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Abstract 
To overcome computational bottlenecks of various data 
perturbation procedures such as the bootstrap and cross 
validations, we propose the Generative Multi-purpose Sampler 
(GMS), which directly constructs a generator function to 
produce solutions of weighted M-estimators from a set of 
given weights and tuning parameters. The GMS is 
implemented by a single optimization procedure without 
having to repeatedly evaluate the minimizers of weighted 
losses, and is thus capable of significantly reducing the 
computational time. We demonstrate that the GMS framework 
enables the implementation of various statistical procedures 
that would be unfeasible in a conventional framework, such as 
iterated bootstrap procedures and cross-validation for 
penalized likelihood. To construct a computationally efficient 
generator function, we also propose a novel form of neural 
network called the weight multiplicative multilayer perceptron 
to achieve fast convergence. An R package called GMS is 
provided, which runs under Pytorch to implement the proposed 
methods and allows the user to provide a customized loss 
function to tailor to their own models of interest. 

Keywords: Weighted M-estimation, Bootstrap/resampling, Cross-validation, Scalable 

Computation, Iterated Bootstrap 
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1 Introduction 

Consider a canonical setting in which 1{ , , }ny y y
 are i.i.d. observations following 

a statistical model with the parameter of interest denoted by 
p   (n > p). In 

some instances such as regression analysis, one may also include predictors or 

covariate variables for each observation. An efficient estimator of θ can often be 

found by solving the following (penalized) optimization problem: 
ˆ argmin ( )L  y , 

where 1

1( ) ( ; )
n

i
i

L y
n  



 y
 with 

(·)  being a suitable loss function with an auxiliary 

parameter η. The resulting ̂  is often referred to as an M-estimator (Huber, 1992). 

For example, the maximum likelihood estimator (MLE) is a special M-estimator with 

the loss function being set as the negative log-likelihood function. 

To assess the variability of the M-estimator ̂ , we study behaviors of the following 

tunable weighted M-estimators as inspired by the bootstrap methods (Efron, 1979): 

, ,
1

1ˆ argmin ( ; ) ( ) argmin ( ; , , ),
n

i i
i

w y u L
n 

        




 
   

 
w y w  (1) 

where 
  is an auxiliary parameter of the loss, (·)u  is a penalty function on the 

parameter with a tuning parameter λ that can be set to zero for non-penalized 

settings, and 1( , , )nw w  w
 is a vector of weights following distribution ( ) w . 

The auxiliary parameter η tunes the loss function. For example, in quantile 

regression models, (0,1)  represents the quantile level and the loss function takes 

the form 
( ; , ) ( ), where ( ) ( ( 0))i i i iy X y X t t I t          

. When the loss 

function has no auxiliary parameter, we simply denote the loss and the resulting 

estimator by 
( ; )iy

 and ,
ˆ

w , respectively. 

The formulation of (1) applies to a wide range of statistical procedures. For example, 

the classical bootstrap procedure of Efron (1979) corresponds to 

~ Multinom( , / )nn nw 1
, where n1

 is a n-dimensional vector of one, and ( ) 0u   . 

Random-weight bootstrap procedures can be formulated by imposing a general 
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distribution on w  that has a mean of one, finite variance, and sum to n. Its 

theoretical properties such as consistency have been studied (Præstgaard and 

Wellner, 1993; Cheng and Huang, 2010; Barbe and Bertail, 2012). A special and 

most well-known form of the random-weight bootstrap is to set 
~ Dirichlet( ; )nn nw 1

 

as in the Bayesian Bootstrap (Rubin, 1981) and Weighted Likelihood Bootstrap 

(Newton and Raftery, 1994). Theoretical investigations and improvements of the 

bootstrap methods have been considered in a large body of literature (Chatterjee 

et al., 2005; McCarthy et al., 2018; Hall and 

Martin, 1988; Efron, 1987; Hahn, 1995; Kleiner et al., 2014). 

Iterated bootstrap procedures are often employed to reduce the bias associated with 

a statistical inference procedure and/or improve the coverage precision of 

confidence intervals (Hall and Martin, 1988). A most frequently cited procedure is the 

double bootstrap, which first bootstraps and infers the parameter or prediction, and 

then estimates the bias of each bootstrapped solution via a second-level bootstrap. 

In (1), the double bootstrap procedures can be represented by setting a hierarchical 

weight distribution such that 1{ , , } ~ Multinom( , / )n ns s n n s 1
 and 

| ~ Multinom( , / )n nw s s . These iterated bootstrap methods can be shown to provide 

more accurate confidence coverage (i.e., the second or higher-order accuracy) 

compared with single bootstraps and asymptotic approximations 

Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee and Young, 1999, 1995. 

However, iterative bootstraps are computationally very expensive and are rarely 

used in practice when the data are of moderate to large sizes. 

The tunable weighted M-estimation in (1) can also represent K-fold cross-validation. 

For pre-selected folds, such as a group of sample indices 1, , KI I
, we set wi = 0 for i 

in the fold of interest, say I1, and set wi = 1 in all other folds. This means that the 

observations in I1 will be ignored during training, rendering I1 to be test samples. If 

1(·) ·u 
, the evaluated ,

ˆ
w  is equivalent to the LASSO estimator (Tibshirani, 1996), 

based on a tuning parameter λ, trained without using the samples in the considered 

fold I1, resulting in a cross-validated LASSO. The computational burden of the cross-

validation linearly increases with the fold size K and the candidate set size of the 
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tuning parameter, and a typical amount is at least a few hundreds of repetitive 

computations. 

While aforementioned weighted M-estimation procedures are widely used in 

statistics and science, the computational bottleneck caused by their repetitive nature 

poses significant practical difficulties. To alleviate these computational difficulties, we 

propose a computational approximation strategy based on a neural network-based 

generative process, called the Generative Multi-purpose Sampler (GMS) (with the 

Generative Bootstrap Sampler (GBS) as a special case for bootstrap). Instead of 

repeating the same optimization process for various combinations of weights w ’s 

and parameters λ’s and η’s, the GMS constructs a generator function that takes 

( , , ) w  as input and approximates the corresponding weighted M-estimator , ,
ˆ

 w . 

In addition to taking advantage of the high representation power of neural networks, 

a key idea for the GMS to achieve the desired computational efficiency gain is to 

minimize an integrative loss in its training, which optimizes both the M-estimation 

and the parameters employed by the GMS simultaneously. 

The rest of the article is organized as follows. Section 2 introduces the general GMS 

framework and uses a toy example to explain its potential gains. Section 3 details its 

specialization for the bootstrap, namely the Generative Bootstrap Sampler (GBS). 

Section 4 discusses the training of GMS for cross-validation with Lasso and quantile 

regression. Section 6 provides details on the neural network structures and detailed 

computational aspects of GMS. Section 7 concludes with a brief discussion. 

