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Abstract: We develop a method of classified mixed model prediction based on generalized linear

mixed models that incorporates pseudo-prior information to improve prediction accuracy. We

establish consistency of the proposed method both in terms of prediction of the true mixed effect

of interest and in terms of correctly identifying the potential class corresponding to the new

observations, if such a class matching one of the training data classes exists. Empirical results,

including simulation studies and real-data validation, fully support the theoretical findings. The
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tique du Canada

1. INTRODUCTION

Prediction has had a long history in statistics. New and challenging problems are

now emerging from such fields as precision medicine, public health and business,

in which one may substantially improve prediction accuracy regarding a charac-
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teristic of interest at the subject level, if one could identify a class that the subject

is associated with. Here, a subject may be an individual, or a group of individu-

als sharing similar characteristics. This new type of prediction problem was first

considered by Jiang et al. (2018), who proposed a method called classified mixed

model prediction (CMMP). Under the CMMP setting, the class mentioned above

corresponds to a random effect associated with some (massive) training data un-

der a mixed effects model. The basic idea is to first identify a class among the

training data that matches the potential class corresponding to the new observa-

tions, whose associated mixed effect is of interest for prediction. Once such a

matching is established, the traditional mixed model prediction method (MMP;

e.g., Jiang & Nguyen 2021, sec. 2.3) can be utilized to make accurate prediction

that takes into account the subject-level differences.

The CMMP method of Jiang et al. (2018) was developed for linear mixed

models (LMM; e.g., Jiang & Nguyen 2021), and applies to continuous responses

only. There are many problems of practical interest involving discrete or categor-

ical responses, for which the CMMP concept is potentially useful, if an extension

can be made to generalized linear mixed models (GLMMs; e.g., Jiang & Nguyen

2021). A special case of such an extension was considered by Sun et al. (2018)

in the case of binary responses. There are, of course, other types of non-normal

responses, for which prediction problems are of interest.

In standard regression prediction, a mean response is estimated as a linear

function of observed covariates and the estimated mean function is used to pre-

dict a future observation. However, given the values of the covariates, there may

still be substantial variation not explained by the covariates. In regression analy-

sis, the unexplained variation is treated as the “regression errors”, and is typically

assumed to be homoscedastic across the whole population. The latter assumption

is often violated in practice. There is a rich literature on capturing heteroscedas-

ticity within the population to improve prediction accuracy. This is known as
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MMP (e.g., Jiang, 2007, sec. 2.3). Under a mixed effects model, the population

is divided into subpopulations, and there is a random effect (possibly vector-

valued) corresponding to each subpopulation. The random effect is estimated, or

predicted, using the best predictor (BP), in the sense of minimum mean squared

prediction error (MSPE).

More specifically, the matching strategy of Jiang et al. (2018) and Sun et

al. (2018) is to minimize the distance between an observed characteristic of the

subject and a predicted one under the mixed effects model, assuming that the

subject belongs to a given class. The minimization is over all of the training

data classes. It should be noted that, although the CMMP procedure involves a

procedure of matching or classifying the new observations, the primary interest

is not classification. It is the prediction of the mixed effect associated with the

new observations that is of main interest. Such a mixed effect may correspond to

a mean or probability of interest regarding the new observations. The matching

or classification is merely a tool to achieve better prediction of the mixed effect.

In fact, as shown by Jiang et al. (2018), even if the class of the new observations

is misspecified, such a “false” classification still helps to improve the prediction

accuracy. The rationale is that, even if the matching is not exactly correct, it still

finds a class, among the training data classes, that is close to the true class of the

new observations in terms of the corresponding mixed effect.

Sun, Luan & Jiang (2020) proposed a new matching strategy that incorporates

covariate information. It is noted (Jiang et al., 2018; remark following Theorem

2 therein) that such a matching is not consistent in terms of identifying the true

class index with a probability tending to one as the number of classes, m, in-

creases. Nevertheless, as noted above, CMMP is consistent in terms of predicting

a mixed effect of interest, even if the class index is mismatched, provided that

m→ ∞. However, when m is relatively small, or only moderately large, as in

many practical situations, the precision of CMMP can be substantially improved
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with an improved method of matching.

For example, an important measure of progression of the 2019 coronavirus

disease (Covid-19) is the daily number of newly infected persons in certain geo-

graphic areas or subpopulations. Specifically, we were able to obtain cumulative

numbers of infected persons for every city in the 30 provinces and municipal-

ities in China, along with auxiliary variables that potentially contribute to the

disease infection. Because the responses are counts, it is natural to consider a

Poisson log-linear mixed model with random effects at the province level, for

the training data. Now suppose that one wishes to predict the cumulative number

of infected persons in a new city, given the auxiliary information. The prediction

accuracy may be perhaps improved significantly if one can identify the province

that hosts the city. See below for details.

In general, the geographic area may be a country, or a region (e.g., province,

state, or county) within a country; the subpopulation may be characterized by de-

mographic variables such as sex, ethnicity and age. The latter may be of interest

to health officials or researchers studying the disease. It should be noted that the

daily numbers refer to the true, unobserved totals of newly infected persons on

a certain day, not the ones reported by the news media or health officials based

on the reported cases. It is known that community network plays an important

role in the spread of infectious disease; in fact, such network information has

been used in improving prediction accuracy in precision epidemiology for in-

fectious disease control (e.g., Keeling & Eames, 2005; Ladner et al., 2019). Re-

cent advances in statistical analysis of network data (e.g., Bickel & Chen 2009;

McAuley & Leskovec, 2012; Bickel & Sarkar 2016; Li, Shen & Pan, 2019) have

set up a basis for inference about the networks.

