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Abstract

An extensive number of the eigenstates can become exponentially localized at one boundary of

nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has

been studiedmostly in tight-binding lattices. To extend the skin effect to continues systems beyond

1D,we introduce a quadratic imaginary vector potential in the continuous two dimensional

Schrödinger equation.Wefind that inseparable eigenfunctions for separable nonreciprocal

Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and

hence they can only be used as quasi-stationary states in practice.We show that all eigenstates can be

clustered at the point where the imaginary vector potential isminimum in a confined system.

1. Introduction

Models describing one-dimensional tight-binding lattices with gain and loss or asymmetrical hopping

amplitudes are frequently used to explore non-Hermitian effects in discrete systems. Nonreciprocal lattices, i.e.

lattices with asymmetrical hopping amplitudes that can be induced by an imaginary vector potential on a

periodic potential have some remarkable effects which have no analog inHermitian systems such as single-

particle topological phase transition and non-Hermitian skin effect [1–3]. Non-Hermitian skin effect implies

that spectrum for the nonreciprocal non-Hermitian lattices changes non-locally as a result of distant boundaries

and hence open boundary conditions (OBC) and periodic boundary conditions (PBC) can lead to drastically

different spectra [4–28]. Besides, the eigenstates underOBC are exponentially localized at the edgewhile those

under PBC are extended along the lattice as opposed to theHermitian lattices where it is commonly believed that

bulk eigenstates in a long lattice are insensitive to boundary conditions. Because of the boundary condition

sensitivity of the spectrum, the standard bulk-boundary correspondence of topological insulators fails in such

systems and the non-Bloch band theory defined in the generalized Brillouin zonewas proposed to analyze the

topological edgemodes from the topological bulk invariants [29, 30]. These theoretical predictions have been

confirmed experimentally in various platforms [31–39].

The non-Hermitian skin effect, as well as its extension to nonlinear domains, [40, 41] have been explored for

discrete systems in previous studies while the literature on its continuous analog is limited [42–44]. Boundary

condition sensitivity of the spectrumwas shown to exist in the continuous systems governed by aHamiltonian

containing a periodic potential and a constant imaginary vector potential [42] and non-Bloch band theory in

continuous systemswere also developed [43].

In this work, we go beyond these recent studies on continuous systems and introduce also the effect of the

infinite boundary conditions (IBC)which ismissing in the previous studies. To this end, we consider two

dimensional Schrödinger equation, inwhich non-reciprocity is introduced by an imaginary vector potential and

examine the localization of eigenstates for various forms of imaginary vector potentials.We show that the energy

spectrumunder IBC,OBC, and PBC can be drastically different from each other.We discuss the condition for

the imaginary vector potential to obtain a real spectrumunder PBC. It is well known that a two-dimensional

HermitianHamiltonian that is separable inCartesian coordinate has separable eigenfunctions. Here, we show
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that this is not always the case for non-HermitianHamiltonians. Contrary toOBC andPBC,we show that

inseparable eigenstates for separableHamiltonians (IESH) appear for the systems under IBC.

2.Model

Consider a parentHermitianHamiltonian r p,¢( ) , fromwhichwe generate a nonreciprocal non-Hermitian

Hamiltonian r p,( ) by introducing an imaginary vector potential through p→ p− i∇Λ, i. e.,

ir p r p, ,= ¢ - L( ) ( )  , whereΛ=Λ(r) is a real-valued function and∇ is the gradient operator. Let us

start with aHermitian parentHamiltonian in two dimensions V x yp ,2¢ = + ( ) , fromwhichwe obtain

(ÿ= 1)

i V x yp , 12= - L +( ) ( ) ( )

There exists non-Hermitian eigenstatesψ that acquire an additional factorwith respect to theHermitian

eigenstates y¢

e 2y y= ¢-L ( )

Under this non-unitary transformation, the corresponding non-Hermitian andHermitian eigenvalues remain

the same E E= ¢. However, this doesn’t necessarilymean that theHermitian and non-Hermitian spectra are the

same sinceψ in (2) are not generally complete and onemayfind other non-Hermitian eigenstates that are not

given by the equation (2).

In this work, we suppose thatΛ is a quadratic polynomial in two variables containing real-valued constants

α1,2,3,4,5

x y x y x y. 31 2 3
2

4
2

5a a a a aL = + + + + ( )

Note that the non-HermitianHamiltonian is parity-time ( ) symmetric ifV(− x,− y)= V(x, y) and

α1= α2= 0.

