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We propose a new classified mixed model prediction (CMMP) procedure, called

pseudo-Bayesian CMMP, that utilizes network information in matching the group

index between the training data and new data, whose characteristics of interest one

wishes to predict. The current CMMP procedures (Jiang et al. 2018; Sun et al. 2018)

do not incorporate such information; as a result, the methods are not consistent in

terms of matching the group index. Although, as the number of training data groups

increases, the current CMMP method can predict the mixed effects of interest consis-

tently, its accuracy is not guaranteed when the number of groups is moderate, as is the

case in many potential applications. The proposed pseudo-Bayesian CMMP procedure

assumes a flexible working probability model for the group index of the new obser-

vation to match the index of a training data group, which may be viewed as a pseudo

prior. We show that, given any working model satisfying mild conditions, the pseudo-

Bayesian CMMP procedure is consistent and asymptotically optimal both in term of

matching the group index and in terms of predicting the mixed effect of interest asso-

ciated with the new observations. The theoretical results are fully supported by results

of empirical studies, including Monte-Carlo simulations and real-data validation.
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1 Introduction

Classified mixed model prediction (Jiang et al. 2018) is a new method developed out of

the traditional mixed model prediction that is particularly suitable for subject-level infer-

ence, such as in precision medicine and public health. For example, the National Research

Council of the United States in 2014 defined precision medicine as the “ability to classify



individuals into subpopulations that differ in their susceptibility to a particular disease, in

the biology and/or prognosis of those disease they may develop, or in their response to

a specific treatment. Preventive or therapeutic interventions can then be concentrated on

those who will benefit, sparing expense and side effects for those who will not”.

In spite of being a new idea in prediction with many potential applications, a key step

in CMMP, that is, the matching between a class among the training data and an unknown

class associated with the new/future observations, is based on a crude sample mean of

the responses observed for the unknown class. In fact, as noted in Jiang et al. (2018, p.

273), “as m, the number of classes increases, the probability of identifying the true index I

decreases, even in the matched case; thus, there is no consistency in terms of estimating I ,

even in the matched case.” Here, I denotes the class index for the unknown class. However,

in terms of prediction of the mixed effect of interest, CMMP is still consistent as m goes to

infinity. This is because, as m increases, class-matching becomes less important in terms

of approximation to the mixed effect associated with the unknown class. In other words,

even if one does not have the exact match, there is a high chance, as m increases, that one

will find an approximate match in the sense that the corresponding mixed effect is close

to the one associated with the unknown class. Thus, if prediction of the mixed effect is of

primary interest, CMMP will perform well as long as m is large.

On the other hand, there are many practical situations where m, the number of classes,

is not very large. This happens, for example, in the analysis of network data, where the

number of communities identified within the network is typically not large, or only moder-

ately large (see below). Empirical studies have shown (e.g., Sections 3 and 4) that CMMP

may perform poorly in such situations, which is consistent with the statement of Jiang et

al. (2018) noted earlier. It turns out that, in the case that m is small or moderately large,

precision in matching is critically important. Having realized the importance of the pre-

cision of matching in CMMP when m is relatively small, Sun et al. (2018) proposed to

incorporate covariate information in the matching. The authors assumed that there exist
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some class-level covariates that can be used in the matching. The modified CMMP proce-

dure then focuses on matching the class-level covariates to those of a training data classes.

However, for the latter method to work one needs a (nearly) one-to-one correspondence

between the class-level covariates and random effects, which may not hold in practice. In

fact, by definition, the random effects are supposed to be orthogonal to the covariates in a

mixed effects model, so the strategy may also lack theoretical justification.

A main motivation of the current work comes from the analysis of network data, which

has generated substantial interest in both research and applications. See, for example,

Bickel and Chen (2009), McAuley and Leskovec (2012), Bickel and Sarkar (2016), Ma, Su

and Zhang (2018), and Li, Shen and Pan (2019). One of the extensively studied topics in

network analysis is community detection in networks. Such work and results are potentially

useful in identifying the classes that we are concerned about. It should be noted that our

primary interest is prediction of mixed effects, or future observations, by utilizing the class

information. These classes are potentially closely related to the communities detected in the

network. Thus, it is natural to consider utilizing the existing work in community detection

in CMMP. In fact, community information within a network has been used in improving

prediction accuracy in precision epidemiology for infectious disease control (e.g., Keeling

and Eames 2005, Ladner et al. 2019). As another example, it is known that social networks

have effects on economics (e.g., Bailey et al. 2018); therefore, it may be possible to utilize

network information in making prediction of characteristics of economic interest.

One feature of the network data is that the number of communities within the network

is typically not very large. For example, in the Jazz musician network (Gleiser and Danon

2003; data available at www.redhotjazz.com), the number of communities known to exist

is 3. In the political books network (Newman 2006; data available at www.orgnet.com),

the number of known communities is also 3. In the Facebook friendship network (available

at www.snap.stanford.edu), 11 communities have been identified (Ma et al. 2018). With

such a small or moderate number of communities, the original CMMP method of Jiang et
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al. (2008) would not apply, if the communities are treated as the classes.

Furthermore, there is also a concern on whether the communities in a network and the

classes in CMMP should match exactly. Typically, the classes in CMMP correspond to

random effects under a mixed effects model. The random effects are associated with the

means or proportions of some characteristics of interest. It is unlikely that these charac-

teristics are solely determined by the community membership, even though the two may

be associated. Therefore, uncertainty, or discrepancy, should be allowed in matching the

communities to the classes. Due to such a consideration, we consider the following model

for the data, which includes a working probability model for the class membership.

Suppose that we have a network with known communities. As mentioned, there has

been extensive work on identification of the network communities (e.g., Bickel and Sarkar

2016, Ma et al. 2018), so we can assume that the network communities are known. Suppose

that the training data associated with the network satisfy a nested-error regression (NER;

Battese, Harter and Fuller 1988) model:

yij = x′ijβ + αi + εij, (1)

i = 1, . . . ,m, j = 1, . . . , ki, where i represents the community, ki is the number of subjects

in the training data that belong to community i; yij is the outcome of interest, xij is a

vector of associated covariates, β is an unknown vector of regression coefficients (the fixed

effects), αi is a community-specific random effect, and εij is an error. It is assumed that the

random effects and errors are independent with αi ∼ N(0, σ2) and εij ∼ N(0, τ 2), where

σ2 > 0, τ 2 > 0 are unknown variances.

We are interested in prediction of a mixed effect associated with a new subject. The

mixed effect may be a conditional mean, proportion, or other characteristic, given the ran-

dom effect associated with the subject. Suppose that the new subject belongs to a known

community cn. Here the subscript n stands for “new”. The random effect associated with

the new subject, however, is not entirely determined by cn—it is subject to some uncer-

tainty. This happens, for example, when the training data were collected from a previous
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time period, a network that has grown bigger, or smaller, or a network that is not exactly the

same as the one relevant to the new subject. Consider the following working probability

model. Let γn denote the true class index of the new subject. Note that the words “class”

and “community” do not necessarily mean the same in that the former refers to that asso-

ciated with the random effect while the latter to that associated with the network. For the

training data, however, the classes match the communities, by assumption, but this is not

necessarily true for the new subject. For now, let us assume that γn is an unknown integer

between 1 and m. This is called a matched case. Later we also consider the case that γn

does not match any of the integers between 1 and m. This is called an unmatched case

(Jiang et al. 2018). We assume that there is a working probability model for γn:

π(γn = i), 1 ≤ i ≤ m, (2)

where π(·) is a known probability distribution, which is not necessarily the true distribution

of γn. For example, in connection with utilizing the network information in the matching,

one may consider the following working model:

π(γn = i) = p1(i=cn)

(
1− p
m− 1

)1(i 6=cn)

, (3)

where p is a given probability (see below); in other words, π(γn = i) = p if i = cn, and

π(γn = i) = (1 − p)/(m − 1) if i 6= cn. It is easy to verify that (3) is a probability

distribution on {1, . . . ,m}. The p in (3) may be treated as a tuning parameter, which has an

intuitive interpretation: It has to do with one’s belief to what extent cn determines γn. Large

sample theory, established later in this paper, shows that, as long as there are sufficient

data information, it does not really matter what π(·) is used as the working model, or, in

particular, what p is chosen in the special case of (3). We call π(·) a pseudo-prior due to a

role it plays in deriving our method in the sequel.

