Statistica Sinica Preprint No: SS-2022-0256

Title | Differentiable Particle Filters with Smoothly Jittered
Resampling

Manuscript ID | SS-2022-0256

URL | http://www.stat.sinica.edu.tw/statistica/

DOI | 10.5705/ss.202022.0256

Complete List of Authors | Yichao Li,
Wenshuo Wang,
Ke Deng and
Jun S. Liu

Corresponding Authors | Yichao Li

E-mails | ycli@mail.tsinghua.edu.cn

Notice: Accepted version subject to English editing.

Statistica Sinica

DIFFERENTIABLE PARTICLE FILTERS WITH
SMOOTHLY JITTERED RESAMPLING

Yichao Li, Wenshuo Wang, Ke Deng and Jun S. Liu

Tsinghua University and Harvard University

Abstract: Particle filters, also known as sequential Monte Carlo, are a powerful
computational tool for making inference with dynamical systems. In particular,
it is widely used in state space models to estimate the likelihood function. How-
ever, estimating the gradient of the likelihood function is hard with sequential
Monte Carlo, partially because the commonly used reparametrization trick is not
applicable due to the discrete nature of the resampling step. To address this
problem, we propose utilizing the smoothly jittered particle filter, which smooths
the discrete resampling by adding noise to the resampled particles. We show
that when the noise level is chosen correctly, no additional asymptotic error is

introduced to the resampling step. We support our method with simulations.

Key words and phrases: Reparametrization trick; Resampling; Sequential Monte

Carlo; State space models.

Li and Wang contributed equally to this work; Deng and Liu co-supervised this

study.

1. Introduction

Computing or estimating the likelihood function and its gradient for a sta-
tistical model with hidden variables is a challenge with applications in many
areas of statistics and machine learning (Andrieu et al., 2005; Kingma and
Welling, 2014; Le et al., 2017; Mohamed et al., 2020). In a general form,

such a likelihood function can be written as

L |y) = /p(y72; 0)dz, (1.1)

where p(y, z;0) is the joint likelihood of the observed variables y and the
unobserved latent variables z with # as parameters. In practice, the in-
tegral is usually estimated by a Monte Carlo method, typically a form of

importance sampling:

. 1~ ply, z30)
Lw‘y):ﬁZ;(T,H)) with z; ~ ¢, (1.2)

i=1
where ¢ is the sampling distribution of z;’s which could potentially depend
on ¢. The gradient of the likelihood function can be estimated by differenti-
ating ﬁ(& | y) with respect to 0, provided that the sampling distribution ¢ is
differentiable (in practice, usually the target is the log-likelihood instead).
However, in some high-dimensional cases, ¢ may not be well behaved and

this naive method could result in considerable instability. A notable exam-

ple is the inference of state space models, where particle filters, also known

as sequential Monte Carlo (SMC), are usually used to construct ¢ (Liu and
Chen, 1998; Doucet et al., 2001).

A state space model consists of a Markovian system of hidden states
and a probabilistic observation model. The ¢ function provided by SMC is
high-dimensional and often incurs a high variance in estimating the deriva-
tive of the likelihood function (Naesseth et al., 2018). Recently, there has
been a line of work on differentiable particle filters (DPF) (Naesseth et al.,
2018; Zhu et al., 2020; Corenflos et al., 2021) that addresses this difficulty
and enables end-to-end training in state space models. Research on DPF
addresses the challenge of using particle filters to estimate the gradient of
an estimating equation, usually the log-likelihood function, with respect to
the estimand, where directly applying backpropagation through the pro-
posal function ¢ is generally highly unstable due to the discreteness of the
resampling step. As a result, DPF can be used to infer the parameters of
a complex model using gradient-based methods. Although gradient-based
methods are not theoretically guaranteed to converge, they have garnered
growing attention due to their promising performance in practice and in-
herent regularization ability (Ali et al., 2020).

The reparametrization trick is a method used to provide low-variance

gradient estimate of an expectation, such as VyE,..0)[f(2;0)], where 6 ap-

pears in the underlying density function p (see Section 4.2 for a detailed
description). However, the reparametrization trick only works for continu-
ous distributions. As briefly mentioned above, the main challenge of DPF
arises from the resampling step, which introduces discreteness and prevents
the deployment of the reparametrization trick. While this issue is created
by resampling, the resampling step is necessary for coping with the weight
degeneracy problem that often appears in particle filters. If no resampling
is performed, most of the particle weights will soon converge to zero and
only a tiny number of particles are actually used for approximating the
posterior. A main intuition behind resampling is that particles with small
weights are less informative and thus discarded so as to save computational
resources to explore regions that may be more promising for the future (Liu
and Chen, 1995).

Numerous approaches have been proposed to resample from a set of
weighted particles, including the bootstrap resampling or multinomial re-
sampling (Gordon et al., 1993), residual resampling (Liu and Chen, 1998),
stratified resampling (Kitagawa, 1996), optimal resampling (Fearnhead and
Clifford, 2003), and so on. Most, if not all, of the commonly used resampling
methods are discrete in nature, preventing a direct use of the reparametriza-

tion trick. Some researchers have investigated jittered resampling, which

involves adding a small amount of noise to the resampling step to alleviate
the particle degeneracy issue(Shephard and Flury, 2009). Although jittered
resampling is not popularly deployed in a regular SMC algorithm, perhaps
because it does not improve the performance of SMC for simple posterior
estimation, we demonstrate in this paper how to use it as a building block
to facilitate the reparametrization trick for gradient estimation with SMC.

