherwise. The fitted

coefficients are ĥj,k and the selected variables are those with ĥ⊤
j Rjĥj ̸= 0.

Corollary 1 guarantees that Step 1 of Algorithm 3 will likely select zero knots for pre-

dictors that are independent of the response variable y. This is beneficial because it helps

avoid overfitting and reduces unnecessary computational burden for predictors that do not

have varying coefficients. In Steps 2 and 3, the tuning parameter λ1 and λ2 are chosen by

minimizing the Bayesian Information Criterion (BIC) BIC (5) for the fitted model. In this

process, the degrees of freedom are computed with only the selected predictors, ensuring a
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fair comparison and providing a more accurate measure of model complexity. Simulation

studies in Section 4.2 demonstrate that, with the adaptive knots selection in Step 1, Algo-

rithm 3 shows superior performance in selecting the correct predictors with a reasonable

number of samples compared to existing methods. This highlights the effectiveness of our

proposed approach in high-dimensional settings with varying coefficient models.

4 Empirical studies

4.1 Simulation study for adaptive spline fitting

The simulation example is adapted from the work of Tang and Cheng (2012). In this exam-

ple, we compare the performance of the global and predictor-specific adaptive spline fitting

approaches, along with the equidistant spline fitting approach and the kernel method imple-

mented in the tvReg package by Casas and Fernandez-Casal (2019). The simulation model

has a longitudinal structure, commonly encountered in biomedical applications. Each sim-

ulation involves n individuals, and each individual has a scheduled time set of 0, 1, . . . , 19

to generate observations. However, a scheduled time can be skipped with a probability

of 0.6, leading to no observations being generated at that time point. For non-skipped

scheduled times, the real observed time is obtained by adding a random disturbance from

a uniform distribution Unif(0, 1) to the scheduled time.

The time-dependent predictors are denoted as X(u) = (x1(u), x2(u), x3(u), x4(u))
⊤,

where:

x1(u) = 1, x2(u) ∼ Bern(0.6), x3(u) ∼ Unif(0.1u, 2 + 0.1u),

x4(u) | x3(u) ∼ N

(
0,

1 + x3(u)

2 + x3(u)

)
.

The response is yi(ui,q) =
∑4

j=1 βj(ui,q)xi,j(ui,q) + ϵi(ui,q) for individual i at time ui,q, with

β1(u) = 1 + 3.5 sin(u− 3), β2(u) = 2− 5 cos(0.75u− 0.25),

β3(u) = 4− 0.04(u− 12)2, β4(u) = 1 + 0.125u+ 4.6 (1− 0.1u)3 .

The random error ϵi(ui,q)’s are independent of the predictors, independent between different

individuals, and positively correlated within the same individual. This correlation structure
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Figure 1: The true coefficients and fitted coefficients using equidistant and predictor-specific

knots. Black line: true coefficients; triangle: equidistant knots; grey lines: fitted coefficients

with equidistant knots; stars: predictor-specific knots; dotted lines: fitted coefficients with

predictor-specific knots.

is common in longitudinal data, where observations within the same individual tend to be

more similar due to repeated measurements over time. More precisely,

ϵi(ui,q) = vi(ui,q) + ei(ui,q),

where ei(ui,q)
i.i.d.∼ N(0, 4), and vi(ui,q) ∼ N(0, 4) with correlation structure

cor (vi1(ui1,q1), vi2(ui2,q2)) = I(i1 = i2) exp(−|ui1,q1 − ui2,q2 |).

Figure 1 displays the true coefficients and the fitted coefficients by the equidistant and

predictor-specific spline fitting methods for an example with n = 200, along with the

selected knots. It is worth noting that the number of knots for the equidistant fitting

approach is also chosen by minimizing the model’s Bayesian Information Criterion (BIC)

(5). The figure illustrates that the fitted coefficients obtained by the predictor-specific

method are smoother than those obtained by the equidistant method, particularly for the

less volatile coefficients β3(u) and β4(u). This difference is attributed to the predictor-

specific method’s utilization of only 1 or 2 knots for these two coefficients, which better

captures their underlying smoothness, while the equidistant method employs 8 knots.

