
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Generative Multi-purpose Sampler for Weighted
M-estimation

Minsuk Shin, Shijie Wang & Jun S. Liu

To cite this article: Minsuk Shin, Shijie Wang & Jun S. Liu (08 Dec 2023): Generative Multi-
purpose Sampler for Weighted M-estimation, Journal of Computational and Graphical
Statistics, DOI: 10.1080/10618600.2023.2292668

To link to this article: https://doi.org/10.1080/10618600.2023.2292668

View supplementary material

Accepted author version posted online: 08
Dec 2023.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2023.2292668
https://doi.org/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=08 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=08 Dec 2023

Generative Multi-purpose Sampler for Weighted M-
estimation

Minsuk Shina, Shijie Wanga,*, Jun S. Liub

aDepartment of Statistics, University of South Carolina,

bDepartment of Statistics, Harvard University December 8, 2023

*SHIJIEW@email.sc.edu

Abstract
To overcome computational bottlenecks of various data
perturbation procedures such as the bootstrap and cross
validations, we propose the Generative Multi-purpose Sampler
(GMS), which directly constructs a generator function to
produce solutions of weighted M-estimators from a set of
given weights and tuning parameters. The GMS is
implemented by a single optimization procedure without
having to repeatedly evaluate the minimizers of weighted
losses, and is thus capable of significantly reducing the
computational time. We demonstrate that the GMS framework
enables the implementation of various statistical procedures
that would be unfeasible in a conventional framework, such as
iterated bootstrap procedures and cross-validation for
penalized likelihood. To construct a computationally efficient
generator function, we also propose a novel form of neural
network called the weight multiplicative multilayer perceptron
to achieve fast convergence. An R package called GMS is
provided, which runs under Pytorch to implement the proposed
methods and allows the user to provide a customized loss
function to tailor to their own models of interest.

Keywords: Weighted M-estimation, Bootstrap/resampling, Cross-validation, Scalable

Computation, Iterated Bootstrap

Acc
ep

ted
 M

an
us

cri
pt

http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf

1 Introduction

Consider a canonical setting in which 1{ , , }ny y y
 are i.i.d. observations following

a statistical model with the parameter of interest denoted by
p  (n > p). In

some instances such as regression analysis, one may also include predictors or

covariate variables for each observation. An efficient estimator of θ can often be

found by solving the following (penalized) optimization problem:
ˆ argmin ()L  y ,

where 1

1() (;)
n

i
i

L y
n  



 y
 with

(·) being a suitable loss function with an auxiliary

parameter η. The resulting ̂ is often referred to as an M-estimator (Huber, 1992).

For example, the maximum likelihood estimator (MLE) is a special M-estimator with

the loss function being set as the negative log-likelihood function.

To assess the variability of the M-estimator ̂ , we study behaviors of the following

tunable weighted M-estimators as inspired by the bootstrap methods (Efron, 1979):

, ,
1

1ˆ argmin (;) () argmin (; , ,),
n

i i
i

w y u L
n 

        




 
   

 
w y w (1)

where 
 is an auxiliary parameter of the loss, (·)u is a penalty function on the

parameter with a tuning parameter λ that can be set to zero for non-penalized

settings, and 1(, ,)nw w  w
 is a vector of weights following distribution () w .

The auxiliary parameter η tunes the loss function. For example, in quantile

regression models, (0,1) represents the quantile level and the loss function takes

the form
(; ,) (), where () ((0))i i i iy X y X t t I t          

. When the loss

function has no auxiliary parameter, we simply denote the loss and the resulting

estimator by
(;)iy

 and ,
ˆ

w , respectively.

The formulation of (1) applies to a wide range of statistical procedures. For example,

the classical bootstrap procedure of Efron (1979) corresponds to

~ Multinom(, /)nn nw 1
, where n1

 is a n-dimensional vector of one, and () 0u   .

Random-weight bootstrap procedures can be formulated by imposing a general

Acc
ep

ted
 M

an
us

cri
pt

distribution on w that has a mean of one, finite variance, and sum to n. Its

theoretical properties such as consistency have been studied (Præstgaard and

Wellner, 1993; Cheng and Huang, 2010; Barbe and Bertail, 2012). A special and

most well-known form of the random-weight bootstrap is to set
~ Dirichlet(;)nn nw 1

as in the Bayesian Bootstrap (Rubin, 1981) and Weighted Likelihood Bootstrap

(Newton and Raftery, 1994). Theoretical investigations and improvements of the

bootstrap methods have been considered in a large body of literature (Chatterjee

et al., 2005; McCarthy et al., 2018; Hall and

Martin, 1988; Efron, 1987; Hahn, 1995; Kleiner et al., 2014).

Iterated bootstrap procedures are often employed to reduce the bias associated with

a statistical inference procedure and/or improve the coverage precision of

confidence intervals (Hall and Martin, 1988). A most frequently cited procedure is the

double bootstrap, which first bootstraps and infers the parameter or prediction, and

then estimates the bias of each bootstrapped solution via a second-level bootstrap.

In (1), the double bootstrap procedures can be represented by setting a hierarchical

weight distribution such that 1{ , , } ~ Multinom(, /)n ns s n n s 1
 and

| ~ Multinom(, /)n nw s s . These iterated bootstrap methods can be shown to provide

more accurate confidence coverage (i.e., the second or higher-order accuracy)

compared with single bootstraps and asymptotic approximations

Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee and Young, 1999, 1995.

However, iterative bootstraps are computationally very expensive and are rarely

used in practice when the data are of moderate to large sizes.

The tunable weighted M-estimation in (1) can also represent K-fold cross-validation.

For pre-selected folds, such as a group of sample indices 1, , KI I
, we set wi = 0 for i

in the fold of interest, say I1, and set wi = 1 in all other folds. This means that the

observations in I1 will be ignored during training, rendering I1 to be test samples. If

1(·) ·u 
, the evaluated ,

ˆ
w is equivalent to the LASSO estimator (Tibshirani, 1996),

based on a tuning parameter λ, trained without using the samples in the considered

fold I1, resulting in a cross-validated LASSO. The computational burden of the cross-

validation linearly increases with the fold size K and the candidate set size of the

Acc
ep

ted
 M

an
us

cri
pt

tuning parameter, and a typical amount is at least a few hundreds of repetitive

computations.

While aforementioned weighted M-estimation procedures are widely used in

statistics and science, the computational bottleneck caused by their repetitive nature

poses significant practical difficulties. To alleviate these computational difficulties, we

propose a computational approximation strategy based on a neural network-based

generative process, called the Generative Multi-purpose Sampler (GMS) (with the

Generative Bootstrap Sampler (GBS) as a special case for bootstrap). Instead of

repeating the same optimization process for various combinations of weights w ’s

and parameters λ’s and η’s, the GMS constructs a generator function that takes

(, ,) w as input and approximates the corresponding weighted M-estimator , ,
ˆ

 w .

In addition to taking advantage of the high representation power of neural networks,

a key idea for the GMS to achieve the desired computational efficiency gain is to

minimize an integrative loss in its training, which optimizes both the M-estimation

and the parameters employed by the GMS simultaneously.

The rest of the article is organized as follows. Section 2 introduces the general GMS

framework and uses a toy example to explain its potential gains. Section 3 details its

specialization for the bootstrap, namely the Generative Bootstrap Sampler (GBS).

Section 4 discusses the training of GMS for cross-validation with Lasso and quantile

regression. Section 6 provides details on the neural network structures and detailed

computational aspects of GMS. Section 7 concludes with a brief discussion.