A rather general result of themultiplicative factor e−Λ in equation (2) is that with an appropriate choice of

the parametersαj, non-Hermitian eigenstates can be exponentially localized at the point whereΛ isminimum.

Such a clustered localization of non-Hermitian eigenstates is particularly interesting for a confined system (a

systemunderOBC)when theminimumpoint ofΛ is set at one boundary of the system. This is in fact a

continuous analog of the non-Hermitian skin effect. Besides,Λ can be set to have aminimumat an arbitrary

point in the confined system to obtain clustered localizationat that point.Wewill discuss this issue below in

more detail whenwe studyOBC.

Let us suppose firstly that the system is subject to IBC in two dimensions

 x y x y, , 0 4y y= ¥ = = ¥ =( ) ( ) ( )

It is well known that if the two-dimensional potential of theHermitianHamiltonian is separable in cartesian

coordinates,V(x, y)= V(x)+ V(y), then the corresponding eigenfunctions are just products of the one-

dimensional eigenfunctions and the two-dimensional problembecomes equivalent to two one-dimensional

problems. Therefore, the energies are expressed as the sumof one-dimensional energies (2). However this is not

always the case for the non-Hermitian systems under IBC. In fact, the non-Hermitian eigenfunctionsψ are not

complete even though theHermitian eigenfunctions y¢ are complete in equation (2). Thismeans that theremay

be some other non-Hermitian eigenfunctions that cannot be obtainable from the completeHermitian

eigenfunctions y¢ in equation (2). One strategy to obtain them, if they exist, is to use the general solution of the

corresponding Schrödinger equation for the parentHermitianHamiltonian instead of using theHermitian

eigenstates. Remarkably, inseparable non-Hermitian eigenstatesmay comewith eigenvalues that are absent in

the correspondingHermitian spectrum. To illustrate our discussion on a toymodel, we consider

α1= α2= α5= 0 andα3> 0 andα4> 0 (Λ= α3x
2
+ α4y

2
) andV(x, y)= 0 at which the  symmetric,

nonreciprocal non-HermitianHamiltonian becomes

p i x p i y2 2 5D x y2 3
2

4
2a a= - + -( ) ( ) ( )

Although this non-HermitianHamiltonian is separable in cartesian coordinates, it has some eigenfunctions that

cannot be factored into a function of x times a function of y as can be seen from the following exact analytical

solutions subject to IBC (4). The complex energy (seperable) and zero energy (mostly inseperable) unnormalized

eigenfunctions are given by

e e 6k k
x y i k x k y

,x y
x y3

2
4

2y = a a- - + ( )( )

e f x iy 7x y
0

3
2

4
2y = a a- - ( ) ( )

where kx and ky are complex valued constants, and f (xm iy) is an arbitrary function of its arguments to be chosen

in such away thatψ0 satisfy IBC (figure 1)Therefore, the degree of degeneracy at zero energy level is infinite since
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one can in principle find infinitelymany such f (xm iy). The corresponding spectrum is continuous and covers
thewhole complex plane since the eigenvalues k kx y

2 2+( ) associatedwith (6) can take any complex values. Note

that the eigenfunctions (6) and (7) are not  symmetric when the corresponding eigenvalues are complex and

f (x+ iy)≠m f (−x+i y), respectively.

The eigenstates of theHamiltonian (5) are not orthogonal, sofinding time evolutionof an arbitrary initial wave

packet is not straightforward.Weobtain some exact solutions by solving the time-dependent Schrödinger equation
iD t2 y y= ¶ . For example,weconsider the initialwave packet t e e f x iy0 ik x ik yx yy = = -L +( ) ( ).We

observe that its time evolution is givenby  t e e e f x iy k ik t2ik x ik y i k k t
x y

x y x y
2 2

y = --L + - +( ) ( ( ( ) )( ) .Wefind
other solutions such asψ= (cx− y2− 2it)e−Λ andψ= (x2+ icy+ 2it)e−Λ, andψ= (x2+ 2it)ye−Λ, where c is an

arbitrary constant.

