Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Taylor & Francis

Taylor & Francis Group

Generative Multi-purpose Sampler for Weighted
M-estimation

Minsuk Shin, Shijie Wang & Jun S. Liu

To cite this article: Minsuk Shin, Shijie Wang & Jun S. Liu (08 Dec 2023): Generative Multi-
purpose Sampler for Weighted M-estimation, Journal of Computational and Graphical
Statistics, DOI: 10.1080/10618600.2023.2292668

To link to this article: https://doi.org/10.1080/10618600.2023.2292668

A
h View supplementary material &

ﬁ Accepted author version posted online: 08
Dec 2023.

N\
[:J/ Submit your article to this journal &

A
& View related articles &'

View Crossmark data &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=ucgs20

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2023.2292668
https://doi.org/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=08 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=08 Dec 2023

W) Check for updates

Generative Multi-purpose Sampler for Weighted M-
estimation

Minsuk Shina, Shijie Wang2-*, Jun S. Liu®

aDepartment of Statistics, University of South Carolina,
bDepartment of Statistics, Harvard University December 8, 2023

*SHIJIEW@email.sc.edu

Abstract

To overcome computational bottlenecks of various data
perturbation procedures such as the bootstrap.and cross
validations, we propose the Generative Multi-purpose Sampler
(GMS), which directly constructs a.generator function to
produce solutions of weighted M-estimators from a set of
given weights and tuning parameters. The GMS is
implemented by a single optimization procedure without
having to repeatedly evaluate the minimizers of weighted
losses, and is thus capable of significantly reducing the
computational time. We'demonstrate that the GMS framework
enables the implementation of various statistical procedures
that would be unfeasible in a conventional framework, such as
iterated bootstrap procedures and cross-validation for
penalized likelihood. To construct a computationally efficient
generator function, we also propose a novel form of neural
network called the weight multiplicative multilayer perceptron
to achieve fast convergence. An r package called cus is
provided, which runs under rytorch to implement the proposed
methods and allows the user to provide a customized loss
function to tailor to their own models of interest.

Keywords: Weighted M-estimation, Bootstrap/resampling, Cross-validation, Scalable
Computation, Iterated Bootstrap

http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf

1 Introduction

Consider a canonical setting in which Y= are i.i.d. observations following
a statistical model with the parameter of interest denoted by ¢ €0 < R” (n>p).In
some instances such as regression analysis, one may also include predictors or

covariate variables for each observation. An efficient estimator of & can often be

found by solving the following (penalized) optimization problem: 0= argmm@Ly(@,

1 n
L(0)= ZZ£,7(9;y,.)
i=1

where with £,0) being a suitable loss function with an auxiliary

parameter 7. The resulting 0 is often referred to as an M-estimator (Huber; 1992).
For example, the maximum likelihood estimator (MLE) is a special M-estimator with

the loss function being set as the negative log-likelihood function.

A

To assess the variability of the M-estimator ¢, we studybehaviors of the following

tunable weighted M-estimators as inspired by the bootstrap methods (Efron, 1979):

~

(1 A :
0, ,,, = argmin {;Z:Wif ,(6:3,)+ Au(6) } argmind (6w, 4,7), (1)

where 77 eR” is an auxiliary parameter-of'the loss, u() is a penalty function on the
parameter with a tuning parameter A.that can be set to zero for non-penalized

L) ew (W)

settings, and W = .. is a vector of weights following distribution
The auxiliary parameter stunes the loss function. For example, in quantile
regression models, "7 €(0.1) represents the quantile level and the loss function takes

-l _ T — —
the form “(& Ve X)= p,(v, =X 0), where p,(0)=1(n—1(<0)) \npan the loss

function hasmno auxiliary parameter, we simply denote the loss and the resulting

estimator by “8:) and ew”“, respectively.

The formulation of (1) applies to a wide range of statistical procedures. For example,

the classical bootstrap procedure of Efron (1979) corresponds to

w ~ Multinom(n,1, / n) 1

, Where " is a n-dimensional vector of one, and u(0) = O.

Random-weight bootstrap procedures can be formulated by imposing a general

distribution on W that has a mean of one, finite variance, and sum to n. Its
theoretical properties such as consistency have been studied (Praestgaard and
Wellner, 1993; Cheng and Huang, 2010; Barbe and Bertail, 2012). A special and
most well-known form of the random-weight bootstrap is to set ¥ =" x Dirichlet(:1,)
as in the Bayesian Bootstrap (Rubin, 1981) and Weighted Likelihood Bootstrap
(Newton and Raftery, 1994). Theoretical investigations and improvements of the
bootstrap methods have been considered in a large body of literature (Chatterjee

et al., 2005; McCarthy et al., 2018; Hall and

Martin, 1988; Efron, 1987; Hahn, 1995; Kleiner et al., 2014).

Iterated bootstrap procedures are often employed to reduce the bias associated with
a statistical inference procedure and/or improve the coverage precision of
confidence intervals (Hall and Martin, 1988). A most frequently cited procedure is the
double bootstrap, which first bootstraps and infers the parameter.orprediction, and
then estimates the bias of each bootstrapped solution via a second-level bootstrap.
In (1), the double bootstrap procedures can be represented, by setting a hierarchical

.S, } ~ Multinom(a, 1/ n)

weight distribution such that $ = 5>+ and

w|s~Multinom(r,8/1) Thege iterated bootstrap methods can be shown to provide
more accurate confidence coverage (i.e., the'second or higher-order accuracy)
compared with single bootstraps and asymptotic approximations

Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee and Young, 1999, 1995.
However, iterative bootstraps are computationally very expensive and are rarely

used in practice when the data are of moderate to large sizes.

The tunable weighted M-estimation in (1) can also represent A-fold cross-validation.

Il""’]K, we set w;=0 for /

For pre-selected folds, such as a group of sample indices
in the fold of interest, say /4, and set w;= 1 in all other folds. This means that the

observations.in /4 will be ignored during training, rendering /4 to be test samples. If

u() =, the evaluated % is equivalent to the LASSO estimator (Tibshirani, 1996),
based on a tuning parameter A, trained without using the samples in the considered
fold 4, resulting in a cross-validated LASSO. The computational burden of the cross-

validation linearly increases with the fold size K'and the candidate set size of the

tuning parameter, and a typical amount is at least a few hundreds of repetitive

computations.

While aforementioned weighted M-estimation procedures are widely used in
statistics and science, the computational bottleneck caused by their repetitive nature
poses significant practical difficulties. To alleviate these computational difficulties, we
propose a computational approximation strategy based on a neural network-based
generative process, called the Generative Multi-purpose Sampler (GMS) (with the
Generative Boofstrap Sampler (GBS) as a special case for bootstrap). Instead of
repeating the same optimization process for various combinations of weights W’s

and parameters A's and 77's, the GMS constructs a generator function that takes

A

(W, 4,7) ag input and approximates the corresponding weighted M-estimator 9“"?.
In addition to taking advantage of the high representation power of neural networks,
a key idea for the GMS to achieve the desired computational. efficiency gain is to
minimize an integrative loss in its training, which optimizes:both:the M-estimation

and the parameters employed by the GMS simultaneously.

The rest of the article is organized as follows. Section2 introduces the general GMS
framework and uses a toy example to explain its potential gains. Section 3 details its
specialization for the bootstrap, namely-the Generative Bootstrap Sampler (GBS).
Section 4 discusses the training of GMS for cross-validation with Lasso and quantile
regression. Section 6 providesidetails/on the neural network structures and detailed

computational aspects of GMS. Section 7 concludes with a brief discussion.

2 Generative-Multi-purpose Sampler

2.1 The basic formulation

Y

We view the weighted M-estimator O as a function of the weight W, the tuning
parameter A, and the auxiliary parameter 7, i.e., G(w, 4, ’7), and attempt to
approximate it by a member in a suitable family of functions

_ . T nt2 p
G=1G,: R >R, ¢ c®} , where @ is the space of parameters that characterize a

function in the family. By doing so, we turn the unrestricted optimization problem in

(1) into a restricted optimization problem in a functional space, i.e., finding a proper

parameter of the generator function such that, for all W €/V> 4 €R" and 7€R

¢A5: argmin L (G,(w, 4, 1m); W, 4, 7)), (2)

ped

A slightly less ambitious, but more robust, formulation is to solve

¢ = argmin By i, [Ly (G,(W, A4, m); W, 4, 77)] , (3)

ped

Ew,ﬂ,n(')

where is taken with respect to a proper distribution of (W.4,7) defined'on

WxR"xR" 'We name this generative framework in (3) as the GMS. For fion-

penalized settings without the auxiliary parameter 7, we simply denote the generator

A

G=aG,
function by G(W) We also use the notation ¢. The weight.distribution for Efron’
s nonparametric bootstrap is simply ¥~ Multinom(z.1, /7) "o ihe/Bavesian

bootstrap (Rubin, 1981), W/ 7~ Dirichlet(n.1,) 1,0 gistributions of 4 and 7 can
simply be the uniform distribution on candidate sets"of A's, and 77's chosen by the
researcher. Another reasonable distribution of A'and zis to add random noises to a

discrete set of candidate values (see Section 6:3 for details).

