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Abstract:

A central topic in functional data analysis is how to design an optimal decision rule, based
on training samples, to classify a data function. We exploit the optimal classification prob-
lem in which the data functions are Gaussian processes. We derive sharp convergence
rates for the minimax excess misclassification risk both when the data functions are fully
observed and when they are discretely observed. We explore two easily implementable
classifiers, based on a discriminant analysis and on a deep neural network, respectively,
which both achieve optimality in Gaussian settings. Our deep neural network classifier
is new in the literature, and demonstrates outstanding performance, even when the data
functions are nonGaussian. For discretely observed data, we discover a novel critical sam-
pling frequency that governs the sharp convergence rates. The proposed classifiers perform
favorably in finite-sample applications, shown in comparisons with other functional clas-

sifiers in simulations and one real-data application.

Key words and phrases: functional classification, functional quadratic discriminant anal-
ysis, functional deep neural network, Gaussian process, minimax excess misclassification
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1. Introduction

In many applications, data are collected in the form of functions, such as curves
or images. Such data are referred to as functional data. A fundamental problem
in functional data analysis is to classify a data function based on training sam-
ples. For instance, in the speech recognition data extracted from the TIMIT
database (Ferraty and Vieu, 2003), the training samples are digitized speech
curves of American English speakers from different phoneme groups, and the
task is to predict the phoneme of a new speech curve. Classic multivariate anal-
ysis techniques, such as logistic regression or discriminant analysis, are not di-
rectly applicable, because functional data are intrinsically infinite-dimensional
(Wang et al., 2016). A common strategy is to adapt a multivariate analysis to
functional settings, such as functional logistic regression (Araki et al., 2009) and
functional discriminant analysis (Shin, 2008; Delaigle et al., 2012; Delaigle and
Hall, 2012, 2013; Galeano et al., 2015; Dai et al., 2017; Berrendero et al., 2018;
Park et al., 2020), among others. However, despite their impressive performance,
we may wish to know whether and which of these approaches is statistically op-
timal, and, how to construct an optimal functional classifier that performs even
better.

Optimal classification has been investigated in multivariate settings (Mam-

men and Tsybakov, 1999; Tsybakov, 2004; Lecué, 2008; Farnia and Tse, 2016;



Cai and Zhang, 2019b,a; Mazuelas et al., 2020). Here, the term “optimality”
refers to minimizing the excess misclassification risk relative to the oracle Bayes
rule, which provides a theoretical understanding of the nature of the problem and
a benchmark against which to measure the performance of a classifier. Optimal
classification in a functional setting is more challenging, because the data are
infinite-dimensional. Existing works, such as that of Delaigle and Hall (2012),
focus on the special case that the Bayes risk vanishes, referred to perfect classifi-
cation. As revealed in Berrendero et al. (2018), the Bayes risk vanishes when the
probability measures of the populations are mutually singular. If the two pop-
ulations have equivalent probability measures, that is, the singularity fails, then
the density functions of the two populations are finite, and the Bayes risk does
not vanish. The latter scenario is more challenging, because the two populations
are much “closer” to each other, in the sense that the differences between the
population means and the covariances are sufficiently smooth. There is a lack of
literature on how to design an optimal functional classifier in this situation.

In this study, we investigate the optimal classification problem under the
Gaussian setting, that is, the observed data are Gaussian processes. In the non-
vanishing Bayes risk setting, we derive sharp rates for the minimax Excess mis-
classification risk (MEMR), which provides a theoretical understanding of how

to approximate the Bayes risk based on training samples. Our results cover both



fully observed data and discretely observed data. We also show that a functional
quadratic discriminant analysis (FQDA) and a functional deep neural network
(FDNN) both achieve sharp rates of MEMR, and hence are minimax optimal.
Although functional discriminant analysis is a popular technique for clas-
sifying Gaussian data (Galeano et al. (2015); Dai et al. (2017)), its optimality
remains an open problem. Hence, we provides the first rigorous analysis to fill
this gap. Specifically, we derive an upper bound for the excess misclassification
risk of an FQDA in a Gaussian setting that matches the sharp rate of MEMR. In
conventional settings, such as low- or high-dimensional data classification, the
optimality of the discriminant analysis has been established by Anderson (2003)
and Cai and Zhang (2019b,a). Our work can be viewed as a nontrivial extension
of their results to functional data. In practice, an FQDA is known to perform
poorly when the data are nonGaussian, so it is desirable to design a classifier
that is robust to a violation of the Gaussian assumption. We propose a novel
FDNN classifier based on a deep neural network (DNN) to address this issue.
FDNNs have been proven to achieve the same optimality as that of an FQDA in
the Gaussian setting, and exhibit better classification accuracy when the data are
nonGaussian. DNNs have been applied in various nonparametric problems; see
Schmidt-Hieber (2020), Bauer and Kohler (2019), Kim et al. (2021), Liu et al.

(2022),Liu et al. (2021), and Hu et al. (2020). The present work provides the first



application of a DNN to functional data classification with provable guarantees.

