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We construct localized beams in a non-Hermitian Glauber Fock (NGF) lattice of coupled
waveguides and show that they can propagate over a long distance withalmost no diffraction.
We specifically obtain the diffraction-free beams in a finite NGF lattice at the exceptional point
(EP) by using the exact eigenstates of the semi-infinite unidirectional NGF lattice. We provide a
numerical approach to finding other lattices that are capable of supporting non-diffracting

beams at EPs.
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1. Introduction

The physics of photon propagation in discrete lattices is very
rich and has been extensively studied, [1] which has resulted
in the introduction of synthetic lattices capable of supporting
non-diffracting wave propagation [2—8]. This includes lattices
supporting Airy beams [9] or flat bands in Hermitian lattices
[10, 11] and non-Hermitian parity-time symmetric lattices
[12—14]. Specifically, in parity-time symmetric lattices, the
flat band can occur at an exceptional point (EP), which allows
for non-diffracting beam propagation. EPs are topological
singularities in non-Hermitian Hamiltonians [15]. At an nth
order EP, n eigenvalues and the corresponding eigenstates of
a non-Hermitian Hamiltonian coalesce. EPs are ubiquitous in
optics and have interesting transport feature which its prop-
erties manifested in manipulating light propagation such as
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unidirectional invisibility [16, 17], unidirectional lasing [18],
lasing and anti-lasing in a cavity [19] and enhanced optical
sensitivity [20].

One special system where discrete diffraction can be
studied is the semi-infinite and asymmetric Glauber Fock
lattice [21]. Hermitian Glauber Fock lattice has recently been
implemented and demonstrated in optical lattices [22-24].
Apart from technological application in diffraction manage-
ment the Glauber Fock photonic lattice allows us to visual-
ize quantum harmonic oscillator which by itself is a strong
motivation to study such classical lattices in optics. A Glauber
Fock photonic lattice is composed of an array of evanescently
coupled waveguides with a square-root distribution of the
coupling between adjacent waveguides [22]. The first experi-
mental realization with direct observation of the classical ana-
log of Fock state displacements was reported in [23]. The
Glauber—Fock photonic lattice is interesting in the sense that
every excited waveguide represents a Fock state and an infin-
itely long lattice admits an exact analytical solution.
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In a finite unidirectional lattice with open boundary
conditions, all eigenstates coalesce as an EP occurs. However,
this is not the case in a semi-infinite unidirectional lattice [25,
26]. In this paper, we consider a non-Hermitian Glauber—Fock
lattice and obtain a continuous family of eigenstates exactly to
analyze a unidirectional semi-infinite lattice from an analyt-
ical point of view. In practice, every lattice has a finite num-
ber of lattice sites and thus one might think that the continu-
ous family of eigenstates remains a mathematical curiosity.
However, we discuss that the continuous family of eigenstates
[27] can be used to construct almost non-diffracting waves at
the EP in a finite Glauber—Fock lattice. Here an analogy with
self-accelerating waves may be constructed. They are non-
integrable and physically impossible to be realized but can be
used as almost non-diffracting waves up to a large distance in
an experiment after truncation [9].

2. Model

A generic 1D waveguide lattice with asymmetric couplings
between adjacent sites is described by the following set of
equations

Hwn = Tn+ wn+1 + Yn— 1/11171 (D
where v, and 7, describe the site-dependent forward and
backward hopping amplitudes, respectively, and ), is the
complex field amplitude and H is the corresponding non-
Hermitian Hamiltonian. In the case of unidirectional hoppings,
i.e., either v, = 0 or v,_ = Ofor all , all eigenstates coalesce
to a unique exceptional state with zero eigenvalue. This is
true as long as the unidirectional lattice is finite and has open
boundary conditions. Here, we are particularly interested in
an exactly solvable semi-infinite unidirectional lattice, N —
0o. The model we consider is a variant of the semi-infinite
Glauber—Fock lattice, where the hopping amplitudes increase
with the square root of the site number, 7,y =vyyvn+1
and ~y,_ = y_+/n, where v, and ~y_ are constants describing
site-independent forward and backward hopping amplitudes,
respectively. The equation satisfied by the complex field amp-
litude 1), at the nth waveguide in this model is then given by

7iazwn+7+\/n+1 ¢n+1+7—\/ﬁ¢n—l =0 (2)
where z is the normalized propagation distance,

n=0,1,2,...,N— 1. Note that the system is non-Hermitian
when v, # v_.