2 Generative Multi-purpose Sampler 

2.1 The basic formulation 

We view the weighted M-estimator , ,
ˆ

 w  as a function of the weight w , the tuning 

parameter λ, and the auxiliary parameter η, i.e., ( , , )G  w , and attempt to 

approximate it by a member in a suitable family of functions 
2{ : , }n pG  

, where   is the space of parameters that characterize a 

function in the family. By doing so, we turn the unrestricted optimization problem in 
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(1) into a restricted optimization problem in a functional space, i.e., finding a proper 

parameter of the generator function such that, for all ,   w , and 
 , 

ˆ argmin ( ( , , ); , , ),L G


    


 y w w  (2) 

A slightly less ambitious, but more robust, formulation is to solve 

, ,
ˆ argmin ( ( , , ); , , ) ,L G



      


   w y w w  (3) 

where , , (·) w  is taken with respect to a proper distribution of ( , , ) w  defined on 
   . We name this generative framework in (3) as the GMS. For non-

penalized settings without the auxiliary parameter η, we simply denote the generator 

function by ( )G w . We also use the notation 
ˆĜ G



. The weight distribution for Efron’

s nonparametric bootstrap is simply 
~ Multinom( , / )nn nw 1

. For the Bayesian 

bootstrap (Rubin, 1981), 
/ ~ Dirichlet( , )nn nw 1

. The distributions of λ and η can 

simply be the uniform distribution on candidate sets of λ’s and η’s chosen by the 

researcher. Another reasonable distribution of λ and η is to add random noises to a 

discrete set of candidate values (see Section 6.3 for details). 

Suppose that ̂  is the solution of (3) for a sufficiently large family  and a proper 

distribution on , ,{ , , },    ww
, supported on 

   . If the solution , ,
ˆ

 w  of (1) 

is unique for any given ( , , ) w  in the support, then 
ˆ ( , , )G


 w
 should be very close 

to , ,
ˆ

 w  almost surely in , , w . It is easy to see this point by contradiction – if not, 

then there exist 0  and a subset 
*S      such that , , ( ) 0S 

 w  and 

ˆ , ,
ˆ( , , )G  

   ww
 on 

*S . Thus, we can find another function that differs from 
ˆG  

only on 
*S  and achieves a smaller value in (3). 

A main takeaway from this argument is that optimizing the integrative loss over the 

space of ( , , ) w  instead of the individual loss is appropriate for training. To benefit 

from this formulation, we must choose an appropriate family  of functions 
G  and a 

suitable distribution , , w  to cover the hyperparameter space of interest. As 
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demonstrated by our empirical studies on a wide range of problems, restricting  to 

be a class of neural networks and choosing a reasonable distribution , , w  appears 

to work well (see details in Section 6.3). 

As shown in Cybenko (1989) and Lu et al. (2017), Multi-Layer Perceptrons (MLP), or 

equivalently, Feed-forward Neural Networks (FNNs), are theoretically capable of 

approximating any Lebesgue integrable function when the numbers of neurons and 

layers are sufficiently large. Also, recent successful applications of deep neural 

networks in a variety of data-rich fields provide compelling evidence supporting the 

use of over-parameterized MLPs and other types of neural networks for 

approximating extremely complicated functions (Goodfellow et al., 2014; Arjovsky 

et al., 2017). To train a neural network to achieve the task in (3), we employ a 

backpropagation algorithm (Rumelhart et al., 1986) along with Stochastic Gradient 

Descent (SGD) and its variants. More details are given in Section 6.1. 

2.2 Intuitions for potential gains 

Imagine that we have independent weight vectors 
(1) (1) (1) ( ) ( ) ( )( , , ), , ( , , )M M M   w w  

from , , w , we can approximate the expectation in (3) by 

( ) ( ) ( ) ( ) ( )
, ,

1

1( ( , , ); , , ) ( ( , ); , , ).
M

m m m m m

m

L G L G
M        



    w y yw w w w  (4) 

M do not need to be very large (M=100, say) since a small number of samples of 

( , , ) w  can be generated continuously within the iterative SGD algorithm to aid the 

fitting: after updating the FNN parameter   with SGD based on (4), we use the 

newly created samples to evaluate the fit and to provide refreshed gradient. Thus, 

the two optimization tasks, i.e., minimizing the loss function 
Ly  and finding optimal   

for the generator (·)G , co-evolve and help each other. 

If we were to cast the task of training a generator in a classical machine learning 

framework, we would have to first obtain a set of training samples, 
( ) ( ) ( )

1
ˆ{( , , )}b b b B

b  w

, where 
( ) ( )

( )
,

ˆ ˆ
b b

b


 
w , by evaluating B optimizations in (1) with 

( ) ( )( , )b bw  for 
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1, ,b B   (ignoring η for simplicity in this case). Then, one may try to learn a 

function g by minimizing 

2( ) ( ) ( )

1

ˆˆ argmin ( , ) ,
g

B
b b b

b

g g 


  w  (5) 

under the l2-distance 
·

. However, this squared-loss only measures the distance 

between the fitted generator ˆ( , )g w  and its training true value ,
ˆ

w . As a result, it 

cannot inform us how to improve the fitting of the original statistical loss in (1) other 

than a simple interpolation. Thus, the function trained in this manner tends to be 

inaccurate if B is small, or may be prohibitively expensive in computation if we must 

rely on a large B, in which case computational advantages of the generative process 

would be non-existing or limited. 

Training the generator function G in conjunction with minimizing the loss function via 

the GMS formulation (3) is significantly more efficient. The classical loss (5) fits only 

on the training data with a limited size, 
( ) ( ) ( )

1
ˆ{( , , )}b b b B

b  w
, resulting in an over-fitting 

issue. The GMS, on the other hand, is trained using the weights and tuning 

parameters generated from a predefined distribution without requiring additional 

optimizations for (1), and generating w  and λ is nearly cost-less. As a result, the 

GMS training procedure not only seeks the minimizer of 
( ; , )L  y w

, but also allows 

for the use of an almost infinite number of training weights and tuning parameters 

during the training step, thereby avoiding over-fitting. 

2.3 Illustration with a simple example 

A novel aspect of our formulation is represented by the minimization of the 

integrative loss (3), which combines the individual optimization step required by each 

classical replication with the approximation of the functional form G. Let us consider 

the bootstrap procedure for a toy linear regression example with data 
( , ),i iy X

 

1, ,i n  , and the loss function 
2( ; , ) ( )i i i iy X y X  
 and λ = 0. For this problem, 

we can obtain the closed-form solution of the optimization problem for each 

bootstrapped sample: 
1

0( ) ( )G W Ww X X X y
, where 

Acc
ep

ted
 M

an
us

cri
pt



1 1( , , ) , ( , , )n ny y X X   y X
, and diag( )W  w . Thus, a bootstrap procedure 

would follow simple steps: for 1, ,b B  , generate 
( ) ( ) ( )

1( , , ) ~ Multinom( , / )b b b
n nw w n n w 1

 or 
Dirichlet( , )nn n 1

, and then for each 
( )bw , 

plug in the formula to get 
( ) ( )

0
ˆ ( )b bG  w

. However, if one does not have the closed-

form formula but has to solve numerically the minimization problem of (1) for every 

generated 
( )bw , the bootstrap procedure can be prohibitively demanding in 

computation. Thus, our GMS formulation via (3) can be thought of as an automatic 

way to find a highly accurate approximation to the closed-form solution (in the form 

of a neural network) of the minimization problem of (1). Once this solution Ĝ  is 

found, one can easily generate bootstrap estimators with almost no computational 

cost. 

For a case of n = 100 and 10p  , we set the true coefficient {1,0, ,0}    and the 

regression variance one. The predictors are independently generated from 
(0, )pN I

. 