Although (3) is a special case of (2), it is an important special case that motivates our

method. In this special case, the community index to which the new subject belongs, cn, is

known. However, it is not necessarily equal to the true class index, γn. The pseudo-prior
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probability that γn = cn is p. Because, in a way, cn may be viewed as part of the data, the

pseudo prior (3) may be viewed as a conditional probability. In general, the pseudo-prior (2)

could be conditioning on certain data other than y, the combined responses of the training

data and new data (see below). However, for notation simplicity, the conditioning notation

is suppressed [e.g., π(γn = i) rather than π(γn = i|cn) in (3)]. Similarly, the pseudo-

posterior derived below may be viewed as conditioning on y and cn, in case of (3), although

the cn part is suppressed in notation [e.g., Pπ(γn = i|y) instead of Pπ(γn = i|y, cn)]. The

asymptotic results, established later in this paper, should be regarded as conditional on cn.

Also note that there is no randomness in cn; in other words, cn is a known constant.

Furthermore, suppose that the outcomes of interest corresponding to the new subject,

ynj, 1 ≤ j ≤ kn, satisfy a similar NER model to (1), that is,

ynj = x′njβ + αγn + εnj, (4)

1 ≤ j ≤ kn, where xnj is the corresponding vector of covariates, and εnjs are the new

errors that are independent and distributed as N(0, τ 2), and are independent with αγn and

the αis and εijs associated with the training data. Note that, given γn = i, (4) becomes

ynj = x′njβ + αi + εnj , 1 ≤ j ≤ kn. This means that one can combine the training data and

new data into m independent groups:

y1, . . . , yi−1, (yi, yn), yi+1, . . . , ym,

where yi = (yij)1≤j≤ki and yn = (ynj)1≤j≤kn . The pdf of yu (u 6= i) is given by

f(yu) =
1

(2π)ku/2|Vu|1/2
exp

{
−1

2
(yu −Xuβ)′V −1

u (yu −Xuβ)

}
, (5)

where Xu = (x′uj)1≤j≤ku and Vu = τ 2Iku + σ2Jku (Ik, Jk denote the k × k identity matrix

and matrix of 1s, respectively). Similarly, given γn = i, the joint pdf of (yi, yn) is given by

f(yi, yn|γn = i)

=
1

(2π)(ki+kn)/2|Vi,n|1/2
exp

−1

2

 yi −Xiβ

yn −Xnβ

′ V −1
i,n

 yi −Xiβ

yn −Xnβ

 , (6)

6



where Xn = (x′nj)1≤j≤kn and Vi,n = τ 2Iki+kn + σ2Jki+kn . Combining the above results,

and with some reorganization of terms, we obtain

f(y|γn = i) = f(yi, yn|γn = i)
∏
u6=i

f(yu)

= (2π)(k·+kn)/2(τ 2)(k·+kn−m)/2{τ 2 + (ki + kn)σ2}1/2
∏
u6=i

(τ 2 + kuσ
2)1/2

× exp

−1

2

 yi −Xiβ

yn −Xnβ

′ V −1
i,n

 yi −Xiβ

yn −Xnβ


−1

2

∑
u6=i

(yu −Xuβ)′V −1
u (yu −Xuβ)

}
, (7)

where k· =
∑m

u=1 ku, and y = (y′1, . . . , y
′
m, y

′
n)′.

From (2) and (7), we obtain the pseudo-posterior distribution of γn:

Pπ(γn = i|y) =
π(γn = i)f(y|γn = i)∑m
j=1 π(γn = j)f(y|γn = j)

. (8)

The match of γn to the training data groups is chosen as the pseudo-posterior mode, that is,

γ̂n = argmax1≤i≤mPπ(γn = i|y)

= argmax1≤i≤m{π(γn = i)f(y|γn = i)}. (9)

Note that the denominator in (8) is not needed in obtaining γ̂n. In case that the maximizer

of (8) or (9) is not unique, choose the one with the lowest index number.

Note. Although the procedure clearly resembles the maximum posterior, or Bayesian

classification (e.g., Nurty and Devi 2011), the set-up is not Bayesian. In fact, the distribu-

tion π in (2) is treated as a working model rather than a prior. In other words, there is no

underlying assumption that the working model is the true distribution of γn. In this regard,

the method is similar to Henderson’s original derivation of BLUP—best linear unbiased

predictor (e.g., Jiang, Jia and Chen 2001, p.98). On the other hand, whenever there is addi-

tional information regarding the class index, γn, such as network information, it should be

incorporated into the working model. As will be demonstrated, the choice of the working

7



model does not make a difference asymptotically, but it may make a difference in terms of

the finite-sample performance. Due to its similarity to the Bayesian classifier, we call the

proposed procedure of matching maximum pseudo-posterior matching (MPPM).

Once γ̂n is determined, the prediction of the new mixed effect is carried out as in CMMP

(Jiang et al. 2018). Namely, given γn = i, the best predictor (BP), in the sense of minimum

mean squared prediction error (MSPE), of θnj = x′njβ + αγn = x′njβ + αi [see (4)] is

E(θnj|y) = x′njβ +
kiσ

2

τ 2 + kiσ2
(ȳi· − x̄′i·β), (10)

where ȳi· = k−1
i

∑ki
j=1 yij and x̄i· = k−1

i

∑ki
j=1 xij . The classified mixed effect predictor

(CMEP) of θnj , denoted by θ̂nj , is given by the right-hand side of (10) with i replaced by

γ̂n, and β, σ2, τ 2 replaced by their estimators (e.g., REML estimators; e.g., Jiang 2007, sec.

1.3.2) based on the training data. We call the new procedure pseudo-Bayesian CMMP, or

PBCMMP, due to its connection to both MPPM and CMMP.

The difference between PBCMMP and CMMP is in their strategies of matching the

class index, γn, which is a key component of CMMP. The CMMP of Jiang et al. (2018)

used a strategy that matched the sample mean of the new observations and the empirical

BP (EBP), given the class index, of the mixed effect associated with the new observations

(see Jiang et al. 2018, 3rd paragraph in sec. 7.2). The new PBCMMP uses the maximum

pseudo-posterior idea, as noted above. As will be seen, the new matching strategy of

PBCMMP, that is, MPPM, has both asymptotic and empirical superiority over the CMMP

matching strategy. The superior matching strategy of PBCMMP does lead to (significantly)

better predictive performance over CMMP, as we show both theoretically and empirically.

One can also make prediction of a future observation, say, ynj , if it is unobserved. By

(4), we have ynj = θnj + εnj . Because the new error, εnj , is independent of the training

data, the BP of ynj is E(ynj|y) = E(θnj|y) + E(εnj|y) = E(θnj|y). This shows that the BP

of ynj is the same as the BP of θnj; therefore, naturally, the PBCMMP of ynj , denoted by

ŷnj , is the same as θ̂nj , the CMEP of θnj based on MPPM.

In Section 2, we establish the asymptotic superiority of MPPM mentioned above, as
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well as consistency of MPPM in terms of the class-index matching. In Section 3, we

establish consistency and asymptotic optimality of the CMEP based on MPPM. It should

be noted that the consistency and asymptotic optimality of MPPM and CMEP based on

MPPM hold for any working model π subject to some regularity conditions. In Section

4, we carry out extensive simulation studies to investigate finite-sample performance of

MPPM and CMEP based on MPPM, and their comparisons with existing methods. The

simulation results demonstrate, in particular, the superiority of MPPM and CMEP based

on MPPM over the CMMP of Jiang et al. (2018), as predicted by the theory. In Section

5, we discuss measure of uncertainty for the proposed classified predictor. In Section 6,

we consider an application to Facebook network data, and provide a real-data validation

that further demonstrate the advantage of our new methods. Conclusion and discussion are

offered in Section 7. Proofs and additional tables are deferred to Supplementary Material.

2 Consistency and asymptotic optimality of MPPM

We first consider a simpler, but also realistic situation in some cases (e.g., network

data), where m, the number of classes in the training data, is bounded. Later we extend the

result to the case that m increases with the sample sizes at an appropriate rate. Throughout

this section, we assume a match case, which means that γn matches one of the indexes

1 ≤ i ≤ m. This is reasonable because, otherwise, there is, of course, no consistency.