A key idea of this paper is to utilize such network information to improve

the precision of matching. As we shall demonstrate, this idea leads to a new

method which not only applies more broadly to non-continuous responses, it
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also has better performance than the existing methods. In particular, we establish

consistency of class matching when m, the number of classes in the training

data, is either bounded or increasing, and consistency in terms of prediction of

the mixed effect when m is bounded. We also obtain the rate of convergence

for the prediction of the mixed effect. Not all of these theoretical results were

available in the previous work of Jiang et al. (2018) and Sun et al. (2020).

In Section 2, a new matching strategy is proposed based on a pseudo prior.

This is proposed under the framework of GLMM, so the resulting CMMP ap-

plies, in particular, to situations of binary responses or counts. We call the new

method network-classified mixed model prediction, or NCMMP, because the

method can be motivated naturally by networks. A real-data example of Covid-

19 data is introduced and revisited later. In Section 3, we develop asymptotic

theory for NCMMP, including its consistency properties both in terms of pre-

diction of the mixed effect and in terms of the class matching. The consistency

of class-matching holds, of course, only in the matched case, that is, when there

exists a match between the class of the new observations and a class in the train-

ing data, but the consistency in mixed-effect prediction holds regardless of the

true matching status (matched or unmatched). In Section 4, we investigate finite-

sample performance of NCMMP via Monte-Carlo simulation, and demonstrate

its advantage over existing methods. The real-data example is revisited, and used

as validation. Proofs and additional details are deferred to the supplementary

material.

2. CLASSIFIED GLMM PREDICTION WITH A PSEUDO PRIOR

2.1. Method

Under the GLMM, it is assumed that, conditional on vectors of class-specific

random effects, αi = (αij)1≤j≤q, 1 ≤ i ≤ m, responses yij, 1 ≤ j ≤ ki, 1 ≤ i ≤

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



6 Vol. 00, No. 00

m are independent with conditional density

f(yij|α) = f(yij|αi) = exp

[(
aij
ϕ

)
{yijξij − b(ξij)}+ c

(
yij,

ϕ

aij

)]
, (1)

where α = (αi)1≤i≤m, b(·) and c(·, ·) are functions associated with the exponen-

tial family (McCullagh & Nelder, 1989, ch. 2), ϕ is a dispersion parameter, aij is

a weight such that aij = 1 for ungrouped data; aij = lij for grouped data when

the average is considered as response, and lij is the group size; and aij = l−1
ij

when the sum of individual responses is considered. Furthermore, ξij is associ-

ated with a linear function, ηij = x′
ijβ + z′ijαi, through a link function g(·); that

is, g(ξij) = ηij , or ξij = h(ηij), where h = g−1. Here xij and zij are known vec-

tors, and β is a vector of unknown fixed effects. For simplicity, we focus on the

case of a canonical link, that is, ξij = ηij . Finally, suppose that α1, . . . , αm are

independent and distributed asN(0,G), where the covariance matrix G depends

on a vector γ of variance components, that is, G = G(γ). Let ψ = (β′, γ′)′, and

ϑ = (ψ′, ϕ). Note that in some cases, such as binomial or Poisson distributions,

the dispersion parameter ϕ is known, so ψ is the vector of unknown parameters.

We assume that the above GLMM holds for the training data, yij,xij, 1 ≤

j ≤ ki, 1 ≤ i ≤ m, where the classes 1, . . . ,m correspond to known network

communities. There have been extensive studies on community detection in net-

works; see, for example, Bickel & Chen (2009), Bickel & Sarkar (2016), and

Ma, Su & Zhang (2018). Thus, without loss of generality, we assume that the

network communities are known for the training data.

Furthermore, suppose that there are observations, ynj,xnj, 1 ≤ j ≤ kn that

correspond to a new subject. The new observations are assumed to satisfy a sim-

ilar GLMM, that is, ynj, 1 ≤ j ≤ kn are conditionally independent given αI with

conditional density

f(ynj|αI) = exp

[(
anj
ϕ

)
{ynjξnj − b(ξnj)}+ c

(
ynj,

ϕ

anj

)]
, (2)
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where ξnj = x′
njβ + z′njαI . Here, the subscript n stands for “new”, and I rep-

resents an unknown index, which may or may not belong to {1, . . . ,m}. As in

CMMP, a first step is to identify the index I .

Suppose that the new subject belongs to a known community cn. The true in-

dex I , however, is not entirely determined by cn. This may happen, for example,

when the training data are well studied; therefore, one is certain about the classes

in the training data, but the data corresponding to the new subject are “new” so

there is uncertainty about the class index, I , even though cn is known. Some-

times, the training data were collected from a past period of time; the network

has since grown bigger, or smaller. It is also possible that the training network is

not exactly the same as the one relevant to the new subject. We illustrate below

using a real-data example.

Due to such concerns, we consider a working probability model described

as follows. First, we allow the words “class” and “community” to not neces-

sarily mean the same in that the former corresponds to the random effect while

the latter to the network. For the training data, however, the classes match the

communities, by our assumption, but this is not necessarily the case for the new

subject. For now, let us assume that I ∈ {1, . . . ,m}. This is called the matched

case. Later we also consider the case that I /∈ {1, . . . ,m}, called the unmatched

case (Jiang et al., 2018). Consider the following working probability model:

P(I = i) = p1(i=cn)

(
1− p

m− 1

)1(i ̸=cn)

, (3)

where p is a given probability (see below); in other words, we have

P(I = i) = p if i = cn, P(I = i) =
1− p

m− 1
if i ̸= cn.

It is easy to verify that (3) is a probability distribution on {1, . . . ,m}. We call (3)

a working model because, unlike the GLMM, model (3) does not have to hold.

In particular, the p in (3) is treated as a tuning parameter, which has an intuitive
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interpretation: It has to do with one’s belief to what extent cn determines I . We

call working model (3) a pseudo prior due to its similarity to the Bayesian prior.