To this end, we say that the infinitely degenerate zero-energy solutions don’t appear in 1D (there exists only

one zero energy eigenfunction X x x e x
0

3
2= a-( ) subject to IBC for the 1DHamiltonian p i x2D x1 3

2a= -( ) .
On the other hand, 3D systems give rise to richer zero energy solutions as can be seen from the solution of the 3D

Hamiltonian p iz2D D z3 2
2= + -( )  :Ψ0= e−Λ f (a1x+ a2y+ ia3z), where a1, a2 and a3 are complex

constants satisfying a a a3
2

1
2

2
2= + and f is an arbitrary function andΛ= α3x

2
+ α4y

2
+ z2. Using this 3D

solution, one can find infinitelymany solutions that are inseparable in every directions.

The spectrumof a longHermitianOBC system can be practically calculated by approximating it as an

infinite system.However, this is not the case in non-Hermitian systemswith non-Hermitian skin effect [16]. To

study sensitivity of the non-Hermitian spectrum to the boundary conditions, we nextconsider theOBCwhere

the system is confined to a rectangular box of length Lx andwidth Lywith impenetrable walls.

y L y x x L0, , , 0 , 0 8x yy y y y= = = =( ) ( ) ( ) ( ) ( )

We stress that the zero energy states (7) disappearwhenwe introduce boundaries to the system and all eigenstates

become separable underOBC. In fact,ψ satisfyOBConly if y¢ satisfyOBC according to equation (2). Therefore

the non-Hermitian and parentHermitianHamiltonians have the same spectrumunderOBC

(E
n

L

n

L
2 x

x

y

y

2

2

2

2
p= +( ), where nx, ny are positive integers), revealing that the spectra for IBC andOBCare drastically

different from each other as the former one is continuous and covers thewhole complex planewhile the latter

one is discrete and real. This implies that non-Hermitian skin effect occurs. Let us now study the eigenstates

underOBC. Themultiplicative factor e−Λ in (2) leads to exponential localization of thewhole non-Hermitian

eigenstates at around the point whereΛ isminimum in the box. Therefore, we conclude that all eigenstates are

exponentially localized at the corner (0, 0). This is a continuous system analogue of the non-Hermitian skin

effect. In fact, skin localization is just a special case of eigenstate clustering sincewe have full control of where

localization occurs with appropriate choice ofαj. For example, all localized eigenstates are clustered around the

point x y, ,
2 2

1

3

2

4

= a
a

a
a

- -
( ) ( )whenα1,2< 0 andα3,4> 0, andα5= 0. As another example, one can choose

Λ=− α5xy (a uniformmagnetic fieldwith imaginary strength). In this case, localization occurs around the

corner (x, y)= (Lx, Ly)whenα5> 0. To this end, we remark thatΛ can also be chosen to be a periodic function

withmultipleminimumpoints instead of the polynomial (3). This allow us to design a clustering of eigenstates at

multiple localization points.

UnderOBC, time-dependent solutionsψ(t) for the non-HermitianHamiltonian can be constructed by
using a linear combination of the parentHermitian eigenstates n n,x y

y¢

t e c e 9

n n

n n
iE t

n n
,

, ,

x y

x y x yåy y= ¢-L -( ) ( )

where c e t 0n n n n, ,x y x y
y y= < ¢ = >L∣ ( ) are arbitrary complex coefficients to be determined from the initial

condition and E En n,x y
= are the corresponding eigenvalues for theHermitian eigenfunctions n n,x y

y¢ . From this

solution, time evolution of an initial wave packet for underOBC can be derived. The exponential factor e−Λ

Figure 1.The density for the unnormalized inseparable zero energy eigenfunctionswith e i x iy0.5 3x y
0

2 2y = + -- - ( ( )) (a) and

e i x y1 3.5x y
0

2 22 2y = - -- - ( ( )) (b).
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breaks the orthogonality condition and hence the total power of such awave packetψ(t) is either constant or

oscillates in time.

Having examinedOBC,we can now study PBC and compare the spectra underOBC and PBC.Consider that

 and ¢ are spatially periodic with the same periodicity and the systemhas PBC.We emphasize that
includes the potential∇Λ (1)while equation (2) includesΛ. The key point here is the fact that the derivative of a

periodic function is also a periodic function, but the reverse is not always true. This has interesting implications.