2 Generative Multi-purpose Sampler

2.1 The basic formulation

We view the weighted M-estimator , ,
ˆ

 w as a function of the weight w , the tuning

parameter λ, and the auxiliary parameter η, i.e., (, ,)G  w , and attempt to

approximate it by a member in a suitable family of functions
2{ : , }n pG  

, where  is the space of parameters that characterize a

function in the family. By doing so, we turn the unrestricted optimization problem in

Acc
ep

ted
 M

an
us

cri
pt

(1) into a restricted optimization problem in a functional space, i.e., finding a proper

parameter of the generator function such that, for all ,   w , and 
 ,

ˆ argmin ((, ,); , ,),L G


    


 y w w (2)

A slightly less ambitious, but more robust, formulation is to solve

, ,
ˆ argmin ((, ,); , ,) ,L G



      


   w y w w (3)

where , , (·) w is taken with respect to a proper distribution of (, ,) w defined on
   . We name this generative framework in (3) as the GMS. For non-

penalized settings without the auxiliary parameter η, we simply denote the generator

function by ()G w . We also use the notation
ˆĜ G



. The weight distribution for Efron’

s nonparametric bootstrap is simply
~ Multinom(, /)nn nw 1

. For the Bayesian

bootstrap (Rubin, 1981),
/ ~ Dirichlet(,)nn nw 1

. The distributions of λ and η can

simply be the uniform distribution on candidate sets of λ’s and η’s chosen by the

researcher. Another reasonable distribution of λ and η is to add random noises to a

discrete set of candidate values (see Section 6.3 for details).

Suppose that ̂ is the solution of (3) for a sufficiently large family and a proper

distribution on , ,{ , , },    ww
, supported on

   . If the solution , ,
ˆ

 w of (1)

is unique for any given (, ,) w in the support, then
ˆ (, ,)G


 w
 should be very close

to , ,
ˆ

 w almost surely in , , w . It is easy to see this point by contradiction – if not,

then there exist 0 and a subset
*S     such that , , () 0S 

 w and

ˆ , ,
ˆ(, ,)G  

   ww
 on

*S . Thus, we can find another function that differs from
ˆG

only on
*S and achieves a smaller value in (3).

A main takeaway from this argument is that optimizing the integrative loss over the

space of (, ,) w instead of the individual loss is appropriate for training. To benefit

from this formulation, we must choose an appropriate family of functions
G and a

suitable distribution , , w to cover the hyperparameter space of interest. As

Acc
ep

ted
 M

an
us

cri
pt

demonstrated by our empirical studies on a wide range of problems, restricting to

be a class of neural networks and choosing a reasonable distribution , , w appears

to work well (see details in Section 6.3).

As shown in Cybenko (1989) and Lu et al. (2017), Multi-Layer Perceptrons (MLP), or

equivalently, Feed-forward Neural Networks (FNNs), are theoretically capable of

approximating any Lebesgue integrable function when the numbers of neurons and

layers are sufficiently large. Also, recent successful applications of deep neural

networks in a variety of data-rich fields provide compelling evidence supporting the

use of over-parameterized MLPs and other types of neural networks for

approximating extremely complicated functions (Goodfellow et al., 2014; Arjovsky

et al., 2017). To train a neural network to achieve the task in (3), we employ a

backpropagation algorithm (Rumelhart et al., 1986) along with Stochastic Gradient

Descent (SGD) and its variants. More details are given in Section 6.1.

2.2 Intuitions for potential gains

Imagine that we have independent weight vectors
(1) (1) (1) () () ()(, ,), , (, ,)M M M   w w

from , , w , we can approximate the expectation in (3) by

() () () () ()
, ,

1

1((, ,); , ,) ((,); , ,).
M

m m m m m

m

L G L G
M        



    w y yw w w w (4)

M do not need to be very large (M=100, say) since a small number of samples of

(, ,) w can be generated continuously within the iterative SGD algorithm to aid the

fitting: after updating the FNN parameter  with SGD based on (4), we use the

newly created samples to evaluate the fit and to provide refreshed gradient. Thus,

the two optimization tasks, i.e., minimizing the loss function
Ly and finding optimal 

for the generator (·)G , co-evolve and help each other.

If we were to cast the task of training a generator in a classical machine learning

framework, we would have to first obtain a set of training samples,
() () ()

1
ˆ{(, ,)}b b b B

b  w

, where
() ()

()
,

ˆ ˆ
b b

b


 
w , by evaluating B optimizations in (1) with

() ()(,)b bw for

Acc
ep

ted
 M

an
us

cri
pt

1, ,b B  (ignoring η for simplicity in this case). Then, one may try to learn a

function g by minimizing

2() () ()

1

ˆˆ argmin (,) ,
g

B
b b b

b

g g 


  w (5)

under the l2-distance
·

. However, this squared-loss only measures the distance

between the fitted generator ˆ(,)g w and its training true value ,
ˆ

w . As a result, it

cannot inform us how to improve the fitting of the original statistical loss in (1) other

than a simple interpolation. Thus, the function trained in this manner tends to be

inaccurate if B is small, or may be prohibitively expensive in computation if we must

rely on a large B, in which case computational advantages of the generative process

would be non-existing or limited.

Training the generator function G in conjunction with minimizing the loss function via

the GMS formulation (3) is significantly more efficient. The classical loss (5) fits only

on the training data with a limited size,
() () ()

1
ˆ{(, ,)}b b b B

b  w
, resulting in an over-fitting

issue. The GMS, on the other hand, is trained using the weights and tuning

parameters generated from a predefined distribution without requiring additional

optimizations for (1), and generating w and λ is nearly cost-less. As a result, the

GMS training procedure not only seeks the minimizer of
(; ,)L  y w

, but also allows

for the use of an almost infinite number of training weights and tuning parameters

during the training step, thereby avoiding over-fitting.

2.3 Illustration with a simple example

A novel aspect of our formulation is represented by the minimization of the

integrative loss (3), which combines the individual optimization step required by each

classical replication with the approximation of the functional form G. Let us consider

the bootstrap procedure for a toy linear regression example with data
(,),i iy X

1, ,i n  , and the loss function
2(; ,) ()i i i iy X y X  
 and λ = 0. For this problem,

we can obtain the closed-form solution of the optimization problem for each

bootstrapped sample:
1

0() ()G W Ww X X X y
, where

Acc
ep

ted
 M

an
us

cri
pt

1 1(, ,) , (, ,)n ny y X X   y X
, and diag()W  w . Thus, a bootstrap procedure

would follow simple steps: for 1, ,b B  , generate
() () ()

1(, ,) ~ Multinom(, /)b b b
n nw w n n w 1

 or
Dirichlet(,)nn n 1

, and then for each
()bw ,

plug in the formula to get
() ()

0
ˆ ()b bG  w

. However, if one does not have the closed-

form formula but has to solve numerically the minimization problem of (1) for every

generated
()bw , the bootstrap procedure can be prohibitively demanding in

computation. Thus, our GMS formulation via (3) can be thought of as an automatic

way to find a highly accurate approximation to the closed-form solution (in the form

of a neural network) of the minimization problem of (1). Once this solution Ĝ is

found, one can easily generate bootstrap estimators with almost no computational

cost.

For a case of n = 100 and 10p  , we set the true coefficient {1,0, ,0}   and the

regression variance one. The predictors are independently generated from
(0,)pN I

.

We generate a data set and evaluate random weight bootstrap estimators with

~ Dirichlet(;)nn nw 1
, and then numerically evaluate the average loss of (1) on

various weights from the trained generator for the classical machine learning

approach with B = 500 and B = 5, 000, as well as the GMS. We initialize the

optimization in different five points for each procedure.

In Figure 1, we consider two performance measures for this example: the training

loss specified in (5) and the integrative prediction loss (IPL) that can be defined as
2ˆ ()g w w w
. The IPL is approximated by using 1, 000, 000 Monte Carlo

evaluations, and the loss values are multiplied by n to adjust for the scale of
ˆVar() .

Note that the GMS trains its generator G by minimizing the integrative loss (3),

whereas the naive generator g is trained using the l2-loss in (5) with B = 500 and 5,

000 training samples, respectively. As expected, Figure 1(a) shows that the training

l2-losses for the naive procedures are significantly lower than those for the GMS.

However, the IPLs of the considered methods behave quite differently. The naive

minimizers (for the cases with B = 500 and 5, 000) first decrease their IPLs rapidly,

but after 200 iterations their IPLs begin to increase. In contrast, the GMS seamlessly

reduces its IPL. The poor predictive performance of the naive procedure stems from

Acc
ep

ted
 M

an
us

cri
pt

the fact that the l2-loss encourages the generator function ĝ to overfit the training set

(1) ()ˆ ˆ, , B  . Unlike the conventional machine learning modeling, the GMS is quite

resistant to overfitting, as we can sample w ’s at near-zero computational cost during

the training of the generator function.