Large sample theory, established later in this paper, shows that, as long as there is

sufficient data information, it does not really matter what p is chosen, or whether

or not (3) holds.

Let I = i for some 1 ≤ i ≤ m. Then, one can combine the new data with

the ith class of the training data so that the following groups are inde-

pendent: y1, . . . ,yi−1, (yi,yn),yi+1, . . . ,ym, where yi = (yij)1≤j≤ki and yn =

(ynj)1≤j≤kn . The conditional pdf of yu (u ̸= i) is given by

f(yu|α) = f(yu|αu)

=
ku∏
j=1

exp

[(
auj
ϕ

)
{yujξuj − b(ξuj)}+ c

(
yuj,

ϕ

auj

)]
. (4)

Similarly, given I = i, the joint conditional pdf of (yi,yn) is given by

f(yi,yn|α) = f(yi,yn|αi)

= f(yi|αi)f(yn|αi)=

{
ki∏
j=1

f(yij|αi)

}{
kn∏
j=1

f(ynj|αi)

}
. (5)

Combining the above results, we obtain that, given I = i,

f(y|α) = f(yi,yn|α)
∏
u̸=i

f(yu|α) = f(yi,yn|αi)
∏
u̸=i

f(yu|αu)

with y= (y′
1,. . . ,y

′
m,y

′
n)

′. The above expression may be viewed as f(y|α, I =

i). Suppose that I and α are independent so that f(α|I = i)= f(α), hence

f(y|I = i)

=

∫ ∞

−∞
f(y|α, I = i)f(α)dα

=

∫ ∞

−∞
f(yi,yn|αi)f(αi)dαi

{∏
u̸=i

∫ ∞

−∞
f(yu|αu)f(αu)dαu

}
. (6)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2021 9

From (3), (6), we obtain the “posterior” distribution of I:

P(I = i|y) = P(I = i)f(y|I = i)∑m
v=1 P(I = v)f(y|I = v)

. (7)

The matching of I to the training data class is chosen as the “posterior mode”:

Î = argmax1≤i≤mP(I = i|y)

= argmax1≤i≤m {P(I = i)f(y|I = i)}

= argmax1≤i≤m

{
P(I = i)

∫∞
−∞ f(yi,yn|αi)f(αi)dαi∫∞

−∞ f(yi|αi)f(αi)dαi

}
, (8)

using (6). Note that some factors are not needed in obtaining Î . Also, we have

f(αi) = {(2π) q
2 |G(γ)| 12}−1 exp{−(1/2)α′

iG
−1(γ)αi}, and, by the conditional

exponential family assumption, we have

f(yi|αi) = exp

[
1

ϕ

ki∑
j=1

aij{yij(x′
ijβ + z′ijαi)− b(x′

ijβ + z′ijαi)}

]

× exp

{
ki∑
j=1

c

(
yij,

ϕ

aij

)}
, (9)

f(yi,yn|αi) = exp

[
1

ϕ

ki∑
j=1

aij{yij(x′
ijβ + z′ijαi)− b(x′

ijβ + z′ijαi)}

]

× exp

[
1

ϕ

kn∑
j=1

anj{ynj(x
′
njβ + z′njαi)− b(x′

njβ + z′njαi)}

]

× exp

{
ki∑
j=1

c

(
yij,

ϕ

aij

)
+

kn∑
j=1

c

(
ynj,

ϕ

anj

)}
. (10)

Intuitively, the matching procedure proposed above may be viewed as max-

imum a posteriori. It should be noted that, although the matching procedure is

derived assuming that I ∈ {1, . . . ,m}, it applies to any case in practice regard-

less of the true matching status (matched or unmatched), which is unknown.
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Once Î is determined, the prediction of the new mixed effect is carried out.

Consider prediction of a mixed effect associated with a new observation, yn, that

can be expressed as θn = E(yn|αI) = b′(x′nβ + z′nαI). Given I = i, the BP (see

Section 1, end of third paragraph) of θn is given by

E(θn|y) = E{b′(x′
nβ + z′nαi)|y}

= E{b′(x′
nβ + z′nαi)|yi} =

∫ ∞

−∞
b′(x′

nβ + z′nαi)f(αi|yi)dαi

=

∫∞
−∞ b′(x′

nβ + z′nαi)f(yi|αi)f(αi)dαi∫∞
−∞ f(yi|αi)f(αi)dαi

. (11)

Let vi = G−1/2αi, which is distributed as N(0, Iq), Iq being the q-dimensional

identity matrix, π(v) denote the pdf of N(0, Iq), and

si(vi) = si(yi, αi, β) = si(yi,G
1/2vi, β)

= − 1

kiϕ

ki∑
j=1

aij{yij(x′
ijβ + z′ijαi)− b(x′

ijβ + z′ijαi)}

= − 1

kiϕ

ki∑
j=1

aij{yij(x′
ijβ + z′ijG

1/2vi)− b(x′
ijβ + z′ijG

1/2vi)}.

Then, we have the following expression:∫ ∞

−∞
f(yi|αi)f(αi)dαi

= exp

{
ki∑
j=1

c

(
yij,

ϕ

aij

)}∫ ∞

−∞
exp{−kisi(v)}π(v)dv, (12)

and a similar expression for the numerator in (11). Thus, combining (11) and

(12), we have the following expression for the BP:

E(θn|y) =
∫∞
−∞ b′(x′

nβ + z′nG
1/2u) exp{−kisi(u)}π(u)du∫∞

−∞ exp{−kisi(u)}π(u)du

=
E[b′(x′

nβ + z′nG
1/2v) exp{−kisi(v)}]

E[exp{−kisi(v)}]
, (13)
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where the expectations are with respect to v ∼ N(0, Iq).