2.1 Consistency and asymptotic optimality when m is bounded

We assume that a consistent estimator of β, β̂, is available; however, for the σ2, τ 2, we

only assume that some estimators, σ̂2, τ̂ 2, are available, which satisfy

0 < a ≤ σ̂2, τ̂ 2 ≤ A <∞, (11)

where a,A are some known constants. Note that (11) can always be met by truncating the

estimators of σ2 and τ 2. For example, one may choose a as a small positive number (e.g.,
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10−6) and A a large positive number (e.g., 106), and re-define the value of σ̂2 as a, if it is

less than a, and A, if it is greater than A; and similarly for τ 2.

Also note that, for the consistency of β̂, one does not need m → ∞. In fact, m → ∞

is necessary for the consistency of σ̂2 but not for that of β̂ and τ̂ 2. However, it is known

that consistent estimator of β is available given any “working” estimators of σ2 and τ 2,

which need not to be consistent. For example, such a result was established earlier in the

context of generalized estimating equations (GEE; Liang and Zeger 1986), and later in the

context of generalized linear mixed models (GLMM; e.g., Jiang 1999, Jiang et al. 2001).

Define ai = ki/(ki + kn), 1 ≤ i ≤ m. To distinguish MPPM based on different working

models, let us denote the MPPM, (9), by γ̂n,π, where π corresponds to the working model

(2). Let γ∗n denote the γ̂n,π when π is the true distribution of γn. The latter is not practically

available, of course, but we can still get it involved in theoretical studies. Define

γ̃n = argmax1≤i≤mf(y|γn = i). (12)

Note that γ̃n does not depend on π (therefore no index of π is needed).

Theorem 1 (consistency of MPPM and more). Suppose that the following hold:

(i) m > 1, min1≤i≤m ki →∞, kn →∞, and

min
1≤i≤m

ai ≥ b for some constant b > 0; (13)

(ii) x̄i· = k−1
i

∑ki
j=1 xij, 1 ≤ i ≤ m and x̄n· = k−1

n

∑kn
j=1 xnj are bounded, so are

bij ≡ log{π(γn = j)} − log{π(γn = i)}, 1 ≤ j 6= i ≤ m;

(iii) β̂ is consistent, and (11) holds. Then, we have the following conclusions:

(I) P(γ̂n,π = γ̃n)→ 1 for any working model π, including the true distribution of γn.

(II) MPPM is consistent for any working model π, that is, P(γ̂n,π 6= γn)→ 0.

The proof of Theorem 1 is given in the Supplementary Material. If we apply the result

to the special case that π is the true distribution of γn, we have the following result.
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Corollary 1. Under the conditions of Theorem 1, we have, for any working model π,

P(γ̂n,π = γ∗n) −→ 1. (14)

Proof: Using conclusion (I) of Theorem 1, we have

P(γ̂n,π = γ∗n) ≥ P(γ̂n,π = γ̃n, γ
∗
n = γ̃n)

≥ 1− P(γ̂n,π 6= γ̃n)− P(γ∗n 6= γ̃n)→ 1. 2

Next, we establish asymptotic optimality of MPPM. To do so we first introduce a lemma

that states the (exact) optimality of γ∗n, which we call maximum posterior matching (MPM),

even although it is not practically available. The optimality is in terms of minimizing the

probability of mismatch, that is, P(γ̌n 6= γn), where γ̌n is any class matcher of γn.

Lemma 1 (Optimality of MPM). P(γ∗n 6= γn) ≤ P(γ̌n 6= γn) for any γ̌n.

Although such a result is well known in the literature of Bayesian classifier (e.g., Nurty

and Devi 2011), we were unable to find a simple proof. Thus, a proof is given below.

Proof: Note that, when π is the true distribution of γn, the right side of (8) is equal to

P(γn = i|y), the (true) conditional probability. Thus, by definition, γ∗n has the property that

P(γn = i|y) = max
1≤j≤m

P(γn = j|y) on {γ∗n = i}, 1 ≤ i ≤ m. (15)

Now, for any other class matcher, γ̌n, we have

P(γ̌n 6= γn) =
m∑
i=1

P(γ̌n = i, γn 6= i)

=
m∑
i=1

E
[
1(γ̌n=i){1− P(γn = i|y)}

]
≥

m∑
i=1

E

[
1(γ̌n=i)

{
1− max

1≤j≤m
P(γn = j|y)

}]
= 1− E

{
max

1≤j≤m
P(γn = j|y)

}
. (16)

On the other hand, by replacing γ̌n with γ∗n, and using property (15), it is seen that the same

arguments of (16) hold with the inequality in the third line replaced by equality. Therefore,

the right side of (16) is equal to P(γ∗n 6= γn). 2
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Because the MPM, γ∗n, is optimal, in view of (14), it is not surprising that MPPM is

asymptotically optimal. Let N denote the different sample sizes associated with y, such as

ki, 1 ≤ i ≤ m and kn. Let aN be a sequence of positive numbers such that

aN →∞, aN{P(γ̂n,π 6= γn) ∧ P(γ̂n,π 6= γ∗n)} → 0. (17)

By Theorem 1 and Corollary 1, we have P(γ̂n,π 6= γn) → 0 and P(γ̂n,π 6= γ∗n) → 0. Thus,

for example, for any 0 < δ < 1, aN = {P(γ̂n,π 6= γn)∧P(γ̂n,π 6= γ∗n)}−δ is a sequence that

satisfies (17). We have the following result.

Theorem 2 (Asymptotic optimality of MPPM). Suppose that the conditions of Theo-

rem 1 are satisfied. Let γ̌n be any other class matcher. Then, we have

lim sup{aNP(γ̂n,π 6= γn)} ≤ lim sup{aNP(γ̌n 6= γn)} (18)

for any sequence aN that satisfies (17).

Proof: We have, using Lemma 1,

P(γ̂n,π 6= γn) = P(γ̂n,π 6= γn, γ̂n,π = γ∗n) + P(γ̂n,π 6= γn, γ̂n,π 6= γ∗n)

≤ P(γ∗n 6= γn) + P(γ̂n,π 6= γn) ∧ P(γ̂n,π 6= γ∗n)

≤ P(γ̌n 6= γn) + P(γ̂n,π 6= γn) ∧ P(γ̂n,π 6= γ∗n).

Thus, by multiplying aN on both sides, we obtain

aNP(γ̂n,π 6= γn) ≤ aNP(γ̌n 6= γn) + aN{P(γ̂n,π 6= γn) ∧ P(γ̂n,π 6= γ∗n)}.

The result then follows by taking the lim sup on both sides. 2

Now we know that MPM is optimal and MPPM is asymptotically optimal. A question

is how much is the difference between the two. The next result gives an upper bound

on this difference in terms of the probability of match. To simplify the notation, write

P (i) = P(γn = i|y) and Pπ(i) = Pπ(γn = i|y), 1 ≤ i ≤ m.

Theorem 3 (Error probability bounds). The following inequalities hold:

0 ≤ P(γ̂n,π 6= γn)− P(γ∗n 6= γn)

≤ E

{
max

1≤j≤m
Pπ(j)− Pπ(γ∗n)

}
+ E

{
max

1≤j≤m
P (j)− P (γ̂n,π)

}
. (19)
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Intuitively, the expression inside the first expectation on the right side of (19) is the

distance between the maximum pseudo posterior and pseudo posterior at the MPM; simi-

larly, the expression inside the second expectation on the right side of (19) is the distance

between the maximum posterior and posterior at the MPPM. An implication is that what

matters is how close the MPPM is to maximizing the posterior, and vice versa (how close

the MPM is to maximizing the pseudo posterior). For example, the pseudo posterior does

not need to be close to the posterior everywhere, as long as it is close to the posterior where

it peaks; in other words, the posterior and pseudo posterior peak around the same place.

The proof of Theorem 3 is given in the Supplementary Material.

2.2 Consistency and asymptotic optimality when m→∞

First note that some results from the previous subsection, namely, Lemma 1 and The-

orem 3, are not asymptotic, which means that they hold under fixed sample size. These

results extend without change whenm→∞. The theorem below extends all of the asymp-

totic results, namely, Theorem 1 and Theorem 2, in that it allows m to increase at a suitable

rate. Define k∗ = min1≤i≤m ki and k∗ = max1≤i≤m ki.

Theorem 4 (Consistency and asymptotic optimality of MPPM). Suppose that (a)

m→∞ and there is d > 4 such that m2d/k∗ = O(1), md/kn = o(1),

max
1≤i 6=j≤m

∣∣∣∣log

{
π(γn = i)

π(γn = j)

}∣∣∣∣ = O

(
kn

md

)
, (20)

and (13) holds; (b) x̄i·, 1 ≤ i ≤ m and x̄n· are bounded; and (c) md(β̂ − β)
P→ 0 for the

same d, and (11) holds. Then, we have the following conclusions:

(I) P(γ̂n,π = γ∗n)→ 1 and P(γ̂n,π = γn)→ 1.