3 Generative Bootstrap Samplers

3.1 Bootstrap and subgroup bootstrap

The simplest use of the GMS is to bootstrap M-estimators, which is a special case of

form (3) without η and (·)u . The weight distribution is
Multinom(, /)nn n1

 (or

Dirichlet(,)nn n 1
 for the Bayesian bootstrap). More precisely, we let  be the

parameter underlying the generator G and solve the optimization problem:

1

1ˆ argmin (();)
n

i i
i

w G y
n  



 
  

 
w w

. We call this simple GMS application the

Generative Bootstrap Sampler (GBS).

Despite its considerable efficiency, the GBS framework has a fundamental limitation

for practical bootstrap applications: the dimension of the generator domain equals

the sample size n. Even when computationally efficient neural networks are used to

model the generator, the convergence is quite slow when the input dimension is high

(say, tens of thousands). We may further encounter technical issues such as

memory shortage as well, which is particularly severe for big data. To address this

limitation, we consider a subgroup weighting strategy, which divides the data set into

subgroups and assigns equal weights to observations within each subgroup. The

subgrouping idea is primarily used for bootstrapping time series data sets, referred to

as block bootstrap (Lahiri, 1999; Härdle et al., 2003), in order to preserve the

temporal association within bootstrapped samples. In contrast to the time series

applications, we use subgrouping (or blocking) to reduce the number of weights, or

more precisely, the domain dimension of the generator function so as to save

computational costs.

Let []n denote the index set {1, , }n of the observations. We consider an exclusive

and exhaustive partition: 1, , SI I
 []n such that

,i jI I i j   
, and 1 []S

s sI n 
.

Acc
ep

ted
 M

an
us

cri
pt

Without loss of generality, we assume that the size of each Is is the same, i.e.,

| | /sI n S
 for 1, ,s S  . We define a subgroup assignment function :[] []h n S

such that h(i) = s if si I
. Then, for

T
1{ , , } ~S 

α , with α being an S-dimensional

weight distribution, we impose the same value of weight on all elements in a

subgroup as

() for 1, , .i h iw i n   (6)

and we denote
T

(1) (){ , , } n
h h n   w

α . As a result, it follows that () ()h i h k 
, if

, si k I
 for some s. Similar to the vanilla GBS, setting

~ Multinomial(, /)SS Sα 1
 or

~ Dirichlet(,)SS Sα 1
 result in the block-based nonparametric bootstrap and

Bayesian bootstrap, respectively.

As an illustration, we consider a simple linear regression example by generating a

data set from the model with n = 1000, p = 10 and the coefficients θ being a

sequence of equi-spaced values between –2 and 2. Each covariate is drawn i.i.d.

from N(0, 1), and the regression variance is set to one. The resulting domain

dimension of a vanilla G is 1000. Figure 2 shows individual histograms of bootstrap

distributions with varying subgroup sizes. Even when the number of subgroups is

tiny (S = 5), the obtained bootstrap distributions are acceptable, although the

variability tends to be underestimated. As S increases (S = 25), the quality of the

approximation of the subgroup bootstrap distribution improves significantly. When S

= 100, the subgroup bootstrap distributions are indistinguishable from the target

ones. When we use 100 subgroups (10 observations in each subgroup), the input

dimension is reduced to 100 from the original 1000 but the resulting bootstrap

distributions are nearly identical to those from the standard bootstrap (see Figure 3).

We use S = 100 by default.

Remark. Under some regularity conditions, one can show that the subgroup

bootstrap is consistent when S is of a higher order than n (see the Supplementary

Materials for a formal proof).

3.2 Iterated bootstrap

Acc
ep

ted
 M

an
us

cri
pt

The iterated bootstrap method was proposed to improve the inference accuracy of

the simple bootstrap method, and was shown both theoretically and empirically to

achieve a higher-order accuracy for the coverage of the constructed confidence

intervals and bias-corrections Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee

and Young, 1999, 1995. More precisely, an iterated bootstrap procedure involves

nested levels of data resampling.

The double bootstrap, which is the simplest iterated bootstrap, first creates B

bootstrap samples,
*
by , for 1, ,b B  by resampling from the original data set, and

then, for each bootstrapped sample b
y
, creates C second-level bootstrap samples,

** , 1, ,bc c C y
, by resampling from

*
by . For each

*
by and

**
bcy

, we denote the

corresponding estimator of θ by
*ˆ
b and

**ˆ
bc

, respectively. By iterating this step, we

can simply extend this to more iterated bootstrap cases.

Various procedures for constructing confidence intervals using bootstrap have been

proposed, such as the percentile method (Hall, 1992), the studentized method

(Hall, 1988; Efron, 1979), the Bias-Corrected and accelerated method BCa

(Efron, 1987), and Approximated Bias Correction (ABC; Diciccio and Efron (1992)),

etc. Even though BCa and ABC procedures enjoy the second-order accuracy (fast

convergence in coverage error), a practical implementation of these procedures are

not trivial since it is difficult to calculate their acceleration factor for general models.

On the other hand, the percentile procedure is only first-order correct, and the

studentized procedure requires an iterated bootstrap unless an explicit form of the

standard error of the bootstrap estimator is available. To improve the quality of the

constructed CI, we consider using double bootstraps as in the coverage calibration

method (Hall and Martin, 1988; Hall, 1986) and studentized CI procedure

(Hall, 1988). The calibrated percentile two-sided CI via double bootstrap achieves

the second-order accuracy
1()O n , while its single bootstrap counterpart only attains

a rate of
1/2()O n . However, applying the conventional double bootstrap requires

undesirably intensive computation: a total of B × C evaluations of bootstrap

estimators
**ˆ
bc

 for 1, ,b B  and 1, ,c C  . Lee and Young (1999) showed that B

and C should be of a higher order than n4 and n2 for two-sided CIs and of order n2

Acc
ep

ted
 M

an
us

cri
pt

and n for one-sided CIs, respectively, so that the coverage error rate of the Monte

Carlo interval is no greater than that of the theoretical double bootstrap interval. The

authors considered B = 1000 and C = 500 in their simulations, resulting in a total of

500, 000 evaluations, which is an unmanageable size under the conventional

bootstrap framework.

3.3 GBS for iterated bootstrap

Extending the GBS to iterated bootstraps is immediate as it is a special case of (3)

with a weight distribution that has a hierarchical structure. For a d-level iterated

bootstrap procedure, we may characterize its weight distribution hierarchically:

(1) ~ Multinom(, /),nn nw 1
 , () (1) (1)| ~ Multinom(, /)d d dn n w w w

. The computational

advantage of the GBS framework is particularly significant in these iterated

situations.

One drawback of the standard nonparametric bootstrap is that each bootstrap

sample only touches upon about
11 63%e  of the observations due to the nature

of multinomial sampling, which appears to be somewhat wasteful. This loss is

compounded and become more significant in iterated bootstraps. A smoothed

version of these weight distributions is a hierarchy of Dirichlet distributions, which

enable each
ˆ
b


 and
ˆ
bc

 to utilize all the observations Cheng and Huang, 2010; Xu

et al., 2020; Præstgaard and Wellner, 1993. Thus, we mainly consider

| ~ Dirichlet (,)n nw z z and
~ Dirichlet (,)nn nz 1

. If a subgroup bootstrap as in

Section 3.1 is employed the subgrouped weights follow | ~ Dirichlet (,)S Sw z z and

~ Dirichlet (,)SS Sz 1
. We train a generator function that covers both single and

double bootstraps by adopting a probabilistic mixture of single and double bootstrap

weights distributions; e.g., generate single or double bootstrap weights with 50%-

50% chances.

3.4 An illustration: double-bootstrap for logistic regression

Acc
ep

ted
 M

an
us

cri
pt

We consider the standard logistic regression model:

1~ Bernoulli
1 exp{ }i

i

y
X 

 
   

,

where
p

iX R
 and

p  for 1, ,i n  . To apply the GBS to this model, we simply

set the loss function to be
T T(1) log(1 exp())i i iy X X    

 in (3). We simulate a data

set that contains n = 400 observations, each with p = 20 covariates generated

independently from the standard Gaussian. The true coefficient vector is set to be an

equi-spaced sequence between –3 and 3.

