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Abstract

An extensive number of the eigenstates can become exponentially localized at one boundary of
nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has
been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond
1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional
Schrodinger equation. We find that inseparable eigenfunctions for separable nonreciprocal
Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and
hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be
clustered at the point where the imaginary vector potential is minimum in a confined system.

1. Introduction

Models describing one-dimensional tight-binding lattices with gain and loss or asymmetrical hopping
amplitudes are frequently used to explore non-Hermitian effects in discrete systems. Nonreciprocal lattices, i.e.
lattices with asymmetrical hopping amplitudes that can be induced by an imaginary vector potential on a
periodic potential have some remarkable effects which have no analog in Hermitian systems such as single-
particle topological phase transition and non-Hermitian skin effect [ 1-3]. Non-Hermitian skin effect implies
that spectrum for the nonreciprocal non-Hermitian lattices changes non-locally as a result of distant boundaries
and hence open boundary conditions (OBC) and periodic boundary conditions (PBC) can lead to drastically
different spectra [4-28]. Besides, the eigenstates under OBC are exponentially localized at the edge while those
under PBC are extended along the lattice as opposed to the Hermitian lattices where it is commonly believed that
bulk eigenstates in along lattice are insensitive to boundary conditions. Because of the boundary condition
sensitivity of the spectrum, the standard bulk-boundary correspondence of topological insulators fails in such
systems and the non-Bloch band theory defined in the generalized Brillouin zone was proposed to analyze the
topological edge modes from the topological bulk invariants [29, 30]. These theoretical predictions have been
confirmed experimentally in various platforms [31-39].

The non-Hermitian skin effect, as well as its extension to nonlinear domains, [40, 41] have been explored for
discrete systems in previous studies while the literature on its continuous analog is limited [42—44]. Boundary
condition sensitivity of the spectrum was shown to exist in the continuous systems governed by a Hamiltonian
containing a periodic potential and a constant imaginary vector potential [42] and non-Bloch band theory in
continuous systems were also developed [43].

In this work, we go beyond these recent studies on continuous systems and introduce also the effect of the
infinite boundary conditions (IBC) which is missing in the previous studies. To this end, we consider two
dimensional Schrddinger equation, in which non-reciprocity is introduced by an imaginary vector potential and
examine the localization of eigenstates for various forms of imaginary vector potentials. We show that the energy
spectrum under IBC, OBC, and PBC can be drastically different from each other. We discuss the condition for
the imaginary vector potential to obtain a real spectrum under PBC. It is well known that a two-dimensional
Hermitian Hamiltonian that is separable in Cartesian coordinate has separable eigenfunctions. Here, we show
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that this is not always the case for non-Hermitian Hamiltonians. Contrary to OBC and PBC, we show that
inseparable eigenstates for separable Hamiltonians (IESH) appear for the systems under IBC.

2. Model

Consider a parent Hermitian Hamiltonian H’(r, p), from which we generate a nonreciprocal non-Hermitian
Hamiltonian H(r, p) by introducing an imaginary vector potential throughp — p —iVA, i.e,

H(r, p) = H'(r, p — iVA),where A = A(r) is a real-valued function and V is the gradient operator. Let us
start with a Hermitian parent Hamiltonian in two dimensions H' = p? + Vi(x, ¥), from which we obtain
(h=1)

H=(p —iVA? + V(xy) 1)

There exists non-Hermitian eigenstates 1) that acquire an additional factor with respect to the Hermitian
eigenstates 1’

Y= ety )
Under this non-unitary transformation, the corresponding non-Hermitian and Hermitian eigenvalues remain
the same E = E’. However, this doesn’t necessarily mean that the Hermitian and non-Hermitian spectra are the
same since 1 in (2) are not generally complete and one may find other non-Hermitian eigenstates that are not
given by the equation (2).
In this work, we suppose that A is a quadratic polynomial in two variables containing real-valued constants

Q1,2,3,4,5
A=ax+ay+asx?+ asy? + asxy. 3)

Note that the non-Hermitian Hamiltonian is parity-time (P7") symmetric if V(— x, — y) = V(x, y) and
a; =, =0.