In the setting of discretely observed data, the rate of convergence for MEMR
demonstrates an interesting phase transition phenomenon; jointly characterized
by the number of data curves and the sampling frequency. The discretely ob-
served data scenario is practically meaningful, because in real-world problems,
functional data can only be observed at discrete sampling points. Our analysis
reveals that when the sampling frequency is relatively small, the number of data
curves has little effect on the rate of MEMR. When the sampling frequency is
relatively large, the rate of MEMR depends more on the number of data curves.
In other words, there exists a critical sampling frequency that governs the per-
formance of the minimax optimal classifier. Cai and Yuan (2011) show the ex-
istence of a critical sampling frequency that governs the optimal estimation in a
functional regression. The present work has made a relevant and new discovery
in functional classification.

The rest of the paper is organized as follows. Section 2 provides background
on the functional Bayes classifier and optimal functional classification. Section
3 establishes sharp rates for MEMR for both fully observed data and discretely
observed data. Sections 4 and 5 propose FQDA and FDNN classifiers, respec-
tively, both of which are proven optimal. Section 6 compares FQDA and FDNN

with existing functional classification methods using simulations. Section 7 ap-



plies our method to analyze a speech recognition data set. Section 8 concludes
the paper. Major technical details for the proofs of the main results are deferred
to the Supplementary file.

Notation and Terminology. We introduce some basic notation and defini-
tions that we use throughout the rest of the paper. Vectors and matrices are
denoted by boldface letters. For a matrix A € R, |A| is the determinant of
A, and I, is the p x p identity matrix. For two sequences of positive numbers a,,
and b, a,, < b, means that for some constant ¢ > 0, a,, < cb,, for all n, a,, < b,
means a, < b, and b, < a,, and a,, < b, means lim,, ,, a, /b, = 0. We also
use ¢, co, 1, ...,C, Cy, (', ... to denote absolute constants, the values of which

may change, depending on the context.

2. Preliminaries

In this section, we provide some background onthe functional Bayes classifier
and an optimal classification in a Gaussian setting.

Let Z(t),t € T := [0,1] be a random process. We say that Z belongs
to class k if Z ~ GP(ng, ), for k = 1,2, where GP(nx, €2 is a Gaussian
process with unknown mean function 7, and unknown covariance function €2;.

For k = 1,2, let m, € (0, 1) be the unknown probability of Z belonging to class



k, satistying m; + m = 1. Suppose that 2}, satisfies the eigen-decomposition

Qu(s,t) = > As(s)y(t), s,t € T, 2.1)
j=1

where 1;,7 > 1 is an orthonormal basis of L?(7) w.r.t. the usual L? inner
product (-, -), and )\Ek) are positive eigenvalues. Note that (2.1) requires that
the covariance functions possess the same eigenfunctions, which is a common
assumption for technical convenience; see Delaigle and Hall (2012) and Dai
etal. (2017). Write ;. (t) = >_°° put0s(t) € L*(T) and Z(t) = 322, zjab;(t),
where p,; represent the projection scores of 7, and z; represent the projection
scores of Z. When Z belongs to class k, z; are pairwise uncorrelated with the
mean /i;,; and variance /\;k).

Define 6 = (7r1,7r2,u1,u2,)\(1),)\(2)), in which p, = (ug1, piro, - . .) and
AR = ()\gk), )\gk), ...) are infinite sequences of mean and variance projection
scores, respectively. Given 6, it follows from Berrendero et al. (2018) and Tor-
recilla et al. (2020) that the functional Bayes rule for classifying a new data

function Z € L*(T) has the expression

1, Q(Z,0) =0,
Gy(Z) = (22)

2, Q*(Z,0)<0,

where

Q T
Q(Z,0) = —(Z—m, Z—m)a,+H{Z—n2, Z—12)q,—log <—}Q2:>+210g (_1) :
1



(2)

_ oo (mimmg)? Qo] oo A
where (Z — g, Z —k)a, = D52, S o = [, <77~ Berrendero et al.
J J

(2018) and Torrecilla et al. (2020) show that Q*(Z, ) is well defined and almost
surely finite when the probability measures of the two classes are equivalent.

In practice, GG is unobservable, because 6 is unknown. Suppose we ob-
serve a training sample {Xi(k)(t) c 1 < < ng,k = 1,2,t € T}, where ng
is the sample size for class k, XZ-(k) ~ GP(nk, Q), all XZ-(k) are independent,
and are independent of Z to be classified. For a generic classifier G constructed
using the training samples, its performance is measured by the misclassification
risk Ro(G) = Ep[I{G(Z) # Y (Z)}] under the true parameter 6, where Y (Z)
denotes the unknown label of Z.

Following Delaigle and Hall (2012) and Dai et al. (2017), if

o0 o0 9
both 1 — M2 2/A® and AW/ 1) are conver ent, (2.3)
j j j i 17 g
=1 j=1

then Ry(Gj) > 0. Classification under (2.3) is challenging, because the two
Gaussian measures are asymptotically equivalent; see Berrendero et al. (2018)
for a special case when /\5-1) = A§2). Because G achieves the smallest risk, it
is impossible to design a classifier with zero risk. Instead, we aim to construct
a classifier G, based on training samples, that performs similarly to G}, which

motivates the study of MEMR,

inf sup E[Re(a) — Ro(Gy)],

G 6€©



where the infimum is taken over all functional classifiers constructed using the

training samples, and © is a parameter space, described in the following section.

3. Sharp rates for MEMR

We derive sharp rates for MEMR for fully observed data and for discretely ob-
served data. To the best of our knowledge, these are the first results exploring

MEMR in a functional setting.