We compare the four methods based on the mean squared errors (MSEs) of their esti-

mated coefficients, which are calculated as follows:

MSEj =
1

N

n∑
i=1

ni∑
q=1

(
β̂j(ui,q)− βj(ui,q)

)2

range(βj)2
, (8)
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MSE1 × 1e2 MSE2 × 1e2 MSE3 × 1e2 MSE4 × 1e2

equidistant 2.53 (1.14) 0.26 (0.10) 0.64 (0.29) 0.09 (0.04)

global 2.24 (1.12) 0.32 (0.12) 0.55 (0.26) 0.08 (0.04)

predictor-specific 1.30 (0.83) 0.23 (0.10) 0.28 (0.21) 0.04 (0.03)

kernel 2.80 (0.92) 0.38 (0.11) 0.81 (0.26) 0.14 (0.04)

Table 1: MSEj for the equidistant, global, and predictor-specific adaptive spline fitting

methods, compared with the kernel method.

where βj(ui,q) and β̂j(ui,q) are the true and estimated coefficients at time point ui,q for

individual i, respectively. ni represents the total number of observations for individual i,

and N =
∑n

i=1 ni. Additionally, we define the range of the true coefficients as

range(βj) = max
0<u<20

βj(u)− min
0<u<20

βj(u).

The simulation is conducted with n = 200 for 1000 repetitions. For the adaptive spline

methods, we consider only the knots from m
⌈
√
N⌉ quantiles of ui,q, where m ranges from 1 to

⌊
√
N⌋−1. Table 1 presents the average MSEj for the proposed global and predictor-specific

methods, along with the equidistant spline fitting and the kernel methods. The predictor-

specific method shows the smallest MSEj for all four coefficients, demonstrating its superior

performance compared to the other three methods. Additionally, the equidistant method

selects on average 6.9 knots, the global adaptive method selects an average of 6.1 global

knots for all predictors, while the predictor-specific method selects fewer knots on average:

5.8 knots for x1(u), 4.2 for x2(u), 1.5 for x3(u) and 0.8 for x4(u). This outcome aligns with

expectations, as β3(u) and β4(u) are less volatile than β1(u) and β2(u).

4.2 Simulation study for variable selection

We use the simulation example from Wei et al. (2011) to compare the performance of our

method with the one using adaptive group LASSO and equidistant knots. Similar to the

previous subsection, there are n individuals, and each has a scheduled time set {0, 1, . . . , 29}

to generate observations and a skipping probability of 0.6. For each non-skipped scheduled
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time, the observed time is the scheduled time plus a random disturbance generated from

Unif(0, 1). We construct p = 500 time-dependent predictors as follows:

x1(u) ∼ Unif (0.05 + 0.1u, 2.05 + 0.1u)

xj(u) | x1(u) ∼ N

(
0,

1 + x1(u)

2 + x1(u)

)
, j = 2, . . . , 5,

x6(u) ∼ N (3 exp{(u+ 0.5)/30}, 1) ,

xj(u)
i.i.d.∼ N(0, 4), j = 7, . . . , 500.

The same individual’s predictors xj(u) (j = 7, . . . , 500) are correlated with

cor (xj(u1), xj(u2)) = exp(−|u1 − u2|).

The response for individual i at observed time ui,q is

yi(ui,q) =
6∑

j=1

βj(ui,q)xi,j(ui,q) + ϵi(ui,q).

The time-varying coefficients βj(u) (j = 1, . . . , 6) are

β1(u) = 15 + 20 sin{π(u+ 0.5)/15}, β2(u) = 15 + 20 cos{π(u+ 0.5)/15},

β3(u) = 2− 3 sin{π(u− 24.5)/15}, β4(u) = 2− 3 cos{π(u− 24.5)/15},

β5(u) = 6− 0.2(u+ 0.5)2, β6(u) = −4 + 5 ∗ 10−4(19.5− u)3.

The random error ϵi(ui,q) is independent of the predictors and follows the same distribution

as that in Section 4.1.