Naesseth et al. (2018) point out that in the absence of the reparametriza-
tion trick, the gradient estimate is highly unstable, and propose to dis-
card the term that corresponds to resampling and thus cannot exploit the
reparametrization trick. Clearly, this method produces non-negligible bias
if resampling is frequently implemented . Zhu et al. (2020) propose to
replace the traditional resampling mechanisms with a continuous transfor-
mation called particle transformer to enable the reparametrization trick.
In a particle transformer, the resampling procedure is realized through a
neural network (NN) with additional parameters, where the input layer is
the weighted particles and the output layer is the resampled unweighted
particles. Corenflos et al. (2021) apply ensemble transform (Reich, 2013)
to the resampling step, which is accomplished through a linear transforma-
tion (interpolation). Specifically, the linear transformation is determined

by an entropy penalized optimal transport measure. Compared to the par-

ticle transformer, the ensemble transform can avoid training a neural net-
work. However, neither the particle transformer nor the ensemble transform
necessarily preserve well the particles’ empirical distribution after resam-
pling. As will be detailed in Section 2, while the NN-based transformer
lacks theoretical guarantees and is computationally expensive, the linear
transformation may significantly alter the empirical particle distribution.
In this article, we develop a deployment of the “smoothly jittered parti-
cle filter,” which replaces standard discrete resampling mechanisms with
a kernel smoothed resampling procedure, to enable the reparametrization
trick. We also present that specially designed kernel functions can enable
efficient computation. Our experiments show that the proposed method
outperforms existing techniques in various model settings.

The rest of the paper is organized as follows. Section 2 reviews some
related work. Section 3 offers a comprehensive yet concise overview of the
state space model and the SMC framework under a unified notation sys-
tem. Section 4 is dedicated to the gradient estimation problem, in which we
first introduce the general gradient estimation problem and two main ap-
proaches to solve it, and then show the obstacles in realizing the approaches
under the SMC framework. Section 5 proposes the reparametrized resam-

pling via jittering and presents a fast computation algorithm to solve the

differentiability problem of SMC discussed in Section 4. Section 6 provides
numerical simulation results to support the proposed method. Section 7

concludes the article and discusses some further extensions.

2. Related work

Pitt (2002) presents an early work on smooth likelihood estimators, sug-
gesting a method to sample from a linearly interpolated empirical CDF of
particles in one-dimensional cases. Building on this concept, Lee (2008) ex-
tends the approach by utilizing tree-based partitions to construct piece-wise
continuous estimators.

Scibior and Wood (2021) suggest that the stop-gradient operator can be
used to customize which terms to ignore in gradient calculation. Maddison
et al. (2016), Le et al. (2017) and Corenflos et al. (2021) discussed the
gradient estimation bias when the resampling term is ignored. In particular,
Corenflos et al. (2021, Proposition 4.1) showed that the bias is zero when
P, 20) [yra) = p((z4Y,2Y) | yrr).

The ensemble transform (Corenflos et al., 2021) replaces resampling
with a linear transformation of particles (with the coefficients being non-
linear functions of the weights and particles). The linear transformation

may be problematic, for instance, when the particles concentrate on a low-

dimensional manifold and a linear transformation could send the particles
off the manifold. We refer the reader to Figure 1 for an illustration. Intu-
itively, this issue is less severe when the number of particles is large. Note
that since the optimal transport matrix is usually close to a diagonal matrix,
this issue may not be very pronounced in practice. Our proposed jittering
method statistically produces particles close to existing particles. Thus,
we believe it mitigates this particular issue to a certain extent, though not
entirely.

Another closely related work is VMPF-UG by Lai et al. (2022), in
which the resampling and proposal steps are merged into a single step, thus
eliminating the discrete resampling component in SMC and enabling the
reparametrization trick. The key difference between their method and ours
is that by keeping the resampling step, our approach preserves the trajectory
structure. The absence of a trajectory structure prohibits the use of some
models including the variational recurrent neural network (VRNN) (Lai
et al., 2022, Section 7). Another advantage of our method is its flexibility to
accommodate any proposal distribution, whereas VMPF-UG currently only
supports Gaussian or product distributions. In a more divergent approach,
Aitchison (2019) introduced tensor Monte Carlo as an alternative to SMC,

which no longer has a sequential structure and avoids resampling entirely.

Figure 1: Cartoon illustration of a potential issue of linear-transformation-
based resampling. Let X;., denote the original particles, which are resam-
pled to X’M (Xy = X'4). The solid curve represents a low-dimensional
manifold, around which the probability distribution is concentrated. While
the original particles are close to the manifold, after such linear resampling

X, and Xj drifted away and became bad particles.

3. Preliminaries

3.1 Notation

We use capital letters to denote random variables and lower case letters
for their realizations. Superscripts and subscripts are used to denote the
step/iteration and the sample index, respectively. Temporal notations are
omitted for clarity whenever there is no confusion. We use E and V to

represent expectation and variance, with subscripts, when used, to highlight

3.2 State space model

the underlying distribution. The gradient with respect to variable 6 is

denoted by V.

3.2 State space model

State space models, also known as hidden Markov models when the hidden
states take on finite discrete values, are characterized by a transition model
and an observation model. In its general form, the state space model can

be expressed as:

XM~ g1(+:0),
y® | (X(lit) _ x(lit),y(lrt—l)) ~ fil- | x(t);é’), (3.3)
X | (X(lztfl) — x(lttfl)’y(lztfl)) ~ g | 20, t=2-- T,
where the X®’s are unobserved hidden states while the Y ®’s are fully
observed, and f and g represent distributions as well as density functions.
A well-known problem for such models is the so-called filtering problem,
which is to estimate the hidden state X given all of the observations up

to time t for fixed 6. In other words, the filtering problem focuses on the

on-line posterior distribution of the hidden state at each time:

p(x(t) | y(lzt);9> — /p<x(1:t) ‘ y(lzt);e)dx(lztfl)’

3.3 Particle filters

where

t
p(a™ [y) o I [ga(2® | 2075 0) £y | 29);6)] .
s=1
Aside from inferring the hidden states, we are also interested in esti-
mating the model parameter 6 when it is unknown. There are two general

inference strategies. From the perspective of maximizing the likelihood

function, we aim to compute
arg m;iX /p(x(lzt)j y(13t); e)dx(lt)

From the perspective of Bayesian inference, we assign a prior density p(6)

and aim to infer the following joint posterior density of (8, 2():
(0,20 | 40 oc p(a, y 11 6)p(6).