First consider a finite unidirectional lattice. In this case,
the exceptional state is well localized at the right edge when
v+ =0 and at left edge when y_ = 0. However, this is not
the case for the semi-finite unidirectional lattice. Specific-
ally, such a localization is not available when v, = 0 since
there is no right edge in the semi-infinite lattice. In the case
of semi-infinite lattice with v_ =0, we get a continuous
family of eigenstates instead of a unique exceptional state.

To obtain the most general form of the exact analytical solu-
tion when v, #v_ #0, let us use a trick by writing the
state vector as |®) =" 1,(z)|n), where the Fock state
|n) corresponds to a situation when only the waveguide with
number n is excited [22, 23] and ,(z) is defined above.
Substituting this solution into the equation (2) yields the
Schrodinger-like equation H® =i %—‘f, where time is replaced
by the propagation distance. The corresponding Hamiltonian
reads H=~_ a'+ ~, a, where a' and a are the well-
known bosonic creation and annihilation operators satisfying
a'ln>=+/n+1jn+1> and aln >=+/njn—1 >, respect-

ively. We can transform this Hamiltonian using a = "\J;g’ and
at = q\_/;i” , where ¢ and p are the normalized position and

momentum operators, respectively. Then the Hamiltonian can

be rewritten in the following form H = i(w\/}% )17 + 7*;;7 q.

Notice that we assume y_ # ~, which is the condition for
non-Hermiticity. Let us substitute p = —i0, and solve the cor-
responding Schrodinger-like equation. The resulting equation
is of first order and admits an exact analytic solution. If 7, and
~_ are z-dependent, then the most general form of the solution
is given by

D(q,2) = o= Iy S(Z+ig—is)sds F(Z+ig) 3)

where §(Z) = %, where Z= [; 7*\};’ dz and F(q) is an

arbitrary continuous function. If v, and y_ are constants, then
it is reduced to

2(g.9) = eﬁqu(z— 7”’,;) @

+ 7=

Note that we made the replacement F (’”\;;*eriq) —

fz+ %q) in the last step. We stress that we impose the
boundary condition on 1, not on ®(g), that is 1, . (z) = 0.
The arbitrary function f(g) can be determined from the initial
condition at z = 0. Equation (3) allows us to find the time evol-
ution of any initial state. In g-space, the wave packet translates
with a constant speed. In the original space, this may imply
growing or decaying diffracting solutions depending on the
form of f(g). We finally find the form of the wave packet in
the original space using v,(z) = (n|®)

wn(z):/w n

—oo V21!

e 72H,(q) ®(q,7) dq ®)

where H,(g) is the nth order Hermite polynomials. This is the
most general solution of our original system and one can ana-
lytically study not only the eigenstates but also time evolu-
tion of any given initial wave packet for the semi-infinite non-
Hermitian lattice.

As a special case, consider v_ = —~v,. In this case, the
transformed Hamiltonian is reduced to H = v/2 i y_p, which
is an anti-Hermitian Hamiltonian, % = —#. In this case the

solution (3) becomes ® = f(z + \[2’7_ q

energy stationary solution if we choose f = 1. One can choose

). We get a specific zero



J. Opt. 24 (2022) 11LT01

D Letters

many different forms of the function f such as f(q) = e~ /4
and f(q) = 7 /4, which are not stationary solutions (they are
decaying and growing solutions).

Next, let us obtain the eigenstates (stationary solutions) of
the semi-infinite Glauber Fock lattice from the solution (5).
We choose the arbitrary function f = f in (3) in such a way
that ¢ becomes z-independent

fe=exp (—iE (z +

where the constant E are eigenvalues. Below, we show that E
does not take discrete values but continuous values. One can
directly substitute them into the integral (5) to get the continu-
ous family of eigenstates with energy E. One can see that as the
contrast between 4 and y_ increases, the localization length
of the eigenstates get increased.