3.1 Parameter space

Our MEMR results rely on an explicit parameter space for 8. We first introduce

the concepts of hyperrectangles and Sobolev balls.

Definition 1. A hyperrectangle of order w > 0 and length A > 0 is defined as

H“(A) = {a = (a1, as, ...) : sup|a;[j'1 < A} . (3.1)

j=1
An implication of @ € H*(A) is that |a;| < Ak~(F), for any k& > 1, in

which w governs the decay rate of the coordinates.

Definition 2. An ¢;-Sobolev ball of order w > 0 and radius A > 0 is defined as

SU(A) = {a = (a1, a9,...): Z lajlj* < A} : (3.2)

Jj=1

An implication of @ € S¥(A) is that > ; |ax| < AL™, forany L > 1, in

which w governs the decay rate of the tail sum.



3.1 Parameter space

Hyperrectangles and Sobolev balls depict different perspectives of a real
sequence: the former controls a sequence in an element-wise manner, and the
latter controls its tail sum. Although overlapping, hyperrectangles and Sobolev
balls do not include each other.

In the rest of this article, consider the following two parameter spaces for 6.

For vy, 15 > 0,

On(n.vm) = {0: {4 v} € H”, {A§1> v A§2>}j>1 € H",
R )2 (2) 1] (1) (2) _1)\2 12
Lomg =P NP} emm {0 —12) e,
Co<m,m<1-Cy}, (3.3)
and
Os(vi, ) = {0:{p2vpZ} est PVl e g
S 1,2 . . /’Llj /’LZJ .721 9 7 7 ]21 )
. )2 (2) v (1) (2) _1)\2 12
{ = 12y /2 }j>1 e 52, {( AP 1) }j>1 € 5",
Co<m,m<1-Cy}, (3.4)

where Cy € (0,1/2) is a constant, H* = H“(A), and S = S“(A). For no-
tational simplicity, A is omitted. Specifically, @ € ©y (14, 12) implies that ,uij
and /\;k) belong to H"*, andthat (y;; — ugj)Q/)\§-2) and (/\gl)//\gg) —1)? belong to
H"2. vy governs the smoothness of the mean functions and the covariance func-

tions, and v governs the smoothness of the separation of the two populations.

Moreover, the series > 7~ (y11; — 112;)°/ )\5-2) and Z;’;I(Agl) / )\gz) — 1)? are both



3.2 Sharp rate of MEMR under fully observed data

convergent, which implies that the Bayes risk is nonvanishing; see (2.3). One
can interpret @ € ©g(v1, 1/2) similarly. In the subsequent subsections, we derive
the rate of MEMR under parameter spaces (3.3) and (3.4) for fully observed data

and for discretely observed data.

3.2 Sharp rate of MEMR under fully observed data

Suppose that the data functions Xi(k)(t), fori = 1,...,n4 k = 1,2, are fully

observed, for arbitrary ¢ € 7. Throughout, let n = ny A ns.

Theorem 1. For both © = Oy (v1,1,) and © = Og(11, 1), the following holds:

n

v
log n) vy
Y
G 0co

infsup £ [Rg(@) — RQ(GZ)} = (
where the infimum is taken over all functional classifiers.

Theorem 1 provides a sharp rate for MEMR under parameter spaces (3.3)
and (3.4). Interestingly, the rate relies on 15 rather than v, implying that the
smoothness of the population mean and covariance differences plays a more
crucial role than the smoothness of the mean and covariance functions in terms
of the performance of the optimal functional classifier. Specifically, the sharp
rate for MEMR becomes faster when 15 increases, which may be because of
the fully observed data. In fact, as discussed in Section 3.3, when the data are

observed discretely , this phenomenon may not hold. Moreover, the optimal rate



3.3 Sharp rate of MEMR under discretely observed data

appears to depend only on the smoothness, rather than the size, of the difference
between the two populations. This means that the optimal rate does not change
if the size of the population difference changes and its smoothness remains the

same.

3.3 Sharp rate of MEMR under discretely observed data

Suppose we observe Xi(k)(tl), . ,XZ-(M(tM),for i =1,...,n5 k = 1,2, on
evenly spaced tq,...,t) € T that is, the data functions are observed over M
evenly spaced sampling points. For technical convenience, we make an addi-
tional assumption that ¢; in (2.1) are Fourier bases of L*(T), that is, ¢ (¢) =

1,99;(t) = V2 cos (2j7t), and a4 1 (t) = V/2sin (2jnt), for j > 1,t € T.

Theorem 2. Let vy, vy > 0 with vy < 1+ vy. For both © = ©g (v, 1) and

O = Og(vy, 1), the following holds:

v2

inf sup £ Rg(@)—Rg(G;)] = <10g"+ ! >

G 0co n Mm

where the infimum is taken over all functional classifiers.

Theorem 2 reveals that M* = (n/log n)l/ ! is a critical sampling frequency
for the rate of MEMR over the parameter space Oy (v, 12) and Og(vq, 12).
When M > M*, the MEMR is of rate (log n/n)"?/"*"2) which is free of M and

1s consistent with the rate derived in Theorem 1. In other words, when M > M*,



the optimal classifier performs as well as the one based on fully observed data.
When M < M*, the MEMR is of rate M ~"1*2/(14%2) "which relies solelyon M.
Another interesting finding is that, when M < M*, the rate of MEMR relies on
both v, and 15, that is, the smoothness of the mean and covariance functions, as
well as the separation between the populations. This differs from estimation or
testing problems in which the minimax optimal rate relies only on the smooth-
ness of the mean function (see Cai and Yuan (2011, 2012); Hilgert et al. (2013);

Shang and Cheng (2015)).