The standard method of maximizing the likelihood function or comput-
ing the posterior mean is difficult because p(y™®;0) or p(6, x|y is
generally intractable unless the model is linear and Gaussian. Therefore, it

is necessary to use Monte Carlo approximations to carry out the inference.

3.3 Particle filters

For state space models, particle filters (PF) refer to a class of algorithms to

approximate the sequence of posterior distributions (of the hidden states,

say) with weighted particles. A generic particle filter algorithm is outlined
in Algorithm 1. In a sequential manner, particles and their weights are
updated according to proposal distributions.

Consider a scenario where 6 is the unknown parameter of interest. In
a Bayesian framework, we can utilize particle filters for posterior inference.
Although particle filters do not directly target the posterior distribution
of 6, they can estimate the values of p(y*® |) and approximate the
simulation from p(z(% | y1®;0). Thus, particle filters can be used for
making a Metropolis—Hastings type proposal and computing the acceptance
ratio. This class of algorithms is widely recognized as particle MCMC

methods (Andrieu et al., 2010).

4. Differentiability of Sequential Monte Carlo

4.1 Gradient-based parameter estimation

Although the particle MCMC approach and its variants have been shown
effective in estimating the parameters in state space models, it may take a
large number of iterations for the algorithm to converge. To avoid costly
computation, one intuitive way is to employ the gradient of the log-likelihood
with respect to the parameters to guide the search in the parameter space.

An accurate estimation of the gradient can guide us to search in the space

4.1 Gradient-based parameter estimation

Algorithm 1: Sequential importance sampling with resampling.

IHPUt: {gt7 fta y(t)}?:17 0
(1:7) W(T

2

Output: weighted particles (X)1<i<n, estimation of
log-likelihood £(6)
Initialization: /() « 0.

fort=1to T do
Draw X from g,(X® | X (L1, gy (1(XW;0) if t = 1) for

7 =1,2,...,n conditionally independently.

Calculate the importance weight (7o = 1):

)= O | X050)

Update the estimate of the log-likelihood:

0(6) + £(0) + log < ZW ”)

Normalize the importance weight.

if ¢t < T then

Sample agt), agt), o ,a,(f) from {1,2,...,n} with probabilities

WO o WD et X;H) = X((lt:f), and reweight the
%

samples Xl(lzt), XQ(M), o XY equally with 1/n.

Let Xj(-u) = X;lzt) forj=1,2,...,n

end

end

~

Return (XZ.(LT), W»(T))1gi§m ().

(]

4.1 Gradient-based parameter estimation

more efficiently. However, the gradient of the marginal log-likelihood ¢(6)
with respect to 6 is intractable analytically because the distribution itself

is generally not in closed form. Instead, letting
0(0) = log L(0) = log (SMC estimate of p(y** | 6)) , (4.4)

where L(6) is an unbiased estimator for the likelihood function L(8), we
aim to compute the gradient of E[((0)], where the expectation is taken
with respect to the randomness in the SMC procedure, including both the
particle generation and resampling. It is not difficult to derive the joint
distribution of the particles and the resampling indices, conditional on the
observations y¥) which is shown in equation (4.5) below:
n t n
ot o) = [Tt T |2t 125200
i=1

5=2 i=1 Zz w; :
(4.5)

(1:¢)

where a;.,” represents the resampling indices as in Algorithm 1 and w rep-

resents the importance weights, which depend on y. From the perspective

~

of variational inference, the objective function E[/(#)] can be regarded as a
surrogate evidence lower bound (see Theorem 1 in Naesseth et al. (2018)).
Note that parameter 6 not only appears in the term / (0), but also affects

(1:¢) (1

the underlying joint density p(z;., ,aﬁnt); 0). Therefore, it is imprecise to

simply exchange the differentiation and the expectation signs for the com-

4.2 Score estimate and the reparametrization trick

putation of the gradient. To propose an efficient and accurate estimation

of V4E[((0)] is the major focus of this article.

4.2 Score estimate and the reparametrization trick

Computing the gradient of the expectation term is a ubiquitous problem
in statistics and machine learning (Mohamed et al., 2020). Two most used
gradient estimators are the score function gradient (Williams, 1992) and the
reparametrization gradient (Kingma and Welling, 2014). Specifically for our
goal, the objective function is Ey(..p) [0(6, 2)], where z = (xg;),ag;f)), and
we have made clear the dependency of the log-likelihood estimate { on z.

Assuming that we can swap the derivative and integration signs, we have

z

VoEy(z:0) [E(Q,z)] =V [/p(z;&)g(ﬁ, z)dz}
= /ZVQ [p(z; 9)@(0,2)} dz (4.6)

A / p(z:0)Vol(0, 2)dz + / 000, 2)Vp(z; 0)dz.

z z

The first term in equation (4.6) can be rewritten as E,[V4((6, z)] and thus
can be easily estimated by a Monte Carlo method that draws samples z ~

p(z;0). We can rewrite the second term as

/@(9, 2)p(z;0)Vologp(z;0)dz = Ep[f(e, 2)Vylogp(z;0)],

z

4.2 Score estimate and the reparametrization trick

and then apply the same Monte Carlo method. This Monte Carlo estimate
is usually termed as the score estimate or reinforce estimate (Williams, 1992;
Poyiadjis et al., 2011). However, this estimate usually has a huge variance,
and it may even be better to simply estimate it as zero (Le et al., 2017;
Naesseth et al., 2018). The induced bias is provided explicitly in Corenflos
et al. (2021, Proposition 4.1).