We examine 95% CIs constructed by various procedures, including a bias-corrected

percentile CI (single bootstrap, denoted by “basic”), a naïve percentile CI (single

bootstrap, denoted by “Percentile”), a calibrated percentile CI (double bootstrap),

and a studentized CI (double bootstrap). The “basic” CI is constructed as

* *
97.5% 2.5%

ˆ ˆ(2 ,2)q q  
, where

*q is the β-quantile of the bootstrap distribution of
*̂ .

The calibrated percentile CI is obtained as
* *
ˆ ˆ

ˆ ˆ(2 ,2)
U L

q q
 

  
, where

ˆ L and
ˆU are

calibrated coverage levels via the double bootstrap aiming at 2.5% and 97.5%,

respectively. The studentized CI is
* *

97.5% 2.5%
ˆ ˆˆ ˆ(,)t s t s  

, where
*t is the β-quantile of

the studentized bootstrap statistic, and ŝ is the estimated standard error (a detailed

description of these bootstrap procedures is given in Section B of the supplementary

materials). The coverage is calculated as the proportion of how many individual true

parameters are covered by the bootstrap marginal CIs. Figure 4 shows these CIs,

which are marked green if they cover the true θ, and in light red if not. Figure 4

shows that, despite the fact that the basic single bootstrapped CI (top left) and the

double bootstrapped CIs (bottom left and bottom right) both satisfy the target

coverage 95%, the width of the single bootstrap is clearly wider than those of the

double (1.64 for the single vs. 1.18 and 1.29 for the double). In addition, Figure 4

also demonstrates that the GBS bootstrap CIs are almost indistinguishable from the

classical bootstrap CIs. GBS for percentile bootstrap shares the same poor coverage

(80%) as the classical percentile bootstrap (80%), along with nearly identical widths

of the CIs (1.64 for GBS vs. 1.67 for the classical bootstrap). The classical bias-

corrected percentile bootstrap (“Basic”) attains 95% coverage, and so does GBS

(Basic) counterpart.

Acc
ep

ted
 M

an
us

cri
pt

For the double bootstrapped CIs, we generate 5000 bootstrap samples for the first-

level and 1000 for the second-level, resulting in a total of 5000 1000 5,000,000 

bootstrap evaluations. This poses a significant computational challenge under the

conventional framework. In comparison, once the generator function is trained

(which takes less than 3 minutes for this example), the GBS produces 10, 000

bootstrap estimators in less than 0.1 second, and its computational advantage is

even more significant when n and p are larger, as shown next.

3.5 Scaling up towards large n and p

We consider the same logistic regression model as in Section 3.4, and the true

regression coefficients
{ }j is set to be an equi-spaced sequence in (,)c c , where

the value of c is chosen to match the in-sample classification error to 5% or 10%. We

compare the performance of the GBS with those of the standard bootstrap, BCa

(Efron, 1987), Wald interval and the profile likelihood confidence interval with sample

size {500,5000,10000}n and dimension of covariates {30,200,300}p . This

simulation is replicated independently 20 times. We examine properties of the 95%

CIs constructed by these bootstrap methods (i.e., the average coverage and average

width, and their actual computing time). For standard bootstrap procedures, we

consider both a parallel computing environment using 25 CPU cores (abbreviated as

“25C”), and a single-core computation (i.e., “1C”). The detailed setting is described in

Section 6.3, and the specification of the computing server is given in the the

supplementary materials. We use the R package boot to implement conventional

bootstrap procedures. The classical Wald CI based on Fisher information is obtained

for comparison. The profile likelihood CI is based on an asymptotic approximation,

and its computation is carried out by using the confint function in R. Due to the

computational burden, the conventional CI procedures for large sized data sets are

too expensive, so we only report the estimated computation times using two

replicates.

Table 1 and Table 2 compare traditional bootstrap procedures with their GBS

equivalents in various settings. The GBS procedures are comparable to their

Acc
ep

ted
 M

an
us

cri
pt

conventional counterparts (“Basic” and “Percentile” in the table) in terms of the

coverage and width of the constructed CIs. The standard bootstrap percentile CIs (“

Percentile”) have been shown to have low coverage in all simulations. GBS1

(Percentile), a fast approximation to the bootstrap, performs nearly equally badly. For

high-dimensional logistic regression, confidence intervals based on asymptotic

approximation, such as the profile likelihood and the Wald CI, also have low

coverage (lower than the nominal 95%). In contrast, the bias-corrected bootstrap

(Basic”) attains very good coverage, and so does its fast approximation, GBS1

(Basic). Appendix D provides more detailed descriptions and analyses, including

GBS1 coverages against single bootstrap counterparts per replication. The results

show that GBS can recover its original bootstrap results almost perfectly.

Additionally, the “Time” column in Tables 1 and 2 reveals that GBS greatly reduces

the classical bootstrap’s computing time.

When (,) (500,30)n p  , the traditional bootstrap-based CIs are significantly faster to

compute. However, as data size increases, the conventional bootstrap becomes

prohibitively expensive, taking more than an hour for (,) (10000,300)n p  using a

parallel computation with 25C, and more than 7 hours using 1C. Due to its heavy

computational need, the BCa cannot produce meaningful results for moderately

large data sets (e.g., for (,) (5000,200)n p  and (10000, 300)). The profile likelihood

procedure (“Profile”), which is based on an asymptotic approximation of the sampling

distribution, is also quite expensive when data size becomes large.

For the double bootstraps, the conventional repetitive computations take more than

2.5 hours with parallel computation using 25C for the case with (,) (500,30)n p  , and

would have taken more than 48 days for the case with (,) (10000,300)n p  . As a

result, the conventional double bootstrap procedures are infeasible for multiple

replicates, so their results are omitted in Table 1 and Table 2. In contrast, the GBS

training takes less than three minutes for all examined settings, while the generation

and post-processing for the double bootstrap take about one minute. Furthermore,

the double-bootstrap GBS2s requires very little extra computational time, but

achieves a significantly higher accuracy, than the single bootstrap GBS1s.

Acc
ep

ted
 M

an
us

cri
pt

4 Bootstrap Cross-Validation for Parameter Tuning
Via GMS

Tuning parameter selection has been a challenging and computationally intensive

task for many statistical and machine learning algorithms since repetitive

computations are often required over a wide range of possible choices of the tuning

parameter. We note that the GMS framework is not only applicable to bootstrap, but

can also be used to expedite the computation of Cross-Validation (CV) procedures. It

is easy to see that for a weight wi = 0, the corresponding term in the weighted M-

estimation loss function (1) is zero, which is equivalent to ignoring observation yi.

More generally, we denote () 1{ , , }I nw w  w
 with wi = 0 for i I , and

| |{ : } ~ (| |) Dirichlet(| |;)i n Iw i I n I n I     1
. Thus, index sets I and Ic can be viewed as

those for the test and training data, respectively. To train the CV generator without

the bootstrapping aspect, one may employ a simpler weight distribution than the

multinomial or Dirichlet, such as setting all the weights in a randomly selected fold to

be zero, and the remaining to be one. Based on this setup, a simple modification of

Algorithm 1 (with strategies in Section 6.3) can be used to train the generator for the

K-fold CV (more details in the Supplementary Materials). Once the generator is

trained, one can easily compute the estimated out-of-sample error across different

tuning parameters by alternating zero weight for each fold.