Suppose that ¢ is the solution of (3) for a sufficiently large family 9 anda proper

~

distribution on ASCLE PWM, supported on WxR" xR" |f the solution O of (1)

G.(w, A,
is unique for any given (Ws4:in the support, then $(Wo A1)

Y

to Oz almost surely,in]PWM. It is easy to see this point by contradiction — if not,

(SH>0 a

should be very close

then there exist-€> O.and a subset S € WxR" xR" gych that T w4

G, (W, A <0, =t

nd

* GA
on S | Thus, we can find another function that differs from ¢

only on § and achieves a smaller value in (3).

A main takeaway from this argument is that optimizing the integrative loss over the

space of (w, 4,17) instead of the individual loss is appropriate for training. To benefit
from this formulation, we must choose an appropriate family 9 of functions Gy and a

suitable distribution Foin to cover the hyperparameter space of interest. As

demonstrated by our empirical studies on a wide range of problems, restricting 9 to

. C . P
be a class of neural networks and choosing a reasonable distribution ~“*7 appears

to work well (see details in Section 6.3).

As shown in Cybenko (1989) and Lu et al. (2017), Multi-Layer Perceptrons (MLP), or
equivalently, Feed-forward Neural Networks (FNNs), are theoretically capable of
approximating any Lebesgue integrable function when the numbers of neurons and
layers are sufficiently large. Also, recent successful applications of deep neural
networks in a variety of data-rich fields provide compelling evidence supporting the
use of over-parameterized MLPs and other types of neural networks for
approximating extremely complicated functions (Goodfellow et al., 2014; Arjovsky

et al., 2017). To train a neural network to achieve the task in (3), we employ.a
backpropagation algorithm (Rumelhart et al., 1986) along with Sftochastic Gradient

Descent (SGD) and its variants. More details are given in Section'6:1.

2.2 Intuitions for potential gains

M, A (M) Z(M) (M)
Imagine that we have independent weight vectors (WAL 7775 (WL AT,)

from PW=’“7, we can approximate the expectation'in (3) by
1 M
By [Ly (GOW 21w, A1) | 3 LG, A)™, A, 7). (4)
m=1

M do not need to be very large (M=100, say) since a small number of samples of
(W4, can be generated, continuously within the iterative SGD algorithm to aid the
fitting: after updating'the ENN parameter ¢ with SGD based on (4), we use the

newly created samplesto evaluate the fit and to provide refreshed gradient. Thus,

the two optimization tasks, i.e., minimizing the loss function Ly and finding optimal ¢

for the generator G() , co-evolve and help each other.

If we were to cast the task of training a generator in a classical machine learning

(®) 9B HbI\B
framework, we would have to first obtain a set of training samples, (W, 27,6,
g = g ®) 0
, Where B 10 , by evaluating B optimizations in (1) with (W A7) for

b=1...B (ignoring n for simplicity in this case). Then, one may try to learn a

function g by minimizing

g= argminZB:H@(b) —g(w?”, /1“’))H2, (5)
b=1

g

under the A-distance ”” . However, this squared-loss only measures the distance

A

between the fitted generator g(w, 1) and its training true value On.s . As a result, it
cannot inform us how to improve the fitting of the original statistical loss in (1) other
than a simple interpolation. Thus, the function trained in this manner tends to be
inaccurate if Bis small, or may be prohibitively expensive in computation if we must
rely on a large B, in which case computational advantages of the generative process

would be non-existing or limited.

Training the generator function G in conjunction with minimizing the loss function via

the GMS formulation (3) is significantly more efficient. The classical loss (5) fits only

b) 40 x0\\E
on the training data with a limited size, (W, 29,0)}h=l, resulting in an over-fitting
issue. The GMS, on the other hand, is trained using the weights and tuning
parameters generated from a predefined distribution without requiring additional

optimizations for (1), and generating W.and Ais nearly cost-less. As a result, the

GMS training procedure not only seeks,the minimizer of LG w, /1), but also allows
for the use of an almost infiniteshumber of training weights and tuning parameters

during the training step, thereby. avoiding over-fitting.
2.3 lllustration with a simple example

A novel aspectof our formulation is represented by the minimization of the
integrative loss¥(3), which combines the individual optimization step required by each

classical replication with the approximation of the functional form G. Let us consider
the bootstrap procedure for a toy linear regression example with data (> X2,

. _ v T2
i=1..57 and the loss function ‘(&YX =0 =X; 07 404 4= 0. For this problem,
we can obtain the closed-form solution of the optimization problem for each

G,(w)=(X'wX)"'X'

bootstrapped sample: Wy, where

_ T _ T TN\T a1
Y=0nny) s X=X X)) gng W =diag(W) Thys, 5 bootstrap procedure

b=1,....B

would follow simple steps: for , generate

w? =W, ,w") ~ Multinom(n, 1, / n) or % Dirichlet(n,1,))

, and then for each w ,

Nb) (b)
0" = Gy (W). However, if one does not have the closed-

plug in the formula to get
form formula but has to solve numerically the minimization problem of (1) for every
generated W(b), the bootstrap procedure can be prohibitively demanding in
computation. Thus, our GMS formulation via (3) can be thought of as an automatic
way to find a highly accurate approximation to the closed-form solution (in the form
of a neural network) of the minimization problem of (1). Once this solution G is
found, one can easily generate bootstrap estimators with almost no computational

cost.

Foracaseof n=100and P~ 10, we set the true coefficient 0=41,0,..50; and the

regression variance one. The predictors are independently generated from N(O’Ip)_

We generate a data set and evaluate random weight bootstrap estimators with
W ~nxDirichlet(n:1,) "5 then numerically evaluate/the'average loss of (1) on
various weights from the trained generator for the\classical machine learning
approach with 8=500 and B =5, 000, as well as the GMS. We initialize the

optimization in different five points for each procedure.

In Figure 1, we consider two perfarmance measures for this example: the training

loss specified in (5) and thedintegrative prediction loss (IPL) that can be defined as

A 2
E, |6, -
w H w g(W)H . The IPL.is approximated by using 1, 000, 000 Monte Carlo

evaluations, and.the loss values are multiplied by n to adjust for the scale of Var(é) .
Note that the GMS frains its generator G by minimizing the integrative loss (3),
whereas the/naive generator gis trained using the A-loss in (5) with 8= 500 and 5,
000 training samples, respectively. As expected, Figure 1(a) shows that the training
b-losses for the naive procedures are significantly lower than those for the GMS.
However, the IPLs of the considered methods behave quite differently. The naive
minimizers (for the cases with =500 and 5, 000) first decrease their IPLs rapidly,
but after 200 iterations their IPLs begin to increase. In contrast, the GMS seamlessly

reduces its IPL. The poor predictive performance of the naive procedure stems from

the fact that the A-loss encourages the generator function g to overfit the training set
A1) X B)

¢",....d . Unlike the conventional machine learning modeling, the GMS is quite
resistant to overfitting, as we can sample W'’s at near-zero computational cost during

the training of the generator function.

3 Generative Bootstrap Samplers
3.1 Bootstrap and subgroup bootstrap

The simplest use of the GMS is to bootstrap M-estimators, which is a special case of

form (3) without 7.and “() . The weight distribution is Multinom(z,1, /n)

nxDirichlet(n.1,) o the Bayesian bootstrap). More precisely, we let # be the

parameter underlying the generator G and solve the optimization problem:

. . 1 &

¢ =argmin, B {—Zwiﬂ(qu(w);yi)}
s . We call this simple GMS,application the

Generative Booftstrap Sampler (GBS).