(II) (18) holds for any other class matcher γ̌n and sequence aN satisfying (17).

Assumption (a) states, in particular, that the rate that m increases is relatively slower

than that of kn, and even slower than those of ki, 1 ≤ i ≤ m. This is reasonable because,

so far as this paper is concerned, the cases we are concerned with are such that m is much
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smaller than the ki’s or kn. The key ideas of the proof are similar to those of Theorem 1,

but with more careful evaluation of the bound for the log-ratio of selection probability and

the lower bound for the distance between different random effects, taking into account that

now m→∞. Detail of the proof is given in the Supplementary Material.

To conclude this section, we have shown (Theorem 2 and Theorem 4) that MPPM is

asymptotically superior than any other class matcher, including the CMMP class matcher

of Jiang et al. (2018) [see the new paragraph below (10)], in terms of smaller probability of

mismatch under a suitable asymptotic framework. This theoretical result is fully supported

by our empirical studies presented in Section 4 and Section 6. Furthermore, this is the very

reason for the superior performance of PBCMMP over CMMP, which we demonstrate both

theoretically and empirically in the sequel.

3 Consistency and asymptotic optimality of θ̂n,π

We now switch attention to asymptotic behavior of the CMEP based on MPPM. Let θn

denote a mixed effect associated with some new observations that satisfy (4). The mixed

effect can be expressed as θn = x′nβ+αγn . For example, xn may be one of the observed xnj ,

in which case θn = θnj , defined above (10), but xn can also be a value not among the new

observations ynj, xnj, 1 ≤ j ≤ kn. The CMEP of θn, denoted by θ̂n,π, is given by (10) with

xnj replaced by xn, i replaced by γ̂n, the MPPM defined by (9), and β, σ2, τ 2 replaced by

β̂, σ̂2, τ̂ 2, respectively. We first establish consistency of the CMEP based on MPPM. Later,

we study asymptotic optimality of the CMEP based on MPPM under a suitable framework.

3.1 Consistency when m is bounded

Although in Jiang et al. (2018), the authors also established consistency of CMEP based

on their proposed class matcher, the result was proved under the assumption that m → ∞

(see assumption A5 in the supplementary material of Jiang et al. 2018). Here, we consider
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consistency of CMEP based on MPPM when m is bounded, which is also practical, for

example, in some cases of network data.

Theorem 5 (consistency of CMEP when m is bounded). Suppose that xn is bounded.

Then, under the assumptions of Theorem 1, the CMEP based on MPPM is consistent, that

is, θ̂n,π − θn
P−→ 0. The result holds regardless of the choice of the working model π.

The proof of Theorem 5 is given in the Supplementary Material. It should be noted that,

although we have established consistency of the CMEP of θn, there is no consistency of the

corresponding classified predictor for yn, a future observation associated with θn. This is

because yn is subject to a new error, which has a non-vanishing variance; in other words,

yn = θn + εn, where εn ∼ N(0, τ 2) with τ 2 > 0. Therefore, there is no way to estimate, or

predict, yn consistently due to the non-vanishing εn.

3.2 Consistency when m→∞

In this case, there are two scenarios, the matched case and unmatched case (Jiang et al.

2018). In the matched case, it is assumed that the true class number of the new observation,

γn, belongs to {1, . . . ,m}, the set of indexes associated with the training data classes. This

is the case that we have considered, so far, in studying the asymptotic behaviors. Note that

consistency in terms of the class matching is only possible in the matched case. In the un-

matched case, γn does not belong to the above index set. There is no matching consistency,

of course, in the unmatched case. Nevertheless, we can still establish consistency of the

CMEP in the unmatched case. The latter result was also obtained in Jiang et al. (2018).

Theorem 6 (consistency of CMEP in matched case). Suppose that xn is bounded.

Then, under the assumptions of Theorem 4, the CMEP based on MPPM is consistent, that

is, θ̂n,π − θn
P−→ 0, regardless of the choice of the working model π.

The proof of Theorem 6 is given in the Supplementary Material.

We now consider the case that γn /∈ {1, . . . ,m}. This means that the random effect

corresponding to the new observations does not match one of the random effects associated
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with the training data. Such a case was considered in Jiang et al. (2018) and Sun et al.

(2018). Of course, in this case, there is no consistency in terms of matching the class index;

however, it was shown (e.g., Jiang et al. 2018) that, as long as m → ∞, the CMEP of θn

(based on the mismatched class index) is still consistent. The rationale is that, although

there is no exact match of the class index, since m is large, there is alway some αi that

comes close to αγn , which is all that matters, so far as consistency of CMEP is concerned.

The following theorem states that a similar result holds for the CMEP based on the MPPM.

Theorem 7 (consistency of CMEP in unmatched case). Suppose that αγn is indepen-

dent with αi, 1 ≤ i ≤ m, and αγn = OP(logm). Then, under the assumptions of Theorem

6, we have θ̂n,π− θn
P−→ 0, that is, the CMEP based on the MPPM is consistent, regardless

of the choice of the working model π.

Note that, because γn does not match any of the indexes 1 ≤ i ≤ m, it is reasonable

to assume that αγn is independent with αi, 1 ≤ i ≤ m. The additional assumption, αγn =

OP(logm), takes into account the fact that γn is considered as a random index. Note that

if, instead, γn is a fixed index, then we have αγn = OP(1) provided that E(|αi|) < ∞ for

every i. To see a case where γn is random, consider the following example.

Example 1. Suppose that E(|αi|) ≤ B, i = 1, 2, . . . for some constant B > 0, and that

γn ∈ {m + 1,m + 2, . . . } such that, given γn = i, αγn is distributed as αi. Then, we have

αγn = OP(1). To show this, note that, for any M > 0, we have

P(|αγn | > M) =
∞∑

i=m+1

P(γn = i)P(|αγn | > M |γn = i), (21)

and P(|αγn | > M |γn = i) = P(|αi| > M) ≤ B/M for every i > m. Thus, the right side

of (21) is bonded by (B/M)
∑∞

i=m+1 P(γn = i) = B/M , which is arbitrarily small if M

is sufficiently large. Thus, by definition (e.g., Jiang 2010, sec. 3.4), αγn = OP(1).

The proof of Theorem 7 is given in the Supplementary Material.
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3.3 Asymptotic optimality

Let us focus on the matched case with m→∞. To simplify the notation, write γ = γn,

θ = θn, and θ̂π = θ̂n,π. Our approach is to first establish a lower bound for a normalized

limit of the MSPE of a classified predictor, that is, a predictor of θ, θ̂, based on a class

matcher γ̂. We then show that the normalized MSPE of θ̂π attains the asymptotic lower

bound. In a way, the approach is similar to the Craḿer-Rao lower bound and asymptotic

optimality of the maximum likelihood or Bayes estimators (e.g., Lehmann and Casella

1998, ch. 6). Recall the notation bij defined in Theorem 1. Recall ȳi·, x̄i· are defined below

(10), x̄n· is defined below (13). Also let ȳn· = k−1
n

∑kn
j=1 ynj , Bmax = max1≤i 6=j≤m bij .

Theorem 8. Suppose that (11) holds and there is a constant h > 1 such that, asm→∞,

the following are O(1): mhE(|β̂ − β|2), mh+1/2/k∗ and mh/kn.

(I) For any classified predictor θ̂, and any sequence of positive numbers, bN , satisfying

bN →∞ and bN/m(2h−1)/4 → 0, we have

lim inf{bNE(θ̂ − θ)2}

≥ lim inf

{
bNE

[(
min

1≤i≤m
d2
i

){
1− max

1≤j≤m
P(γ = j|y)

}]}
, (22)

where di = ȳi· − ȳn· − (x̄i· − x̄n·)
′β, 1 ≤ i ≤ m.

(II) If, in addition, we have (k∗/kn)2E(|β̂ − β|2) = O(m−g1) for some g1 > (2h − 1)/4,

and there is g > 2h + 3 such that Bmax(mg/kn) = o(1), mg2/(k∗ ∧ kn) = O(1) and

(kn/k∗)m
g3 = O(1) for some g2 > 2g + (5/2)h+ 7/4 and g3 > g + h/2 + 7/4. Then, for

any sequence bN satisfying the conditions in (I), we have

lim inf{bNE(θ̂π − θ)2}

= lim inf

{
bNE

[(
min

1≤i≤m
d2
i

){
1− max

1≤j≤m
P(γ = j|y)

}]}
. (23)

The result holds regardless of the choice of π.