We generate a data set and evaluate random weight bootstrap estimators with 

~ Dirichlet( ; )nn nw 1
, and then numerically evaluate the average loss of (1) on 

various weights from the trained generator for the classical machine learning 

approach with B = 500 and B = 5, 000, as well as the GMS. We initialize the 

optimization in different five points for each procedure. 

In Figure 1, we consider two performance measures for this example: the training 

loss specified in (5) and the integrative prediction loss (IPL) that can be defined as 
2ˆ ( )g w w w
. The IPL is approximated by using 1, 000, 000 Monte Carlo 

evaluations, and the loss values are multiplied by n to adjust for the scale of 
ˆVar( ) . 

Note that the GMS trains its generator G by minimizing the integrative loss (3), 

whereas the naive generator g is trained using the l2-loss in (5) with B = 500 and 5, 

000 training samples, respectively. As expected, Figure 1(a) shows that the training 

l2-losses for the naive procedures are significantly lower than those for the GMS. 

However, the IPLs of the considered methods behave quite differently. The naive 

minimizers (for the cases with B = 500 and 5, 000) first decrease their IPLs rapidly, 

but after 200 iterations their IPLs begin to increase. In contrast, the GMS seamlessly 

reduces its IPL. The poor predictive performance of the naive procedure stems from 
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the fact that the l2-loss encourages the generator function ĝ  to overfit the training set 

(1) ( )ˆ ˆ, , B  . Unlike the conventional machine learning modeling, the GMS is quite 

resistant to overfitting, as we can sample w ’s at near-zero computational cost during 

the training of the generator function. 

3 Generative Bootstrap Samplers 

3.1 Bootstrap and subgroup bootstrap 

The simplest use of the GMS is to bootstrap M-estimators, which is a special case of 

form (3) without η and (·)u . The weight distribution is 
Multinom( , / )nn n1

 (or 

Dirichlet( , )nn n 1
 for the Bayesian bootstrap). More precisely, we let   be the 

parameter underlying the generator G and solve the optimization problem: 

1

1ˆ argmin ( ( ); )
n

i i
i

w G y
n  



 
  

 
w w

. We call this simple GMS application the 

Generative Bootstrap Sampler (GBS). 

Despite its considerable efficiency, the GBS framework has a fundamental limitation 

for practical bootstrap applications: the dimension of the generator domain equals 

the sample size n. Even when computationally efficient neural networks are used to 

model the generator, the convergence is quite slow when the input dimension is high 

(say, tens of thousands). We may further encounter technical issues such as 

memory shortage as well, which is particularly severe for big data. To address this 

limitation, we consider a subgroup weighting strategy, which divides the data set into 

subgroups and assigns equal weights to observations within each subgroup. The 

subgrouping idea is primarily used for bootstrapping time series data sets, referred to 

as block bootstrap (Lahiri, 1999; Härdle et al., 2003), in order to preserve the 

temporal association within bootstrapped samples. In contrast to the time series 

applications, we use subgrouping (or blocking) to reduce the number of weights, or 

more precisely, the domain dimension of the generator function so as to save 

computational costs. 

Let [ ]n  denote the index set {1, , }n  of the observations. We consider an exclusive 

and exhaustive partition: 1, , SI I
 [ ]n  such that 

,i jI I i j   
, and 1 [ ]S

s sI n 
. 
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Without loss of generality, we assume that the size of each Is is the same, i.e., 

| | /sI n S
 for 1, ,s S  . We define a subgroup assignment function :[ ] [ ]h n S  

such that h(i) = s if si I
. Then, for 

T
1{ , , } ~S 

α , with α  being an S-dimensional 

weight distribution, we impose the same value of weight on all elements in a 

subgroup as 

( )  for 1, , .i h iw i n    (6) 

and we denote 
T

(1) ( ){ , , } n
h h n   w

α . As a result, it follows that ( ) ( )h i h k 
, if 

, si k I
 for some s. Similar to the vanilla GBS, setting 

~ Multinomial( , / )SS Sα 1
 or 

~ Dirichlet( , )SS Sα 1
 result in the block-based nonparametric bootstrap and 

Bayesian bootstrap, respectively. 

As an illustration, we consider a simple linear regression example by generating a 

data set from the model with n = 1000, p = 10 and the coefficients θ being a 

sequence of equi-spaced values between –2 and 2. Each covariate is drawn i.i.d. 

from N(0, 1), and the regression variance is set to one. The resulting domain 

dimension of a vanilla G is 1000. Figure 2 shows individual histograms of bootstrap 

distributions with varying subgroup sizes. Even when the number of subgroups is 

tiny (S = 5), the obtained bootstrap distributions are acceptable, although the 

variability tends to be underestimated. As S increases (S = 25), the quality of the 

approximation of the subgroup bootstrap distribution improves significantly. When S 

= 100, the subgroup bootstrap distributions are indistinguishable from the target 

ones. When we use 100 subgroups (10 observations in each subgroup), the input 

dimension is reduced to 100 from the original 1000 but the resulting bootstrap 

distributions are nearly identical to those from the standard bootstrap (see Figure 3). 

We use S = 100 by default. 

Remark. Under some regularity conditions, one can show that the subgroup 

bootstrap is consistent when S is of a higher order than n  (see the Supplementary 

Materials for a formal proof). 

3.2 Iterated bootstrap 
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The iterated bootstrap method was proposed to improve the inference accuracy of 

the simple bootstrap method, and was shown both theoretically and empirically to 

achieve a higher-order accuracy for the coverage of the constructed confidence 

intervals and bias-corrections Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee 

and Young, 1999, 1995. More precisely, an iterated bootstrap procedure involves 

nested levels of data resampling. 

The double bootstrap, which is the simplest iterated bootstrap, first creates B 

bootstrap samples, 
*
by , for 1, ,b B   by resampling from the original data set, and 

then, for each bootstrapped sample b
y
, creates C second-level bootstrap samples, 

** , 1, ,bc c C y
, by resampling from 

*
by . For each 

*
by  and 

**
bcy

, we denote the 

corresponding estimator of θ by 
*ˆ
b  and 

**ˆ
bc

, respectively. By iterating this step, we 

can simply extend this to more iterated bootstrap cases. 

Various procedures for constructing confidence intervals using bootstrap have been 

proposed, such as the percentile method (Hall, 1992), the studentized method 

(Hall, 1988; Efron, 1979), the Bias-Corrected and accelerated method BCa 

(Efron, 1987), and Approximated Bias Correction (ABC; Diciccio and Efron (1992)), 

etc. Even though BCa and ABC procedures enjoy the second-order accuracy (fast 

convergence in coverage error), a practical implementation of these procedures are 

not trivial since it is difficult to calculate their acceleration factor for general models. 

On the other hand, the percentile procedure is only first-order correct, and the 

studentized procedure requires an iterated bootstrap unless an explicit form of the 

standard error of the bootstrap estimator is available. To improve the quality of the 

constructed CI, we consider using double bootstraps as in the coverage calibration 

method (Hall and Martin, 1988; Hall, 1986) and studentized CI procedure 

(Hall, 1988). The calibrated percentile two-sided CI via double bootstrap achieves 

the second-order accuracy 
1( )O n , while its single bootstrap counterpart only attains 

a rate of 
1/2( )O n . However, applying the conventional double bootstrap requires 

undesirably intensive computation: a total of B × C evaluations of bootstrap 

estimators 
**ˆ
bc

 for 1, ,b B   and 1, ,c C  . Lee and Young (1999) showed that B 

and C should be of a higher order than n4 and n2 for two-sided CIs and of order n2 
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and n for one-sided CIs, respectively, so that the coverage error rate of the Monte 

Carlo interval is no greater than that of the theoretical double bootstrap interval. The 

authors considered B = 1000 and C = 500 in their simulations, resulting in a total of 

500, 000 evaluations, which is an unmanageable size under the conventional 

bootstrap framework. 