A rather general result of the multiplicative factor e in equation (2) is that with an appropriate choice of
the parameters cj, non-Hermitian eigenstates can be exponentially localized at the point where A is minimum.
Such a clustered localization of non-Hermitian eigenstates is particularly interesting for a confined system (a
system under OBC) when the minimum point of A is set at one boundary of the system. Thisis in facta
continuous analog of the non-Hermitian skin effect. Besides, A can be set to have a minimum at an arbitrary
point in the confined system to obtain clustered localization at that point. We will discuss this issue below in
more detail when we study OBC.

Let us suppose firstly that the system is subject to IBC in two dimensions

Y(x = Foo, y) = Y(x, y = F00) = 0 4)

It is well known that if the two-dimensional potential of the Hermitian Hamiltonian is separable in cartesian
coordinates, V(x, y) = V(x) + V(y), then the corresponding eigenfunctions are just products of the one-
dimensional eigenfunctions and the two-dimensional problem becomes equivalent to two one-dimensional
problems. Therefore, the energies are expressed as the sum of one-dimensional energies (2). However this is not
always the case for the non-Hermitian systems under IBC. In fact, the non-Hermitian eigenfunctions ¢ are not
complete even though the Hermitian eigenfunctions v’ are complete in equation (2). This means that there may
be some other non-Hermitian eigenfunctions that cannot be obtainable from the complete Hermitian
eigenfunctions 1’ in equation (2). One strategy to obtain them, if they exist, is to use the general solution of the
corresponding Schrodinger equation for the parent Hermitian Hamiltonian instead of using the Hermitian
eigenstates. Remarkably, inseparable non-Hermitian eigenstates may come with eigenvalues that are absent in
the corresponding Hermitian spectrum. To illustrate our discussion on a toy model, we consider
ay=a,=as=0andas; > 0and a, > 0 (A = asx” 4+ ag®) and V(x, y) = 0 at which the PT° symmetric,
nonreciprocal non-Hermitian Hamiltonian becomes

Hop = (p, — 2iasx)’ + (p, — Zicwy)? (5)

Although this non-Hermitian Hamiltonian is separable in cartesian coordinates, it has some eigenfunctions that
cannot be factored into a function of x times a function of y as can be seen from the following exact analytical
solutions subject to IBC (4). The complex energy (seperable) and zero energy (mostly inseperable) unnormalized
eigenfunctions are given by

Wik, = o0 gty (©)

o= e f(x F i) @)

where k, and k, are complex valued constants, and f (x F iy) is an arbitrary function of its arguments to be chosen
in such a way that ¢/ satisty IBC (figure 1) Therefore, the degree of degeneracy at zero energy level is infinite since
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(@ _(b)

Figure 1. The density for the unnormalized inseparable zero energy eigenfunctions with ¢y = e~* > (0.5 + 3i(x — iy)) (a) and
Yo = e (1 — 3.5i(x2 — y2) (b).

one can in principle find infinitely many such f (x F iy). The corresponding spectrum is continuous and covers
the whole complex plane since the eigenvalues (k7 + kf) associated with (6) can take any complex values. Note
that the eigenfunctions (6) and (7) are not P7 symmetric when the corresponding eigenvalues are complex and
flx + iy) = F f(—x+iy), respectively.

The eigenstates of the Hamiltonian (5) are not orthogonal, so finding time evolution of an arbitrary initial wave
packet is not straightforward. We obtain some exact solutions by solving the time-dependent Schrédinger equation
Hap 1 = i O;9. For example, we consider the initial wave packet 1 (t = 0) = e~ e**tky f(x F iy). We
observe that its time evolution is given by 1 (t) = e~ eikextikyyp—ilkitkyt (f (& F iy — 2(ky F 1k,)t). Wefind
other solutions such as 1) = (cx — y* — 2if)e “and ¥ = (> + icy + 2if)e ™, and ¥ = (x> + 2it)ye ", where cisan
arbitrary constant.