Note that, if β̂ is a (consistent) estimator of β based on the training data, its accuracy,

or effective sample size, is typically much higher than the number of classes, m. In fact,
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under some regularity conditions, we have E(|β̂ − β|2) = O(n−1), where n =
∑m

i=1 ki

is the total sample size. Therefore, the conditions involving E(|β̂ − β|2) are expected to

hold. The rest of the conditions are regarding the relative rates that m, k∗ and kn increase.

For the most part, it requires that k∗ and kn increase at a (much) faster rate than m, and k∗

increases at a faster rate than kn. The conditions seem reasonable, at least, in applications

to network data. The proof of Theorem 8 is given in the Supplementary Material.

4 Simulation studies

We carry out a series of Monte-Carlo simulation studies to investigate finite-sample

performance of the proposed PBCMMP method and compare it with the existing methods,

including the CMMP method of Jiang et al. (2018) and the standard regression prediction

(RP) method. We begin with an example under the same simulation setting of Jiang et

al. (2018). We then study a number of more complex situations, including more covariate

predictors, different working models, and noise in random effects so that an exact match

does not exist. The section is concluded with a summary.

4.1 An example under the setting of Jiang et al. (2018)

We consider an example studied by Jiang et al. (2018) based the following model:

yij = 1 + 2x1,ij + 3x2,ij + αi + εij, (24)

i = 1, . . . ,m, j = 1, . . . , k, where αi’s and εij’s are independent with αi ∼ N(0, G), εij ∼

N(0, 1); xk,ij, k = 1, 2 are generated from N(0, 1), then fixed throughout the simulation.

Suppose that a new subject satisfies the same NER model:

ynj = 1 + 2x1,n + 3x2,n + αγn + εnj, (25)

j = 1, . . . , kn, where xk,n, k = 1, 2 are generated from N(0, 1), and fixed in the simulation.
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Let cn = 1, that is, the new subject is thought to belong to the first community (i = 1),

but there is a chance that this may be wrong. The true index, γn, satisfies (3), where the

true value of p is 0.85. However, we pretend that this is unknown, and two proposed values

of p are considered: 0.75, 0.9. The following combinations of sample sizes are considered:

m = 10, k = 10, 50, 100; m = 20, k = 50, 100, 200, 400. For each of the combinations,

we consider G = 0.1, 1; kn = 1, 10 for the cases of m = 10, and kn = 1, 10, 50 for the

cases of m = 20, resulting a total of 36 combinations of m, k,G, kn.

There are two objectives of interest: Identification of the true index, γn, and prediction

of the true mixed effect, θn = 1 + 2x1,n + 3x2,n + αγn . As in Jiang et al. (2018), unknown

parameters are replaced by their REML estimators based on the training data. We run

100 simulations under each combination of m, k,G, kn, and p values specified above, and

report (i) the empirical MSPE: E(θ̂n − θn)2, where θ̂n corresponds to PBCMMP, CMMP,

or RP, based on the simulation runs; (ii) ratio of the empirical MSPEs, that is, Rc/p, which

is the empirical MSPE of CMMP divided by that of PBCMMP, and Rr/p, which is the

empirical MSPE of RP divided by that of PBCMMP; and (iii) empirical probability of

correct matching, that is, proportion of times that the class index is matched correctly, for

PBCMMP (PCMp) and CMMP (PCMc). The results for p = 0.75 are presented in Table

1; the results for p = 0.90 are deferred to the Supplementary Material. The numbers in the

parentheses are empirical standard deviations for the empirical MSPE.

The ratio of MSPE is a measure of relative efficiency comparing two predictors, with

the ratio greater than 1 indicating the denominator method (i.e., PBCMMP) is more effi-

cient than the numerator method (CMMP or RP). It is seen that the majority of the ratios

for CMMP are greater than 1, some much greater than 1; and all of the ratios for RP are

greater than 1, some much greater than 1. This suggests that, overall, PBCMMP performs

significantly better than CMMP and RP in terms of the predictive performance. It is inter-

esting to note that CMMP does not always perform better than RP, while PBCMMP does.

It is also seen that, in terms of probability of correct matching, PBCMMP performs much
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Table 1: Empirical MSPE, Ratio of MSPE, and Probability of Correct Matching (p=0.75)
Empirical MSPE Ratio of MSPE Prob. of Correct Matching

G kn PBCMMP CMMP RP Rc/p Rr/p PCMp PCMc

m=10,k=10 0.1 1 0.132(0.022) 0.251(0.037) 0.164(0.021) 1.90 1.24 0.85 0.21

0.1 10 0.131(0.021) 0.091(0.012) 0.164(0.021) 0.70 1.25 0.83 0.26

1 1 0.387(0.082) 0.798(0.125) 1.140(0.149) 2.06 2.95 0.84 0.23

1 10 0.193(0.031) 0.099(0.015) 1.140(0.149) 0.52 5.91 0.83 0.35

m=10,k=50 0.1 1 0.038(0.006) 0.257(0.036) 0.111(0.014) 6.79 2.93 0.85 0.13

0.1 10 0.040(0.006) 0.064(0.009) 0.111(0.014) 1.61 2.80 0.84 0.20

1 1 0.246(0.077) 0.857(0.126) 1.018(0.128) 3.48 4.14 0.85 0.19

1 10 0.063(0.017) 0.089(0.014) 1.018(0.128) 1.40 16.10 0.86 0.36

m=10,k=100 0.1 1 0.027(0.006) 0.276(0.037) 0.103(0.013) 10.38 3.86 0.85 0.10

0.1 10 0.030(0.007) 0.070(0.009) 0.103(0.013) 2.34 3.43 0.84 0.18

1 1 0.219(0.074) 0.868(0.130) 0.989(0.124) 3.97 4.52 0.85 0.19

1 10 0.052(0.014) 0.087(0.015) 0.989(0.124) 1.65 18.86 0.85 0.40

m=20,k=50 0.1 1 0.033(0.007) 0.303(0.039) 0.124(0.016) 9.12 3.72 0.85 0.07

0.1 10 0.037(0.008) 0.070(0.010) 0.124(0.016) 1.88 3.31 0.84 0.13

0.1 50 0.029(0.004) 0.021(0.003) 0.124(0.016) 0.73 4.32 0.85 0.19

1 1 0.199(0.073) 0.734(0.114) 1.147(0.142) 3.69 5.78 0.85 0.14

1 10 0.065(0.015) 0.093(0.013) 1.147(0.142) 1.43 17.68 0.86 0.27

1 50 0.029(0.005) 0.025(0.004) 1.147(0.142) 0.87 40.18 0.88 0.33

m=20,k=100 0.1 1 0.027(0.005) 0.308(0.038) 0.113(0.013) 11.55 4.23 0.85 0.09

0.1 10 0.025(0.005) 0.073(0.011) 0.113(0.013) 2.96 4.56 0.85 0.16

0.1 50 0.020(0.003) 0.017(0.002) 0.113(0.013) 0.85 5.73 0.86 0.24

1 1 0.199(0.072) 0.729(0.112) 1.134(0.137) 3.67 5.71 0.85 0.16

1 10 0.066(0.017) 0.095(0.014) 1.134(0.137) 1.45 17.29 0.85 0.26

1 50 0.014(0.002) 0.023(0.005) 1.134(0.137) 1.67 80.69 0.91 0.45

m=20,k=200 0.1 1 0.021(0.005) 0.344(0.042) 0.117(0.014) 16.60 5.65 0.85 0.09

0.1 10 0.019(0.005) 0.075(0.011) 0.117(0.014) 3.82 6.00 0.85 0.16

0.1 50 0.013(0.003) 0.015(0.003) 0.117(0.014) 1.22 9.31 0.86 0.24

1 1 0.203(0.079) 0.764(0.120) 1.154(0.138) 3.76 5.69 0.85 0.13

1 10 0.043(0.013) 0.084(0.011) 1.154(0.138) 1.97 27.08 0.86 0.29

1 50 0.008(0.001) 0.020(0.003) 1.154(0.138) 2.46 141.52 0.93 0.45

m=20,k=400 0.1 1 0.018(0.005) 0.338(0.042) 0.116(0.014) 19.12 6.55 0.85 0.06

0.1 10 0.016(0.005) 0.071(0.009) 0.116(0.014) 4.32 7.02 0.85 0.13

0.1 50 0.009(0.002) 0.019(0.003) 0.116(0.014) 2.16 12.95 0.86 0.27

1 1 0.195(0.076) 0.770(0.117) 1.159(0.141) 3.95 5.94 0.85 0.10

1 10 0.038(0.013) 0.091(0.012) 1.159(0.141) 2.41 30.77 0.86 0.26

1 50 0.004(0.001) 0.017(0.003) 1.159(0.141) 3.77 259.27 0.88 0.42
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better than CMMP, which may explain the better predictive performance of PBCMMP.