 

3.3 GBS for iterated bootstrap 

Extending the GBS to iterated bootstraps is immediate as it is a special case of (3) 

with a weight distribution that has a hierarchical structure. For a d-level iterated 

bootstrap procedure, we may characterize its weight distribution hierarchically: 

(1) ~ Multinom( , / ),nn nw 1
 ,  ( ) ( 1) ( 1)| ~ Multinom( , / )d d dn n w w w

. The computational 

advantage of the GBS framework is particularly significant in these iterated 

situations. 

One drawback of the standard nonparametric bootstrap is that each bootstrap 

sample only touches upon about 
11 63%e   of the observations due to the nature 

of multinomial sampling, which appears to be somewhat wasteful. This loss is 

compounded and become more significant in iterated bootstraps. A smoothed 

version of these weight distributions is a hierarchy of Dirichlet distributions, which 

enable each 
ˆ
b


 and 
ˆ
bc

 to utilize all the observations Cheng and Huang, 2010; Xu 

et al., 2020; Præstgaard and Wellner, 1993. Thus, we mainly consider 

| ~ Dirichlet ( , )n nw z z  and 
~ Dirichlet ( , )nn nz 1

. If a subgroup bootstrap as in 

Section 3.1 is employed the subgrouped weights follow | ~ Dirichlet ( , )S Sw z z  and 

~ Dirichlet ( , )SS Sz 1
. We train a generator function that covers both single and 

double bootstraps by adopting a probabilistic mixture of single and double bootstrap 

weights distributions; e.g., generate single or double bootstrap weights with 50%-

50% chances. 

3.4 An illustration: double-bootstrap for logistic regression 
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We consider the standard logistic regression model: 

1~ Bernoulli
1 exp{ }i

i

y
X 

 
   

, 

where 
p

iX R
 and 

p   for 1, ,i n  . To apply the GBS to this model, we simply 

set the loss function to be 
T T(1 ) log(1 exp( ))i i iy X X    

 in (3). We simulate a data 

set that contains n = 400 observations, each with p = 20 covariates generated 

independently from the standard Gaussian. The true coefficient vector is set to be an 

equi-spaced sequence between –3 and 3. 

We examine 95% CIs constructed by various procedures, including a bias-corrected 

percentile CI (single bootstrap, denoted by “basic”), a naïve percentile CI (single 

bootstrap, denoted by “Percentile”), a calibrated percentile CI (double bootstrap), 

and a studentized CI (double bootstrap). The “basic” CI is constructed as 

* *
97.5% 2.5%

ˆ ˆ(2 ,2 )q q  
, where 

*q  is the β-quantile of the bootstrap distribution of 
*̂ . 

The calibrated percentile CI is obtained as 
* *
ˆ ˆ

ˆ ˆ(2 ,2 )
U L

q q
 

  
, where 

ˆ L  and 
ˆU  are 

calibrated coverage levels via the double bootstrap aiming at 2.5% and 97.5%, 

respectively. The studentized CI is 
* *

97.5% 2.5%
ˆ ˆˆ ˆ( , )t s t s  

, where 
*t  is the β-quantile of 

the studentized bootstrap statistic, and ŝ  is the estimated standard error (a detailed 

description of these bootstrap procedures is given in Section B of the supplementary 

materials). The coverage is calculated as the proportion of how many individual true 

parameters are covered by the bootstrap marginal CIs. Figure 4 shows these CIs, 

which are marked green if they cover the true θ, and in light red if not. Figure 4 

shows that, despite the fact that the basic single bootstrapped CI (top left) and the 

double bootstrapped CIs (bottom left and bottom right) both satisfy the target 

coverage 95%, the width of the single bootstrap is clearly wider than those of the 

double (1.64 for the single vs. 1.18 and 1.29 for the double). In addition, Figure 4 

also demonstrates that the GBS bootstrap CIs are almost indistinguishable from the 

classical bootstrap CIs. GBS for percentile bootstrap shares the same poor coverage 

(80%) as the classical percentile bootstrap (80%), along with nearly identical widths 

of the CIs (1.64 for GBS vs. 1.67 for the classical bootstrap). The classical bias-

corrected percentile bootstrap (“Basic”) attains 95% coverage, and so does GBS 

(Basic) counterpart. 
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For the double bootstrapped CIs, we generate 5000 bootstrap samples for the first-

level and 1000 for the second-level, resulting in a total of 5000 1000 5,000,000   

bootstrap evaluations. This poses a significant computational challenge under the 

conventional framework. In comparison, once the generator function is trained 

(which takes less than 3 minutes for this example), the GBS produces 10, 000 

bootstrap estimators in less than 0.1 second, and its computational advantage is 

even more significant when n and p are larger, as shown next. 

 

3.5 Scaling up towards large n and p 

We consider the same logistic regression model as in Section 3.4, and the true 

regression coefficients 
{ }j  is set to be an equi-spaced sequence in ( , )c c , where 

the value of c is chosen to match the in-sample classification error to 5% or 10%. We 

compare the performance of the GBS with those of the standard bootstrap, BCa 

(Efron, 1987), Wald interval and the profile likelihood confidence interval with sample 

size {500,5000,10000}n  and dimension of covariates {30,200,300}p . This 

simulation is replicated independently 20 times. We examine properties of the 95% 

CIs constructed by these bootstrap methods (i.e., the average coverage and average 

width, and their actual computing time). For standard bootstrap procedures, we 

consider both a parallel computing environment using 25 CPU cores (abbreviated as 

“25C”), and a single-core computation (i.e., “1C”). The detailed setting is described in 

Section 6.3, and the specification of the computing server is given in the the 

supplementary materials. We use the R package boot to implement conventional 

bootstrap procedures. The classical Wald CI based on Fisher information is obtained 

for comparison. The profile likelihood CI is based on an asymptotic approximation, 

and its computation is carried out by using the confint function in R. Due to the 

computational burden, the conventional CI procedures for large sized data sets are 

too expensive, so we only report the estimated computation times using two 

replicates. 

Table 1 and Table 2 compare traditional bootstrap procedures with their GBS 

equivalents in various settings. The GBS procedures are comparable to their 
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conventional counterparts (“Basic” and “Percentile” in the table) in terms of the 

coverage and width of the constructed CIs. The standard bootstrap percentile CIs (“

Percentile”) have been shown to have low coverage in all simulations. GBS1 

(Percentile), a fast approximation to the bootstrap, performs nearly equally badly. For 

high-dimensional logistic regression, confidence intervals based on asymptotic 

approximation, such as the profile likelihood and the Wald CI, also have low 

coverage (lower than the nominal 95%). In contrast, the bias-corrected bootstrap 

(Basic”) attains very good coverage, and so does its fast approximation, GBS1 

(Basic). Appendix D provides more detailed descriptions and analyses, including 

GBS1 coverages against single bootstrap counterparts per replication. The results 

show that GBS can recover its original bootstrap results almost perfectly. 