Y

-
. q)) ©6)
Y V-

L=

2.1. Continuous family of stationary solutions

Let us now explore the stationary solutions specifically for the

semi-infinite unidirectional lattice. Suppose first that y; =0

and v_ #0. In this case, the integral (5) diverges since
2

® = e fg. This implies that no stationary solution is avail-
able. Note that the exceptional state is well localized at the
right edge of a finite lattice, but such an exceptional state does
not appear in the semi-infinite lattice because of the absence
of the right edge. Instead, one can construct non-stationary
solutions by choosing various form of f(g). Suppose next that
~v_ = 0and v, # 0. For a finite lattice, the zero energy excep-
tional eigenstate is well localized at the left edge. That zero
energy eigenstate is also an eigenstate for the semi-infinite lat-
tice. There are, in fact, infinitely many eigenstates in the semi-
infinite lattice, whereas there is just one eigenstate in a finite
lattice. To find them, we evaluate the integral (5) with (6). We
then get the well known coherent states, which satisfy the com-
pleteness condition but not the orthogonality condition

U = e—“'”zj’; 7

where o = Wi We stress that E can take complex values, from
which we can construct either decaying or growing solutions.
The solution (7) allows us to obtain a continuous family of
eigenstates by varying the parameter E. At E=0, v, = d,0,
which implies that the zero energy eigenstate exactly matches
the eigenstate well localized at the left edge and increasing E
shifts the center of the wave packet to the right.

Next, let us discuss the practical application of the above
solution since a lattice has practically a finite number of
sites. Before discussing this point, we remember the self-
accelerating waves, which is a non-integrable mathematical
solution and hence physically impossible to be realized. How-
ever, it was shown that such solutions can still be used as non-
diffracting waves up to a large distance if they were truncated
[28,29]. In a similar fashion, we state that the solutions for the
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Figure 1. The density plots for N =100 (a) and N =300 (b). « is
chosen a larger value in (b) to shift the center of the wave packet to
the right. At the EP v_ = 0, we can construct non-diffracting wave
packet. Note that the true exceptional eigenstate is the one where
only the n = Oth lattice site is excited.

semi-infinite lattice can be used to construct non-diffracting
beams in the finite lattices. In other words, truncating our
solution allows us to construct almost stationary wave packets
(or non-diffracting waves). To get practical non-diffracting
waves at the EP, let us truncate the solution (7). This trunca-
tion works if NV is large enough such that j—% < 1. Inthis case,
the non-truncated terms are negligibly small and only contrib-
ute to the system in a very large time. Note that this truncated
solution is not an exact analytical solution for a finite lattice
with N lattice sites as all eigenstates coalesce at the EP.

Let us perform a numerical approach to support our idea.
Suppose v— =0, v+ =1 and a N is sufficiently large. In
figure 1, one can see the density plots for N =100 (a) and
N =300 (b). In figure 1(b), the constant « is chosen to have a
larger value to shift the center of the wave packet to the right.
The system has only one exceptional eigenstate which is per-
fectly localized at the n = 0 lattice site. However, one can see
from figure 1 that a non-diffracting wave packet can still be
obtained up to a large propagation distance at the EP, v_ = 0.
The longer the lattice is, the more lifetime the non-diffracting
waves can have. At large values of z, the contribution from the
right edge comes into play as the lattice is not infinitely exten-
ded. Therefore the non-diffracting character is eventually lost.

We have so far studied stationary eigenstates. In the uni-
directional lattice, one can also obtain a monotonically grow-
ing or decaying solutions and power oscillating solutions up
to a large distance. For example, choosing f(q) = 7 /2 leads to
growing solution while choosing f{¢) = e~7'/? leads to decay-
ing solution at the EP. If we choose f(g) = sing, then power
oscillation occurs at the EP.

We have explored almost non-diffracting waves at EPs for
the specific Glauber—Fock lattice. One may ask if we can find
such waves for other unidirectional lattice. One example of
such other systems is provided in [27] and there are many other
such systems. We consider a disordered unidirectional lattice,
i.e. a lattice with random unidirectional hopping amplitudes.
The corresponding Hamiltonian reads
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Figure 2. The density plot for N = 100 (a) and the ratio of total
power to the initial one as a function of z in the unit of coupling (b).
The forward hopping amplitudes are set to to zero to obtain that the
only eigenstate is the exceptional state well localized at the left
edge. The backward hopping amplitudes are chosen randomly in the
interval y, € [1,6] and we take 101 (z = 0) = 107, At around
z=15, the non-diffracting character is lost ant the total power starts
to increase exponentially.