Table 1 of the Supplementary Material shows very much the same pattern for p = 0.90.

In fact, similar pattern is found much more broadly, not just for the values of p presented

here. For example, Figure 1 presents two plots of the ratio of the empirical MSPE of

CMMP over that of PBCMMP, that is, Rc/p, for the cases of m = 20, kn = 1. It is seen

that, as long as p is not very small, the raio is (well) above 1, especially when k is large.
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Figure 1: Ratio of empirical MSPE of CMMP / Empirical MSPE of PBCMMP:

(a) m = 20, kn = 1, G = 0.1; (b) m = 20, kn = 1, G = 1

4.2 More covariate predictors

In this subsection, we extend the model in the previous subsection by adding more

covariates. The extended model can be expressed as

yij = 1 + x1,ij + x2,ij + 2x3,ij + 4x4,ij + αi + εij, (26)
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i = 1, . . . ,m, j = 1, . . . , k, where xk,ij, k = 1, 2 are generated from N(0, 1), x3,ij are

generated from Bernoulli(0.5), and x4,ij are generated from U(0, 1). The x’s are then

fixed throughout the simulation. The rest of the settings are the same as in the previous

subsection. The results are presented in Table 2 and Table 3 of the Supplementary Material.

It is seen that the observed patterns are very much the same as those of Table 1.

4.3 Different working model

In this subsection, we consider a different type of working model than the one considered

earlier. We compare PBCMMP with CMMP as well as an ideal matching strategy, in which

the working model is the true distribution of γn. The latter is not available, of course, in

practice, but the comparison would give us some idea on the relative efficiency of a working

model compared with the true distribution (see Theorem 3).

Specifically, we let m = 20; the true γn is generated from the 1 + Binomial(9, 0.01)

distribution while the working model is π(γn) = 0.8 if γn = 1; π(γn) = 0.1 if γn = 2; and

π(γn) = 1/180 if γn = 3, · · · , 20. Other settings are the same as in Section 4.1. The results

are reported in Table 2, where BCMMP represents PBCMMP using the true distribution of

γn as the working model, and Pb, Pp and Pc denote the empirical probabilities of correct

matching for BCMMP, PBCMMP and CMMP, respectively.

The big picture is quite similar to what have been observed in the previous two subsec-

tions. It is also seen that the matching probability under the true distribution of γn, which

corresponds to γ∗n in, say, Lemma 1, is the highest in most cases. This is consistent with

Lemma 1. It is also observed that the matching probability under the working model, which

corresponds to γ̂n,π in, say, Theorem 2, comes quite close to that of γ∗n, and the two proba-

bilities, Pb and Pp, are both much higher than Pc. These are consistent with the theory we

have established, namely, Theorem 2 and Theorem 4.
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Table 2: Empirical MSPE, Ratio of MSPE, and Probability of Correct Matching
k G kn Empirical MSPE Ratio of MSPE Prob. of Correct Matching

BCMMP PBCMMP CMMP RP Rc/p Rr/p Pb Pp Pc

50 0.1 1 .044(.008) .038(.006) .306(.039) .114(.015) 8.11 3.01 .83 .83 .06

0.1 10 .035(.005) .037(.006) .068(.010) .114(.015) 1.86 3.10 .83 .82 .12

0.1 50 .026(.003) .026(.003) .020(.003) .114(.015) 0.76 4.34 .88 .88 .19

1 1 .304(.100) .259(.091) .763(.129) 1.06(.141) 2.95 4.08 .85 .86 .14

1 10 .037(.010) .050(.013) .091(.013) 1.06(.141) 1.80 20.95 .93 .90 .23

1 50 .029(.004) .029(.004) .022(.003) 1.06(.141) 0.77 36.96 .93 .92 .29

100 0.1 1 .037(.007) .035(.007) .315(.038) .104(.014) 8.97 2.96 .83 .83 .06

0.1 10 .034(.007) .034(.007) .074(.010) .104(.014) 2.19 3.06 .84 .84 .15

0.1 50 .016(.002) .016(.002) .017(.002) .104(.014) 1.04 6.53 .91 .91 .22

1 1 .287(.093) .287(.093) .769(.124) 1.05(.138) 2.68 3.66 .85 .85 .11

1 10 .030(.010) .030(.010) .089(.013) 1.05(.138) 2.95 34.73 .93 .93 .27

1 50 .013(.002) .013(.002) .024(.005) 1.05(.138) 1.78 78.98 .96 .96 .41

200 0.1 1 .037(.010) .037(.010) .353(.042) .111(.014) 9.60 3.00 .83 .83 .06

0.1 10 .031(.009) .035(.009) .076(.011) .111(.014) 2.19 3.17 .85 .84 .14

0.1 50 .009(.002) .009(.002) .016(.003) .111(.014) 1.79 12.51 .92 .92 .21

1 1 .264(.092) .302(.103) .812(.135) 1.08(.139) 2.69 3.56 .85 .85 .09

1 10 .021(.009) .036(.014) .080(.011) 1.08(.139) 2.21 29.64 .94 .92 .28

1 50 .008(.002) .008(.002) .020(.003) 1.08(.139) 2.48 135.50 .97 .97 .43

400 0.1 1 .031(.009) .031(.009) .347(.042) .107(.014) 11.22 3.47 .83 .83 .04

0.1 10 .020(.006) .029(.009) .072(.009) .107(.014) 2.48 3.69 .86 .84 .13

0.1 50 .006(.002) .006(.002) .019(.003) .107(.014) 3.20 17.73 .91 .90 .28

1 1 .250(.088) .292(.101) .815(.133) 1.07(.142) 2.79 3.67 .85 .85 .06

1 10 .018(.009) .033(.014) .091(.013) 1.07(.142) 2.81 33.00 .94 .92 .26

1 50 .006(.002) .005(.002) .017(.003) 1.07(.142) 3.27 206.59 .96 .96 .45
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4.4 Noise in random effect

Finally, we consider a situation where there is no exact match between the random effect

associated with the new observations and a random effect associated with the training data.

Specifically, a noise is added to the random effect of the new observations that an exact

match does not exist. This is practical in some situations. The simulation setting is the

same as that of Section 4.1 except that the true random effect of the new observations is

αγn + en, where en is an additional noise that is distributed as N(0, G/10). It follows that

the standard deviation of the noise is about about 1/3 of that of the true random effect. The

results for p = 0.9 are presented in Table 3; those for p = 0.75 are deferred to Table 4

of the Supplementary Material. Although there is no exact match of the random effect in

this case, we can still obtain empirical probability of matching the main part of the random

effect, αγn , and call it probability of approximate matching, denoted by PAMp and PAMc,

respectively, for PBCMMP and CMMP.

Once again, the results follow the same patterns that have been observed in the previous

subsections; in particular, the probability of approximating match behaves similarly as the

probability of correct matching that were observed previously.

4.5 Summary

To summarize this section, we focus on the comparison between PRCMMP and CMMP.