Despite its considerable efficiency, the GBS frameworkihas a fundamental limitation
for practical bootstrap applications: the dimension ef the generator domain equals
the sample size n. Even when computationally. efficient neural networks are used to
model the generator, the convergence is quite slow when the input dimension is high
(say, tens of thousands). We may further encounter technical issues such as
memory shortage as well, whiChuis particularly severe for big data. To address this
limitation, we consider a subgroup weighting strategy, which divides the data set into
subgroups and assigns equal weights to observations within each subgroup. The
subgrouping idea is primarily used for bootstrapping time series data sets, referred to
as block bootstrap (Lahiri, 1999; Hardle et al., 2003), in order to preserve the
temporal association within bootstrapped samples. In contrast to the time series
applications, we use subgrouping (or blocking) to reduce the number of weights, or
more precisely, the domain dimension of the generator function so as to save

computational costs.

Let [] denote the index set {L,....n} of the observations. We consider an exclusive

3 . s .
and exhaustive partition: LIy <] gyeh that 11 =D Vi ,and Yerls =1l

Without loss of generality, we assume that the size of each /s is the same, i.e.,

[l=n/S ¢ 5= h:[n]—[S]

L5 we define a subgroup assignment function

. T
such that #() = sif * €l Then, for @, a5} NP{Z, with P, being an S-dimensional
weight distribution, we impose the same value of weight on all elements in a

subgroup as
w=a,, fori=L...n. (6)

T n
=4 1y O eR . a.=a .
Qs o2 Wy} . As a result, it follows that ~*® hiy | if

a ~ Multinomial(S,1/.S) N

w
and we denote "«

Lk el for some s. Similar to the vanilla GBS, setting

a~ §xDirichlet(S.15) resit in the block-based nonparametric bootstrapand

Bayesian bootstrap, respectively.

As an illustration, we consider a simple linear regression example’by generating a
data set from the model with 7= 1000, p = 10 and the coefficients 6 being a
sequence of equi-spaced values between -2 and 2. Each covariate is drawn i.i.d.
from MO, 1), and the regression variance is set to/one. The resulting domain
dimension of a vanilla Gis 1000. Figure 2 shows individual histograms of bootstrap
distributions with varying subgroup sizes. Even when the number of subgroups is
tiny (S = 5), the obtained bootstrap distributions are acceptable, although the
variability tends to be underestimated. As’Sincreases (S = 25), the quality of the
approximation of the subgroup bootstrap distribution improves significantly. When S
=100, the subgroup bootstrap distributions are indistinguishable from the target
ones. When we use 100 subgroups (10 observations in each subgroup), the input
dimension is reduced to. 100 from the original 1000 but the resulting bootstrap
distributions are nearly identical to those from the standard bootstrap (see Figure 3).
We use S= 100:by default.

Remark. Under some regularity conditions, one can show that the subgroup

bootstrap is consistent when Sis of a higher order than Jn (see the Supplementary

Materials for a formal proof).

3.2 lterated bootstrap

The iterated bootstrap method was proposed to improve the inference accuracy of
the simple bootstrap method, and was shown both theoretically and empirically to
achieve a higher-order accuracy for the coverage of the constructed confidence
intervals and bias-corrections Martin, 1992; McCarthy et al., 2018; Hall, 2013; Lee
and Young, 1999, 1995. More precisely, an iterated bootstrap procedure involves

nested levels of data resampling.

The double bootstrap, which is the simplest iterated bootstrap, first creates B

b=1

bootstrap samples, Y#, for oo B by resampling from the original data set, and

then, for each bootstrapped sample ¥#, creates C second-level bootstrap samples,

Yo €=L--sC hy resampling from Y¢. For each ¥+ and Y, we denote the

corresponding estimator of &by 0, and gbc, respectively. By iteratingthis step, we

can simply extend this to more iterated bootstrap cases.

Various procedures for constructing confidence intervals using bootstrap have been
proposed, such as the percentile method (Hall, 1992),the studentized method
(Hall, 1988; Efron, 1979), the Bias-Corrected and ‘accelerated method BC,

(Efron, 1987), and Approximated Bias Correction (ABC; Diciccio and Efron (1992)),
etc. Even though BC; and ABC procedures enjoy the second-order accuracy (fast
convergence in coverage error), a practical implementation of these procedures are
not trivial since it is difficult to calculate their acceleration factor for general models.
On the other hand, the percentile,procedure is only first-order correct, and the
studentized procedure requires an iterated bootstrap unless an explicit form of the
standard error of the bootstrap estimator is available. To improve the quality of the
constructed ClI, we ‘consider using double bootstraps as in the coverage calibration
method (Hall and Martin, 1988; Hall, 1986) and studentized Cl procedure

(Hall, 1988)..The calibrated percentile two-sided ClI via double bootstrap achieves

-1
the second-order accuracy O(n), while its single bootstrap counterpart only attains

Oo(n~

1/2
a rate of)| However, applying the conventional double bootstrap requires

undesirably intensive computation: a total of B x C evaluations of bootstrap

estimators Ose for b=1L--»B gnd ¢=L.-.C | gg and Young (1999) showed that B
and C should be of a higher order than 7 and 2 for two-sided Cls and of order 2

and nfor one-sided Cls, respectively, so that the coverage error rate of the Monte
Carlo interval is no greater than that of the theoretical double bootstrap interval. The
authors considered B= 1000 and C = 500 in their simulations, resulting in a total of
500, 000 evaluations, which is an unmanageable size under the conventional

bootstrap framework.

3.3 GBS for iterated bootstrap

Extending the GBS to iterated bootstraps is immediate as it is a special case of(3)
with a weight distribution that has a hierarchical structure. For a d-levekiterated

bootstrap procedure, we may characterize its weight distribution hierarchically:

w,, ~Multinom(n,1, /n), ... W, |[wW,, ~Multinom(n,w, /n). The cofmputational

advantage of the GBS framework is particularly significant in.these iterated

situations.

One drawback of the standard nonparametric bootstrap is that each bootstrap
sample only touches upon about 1—¢"' = 63% of the observations due to the nature
of multinomial sampling, which appears to be somewhat wasteful. This loss is
compounded and become more significant in iterated bootstraps. A smoothed
version of these weight distributionstis a.hierarchy of Dirichlet distributions, which

oy

(7

enable each 0 and he to utilize,all'the observations Cheng and Huang, 2010; Xu

et al., 2020; Praestgaard and Wellner, 1993. Thus, we mainly consider

W |z ~nxDirichlet (n,2) g4 257> Dirichlet (n.1,) "¢ 5 gybgroup bootstrap as in

Section 3.1 is employed the subgrouped weights follow W1z~ S x Dirichlet (S,2) 4.4

z~ §xDirichlet(S.15) \ve train a generator function that covers both single and
double bootstraps by adopting a probabilistic mixture of single and double bootstrap
weights distributions; e.g., generate single or double bootstrap weights with 50%-

50% chances.

3.4 An illustration: double-bootstrap for logistic regression

1)
o)

V; ~ Bernoulli(1
We consider the standard logistic regression model: Texp

X, R”? and 0 €R” for i=L....n Tg apply the GBS to this model, we simply

)X 0+ log(1+exp(—X, 0))

where

set the loss function to be 1=y in (3). We simulate a data
set that contains n= 400 observations, each with p = 20 covariates generated
independently from the standard Gaussian. The true coefficient vector is set to be an

equi-spaced sequence between -3 and 3.

We examine 95% Cls constructed by various procedures, including a bias-corrected
percentile Cl (single bootstrap, denoted by “basic”), a naive percentile Cl (single
bootstrap, denoted by “Percentile”), a calibrated percentile Cl (double bootstrap),

and a studentized CI (double bootstrap). The “basic” Cl is constructed as

(20- 57520~ %50) \where 95 is the G-quantile of the bootstrap-distribution of 0

20-q;, ,20-q)

The calibrated percentile Cl is obtained as ,where %L and %v are

calibrated coverage levels via the double bootstrap aiming.at2.5% and 97.5%,
respectively. The studentized Cl is (é—f;_s%§,é—f;5%§) s»where by is the BFquantile of
the studentized bootstrap statistic, and $ is the estimated standard error (a detailed
description of these bootstrap procedures is'given in Section B of the supplementary
materials). The coverage is calculatedasithe proportion of how many individual true
parameters are covered by the bootstrap‘marginal Cls. Figure 4 shows these Cls,
which are marked green if they coverthe true 6, and in light red if not. Figure 4
shows that, despite the fact that the basic single bootstrapped ClI (top left) and the
double bootstrapped Cls (bottom left and bottom right) both satisfy the target
coverage 95%, thelwidth of the single bootstrap is clearly wider than those of the
double (1.64 for thefsingle vs. 1.18 and 1.29 for the double). In addition, Figure 4
also demonstrates that the GBS bootstrap Cls are almost indistinguishable from the
classical bootstrap Cls. GBS for percentile bootstrap shares the same poor coverage
(80%) as the classical percentile bootstrap (80%), along with nearly identical widths
of the ClIs (1.64 for GBS vs. 1.67 for the classical bootstrap). The classical bias-
corrected percentile bootstrap (“Basic”) attains 95% coverage, and so does GBS

(Basic) counterpart.