The reparametrization trick is another way to solve the gradient esti-
mation problem. Using this trick, Kingma and Welling (2014) proposed
an unbiased, differentiable and scalable estimator for the variational bound
(see their Section 2.2) in auto-encoding variational Bayes. The “tricky”
part of the reparametrization trick is that we can make the randomness
an input to the model so as to backpropagate through a random node.
Consider the general question of estimating Vo (E,.) [f(2;6)]), of which
equation (4.6) is a special case. If we can reparametrize Z as Z = ¢(;),
such that ¢(¢;0) has density p(-;6), where ¢ is differentiable with respect

to 0, and € ~ p(e) independent of #, then

Epz0) [f(2:0)] = Eye) [f(0(€;0);0)], (4.7)

and consequently,

4.3 Resampling in SMC and non-differentiability

VoEpz0) [f(2;0)] = VaEy(o) [f(d(€;0); 0)]
(4.8)

= By Vo (6(e:0);)],

which can be approximated by a Monte Carlo method that draws e ~

p(e).

4.3 Resampling in SMC and non-differentiability

Although the reparametrization trick has been shown to be efficient in vari-
ous applications, it is not applicable to discrete distributions. For example,
if we employ step functions as our ¢, the gradient will be zero almost every-
where and undefined at some points. This means that we cannot directly
apply the reparametrization trick to equation (4.6), since the resampling

. . 1:t
indices agm)

are discrete.
To specifically understand the subtlety of the problem in the context

of SMC, let us consider the state-space model in more details. Following

notations from Section 3.2 and the chain-rule of probability, we have
T
Vi(0) = Viogp(y™;0) + > Viegp(y® |y =:0). (4.9)
t=2

Let us start from the first term. Suppose we draw :cﬁl from a distribution

1 _

i =

¢1(+;8), such that we can use the reparameterization trick to write x

4.3 Resampling in SMC and non-differentiability

o1 (e, 6), eV ~id AF(0,1). Then we have

py®, 20 0)] [P, (D, 0:0)])
L] - B P ~)

p(y;0) = By (.0 {

Since the distribution of () is free of §, we can directly differentiate under

the integral sign and obtain an expectation form of Vyp(y");) (and hence

(1)

also Vg log p(yV);0)), then use z}., as Monte Carlo samples for estimation.

(1)

1., and equivalently eV to

1:n>

Now, suppose we resample the particles z

(1)

1in

get a new set €., and, correspondingly a:ﬂ with igl) = ¢1(€§1),0), which
can be viewed as approximate samples from p(x(l) | y;0). Let us similarly
sample 7., @) from qo(+; 0), reparametrize x gbg(), 9), 652) ~1N(0,1),

and write

py® | yM;0) = / py®, 2@ [y, 2D 0)p(a® | yV; 0)da dz®
{ py?,a® |y, 21 0)
]

= Eo0)p(a®1y,0) 22 ~ga (0)

@2(x@; 0
~F py?,z® |y, W;0)
~ Lz~ (61),0),0(2) ~ga(50) q2(2®): 0)

= Exw (2

{p(y(”, 02(e®,0) [y, o1(eW, 0); 9)}
q2(d2(e?),0); 0) '

However, this is not a successful reparametrization attempt, as the é1)’s
are no longer i.i.d. Gaussian and their distribution implicitly depends on
0 due to resampling. Thus, we are not able to directly differentiate under
the integral sign. If we ignore this fact, pretending that the é’s are i.i.d.

Gaussian and differentiating under the integral sign anyway, we recover the

4.3 Resampling in SMC and non-differentiability

algorithm proposed by Naesseth et al. (2018).

Despite the non-differentiability, resampling is necessary in SMC be-
cause the repeated forward sampling procedure would eventually lead to
weight degeneracy, where the weights concentrate on only a few particles
(Liu and Chen, 1995). There are various means to resample from a set of
weighted particles. Aside from the bootstrap resampling or multinomial re-
sampling shown in Algorithm 1, residual resampling (Liu and Chen, 1998)
and stratified resampling (Kitagawa, 1996) are two more popular resam-
pling schemes because they tend to introduce less unnecessary randomness.
Reich (2013) proposed the optimal transport resampling, borrowing ideas
from transportation theory. More recently, Gerber et al. (2019) introduced
the Hilbert curve resampling in a multi-dimensional space, which is shown
to have optimal rate under some conditions (Li et al., 2022). Unfortunately,
all these resampling schemes are discrete, in that the resampled particles
can only take values in a finite set (conditional on particles from the previ-
ous step), and thus incompatible with the reparametrization trick.

To circumvent the non-differentiability, Corenflos et al. (2021) proposed
a framework where the traditional resampling step is replaced by a linear
transformation with parameters defined by the optimal transport resam-

pling (Reich, 2013). However, the linear transformation could give rise to

bad particles when the posterior distribution concentrates on a non-linear
manifold, or when a linear combination of two modes ends up in an area

with low density.

5. Reparametrized Resampling via Jittering

5.1 Algorithm description

The vanilla multinomial resampling strategy in SMC samples independently

from the following multinomial distribution:
X, | X, W ~ Multinomial(1, X, (Wy, Wa, ..., Wy)),

which is equivalent to sampling from the empirical distribution:

n

Xi| X, W~ > Wby, (x).

i=1
The discrete nature of multinomial distribution makes the reparametriza-
tion trick fail. To overcome this issue, we consider a kernel smoothed version

of the form

Xi | X W~y Wik, (v — X)), (5.10)
=1

where £,(-) is a non-negative differentiable kernel density, and r is a pre-
determined bandwidth parameter that balances smoothness and bias. Here,

we require that [, k. (x) dz = 1, where d is the dimension of z. In other

5.1 Algorithm description

words, k, is the derivative of a d-dimensional cumulative distribution func-
tion (CDF).