There are a total of 7 cases of different scenarios, including those presented in the Sup-

plementary Material. Denote the two cases in Section 4.1 corresponding to p = 0.75 and

p = 0.90 by I-1 and I-2; the two cases in Section 4.2 corresponding to p = 0.75 and

p = 0.90 by II-1 and II-2; the scenario of Section 4.3 by III; and the two cases in Section

4.4 corresponding to p = 0.75 and p = 0.90 by IV-1 and IV-2, respectively. Table 4 sum-

marizes the mean probability of correct matching, or probability of approximate matching

(results with *), and the six-number summary of the MSPE ratio, that is, the minimum, first

quartile, median, mean, third quartile, and maximum of the empirical MSPE of CMMP di-
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Table 3: Empirical MSPE, Ratio of MSPE, and Probability of Approximate Matching (p=0.90)
Empirical MSPE Ratio of MSPE Prob. of Approx. Matching

G kn PBCMMP CMMP RP Rc/p Rr/p PAMp PAMc

m=10,k=10 0.1 1 0.132(0.022) 0.215(0.031) 0.164(0.021) 1.63 1.24 0.85 0.21

0.1 10 0.108(0.015) 0.103(0.014) 0.164(0.021) 0.96 1.51 0.82 0.20

1 1 0.363(0.076) 0.729(0.098) 1.140(0.149) 2.01 3.14 0.85 0.27

1 10 0.314(0.068) 0.274(0.046) 1.140(0.149) 0.87 3.63 0.78 0.26

m=10,k=50 0.1 1 0.038(0.006) 0.216(0.034) 0.111(0.014) 5.71 2.93 0.85 0.13

0.1 10 0.038(0.006) 0.090(0.015) 0.111(0.014) 2.37 2.93 0.85 0.16

1 1 0.220(0.065) 0.781(0.108) 1.018(0.128) 3.55 4.63 0.85 0.20

1 10 0.186(0.052) 0.258(0.043) 1.018(0.128) 1.39 5.74 0.83 0.28

m=10,k=100 0.1 1 0.027(0.006) 0.226(0.029) 0.103(0.013) 8.51 3.86 0.85 0.15

0.1 10 0.027(0.006) 0.099(0.014) 0.103(0.013) 3.72 3.86 0.85 0.22

1 1 0.192(0.060) 0.805(0.406) 0.989(0.124) 4.19 5.15 0.85 0.19

1 10 0.190(0.053) 0.267(0.043) 0.989(0.124) 1.40 5.20 0.83 0.31

m=20,k=50 0.1 1 0.033(0.007) 0.266(0.037) 0.124(0.016) 8.01 3.72 0.85 0.08

0.1 10 0.033(0.007) 0.094(0.013) 0.124(0.016) 2.84 3.72 0.85 0.14

0.1 50 0.029(0.004) 0.030(0.005) 0.124(0.016) 1.04 4.32 0.85 0.19

1 1 0.166(0.053) 0.828(0.111) 1.147(0.141) 4.99 6.91 0.85 0.15

1 10 0.110(0.038) 0.233(0.045) 1.147(0.141) 2.11 10.41 0.83 0.22

1 50 0.065(0.014) 0.095(0.016) 1.147(0.141) 1.47 17.77 0.81 0.26

m=20,k=100 0.1 1 0.027(0.005) 0.269(0.033) 0.113(0.013) 10.11 4.23 0.85 0.09

0.1 10 0.027(0.005) 0.096(0.013) 0.113(0.013) 3.60 4.23 0.85 0.17

0.1 50 0.022(0.004) 0.029(0.004) 0.113(0.013) 1.29 5.08 0.86 0.24

1 1 0.170(0.056) 0.824(0.108) 1.135(0.137) 4.85 6.67 0.85 0.13

1 10 0.126(0.039) 0.239(0.044) 1.135(0.137) 1.90 9.02 0.83 0.20

1 50 0.053(0.012) 0.094(0.014) 1.135(0.137) 1.78 21.51 0.84 0.28

m=20,k=200 0.1 1 0.021(0.005) 0.296(0.037) 0.117(0.014) 14.28 5.65 0.85 0.05

0.1 10 0.021(0.005) 0.100(0.014) 0.117(0.014) 4.83 5.65 0.85 0.15

0.1 50 0.014(0.004) 0.024(0.004) 0.117(0.014) 1.68 8.14 0.85 0.17

1 1 0.166(0.059) 0.852(0.115) 1.155(0.138) 5.13 6.95 0.85 0.15

1 10 0.139(0.048) 0.243(0.049) 1.155(0.138) 1.75 8.34 0.84 0.20

1 50 0.048(0.012) 0.078(0.012) 1.155(0.138) 1.63 24.15 0.86 0.34

m=20,k=400 0.1 1 0.018(0.005) 0.287(0.036) 0.116(0.014) 16.24 6.55 0.85 0.07

0.1 10 0.018(0.005) 0.095(0.013) 0.116(0.014) 5.37 6.55 0.85 0.13

0.1 50 0.008(0.002) 0.026(0.005) 0.116(0.014) 3.20 14.24 0.86 0.21

1 1 0.163(0.060) 0.800(0.108) 1.159(0.141) 4.89 7.09 0.85 0.16

1 10 0.139(0.047) 0.247(0.048) 1.159(0.141) 1.78 8.37 0.84 0.19

1 50 0.057(0.016) 0.092(0.016) 1.159(0.141) 1.62 20.39 0.82 0.28
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Table 4: Mean Prob. of Matching and 6-number Summary of MSPE Ratio
Mean Prob. of Matching 6-number Summary of MSPE Ratio

Case PBCMMP CMMP Min. Q1 Median Mean Q3 Max.

I-1 0.86 0.22 0.52 1.57 2.38 3.95 3.85 19.12

I-2 0.86 0.22 0.43 1.40 2.09 3.96 4.75 19.12

II-1 0.86 0.22 0.60 1.46 2.49 3.95 3.89 19.05

II-2 0.86 0.22 0.57 1.31 2.45 3.96 4.88 19.05

III 0.89 0.19 0.76 1.85 2.58 3.44 3.01 11.22

IV-1 0.84* 0.19* 0.90 1.58 2.60 4.13 5.57 16.24

IV-2 0.84* 0.19* 0.87 1.63 2.61 3.97 4.92 16.24

vided by the empirical MSPE of PBCMMP.

It is seen that the minimum MSPE ratio is less than one, with the smallest about 0.43;

after the first quartile (Q1), all of the summaries of the MSPE ratio are greater than one,

with most of the maximum over 19. Overall, PBCMMP is seen to have significant advan-

tage over CMMP both in terms of the probability of correct (or approximate) matching and

in terms of the MSPE of the prediction.

5 Measure of uncertainty

A standard measure of uncertainty, in the context of prediction, is the MSPE. Jiang and

Torabi (2020) proposed a Sumca method of MSPE estimation that is applicable to a broad

range of problems involving complex predictors, including the current PBCMMP. In fact,

in a similar application, Sun et al. (2018) has applied the Sumca method to classified mixed

logistic model prediction. The method takes advantage from small area estimation (e.g.,

Rao and Molina 2015), where estimation of the area-specific MSPE has been extensively

studied. Two of the main approaches are the Prasad-Rao linearization method (P-R; Prasad

and Rao 1990) and resampling methods. See Rao and Molina (2015) for details. Sumca

proposes to put together the best parts of the two approaches. Specifically, it uses analytic

expression to compute a leading term of the MSPE estimator, which is similar to the P-R
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method, and a Monte-Carlo method to evaluate a lower-order, bias correction term, which

is similar to the resampling method. See Jiang and Torabi (2020) for details. An alternative

method is double bootstrapping (DB; Hall and Maiti 2006), which is one of the resampling

methods noted above. DB is known to be computationally very intensive. On the theoretical

side, both Sumca and DB are known to produce second-order unbiased MSPE estimators,

that is, the order of the bias is o(m−1).

A simulation study is carried out to evaluate performance of the two MSPE estimators,

Sumca and DB, under the setting of Section 4.1. We consider a case of relatively small

sample sizes with m = k = kn = 10, and a case of relatively large sample sizes with

m = 20, k = 200 and kn = 50. In each case G = 0.1 and G = 1 are considered. We use

the Monte-Carlo sample size K = 50 for computing the Sumca estimator; for DB, we use

K1 = K2 = 50 as the bootstrap sample sizes for the two stages of DB. As noted, DB is

computationally very intensive. Although for Sumca we have no computational difficulties

even with larger K, we intensionally keep K,K1, K2 the same so that the results are more

comparable when computational costs are put aside (see below).

Table 5 presents the percentage relative bias defined as %RB = 100 × [{E(M̂SPE) −

MSPE}/MSPE}], where MSPE is the true simulated MSPE and E(M̂SPE) the simulated

mean of the MSPE estimator, either Sumca or DB. The %RB is a standard measure of

performance for MSPE estimation (e.g., Jiang and Torabi 2020). The results are based on

100 simulation runs.