In (13), the parameters β,G, ϕ are understood as the true parameters, which

are unknown in practice. If we replace these parameters in (13) by their consis-

tent estimators, for example, the maximum likelihood estimators (MLEs; e.g.,

Jiang, 2013) based on the training data, we obtain the network-classified mixed

model predictor (NCMMP) of θn, denoted by θ̂n. The word “network” is used

because of the involvement of the working probability model, (3), which is mo-

tivated by the network association. We use a real-data example to illustrate.

2.2. Real-data example

Since the first case reported in Wuhan, China in December 2019, Covid-19 has

emerged as a global outburst of a public health incident with a rapid increase in

cases and deaths. In this study, we were able to obtain cumulative numbers of

infected persons for every city in the 30 provinces and municipalities in China,

recorded for the period of time from December 8, 2019 to August 1, 2020. Be-

cause Xizang (Tibet) Autonomous Region has its specific geographical environ-

ment, and had not been effected by Covid-19, it is excluded. The rest of the

provinces and municipalities are listed in column 1 of Table 3 and Table 4; all

except Beijing, Chongqing, Shanghai, and Tianjin are provinces. The total num-

ber of cities in each region are given in column 2 of the table.

For the auxiliary variables, we have collected information about population

density, real per capita GDP, distance between every city and Wuhan, general

public budgets, proportion of the population age at 60 and over, the number

of Grade Three A Hospitals, the mean air quality index and the annual lowest

temperature. Population density and proportion of the population age at 60 and

over are intended to characterize demographic information for each city. Gen-

eral public budgets and real per capita GDP are intended to reflect the level of

economic development. The number of Grade Three A Hospitals can reflect the

medical quality. The annual lowest temperature and distance between every city

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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and Wuhan are included to reflect the physical environment. The mean air qual-

ity index stands for the air environmental quality of each city. It should be noted

that the current quarantine time in China is fixed as 14 days, and this is true for

all provinces and municipalities; therefore, quarantine time is not a factor that

makes a difference. See, for example, Guan et al. (2020) and Li et al. (2020).

The economic data are obtained from the National Bureau of Statistics

(http://www.stats.gov.cn/tjsj/). The meteorological data are obtained from China

Meteorological Administration (http://www.cma.gov.cn/). The population data

are obtained from the Statistical Almanac of each city. The COVID-19 real data

and medical data are obtained from National Health Commission of the People’s

Republic of China (http://www.nhc.gov.cn/).

Surprisingly, the province to which a city belongs is not necessarily known

with certainty in practice, due to political, economic, or other concerns. For

example, there may be a privacy issue for revealing the truth identities of the

cities/provinces. The observed identities of the cities may be contaminated due

to intentional errors, as in differential privacy (e.g., Dwork 2006), or uninten-

tional errors, such as mistakes in data entry. However, it can be demonstrated

(see Section 4.2) that, even if the city/province information for the new data may

be contaminated for whatever reasons, our method can still help to identify the

true province of the city associated with the new data, hence improve accuracy

in predicting the associated mixed effects.

3. ASYMPTOTIC THEORY

In this section, we study asymptotic behavior of the NCMMP under two scenar-

ios. The first is when m, the number of classes in the training data, is bounded;

the second is when m increases with the sample sizes. Practically, m→ ∞

means that the number of classes in the training data is large. Under each sce-

nario, we obtain consistency results both in terms of class matching, that is, in

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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the sense that P(Î ̸= I) → 0, and in terms of prediction of the mixed effect, that

is, in the sense that θ̂n − θn → 0 in probability, where I is the true class index

associated with the new observations, and θ̂n is the NCMMP of θn, a mixed effect

of interest associated with the new observations. Note that the consistency result

in terms of the class matching is not available in Jiang et al. (2018) or Sun et al.

(2018); neither is consistency of θ̂n when m is bounded in those previous work.

The asymptotic theory developed below extends without difficulty to any

fixed dimension q of αi and αI , any positive constants aik, ank that are bounded

from above, and bounded below from zero, and any bounded numbers zik, znk.

Thus, for notation simplicity and without loss of generality, we assume that

q = 1, aik = ank = 1, and zik = znk = 1.

3.1. Asymptotic behavior when m is bounded

First consider consistency of the proposed class-matching procedure.

Theorem 1 (consistency of class matching). Suppose that the following hold:

(i) m > 1 and is bounded, and min1≤i≤m ki → ∞, kn → ∞;

(ii) |xij|, 1 ≤ j ≤ ki, 1 ≤ i ≤ m and |xnj|, 1 ≤ j ≤ kn are bounded;

(iii) b′′(·) is positive and continuous; and

(iv) β̂, Ĝ and ϕ̂ are consistent.

Then, for any fixed 0 <p< 1 in (3), Î is consistent, that is, we have P(Î ̸= I)→0.

Next, we consider consistency of the NCMMP.

Theorem 2 (consistency of NCMMP). Suppose that |xn| is bounded. Then,

under the assumptions of Theorem 1, the NCMMP is consistent, that is, θ̂n −

θn
P−→ 0. The result holds regardless of the choice of the tuning parameter, p in

(3), as long as 0 < p < 1.

The proofs of Theorems 1 and 2 are given in the supplementary material.
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3.2. Asymptotic behavior when m → ∞

Now let us consider the asymptotic behavior of Î and θ̂n as m, the number of

classes in the training data, increases with other parts of the sample size. As in

Jiang et al. (2018), we consider both the matched and unmatched scenarios (see

Section 1). In the matched case, we assume that the true class number of the

new observation, I , belongs to {1, . . . ,m}, the set of indexes associated with

the training data classes. In the unmatched case, I does not belong to the above

index set. It makes sense to consider consistency of Î , as in the previous subsec-

tion, in the matched case, but there is no matching consistency, of course, in the

unmatched case. Nevertheless, we can still establish consistency of the NCMMP

in the unmatched case. Note that Jiang et al. (2018) also established consistency

of the CMMP of the mixed effect in the unmatched case; however, consistency

of class matching has not been previously obtained, even in the matched case.