More precisely, for 1, ,b B  and a tuning parameter λl in a candidate set 1{ , , }L 

, we set zero weights on a fold
*
kI for 1, ,k K  ; i.e.,

(,) 0b k
iw 

 for
*
ki I
. For

*
ki I ,

we can set
(,) 1b k
iw 

 when only CV is of interest, or let

* *
(,) * *

| |
{ } ~ (| |) Dirichlet(| |,)

k k

b k
i k ki I n I
w n I n I

 
   1

 so as to quantify uncertainty in the CV

via bootstrap. The bootstrapped CV estimator without considering the test set
*
kI

with a tuning parameter λl, denoted by
*

()
(),

ˆ
k l

b
I 


 , can be computed as

(,)ˆ (,)b k
lG w

. The

CV loss for the k-th fold and λl follows as

*
*

(,) () *
(),

ˆˆ (;)/ | |
k l

k

b k b
l i kI

i I

e y I








. After repeating

this step for all the K folds, we obtain the bootstrapped K-fold CV errors as

() (,)

1

ˆ /
K

b b k
l l

k

e e K



. After obtaining

()b
le for 1, ,l L  and 1, ,b B  , one can easily

Acc
ep

ted
 M

an
us

cri
pt

identify the bootstrap distribution of the out-of-sample loss via the empirical

distribution of
()

1, ,{ }b
l b Be   under λl, as well as confidence bands of the out-of-sample

loss over 1{ , , }L 
.

Moreover, with
() ()argmin { }b b

l ll e
, the empirical distribution of ()

()
min{ , 1, , }b
b

l
b B 



  

serves as the bootstrap distribution of the minimizer of CV errors and can naturally

quantify the uncertainty of the chosen tuning parameter (an example is given in the

left of Figure 6). For example, this bootstrap distribution
()
min{ }b

 provides us an

alternative to the ad hoc one-standard-error rule commonly recommended for Lasso

regression, in which one chooses the most parsimonious model whose CV error is

no more than one standard deviate above that of the best model. In contrast, with

the availability of the bootstrap distribution of min
, we may pursue a more

parsimonious model by using the lower (1) % confidence bound of this

distribution as our chosen λ.

Cross-validation for LASSO and ridge regression. Two representative examples of

the penalized M-estimation are ridge (Hoerl and Kennard, 1970) and LASSO

regression models (Tibshirani, 1996), with the corresponding loss function for GMS:

T 2
,

1

1 { (,)} ((,)) ,[]
n

i i i
i

w y X G u G
n   



 w w w (7)

with
2

2()u x x
 for the ridge regression and 1()u x x

 for the LASSO. This setting is

closely related to the weighted Bayesian bootstrap (WBB) setting analyzed recently

in Newton et al. (2021) and Ng and Newton (2022). For this problem the GMS learns

the mapping between (,)w and ,
ˆ

w , the optimal solution under the WBB setting.

After obtaining the trained Ĝ from (7), for a given input
*w and

* , its output

* *ˆ (,)G w approximates the minimizer of

* *

1

(;) / ()
n

i i
i

w y n u  



 with respect to θ.

We simulated from a linear regression model with n = 500, p = 50, the true

parameter 0 {1, 2,1,0, ,0}   
, and

2
0 1 

. Each covariate vector Xi follows iid

(0,)N  with
1kl 

 for k = l and
1/ 2kl 

 for k l .

Acc
ep

ted
 M

an
us

cri
pt

Figure 5 shows solution-path plots that depict the relations between the tuning

parameter choices and the corresponding estimated ridge and LASSO estimators.

The x-axis indicates the l2 norm of the ridge regression or l1 norm of the LASSO

estimators based on a series of λ’s, and the y-axis, the value of the estimated

coefficient. After the generator is trained by minimizing (7), ridge (top left) and

LASSO (bottom left) coefficient values are simply
ˆ (,)G 1 , which generates the

curves in Figure 5 by letting λ vary from 0.0006 to 0.6. The resulting solution-paths of

the GMS ridge and LASSO procedures show that the proposed method

approximates the standard ones obtained by LARS (Efron et al., 2004) very

accurately.

We further investigate how the GMS-bootstrap helps to quantify uncertainty in

choosing λ. Figure 6 illustrates some benefits of the bootstrapped CV procedure for

the LASSO example. The left panel shows a 95% confidence band for the CV errors

across λ. As Efron and Tibshirani (1997) noted, the bootstrapped CV improves the

performance of prediction error estimation. However, due to heavy computational

burden in the standard bootstrap algorithm, applications of the bootstrapped CV

have been greatly hindered. The example in Figure 6 shows that the GMS helps

overcome this computational difficulty. The center panel depicts the WBB distribution

of the minimizer λ of the CV errors (the red line is the estimated density function). If

the CV error curve is of main interest, one can easily generate it by the GMS using

binary weights (corresponding to the chosen and left-out folds) as the input. In the

right panel of Figure 6, the CV error curve obtained by the standard CV computation

is nearly identical to that by the GMS.

5 Quantile Regression Inference at Various Quantile
Levels

Quantile regression models, which assume that a certain quantile of the response

variable linearly depends on the covariates, have been commonly used for robust

regression analysis (Yu et al., 2003; Yu and Moyeed, 2001; Koenker, 2004). More

precisely, for a given (0,1) , the conditional η-th quantile of the response given Xi

is modeled by
T
iX 

. The standard loss function for fitting such a model is

Acc
ep

ted
 M

an
us

cri
pt

T(; ,) (),i i i iy X y X    (8)

where
() ((0))u I u u   

. The inference for the regression coefficients in this

setting is more challenging than that for parametric regression models, because the

sampling distribution of the coefficient estimates often relies on the regression error

density function, which needs to be estimated and is a challenging task by itself in

high-dimensional settings (Koenker, 1994). In routine applications of quantile

regression analyses, bootstrap procedures are popular to use for approximating the

sampling distribution of the estimates (Feng et al., 2011; Hahn, 1995; Kocherginsky

et al., 2005), which can be computationally demanding. Furthermore, when a

practitioner is interested in investigating multiple quantile levels, it is also necessary

to repeat the bootstrap procedure multiple times, each at a different quantile level.

Such a computational burden is prohibitive when the data size is large.

By using
((,); ,) ((,))i i i iG y X y X G   w w

 in (3), we apply the GMS to overcome

the computational challenges for the inference of quantile regression models with a

GMS loss of

,
ˆ argmin ((,)) ,[]

G

n

i i i
i

G w y X G   w w (9)

where ,w is the expectation operator on w and η, assuming that η follows some

distribution  whose support is (0,1) and independent with w . A default choice is to

add random noises to the candidate set of quantile levels, and let w follow the

probability law in (6).

To demonstrate the effectiveness of this procedure, we test the method on a

simulation setting examined in Feng et al. (2011). The data set is generated from the

model
T 1/2 2

0 1 23 [2 {1 (8) }/10] , 1, ,i i i i iy X x x i n        
, where 1(, ,)i i ipX x x 

, n

= 500, p = 5, 0 5 1
, and 3~i t

. We let 2 1ix 
 for 400i  and 0 for i > 400, and

generate the other covariates independently from the standard log-normal

distribution.

Acc
ep

ted
 M

an
us

cri
pt

As in Feng et al. (2011), we consider the wild bootstrap, as well as the standard

bootstrap. Figure 8 (a)–(c) compare the 90% confidence bands of several

coefficients generated by the GMS with those obtained by the standard bootstrap

and the wild bootstrap over quantiles varying from 0.05 and 0.95, showing that the

the approaches result in nearly identical bands.

To investigate computational efficiency of the GMS for quantile regression, we

increase the sample size and the number of predictors in the above simulation model

to (,) (1000,50)n p  , (2000, 100), (3000, 150), and (5000, 300), respectively, and

consider quantile levels varying from 0.05 to 0.95 with a skip of 0.05 (total 19

quantile levels). We set the first five coefficients of θ0 to be one and the others be

zero. Our target is to obtain 5, 000 bootstrap samples under each setting. Due to

heavy computational burden of the standard bootstrap procedure, we compute only

five bootstrap evaluations and report an estimated time from them (e.g., multiplying

1, 000 to the time taken for the five evaluations). Figure 8 (a) depicts the

computation time required for each procedure. While the GMS can be trained in less

than 10 minutes for moderately large data size (5000, 300n p ), the standard

bootstrap requires more than 30 minutes for the smallest data set (1000, 50n p )

and about 3 months for the case of (5000, 300)n p  .