To this end, we say that the infinitely degenerate zero-energy solutions don’t appear in 1D (there exists only
one zero energy eigenfunction Xo(x) = x e~** subject to IBC for the 1D Hamiltonian H,, = ( b, — 2icsx)*.
On the other hand, 3D systems give rise to richer zero energy solutions as can be seen from the solution of the 3D
Hamiltonian Hsp = Hyp + (p, — 2iz): Vo= e f(ayx + a,y + iasz), where ay, a, and a; are complex
constants satisfying a? = a? 4 a7 and fis an arbitrary function and A = a3x* + a,)” + 2% Using this 3D
solution, one can find infinitely many solutions that are inseparable in every directions.

The spectrum of along Hermitian OBC system can be practically calculated by approximating it as an
infinite system. However, this is not the case in non-Hermitian systems with non-Hermitian skin effect [16]. To
study sensitivity of the non-Hermitian spectrum to the boundary conditions, we nextconsider the OBC where
the system is confined to a rectangular box of length L, and width L, with impenetrable walls.

¢(0) )/) = w(in )’) = ¢(X, 0) = 1/)(96» Ly) =0 (8)

We stress that the zero energy states (7) disappear when we introduce boundaries to the system and all eigenstates
become separable under OBC. In fact, ¢ satisfy OBC only if ¢’ satisty OBC according to equation (2). Therefore
the non-Hermitian and parent Hermitian Hamiltonians have the same spectrum under OBC

P 2
(E=mn? (% + %), where n,, n,, are positive integers), revealing that the spectra for IBC and OBC are drastically

different from each other as the former one is continuous and covers the whole complex plane while the latter
one is discrete and real. This implies that non-Hermitian skin effect occurs. Let us now study the eigenstates
under OBC. The multiplicative factor e in (2) leads to exponential localization of the whole non-Hermitian
eigenstates at around the point where A is minimum in the box. Therefore, we conclude that all eigenstates are
exponentially localized at the corner (0, 0). This is a continuous system analogue of the non-Hermitian skin
effect. In fact, skin localization is just a special case of eigenstate clustering since we have full control of where
localization occurs with appropriate choice of o;. For example, all localized eigenstates are clustered around the

point (x, y) = _Z—Z‘, _222 Yywhen ; , < 0and a3 4 > 0, and a5 = 0. As another example, one can choose
3 4
A = — asxy (auniform magnetic field with imaginary strength). In this case, localization occurs around the

corner (x,y) = (L, L,) when a5 > 0. To this end, we remark thatA can also be chosen to be a periodic function
with multiple minimum points instead of the polynomial (3). This allow us to design a clustering of eigenstates at
multiple localization points.

Under OBC, time-dependent solutions ¥(¢) for the non-Hermitian Hamiltonian 7 can be constructed by
using a linear combination of the parent Hermitian eigenstates Q/J:u,ny

b() = ey cun, e Yy 9)
MMy
where ¢, , = <¢;x,ny| e) 1 (t = 0)> arearbitrary complex coefficients to be determined from the initial

conditionand E = E,_, arethe corresponding eigenvalues for the Hermitian eigenfunctions 77[J;x)ny . From this
solution, time evolution of an initial wave packet for 7 under OBC can be derived. The exponential factor e~
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breaks the orthogonality condition and hence the total power of such a wave packet 1/(#) is either constant or
oscillates in time.