1. Matched case. First introduce the following notation: k∗ = min1≤i≤m ki,

Bm = sup
|u|≤2 logm

|b′(u)|, Dm = inf
|u|≤2 logm

b′′(u), Hm = sup
|u|≤2 logm

b′′(u).

Define a ∨ b = max(a, b) and a ∧ b = min(a, b).

Theorem 3 (consistency of class matching). Suppose that assumption (ii) of

Theorem 1 is satisfied, m > 1, and β̂, Ĝ, ϕ̂ are
√
k∗-consistent, that is,

√
k∗(β̂ −

β, Ĝ−G, ϕ̂− ϕ) = OP(1). In addition, suppose that k∗ ∧ kn → ∞ and there

are d > 0, 0 < γ < 1/2 and η > 2 such that the following hold: logm/k1/2−γ
∗ =

O(1), kγ∗ logm/
√
knm

d = O(1),Bm ∨Hm = O(md) and (kγ∗/m
d+η)Dm → ∞.

Then, for any fixed 0< p< 1 in (3), Î is consistent, that is, we have P(Î ̸= I)→0.

Remark 1: The assumptions of Theorem 3, in particular, set restriction on how

fastm increases, relative to k∗ and kn. This is reasonable in most network related

applications, where the ki’s are often much larger than m.
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Remark 2: The following special cases deserve some attention. For the case

of LMM, we have b′(u) = u and b′′(u) = 1; thus, we have Bm = 2 logm, and

Dm = Hm = 1. For the mixed logistic model, we have b′(u) = eu/(1 + eu),

b′′(u) = eu/(1 + eu)2; thus, we haveBm ≤ 1,Dm ≥ (1/4)m−2, andHm ≤ 1/4.

For the Poisson log-linear mixed model, we have b′(u) = b′′(u) = eu; hence, we

have Bm = Hm = m2, and Dm = m−2.

The proof of Theorem 3 is given in the supplementary material.

The next result is regarding consistency of the NCMMP of θn.

Theorem 4 (consistency of NCMMP). Suppose that b′′(·) is continuous and

|xn| is bounded. Then, under the assumptions of Theorem 3, we have θ̂n − θn =

OP(k
−γ
∗ ), where 0 < γ < 1/2 is the same as in Theorem 3. The result holds re-

gardless of the choice of the tuning parameter, p in (3), as long as 0 < p < 1.

Note that the conclusion of Theorem 4 is stronger than consistency in that

there is a rate of convergence in probability. Again, the proof is given in the

supplementary material.

2. Unmatched case. Now consider the case that I /∈ {1, . . . ,m}. This means

that the random effect corresponding to the new observations does not match

one of the random effects associated with the training data. Such a case was

considered in Jiang et al. (2018) and Sun et al. (2018). Of course, in this case,

there is no consistency in terms of matching the class index; however, it was

shown (e.g., Jiang et al., 2018) that, as long as m→ ∞, the CMMP of θn, based

on the mismatched class index, is still consistent. The rationale is that, although

there is no exact match of the class index, but since m is large, there is always

some αi that comes close to αI , which is all that matters, so far as prediction of

the mixed effect is concerned. We now extend such a result to NCMMP under a

GLMM. Even more, we obtain the rate of convergence in probability, which was

not previously obtained for CMMP.
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First introduce the following definition. The function b(·) is called regular if

for any A > 0, there are constants UA, δA > 0 such that

D(a, u) = b(a+ u)− b(a)− b′(a)u ≥ δA, ∀ |a| ≤ A and |u| > UA. (14)

Some examples are discussed in Section A.6 of the supplementary material, in

which condition (14) is verified.

Theorem 5 (consistency of NCMMP). Suppose that the following hold:

(i) b′′(·) is continuous and positive, and b(·) is regular;

(ii) |xij|, 1 ≤ j ≤ ki, 1 ≤ i ≤ m, |xnj|, 1 ≤ j ≤ kn and |xn| are bounded;

(iii) β̂, Ĝ, ϕ̂ are
√
k∗-consistent;

(iv) αI is independent with αi, 1 ≤ i ≤ m; and

(v) m > 1, logm/
√
k∗ ∧ kn → 0, and Bm/k

γ
∗ → 0 for some 0 < γ < 1/2.

Then, θ̂n is consistent and has the convergence rate

θ̂n − θn = OP

[
m−ν +

√
logm

(k∗ ∧ kn)1/4
+

√
Bm

k
γ/2
∗

]
(15)

for any 0 < ν < 1. The result holds regardless of the choice of the tuning param-

eter, p in (3), as long as 0 < p < 1.

The proof of Theorem 5 is given in the supplementary material.

4. EMPIRICAL STUDIES

We carry out a series of empirical studies, including simulation studies and

real-data validation, on the finite-sample performance of the proposed NCMMP

method. For the Monte Carlo simulation studies, we compare the predictive per-

formance of NCMMP to existing methods. Here we present a simulation study

under a mixed logistic model. An additional simulation study under a Poisson

log-linear mixed model is presented in Section B of the supplementary material.

For the real-data validation, we consider a problem of predicting the number of

infected persons of Covid-19.
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4.1. Simulation study: mixed logistic model

First, we consider a case of mixed logistic model (MLM). For the training data,

the model is expressed as pij = P(yij = 1|αi) and

logit(pij) = log

(
pij

1− pij

)
= 1 + x1ij + x2ij + αi, (16)

i = 1, . . . ,m, j = 1, . . . , k, where αi’s are generated independently from the

N(0, G) distribution with different values of G; xrij, r = 1, 2 are generated from

N(0, 1), then fixed throughout the simulation.