4. Functional quadratic discriminant analysis

In this section, we establish an optimal functional classifier based on FQDA that
requires accurately estimating the functional Bayes classifier by estimating the
principle mean projection scores and principle eigenvalues. FQDA is a popu-
lar technique in the functional classification literature Galeano et al. (2015); Dai
et al. (2017). The basic idea is to first project the data functions onto an or-
thonormal basis and extract the principle projection scores, and then to perform
a conventional QDA over the extracted scores. FQDA performs well when the
data are Gaussian processes, but there is a lack of rigorous proof on the optimal-
ity of FQDA. Here, we construct a FQDA classifier and prove its optimality in

both fully observed data and discretely observed data.



4.1 FQDA for fully observed data

4.1 FQDA for fully observed data

Consider the ideal case that the data functions are fully observed, as in Section
3.2. Write XM (t) = > Si(f)wj(t), fori =1,...,n k = 1,2, where Si(f) are
the observed projection scores. For J > 1, let

~ A~ A~

fe=EY, €T, D=1 -50Y B=5" A1), @D

where £ (f) = ng 'Y ffjk ) is the estimation of the mean projection score,
ng) = ng' Z?:’“l(gz(f ) £ (f))z is the estimation of the eigenvalue, and &, =

diag <X§k), - ,/):Sk)> is the estimation of the covariance operator. The FQDA

classifier is designed as follows:
GHPA(7) = _ (4.2)

where
Q=) i= (z—f) D(z i) 2B (z— i) ~log (|DS; + 1) +21og (71/72)

z=(z1,...,2 J)T includes the first J projection scores of Z (see Section 2),
i = (i1 + fiz)/2, and 7, = ny/(ny + ny) is the sample proportion of class k.

Heuristically, when J is suitably large, (4.2) performs similarly to the functional

Bayes classifier (2.2).



4.2 FQDA for discretely observed data

Theorem 3. For both © = Oy (v, 15) and © = Og(1vy, 112), the proposed FOQDA

classifier (4.2) satisfies

v2

~ logn '\ 2
sup E | Rg(GHP4) — Re(GZ)} S ( & ) ,
0co n

where J* < (n/logn)'/(0+v2),

Theorem 3 provides an upper bound for the excess misclassification risk of
(4.2) with J = J*. Because the upper bound matches Theorem 1, we claim that
FQDA attains minimax optimality if the leading J* basis functions are used to

construct the classifier.

4.2 FQDA for discretely observed data

Consider the more realistic case in which the data functions are observed dis-

cretely, as in Section 3.3. For 1 < J < M, define

Ui(ty)  a(t) -0 Ys(t)
Pi(ta)  alta) -+ Ys(ta)

Ur(ta) altar) - wa(tar)
Heuristically, when J is suitably large, the data vector ng) = (X Z-(k) (t1),-.., XZ-(k) (tar)) "
has an approximate expression n; ' >k ng) ~ Buy, fort =1,...,ng, where

tr = (U1, - .-, pxy) " is the vector of .J principle mean projection scores. When



4.2 FQDA for discretely observed data

1; are a Fourier basis, it holds that BB = M1, which leads to

1S L
~ =S e®, (4.3)
Kk nk;C

where ¢ = M BTX¥ For k = 1,2, let

~

~ 1 & ~ a1 S S—1/~ —~
i =—> ¢V D, =33 -5, B =33 (i — ), (44
L

—~ ~ —~ ~ 2
where 3y = diag (A, A% ) witn A5 = it 520, (¢ = )¢ =

) °J
n,;l >k Ci(f), and Cgc) are components of ka). We then propose the following

classification rule, called sampling FQDA (sFQDA):
GsFQPA(7) = ) (4.5)

where

~

Qu(2) i= (2=fi) "D,z =) —2B] (z—hi,)—log (|D. B + L] ) +2log (71/72)

with ﬁ's = (ﬁ'sl + ﬁ’s2)/2

Theorem 4. Let vy, vy > 0 with vy < 1 + vs. For both © = Og(vy,1,) and

O = Og(vy, 1), the sSFQDA in (4.5) satisfies

Y

logn 1 ) T

sup E [Ro(@f]fQDA) - Rg(c;gﬂ < ( 22—

0cO
where J* =< M"/UII(M < M*) + (n/logn)/Y™) (M > M*), M* =

(n/logn)""* and 1(-) is the indicator function.



Theorem 4 provides an upper bound for the excess misclassification risk of
(4.5) with J = J*, which matches Theorem 2. Therefore, we claim that SFQDA
attains minimax optimality if the leading J* basis functions are used to construct
the classifier.

Although FQDA is optimal in a Gaussian setting, in general, it performs
poorly when the data are nonGaussian. Hence, it is desirable to design a more
accurate classifier for nonGaussian data that preserves the same optimality in the
Gaussian case. In the next section, we propose a novel approach to do so, based

on a DNN.