If we resample independently according to (5.10), everything is differ-
entiable and we can utilize the reparametrization trick. If k, = H?:1 Krj =
V. K, is the derivative of the CDF K, = H?Zl K, j, which corresponds
to independent random components. Then we can express each X; as
F~YU; W, X, K,.), where Uj is a uniform random vector on the d-dimensional
unit cube [0,1]¢, and F~1(-; W, X, K,) is the generalized inverse function of

FWXKr ()] which is defined recursively as follows:

F 8 () = N Wik (e — Xa),
- (5.11)

oy) = ST sl = Xy (0, = X,)
T Zz W; Hi;ll K:r,k:(xk; - X;)

Here, z; denotes the j-th entry of the d dimensional vector x.

W, XK.
Fy(

Let X; = F~YU; W, X, K,), it suffices to calculate the gradient of
F~Y(;W, X, K,). The details are deferred to Section S1 in the supplemen-
tal material. Our method, named reparametrized resampling via jittering
(RRJ), is detailed in Algorithm 2.

It has been pointed out to us by a reviewer that an arXiv preprint
Graves (2016) proposed a recursive method that can also be used as an
alternative way to calculate this gradient of F~!. The main ideas behind

their method and ours are very similar. In the remainder of this paper, we

5.2 Choice of the kernel distribution

present theoretical insights, practical considerations, and empirical studies.

Algorithm 2: Reparametrized Resampling via Jittering (RRJ)

Input: weighted particles (Xi(lzt), W-(t))lgign, kernel distribution

)

K, with a pre-chosen bandwidth r.

~ (1:t)

Output: resampled particles. (X; ")1<i<n-

Sample Xl(lzt), X’Q(lzt), o X from Xl(lzt), o, X with
probabilities Wl(t), e ,W,Et), and reweight the samples

Xl(lit)7)~(2(1:t)7 e ’X'él:t) equally with 1/n.

Let)E'i(l:t) = X’i(l:t) + ¢;, where € S K., i=1,...,n.

Return (Xi(lzt))gign-

5.2 Choice of the kernel distribution

Technically any kernel distribution with differentiable density is valid for
RRJ. We recommend the Gaussian kernel as a default choice for practical
use, given its simplicity in sampling and computation. Aside from the kernel
itself, the choice of the bandwidth r is more critical for the behavior of the
proposed algorithm, as it balances the SMC accuracy and differentiability.
For the sake of differentiability, we would like a large r; for high sampling
accuracy, however, we would like a small r so that the bias introduced by

RRJ is negligible.

5.2 Choice of the kernel distribution

Consider a generic step in Algorithm 2, where we analyze the resampling
error similar to that in Li et al. (2022). There, the resampling step is

unbiased in terms of

n

Z% O(X; yXW] ZW¢

E

i=1

for any ¢, so they only analyzed the resampling variance. Here, we are
interested in the mean squared error (MSE) instead because resampling
is now generally biased. When bias exists, under some loose conditions,
specified in Theorem 1, a properly chosen r does not affect the order of the

estimation error rate.

Theorem 1. Consider the state space model and the SMC' process in Al-
gorithm 2 in which parameter 0 is given, the length T of the state space
model is fizxed, and kernel K, satisfies k.(x) = k(x/r) for a fized density
k(-) with bandwidth r given. Let m,(x(**)) = p(x() | y(:)) and let d be the

dimension of the hidden state V. Assume
(i) fi(y® |-) and g(x® | -) are upper bounded by M and L-Lipschitz,
(i) fi(y® |) is lower bounded by e > 0,

(iii) r = O(1/v/dn).

Then for any bounded Lipschitz ¢, we have

n (t) (t)
E{Zg‘1 W; ¢((Xj)} B /Wt(x(l:t))(b(x(t))dx(l:t)

n t)
> W
n (t) (t)
Var { 21 W; ¢((f)(j) }
W,

—0(1/VR), (5.12)

O(1/n), (5.13)

and
E[106) - €0)F] = 0(1/n), (5.14)
where £(0) is the true log-likelihood.

We note that, while the rates in Theorem 1 do not explicitly depend on
the dimension d, the dimension plays a role through the Lipschitz constant
L. We therefore cannot claim that this result is dimension-independent.
The complete proof and some empirical results on the likelihood bias of

RRJ are provided in the Supplementary Materials Sections S2 and S3.

6. Experiments

6.1 Experiments overview

To verify the effectiveness of RRJ in different settings, we implement sim-
ulation studies under three models and analyze a real data case. As in
Corenflos et al. (2021), we use the log-likelihood estimate as the training

target. For simulations with well-specified models, we use the MSE of 0

6.1 Experiments overview

as a performance measure; for real data analysis, in the absence of the
ground truth, we run a vanilla SMC algorithm with a large n to evaluate
the likelihood at 6 obtained by different resampling methods.

Simulation studies consist of (1) the linear state space model, (2) the
stochastic volatility model, and (3) the non-linear transition model. For
each model, 50 independent replications are carried out. The proposed
RRJ is applied to each of the simulated data to learn the corresponding
parameters. We compare the results with the same model trained by the
ensemble transform proposed by Corenflos et al. (2021), along with the
method in Naesseth et al. (2018), where the resampling terms are simply
ignored. The last two methods are referred to as “ET” and “multinomial”,
respectively.

All of the aforementioned methods, including the RRJ, are carried out
in the procedure of gradient learning using ADAM (Kingma and Ba, 2014).
For simulation studies, we use a fixed learning rate of 0.01; for the real data
analysis, we follow the same setting as in Corenflos et al. (2021) and use
learning rate 0.01 x 0.915%P/200) = A]] the other ADAM parameters are set to

default values.