Additionally, the “Time” column in Tables 1 and 2 reveals that GBS greatly reduces 

the classical bootstrap’s computing time. 

When ( , ) (500,30)n p  , the traditional bootstrap-based CIs are significantly faster to 

compute. However, as data size increases, the conventional bootstrap becomes 

prohibitively expensive, taking more than an hour for ( , ) (10000,300)n p   using a 

parallel computation with 25C, and more than 7 hours using 1C. Due to its heavy 

computational need, the BCa cannot produce meaningful results for moderately 

large data sets (e.g., for ( , ) (5000,200)n p   and (10000, 300)). The profile likelihood 

procedure (“Profile”), which is based on an asymptotic approximation of the sampling 

distribution, is also quite expensive when data size becomes large. 

For the double bootstraps, the conventional repetitive computations take more than 

2.5 hours with parallel computation using 25C for the case with ( , ) (500,30)n p  , and 

would have taken more than 48 days for the case with ( , ) (10000,300)n p  . As a 

result, the conventional double bootstrap procedures are infeasible for multiple 

replicates, so their results are omitted in Table 1 and Table 2. In contrast, the GBS 

training takes less than three minutes for all examined settings, while the generation 

and post-processing for the double bootstrap take about one minute. Furthermore, 

the double-bootstrap GBS2s requires very little extra computational time, but 

achieves a significantly higher accuracy, than the single bootstrap GBS1s. 
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4 Bootstrap Cross-Validation for Parameter Tuning 
Via GMS 

Tuning parameter selection has been a challenging and computationally intensive 

task for many statistical and machine learning algorithms since repetitive 

computations are often required over a wide range of possible choices of the tuning 

parameter. We note that the GMS framework is not only applicable to bootstrap, but 

can also be used to expedite the computation of Cross-Validation (CV) procedures. It 

is easy to see that for a weight wi = 0, the corresponding term in the weighted M-

estimation loss function (1) is zero, which is equivalent to ignoring observation yi. 

More generally, we denote ( ) 1{ , , }I nw w  w
 with wi = 0 for i I , and 

| |{ : } ~ ( | |) Dirichlet( | |; )i n Iw i I n I n I     1
. Thus, index sets I and Ic can be viewed as 

those for the test and training data, respectively. To train the CV generator without 

the bootstrapping aspect, one may employ a simpler weight distribution than the 

multinomial or Dirichlet, such as setting all the weights in a randomly selected fold to 

be zero, and the remaining to be one. Based on this setup, a simple modification of 

Algorithm 1 (with strategies in Section 6.3) can be used to train the generator for the 

K-fold CV (more details in the Supplementary Materials). Once the generator is 

trained, one can easily compute the estimated out-of-sample error across different 

tuning parameters by alternating zero weight for each fold. 

More precisely, for 1, ,b B   and a tuning parameter λl in a candidate set 1{ , , }L 

, we set zero weights on a fold 
*
kI  for 1, ,k K  ; i.e., 

( , ) 0b k
iw 

 for 
*
ki I
. For 

*
ki I , 

we can set 
( , ) 1b k
iw 

 when only CV is of interest, or let 

* *
( , ) * *

| |
{ } ~ ( | |) Dirichlet( | |, )

k k

b k
i k ki I n I
w n I n I

 
   1

 so as to quantify uncertainty in the CV 

via bootstrap. The bootstrapped CV estimator without considering the test set 
*
kI  

with a tuning parameter λl, denoted by 
*

( )
( ),

ˆ
k l

b
I 


 , can be computed as 

( , )ˆ ( , )b k
lG w

. The 

CV loss for the k-th fold and λl follows as 

*
*

( , ) ( ) *
( ),

ˆˆ ( ; )/ | |
k l

k

b k b
l i kI

i I

e y I








. After repeating 

this step for all the K folds, we obtain the bootstrapped K-fold CV errors as 

( ) ( , )

1

ˆ /
K

b b k
l l

k

e e K



. After obtaining 

( )b
le  for 1, ,l L   and 1, ,b B  , one can easily 
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identify the bootstrap distribution of the out-of-sample loss via the empirical 

distribution of 
( )

1, ,{ }b
l b Be    under λl, as well as confidence bands of the out-of-sample 

loss over 1{ , , }L 
. 

Moreover, with 
( ) ( )argmin { }b b

l ll e
, the empirical distribution of ( )

( )
min{ , 1, , }b
b

l
b B 



  
 

serves as the bootstrap distribution of the minimizer of CV errors and can naturally 

quantify the uncertainty of the chosen tuning parameter (an example is given in the 

left of Figure 6). For example, this bootstrap distribution 
( )
min{ }b

 provides us an 

alternative to the ad hoc one-standard-error rule commonly recommended for Lasso 

regression, in which one chooses the most parsimonious model whose CV error is 

no more than one standard deviate above that of the best model. In contrast, with 

the availability of the bootstrap distribution of min
, we may pursue a more 

parsimonious model by using the lower (1 ) % confidence bound of this 

distribution as our chosen λ. 

Cross-validation for LASSO and ridge regression. Two representative examples of 

the penalized M-estimation are ridge (Hoerl and Kennard, 1970) and LASSO 

regression models (Tibshirani, 1996), with the corresponding loss function for GMS: 

T 2
,

1

1 { ( , )} ( ( , )) ,[ ]
n

i i i
i

w y X G u G
n   



 w w w  (7) 

with 
2

2( )u x x
 for the ridge regression and 1( )u x x

 for the LASSO. This setting is 

closely related to the weighted Bayesian bootstrap (WBB) setting analyzed recently 

in Newton et al. (2021) and Ng and Newton (2022). For this problem the GMS learns 

the mapping between ( , )w  and ,
ˆ

w , the optimal solution under the WBB setting. 

After obtaining the trained Ĝ  from (7), for a given input 
*w  and 

* , its output 

* *ˆ ( , )G w  approximates the minimizer of 

* *

1

( ; ) / ( )
n

i i
i

w y n u  



 with respect to θ. 

We simulated from a linear regression model with n = 500, p = 50, the true 

parameter 0 {1, 2,1,0, ,0}   
, and 

2
0 1 

. Each covariate vector Xi follows iid 

(0, )N   with 
1kl 

 for k = l and 
1/ 2kl 

 for k l . 
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Figure 5 shows solution-path plots that depict the relations between the tuning 

parameter choices and the corresponding estimated ridge and LASSO estimators. 

The x-axis indicates the l2 norm of the ridge regression or l1 norm of the LASSO 

estimators based on a series of λ’s, and the y-axis, the value of the estimated 

coefficient. After the generator is trained by minimizing (7), ridge (top left) and 

LASSO (bottom left) coefficient values are simply 
ˆ ( , )G 1 , which generates the 

curves in Figure 5 by letting λ vary from 0.0006 to 0.6. The resulting solution-paths of 

the GMS ridge and LASSO procedures show that the proposed method 

approximates the standard ones obtained by LARS (Efron et al., 2004) very 

accurately. 