Having examined OBC, we can now study PBC and compare the spectra under OBC and PBC. Consider that
‘H and H' are spatially periodic with the same periodicity and the system has PBC. We emphasize that H
includes the potential VA (1) while equation (2) includes A. The key point here is the fact that the derivative of a
periodic function is also a periodic function, but the reverse is not always true. This has interesting implications.
Ifboth A and VA are periodic, then the non-Hermitian spectrum under PBC is real valued and strong sensitivity
to the boundary conditions is lost. On the other hand, if A is not periodic but H is, then PBC is no longer
maintained under the transformation (2). In this case, the energy spectrum is complex valued and strongly
sensitive to the boundary conditions (OBC and PBC spectra are dramatically different from each other).
Furthermore, the eigenstates under PBC are extended as opposed to the eigenstates under OBC that are
exponentially localized. For example, suppose that V(x, y) is a periodic potential and A = a;x + a,y. Then the
corresponding non-Hermitian Hamiltonian H is periodic, but the solution (2) can no longer be used for PBC.
Instead, we start with the solution expressed as an expansion over plain waves with all permitted values of wave
vector k by the boundary condition, 1, = Y yci e r By substituting this solution into the corresponding
eigenvalue equation, one finds a set of algebraic equations for ¢ and numerically solve them to find the spectrum
for a specific periodic potential V. In this case, the imaginary vector potential in H introduces an asymmetry
between the imaginary parts of Ex and E_.

We have so far considered systems in cartesian coordinates. Let us now briefly discuss systems in cylindrical
coordinates and the effect of the imaginary field on vortex solutions. Here we are mainly interested in non-
diffracting (shape-preserving during propagation) vortex beams, among which Bessel beams are probably the
most widely known [45]. Consider the Helmholtz equation for monochromatic light (the Schrédinger equation
can be rearranged to look like the Helmholtz equation) V2t = k%), where VZisthe Laplacian, kis the
wavenumber. It admits the Bessel beam solution ¢/ = Ae*:%], (k,r)e™"?, where ], represents the nth-order
Bessel function of the first kind, (r, 6, z) are cylindrical coordinates and k* = k? + k?[45]. The zero-order beam
has a maximum intensity on the axis while the densities are zero when #n > 0. It is impossible to realize a perfect
Bessel beam in practice because it has infinite power. Instead, other methods were proposed in the literature to
obtain approximate Bessel beams to observe some of their characteristic features up to some distances. For
example, a finite power carrying Bessel Gauss beams [46] was proposed for experimental realization, though its
propagation is nearly diffraction-free up to some distances. We show here that such non-diffracting vortex
beams can be realizable in non-Hermitian systems. Let us introduce the imaginary transformation
V — V — VA, where A = (r — 1,)? and ry is a constant. Then we get a perfectly diffraction-free Bessel Gauss
beam in a non-Hermitian regime |¢)> = e~20 =)}, (k,r). By varying the constant ry, we can adjust the position
of the main peak and the location of the density dip. Interestingly, we can generate a density dip at the center
even for non-vortex Bessel beam with n = 0 when ry > 2.

One can also study IESH in cylindrically symmetric separable potentials. This can be seen on the toy non-
Hermitian Hamiltonian in cylindrical coordinates H = (p — iV A)2, where A = r* 4 z2. We consider IBC in
both radial and z directions. Obtaining exact analytical solutions is not easy, so we write specific zero energy
inseparable localized eigenstates with zero vorticity to prove the existence of IESH. It is given by
Y= e M — 222 + c;z+ o), where ¢}, ¢, are constants. Notice the densitydipatr =z=0and ¢, = 0 even
though the solution has no vorticity.

3. Conclusion

To conclude, we introduce nonreciprocity to Schrodinger equation through an imaginary vector potential to
study the non-Hermitian skin effect in continuous systems. Localization of bulk eigenstates under OBC at the
edge is a well-known result of non-reciprocity in tight binding lattices. Here, we show that localization is also
possible for continuous systems under OBC and further discuss how to control the localization center. We study
how and why PBC and OBC spectra become different from each other. We consider IBC and show that IESH
can arise due to nonreciprocity in two dimensions. We find infinitely many zero energy eigenstates for the toy
model (5). Strictly speaking, IESH can only be available for infinite systems, whereas an experiment has a finite
length . Fortunately, IESH can still be used in some practical applications as quasi-stationary solutions . For
example, in the non-Hermitian optics community, the zero-energy localized IESH may be utilized to realize
numerous almost non-diffracting 2D wave packets in systems where paraxial wave approximation is used.
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