N
H=Y " [hap1 >< | ®)

n=1

where 7, take random values and the system has open
boundary conditions. One can simply solve the correspond-
ing eigenvalue equation to obtain the zero energy exceptional
eigenstate. Here, our aim is to get almost non-diffracting loc-
alized waves. Our approach is as follows: instead of setting
Y¥n+1 =0 (due to the open boundary condition at the right
edge), here we assume that ¥y is a very small number (for
example it can be chosen to be equal to 10~%). Then, we can
get the field amplitude ¢, recursively and get the almost non-
diffracting waves. By varying E in the corresponding eigen-
value equation, we can obtain a continuous family of such
solutions. The resulting solution is not exact, but can be used
as almost non-diffracting waves up to a large distance as long
as Y41 1s a very small number and N is large.

Let us apply our above strategy in a disordered system.
We consider a disordered lattice, where ~, take random val-
ues in the interval +, € [1,6]. There are N =100 lattice sites
in the system and assume that v;0;(z = 0) = 1078, Then we
get Y, for n=1,2,....N and find its time evolution numer-
ically to check whether it shows non-diffracting behavior.
In figure 2(a), one can see the density plot as a function of
propagation length z at E=2.8. The non-diffracting wave-
packet up to z ~ 5 can be seen from the figure, which shows
that our strategy is good enough to obtain such waves even in
a disordered lattice up to a large distance. In figure 2(b), we
see that the total power P =" 1/ (z) does not change up to
z ~ 5. After that point, edge effects come into play and non-
diffracting behavior is lost. This is already expected as our
solution is not an exact solution. To this end, we say that sys-
tems with second order and third order EPs are not good can-
didates to see almost non-diffracting waves. They can only be
seen in systems with higher order EP as our strategy is based
upon the fact that N is large.

3. Conclusion

In summary, we provide an exact analytical solution for the
non-Hermitian Glauber—Fock lattice with asymmetric hop-
ping amplitudes. In the unidirectional finite lattice, an EP
occurs and all eigenstates coalesce. In the semi-infinite uni-
directional lattice, a continuous family of eigenstates with
complex eigenvalues appear. The latter one is not physical,
nevertheless its solutions can be used as almost non-diffracting
waves for the finite lattice at EP. We discuss that our method
is generic and we provide a numerical approach to construct
such non-diffracting waves in a unidirectional lattice with ran-
domized couplings. We stress that the non-diffracting solu-
tions which are stationary solutions of the infinitely long lattice
are different than the delta-function excitation at the left edge
of the lattice. Such delta-function excitation is a special case
of the stationary states that we studied here. Our proposed idea
can be experimentally realized in a variety of systems includ-
ing microwave where commercially available optical isolat-
ors can be used to break reciprocity, mechanical metamaterials
[30], and optical domain [31], to name a few.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

H R acknowledges the support by the Army Research Office
Grant No. W911NF-20-1-0276 and NSF Grant No. PHY-
2012172. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein.

ORCID iDs

Cem Yuce @@ https://orcid.org/0000-0003-4482-1786
Hamidreza Ramezani https://orcid.org/0000-0002-5288-
5440

References

[1] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature
424 817

[2] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O
2012 Phys. Rev. Lett. 109 106402

[3] Regensburger A, Bersch C, Miri M-A, Onishchukov G,
Christodoulides D N and Peschel U 2012 Nature 488 167

[4] Horsley S A R, Artoni M and La Rocca G C 2015 Nat.
Photon. 9 436

[5] Sunkyu Y, Piao X and Park N 2018 Phys. Rev. Lett.
120 193902

[6] Yang Y, Jia H, Wang S, Zhang P and Yang J 2020 Appl. Phys.
Lert. 116 213501


https://orcid.org/0000-0003-4482-1786
https://orcid.org/0000-0003-4482-1786
https://orcid.org/0000-0002-5288-5440
https://orcid.org/0000-0002-5288-5440
https://orcid.org/0000-0002-5288-5440
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nphoton.2015.106
https://doi.org/10.1038/nphoton.2015.106
https://doi.org/10.1103/PhysRevLett.120.193902
https://doi.org/10.1103/PhysRevLett.120.193902
https://doi.org/10.1063/5.0004104
https://doi.org/10.1063/5.0004104