A new subject satisfies pnj = P(ynj = 1|αI) and

logit(pnj) = log

(
pnj

1− pnj

)
= 1 + x1nj + x2nj + αI , (17)

j = 1, . . . , kn, where xrnj, r = 1, 2 are generated from N(0, 1) and then fixed

throughout; and I is the true class index for the new observations.

Let cn = 1, that is, the new subject belongs to the first community, but there

is a chance that this is not the same as its true class index, I . The latter satisfies

(3), where the true value of p is 0.85. However, we pretend that this is not known,

and two proposed values of p are considered: 0.75, 0.95. The following combi-

nations of sample sizes are considered: m = 10, k = 10; m = 10, k = 100; m =

10, k = 200, m = 50, k = 10, m = 50, k = 100; m = 50, k = 200. For each of

these combinations, we consider G = 0.1, 1; kn = 1, 50, resulting four pairs of

combinations for each case of m, k.

There are two objectives of interest: identification of the true index, I , and

prediction of the true mixed effect, θn = 1 + x1n + x2n + αI . It should be noted

that the conditional probability pn = exp(θn)/{1 + exp(θn)} is often of practi-

cal interest; however, because pn is a smooth monotone function of θn, we focus

on the latter for simplicity. The unknown parameters under the MLM are esti-

mated by their MLEs based on the training data. We run 100 simulations under

each combination of m, k,G, kn, and p values specified above, and report (i) the
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empirical MSPE: E(θ̂n − θn)
2, where θ̂n corresponds to NCMMP, CMLMP, or

GLM, based on the simulation runs; and (ii) empirical probability (i.e., propor-

tion of times) that the class index is matched correctly, for NCMMP (EPN) and

CMLMP (EPC). Here, CMLMP and GLM stand for the method of Sun et al.

(2020) and the standard generalized linear model prediction, respectively. Note

that GLM does not involve class matching.

The results for p = 0.75 and p = 0.95 are presented in Table 1 and Table 2,

respectively. Reported are empirical MSPE (the number in the parentheses is the

empirical standard deviation for the empirical MSPE) except for the last two

columns, which are empirical probabilities of correct matching.

A remarkable observation is that the results are highly consistent across all

proposed values of p. It turns out that the value of the tuning parameter, p in

(3), does not really matter, so far as this simulation is concerned. Note that the

true p used to generate the data is 0.85. This is consistent with our theoretical

results, which show consistency of the class matching as well as that of NCMMP

regardless of the value of p.

It is also seen that NCMMP performs substantially better than CMLMP when

kn = 1; in fact, the difference is nearly 10 fold in some cases. When kn = 50,

CMLMP in most cases performs slightly to moderately better than NCMMP. The

trends are reasonable because NCMMP mainly relies on its much more accurate

class matching while CMLMP relies on higher number of repeated observations.

This is supported by the much higher empirical probability of correct matching

in NCMMP; in fact, for CMLMP the empirical probability seems to get worse

when the sample sizes, especially m, get larger. As noted by Jiang et al. (2018),

CMMP does not have matching consistency, while we have established matching

consistency for NCMMP. As for comparison with GLM, with the exception of

three cases under m = k = 10, G = 0.1 (one with p = 0.75 and two with p =

0.95), NCMMP performs consistently (much) better than GLM; on the other
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TABLE 1: Empirical MSPE & Probability of Correct Matching: MLM(p = 0.75)

G kn NCMMP CMLMP GLM EPN EPC

m=10, k=10 0.1 1 .0108 (.0017) .0112 (.0018) .0097 (.0017) .80 .29

0.1 50 .0094 (.0014) .0077 (.0013) .0097 (.0017) .79 .33

1 1 .0329 (.0078) .0366 (.0071) .0389 (.0062) .80 .13

1 50 .0185 (.0032) .0106 (.0017) .0386 (.0062) .80 .22

m=10, k=100 0.1 1 .0029 (.0006) .0060 (.0013) .0039 (.0006) .80 .12

0.1 50 .0029 (.0006) .0020 (.0003) .0039 (.0006) .80 .24

1 1 .0134 (.0042) .0400 (.0075) .0301 (.0048) .80 .17

1 50 .0049 (.0015) .0043 (.0009) .0301 (.0048) .86 .35

m=10, k=200 0.1 1 .0024 (.0005) .0074 (.0016) .0037 (.0006) .80 .14

0.1 50 .0023 (.0004) .0023 (.0005) .0037 (.0006) .81 .16

1 1 .0135 (.0048) .0399 (.0075) .0306 (.0046) .80 .18

1 50 .0024 (.0009) .0031 (.0006) .0306 (.0046) .84 .28

m=50, k=10 0.1 1 .0044 (.0007) .0076 (.0015) .0045 (.0007) .80 .14

0.1 50 .0044 (.0007) .0030 (.0005) .0045 (.0007) .80 .16

1 1 .0193 (.0041) .0444 (.0068) .0307 (.0047) .80 .00

1 50 .0183 (.0040) .0053 (.0013) .0307 (.0047) .81 .07

m=50, k=100 0.1 1 .0014 (.0003) .0105 (.0016) .0030 (.0005) .80 .01

0.1 50 .0014 (.0003) .0025 (.0005) .0030 (.0005) .80 .05

1 1 .0083 (.0020) .0647 (.0090) .0275 (.0042) .80 .01

1 50 .0055 (.0015) .0041 (.0007) .0275 (.0042) .80 .07

m=50, k=200 0.1 1 .0015 (.0003) .0120 (.0018) .0030 (.0005) .80 .02

0.1 50 .0016 (.0003) .0029 (.0005) .0030 (.0005) .80 .04

1 1 .0094 (.0025) .0656 (.0090) .0277 (.0042) .80 .03

1 50 .0029 (.0007) .0039 (.0007) .0277 (.0042) .82 .08
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TABLE 2: Empirical MSPE & Probability of Correct Matching: MLM(p = 0.95)