6 Computational Strategies for Training the
Generator

6.1 Multilayer perceptron

Neural networks have been shown effective for approximating functions with

complicated structures. Recently, researchers have experimented with various novel

ways of using neural networks, such as constructing generators of real-life-like

images and creating generative adversarial networks for approximating high-

dimensional distributions (Ledig et al., 2017; Wang et al., 2018; Karras

et al., 2018; Goodfellow et al., 2014; Arjovsky et al., 2017). The simplest neural

network structure is a class of MLPs/FNNs constructed by composing activated

linear transformations. For 1, ,k K  , let gk denote the feed-forward mapping

represented by
()kN hidden nodes, where

() (1)

:
k kN N

kg


 is defined as

Acc
ep

ted
 M

an
us

cri
pt

(1)() ()() ()
kk k N

kg 


  X U X b
, where

()kNX is the input variable of gk. Also, this

function is characterized by a “weight” parameter and a “bias” parameter: the
(1) ()k kN N  weight matrix

()kU and the
(1)kN 

-dimensional bias vector

()
() () ()

1{ , }k
k k k

N
b b b

. A K-layer MLP function
(1)

: N Dg can be defined by the

composition of these functions as

1() (),Kg L g g  X X (10)

where
()

:
KN DL is a linear function that maps the final hidden layer

1()Kg g X
 to the D-dimensional output space of g. Commonly used activation

functions include the sigmoid function, the hyperbolic tangent function, the Rectified

Linear Unit (ReLU) (Nair and Hinton, 2010), the Exponential Linear Unit (Clevert

et al., 2015), the Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016), etc. We

here employ neural networks with the ReLU activation function () max{ ,0}t t  to

construct generator G in (3) in a novel way as characterized by the integrative loss

(3) and the weight multiplicative MLP explained below.

6.2 Weight multiplicative MLP

Despite its generalizability and practicability, we observe that the simple MLP

converges slowly for our GMS applications (as shown in Figure 9). We propose a

modification motivated by the Taylor approximation of the first derivative of the

weighted loss function. For illustration, let us consider the weighted M-estimation

loss 1

(;)
n

i i
i

w y



 and its optimizer

̂w in (1) for a case of p = 1 (ignoring η and λ for

simplicity). Under mild conditions, we assume that 1

ˆ(;) 0
n

i i
i

w y


  w
, where  is the

first derivative of with respect to θ. Then, by using a Taylor approximation of  at

a local region of some arbitrary ()g w , we obtain that

1 1 1

ˆ ˆ0 (;) (();) (();)(()),
n n n

i i i i i i
i i i

w y w g y w g y g 
  

        w ww w w (11)

where (,)y denotes the second derivative of with respect to θ.

Acc
ep

ted
 M

an
us

cri
pt

The approximation term used in equation (11) contains two different kinds of

approximations: the approximation of
ˆ ()g w w

 and the Taylor’s approximation for

1

ˆ(;)
n

i i
i

w y


 w
. The first kind of approximation can be justified by the universal

approximation theorem for neural networks Hornik et al., 1989; Barron, 1993; Lu

et al., 2017; Kratsios and Papon, 2022. The universal approximation theorem states

that a feed-forward neural network is capable of approximating any continuous

function, if the size of the neural network is large enough.

Thus, we have

1 1

1

(();)ˆ () () ().
(();)

n n
i i

i in
i i

j j
j

w g yg g wh
w g y




 




   



 


w
ww w w
w

 (12)

Motivated by this approximation, we propose a new neural network structure called

the Weight Multiplicative MLP (WM-MLP) as the sum of a simple MLP and a weight

multiplicative one:

Simple MLP: Weight multiplicative network:

1

1 2

()
(, ,)

(, ,) (, ,) ({ (, ,)}) ,
n

i i
i

K K

g
w h

G L B L f B

 

     



    


w

w

w w w w (13)

where “ ” indicates an element-wise multiplication operator; 1 : H pL
 and

2 : n pL
 are linear functions;

1 1: n H
KB

 

 and : H nf are simple MLPs

with K hidden layers and one hidden layer, respectively. For a large n, the subgroup

bootstrap in Section 3.1 reduces the dimension of w and the network size.

To demonstrate the improvement, we compare the performances of WM-MLP and

the simple MLP for various sizes of hidden nodes (500, 1000, 2000) and layers (K =

1, 2, 3), for a logistic regression example. The true θ’s in the simulations are equi-

spaced between –0.5 and 0.5 with p = 100 and n = 1000. We train the generator G

from ten random initializations and report the average loss values after 30,000

iterative updates for each MLP structure. The results are summarized in Figure 9,

demonstrating that for all network sizes the proposed WM-MLP outperforms the

Acc
ep

ted
 M

an
us

cri
pt

simple MLP uniformly. In comparison to a large-sized MLP with three hidden layers

and 2000 neurons, even a small-scale WM-MLP with a single hidden layer and 500

neurons achieves a lower loss, whereas the simple MLP with one hidden layer

performs much poorly. For all examples in the paper, we used the WM-MLP with

three hidden layers as a default, and observed that the resulting generator function

based on the WM-MLP performed satisfactorily.

6.3 Computational strategy in optimization

It is straightforward to optimize the GMS integrative loss (3) because the expectation

can be approximated by a few Monte Carlo samples at each iteration. We use a

variant of the popular SGD algorithms such as Adam (Kingma and Ba, 2014),

AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), etc, to iteratively

update the neural net parameters until the algorithm converges. Algorithm 1

summarizes the detailed steps of the GMS. As in (4), this algorithm samples M

values of w ’s and λ’s to approximate the expectation and updates the neural

network parameters via SGD. It is not uncommon nowadays for a data set to be

extremely large, to the point that the full data size surpasses the memory capacity of

the computer in use. Data subsampling would be advantageous in this setting for

training the GMS, which partially updates the weights corresponding to the

subsampled data in the same spirit as stochastic optimization (Allen-Zhu

et al., 2019).

Technical details of the optimization. In all our examples, we use the WM-MLP with

three hidden layers and 1,000 hidden neurons in each layer. In Pytorch, algorithm

Adam is used with a learning rate of 0.0003 and a decay rate of
0.3t by default. We

use full samples in the SGD optimization without mini-batches because the data

sizes of the examples we considered are manageable. However, when the data size

is massive, minibatch subsampling would be necessary.

Algorithm 1 A general algorithm to train the GMS.

• Set , , α , S (subgroup size), M (Monte Carlo sample size), and T (total iterations).

Acc
ep

ted
 M

an
us

cri
pt

• Randomly split the full data into S subgroups, resulting in an index function (·)h in

(6).

• Initialize the neural net parameter
(0) .

• Set t = 0.

while the stop condition is not satisfied or t < T do

• Independently sample M values of α ’s, λ’s, and η’s from , , α .

• Consider
() ()

() () () () () () () ()
()

1 1

1 ((, ,);) / ((, ,))t t

M n
m m m m m m m m
h i i

m i

L l G y n u G
M  

     
 

  α α

,

where
()m

α is the m-th sample of M α ’s.

• Update
(1)t 

 by using the gradient of L via a SGD step.

• Let 1t t  .

end while

Choosing distributions for w , λ, and η. For bootstrap procedures, the distribution of

bootstrap weights w (or α) can be easily chosen depending on the practitioner’s

interest; e.g.,
~ Multinomial(, /) or ~ Dirichlet(,)n nn n n nw w1 1

. When n is

excessively large, the dimension of w can be reduced by the subgroup

bootstrapping method in Section 3.1. As a general rule, when n > 500, we

recommend considering subgrouping. While our theoretical evidence suggests that
1/2S n is optimal (see Section A.1 in Supplementary Materials), empirically setting S

to a few hundreds performs well in all situations shown in this paper. By default, S =

100 was used. Choosing the training distributions for λ and η is more arbitrary

because usually we have no reference distributions for λ and η unlike the case of w .

We may first set candidate sets for λ and η in advance (which can be large in size)

and then add some random noises to form mixture distributions. For example, we

can generate exp{log }    , where  is randomly selected from the candidate

set and ~ (0,)N  with
20.2  as default. For the quantile regression example in

Section 5, we generate
2(0,0.03)N    with  randomly selected from a pre-

determined candidate set, and then truncated to be in (0.001,0.999) .