For the double bootstrapped Cls, we generate 5000 bootstrap samples for the first-
level and 1000 for the second-level, resulting in a total of 5000x1000=5,000,000
bootstrap evaluations. This poses a significant computational challenge under the
conventional framework. In comparison, once the generator function is trained
(which takes less than 3 minutes for this example), the GBS produces 10, 000
bootstrap estimators in less than 0.1 second, and its computational advantage is

even more significant when nand p are larger, as shown next.

3.5 Scaling up towards large n and p

We consider the same logistic regression model as in Section 3.4, and the true
regression coefficients 0 is set to be an equi-spaced sequence in (—C’C), where
the value of cis chosen to match the in-sample classification,error to 5% or 10%. We
compare the performance of the GBS with those of the standard bootstrap, BCa
(Efron, 1987), Wald interval and the profile likelihood caonfidence interval with sample
size " €1500,5000,10000} 54 gimension of covariates |2 € 130,200,300} Thjg
simulation is replicated independently 20 times. We examine properties of the 95%
Cls constructed by these bootstrap methods (i.e., the average coverage and average
width, and their actual computing time). For standard bootstrap procedures, we
consider both a parallel computing environment using 25 CPU cores (abbreviated as
“25C”), and a single-core computation (i.e., “1C”). The detailed setting is described in
Section 6.3, and the specification of the computing server is given in the the
supplementary materials: We use the r package voot to implement conventional
bootstrap procedures. The classical Wald Cl based on Fisher information is obtained
for comparison. The profile likelihood Cl is based on an asymptotic approximation,
and its computation is carried out by using the confint function in r. Due to the
computational burden, the conventional Cl procedures for large sized data sets are
too expensive, so we only report the estimated computation times using two

replicates.

Table 1 and Table 2 compare traditional bootstrap procedures with their GBS

equivalents in various settings. The GBS procedures are comparable to their

conventional counterparts (“Basic” and “Percentile” in the table) in terms of the
coverage and width of the constructed Cls. The standard bootstrap percentile Cls (“
Percentile”) have been shown to have low coverage in all simulations. GBS1
(Percentile), a fast approximation to the bootstrap, performs nearly equally badly. For
high-dimensional logistic regression, confidence intervals based on asymptotic
approximation, such as the profile likelihood and the Wald ClI, also have low
coverage (lower than the nominal 95%). In contrast, the bias-corrected bootstrap
(Basic”) attains very good coverage, and so does its fast approximation, GBS1
(Basic). Appendix D provides more detailed descriptions and analyses, including
GBS1 coverages against single bootstrap counterparts per replication. The results
show that GBS can recover its original bootstrap results almost perfectly.
Additionally, the “Time” column in Tables 1 and 2 reveals that GBS greatly reduces

the classical bootstrap’s computing time.

When (% P)=(500,30) , the traditional bootstrap-based Cls, are significantly faster to
compute. However, as data size increases, the conventional bootstrap becomes
prohibitively expensive, taking more than an hour for (2,) = (10000,300) using a
parallel computation with 25C, and more than 7.heurs’using 1C. Due to its heavy
computational need, the BCa cannot produce meaningful results for moderately
large data sets (e.g., for (>2)=(5000,200) 54 (10000, 300)). The profile likelihood
procedure (“Profile”), which is basedion-an asymptotic approximation of the sampling

distribution, is also quite expensive:when data size becomes large.

For the double bootstraps;the conventional repetitive computations take more than
2.5 hours with parallel computation using 25C for the case with (n, p) = (500,30) , and
would have taken more than 48 days for the case with (n, p) =(10000,300) Ag 4
result, the conventional double bootstrap procedures are infeasible for multiple
replicates, so their results are omitted in Table 1 and Table 2. In contrast, the GBS
training takes less than three minutes for all examined settings, while the generation
and post-processing for the double bootstrap take about one minute. Furthermore,
the double-bootstrap GBS2s requires very little extra computational time, but

achieves a significantly higher accuracy, than the single bootstrap GBS1s.

4 Bootstrap Cross-Validation for Parameter Tuning
Via GMS

Tuning parameter selection has been a challenging and computationally intensive
task for many statistical and machine learning algorithms since repetitive
computations are often required over a wide range of possible choices of the tuning
parameter. We note that the GMS framework is not only applicable to bootstrap, but
can also be used to expedite the computation of Cross-Valiagation (CV) procedures. It
is easy to see that for a weight w; = 0, the corresponding term in the weighted M-

estimation loss function (1) is zero, which is equivalent to ignoring observationy.

Wy =W, w,}

More generally, we denote with w;=0for £ €/ and

{w; :i €1}~ (n=|) x Dirichlet(n—| I[:1,) . Thus, index sets /and / cdn.be viewed as

those for the test and training data, respectively. To train the CV generator without
the bootstrapping aspect, one may employ a simpler weight distribution than the
multinomial or Dirichlet, such as setting all the weights in a'randoemly selected fold to
be zero, and the remaining to be one. Based on this setup, a simple modification of
Algorithm 1 (with strategies in Section 6.3) canbefused.to train the generator for the
K-fold CV (more details in the Supplementary Materials). Once the generator is
trained, one can easily compute the estimated, out-of-sample error across different

tuning parameters by alternating zero‘weight for each fold.

b=1,....B At

*

=0 for 1 €1k For I £l

and a.tuning parameter A;in a candidate set (LT
=1...K

More precisely, for
- (bk)

, we set zero weights on a‘fold L for k “i.e., Vi
(k) _

we can set " =1 when only CV is of interest, or let

Wy ~ (n—| I) Dirichlet(n—| I; |,1)

so as to quantify uncertainty in the CV

via bootstrap. The bootstrapped CV estimator without considering the test set L,
25
with a tuning'parameter A, denoted by -/ | can be computed as

5bk) _ D) . *
el _Zg(g(1;),11’y[)/|]k‘

CV loss for the A-th fold and A,follows as el . After repeating

GOV) The

this step for all the Kfolds, we obtain the bootstrapped A=fold CV errors as
K

= (b) 5(b.k)
e’ =)¢e" /K _
: : " tor [=Leul gng b=1...B

k=1 . After obtaining & for , one can easily

identify the bootstrap distribution of the out-of-sample loss via the empirical

=(b)
distribution of (L P under A, as well as confidence bands of the out-of-sample

loss over {’11""’%}.

A
]® =argmjnl{§1({ﬂ’x(:ir)lzﬂﬁ(b)’b:l?“"B}

b)
Moreover, with }, the empirical distribution of
serves as the bootstrap distribution of the minimizer of CV errors and can naturally

quantify the uncertainty of the chosen tuning parameter (an example is given in the

(b)
left of Figure 6). For example, this bootstrap distribution in provides us an
alternative to the ad hoc one-standard-error rule commonly recommended for Lasso
regression, in which one chooses the most parsimonious model whose,C\/error is

no more than one standard deviate above that of the best model. In contrast, with

the availability of the bootstrap distribution of Ao , We may pursuea more
parsimonious model by using the lower (I-2) 94, confidence béundiof this

distribution as our chosen A.

Cross-validation for LASSO and ridge regression. Jwe representative examples of
the penalized M-estimation are ridge (Hoerl and Kennard, 1970) and LASSO

regression models (Tibshirani, 1996), with the*eorresponding loss function for GMS:

]EM[% Z wiy, - XTG(w,)P + (G], (7)

i=1

2
with u(x) = ”x”2 for the ridge regression and u(x) = ||x||] for the LASSO. This setting is
closely related to the weighted'Bayesian bootstrap (WBB) setting analyzed recently
in Newton et al. (2021) and Ng and Newton (2022). For this problem the GMS learns

the mapping between (W.4) and P , the optimal solution under the WBB setting.

After obtaining the trained G from (7), for a given input W and /1*, its output
e D> Wil(6:) n+ Au(d)
G(w, 1) approximates the minimizer of = with respect to 6.

We simulated from a linear regression model with 7= 500, p = 50, the true

6, = {1,-2,1,0,...,0}

2 _
parameter ,and %0~ 1. Each covariate vector X;follows iid

N(O.Z) with *u =1 for k= 7and Zu =12 for k#1.