6.2 Linear state space models

6.2 Linear state space models

The multidimensional linear state space model is a widely used model for

time series data. Its general form can be expressed as:

x(® | x(Lit—1) NN(CDX(FI),EQC) ,

Y(t) | X(l:t)’Y(lzt—l) ~ N‘ (X(t), Ey)

Y

fort =2,--- T, with X ~ N(0,1/3I). In the simulations, we set ¥, =

>y = 0.251, and let

@ = [p1];; x #E_j]ij)a (6.15)

where Apax(-) denotes the maximum eigenvalue of a matrix and the true
value of p is set as 0.5.

From Figure 2, we can see that RRJ with different bandwidth param-
eters show better performances than ensemble transform and multinomial.
We also show pairwise comparisons with ensemble transform in Figure 3,
where both methods are applied to the same data. We can see that RRJ

often outperforms ensemble transform, especially in higher dimensions.

6.2 Linear state space models

0.02
0.06
°
2
g 0.1
=
ET
multinomial

dim...=...2 dim...=...3
e L e RCINED 002 —{ § }F—
— T e 006 — F }———
°
2
— § o1 —{ F F—
=
— e] |
’—‘ : '—< ¢ multinomial } E 1+
0.00 0.25 0.50 0.75 1.00 0.4 0.6 0.8 1.0 1.2
Squared...d#rence Squared...diérence
(a) d = 2. (b) d = 3.
dim...=..4
0.02 —{FE
0.06 — F
el
2
£ ot —{ F 1
=

ET }—Q : '—1 ¢
multinomial >—Dg7b .

0.5 1.0 1.5 2.0
Squared...dérence

(c) d=4.

Figure 2: Simulation results for the linear transition state space model in

different dimensions. Boxplots of squared differences over 50 independent

experiments, with mean values indicated by green squares. Here, T" = 40,

particle numbers are 50.

6.2 Linear state space models

dim =2 dim =3

0j2 0j4 0j6 Oj8 le 0'%.4 0:6 0j8 1?0 1:2 1.4
RR, 1 = 0.02 RRJ, r = 0.02
(a) d =2.

Figure 3: Pairwise comparison between the RRJ and the ensemble trans-
form in different dimensions. Each dot represents an independent experi-
ment, where the z-coordinate is the squared loss of RRJ with kernel band-
width » = 0.02, and the y-coordinate is the squared loss of ensemble trans-

form. Here, T' = 40, particle numbers are 50.

6.3 Stochastic volatility model

6.3 Stochastic volatility model

The multidimensional stochastic volatility model is commonly applied model

in financial economics. The model is

X(t) ’ X(l:tfl) ~N ((I)X(tfl)’ 2) ’

YO x 0y =D o A (0, 82 diag(exp(X @)

fort =2,---, T with X ~ N(0,1/3I), where ® and X are d x d parameter
matrices.

According to Chapter 14.2 in Chopin and Papaspiliopoulos (2020), the
likelihood function of the stochastic volatility model is highly pathological,
and it is often challenging to estimate all its parameters simultaneously. To
validate the effectiveness of the proposed method more conveniently, in this
study we fix ¥ = 0.25] and only estimate part of the parameters, i.e, ®
and [, with the true value of g set to 0.5 and the true of ® set the same as
in (6.15). From Figure 4, we can see that RRJ with different parameters
show better performances than ensemble transform, but not as good as

multinomial.

6.4 Nonlinear transition state space model

dim...=...2 dim...=...3
002 — | — . 002 ++—F o —
006 — B . 006 +F——] o }—— ++
° °
2 2
I o £ ot e—[F}—
= =
ET }—‘ : '—1 ‘e ET }—‘ : '—1
multinomial }—EE'—(multinomial }—[El—(
1 2 3 1 2 3 4
Squared...d#rence Squared...diérence
(a) d=2. (b) d = 3.

Figure 4: Simulation results for the stochastic volatility model in different
dimensions. Boxplots of squared differences over 50 independent experi-
ments, with mean values indicated by green squares. Here, T' = 40, particle

numbers are 50.

6.4 Nonlinear transition state space model

We consider the state space model with nonlinear transition density (Kita-

gawa, 1996) below

106, X ¢
X | xLt=1) -1 4t ()

YO | X0~ N (0.050; X0, 0,00
where V® and W® are independent random variables sampled from the
standard normal distribution A(0,1), and X ~ A(0,2). In this model,
01,05, 03, 0, and 05 are the parameters to be estimated, whose real values
are all set to 1. Compared to the linear transition model, the parameters

are more difficult to estimate for this non-linear transition model. Figure 5

6.4 Nonlinear transition state space model

and Table 1 shows that RRJ outperforms the other methods for 63 and 6,
while not as good for #; and 6. For 65, errors of RRJ methods have much

smaller median, while the means are comparable.

Mean loss 01 02 03 04 05

RRJo02 | 0.782(0.021) 0.067(0.004) 0.318(0.016) 0.248(0.012) 0.047(0.004)
RRJo.os | 0.791(0.021) 0.067(0.004) 0.320(0.017) 0.269(0.021) 0.266(0.027)
RRJo.1 0.816(0.027) 0.069(0.004) 0.331(0.018) 0.381(0.042) 0.623(0.063)

ET 0.808(0.021) 0.063(0.005) 0.398(0.018) 0.639(0.092) 0.766(0.063)

multinomial | 0.740(0.017) 0.054(0.004) 0.346(0.016) 0.621(0.088) 0.361(0.028)

(a) The mean squared error (MSE) and the standard deviation across multiple

independent experiments.