G kn NCMMP CMLMP GLM EPN EPC

m=10, k=10 0.1 1 .0108 (.0017) .0112 (.0018) .0097 (.0017) .80 .29

0.1 50 .0107 (.0016) .0077 (.0013) .0097 (.0017) .80 .33

1 1 .0329 (.0078) .0366 (.0071) .0389 (.0062) .80 .13

1 50 .0205 (.0032) .0106 (.0017) .0386 (.0062) .81 .22

m=10, k=100 0.1 1 .0029 (.0006) .0060 (.0013) .0039 (.0006) .80 .12

0.1 50 .0029 (.0006) .0020(.0003) .0039 (.0006) .80 .24

1 1 .0134 (.0042) .0400 (.0075) .0301 (.0048) .80 .17

1 50 .0049 (.0015) .0043 (.0009) .0301 (.0048) .86 .35

m=10, k=200 0.1 1 .0024 (.0005) .0074 (.0016) .0037 (.0006) .80 .14

0.1 50 .0024 (.0005) .0023 (.0005) .0037 (.0006) .80 .16

1 1 .0135 (.0048) .0399 (.0075) .0306 (.0046) .80 .18

1 50 .0035 (.0012) .0031 (.0006) .0306 (.0046) .85 .28

m=50, k=10 0.1 1 .0044 (.0007) .0076 (.0014) .0045 (.0007) .80 .14

0.1 50 .0044 (.0007) .0030 (.0005) .0045 (.0007) .80 .16

1 1 .0193 (.0041) .0444 (.0068) .0307 (.0047) .80 .00

1 50 .0192 (.0041) .0053 (.0013) .0307 (.0047) .80 .07

m=50, k=100 0.1 1 .0014 (.0003) .0105 (.0016) .0030 (.0005) .80 .01

0.1 50 .0014 (.0003) .0025 (.0005) .0030 (.0005) .80 .05

1 1 .0083 (.0020) .0647 (.0090) .0275 (.0042) .80 .01

1 50 .0057 (.0015) .0041 (.0007) .0275 (.0042) .80 .07

m=50, k=200 0.1 1 .0016 (.0003) .0120 (.0018) .0030 (.0005) .80 .02

0.1 50 .0016 (.0003) .0029 (.0005) .0030 (.0005) .80 .04

1 1 .0094 (.0025) .0656 (.0090) .0277 (.0042) .80 .03

1 50 .0037 (.0012) .0039 (.0007) .0277 (.0042) .82 .08
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hand, there are more cases across different scenarios where CMLMP does not

perform better than GLM.

4.2. Real-data validation: Prediction with Covid-19 data

We now return to the Covid-19 example, introduced in Section 2.2. Note that the

outcome variable, the cumulative number of infected persons, is a count; there-

fore, a Poisson log-linear mixed model (PLMM; see Section B of the supple-

mentary material) is considered with regionally specific random effects. Specif-

ically, we assume that, given the regional random effects α1, . . . , α30, the cumu-

lative numbers of infected persons, yij , are conditionally independent such that

yij|α ∼ Poisson(µij), where

log(µij) = β0 +
8∑

l=1

βkxijl + αi, (18)

i = 1, · · · , 30, j = 1, · · · , ki, where xijl, l = 1, . . . , 8 correspond to the eight

auxiliary variables mentioned above. Here, ki is the number of cities in the ith re-

gion; xijr, βl, l = 0, . . . , 8 are unknown fixed effects, and αi is a region-specific

random effect. The random effects are assumed to be independent and distributed

as N(0, G). Note that the classes in the training data are assumed to be exclu-

sive. It is true that the new observations may belong to the border of two or more

regions, in which case it may not be so clear which random effect is associated.

Nevertheless, what NCMMP does is identify one random effect that (it thinks) is

closest to the one associated with the new observations. This identified random

effect may be a wrong classification, but the impact may be insignificant, as long

as its value is close to the one associated with the new observations. This is a

nice feature of CMMP (Jiang et al. 2018, Sun et al. 2018).

On the other hand, the fact that a false match can still help is in comparison

to not making the match at all, as in regression or GLM predictions. But, there is

still plenty of room to improve, if one can improve the precision of matching in

CMMP. This has been demonstrated in the earlier sections.
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Specifically, we use this real-data situation to test our NCMMP method, and

compare it with other prediction methods. For that, we must know the “ground

truth” in order to validate predictive performance. The ground truth is the ob-

served cumulative number of infected persons, yij . Specifically, we take out the

jth observation of the ith region, and consider it as a new observation; the rest of

the data (including yij′ for j′ ̸= j and yi′j′ for i′ ̸= i) are used as the training data.

We then use the NCMMP, CGLMMP (that is, CMMP applied to PLMM; see

Section B of the supplementary material), and GLM methods to predict yij . Note

that, if yij were unobserved, its BP based on the training data is the same as the

BP of µij based on the training data. This is because we can write yij = µij + eij ,

where eij is the new error, which is independent with the training data (note that

only µij is potentially correlated with the training data). Therefore, we have

E(yij|training data) = E(µij|training data) + E(eij|training data)

= E(µij|training data).

Thus, one can use each of the three methods, NCMMP, CGLMMP and GLM, to

obtain the corresponding predictor of µij , which is a mixed effect, then use it as

a predictor of yij , for which we know the truth. We do this for every j in region

i. and every 1 ≤ i ≤ 30.

To compare the performance of the three methods, we compute, for each

1 ≤ i ≤ 30, the average squared prediction errors (ASPE) over 1 ≤ j ≤ ki. The

results are reported in Table 3 and Table 4. Also reported (in the parentheses) are

observed probability of correct matching, that is, proportion of times (over dif-

ferent j’s) that the region corresponding to the new observation is correctly iden-

tified, for NCMMP and CGLMMP. For NCMMP we use p = 0.75, or p = 0.95,

as in the simulation study of the previous subsection.