J. Opt. 24 (2022) 11LT01

D Letters

[7] Makris K G, Kresic I, Brandstotter A and Rotter S 2020
Optica 7 619-23
[8] Horsley S A R 2019 Phys. Rev. A 100 053819
[9] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N
2007 Phys. Rev. Lett. 99 213901
[10] Mukherjee S, Spracklen A, Choudhury D, Goldman N,
Ohberg P, Andersson E and Thomson R R 2015 Phys. Rev.
Lett. 114 245504
[11] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B,
Mejia-Cortés C, Weimann S, Szameit A and Molina M [
2015 Phys. Rev. Lett. 114 245503
[12] Yulin A V and Konotop V V 2013 Opt. Lett. 38 4880
[13] Ramezani H 2017 Phys. Rev. A 96 011802
[14] Biesenthal T, Kremer M, Heinrich M and Szameit A 2019
Phys. Rev. Lett. 123 183601
[15] Kato T 1966 Perturbation Theory for Linear Operators
(Berlin: Springer)
[16] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and
Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[17] Longhi S 2011 J. Phys. A: Math. Theor. 44 485302
[18] Ramezani H, Li H-K, Wang Y and Zhang X 2014 Phys. Rev.
Lett. 113 263905

[19] Wong ZJ, Xu Y L, Kim J, O’Brien K, Wang Y, Feng L and
Zhang X 2016 Nat. Photon. 10 796

[20] Chen W, Ozdemir S K, Zhao G, Wiersig J and Yang L 2017
Nature 548 192

[21] Oztas Z 2018 Phys. Lett. A 382 17

[22] Perez-Leija A, Moya-Cessa H, Szameit A and
Christodoulides D N 2010 Opt. Lett. 35 2409

[23] Keil R, Perez-Leija A, Dreisow F, Heinrich M, Moya-Cessa H,
Nolte S, Christodoulides D N and Szameit A 2011 Phys.
Rev. Lett. 107 103601

[24] Oztas Z and Yuce C 2016 Phys. Lett. A 380 3307

[25] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802

[26] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S
and Ueda M 2018 Phys. Rev. X 8 031079

[27] Yuce C and Ramezani H 2021 Opt. Lett. 46 765

[28] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N
2007 Phys. Rev. Lett. 99 213901

[29] Yuce C and Turker Z 2017 Phys. Lett. A 381 2235

[30] Ghatak A, Brandenbourger M, van Wezel J and Coulais C
2020 Proc. Natl Acad. Sci. USA 117 29561

[31] Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M and
Chen Y 2020 Phys. Rev. Res. 2 013280


https://doi.org/10.1364/OPTICA.390788
https://doi.org/10.1364/OPTICA.390788
https://doi.org/10.1103/PhysRevA.100.053819
https://doi.org/10.1103/PhysRevA.100.053819
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org//10.1103/PhysRevLett.114.245504
https://doi.org//10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1364/OL.38.004880
https://doi.org/10.1364/OL.38.004880
https://doi.org/10.1103/PhysRevA.96.011802
https://doi.org/10.1103/PhysRevA.96.011802
https://doi.org/10.1103/PhysRevLett.123.183601
https://doi.org/10.1103/PhysRevLett.123.183601
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1088/1751-8113/44/48/485302
https://doi.org/10.1088/1751-8113/44/48/485302
https://doi.org/10.1103/PhysRevLett.113.263905
https://doi.org/10.1103/PhysRevLett.113.263905
https://doi.org/10.1038/nphoton.2016.216
https://doi.org/10.1038/nphoton.2016.216
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23281
https://doi.org/10.1016/j.physleta.2018.02.037
https://doi.org/10.1016/j.physleta.2018.02.037
https://doi.org/10.1364/OL.35.002409
https://doi.org/10.1364/OL.35.002409
https://doi.org/10.1103/PhysRevLett.107.103601
https://doi.org/10.1103/PhysRevLett.107.103601
https://doi.org/10.1016/j.physleta.2016.07.054
https://doi.org/10.1016/j.physleta.2016.07.054
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1364/OL.411999
https://doi.org/10.1364/OL.411999
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org/10.1016/j.physleta.2017.05.012
https://doi.org/10.1016/j.physleta.2017.05.012
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1103/PhysRevResearch.2.013280
https://doi.org/10.1103/PhysRevResearch.2.013280

	Diffraction-free beam propagation at the exceptional point of non-Hermitian Glauber Fock lattices
	1. Introduction
	2. Model
	2.1. Continuous family of stationary solutions

	3. Conclusion
	References