We further investigate how the GMS-bootstrap helps to quantify uncertainty in 

choosing λ. Figure 6 illustrates some benefits of the bootstrapped CV procedure for 

the LASSO example. The left panel shows a 95% confidence band for the CV errors 

across λ. As Efron and Tibshirani (1997) noted, the bootstrapped CV improves the 

performance of prediction error estimation. However, due to heavy computational 

burden in the standard bootstrap algorithm, applications of the bootstrapped CV 

have been greatly hindered. The example in Figure 6 shows that the GMS helps 

overcome this computational difficulty. The center panel depicts the WBB distribution 

of the minimizer λ of the CV errors (the red line is the estimated density function). If 

the CV error curve is of main interest, one can easily generate it by the GMS using 

binary weights (corresponding to the chosen and left-out folds) as the input. In the 

right panel of Figure 6, the CV error curve obtained by the standard CV computation 

is nearly identical to that by the GMS. 

5 Quantile Regression Inference at Various Quantile 
Levels 

Quantile regression models, which assume that a certain quantile of the response 

variable linearly depends on the covariates, have been commonly used for robust 

regression analysis (Yu et al., 2003; Yu and Moyeed, 2001; Koenker, 2004). More 

precisely, for a given (0,1) , the conditional η-th quantile of the response given Xi 

is modeled by 
T
iX 

. The standard loss function for fitting such a model is 
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T( ; , ) ( ),i i i iy X y X     (8) 

where 
( ) ( ( 0))u I u u   

. The inference for the regression coefficients in this 

setting is more challenging than that for parametric regression models, because the 

sampling distribution of the coefficient estimates often relies on the regression error 

density function, which needs to be estimated and is a challenging task by itself in 

high-dimensional settings (Koenker, 1994). In routine applications of quantile 

regression analyses, bootstrap procedures are popular to use for approximating the 

sampling distribution of the estimates (Feng et al., 2011; Hahn, 1995; Kocherginsky 

et al., 2005), which can be computationally demanding. Furthermore, when a 

practitioner is interested in investigating multiple quantile levels, it is also necessary 

to repeat the bootstrap procedure multiple times, each at a different quantile level. 

Such a computational burden is prohibitive when the data size is large. 

By using 
( ( , ); , ) ( ( , ))i i i iG y X y X G   w w

 in (3), we apply the GMS to overcome 

the computational challenges for the inference of quantile regression models with a 

GMS loss of 

,
ˆ argmin ( ( , )) ,[ ]

G

n

i i i
i

G w y X G   w w  (9) 

where ,w  is the expectation operator on w  and η, assuming that η follows some 

distribution   whose support is (0,1) and independent with w . A default choice is to 

add random noises to the candidate set of quantile levels, and let w  follow the 

probability law in (6). 

To demonstrate the effectiveness of this procedure, we test the method on a 

simulation setting examined in Feng et al. (2011). The data set is generated from the 

model 
T 1/2 2

0 1 23 [2 {1 ( 8) }/10] , 1, ,i i i i iy X x x i n        
, where 1( , , )i i ipX x x 

, n 

= 500, p = 5, 0 5 1
, and 3~i t

. We let 2 1ix 
 for 400i   and 0  for i > 400, and 

generate the other covariates independently from the standard log-normal 

distribution. 
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As in Feng et al. (2011), we consider the wild bootstrap, as well as the standard 

bootstrap. Figure 8 (a)–(c) compare the 90% confidence bands of several 

coefficients generated by the GMS with those obtained by the standard bootstrap 

and the wild bootstrap over quantiles varying from 0.05 and 0.95, showing that the 

the approaches result in nearly identical bands. 

To investigate computational efficiency of the GMS for quantile regression, we 

increase the sample size and the number of predictors in the above simulation model 

to ( , ) (1000,50)n p  , (2000, 100), (3000, 150), and (5000, 300), respectively, and 

consider quantile levels varying from 0.05 to 0.95 with a skip of 0.05 (total 19 

quantile levels). We set the first five coefficients of θ0 to be one and the others be 

zero. Our target is to obtain 5, 000 bootstrap samples under each setting. Due to 

heavy computational burden of the standard bootstrap procedure, we compute only 

five bootstrap evaluations and report an estimated time from them (e.g., multiplying 

1, 000 to the time taken for the five evaluations). Figure 8 (a) depicts the 

computation time required for each procedure. While the GMS can be trained in less 

than 10 minutes for moderately large data size ( 5000, 300n p  ), the standard 

bootstrap requires more than 30 minutes for the smallest data set ( 1000, 50n p  ) 

and about 3 months for the case of ( 5000, 300)n p  . 

6 Computational Strategies for Training the 
Generator 

6.1 Multilayer perceptron 

Neural networks have been shown effective for approximating functions with 

complicated structures. Recently, researchers have experimented with various novel 

ways of using neural networks, such as constructing generators of real-life-like 

images and creating generative adversarial networks for approximating high-

dimensional distributions (Ledig et al., 2017; Wang et al., 2018; Karras 

et al., 2018; Goodfellow et al., 2014; Arjovsky et al., 2017). The simplest neural 

network structure is a class of MLPs/FNNs constructed by composing activated 

linear transformations. For 1, ,k K  , let gk denote the feed-forward mapping 

represented by 
( )kN  hidden nodes, where 

( ) ( 1)

:
k kN N

kg


 is defined as 
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( 1)( ) ( )( ) ( )
kk k N

kg 


  X U X b
, where 

( )kNX  is the input variable of gk. Also, this 

function is characterized by a “weight” parameter and a “bias” parameter: the 
( 1) ( )k kN N   weight matrix 

( )kU  and the 
( 1)kN 

-dimensional bias vector 

( )
( ) ( ) ( )

1{ , }k
k k k

N
b b b

. A K-layer MLP function 
(1)

: N Dg  can be defined by the 

composition of these functions as 

1( ) ( ),Kg L g g  X X  (10) 

where 
( )

:
KN DL  is a linear function that maps the final hidden layer 

1( )Kg g X
 to the D-dimensional output space of g. Commonly used activation 

functions include the sigmoid function, the hyperbolic tangent function, the Rectified 

Linear Unit (ReLU) (Nair and Hinton, 2010), the Exponential Linear Unit (Clevert 

et al., 2015), the Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016), etc. We 

here employ neural networks with the ReLU activation function ( ) max{ ,0}t t   to 

construct generator G in (3) in a novel way as characterized by the integrative loss 

(3) and the weight multiplicative MLP explained below. 

6.2 Weight multiplicative MLP 

Despite its generalizability and practicability, we observe that the simple MLP 

converges slowly for our GMS applications (as shown in Figure 9). We propose a 

modification motivated by the Taylor approximation of the first derivative of the 

weighted loss function. For illustration, let us consider the weighted M-estimation 

loss 1

( ; )
n

i i
i

w y



 and its optimizer 

̂w  in (1) for a case of p = 1 (ignoring η and λ for 

simplicity). Under mild conditions, we assume that 1

ˆ( ; ) 0
n

i i
i

w y


  w
, where   is the 

first derivative of  with respect to θ. Then, by using a Taylor approximation of   at 

a local region of some arbitrary ( )g w , we obtain that 

1 1 1

ˆ ˆ0 ( ; ) ( ( ); ) ( ( ); )( ( )),
n n n

i i i i i i
i i i

w y w g y w g y g 
  

        w ww w w  (11) 

where ( , )y  denotes the second derivative of  with respect to θ. 
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The approximation term used in equation (11) contains two different kinds of 

approximations: the approximation of 
ˆ ( )g w w

 and the Taylor’s approximation for 

1

ˆ( ; )
n

i i
i

w y


 w
. The first kind of approximation can be justified by the universal 

approximation theorem for neural networks Hornik et al., 1989; Barron, 1993; Lu 

et al., 2017; Kratsios and Papon, 2022. The universal approximation theorem states 

that a feed-forward neural network is capable of approximating any continuous 

function, if the size of the neural network is large enough. 