Figure 5 shows solution-path plots that depict the relations between the tuning
parameter choices and the corresponding estimated ridge and LASSO estimators.
The x-axis indicates the £ norm of the ridge regression or 4 norm of the LASSO
estimators based on a series of A's, and the j~axis, the value of the estimated

coefficient. After the generator is trained by minimizing (7), ridge (top left) and

LASSO (bottom left) coefficient values are simply G(L’D, which generates the
curves in Figure 5 by letting A vary from 0.0006 to 0.6. The resulting solution-paths of
the GMS ridge and LASSO procedures show that the proposed method
approximates the standard ones obtained by LARS (Efron et al., 2004) very

accurately.

We further investigate how the GMS-bootstrap helps to quantify uncertainty,in
choosing A. Figure 6 illustrates some benefits of the bootstrapped CV procedure for
the LASSO example. The left panel shows a 95% confidence bandfor the CV errors
across A. As Efron and Tibshirani (1997) noted, the bootstrapped CV improves the
performance of prediction error estimation. However, due to_ heavy computational
burden in the standard bootstrap algorithm, applications of the bootstrapped CV
have been greatly hindered. The example in Figure 6°'shows that the GMS helps
overcome this computational difficulty. The center panel depicts the WBB distribution
of the minimizer A of the CV errors (thered line is the estimated density function). If
the CV error curve is of main interest; one can easily generate it by the GMS using
binary weights (corresponding‘te the-chosen and left-out folds) as the input. In the
right panel of Figure 6, the‘CV error curve obtained by the standard CV computation

is nearly identical to that bythe,GMS.

5 Quantile’Regression Inference at Various Quantile
Levels

Quantile regression models, which assume that a certain quantile of the response
variable linearly depends on the covariates, have been commonly used for robust
regression analysis (Yu et al., 2003; Yu and Moyeed, 2001; Koenker, 2004). More

precisely, for a given 77 E(O’D, the conditional 7-th quantile of the response given X;

T
is modeled by X0 The standard loss function for fitting such a model is

ﬁ(e;yi’)(i):pq(yi_XiTg)’ (8)

where Pn(10)=(1—1(u<0)u

. The inference for the regression coefficients in this
setting is more challenging than that for parametric regression models, because the
sampling distribution of the coefficient estimates often relies on the regression error
density function, which needs to be estimated and is a challenging task by itself in
high-dimensional settings (Koenker, 1994). In routine applications of quantile
regression analyses, bootstrap procedures are popular to use for approximating the
sampling distribution of the estimates (Feng et al., 2011; Hahn, 1995; Kocherginsky
et al., 2005), which can be computationally demanding. Furthermore, when a
practitioner is interested in investigating multiple quantile levels, it is also_necessary
to repeat the bootstrap procedure multiple times, each at a different quantile level.
Such a computational burden is prohibitive when the data size is large.

. . T
UG,)33, X)) = p, (3 = X; G(W, 1) in (3), we apply the GMS to overcome

By using
the computational challenges for the inference of quantile regression models with a

GMS loss of
G = argmin Ew,n[z w.p, (¥, — X, G(w, 77))], 9)

where By is the expectation operator on W and 7, assuming that 7 follows some

distribution F, whose support.is (0,1) and independent with W . A default choice is to
add random noises to the candidate set of quantile levels, and let W follow the

probability law in (6).

To demonstrate theteffectiveness of this procedure, we test the method on a

simulation 'setting examined in Feng et al. (2011). The data set is generated from the

model Vi =X 6 +3 24 14 0q, =8P 3,3 /10Je i = L o X = ()
_17 ~ — .
=500, p=5, ® =15 and &~ 5. welet =1 for i<400 and =0 for /> 400, and

generate the other covariates independently from the standard log-normal
distribution.

As in Feng et al. (2011), we consider the wild bootstrap, as well as the standard
bootstrap. Figure 8 (a)-(c) compare the 90% confidence bands of several
coefficients generated by the GMS with those obtained by the standard bootstrap
and the wild bootstrap over quantiles varying from 0.05 and 0.95, showing that the

the approaches result in nearly identical bands.

To investigate computational efficiency of the GMS for quantile regression, we
increase the sample size and the number of predictors in the above simulation model
to (1) =(1000,50) (2000, 100), (3000, 150), and (5000, 300), respectively, and
consider quantile levels varying from 0.05 to 0.95 with a skip of 0.05 (total 19
quantile levels). We set the first five coefficients of & to be one and the,others be
zero. Our target is to obtain 5, 000 bootstrap samples under each setting. Due.to
heavy computational burden of the standard bootstrap procedure, we compute only
five bootstrap evaluations and report an estimated time from thems(e.g., multiplying
1, 000 to the time taken for the five evaluations). Figure 8 (a) depicts the
computation time required for each procedure. While the GMS can be trained in less

than 10 minutes for moderately large data size, (" 7 >000wp =300,

, the standard
bootstrap requires more than 30 minutes for the smallest data set (= 1000, p = 50)

and about 3 months for the case of (#=5000,p=300)

6 Computational Strategies for Training the
Generator

6.1 Multilayer perceptron

Neural networks have been shown effective for approximating functions with
complicated structures. Recently, researchers have experimented with various novel
ways of usingneural networks, such as constructing generators of real-life-like
images and creating generative adversarial networks for approximating high-
dimensional distributions (Ledig et al., 2017; Wang et al., 2018; Karras

et al., 2018; Goodfellow et al., 2014; Arjovsky et al., 2017). The simplest neural
network structure is a class of MLPs/FNNs constructed by composing activated

k= 1"”’K, let gx denote the feed-forward mapping

(k) (k+1)
RV > RY

linear transformations. For

represented by N hidden nodes, where &k is defined as

_ *)) NGD *
g (X)=o(UTX+b™) eR™ '\ here X eR™ is the input variable of gi. Also, this

function is characterized by a “weight” parameter and a “bias” parameter: the

N*Px N® weight matrix U and the N -dimensional bias vector

*) _ k)) e
b =4b" by } . A K-layer MLP function g:R" HR” can be defined by the

composition of these functions as
g(X)=Lg°..°g,(X), (10)

(K)
where L:R"" = R” is 3 linear function that maps the final hidden layer

gx°--*&(X) to the O-dimensional output space of g. Commonly used activation
functions include the sigmoid function, the hyperbolic tangent function, the Rectified
Linear Unit (ReLU) (Nair and Hinton, 2010), the Exponential Linear Unit,(Clevert

et al., 2015), the Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016), etc. We
here employ neural networks with the ReLU activation function @)= max{t, 0} 1,
construct generator Gin (3) in a novel way as characterized,by the integrative loss

(3) and the weight multiplicative MLP explained below.
6.2 Weight multiplicative MLP

Despite its generalizability and practicability, we observe that the simple MLP
converges slowly for our GMS applications(as shown in Figure 9). We propose a
modification motivated by the T aylor approximation of the first derivative of the
weighted loss function. For illustration, let us consider the weighted M-estimation

Z‘/Viﬂ(e;yi) é
loss =1 and-its'optimizer "~ in (1) for a case of p= 1 (ignoring 77 and A for

> wl'(0,:y,)=0
simplicity)sUUnder.mild conditions, we assume that = , where (' is the

first derivative of { with respect to 8. Then, by using a Taylor approximation of " at

a local region of some arbitrary g(w), we obtain that
0= wl'(0,:0)~ 2 wl'(@W))+ 2wl (gwW)y)@, —gw), (1)
i=1 i=1 i=1

where "6, y) denotes the second derivative of { with respect to 6.

The approximation term used in equation (11) contains two different kinds of

approximations: the approximation of éw ~ (W) and the Taylor’s approximation for
iw,f'(é’w;yi)
i=1 . The first kind of approximation can be justified by the universal
approximation theorem for neural networks Hornik et al., 1989; Barron, 1993; Lu

et al., 2017; Kratsios and Papon, 2022. The universal approximation theorem states
that a feed-forward neural network is capable of approximating any continuous

function, if the size of the neural network is large enough.

Thus, we have

n

R YA - A n
b, ~gw)- > —HEEWEY) 2o S). (12)
= ijﬁ"(g(W);yA,-) =t

Motivated by this approximation, we propose a new neural network structure called
the Weight Multiplicative MLP (WM-MLP) as the sum of a'simple MLP and a weight

multiplicative one:

G(W, A, 1m) = L°B (W, A, 1) + L,°({ [° B (W, A, @ W), (13)

g(w)
D Wik, A1)

i=1

L:R" > R?

where “©” indicates an element-wise’multiplication operator; and

. n . n+l+1 H . H n
L:R"—R” are linear functions; By :R =R and /1 RTPOR 50 simple MLPs
with K'hidden layers and-one hidden layer, respectively. For a large n, the subgroup

bootstrap in Section 3.1 reduces the dimension of W and the network size.