S. FDNN

DNNs are used in nonparametric regression and classification problems; see
Schmidt-Hieber (2020), Bauer and Kohler (2019), Kim et al. (2021), Liu et al.
(2022), Liu et al. (2021), Wang et al. (2021), andHu et al. (2020). To the best of
our knowledge, this is the first application of a DNN to functional data classifi-
cation. The basic idea is to train a DNN classifier using the observed principle
projection scores. Intuitively, when the network architectures are well selected,
the DNN should have high expressive power, so that the functional Bayes classi-
fier can be well approximated, even when its explicit form is not known. Hence,

FDNN is expected to be more resistant than FQDA for nonGaussian data. We



5.1 Sparse DNN

first define a sparse DNN, and then construct FDNN classifiers for fully observed

data and for discretely observed data, and prove their optimality.

5.1 Sparse DNN

A DNN tends to overfit the training data, owing to too much capacity of the
network class. A common practice is to sparsify the network parameters, using
methods such as dropout (Ian et al., 2016). Our approach is to train a func-
tional classifier using a sparse DNN that addresses the overfitting issue problem
effectively.

Let o denote the rectifier linear unit (ReLLU) activation function, that is,
o(x) = (z); for z € R. For any real vectors V = (vy,...,v,) and y =
(y1,...,yr) ", define the shift activation function oy (y) = (o (y1—v1), ..., 0(yr—
v))". For L,J > 1and p = (po,p1,---,0r,pr+1) € NEF2 let F(L, J, p) de-
note the class of DNNs over .J inputs, with L hidden layers and p; nodes in the
hidden layer [, for{ = 1,..., L. Let py = J and p;, 1 = 1. Any f € F(L, J,p)

has an expression
f(x) =Wroy,Wi_iov, ... Wioy, Wox, x € R’ (5.1)

where W; € RP+1*P1 for [ = 0, ..., L, are weight matrices, and V; € R?, for



5.2 FDNN classifier for fully observed data

Il =1,..., L, are shift vectors. The sparse DNN class is defined as

F(L,J,p,s,B) (5.2)
L

-----

- {f € F(L,J;p): m

1=0
1flloo < 1},

where || - || denotes the maximum-entry norm of a matrix/vector or supnorm

of a function, || - ||o denotes the number of nonzero entries of a matrix or vector,

s > 0 controls the number of nonzero weights and shifts, and B > 0 controls

the largest weights and shifts. For notational convenience, we assume that the

supnorm of f has a unit upper bound, which can be replaced by an arbitrary

positive constant.

5.2 FDNN classifier for fully observed data

Let ¢ : R — [0,00) denote a surrogate loss such as the hinge loss ¢(x) =
(1—xz),.Fork=1,2andi =1,...,ny, recall Xi(k)(t) =00 fff)wj(t) (see
Section 4.1), and for J > 1, let 55’” = (£§f),$§§), . ,fi(f;)) be the vector of J

principle projection scores corresponding to Xi(k). Define the decision function

fo() = argmin Y > o((2k —3)f (€M)

feF(L,J,p,s,B) el i—1
Specifically, ﬁb is the best network in F (L, J, p, s, B) minimizing the empirical

surrogate loss. In practice, we suggest to using the R package “Keras” to find



5.2 FDNN classifier for fully observed data

We then propose the following FDNN classifier:
GFPNN(7) = - (5.3)

Theorem 5. Suppose the network class F (L, J,p, s, B) satisfies
(i) L < logn;
_1 _—4
(ii) J < n2 (logn)te;

1 vy —3
(iii) maxo<p<g, pr < n2 (logn) T2 ;

1 2v9—2
(iv) s < n™ 2 (logn) THe;

vo 2—2v9
(v) B < n?22(logn) e,

For both © = Oy (v, 1) and © = Og(vy, 1), the FDNN classifier (5.3) satis-

fies

N loghn\ T2
sup E | Rg(GFPNNY — Re(Ggﬂ < (Og ”) .
6cO n

Theorem 5 provides an upper bound for the excess misclassification risk
of (5.3). When the neural network architectures (L, J, p, s, B) are properly se-
lected, the upper bound matches Theorem 1 up to a log factor. Therefore, the

FDNN is proven to be minimax optimal.



5.3 FDNN classifier for discretely observed data

5.3 FDNN classifier for discretely observed data

Forv = 1,...,ng, k = 1,2, let Ci(k) be given in (4.3). Define the decision

function

ﬁs)(-): argmin Zqu ((2k = 3)f ))

feF(L,J,p,s,B) 1 i=1

We then propose the following sampling FDNN (sFDNN) classifier:

5)
gerownzy_ L 0 =)= (5.4)
2, fi(=)<0.

Theorem 6. Suppose the network class F (L, J, p, s, B) satisfies
(i) L < (log M)I(M < M*) + (logn)l(M > M*);
(ii) J = MT™=T(M < M*) +n™% (logn) ™z [(M > M*);

vy —3

(iii) maxoeper pe = M3 (log MM < M*) + n™% (logn) B I(M >

M*);

2v9—2

(iv) s =< M (log2 M)I(M < M*) + n™% (logn) 172 I(M > M*);

2—2v9

(v) B < Me I(M < M*)+ nFin (logn) ™2 I(M > M*),

where M* = (n/log4 n)l/ul. Let vi,v9 > 0, with i < 14 v,. For both

O = Oy (v1,15) and © = Og(v1, 1), the SEDNN classifier in (5.4) satisfies

~ log4n 1 T
E[ sFDNNy _ x ] < ‘
sap B [Bo(GT0) = RolGo) | S (= + 3w



Theorem 6 provides an upper bound for the excess misclassification risk
of (5.3). When the architectures (L, J, p, s, B) are properly selected, the upper
bound matches the result in Theorem 2 up to a log factor. Therefore, the SFDNN
is able to attain minimax optimality. The critical sampling frequency M* =

(n /log* n) " differs from the one in Theorem 2 by a log factor as well.