Thus, we have 

1 1

1

( ( ); )ˆ ( ) ( ) ( ).
( ( ); )

n n
i i

i in
i i

j j
j

w g yg g wh
w g y




 




   



 


w
ww w w
w

 (12) 

Motivated by this approximation, we propose a new neural network structure called 

the Weight Multiplicative MLP (WM-MLP) as the sum of a simple MLP and a weight 

multiplicative one: 

Simple MLP: Weight multiplicative network: 

1

1 2

( )
( , , )

( , , ) ( , , ) ({ ( , , )} ) ,
n

i i
i

K K

g
w h

G L B L f B

 

     



    


w

w

w w w w  (13) 

where “ ” indicates an element-wise multiplication operator; 1 : H pL
 and 

2 : n pL
 are linear functions; 

1 1: n H
KB

 

 and : H nf  are simple MLPs 

with K hidden layers and one hidden layer, respectively. For a large n, the subgroup 

bootstrap in Section 3.1 reduces the dimension of w  and the network size. 

To demonstrate the improvement, we compare the performances of WM-MLP and 

the simple MLP for various sizes of hidden nodes (500, 1000, 2000) and layers (K = 

1, 2, 3), for a logistic regression example. The true θ’s in the simulations are equi-

spaced between –0.5 and 0.5 with p = 100 and n = 1000. We train the generator G 

from ten random initializations and report the average loss values after 30,000 

iterative updates for each MLP structure. The results are summarized in Figure 9, 

demonstrating that for all network sizes the proposed WM-MLP outperforms the 
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simple MLP uniformly. In comparison to a large-sized MLP with three hidden layers 

and 2000 neurons, even a small-scale WM-MLP with a single hidden layer and 500 

neurons achieves a lower loss, whereas the simple MLP with one hidden layer 

performs much poorly. For all examples in the paper, we used the WM-MLP with 

three hidden layers as a default, and observed that the resulting generator function 

based on the WM-MLP performed satisfactorily. 

6.3 Computational strategy in optimization 

It is straightforward to optimize the GMS integrative loss (3) because the expectation 

can be approximated by a few Monte Carlo samples at each iteration. We use a 

variant of the popular SGD algorithms such as Adam (Kingma and Ba, 2014), 

AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), etc, to iteratively 

update the neural net parameters until the algorithm converges. Algorithm 1 

summarizes the detailed steps of the GMS. As in (4), this algorithm samples M 

values of w ’s and λ’s to approximate the expectation and updates the neural 

network parameters via SGD. It is not uncommon nowadays for a data set to be 

extremely large, to the point that the full data size surpasses the memory capacity of 

the computer in use. Data subsampling would be advantageous in this setting for 

training the GMS, which partially updates the weights corresponding to the 

subsampled data in the same spirit as stochastic optimization (Allen-Zhu 

et al., 2019). 

Technical details of the optimization. In all our examples, we use the WM-MLP with 

three hidden layers and 1,000 hidden neurons in each layer. In Pytorch, algorithm 

Adam is used with a learning rate of 0.0003 and a decay rate of 
0.3t  by default. We 

use full samples in the SGD optimization without mini-batches because the data 

sizes of the examples we considered are manageable. However, when the data size 

is massive, minibatch subsampling would be necessary. 

 

Algorithm 1 A general algorithm to train the GMS. 

•  Set , , α , S (subgroup size), M (Monte Carlo sample size), and T (total iterations). 
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•  Randomly split the full data into S subgroups, resulting in an index function (·)h  in 

(6). 

•  Initialize the neural net parameter 
(0) . 

•  Set t = 0. 

while the stop condition is not satisfied or t < T do 

•  Independently sample M values of α ’s, λ’s, and η’s from , , α . 

•  Consider 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 1

1 ( ( , , ); ) / ( ( , , ))t t

M n
m m m m m m m m
h i i

m i

L l G y n u G
M  

     
 

  α α

, 

where 
( )m

α  is the m-th sample of M α ’s. 

•  Update 
( 1)t 

 by using the gradient of L via a SGD step. 

•  Let 1t t  . 

end while 

Choosing distributions for w , λ, and η. For bootstrap procedures, the distribution of 

bootstrap weights w  (or α ) can be easily chosen depending on the practitioner’s 

interest; e.g., 
~ Multinomial( , / )  or ~ Dirichlet( , )n nn n n nw w1 1

. When n is 

excessively large, the dimension of w  can be reduced by the subgroup 

bootstrapping method in Section 3.1. As a general rule, when n > 500, we 

recommend considering subgrouping. While our theoretical evidence suggests that 
1/2S n  is optimal (see Section A.1 in Supplementary Materials), empirically setting S 

to a few hundreds performs well in all situations shown in this paper. By default, S = 

100 was used. Choosing the training distributions for λ and η is more arbitrary 

because usually we have no reference distributions for λ and η unlike the case of w . 

We may first set candidate sets for λ and η in advance (which can be large in size) 

and then add some random noises to form mixture distributions. For example, we 

can generate exp{log }    , where   is randomly selected from the candidate 

set and ~ (0, )N   with 
20.2   as default. For the quantile regression example in 

Section 5, we generate 
2(0,0.03 )N     with   randomly selected from a pre-

determined candidate set, and then truncated to be in (0.001,0.999) . 

Training stopping criteria. In order to judge the convergence in training the generator 

function, we first set the maximum number of epochs depending on computational 

resources at hands (our default is 20,000 epochs). In addition to this stopping 
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criterion, we also consider an early stopping rule that has been commonly used in 

training general neural networks (Heckel and Yilmaz, 2021; Li 

et al., 2020; Prechelt, 1998) to determine when we stop the optimization algorithm 

before reaching the maximum number of epochs. Intuitively, we stop the algorithm 

when the updates do not further reduce the loss value. More specifically, for each 

epoch t, we evaluate the averaged loss value Lt on epoch t and compare it with 

those of the previous epochs { , 1,2, , }tL k    for some lags. We terminate the SGD 

algorithm if Lt is within ϵ of a quantile (such as the median) of the previous losses. 

We recommend to monitor the change of loss values in the previous k=100 epochs, 

and use the 25th percentile with 0.01 . 