Training stopping criteria. In order to judge the convergence in training the generator

function, we first set the maximum number of epochs depending on computational

resources at hands (our default is 20,000 epochs). In addition to this stopping

Acc
ep

ted
 M

an
us

cri
pt

criterion, we also consider an early stopping rule that has been commonly used in

training general neural networks (Heckel and Yilmaz, 2021; Li

et al., 2020; Prechelt, 1998) to determine when we stop the optimization algorithm

before reaching the maximum number of epochs. Intuitively, we stop the algorithm

when the updates do not further reduce the loss value. More specifically, for each

epoch t, we evaluate the averaged loss value Lt on epoch t and compare it with

those of the previous epochs { , 1,2, , }tL k   for some lags. We terminate the SGD

algorithm if Lt is within ϵ of a quantile (such as the median) of the previous losses.

We recommend to monitor the change of loss values in the previous k=100 epochs,

and use the 25th percentile with 0.01 .

6.4 Limitation of GBS and GMS

Despite the empirical successes of GBS and GMS in various applications examined

in this paper, they are not free of limitations. First, unlike the conventional bootstrap

procedures, even for a small-sized data set, training the generator function of GBS

and GMS requires a certain amount of computation time as minimum in training the

generator. Tables 1 and 2 show that the GBS for the smallest data set (

500, 30n p ) takes about 15 times longer computation time compared to the

standard bootstrap using 25 cores in parallel. Second, like all other applications of

neural network, choosing optimal hyperparameters such as learning rate, widths of

networks, the number of neurons, etc, is not systematically justified and somewhat

heuristic. However, we find that our default settings for the WM-MLP proposed in

Section 6.3 result in accurate approximations for our examples. Third, when the

output dimension (the dimension of θ) and the input dimension (the subgroup size)

for the generator are high, the resulting computation can be bottlenecked in terms of

the computational time and the convergence of optimization. Even though for a case

of (10000, 300)n p  in Tables 1 and 2, the GBS approximates the target bootstrap

estimators well, the convergence of training would be slow under higher dimensional

settings. As a result, it would be desirable to consider a larger network to

approximate more complicated target function, resulting in even more longer

computation time.

Acc
ep

ted
 M

an
us

cri
pt

7 Conclusion

We propose the GMS as a general computational approximation framework to

accelerate repeated calculations for (penalized) weighted M-estimations. The GMS

was shown effective for a variety of statistical inference procedures, including

bootstrap methods and cross-validations for general M-estimators. We apply the

GMS to a variety of models, including LASSO, logistic regression, quantile

regression, etc. The GMS performs well in all of the situations we investigated, and

the weighted M-estimators generated by the GMS are sufficiently accurate and

comparable to the much more computationally expensive traditional solutions for all

inference purposes. By lowering the computational barrier associated with repetitious

data-splitting or data-sampling processes such as (bootstrapped) CVs and iterated

bootstrap, the GMS opens up a new perspective on modern statistics. To date, these

approaches have been less noticed and rarely practiced by the statistical community

not because they are less valuable, but because their computation cost is

prohibitively high. We expect that the GMS will prove to be an effective tool for

augmenting the power of statistical models in the era of big data.

Acknowledgement

This work was supported in part by the NSF grant DMS-2015411.

Supplementary Material

R-package: R package for GMS can be found at the following URL:

https://github.com/shijiew97/GMS.

Supplementary Material: The Supplementary Material contains proofs of theorems,

additional simulation analysis and details of training algorithms. (.pdf)

Acc

ep
ted

 M
an

us
cri

pt

References

Allen-Zhu, Z., Y. Li, and Z. Song (2019). A convergence theory for deep learning via

over-parameterization. In International Conference on Machine Learning, pp. 242–

252. PMLR.

Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein generative adversarial

networks. In International Conference on Machine Learning, pp. 214–223.

Barbe, P. and P. Bertail (2012). The weighted bootstrap, Volume 98. Springer

Science & Business Media.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a

sigmoidal function. IEEE Transactions on Information theory 39 (3), 930–945.

Chatterjee, S., A. Bose, et al. (2005). Generalized bootstrap for estimating

equations. The Annals of Statistics 33 (1), 414–436.

Cheng, G. and J. Z. Huang (2010). Bootstrap consistency for general

semiparametric m-estimation. The Annals of Statistics 38 (5), 2884–2915.

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). Fast and accurate deep

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 .

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems 2 (4), 303–314.

Diciccio, T. and B. Efron (1992). More accurate confidence intervals in exponential

families. Biometrika 79 (2), 231–245.

Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research 12 (7).

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of

Statistics 7 (1), 1–26.

Acc
ep

ted
 M

an
us

cri
pt

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American

statistical Association 82 (397), 171–185.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression.

The Annals of statistics 32 (2), 407–499.

Efron, B. and R. Tibshirani (1997). Improvements on cross-validation: the 632+

bootstrap method. Journal of the American Statistical Association 92 (438), 548–560.

Feng, X., X. He, and J. Hu (2011). Wild bootstrap for quantile regression. Biometrika

98 (4), 995–999.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio (2014). Generative adversarial nets. In Advances in

neural information processing systems, pp. 2672–2680.

Hahn, J. (1995). Bootstrapping quantile regression estimators. Econometric Theory

11 (1), 105–121.

Hall, P. (1986). On the bootstrap and confidence intervals. The Annals of Statistics ,

1431–1452.

Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. The

Annals of Statistics , 927–953.

Hall, P. (1992). On bootstrap confidence intervals in nonparametric regression. The

Annals of Statistics , 695–711.

Hall, P. (2013). The bootstrap and Edgeworth expansion. Springer Science &

Business Media.

Hall, P. and M. A. Martin (1988). On bootstrap resampling and iteration. Biometrika

75 (4), 661–671.

Härdle, W., J. Horowitz, and J.-P. Kreiss (2003). Bootstrap methods for time series.

International Statistical Review 71 (2), 435–459.

Acc
ep

ted
 M

an
us

cri
pt

Heckel, R. and F. F. Yilmaz (2021). Early stopping in deep networks: Double descent

and how to eliminate it. In International Conference on Learning Representations.

Hendrycks, D. and K. Gimpel (2016). Gaussian error linear units (gelus). arXiv

preprint arXiv:1606.08415 .

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics 12 (1), 55–67.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. Neural Networks 2 (5), 359–366.

Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in

statistics, pp. 492–518. Springer.

Karras, T., T. Aila, S. Laine, and J. Lehtinen (2018). Progressive growing of gans for

improved quality, stability, and variation. In International Conference on Learning

Representations.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 .

Kleiner, A., A. Talwalkar, P. Sarkar, and M. I. Jordan (2014). A scalable bootstrap for

massive data. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 76 (4), 795–816.

Kocherginsky, M., X. He, and Y. Mu (2005). Practical confidence intervals for

regression quantiles. Journal of Computational and Graphical Statistics 14 (1), 41–

55.

Koenker, R. (1994). Confidence intervals for regression quantiles. In Asymptotic

statistics, pp. 349–359. Springer.

Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate

Analysis 91 (1), 74–89.

Acc
ep

ted
 M

an
us

cri
pt

Kratsios, A. and L. Papon (2022). Universal approximation theorems for

differentiable geometric deep learning. The Journal of Machine Learning Research

23 (1), 8896–8968.

Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. Annals of

Statistics , 386–404.

Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, et al. (2017). Photo-realistic single image super-

resolution using a generative adversarial network. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 4681–4690.

Lee, S. M. and G. A. Young (1995). Asymptotic iterated bootstrap confidence

intervals. The Annals of Statistics , 1301–1330.

Lee, S. M. and G. A. Young (1999). The effect of monte carlo approximation on

coverage error of double-bootstrap confidence intervals. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 61 (2), 353–366.

Li, M., M. Soltanolkotabi, and S. Oymak (2020). Gradient descent with early stopping

is provably robust to label noise for overparameterized neural networks. In

International Conference on Artificial Intelligence and Statistics, pp. 4313–4324.

PMLR.