6. Simulation

Here, we examine the performances of FQDA and FDNN using simulations.

6.1 Gaussian setting

In this section, we provide numerical evidence to demonstrate the superior per-
formance of FQDA and FDNN compared with two popular functional classifiers:
the quadratic discriminant method (QD) proposed by Delaigle and Hall (2013),
and the nonparametric Bayes classifier (NB) proposed by Dai et al. (2017). We
do not include the functional logistic regression because it performs worse than
NB when covariance differences in the populations are present (Dai et al., 2017).
The difference between FQDA and QD lies in how they estimate principle pro-
jection scores. Specifically, FQDA estimates the projection scores by projecting
the functional data onto a Fourier basis, and QD applies a functional princi-

pal component analysis to estimate the principle projection scores in which the
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eigenfunctions are data-driven. We evaluated all methods using four synthetic
data sets. In all simulations, we generated n = n; = ny = 50, 100 training
samples for each class, and thus m; = m, = 0.5. We generated functional
data Xi(k) (t) = z;]:l 55;“)%(25), where @(f) ~ N (g, )\§k)), fori =1,...,ny,
k = 1,2. In the following, pt;, = (ttg1, .., pas) > T = diag( A, ... AP,
and v, (t) are specified in different models for ¢ € [0, 1].

Model I: Let J = 3, p; = (—1,2,-3)", /% = diag (3,2,1), pp =
(—%,%,—%)T, )% = diag (2,3, 2), va(t) = log(t + 2), s(t) = ¢, and
P3(t) = t3.

Model 2: Let J = 3, 1 = (—6,12,—18)", 1% = diag (3,2,1), ps =
(—3,9,-15) ", 2,/* = diag (2,3, 2), 41 (t) = log(t+2), ¥a(t) = t, and (1) =
¢,

Model 3: Let J = 4, py = (1,-1,2,-3) ", =1/% = diag (£,2,2, 1), o =

(L, =18 —5)" 0/ — diag (1,1, 1, 2), ¥ (t) = sin 2t 1o (t) = log(t + 2),

Model 4: Let J = 4, py = (6,—6,12, —18)", =1/% = diag (4,3,2,1), o =
(3,-3,9,—15)", 25/* = diag (5,5, 3, 2), ¢y () = sin 2, ¥5(t) = log(t + 2),
P3(t) = t, and Py(t) = 3.

Note that the setting J < 4 indicates that the two classes have fewer than

four different terms in the density functions. Therefore, the two populations are
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much “closer” to each other, which leads to relatively larger misclassification
errors. This setting is more challenging than those with a relatively larger value
J and many different terms. In each model above, the parameter 8 belongs to
Og(1,1)orOg(1,1), thatis, v; = v, = 1in (3.3) or (3.4). The random functions
are sampled at M equally spaced sampling points from zero to one. We chose
M from {10, 20, 30,40, 50} to detect how the sampling frequency affects the
classification error, where we regarded M = 50 as the full observation. In each
scenario, the number of repetitions is set to 100, and the classification errors are
evaluated using 500 samples.

To select the tuning parameter for FQDA, we selected J using cross-validation,
as proposed by Delaigle and Hall (2012) and Delaigle and Hall (2013), and for
FDNN, we chose L = [log M| V [logn], J = c[MY?]V [n'/?] for 1 < ¢ < 4,
depending on different settings, p, = 20[ M /2] [n'/?], B = 5[ MY4]v[n!/4],
and s = 20[M'/2] v [n'/?]. Note that the above selection of the architecture
parameters is based on Theorem 6.

Tables 1 to 4 summarize the misclassification rates for four classifiers, given
combinations of different mean and covariance models. Given the explicit defi-
nition of X Z-(k), it is not surprising that of FQDA and FDNN significantly outper-
formQD and NB, which require that the two series in (2.3) are divergent. The

discrepancy increases with the number of observations per subject. In particular,
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under the fully observed cases, the classification risks of our FQDA and FDNN
classifiers are less than half of the risks generated by QD and NB. When the
data are sparsely sampled (M = 10), all classifiers have larger misclassification
risks, because there is less available information. However, the proposed FQDA

and FDNN still outperform their two counterparts.

6.2 NonGaussian setting

To evaluate the performance of the proposed classifiers under nonGaussian pro-
cess situations, we consider the following two models:

Model 5: Let XV (t) = S°27_ €94;(t), where £ ~ N(u1;, A{"), for i =
Lo, 60 ~trj i =1, mey pr = (—1,2,-3)T, £1/% = diag (3,2, 1),
P1(t) = log(t + 2), 1o(t) =, and Y3(t) = ¢*.

Model 6: Let Xi(k) (t) = 2?21 55?% (t), where 51-(]-1) ~ Exp(r;), for i =
1,...,ny, r = (ry,ra,73)7T = (0.3,0.8,1.5)7, fg) ~ tr_g;, fori = 1,... no,
1(t) = log(t +2), (t) = £, and vy (t) = .