If bothΛ and∇Λ are periodic, then the non-Hermitian spectrumunder PBC is real valued and strong sensitivity

to the boundary conditions is lost. On the other hand, ifΛ is not periodic but is, then PBC is no longer

maintained under the transformation (2). In this case, the energy spectrum is complex valued and strongly

sensitive to the boundary conditions (OBCandPBC spectra are dramatically different from each other).

Furthermore, the eigenstates under PBC are extended as opposed to the eigenstates underOBC that are

exponentially localized. For example, suppose thatV(x, y) is a periodic potential andΛ= α1x+ α2y. Then the

corresponding non-HermitianHamiltonian is periodic, but the solution (2) can no longer be used for PBC.

Instead, we start with the solution expressed as an expansion over plainwaves with all permitted values of wave

vector k by the boundary condition,ψk=∑kck e
ik.r. By substituting this solution into the corresponding

eigenvalue equation, one finds a set of algebraic equations for ck and numerically solve them tofind the spectrum

for a specific periodic potentialV. In this case, the imaginary vector potential in introduces an asymmetry

between the imaginary parts ofEk and E−k.

We have so far considered systems in cartesian coordinates. Let us nowbriefly discuss systems in cylindrical

coordinates and the effect of the imaginary field on vortex solutions.Here we aremainly interested in non-

diffracting (shape-preserving during propagation) vortex beams, amongwhich Bessel beams are probably the

mostwidely known [45]. Consider theHelmholtz equation formonochromatic light (the Schrödinger equation

can be rearranged to look like theHelmholtz equation) k2 2y y ¢ = ¢, where∇2 is the Laplacian, k is the

wavenumber. It admits the Bessel beam solution Ae J k r eik z
n r

inzy¢ = q( ) , where Jn represents the nth-order

Bessel function of thefirst kind, (r, θ, z) are cylindrical coordinates and k k kz r
2 2 2= + [45]. The zero-order beam

has amaximum intensity on the axis while the densities are zerowhen n> 0. It is impossible to realize a perfect

Bessel beam in practice because it has infinite power. Instead, othermethodswere proposed in the literature to

obtain approximate Bessel beams to observe some of their characteristic features up to some distances. For

example, afinite power carrying Bessel Gauss beams [46]was proposed for experimental realization, though its

propagation is nearly diffraction-free up to some distances.We showhere that such non-diffracting vortex

beams can be realizable in non-Hermitian systems. Let us introduce the imaginary transformation

∇→∇−∇Λ, where r r0
2L = -( ) and r0 is a constant. Thenwe get a perfectly diffraction-free Bessel Gauss

beam in a non-Hermitian regime e J k rr r
n r

2 2 0
2y = - -∣ ∣ ( )( ) . By varying the constant r0, we can adjust the position

of themain peak and the location of the density dip. Interestingly, we can generate a density dip at the center

even for non-vortex Bessel beamwith n= 0when r0> 2.

One can also study IESH in cylindrically symmetric separable potentials. This can be seen on the toy non-

HermitianHamiltonian in cylindrical coordinates ip
2= - L( ) , whereΛ= r2+ z2.We consider IBC in

both radial and z directions. Obtaining exact analytical solutions is not easy, sowewrite specific zero energy

inseparable localized eigenstates with zero vorticity to prove the existence of IESH. It is given by

ψ= e−Λ
(r2− 2z2+ c1z+ c2), where c1, c2 are constants. Notice the density dip at r= z= 0 and c2= 0 even

though the solution has no vorticity.

3. Conclusion

To conclude, we introduce nonreciprocity to Schrödinger equation through an imaginary vector potential to

study the non-Hermitian skin effect in continuous systems. Localization of bulk eigenstates underOBC at the

edge is awell-known result of non-reciprocity in tight binding lattices. Here, we show that localization is also

possible for continuous systems underOBC and further discuss how to control the localization center.We study

how andwhy PBC andOBC spectra become different from each other.We consider IBC and show that IESH

can arise due to nonreciprocity in two dimensions.Wefind infinitelymany zero energy eigenstates for the toy

model (5). Strictly speaking, IESH can only be available for infinite systems, whereas an experiment has afinite

length . Fortunately, IESH can still be used in some practical applications as quasi-stationary solutions . For

example, in the non-Hermitian optics community, the zero-energy localized IESHmay be utilized to realize

numerous almost non-diffracting 2Dwave packets in systemswhere paraxial wave approximation is used.
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