Median loss 01 02 03 04 05

RRJo.02 0.857 0.025 0.198 0.149 0.016
RRJo.06 0.875 0.024 0.195 0.137 0.030
RRJo.1 0.843 0.024 0.182 0.156 0.051

ET 0.956 0.021 0.222 0.190 0.424

multinomial | 0.926 0.020 0.221 0.185 0.163

(b) The median of the squared errors across multiple independent trials.

Table 1: The results of the non-linear experiments are presented in these

two tables.

6.4 Nonlinear transition state space model

T...=...20,...learning...rate...=...0.01
002 Ho{}F—

006 H J——H
Hea—
H =

0 2 4 6
Squared...dérence

0.1

Method

ET

multinomial

(a) 91.

T...=...20,...learning...rate...=...0.01
0.02

E ‘

0.06

0.1

Method

ET

multinomial

0 1 2 3 4
Squared...dérence

0.02 —T{ [
0.06 e L
ke
2
= 0.1 A (4
=
ET B { [
multinomial = | EM
10° 10° 10t 107 10°
Squared...d#rence
(b) 62 (log-scale).
T...=...20,...learning...rate...=...0.01
002 ———— 7 [u}—
006 ———— 7 o+
he)
2
£ 01— {3~
=
ET ———————{ [—tom
multinomial [I | e L
10° 10° 10" 10"

Squared...dérence

(c) 5. (d) 04 (log-scale).
T...=...20,...learning...rate...=...0.01
002 o [#—1
0.06 —{ [
©
2
3 0.1 A [
=
ET o [
multinomial —{ [
107 10° 10° 10" 10"

Squared...dérence

(e) 05 (log-scale).

Figure 5: Simulation results for the nonlinear transition state space model.
Boxplots of squared differences over 600 independent experiments, with

mean values indicated by green squares. Here, T = 20.

6.5 VRNN on polyphonic music data

6.5 VRNN on polyphonic music data

The variational recurrent neural network (VRNN) proposed by Chung et al.
(2015) combines the concepts of RNN and variational autoencoder, which
can ensure the flexibility of the dynamic model to a large extent. Fol-
lowing the notation in Corenflos et al. (2021), the model is represented in

equation (6.17).

(R(t-l-l)’ O(t-l—l)) _ R,NNQ(R(t)7 }/(lzt)7 TQ(Z(t)),
Z(t—H) ~ N(MQ(O(t—H)),09(0(t+1))),
(6.17)
ﬁ(tJrl) _ hg(Tg(Z(tJrl)), O(tJrl))’
y® | RW Z® ~ Ber(ﬁ(t)),

where R®) and O® represent the RNN state and output in a regular LSTM
model, respectively. Z®) is a Gaussian random variable and 7y, hg, g, 09
are fully connected neural networks. Y®) denotes the binary observations.
We initialize (R™,0M) to be zeros and ZM) to be a sample from the
standard multivariate Gaussian distribution. We use 36 particles to run the
experiments and then run a separate SMC with multinomial resampling and
500 particles for performance validation. The learning rate is set to 0.01 x
0.91step/1000) for 5 total of 10,000 steps. Further details of the experiments

can be found in Supplementary Materials Section S4.

6.5 VRNN on polyphonic music data

We present our experimental findings based on three polyphonic music
datasets outlined in Corenflos et al. (2021), which adhere to the method-
ology of Boulanger-Lewandowski et al. (2012). Within each dataset, the
binary vector Y encompasses 88 dimensions, corresponding to the piano
note range spanning from A0 to C8. Table 2 showcases the sample mean and
standard deviation of the last-2000-step-average loss derived from indepen-
dent experiments, while Figure 6 illustrates the loss history of a representa-
tive run. Notably, our results demonstrate that RRJ performs on par with
or surpasses ensemble transform concerning the achieved log-likelihood. It
is worth noting that ensemble transform tends to exhibit greater stability

across distinct experimental runs.

RRJ ET

JSB 99.76 (16.09) 156.19 (16.38)

Nottingham | 99.45 (20.88) 147.78 (13.52)

Muse 135.60 (33.59) 189.35 (15.47)

Table 2: Sample mean and standard deviation of the last-2000-step-average

minus log-likelihood, calculated over 50 independent runs.

Nottingham

1000 A
ET
500 A " RR
otdochascad Adnndall UMY N T T
3 JSB
° 1000 -
<
o
£ 5001 \&_
S T T T I.IIIAII.LI.L-...I.I .II
Muse
1000 A
500 A \,, | ‘
0 2000 4000 6000 8000 10000
Iteration

Figure 6: The likelihood evaluation for VRNN model in a single run. The

first 100 burn-in steps are omitted.

7. Discussion

This artical introduces and investigates a method called the reparametrized
resampling via jittering in particle filters for efficiently estimating the gra-
dient of the likelihood function of state space models. Some theoretical
insights and numerical experiments are provided to demonstrate the ef-
fectiveness of the proposed method. We conclude the article with some

additional thoughts and open problems.

In a conventional application of particle filters, stratified resampling
is often preferred as it introduces less randomness compared to multino-
mial resampling. However, it is not straightforward to backpropagate when
stratified resampling is employed. Our method can be easily generalized
to stratified resampling. Instead of using n i.i.d. samples U; ~ [0, 1]¢ (see
Section 5), we can stratify the space and use a low discrepancy set such as
in Gerber and Chopin (2015) and Li et al. (2022). It is expected to improve
the gradient estimation.

The stratified multiple-descendant growth (SMG) algorithm proposed
in Li et al. (2022) has been proved to converge faster than the traditional
SMC in terms of the estimation MSE. The main idea of SMG is to shrink
the number of particles at the resampling step and grow it back at the
transition step in a stratified manner. This design is particularly conducive
to convergence rate analysis. It may be possible to borrow ideas from the
analysis of SMG so as to obtain a more refined convergence rate for RRJ.