It is easy to see that @ in Models 5 and 6 also belong to © (1, 1) or ©5(1, 1).
We select the tuning parameters for FQDA and FDNN in the same way as in Sec-
tion 6.1. Tables 5 and 6 report the misclassification rates for the four classifiers

when the functional data of one of the classes are nonGaussian. Because the

three competitors are designed only for the Gaussian process, FDNN dominates
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Table 1:

Model 1

Misclassification rates (%), with standard errors in parentheses, for

M

n

FQDA

FDNN

QD

NB

50

50

100

18.75(0.02)

18.54(0.01)

19.46(0.08)

16.86(0.09)

39.15(0.02)

38.53(0.02)

42.09(0.02)

40.96(0.02)

40

50

100

19.97(0.02)

19.85(0.02)

19.91(0.08)

18.58(0.10)

39.12(0.02)

38.49(0.02)

42.10(0.02)

40.91(0.02)

30

50

100

22.17(0.02)

22.00(0.02)

24.82(0.12)

18.70(0.10)

39.14(0.02)

38.48(0.02)

42.04(0.02)

40.87(0.02)

20

50

100

25.99(0.02)

26.04(0.02)

26.04(0.12)

24.27(0.01)

39.00(0.02)

38.47(0.02)

41.97(0.02)

40.75(0.05)

10

50

100

32.10(0.02)

31.91(0.02)

28.59(0.10)

25.24(0.09)

38.98(0.02)

38.28(0.02)

41.79(0.02)

40.70(0.02)

in terms of performance for both sparsely and densely sampled functional data
cases. In most scenarios, the misclassification rates of FDNN are approximately
one-third of those of QD and NB. FQDA incurred larger risks than FDNN in

both cases, but is still superior to QD and NB.
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Table 2:

Model 2

Misclassification rates (%), with standard errors in parentheses,for

M

n

FQDA

FDNN

QD

NB

50

50

100

14.77(0.02)

14.58(0.01)

18.82(0.10)

13.19(0.10)

37.91(0.02)

37.35(0.02)

41.03(0.02)

39.92(0.02)

40

50

100

15.99(0.02)

15.92(0.01)

18.52(0.10)

12.92(0.02)

37.85(0.02)

37.32(0.02)

40.99(0.02)

40.07(0.02)

30

50

100

18.29(0.02)

18.37(0.02)

21.71(0.12)

12.95(0.09)

37.86(0.02)

37.33(0.02)

40.89(0.02)

39.91(0.02)

20

50

100

22.27(0.02)

22.39(0.02)

24.01(0.14)

21.70(0.11)

37.83(0.02)

37.28(0.02)

40.90(0.02)

39.81(0.02)

10

50

100

29.12(0.02)

29.16(0.02)

27.74(0.13)

27.33(0.12)

37.66(0.02)

37.18(0.02)

40.72 (0.02)

39.57(0.02)
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Table 3:

Model 3

Misclassification rates (%), with standard errors in parentheses,for

M

n

FQDA

FDNN

QD

NB

50

50

100

18.63(0.02)

18.06(0.02)

20.02(0.04)

19.96(0.06)

34.95(0.03)

34.69(0.02)

40.26(0.03)

38.89(0.02)

40

50

100

19.85(0.02)

19.31(0.02)

22.46(0.07)

19.34(0.09)

34.96(0.03)

34.67(0.02)

40.41(0.03)

38.95(0.02)

30

50

100

21.79(0.02)

21.33(0.02)

24.35(0.07)

20.05(0.08)

34.96(0.03)

34.70(0.02)

40.42(0.03)

39.05(0.02)

20

50

100

25.36(0.02)

24.16(0.02)

26.07(0.09)

21.22(0.08)

34.92(0.03)

34.60(0.02)

40.42(0.03)

38.98(0.03)

10

50

100

30.25(0.02)

30.00(0.02)

26.03(0.08)

24.13(0.08)

34.72(0.03)

34.15(0.03)

40.35(0.03)

38.83(0.09)
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Table 4: Misclassification rates (%), with standard errors in parentheses, for

Model 4

M

n

FQDA

FDNN

QD

NB

50

50

100

14.56(0.02)

14.26(0.02)

21.16(0.10)

16.85(0.10)

32.76(0.02)

32.64(0.02)

38.76(0.03)

36.77(0.03)

40

50

100

15.89(0.02)

19.31(0.02)

20.42(0.10)

20.18(0.09)

32.78(0.02)

34.67(0.02)

38.65(0.03)

38.95(0.02)

30

50

100

18.26(0.02)

17.81(0.02)

22.75(0.10)

16.29(0.10)

32.72(0.02)

32.60(0.02)

38.58(0.03)

36.74(0.03)

20

50

100

21.93(0.02)

21.54(0.02)

22.76(0.11)

21.29(0.09)

32.72(0.03)

32.59(0.02)

38.36(0.03)

36.88(0.03)

10

50

100

27.46(0.02)

27.08(0.02)

27.73(0.10)

24.85(0.10)

32.52(0.02)

32.34(0.02)

38.78(0.03)

37.00(0.02)
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Table 5:

Model 5

Misclassification rates (%), with standard errors in parentheses, for

M

n

FQDA

FDNN

QD

NB

50

50

100

18.11(0.04)

17.11(0.04)