To demonstrate the improvement, we compare the performances of WM-MLP and
the simple MLP for various sizes of hidden nodes (500, 1000, 2000) and layers (K=
1, 2, 3), for a logistic regression example. The true s in the simulations are equi-
spaced between -0.5 and 0.5 with p= 100 and 7= 1000. We train the generator G
from ten random initializations and report the average loss values after 30,000
iterative updates for each MLP structure. The results are summarized in Figure 9,

demonstrating that for all network sizes the proposed WM-MLP outperforms the

simple MLP uniformly. In comparison to a large-sized MLP with three hidden layers
and 2000 neurons, even a small-scale WM-MLP with a single hidden layer and 500
neurons achieves a lower loss, whereas the simple MLP with one hidden layer
performs much poorly. For all examples in the paper, we used the WM-MLP with
three hidden layers as a default, and observed that the resulting generator function

based on the WM-MLP performed satisfactorily.
6.3 Computational strategy in optimization

It is straightforward to optimize the GMS integrative loss (3) because the expectation
can be approximated by a few Monte Carlo samples at each iteration. We use.a
variant of the popular SGD algorithms such as Adam (Kingma and Ba, 2014),
AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), etc,.toiteratively
update the neural net parameters until the algorithm converges. Algorithm 1
summarizes the detailed steps of the GMS. As in (4), this algerithm'samples //
values of W’s and A's to approximate the expectation and updates the neural
network parameters via SGD. It is not uncommon nowadays for a data set to be
extremely large, to the point that the full data size surpasses the memory capacity of
the computer in use. Data subsampling would be advantageous in this setting for
training the GMS, which partially updates the weights corresponding to the
subsampled data in the same spirit as stochastic optimization (Allen-Zhu

et al., 2019).

Technical details of the optimization. In all our examples, we use the WM-MLP with
three hidden layers and 14000 hidden neurons in each layer. In pytorch, algorithm
Adam is used with a learning rate of 0.0003 and a decay rate of £ by default. We
use full samples in the SGD optimization without mini-batches because the data
sizes of the examples we considered are manageable. However, when the data size

is massive, minibatch subsampling would be necessary.

Algorithm 1 A general algorithm to train the GMS.

* Set P“M, S (subgroup size), M (Monte Carlo sample size), and 7 (total iterations).

* Randomly split the full data into S subgroups, resulting in an index function h() in
(6).
s 3
* Initialize the neural net parameter .
* Set £=0.

while the stop condition is not satisfied or £< 7do

* Independently sample Mvalues of ¢’s, A's, and 77's from PM".

[1 EM 2 m m m m m m m m
= a(,(l))l(G (1) (a(),l(), ()),yl)/n+ﬂ,()u((; (1) (a(),ﬂ,(), ()))
COﬂSIdeI m=1 i=1

where ¢ is the mth sample of M &’s,

t+1)
* Update ¢ by using the gradient of L via a SGD step.
* Lett=t+1,

end while

Choosing distributions for W, A, and . For bootstrap procedures, the distribution of
bootstrap weights W (or ¢) can be easily chosen depending on‘the practitioner’s
interest; e.g., w ~ Multinomial(n,1, /n) or w~ nx Dirichlet(n,1) “When nis
excessively large, the dimension of W can be‘reduced by the subgroup
bootstrapping method in Section 3.1. As a'general rule, when n> 500, we
recommend considering subgrouping.“While our theoretical evidence suggests that
S=n" ig optimal (see Section A.1 in'Supplementary Materials), empirically setting S
to a few hundreds performs well in all situations shown in this paper. By default, S =
100 was used. Choosing the-training distributions for A and r7is more arbitrary
because usually we have-nowreference distributions for A and 77 unlike the case of W.
We may first set candidate sets for A and ;7 in advance (which can be large in size)
and then add some random noises to form mixture distributions. For example, we

A=exp{log A’

can generate +€}, where 4" is randomly selected from the candidate

set and €~ M(0.9) ith 6=0.2" a5 default. For the quantile regression example in

o 2 '
Section 5, we generate 7= 7 *N(0,0.03°) \ith 77" randomly selected from a pre-

determined candidate set, and then truncated to be in (0'001=0'999).

Training stopping criteria. In order to judge the convergence in training the generator
function, we first set the maximum number of epochs depending on computational

resources at hands (our default is 20,000 epochs). In addition to this stopping

criterion, we also consider an early stopping rule that has been commonly used in
training general neural networks (Heckel and Yilmaz, 2021; Li

et al., 2020; Prechelt, 1998) to determine when we stop the optimization algorithm
before reaching the maximum number of epochs. Intuitively, we stop the algorithm
when the updates do not further reduce the loss value. More specifically, for each
epoch £, we evaluate the averaged loss value L?on epoch fand compare it with

=t p
L7, 0=12,....k} for some lags. We terminate the SGD

those of the previous epochs {
algorithm if Ltis within € of a quantile (such as the median) of the previous losses.
We recommend to monitor the change of loss values in the previous A=100 epochs,

and use the 25th percentile with €=0.01

6.4 Limitation of GBS and GMS

Despite the empirical successes of GBS and GMS in various applications examined
in this paper, they are not free of limitations. First, unlike the conventional bootstrap
procedures, even for a small-sized data set, training the generator function of GBS
and GMS requires a certain amount of computation time as minimum in training the
generator. Tables 1 and 2 show that the GBS, forthe smallest data set (

n =500, p= 3O) takes about 15 times longer computation time compared to the
standard bootstrap using 25 cores/inyparallel. Second, like all other applications of
neural network, choosing optimal hyperparameters such as learning rate, widths of
networks, the number of neurons, etc, is not systematically justified and somewhat
heuristic. However, we(find that, our default settings for the WM-MLP proposed in
Section 6.3 result in aceurate approximations for our examples. Third, when the
output dimension (the dimension of &) and the input dimension (the subgroup size)
for the generator.are high, the resulting computation can be bottlenecked in terms of
the computational time and the convergence of optimization. Even though for a case
of (1=10000, p=300) i, Taples 1 and 2, the GBS approximates the target bootstrap
estimators well, the convergence of training would be slow under higher dimensional
settings. As a result, it would be desirable to consider a larger network to
approximate more complicated target function, resulting in even more longer

computation time.

7 Conclusion

We propose the GMS as a general computational approximation framework to
accelerate repeated calculations for (penalized) weighted M-estimations. The GMS
was shown effective for a variety of statistical inference procedures, including
bootstrap methods and cross-validations for general M-estimators. We apply the
GMS to a variety of models, including LASSO, logistic regression, quantile
regression, etc. The GMS performs well in all of the situations we investigated, and
the weighted M-estimators generated by the GMS are sufficiently accurate and
comparable to the much more computationally expensive traditional solutions for all
inference purposes. By lowering the computational barrier associated with.repetitious
data-splitting or data-sampling processes such as (bootstrapped) CVs andiiterated
bootstrap, the GMS opens up a new perspective on modern statistics. Tordate, these
approaches have been less noticed and rarely practiced by the statistical community
not because they are less valuable, but because their computation cost is
prohibitively high. We expect that the GMS will prove to be,an“effective tool for

augmenting the power of statistical models in the era of big data.

Acknowledgement

This work was supported in part by the NSF grant DMS-2015411.

Supplementary Material

R-package: R packagefor GMS can be found at the following URL.:
https://github.com/shijiew97/GMS.

Supplementary.Material: The Supplementary Material contains proofs of theorems,

additional simulation analysis and details of training algorithms. (.pdf)

References

Allen-Zhu, Z., Y. Li, and Z. Song (2019). A convergence theory for deep learning via
over-parameterization. In /nfernational Conference on Machine Learning, pp. 242—
252. PMLR.

Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein generative adversarial

networks. In /nfernational Conference on Machine Learning, pp. 214-223.

Barbe, P. and P. Bertail (2012). The weighted bootstrap, Volume 98. Springer

Science & Business Media.

Barron, A. R. (1993). Universal approximation bounds for superpositions of.a

sigmoidal function. /EEE Transactions on Information theory 39 (3), 930-945.

Chatterjee, S., A. Bose, et al. (2005). Generalized bootstrap for estimating
equations. The Annals of Statistics 33 (1), 414-436.