It is seen that the ASPE of NCMMP, with either p = 0.75 or p = 0.95, is less

than or equal to that of CGLMMP for all but two regions (Henan and Shaanxi).
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TABLE 3: Average Squared Prediction Error (Proportion of Correct Matching): Part I

Region # of City NCMMP (p = 0.75) NCMMP (p = 0.95) CGLMMP GLM

Anhui 16 1058(0.6) 1058(0.6) 1366(0) 12449

Beijing 15 0(1) 0(1) 17.2(0.2) 55.3

Chongqing 37 168(0.10) 158(0.27) 181(0) 383

Fujian 9 0(1) 0(1) 25.4(0) 897

Gansu 14 0(1) 0(1) 6.24(0.5) 589

Guangdong 21 1840(0) 1840(0) 1848(0) 394

Guangxi 14 153(0.25) 79.2(0.75) 172(0) 455

Guizhou 9 0(1) 0(1) 12.5(0) 1764

Hainan 16 0(1) 0(1) 3.67(0.2) 45.6

Hebei 11 70.5(0.67) 0(1) 223(0) 460

Henan 18 14648(0.2) 14648(0.2) 12690(0) 38174

Heilongjiang 13 76.3(0.75) 76.3(0.75) 407(0) 1903

Hubei 17 59647(0.6) 59647(0.6) 72499(0) 77324

Hunan 14 495(0.5) 184(0.75) 709(0) 1365

Jilin 9 0(1) 0(1) 26(0) 2.78

The ASPE of NCMMP, with either p = 0.75 or p = 0.95, is less than or equal

to that of GLM in all but two regions (Guangdong and Shandong). In fact, in

most cases the ASPEs of NCMMP and CGLMMP are much smaller than that

of GLM; and in many cases the ASPEs of NCMMP are much smaller than

that of CGLMMP. As for comparison between the NCMMP with p = 0.75 and

NCMMP with p = 0.95, the ASPE of the latter is less than or equal to that of the

former, but the equality holds in, by far, most of the cases. In terms of the propor-

tion of correct matching, the proportions for the two NCMMPs are greater than

or equal to that of CGLMMP in all cases, with the equality holding only in two

occasions (Guangdong and Tianjin); the proportion of NCMMP with p = 0.95
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TABLE 4: Average Squared Prediction Error (Proportion of Correct Matching): Part II

Region # of City NCMMP (p = 0.75) NCMMP (p = 0.95) CGLMMP GLM

Jiangsu 13 324(0.5) 284(0.75) 442(0) 1326

Jiangxi 11 1201(0.67) 1201(0.67) 2148(0) 2788

Liaoning 14 0(1) 0(1) 7.47(0) 57.8

Neimenggu 12 0(1) 0(1) 21.8(0) 28.9

Ningxia 5 86(0) 0(1) 85.9(0) 87.2

Qinghai 2 0(1) 0(1) 3.25(0) 249

Shandong 16 9374(0.6) 9374(0.6) 9401(0) 1612

Shanxi 11 0(1) 0(1) 34.8(0) 2929

Shaanxi 11 160(0.67) 160(0.67) 114(0) 2107

Shanghai 16 0(1) 0(1) 22.8(0.2) 149

Sichuang 21 0.15(0.83) 0.15(0.83) 109(0) 369

Tianjin 16 0(1) 0(1) 0(1) 235

Xinjiang 18 0(1) 0(1) 9.17(0) 92.8

Yunnan 16 0(1) 0(1) 19.9(0) 201

Zhejiang 11 167(0.33) 93(0.67) 1284(0) 655

is always greater than or equal that of NCMMP with p = 0.75 but in most cases

the equality holds. Note that, although in our simulation study (see Section 4.1

and also Section B of the supplementary material), the predictive performance

of NCMMP is almost the same whether p = 0.75 or p = 0.95, here we see some

small discrepancy (e.g., Ningxia in Table 4). Our theoretical results state that, in

large samples, the consistency of NCMMP, both in terms of class-matching and

in terms of prediction, is not affected by p but in a finite-sample situation, such

as the current example, there can be a nonignorable difference.

It should be noted that this is a situation of matched case, that is, the true in-

dex I corresponding to the new observation belongs to {1, . . . , 30}. Considering
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that m is relatively large (m = 30), the appropriate theorems that would apply

are Theorem 3 and Theorem 4. Although some of the regularity conditions of

Theorem 4 regarding the relative sizes of ki and m might not hold, as some of

the ki’s are quite small, the relative performance of the three methods, NCMMP,

CGLMMP and GLM, still fully demonstrates the advantage of NCMMP.

5. CONCLUSION AND DISCUSSION

We extend the original CMMP method and its variations to GLMM so that the

method can be applied, in particular, to cases of binary responses and counts.

Unlike the previous CMMP methods, the extension is based on a new matching

strategy that utilizes a pseudo prior to borrow strength across different classes of

the training data, and the new data. The new method is shown to enjoy consis-

tency both in terms of the class matching and in terms of the prediction of the

mixed effect of interest associated with the new observations, the so-called dou-

ble consistency. It should be noted that the previous CMMP methods are known

to be consistent only in terms of the mixed effect prediction, when the number

of classes in the training data, m, increases. The new CMMP method that we

propose posses the double consistency, whether m increases or not.

It should be reminded that our primary interest is prediction of the mixed ef-

fect (associated with the new observations), while consistency of the class match-

ing is used as a tool to improve the prediction accuracy, as we have demonstrated

in our empirical studies. Nevertheless, the class-matching consistency is an im-

portant by-product, which should be useful practically in some cases.
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6. SUPPLEMENTARY MATERIAL
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simulation results, as well as details about computation of the maximum likeli-

hood estimates under a GLMM.
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