13.20(0.01)

12.29(0.01)

42.63(0.02)

38.42(0.09)

40.27(0.03)

39.84(0.04)

40

50

100

19.47(0.04)

18.62(0.04)

13.40(0.02)

12.35(0.01)

42.61(0.10)

38.38(0.09)

40.38(0.04)

39.79(0.04)

30

50

100

22.14(0.05)

24.19(0.05)

12.89(0.01)

12.21(0.01)

42.73(0.01)

38.30(0.09)

40.50(0.03)

40.11(0.04)

20

50

100

27.00(0.08)

22.75(0.07)

13.00(0.01)

12.21(0.01)

42.77(0.10)

38.17(0.09)

40.69(0.04)

40.26(0.04)

10

50

100

36.75(0.08)

32.14(0.09)

23.01(0.16)

19.52(0.15)

43.16(0.04)

37.87(0.09)

41.38(0.04)

40.90(0.04)
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Table 6: Misclassification rates (%), with standard errors in parentheses, for

Model 6

M n FQDA FDNN QD NB

50 50 13.38(0.08) 8.98(0.01) 20.54(0.09) 19.81(0.08)
100 10.11(0.02) 8.31(0.01) 15.86(0.03) 17.07(0.06)

40 50 13.72(0.08)  9.45(0.01) 19.36(0.08) 19.25(0.08)
100 12.12(0.06) 8.54(0.01) 16.98(0.05) 16.13(0.06)

30 50 13.94(0.08) 10.57(0.07) 19.35(0.08) 19.78(0.09)
100 12.82(0.06) 8.92(0.04) 17.00(0.05) 16.69(0.04)

20 50 15.33(0.09) 10.52(0.04) 19.93(0.09) 20.32(0.10)
100 13.91(0.06) 8.97(0.04) 17.00(0.06) 17.72(0.08)

10 50 15.58(0.07) 12.07(0.08) 19.33(0.08) 23.04(0.12)
100 15.04(0.05) 8.90(0.01) 17.16(0.06) 20.71(0.10)




7. Real-Data Illustrations

This benchmark data example was extracted from the TIMIT database (TIMIT
Acoustic-Phonetic Continuous Speech Corpus, NTIS, US Dept of Commerce),
which is a widely used resource for research in speech recognition and func-
tional data classification (Ferraty and Vieu, 2003). Our data set is constructed
by selecting five phonemes for classification based on digitized speech from this
database. From each speech frame, a log-periodogram transformation is ap-
plied to cast the speech data in a form suitable for speech recognition. The five
phonemes in this data set are as follows: “sh,” as in “she,” “dcl,” as in “dark,”

29 ¢

“iy,” as the vowel in “she,” “aa,” as the vowel in “dark,” and “ao,” as the first
vowel in “water.” For illustration purposes, we focus on the “aa,” “ao,” “iy,” and
“dcl” phoneme classes. Each speech frame is represented by n = 400 samples
at a 16 kHz sampling rate; the first M/ = 150 frequencies from each subject are
retained. Figure 1 displays 10 log-periodograms for each class phoneme.

We randomly select training sample size n; = ny = 100 to train the classi-
fiers of the three methods, and the rest of the 300 samples remain as test samples.
The tuning parameter selections for FQDA and FDNN are the same as those in
Section 6.1. Table 7 reports the mean percentage (averaged over 100 repeti-

tions) of misclassified test curves. Both FQDA and FDNN outperform QD and

NB in all three classification tasks. For “ao” versus “iy,” the misclassification
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Figure 1: A sample of 10 log-periodograms per class

rates of FQDA and FDNN are less than one-third of that of QD; For “ao” versus
“dcl,” the misclassification rates of FQDA and FDNN are around half that of

NB. The most difficult task is to distinguish between “aa” and “ao” and all three

classifiers have much larger risks. However, the proposed FQDA and FDNN

classifiers still provide smaller risks and smaller standard errors compared with

those of QD and NB classifiers.



Table 7: Misclassification rates (%), with standard errors in parentheses, for the

speech recognition data

Classes FQDA FDNN QD NB

“aa” vs “a0”  20.278(0.014) 20.744(0.016) 25.402(0.026) 25.378(0.021)

“aa” vs “1y”  0.196(0.001)  0.193(0.002)  0.288(0.005)  0.273(0.006)

“a0” vs “1y”  0.153(0.004)  0.183(0.004)  0.578(0.005)  0.232(0.005)

“ao” vs “dcl”  0.270(0.003)  0.229(0.002)  0.391(0.005)  0.472(0.006)

8. Conclusion

We present a new minimax optimality viewpoint for solving functional classi-
fication problems. In comparison with methods in the existing literature, our
results deal with the more practical scenarios where the two populations are rel-
atively “close,” so that the optimal Bayes risk is asymptotically nonvanishing.
Our contributions are threefold. First, we provide sharp convergence rates for
MEMR when the data are either fully or discretely observed, as well as a crit-
ical sampling frequency that governs the rate in the latter case. Second, we
propose novel classifiers based on FQDA and FDNN that we prove to achieve
minimax optimality. Third, we use simulations and real-data examples to show

that the proposed FDNN classifier exhibits outstanding performance, even when
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the Gaussian assumption is invalid.

Supplementary Material

Technical lemmas and proofs of Theorems 1 to 6 are provided in the online

Supplementary Material.
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