We simulate cases with n = 50, 100, 200 and replicate each set 200 times. Three metrics

are considered: the average number of selected variables, the percentage of cases when there

is no false negative, and the percentage of cases when there is no false positive or negative.

A comparison of our method with the variable selection method using equidistant knots

(Wei et al., 2011) is summarized in Table 2, demonstrating that our method significantly

outperforms the method of Wei et al. (2011) without predictor-specific knots selection.
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equidistant knots

# selected variables % no false negative % no false positive or negative

n = 50 7.04 72 68

n = 100 6.21 87 84

n = 200 6.13 99 93

adaptive selected knots

# selected variables % no false negative % no false positive or negative

n = 50 5.96 96.50 96.50

n = 100 6.00 100 100

n = 200 6.00 100 100

Table 2: Variable selection performance for adaptive group LASSO with and without

predictor-dependent knots selection.

5 Applications

5.1 Environmental factors and COVID-19

The data set we investigated contains daily measurements of meteorological data and air

quality data in 7 counties of the state of New York between March 1, 2020, and September

30, 2021. The meteorological data were obtained from the National Oceanic and Atmo-

spheric Administration Regional Climate Centers, Northeast Regional Climate Center at

Cornell University: http://www.nrcc.cornell.edu. The daily data are based on the av-

erage of the hourly measurements of several stations in each county and include records

of five meteorological components: temperature (in Fahrenheit), dew point (in Fahren-

heit), wind speed (in miles per hour), precipitation (in inches), and humidity (in per-

centage). The air quality data were obtained from the Environmental Protection Agency:

https://www.epa.gov. The data contain daily records of two major air quality compo-

nents: the fine particles with an aerodynamic diameter of 2.5µm or less, denoted as PM2.5

(in µg/m3), and ozone (also measured in µg/m3).

The main objective of the study is to understand the association between the meteoro-
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Figure 2: Environmental measurements and COVID-19 infected cases in New York County,

NY.

logical measurements, together with pollutant levels, and the number of COVID-19 infected

cases. COVID-19 is a contagious disease caused by severe acute respiratory syndrome coro-

navirus 2. The study aims to examine whether this association varies over time. The daily

infected records were retrieved from the official website of the Department of Health, New

York State: https://data.ny.gov. To remove the variation of recorded cases between

weekdays and weekends, the study considers the weekly average infected cases, which are

calculated as the average between each day and the following 6 days. During the analysis,

it is also observed that the temperature factor and dew point factor were highly corre-

lated. Consequently, the dew point factor was removed when fitting the model. Figure 2

shows scatter plots of daily infected cases in New York County and the 7 environmental

components over time, providing an initial visualization of the data.

To address the issue of a right-skewed distribution, we take the logarithmic transforma-

tion of the weekly averaged infected cases, denoted as y, effectively removing the right tail.

We then proceed to fit a varying coefficient model with the following predictors: x1 = 1 as

intercept, x2 as temperature, x3 as wind speed, x4 as precipitation, x5 as humidity, x6 as

PM2.5 and x7 as ozone. The time variable u serves as the conditioner for our model. To
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ensure comparability between each βj(u), all predictors except the constant are normalized

before fitting. Furthermore, we apply a data clipping procedure to limit values within

the range of −3 to 3, efficiently removing outliers. The varying coefficient model can be

expressed as follows:

yi(ui,q) =
7∑

j=1

βj(ui,q)xi,j(ui,q) + ϵ(ui,q), (9)

where ui,q is the qth recorded time for the ith county, and yi(ui,q) and xi,j(ui,q) are the

corresponding records for county i at time ui,q. The term ϵ(ui,q)
i.i.d.∼ N(0, σ2) represents

the error term in the model, with each error term independently and identically distributed

with mean 0 and variance σ2.

We apply both the equidistant and the proposed predictor-specific adaptive spline fitting

methods to fit the data. The resulting fitted coefficient functions βj(u) for each predictor are

shown in Figure 3 for both methods. The figures indicate that there is a strong time effect on

each coefficient function. For instance, the intercept exhibits several peaks corresponding

to the initial outbreak and the delta variant outbreak. Additionally, rapid changes in

coefficients are observed around March 2020, likely due to the early stages of the outbreak

when the number of infected cases was underestimated due to fewer tests being conducted.