Table 5: Empirical % RB of MSPE Estimation for PBCMMP
p = 0.75 p = 0.90 p = 0.95

G kn Sumca DB Sumca DB Sumca DB

m=10, k=10 0.1 10 -3.11 -4.70 -7.49 -9.51 -6.90 -10.11

1 10 -1.97 -1.36 -8.14 -5.59 -16.65 -8.85

m=20, k=200 0.1 50 -34.40 -20.65 -53.66 -57.12 -58.36 -61.93

1 50 3.30 28.28 -5.39 22.03 -14.4 24.72

It is seen that the performance of both Sumca and DB improve as G increases. Also,
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the performance of both Sumca and DB seem to get worse when m increases, especially

when G is small. One explanation is that, when the sample sizes get larger, or when G gets

smaller, the actual MSPE, which serves as the numerator of %RB, decreases. Therefore, it

requires more accuracy in the MSPE estimation (the numerator) in order to keep the %RB

small (in absolute value). As for the comparison between Sumca and DB, it is seen that

Sumca performs better in most cases. One should also be reminded that DB is computa-

tionally much more expensive than Sumca. Roughly speaking, the computing time for DB

is about 15 times that of Sumca for the current simulation study.

6 Prediction with Facebook network data

As a real-data validation, we apply our proposed metod to a large social network data

regarding Facebook users (available at http://snap.stanford.edu/data/ego-Facebook.html).

A node in the network represents a user and an edge a friendship between two users. From

Facebook we obtained user profile information and network data from 10 ego-networks,

consisting of 4039 nodes and 88234 edges. For each node, feature vectors have been pro-

vided and their interpretations obscured. For instance, where the original dataset may have

contained a feature ”political=Democratic Party”, the new data would simply contain ”po-

litical=anonymized feature 1”. Therefore, by using the anonymized data it is possible to

determine whether two users have the same political affiliations, but not what their indi-

vidual political affiliations represent. In this dataset, features are ’1’ if the user has this

property in the profile, and ’0’ otherwise.

The data have been analyzed by several authors; see McAuley and Leskovec (2012),

Bickel and Sarkar (2016) and Ma et al. (2018), among others. However, the focuses

were on problem of determining the number of communities or clusters, and on identifying

users’ social circles within the Facebook network. Here, we use the data to demonstrate

the effectiveness of PBCMMP in predicting the number of friendships for a Facebook user,

assuming, of course, that the latter is unknown. The PBCMMP is based on the working
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model (3) with p = 0.75, or p = 0.95. Because the dimension of feature vectors for each

ego-network is different, and the feature value is either 0 or 1, the proportion of features

with the value being 1, that is, the number of features equal to 1 divided by the dimension

of feature vector, is used as a covariate. The outcome of interest is the log-transformed

number of friendships, that is, the number of edges for each node.

Table 6: Average Squared Prediction Error (Proportion of Correct Matching)
Community Size PBCMMP (p = 0.75) PBCMMP (p = 0.95) CMMP RP

1 348 0 (1) 0 (1) 0.788 (0) 0.781

2 225 0.167 (0.957) 0 (1) 1.131 (0) 0.076

3 113 0 (1) 0 (1) 0.562 (0.083) 0.364

4 171 0 (1) 0 (1) 1.036 (0.059) 0.500

5 39 0 (1) 0 (1) 0.062 (0.250) 1.441

6 1016 0.142 (0.980) 0.071 (0.991) 0.510 (0.177) 0.082

7 749 0.229 (0.973) 0.126 (0.987) 0.636 (0.640) 0.479

8 776 0 (1) 0 (1) 0.708 (0.103) 0.021

9 543 0 (1) 0 (1) 0.908 (0.111) 0.392

10 59 0 (1) 0 (1) 0 (1) 1.499

To assess the predictive performance of PBCMMP, and its comparison with CMMP

and RP, we randomly selected 10% of the data from each community (see below) as testing

data; the remaining 90% of the data were used as training data. The testing data has size

404 and training data 3635. It is widely believed that there are 10 communities within the

network associated with the Facebook data (e.g., McAuley and Leskovec 2012, Bickel and

Sarkar 2016). Those 10 communities were used to divide the training data into m = 10

classes. For the testing data, however, the community information is known, but is only

used as a “prior” according to the description of our PBCMMP method [see Section 1,

above (2)]. Table 6 reports the average squared prediction errors, that is, the average of

the squared prediction errors over the subset of testing data according to each community

for three comparing methods, PBCMMP (with p = 0.95 and p = 0.95, respectively),

CMMP and RP. Note that these are the true prediction errors, which is a more convincing

measure of predictive performance than the empirical MSPE based on simulation studies
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(see Section 4). The results clearly demonstrate the superiority of PBCMMP over CMMP

and RP. It is remarkable that, in most cases, the average squared prediction error is zero

(which means zero in every single case that was predicted). It is also seen that there is no

difference, in most cases, under different values of p for PBCMMP, p = 0.75 or p = 0.95.

Also reported in Table 6 (in the parentheses) are proportion of correctly matched class

index, for PBCMMP and CMMP. Note that, for the testing data, their class indexes are

known, which are the same as their community indexes. However, we pretend that this is

unknown to us. Instead, we use the working probability model, (3), with either p = 0.75

or p = 0.95 as the tuning parameter, to carry out the PBCMMP. In the end, we can find

out exactly how many class indexes are correctly determined using either PBCMMP or

CMMP. It is seen that the matching proportion of PBCMMP is nearly perfect; in contrast,

the matching proportion of CMMP is relatively poor. This explains the difference in the

average squared prediction errors between PBCMMP and CMMP, namely, PBCMMP pre-

dicts better by matching correctly. Again, there is almost no difference between different

values of p for PBCMMP, p = 0.75 or p = 0.95.

It is also seen that, in terms of the predictive performance, PBCMMP, with p = 0.95,

performs (much) better than RP for all communities; PBCMMP, with p = 0.75, performs

(much) better than RP for most communities (8 out of 10). On the other hand, CMMP does

not perform better than RP for most communities (8 out of 10). Therefore, this real-life-

data example fully demonstrates the power of PBCMMP.

7 Conclusion and discussion

We have developed a pseudo-Bayes strategy called PBCMMP to significantly improve

the efficiency of CMMP. The strategy has flexibility of using a working prior, typically cho-

sen based on knowledge about the connection between classes in the training data and the

potential class of the new data. The superiority of PBCMMP is demonstrated theoretically

via the established theory of consistency and asymptotic optimality, both in terms of class-
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matching and in terms of prediction of the mixed effect associated with the new data, and

these results hold regardless of the choice of the working prior, subject to mild regularity

conditions. It should be noted that such results of asymptotic analysis are rarely seen in the

context of mixed effects models (e.g., Jiang 2007, McCulloch, Searle and Neuhaus 2008,

Demidenko 2013, and Jiang 2017).

The theoretical results are fully supported by the results of extensive simulation studies,

where we compare the finite-sample performance of PBCMMP and CMMP as well as the

standard regression predictor (RP). A real-data application on the Facebook social network

illustrates the striking difference in improvement of prediction accuracy via PBCMMP over

CMMP and RP.

A major advantage of the new PBCMMP method over the existing CMMP methods

is that it enjoys the double consistency, that is, consistency in terms of the class match-

ing and that in terms of prediction of the mixed effect associated with the new data, and

this property holds whether the number of classes in the training data, m, is bounded or

not. In contrast, all of the previous CMMP methods only possess single consistency in

terms of the mixed effect prediction, under the assumption that m increases. The double

consistency of PBCMMP not only improves the predictive performance of CMMP, as a by-

product it is also capable of correctly identifying the class index for the new observations,

which in some cases may be of interest as well. Furthermore, in some cases, such as in

case of network data, the number of classes, m, is fairly small, or at most moderate. The

previous CMMP methods do not have guaranteed performance in such situations, while

our new PBCMMP method has guaranteed performance, as we have demonstrated both

theoretically and empirically. Furthermore, we have established asymptotic optimality of

PBCMMP both in terms of the class matching and in terms of the prediction of the new

mixed effect. This kind of theoretical results are rarely seen in the context of mixed model

analysis. Basically, the asymptotic optimality assures that PBCMMP is the best class of

classified predictors that one could possibly get.
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One area that deserves further research, both theoretically and empirically, is regard-

ing the MSPE estimation. Although the Sumca and DB methods are both known to be

second-order unbiased, our simulation results have not found that their relative biases de-

crease when the sample sizes get larger. It is possible that the regularity conditions for the

second-order unbiasedness of these estimators are not met in a CMMP situation; it is also

possible that (much) larger number of simulation replicates are needed in order to evaluate

the performance more accurately. We plan to research on such topics in future studies.
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