Lu, Z., H. Pu, F. Wang, Z. Hu, and L. Wang (2017). The expressive power of neural

networks: A view from the width. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, pp. 6232–6240.

Martin, M. A. (1992). On the double bootstrap. In Computing science and statistics,

pp. 73–78. Springer.

McCarthy, D., K. Zhang, L. D. Brown, R. Berk, A. Buja, E. I. George, and L. Zhao

(2018). Calibrated percentile double bootstrap for robust linear regression inference.

Statistica Sinica 28 (4), 2565–2589.

Acc
ep

ted
 M

an
us

cri
pt

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, pp. 807–814.

Newton, M. A., N. G. Polson, and J. Xu (2021). Weighted bayesian bootstrap for

scalable posterior distributions. Canadian Journal of Statistics 49 (2), 421–437.

Newton, M. A. and A. E. Raftery (1994). Approximate Bayesian inference with the

weighted likelihood bootstrap. Journal of the Royal Statistical Society: Series B

(Methodological) 56 (1), 3–26.

Ng, T. L. and M. A. Newton (2022). Random weighting in lasso regression.

Electronic Journal of Statistics 16 (1), 3430–3481.

Præstgaard, J. and J. A. Wellner (1993). Exchangeably weighted bootstraps of the

general empirical process. The Annals of Probability , 2053–2086.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the

trade, pp. 55–69. Springer.

Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics 9 (1), 130434.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representations

by back-propagating errors. nature 323 (6088), 533–536.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist.

Soc. B , 267–288.

Tieleman, T., G. Hinton, et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine

learning 4 (2), 26–31.

Wang, T.-C., M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro (2018). High-

resolution image synthesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 8798–8807.

Acc
ep

ted
 M

an
us

cri
pt

Xu, L., C. Gotwalt, Y. Hong, C. B. King, and W. Q. Meeker (2020). Applications of

the fractional-random-weight bootstrap. The American Statistician , 1–21.

Yu, K., Z. Lu, and J. Stander (2003). Quantile regression: applications and current

research areas. Journal of the Royal Statistical Society: Series D (The Statistician)

52 (3), 331–350.

Yu, K. and R. A. Moyeed (2001). Bayesian quantile regression. Statistics &

Probability Letters 54 (4), 437–447.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 1 Trace plots of (a) the training loss, and (b) the integrative prediction loss, in

the logarithmic scale. Five lines for each optimization represent five distinct

initializations; and the red dashed and blue dotted lines indicate the conventional ML

with B = 500 and B = 5000, respectively.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 2 Histograms of block bootstrap distributions with various S for the coefficient

of X1 (top), X5 (middle), and X10 (bottom) for each subfigure. The red line indicates

the density function of the target distribution (of the standard bootstrap).

Fig. 3 Comparisons of subgroup bootstraps across different numbers of blocks.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 4 GBS 95% CIs for the logistic regression example: The basic single

bootstrap CI (top left); the naïve percentile single bootstrap CI (top right); the

calibrated percentile bootstrap CI via double bootstrap (bottom left); a studentized

bootstrap CI via double bootstrap (bottom right). CIs covering true parameters (black

dots) are colored in green and otherwise in light red. Averaged width of CIs across

parameters is reported in parentheses.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 5 Solution paths of the GMS ridge (top left), the standard ridge regression

(top right) and the GMS LASSO (bottom left), and the LARS (bottom right).

Fig. 6 Left: The 95% confidence band of CV error evaluated from the GMS

bootstrap with random weights, and the red solid line indicates the mean curve.

Middle: The GMS bootstrapped distribution of the CV-error minimizer min
. Right: CV

errors based on the standard LASSO and the GMS with the constant weight vector

1 . The purple vertical line indicates the value of λ that minimizes the CV error.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 7 Computation time for the GMS quantile regression (black solid line with

triangle marks) and its conventional counterpart (red dashed line with filled-dot

marks).

Acc
ep

ted
 M

an
us

cri
pt

Fig. 8 (a)–(c): Comparisons between the 90% confidence bands obtained from the

GMS (blue), the classical bootstrap (yellow) and the classical wild bootstrap (red)

across quantile levels ranging from 5% to 95%. The quantreg R package is used for

the conventional bootstrap and wild bootstrap.

Acc
ep

ted
 M

an
us

cri
pt

Fig. 9 Comparison of the losses obtained by the simple MLP and the WM-MLP

with various numbers of hidden layers and nodes. The number noted after ”MLP”

indicates the number of layers K.

Acc
ep

ted
 M

an
us

cri
pt

Table 1 Cases of 5% in-sample error in classification. Results of the simulation

study for logistic regression models; “GBS1” and “GBS2” indicate single and double

bootstraps implemented by the GBS, respectively; “Cov”, “Width”, and “Time” mean

the averages (over 20 replicates) of the coverage, the width, and the actual

computing time (seconds) of each evaluated 95% CI, respectively; for the

computation time of the GBS, the black and red numbers indicate training and

generation time (including post processing time for the GBS), respectively.

(,) (500,30)n p 

(,) (5000,200)n p 

(,) (10000,300)n p 

Method Cov Width Time Cov Width Time Cov Width Time

GBS1

(Basic) 0.967 2.595 140.8 + 0.1 0.958 0.318 152.9 + 0.2 0.947 0.235 163.6 + 0.4

GBS1

(Percentile) 0.398 2.595 140.8 + 0.1 0.424 0.318 152.9 + 0.2 0.403 0.235 163.6 + 0.4

GBS2

(Student) 0.962 1.762 140.8 + 15.6 0.929 0.298 152.9 + 45.0 0.930 0.225 163.6 + 63.9

GBS2

(Calibrated) 0.927 1.495 140.8 + 15.6 0.924 0.295 152.9 + 45.0 0.929 0.227 163.6 + 63.9

Basic (25C) 0.975 3.677 8.4 0.984 0.36 539.6 NA NA 4227.05

Basic (1C)

93.8

3833.3

25540.5

Percentile

(25C) 0.405 3.677 8.4 0.444 0.36 539.6 NA NA 4227.05

BCa (25C) 0.818 NA 84.3 NA NA NA NA NA NA

Profile 0.678 2.290 0.7 NA NA 1310.8 NA NA 8670.7

Wald 0.752 2.253 ¡0.1 0.770 0.318 2.5 0.748 0.241 10.8

Acc
ep

ted
 M

an
us

cri
pt

Table 2 Cases of 10% in-sample error in classification. “Basic” means bias-

corrected percentile bootstrap CI and “Percentile” stands for classic percentile

bootstrap CI. Results of BCa, profile likelihood CI (“Profile”) and Wald interval (“Wald

”) are also provided. As for classical bootstrap, “25C” represents 25 CPU cores for

parallel computing and “’1C’ is a single-core computation.

(,) (500,30)n p 

(,) (5000,200)n p 

(,) (10000,300)n p 

Method Cov Width Time Cov Width Time Cov Width Time

GBS1

(Basic) 0.978 0.799 140.8 + 0.1 0.940 0.228 152.9 + 0.2 0.904 0.149 163.6 + 0.4

GBS1

(Percentile) 0.698 0.799 140.8 + 0.1 0.750 0.228 152.9 + 0.2 0.777 0.149 163.6 + 0.4

GBS2

(Student) 0.932 0.711 140.8 + 15.6 0.936 0.210 152.9 + 45.0 0.912 0.153 163.6 + 63.9

GBS2

(Calibrated) 0.885 0.668 140.8 + 15.6 0.932 0.210 152.9 + 45.0 0.882 0.155 163.6 + 63.9

Basic (25C) 0.985 0.844 8.4 0.972 0.228 539.6 NA NA 4227.05

Basic (1C)

93.8

3833.3

25540.5

Percentile

(25C) 0.727 0.844 8.4 0.787 0.228 539.6 NA NA 4227.05

BCa (25C) 0.972 0.933 84.3 NA NA NA NA NA NA

Profile 0.875 0.745 0.7 NA NA 1310.8 NA NA 8670.7

Wald 0.890 0.742 ¡0.1 0.904 0.216 2.5 0.914 0.148 10.8

Acc
ep

ted
 M

an
us

cri
pt