Moreover, the coefficient curves reveal that the most influential predictor is temperature.

For most of the period, the coefficient is negative, indicating a negative association between

high temperature and virus transmission. This observation is consistent with the findings

in the study by Notari (2021), which suggests that COVID-19 spread is slower at high

temperatures. The analysis also demonstrates the time-varying nature of the coefficient.

Furthermore, the fitted coefficients obtained using the predictor-specific knots are less

volatile compared to those obtained using the equidistant knots, particularly for the predic-

tors of temperature, wind speed, precipitation, humidity, and PM2.5. This suggests that the

predictor-specific knots provide a more stable and accurate representation of the coefficient

functions over time.

The rolling window approach is used to evaluate the predictability of the proposed

method. We use a training size of at least 1 year and a rolling window of 1 week. For

each date u after March 1, 2021, we fit two models, one with equidistant knots and another
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Figure 3: Black lines: fitted coefficients with predictor-specific knots; grey lines: fitted

coefficients with equidistant knots.

with predictor-specific knots, using data {Xi(ui,q), yi(ui,q)} for ui,q < u, and then predict

yi(ui,q) for u ≤ ui,q < u + 7. The root mean squared error (RMSE) for the model with

equidistant knots is 0.829, whereas the RMSE for the model with predictor-specific knots

fitting is 0.716. This indicates that the predictor-specific knots provide a more accurate

prediction of the weekly average infected cases compared to the equidistant knots method.

Environmental factors may not have an immediate effect on the number of recorded

COVID-19 cases due to the incubation period of 2-14 days before the onset of symptoms

and the additional time required for test results to be available (2-7 days). To study whether

there are lagging effects between the predictor and response variables, we fit a varying

coefficient model with predictor-specific knots for each time lag ν. In this approach, we

use data yi(ui,q + ν) and Xi(ui,q), to fit model (9) similarly as in Fan and Zhang (1999).

Figure 4 shows the residual root mean squared error (RMSE) for each time lag, revealing a

minimum at the 13-day lag. This indicates that the predictors at day u are most predictive

for infected numbers between day u + 13 and u + 19, which aligns with the incubation

period and the time it takes to receive test results. In other words, the environmental

factors have the most significant impact on the number of recorded COVID-19 cases about
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Figure 4: Root mean squared error for the logarithm of weekly averaged infected cases,

with lag ν = 0, . . . , 21 days.

12 days after their measurements. This finding highlights the importance of considering

time lags when studying the association between environmental factors and the number of

COVID-19 cases.

5.2 Boston housing data

We use the Boston housing price data from Harrison and Rubinfeld (1978), consisting

of n = 506 observations for the census districts of the Boston metropolitan area. The

data is available in the R-package lmbench. Following Wang and Xia (2009) and Hu

and Xia (2012), the response variable is medv, representing the medium value of owner-

occupied homes in 1,000 USD. The conditioner is lstat , defined as a linear combination

of the proportion of adults with high school education or above and the proportion of

male workers classified as laborers. We use the following predictors: int (the intercept),

crim (per capita crime rate by town), rm (average number of rooms per dwelling), ptratio

(pupil-teacher ratio by town), nox (nitric oxides concentration parts per 10 million), tax

(full-value property-tax rate per 10,000 USD), and age (proportion of owner-occupied units

built prior to 1940).

To prepare the data for analysis, we transform the conditioner lstat so that its marginal

distribution is Unif(0, 1). We also apply a logarithm transformation to the response vari-

ablemedv. Additionally, we standardize the predictors (except for the intercept) such that
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the marginal distribution is standard normal. Since some of the predictors are highly

correlated with the conditioner, we perform separate regressions of each predictor against

the transformed lstat, and use the normalized residuals in the subsequent analysis. This

process ensures that the predictors are not overly influenced by the correlation with the

conditioner, allowing us to study their individual effects on the response variable.