Cheng, G. and J. Z. Huang (2010). Bootstrap consistency for general
semiparametric m-estimation. 7he Annals«of Stafistics 38 (5), 2884-2915.

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). Fast and accurate deep

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 .

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control,signals'and systems 2 (4), 303-314.

Diciccio, T. and B. Efron (1992). More accurate confidence intervals in exponential
families. Biometka 79 (2), 231-245.

Duchi, J., E:Hazan, and Y. Singer (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research 12 (7).

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of
Statistics 7 (1), 1-26.

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American
statistical Association 82 (397), 171-185.

Efron, B., T. Hastie, |. Johnstone, and R. Tibshirani (2004). Least angle regression.
The Annals of statistics 32 (2), 407-499.

Efron, B. and R. Tibshirani (1997). Improvements on cross-validation: the 632+
bootstrap method. Journal of the American Statistical Association 92 (438), 548-560.

Feng, X., X. He, and J. Hu (2011). Wild bootstrap for quantile regression. Biometrika
98 (4), 995-999.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.(Ozair,
A. Courville, and Y. Bengio (2014). Generative adversarial nets. InfAdvances in

neural information processing systems, pp. 2672-2680.

Hahn, J. (1995). Bootstrapping quantile regression estimators..Econometric Theory
77(1), 105-121.

Hall, P. (1986). On the bootstrap and confidence intervals. 7he Annals of Stafistics ,
1431-1452.

Hall, P. (1988). Theoretical comparison.of bootstrap confidence intervals. The
Annals of Statistics , 927-953.

Hall, P. (1992). On bootstrapiconfidence intervals in nonparametric regression. 7he
Annals of Statistics 4#695-711.

Hall, P. (2013)."7he bootstrap and Edgeworth expansion. Springer Science &

Business Media.

Hall, P. and M. A. Martin (1988). On bootstrap resampling and iteration. Biometrika
75(4), 661-671.

Hardle, W., J. Horowitz, and J.-P. Kreiss (2003). Bootstrap methods for time series.
International Statistical Review 71 (2), 435-459.

Heckel, R. and F. F. Yilmaz (2021). Early stopping in deep networks: Double descent

and how to eliminate it. In /nfernational Conference on Learning Representations.

Hendrycks, D. and K. Gimpel (2016). Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415 .

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for

nonorthogonal problems. 7echnometrics 12 (1), 55-67.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. Neural Networks 2 (5), 359-366.

Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in

statistics, pp. 492-518. Springer.

Karras, T., T. Aila, S. Laine, and J. Lehtinen (2018). Progressive.growing of gans for
improved quality, stability, and variation. In /nfernational-€onference on Learning

Representations.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Kleiner, A., A. Talwalkar, P. Sarkaryand.M. |. Jordan (2014). A scalable bootstrap for
massive data. Journal of the Reyal Statistical Society.: Series B (Statistical
Methodology) 76 (4), 795-816.

Kocherginsky, M., XeHe,.and Y. Mu (2005). Practical confidence intervals for
regression quantilesuwJournal of Computational and Graphical Statistics 14 (1), 41—
55.

Koenker, R. (1994). Confidence intervals for regression quantiles. In Asympfotic

statistics, pp. 349-359. Springer.

Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Mulfivariate
Analysis 97 (1), 74-89.

Kratsios, A. and L. Papon (2022). Universal approximation theorems for
differentiable geometric deep learning. The Journal of Machine Learning Research
23 (1), 8896-8968.

Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. Annals of
Statistics , 386-404.

Ledig, C., L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. (2017). Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE.

conference on computer vision and pattern recognition, pp. 4681-4690.

Lee, S. M. and G. A. Young (1995). Asymptotic iterated bootstrap confidence
intervals. The Annals of Statistics , 1301-1330.

Lee, S. M. and G. A. Young (1999). The effect of monte carlo approximation on
coverage error of double-bootstrap confidence intervals. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 67(2), 353-366.

Li, M., M. Soltanolkotabi, and S. Oymak (2020). Gradient descent with early stopping
is provably robust to label noise for overparameterized neural networks. In
International Conference on Artificial Intelligence and Statistics, pp. 4313-4324.
PMLR.

Lu, Z., H. Pu, F. Wang, Z. Hu, and L. Wang (2017). The expressive power of neural
networks: A view from the width. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, pp. 6232-6240.

Martin, M."A."(1992). On the double bootstrap. In Computing science and statistics,
pp. 73-78. Springer.

McCarthy, D., K. Zhang, L. D. Brown, R. Berk, A. Buja, E. |. George, and L. Zhao
(2018). Calibrated percentile double bootstrap for robust linear regression inference.
Statistica Sinica 28 (4), 2565-2589.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, pp. 807-814.

Newton, M. A., N. G. Polson, and J. Xu (2021). Weighted bayesian bootstrap for
scalable posterior distributions. Canadian Journal of Statistics 49 (2), 421-437.

Newton, M. A. and A. E. Raftery (1994). Approximate Bayesian inference with the
weighted likelihood bootstrap. Journal of the Royal Statistical Society: Series B
(Methodological) 56 (1), 3-26.

Ng, T. L. and M. A. Newton (2022). Random weighting in lasso regression.
Electronic Journal of Statistics 16 (1), 3430-3481.

Praestgaard, J. and J. A. Wellner (1993). Exchangeably weighted.bootstraps of the
general empirical process. The Annals of Probability , 2053—-2086.

Prechelt, L. (1998). Early stopping-but when? In NeuralNetworks: Tricks of the
trade, pp. 55-69. Springer.

Rubin, D. B. (1981). The Bayesian boetstrap.w7he Annals of Statistics 9 (1), 130434.

Rumelhart, D. E., G. E. Hinton, and-R."J. Williams (1986). Learning representations
by back-propagating errors. nature 323 (6088), 533-536.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stafist.
Soc. B, 267-288.

Tieleman, . T., G. Hinton, et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA. Neural networks for machine
learning 4 (2), 26-31.

Wang, T.-C., M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro (2018). High-
resolution image synthesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 8798-8807.

Xu, L., C. Gotwalt, Y. Hong, C. B. King, and W. Q. Meeker (2020). Applications of

the fractional-random-weight bootstrap. 7he American Statistician , 1-21.

Yu, K., Z. Lu, and J. Stander (2003). Quantile regression: applications and current
research areas. Journal of the Royal Statistical Society: Series D (The Statistician)
52(3), 331-350.

Yu, K. and R. A. Moyeed (2001). Bayesian quantile regression. Stafistics &
Probability Letters 54 (4), 437447 .

0
=]
S N S e T T P LT
m t! h’-'.\
2 g 24
g
] =
[i
o |
Sfvinonnall . | oo Omwme-io
e — GMS
EII 5EIIEIIZI 1 DélIZIIJ ! EIIJEIIZI 2IIIl;IJEI 25IIJE'E- S-EIIIJDD EII EDIDD ZGI:.IM ‘.EIIJ{.'ID 2l2|l;DEI 25(:00 3.|:|.flmo
B 5 herations lj\‘.enatims
(@) log(n Y2, 16ye — g(w®)||?/B). (b) log(nEw[[|6w — g(w)||*))-

Fig. 1 Trace plots of (a) the training loss, and (b) the integrative prediction loss, in
the logarithmic scale. Five lines for each optimization represent five distinct
initializations; and the red dashed and blue dotted lines indicate the conventional ML
with 8= 500 and B = 5000, respectively.

iy

-4 -23 -2 -1.8 -1E a5

(c) S= 10(\

Fig. 2 Histograms of block bootstrap-distributions with various S for the coefficient
of Xi (top), Xs (middle), and Xio (bottom) for each subfigure. The red line indicates
the density function of the target distribution (of the standard bootstrap).

P
-.—”._

method

B j S=100
| —| Target

Coefficient Values
L e
F
.."_
'[_

|
%]
|_.

X1 X2 X3 x4 X5 X6 X7 X8 X9 X10
variable

Fig. 3 Comparisons of subgroup bootstraps across different numbers of blocks.

o - GBS Basic. .85 (1.64) o [GES Percentile 0.8 (1 64)
Classical Basic. 0.95 (1.67) Classical Percentile; 0.8 (1.67) [l
5 Al E il
- e
g bt 3 Leg)
T @
: [1] s .
Y e [I t 8 I
A L]
[i .[I
- o
i T T T T il T T T T
5 10 1 20 5 10 1 2
Index Index

5™ II'HH i II'”H
£ =- 1 B ’ g o ;ff :
5 [1] % sk
SN_‘;[}I:f B .[}If

5 l;ﬂdex 1 20 5 |i!-:dex 18 20

Fig. 4 GBS 95% Cls for the logistic regression example: The basic single
bootstrap Cl (top left); the naive percentilessingle beotstrap CI (top right); the
calibrated percentile bootstrap Cl via double bootstrap (bottom left); a studentized
bootstrap Cl via double bootstrap (bottomiright). Cls covering true parameters (black
dots) are colored in green and otherwise in light red. Averaged width of Cls across

parameters is reported in parentheses.