 

6.4 Limitation of GBS and GMS 

Despite the empirical successes of GBS and GMS in various applications examined 

in this paper, they are not free of limitations. First, unlike the conventional bootstrap 

procedures, even for a small-sized data set, training the generator function of GBS 

and GMS requires a certain amount of computation time as minimum in training the 

generator. Tables 1 and 2 show that the GBS for the smallest data set (

500, 30n p  ) takes about 15 times longer computation time compared to the 

standard bootstrap using 25 cores in parallel. Second, like all other applications of 

neural network, choosing optimal hyperparameters such as learning rate, widths of 

networks, the number of neurons, etc, is not systematically justified and somewhat 

heuristic. However, we find that our default settings for the WM-MLP proposed in 

Section 6.3 result in accurate approximations for our examples. Third, when the 

output dimension (the dimension of θ) and the input dimension (the subgroup size) 

for the generator are high, the resulting computation can be bottlenecked in terms of 

the computational time and the convergence of optimization. Even though for a case 

of ( 10000, 300)n p   in Tables 1 and 2, the GBS approximates the target bootstrap 

estimators well, the convergence of training would be slow under higher dimensional 

settings. As a result, it would be desirable to consider a larger network to 

approximate more complicated target function, resulting in even more longer 

computation time. 
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7 Conclusion 

We propose the GMS as a general computational approximation framework to 

accelerate repeated calculations for (penalized) weighted M-estimations. The GMS 

was shown effective for a variety of statistical inference procedures, including 

bootstrap methods and cross-validations for general M-estimators. We apply the 

GMS to a variety of models, including LASSO, logistic regression, quantile 

regression, etc. The GMS performs well in all of the situations we investigated, and 

the weighted M-estimators generated by the GMS are sufficiently accurate and 

comparable to the much more computationally expensive traditional solutions for all 

inference purposes. By lowering the computational barrier associated with repetitious 

data-splitting or data-sampling processes such as (bootstrapped) CVs and iterated 

bootstrap, the GMS opens up a new perspective on modern statistics. To date, these 

approaches have been less noticed and rarely practiced by the statistical community 

not because they are less valuable, but because their computation cost is 

prohibitively high. We expect that the GMS will prove to be an effective tool for 

augmenting the power of statistical models in the era of big data. 
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Fig. 1 Trace plots of (a) the training loss, and (b) the integrative prediction loss, in 

the logarithmic scale. Five lines for each optimization represent five distinct 

initializations; and the red dashed and blue dotted lines indicate the conventional ML 

with B = 500 and B = 5000, respectively. 
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Fig. 2 Histograms of block bootstrap distributions with various S for the coefficient 

of X1 (top), X5 (middle), and X10 (bottom) for each subfigure. The red line indicates 

the density function of the target distribution (of the standard bootstrap). 

 

Fig. 3 Comparisons of subgroup bootstraps across different numbers of blocks. 
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Fig. 4 GBS 95% CIs for the logistic regression example: The basic single 

bootstrap CI (top left); the naïve percentile single bootstrap CI (top right); the 

calibrated percentile bootstrap CI via double bootstrap (bottom left); a studentized 

bootstrap CI via double bootstrap (bottom right). CIs covering true parameters (black 

dots) are colored in green and otherwise in light red. Averaged width of CIs across 

parameters is reported in parentheses. 
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Fig. 5 Solution paths of the GMS ridge (top left), the standard ridge regression 

(top right) and the GMS LASSO (bottom left), and the LARS (bottom right). 

 

Fig. 6 Left: The 95% confidence band of CV error evaluated from the GMS 

bootstrap with random weights, and the red solid line indicates the mean curve. 

Middle: The GMS bootstrapped distribution of the CV-error minimizer min
. Right: CV 

errors based on the standard LASSO and the GMS with the constant weight vector 

1 . The purple vertical line indicates the value of λ that minimizes the CV error. 
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Fig. 7 Computation time for the GMS quantile regression (black solid line with 

triangle marks) and its conventional counterpart (red dashed line with filled-dot 

marks). 
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Fig. 8 (a)–(c): Comparisons between the 90% confidence bands obtained from the 

GMS (blue), the classical bootstrap (yellow) and the classical wild bootstrap (red) 

across quantile levels ranging from 5% to 95%. The quantreg R package is used for 

the conventional bootstrap and wild bootstrap. 
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Fig. 9 Comparison of the losses obtained by the simple MLP and the WM-MLP 

with various numbers of hidden layers and nodes. The number noted after ”MLP” 

indicates the number of layers K. 
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Table 1 Cases of 5% in-sample error in classification. Results of the simulation 

study for logistic regression models; “GBS1” and “GBS2” indicate single and double 

bootstraps implemented by the GBS, respectively; “Cov”, “Width”, and “Time” mean 

the averages (over 20 replicates) of the coverage, the width, and the actual 

computing time (seconds) of each evaluated 95% CI, respectively; for the 

computation time of the GBS, the black and red numbers indicate training and 

generation time (including post processing time for the GBS), respectively. 

 

( , ) (500,30)n p 
 

  

( , ) (5000,200)n p 
 

  

( , ) (10000,300)n p 
 

  
Method  Cov  Width Time Cov  Width Time Cov  Width Time 

GBS1 

(Basic)  0.967  2.595  140.8 + 0.1 0.958  0.318  152.9 + 0.2 0.947  0.235  163.6 + 0.4 

GBS1 

(Percentile) 0.398  2.595  140.8 + 0.1 0.424  0.318  152.9 + 0.2 0.403  0.235  163.6 + 0.4 

GBS2 

(Student)  0.962  1.762  140.8 + 15.6 0.929  0.298  152.9 + 45.0 0.930  0.225  163.6 + 63.9 

GBS2 

(Calibrated) 0.927  1.495  140.8 + 15.6 0.924  0.295  152.9 + 45.0 0.929  0.227  163.6 + 63.9 

Basic (25C)  0.975  3.677  8.4 0.984  0.36  539.6 NA  NA  4227.05 

Basic (1C)  

  

93.8 

  

3833.3 

  

25540.5 

Percentile 

(25C)  0.405  3.677  8.4 0.444  0.36  539.6 NA  NA  4227.05 

BCa (25C)  0.818  NA  84.3 NA  NA  NA NA  NA  NA 

Profile  0.678  2.290  0.7 NA  NA  1310.8 NA  NA  8670.7 

Wald  0.752  2.253  ¡0.1 0.770  0.318  2.5 0.748  0.241  10.8 
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Table 2 Cases of 10% in-sample error in classification. “Basic” means bias-

corrected percentile bootstrap CI and “Percentile” stands for classic percentile 

bootstrap CI. Results of BCa, profile likelihood CI (“Profile”) and Wald interval (“Wald

”) are also provided. As for classical bootstrap, “25C” represents 25 CPU cores for 

parallel computing and “’1C’ is a single-core computation. 

 

( , ) (500,30)n p 
 

  

( , ) (5000,200)n p 
 

  

( , ) (10000,300)n p 
 

  
Method  Cov  Width Time Cov  Width Time Cov  Width Time 

GBS1 

(Basic)  0.978  0.799  140.8 + 0.1 0.940  0.228  152.9 + 0.2 0.904  0.149  163.6 + 0.4 

GBS1 

(Percentile) 0.698  0.799  140.8 + 0.1 0.750  0.228  152.9 + 0.2 0.777  0.149  163.6 + 0.4 

GBS2 

(Student)  0.932  0.711  140.8 + 15.6 0.936  0.210  152.9 + 45.0 0.912  0.153  163.6 + 63.9 

GBS2 

(Calibrated) 0.885  0.668  140.8 + 15.6 0.932  0.210  152.9 + 45.0 0.882  0.155  163.6 + 63.9 

Basic (25C)  0.985  0.844  8.4 0.972  0.228  539.6 NA  NA  4227.05 

Basic (1C)  

  

93.8 

  

3833.3 

  

25540.5 

Percentile 

(25C)  0.727  0.844  8.4 0.787  0.228  539.6 NA  NA  4227.05 

BCa (25C)  0.972  0.933  84.3 NA  NA  NA NA  NA  NA 

Profile  0.875  0.745  0.7 NA  NA  1310.8 NA  NA  8670.7 

Wald  0.890  0.742  ¡0.1 0.904  0.216  2.5 0.914  0.148  10.8 
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