We apply the predictor-specific varying coefficient linear model to predict the response

using the residualized predictors, with the transformed lstat as the conditioner. Figure 5

displays the fitted coefficients as a function of the conditioner, along with the 95% con-

fidence intervals represented by dotted lines. The dashed lines represent the x-axis. The

confidence interval is computed by conditioning the selected knots for each predictor.

The results reveal the conditioner-varying effects of most predictors. The intercept

exhibits significant variation with lstat, indicating that the housing price is negatively

and almost linearly impacted by lstat. The coefficient for rm is generally positive, indi-

cating that houses with more rooms tend to have higher prices. However, the impact of

rm becomes less significant as lstat increases, suggesting that the number of rooms may

not be as crucial a factor in areas with high lstat . Variable crim is highly correlated

with lstat. After removing the influence of lstat, the residualized crim shows interest-

ing fluctuations, ranging from insignificant to positive and then to negative effects. This

behavior might be attributed to a confounding effect with other unutilized variables, such

as the location’s convenience and attractiveness for tourists. Overall, the predictor-specific

varying coefficient linear model provides valuable insights into the conditioner-varying ef-

fects of the predictors on housing prices, considering the complex relationships between the

variables. The confidence intervals obtained by conditioning on the selected knots offer a

comprehensive understanding of the varying effects for different conditions of lstat .

We further assess the predictive performance of both the simple linear model and the

varying coefficient model using 10-fold cross-validation. For the linear model, we incorpo-

rate all the predictors employed in the varying coefficient model along with the conditioner

lstat. After transforming the MSE back to the original scale, we obtain a value of 23.52

for the simple linear model, while the varying coefficient model yields a lower MSE of 20.51.
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Figure 5: Fitted coefficient for Boston Housing data, with conditioner as the transformed

lstat.

This confirms that the varying coefficient model is more suitable and provides better pre-

dictions for this dataset compared to the simple linear model.

6 Discussion

In this paper, we have introduced three algorithms for fitting varying coefficient models

with adaptive polynomial splines and conducting variable selection in high dimensions. The

first algorithm is a global approach that selects knots using a recursive method, assuming

the same set of knots for all the coefficient functions. On the other hand, the second

algorithm is a predictor-specific approach, allowing each predictor to have its own set of

knots. This is achieved by iteratively applying the global knot selection algorithm to each

predictor. Finally, the third algorithm is designed for variable selection and utilizes an

adaptive group LASSO method to select important predictors, taking advantage of the

predictor-specific knots selection approach. Together, these algorithms provide flexible and

efficient methods for fitting varying coefficient models with adaptive polynomial splines

and performing variable selection, making them suitable for high-dimensional datasets.
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The coefficients modeled by polynomial splines with a finite number of non-regularly

positioned knots offer increased flexibility and interpretability compared to standard splines

with equidistant knot placements. Simulation studies demonstrate that both the global and

predictor-specific algorithms outperform commonly used kernel methods and the equidis-

tant spline fitting method in terms of mean squared errors (MSEs), with the predictor-

specific algorithm achieving the best performance. To efficiently find the optimal knot

locations, we have introduced a fast dynamic programming algorithm with a computa-

tional complexity of no more than O(n2), which can be further reduced to O(n) if we allow

the resolution of the knot locations to be O(
√
n). Overall, the proposed algorithms provide

effective and practical solutions for fitting varying coefficient models with adaptive poly-

nomial splines and conducting variable selection, offering improved flexibility and accuracy

in modeling complex relationships between predictors and responses.

Throughout the article, we assume that the conditioner variable u is univariate. How-

ever, the proposed predictor-specific spline approach can be easily extended to cases where

each coefficient βj(u) has its own univariate conditioner variable u. Nonetheless, it remains

a challenging task to generalize the proposed method to multi-dimensional conditioners

and to model correlated errors.

For researchers and practitioners interested in applying the proposed algorithms, we

have developed an R package that implements these methods. The package is available

at https://github.com/wangxf0106/vcmasf and contains comprehensive instructions on

how to use the software effectively. It provides a user-friendly interface for fitting vary-

ing coefficient models with adaptive polynomial splines and conducting variable selection,

making it accessible to a wide range of users in diverse fields of research and application.
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