=4 e — = | J—
™ ___.———__ I = ___.—-——__ I
i =i e ____,_.———_ G e L ——
iy — e T - e —
= — = e
- g —-— — - [=3 — e
E, = — — S = —
£ 5 £ n
" = wy
2 oo 2 9
O G
= =
Ll -
wh uy
LT g
= =
L L
T T T T T T T T T T
4] 1 2 3 & 5 [+ 1 2 a 4 5
L2ncem(B) L2neen (B}

|

20 15 A0 0% 00 05 10
1
/
Coaticient
20 15 10 905 00 05 1.0
1

ﬁ\

/
/
/

/!

Ltramifi LiramiAl

Fig. 5 Solution paths of the GMS ridge (top left), the standard ridge regression
(top right) and the GMS LASSO (bottom left), and the LARS (bottom right).

B .
@ - oo
- s P
- B | GMS
o | > g il o | — = Standard LASSO -
E L e = || 5 7 ”
5 o A 2 g |] i ”
% i -+ -
T ol - & | 8 =7 -
G i // o a ! e -
o e = d =l o
- E\ f/ =] i - -
S S A -
o | S 2 R J\« e e
T T T T T T T T T 1 iy T T T T
oo a1 o2 ¥ w4 0. 5] 0.2 o3 0.4 0.0 1 0.2 03 04
lambda larnbda lambda

Fig. 6 Left: The 95% confidence band of CV error evaluated from the GMS

bootstrap with random weights, and the red solid line indicates the mean curve.
AuinRight: CV
errors based on the standard LASSO and the GMS with the constant weight vector

Middle: The GMS bootstrapped distribution of the CV-error minimizer

1. The purple vertical line indicates the value of A that minimizes the CV error.

i
E _
=
[or]
o 8 ’F,Jl‘
E o
= e
= -
g = e
E - e
— 8-
a2 o
EFfE o e
£ &
U _F.-
& e
S o
% A
g | &_____,_____._-—qé—
[op]
I T T 1
(1000, 50) (2000, 100) (3000, 150) (5000, 30a)

(n. p)

Fig. 7 Computation time for the GMS quantile regression (black ‘'solid line with
triangle marks) and its conventional counterpart (red dashed_line'with filled-dot

marks).

w w =)
- 7] - 7] -
B B -
- w - -
o o o o o -
w | w w |
i [] [}
(=] (<])
AT T T

| L 5 P R SR T ek k)) e P P e | T I I R I () R R R) e e | | 3 JE31 i) T e Pl) Pk Pk
006 02 O35 05 0.6 DB 0OB6 005 02 Q35 oF 0.66 0.8 086 Dos 02 035 056 066 0.8 0.8

‘quantile quantile quantile

(a) Intercept

rMMTTITTrrTrrrrrrrrrrTi rrrTrT1r1rr1rrTrTrTrrrrorroni FrMTTILTTTTTTTTTTTTITT T
006 02 035 Q5 0.8 0.8 086 006 02 Q35 OF 0.66 0.6 O0B6 Gos 02 035 05 066 0.8 OB

B 10 16
B 10 16
1 1 | |

- 0 B 10 1B

B
-1B6

quantile quantike quantile
(b).f3
= =l o = il —

-
rrrrrrrrrrTrTrTiIr T eTd rrrTrr1rrrrrrrrrrrrri rrrrrrrrrrrrrrrrrri
008 02 035 O0S500.65 0.6 086 005 02 O35 oF 065 0.8 086 oos 02 035 056 066 08 OB

-quantile quantile quantile

(c) fs

Fig. 8 (a)~(c): Comparisons between the 90% confidence bands obtained from the
GMS (blue), the classical bootstrap (yellow) and the classical wild bootstrap (red)
across quantile levels ranging from 5% to 95%. The quantreg R package is used for

the conventional bootstrap and wild bootstrap.

—— WM-MLP3
- - WM-MLE2
e WK-MLPY

Loss
0.258
|

0.254
1

0.250
|

of nodes = 500 # of nodes = 1000 # of nodes = 2000

Fig. 9 Comparison of the losses obtained by the simple MLP and the' WM-MLP
with various numbers of hidden layers and nodes. The number noted after "MLP”

indicates the number of layers K.

Table 1 Cases of 5% in-sample error in classification. Results of the simulation
study for logistic regression models; “GBS1” and “GBS2” indicate single and double
bootstraps implemented by the GBS, respectively; “Cov”, “Width”, and “Time” mean
the averages (over 20 replicates) of the coverage, the width, and the actual
computing time (seconds) of each evaluated 95% ClI, respectively; for the
computation time of the GBS, the black and red numbers indicate training and

generation time (including post processing time for the GBS), respectively.

(n, p) = (500,30) (n, p) = (5000,200) (n, p) = (10000,300)

|Method ||Cov ||Width|| Time| |Cov | | Time| |Cov | | Time|
GBS1

(Basic) 0.967 2.595|| 140.8 +0.1{|0.958 0.318|| 152.9 +0.2||0.947 0.235|| 163.6 + 0.4
GBS1

(Percentile)||0.398 2.595|| 140.8 +0.1||0.424 0.318|| 152.9 +0.2(|0.403 0.235|| 163.6 + 0.4
GBS2

(Student) ||0.962 1.762((140.8 + 15.6((0.929 0.298(|152.9 + 45.0{/0.930 0.225||163.6 + 63.9
GBS2

(Calibrated)||0.927 1.495((140.8 + 15.6((0.924 0.295(|152.9 +45.0(|0.929 0.227(|163.6 + 63.9
|Basic (25C)| |O.975 ||3.677|| 8‘4| |O.984 | | SSQ‘ﬂ'NA || 4227,05|
[pasic 10) | R =z [2o
Percentile

(25C) 0.405 3.677 8.4((0.444 0.36 539.6(|na NA 4227.05

e 250 Josts b | o3 Ut I b e]
[profie|Jo.678 ||2.200]| 0.7] i || 1310.8]|ya || 8670.7
(waa |lo.752 |[2.253)| i0.1][0.770 || 2.5/[0.748 | 10.6]

Table 2 Cases of 10% in-sample error in classification. “Basic” means bias-

corrected percentile bootstrap Cl and “Percentile” stands for classic percentile

bootstrap Cl. Results of BCa, profile likelihood CI (“Profile”) and Wald interval (“Wald

") are also provided. As for classical bootstrap, “25C” represents 25 CPU cores for

parallel computing and

1C’ is a single-core computation.

(n, p) =(500,30)

(n, p) = (5000,200)[|

(n, p) = (10000,300) || |

(Percentile) [|0.698

0.799

140.8 + 0.1{|0.750

|Method “Cov “Width“ Time| |Cov | | Time| ICov I I Timel
GBS1
(Basic) 0.978 0.799|| 140.8 +0.1||0.940 0.228|| 152.9 +0.2(|0.904 0.149|| 163.6 + 0.4
GBS1

0.228|| 152.9 +0.2||0.777

0.149|| 163.6 + 0.4

H

GBS2
(Student) ||0.932

0.711

140.8 + 15.6(|0.936

0.210(|152.9 + 45.0{|10.912

0.153||163.6 + 63.9

GBS2
(Calibrated)||0.885

0.668

140.8 + 15.6(|0.932

0.210{|152.9 + 45.0{|0.882

0.155||163.6 + 63.9

ozzs]|s0fe

ll 4227.08)

|Basic (25C)”0.985 Ho.s44|| s.4| |o.972

|Basic(1C) H H H 93.8” ||:|| 3833ﬂ[H:“ 25540.5|
Percentile

(25C) 0.727 0.844 8.4||0.787 0.228 539.6{|uyn - 4227.05
|BCa (25C) Ho.972 ||o.933|| 84.3||NA || N;HNA | NAI
[profie |Jo.875 |[o74s| 0.7] [J[1310.8][ya || 8670.7]
Wald 0.890 0.742 10.1[0.904 0.216 2.5(0.914 0.148 10.8
| | o742 | o] | [o.159] |