In addition to the smooth jittering, there are also other ways to “smooth”
discrete random variables, enabling the application of the reparametrization
trick. For example, Maddison et al. (2016) apply the Gumbel-max trick,
relaxing the multinomial sampling to a continuous distribution supported

on a simplex. It would be useful to compare different relaxation approaches

REFERENCES

in the context of designing differential particle filters.

Acknowledgements

The research is partly supported by the National Science Foundation of
USA (2015411, JSL PI), National Natural Science Foundation of China
(Grant 11931001, KD Co-PI), and the Guo Qiang Institute of Tsinghua

University.

References

Aitchison, L. (2019). Tensor monte carlo: particle methods for the gpu era.

Advances in Neural Information Processing Systems, 32.

Ali, A., Dobriban, E., and Tibshirani, R. (2020). The implicit regularization
of stochastic gradient flow for least squares. In International Conference

on Machine Learning, pages 233-244. PMLR.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 72(3):269-342.

Andrieu, C., Doucet, A., and Tadic, V. B. (2005). On-line parameter esti-

REFERENCES

mation in general state-space models. In Proceedings of the 44th IEEE

Conference on Decision and Control, pages 332-337. IEEE.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Mod-
eling temporal dependencies in high-dimensional sequences: Applica-

tion to polyphonic music generation and transcription. arXiv preprint

arXiw:1206.6392.

Chopin, N. and Papaspiliopoulos, O. (2020). An introduction to sequential

Monte Carlo. Springer.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y.
(2015). A recurrent latent variable model for sequential data. Advances

in Neural Information Processing Yystems, 28.

Corenflos, A., Thornton, J., Deligiannidis, G., and Doucet, A. (2021). Dif-
ferentiable particle filtering via entropy-regularized optimal transport. In

International Conference on Machine Learning, pages 2100-2111. PMLR.

Doucet, A., De Freitas, N., and Gordon, N. (2001). An introduction to
sequential Monte Carlo methods. In Sequential Monte Carlo Methods in

Practice, pages 3-14. Springer.

Fearnhead, P. and Clifford, P. (2003). On-line inference for hidden Markov

REFERENCES

models via particle filters. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 65(4):887-899.

Gerber, M. and Chopin, N. (2015). Sequential quasi Monte Carlo. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),

77(3):509-579.

Gerber, M., Chopin, N., Whiteley, N., et al. (2019). Negative association,
ordering and convergence of resampling methods. The Annals of Statis-

tics, 47(4):2236-2260.

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to
nonlinear /non-Gaussian Bayesian state estimation. In IEE proceedings F'

(radar and signal processing), volume 140, pages 107-113. IET.

Graves, A. (2016). Stochastic backpropagation through mixture density

distributions. arXww preprint arXiw:1607.05690.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-

mization. arXiv preprint arXiw:1412.6980.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian

REFERENCES

nonlinear state space models. Journal of Computational and Graphical

Statistics, 5(1):1-25.

Lai, J., Domke, J., and Sheldon, D. (2022). Variational marginal particle fil-
ters. In International Conference on Artificial Intelligence and Statistics,

pages 875-895. PMLR.

Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F. (2017). Auto-

encoding sequential monte carlo. arXiv preprint arXiv:1705.10306.

Lee, A. (2008). Towards smooth particle filters for likelihood estimation with

multivariate latent variables. PhD thesis, University of British Columbia.

Li, Y., Wang, W., Deng, K., and Liu, J. S. (2022). Stratification and optimal

resampling for sequential Monte Carlo. Biometrika, 109(1):181-194.

Liu, J. S. and Chen, R. (1995). Blind deconvolution via sequential imputa-

tions. Journal of the American Statistical Association, 90(430):567-576.

Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for
dynamic systems. Journal of the American Statistical Association,

93(443):1032-1044.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete dis-

REFERENCES

tribution: A continuous relaxation of discrete random variables. arXiv

preprint arXiw:1611.00712.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte Carlo
gradient estimation in machine learning. J. Mach. Learn. Res., 21(132):1-

62.

Naesseth, C., Linderman, S., Ranganath, R., and Blei, D. (2018). Varia-
tional sequential Monte Carlo. In International Conference on Artificial

Intelligence and Statistics, pages 968-977. PMLR.

Pitt, M. K. (2002). Smooth particle filters for likelihood evaluation and

maximisation. Technical report.
Poyiadjis, G., Doucet, A., and Singh, S. S. (2011). Biometrika, 98(1):65-80.

Reich, S. (2013). A nonparametric ensemble transform method for Bayesian

inference. SIAM Journal on Scientific Computing, 35(4):A2013-A2024.

Scibior, A. and Wood, F. (2021). Differentiable particle filtering without

modifying the forward pass. arXiv preprint arXiw:2106.10514.

Shephard, N. and Flury, T. (2009). Learning and filtering via simulation:

smoothly jittered particle filters.

REFERENCES

Williams, R. J. (1992). Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, 8(3):229-256.

Zhu, M., Murphy, K., and Jonschkowski, R. (2020). Towards differentiable

resampling. arXiv preprint arXiv:2004.11938.

Tsinghua University & Harvard University
E-mail: yichaoliQfas.harvard.edu

E-mail: wenshuowangl1997@gmail.com
Tsinghua University

E-mail: kdeng@tsinghua.edu.cn

Harvard University

E-mail: jliu@stat.harvard.edu

	Introduction
	Related work
	Preliminaries
	Notation
	State space model
	Particle filters

	Differentiability of Sequential Monte Carlo
	Gradient-based parameter estimation
	Score estimate and the reparametrization trick
	Resampling in SMC and non-differentiability

	Reparametrized Resampling via Jittering
	Algorithm description
	Choice of the kernel distribution

	Experiments
	Experiments overview
	Linear state space models
	Stochastic volatility model
	Nonlinear transition state space model
	VRNN on polyphonic music data

	Discussion

