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Abstract

What makes a word easy to learn? Early-learned words are frequent and tend to name concrete ref-
erents. But words typically do not occur in isolation. Some words are predictable from their contexts;
others are less so. Here, we investigate whether predictability relates to when children start producing
different words (age of acquisition; AoA). We operationalized predictability in terms of a word’s sur-
prisal in child-directed speech, computed using n-gram and long-short-term-memory (LSTM) language
models. Predictability derived from LSTMs was generally a better predictor than predictability derived
from n-gram models. Across five languages, average surprisal was positively correlated with the AoA
of predicates and function words but not nouns. Controlling for concreteness and word frequency, more
predictable predicates and function words were learned earlier. Differences in predictability between
languages were associated with cross-linguistic differences in AoA: the same word (when it was a
predicate) was produced earlier in languages where the word was more predictable.
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1. Introduction

In the first 2 years of life, children’s grammatical knowledge and lexicon grow in tan-
dem (Bates et al., 1994; Brinchmann, Braeken, & Lyster, 2019; Frank, Braginsky, March-
man, & Yurovsky, 2021). In addition, the order in which children acquire their first words
shows remarkable consistency (Braginsky, Yurovsky, Marchman, & Frank, 2019; Clark,
1993; Goodman, Dale, & Li, 2008; Tardif et al., 2008). For example, the words “ball,” “car,”
and “nose” are, on average, learned almost a year earlier than words like “drawer,” “green,”
and “animal.” This general pattern holds across multiple languages (Braginsky et al., 2019).
Modeling when words are acquired can, therefore, help us understand what factors drive lan-
guage learning more generally.

One way to study these ordering effects is by attempting to predict a word’s age of acqui-
sition (AoA) from lexical properties such as its part of speech, frequency, length, and con-
creteness (Braginsky et al., 2019; Goodman et al., 2008; Kuperman, Stadthagen-Gonzalez,
& Brysbaert, 2012). A common way is to estimate AoA is to use retrospective reports from
adults of their own AoA for words (e.g., Kuperman et al., 2012). In contrast, here, AoA is
determined using objective and timely parental reports of their children’s linguistic produc-
tions. Though these methods are related, they are not the same and produce only moderately
correlated AoA estimates for words (Luniewska et al., 2016). Using child-based AoA esti-
mates, studies find that nouns tend to be learned before verbs; more frequent words before
less frequent words, shorter words before longer words, and words with concrete referents
before those referring to more abstract entities. Controlling for part of speech, the frequency
tends to be one of the strongest predictors of AoA (Braginsky et al., 2019; Fourtassi, Bian,
& Frank, 2020; Goodman et al., 2008; Roy, Frank, DeCamp, Miller, & Roy, 2015). Here, we
go beyond using these word-level predictors, by considering the linguistic context in which
words appear in speech directed at children.

One such contextual predictor, previously examined by Braginsky et al. (2019), is the mean
length of utterance (MLU) in which the word occurs. MLLU can be considered as a proxy
for syntactic complexity. If word learning is constrained by a child’s ability to parse longer
utterances (which are often more complex), we should find longer MLUs to be associated
with later AoAs. This is precisely what Braginsky et al. (2019) found, though MLU was a sig-
nificant predictor only for predicates and function words (a result that turns out to be relevant
to the current investigation). Others have used contextual diversity—a measure of semantic
co-occurrence—as a predictor of AoA (Amatuni & Bergelson, 2017; Fourtassi et al., 2020;
Hills, Maouene, Riordan, & Smith, 2010; Roy et al., 2015; Stella, Beckage, & Brede, 2017).
Words with higher contextual diversity—those appearing in many different semantic contexts
in children’s input—tend to be easier to learn and process by children (Hsiao & Nation,
2018; Pagan, Bird, Hsiao, & Nation, 2020; Rosa, Tapia, & Perea, 2017). Like with MLU, this
predictor does not show the same effect across lexical categories. Hills et al. (2010) found
that higher contextual diversity predicted earlier word acquisition, though this effect appeared
to be strongest for predicates and function words when controlling for the effect of word
frequency. Such a predictor can be considered a proxy for some semantic factors, approxi-
mating the overall semantic richness of children’s learning environment. However, contextual
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diversity abstracts away from the semantic information encoded in specific sequential lin-
guistic contexts—utterances or conversations—experienced by learners (a point we discuss
in Section 3.1 of this paper) and, thus, does not directly measure syntactic complexity.

Here, we examine another contextual factor—the predictability of words across the lin-
guistic contexts in which they appear. A word’s predictability takes into account its linguistic
context as a whole, including both syntactic and semantic information. It allows us to identify
words that might be more or less difficult to learn as a function of the word sequences they
tend to appear in.

There are multiple reasons for focusing on predictability. First, it is easy to compute, as
we detail below. Second, it is psychologically real—we know that statistical factors such
as transition probabilities play important roles in just about every aspect of early language
learning (Saffran, 2020). Predictability (operationalized in terms of surprisal, see below) has
also been shown to be a strong predictor of processing difficulty in adult psycholinguistic
experiments (Demberg & Keller, 2008; Levy, 2008; Smith & Levy, 2013). More predictable
words (i.e., those with lower surprisal) tend to be easier to process.

Thus, to help us understand the role of sequential predictability on the complexity and
growth of children’s vocabulary across languages, we propose to study the relation that exists
between word predictability and AoA, treating AoA as a proxy for a word learning difficulty.
We frame our experiments around the following two sets of concrete questions:

1. Does a word’s predictability across linguistic contexts help explain how difficult a
word is to learn beyond previously known predictors? If so, how much sequential
context matter? And, is predictability equally important for all words or not and why?

2. Second, are the effects of predictability on AoA observable across many languages
and linguistic communities or are they isolated to only some? And, do differences in
word predictability predict differences in AoA between languages?

To determine a word’s predictability, we use computational language models that con-
sider a word’s previous sequential linguistic context. Specifically, word predictability can be
measured as the average surprisal of a word—its negative log probability in a given context
averaged across all contexts in which it appears—given a language model as our probabil-
ity model.

Language models are sequential predictive models trained to generate linguistic output
which are commonly used in natural language processing (NLP). They do so by learning
probability distributions over strings of words in a corpus, where the length of these word
strings may vary.” The additional information contained in these substrings in the form of
preceding words is what allows us to consider a word’s predictability given previous syntac-
tic and semantic context. In this paper, we consider two types of language models: n-gram
models and LSTM language models (Sundermeyer, Schliiter, & Ney, 2012). N-gram models
are simple conditional probability models, while LSTM models are more sophisticated neural
network models.

There has been growing interest in training or evaluating neural network language models
on corpora that resemble the linguistic input of children more than the standard newspaper,
Wikipedia, or web corpora used in NLP. This interest is motivated by two main goals: first,

(1°6 ‘ETOC "6OLGISST

e

) seoRrpuer) pue mei, o 9og TEz0z/11/60] we Amaqr] sup Aoy, RPN - upmom g 0 AEman) £ e FB00/] | ] ] epm

fopm

SRR FISIID) BArEas) St dis o1p Aq pewmacd am s ) o o sepnu soy Aveay surpu) Aepry w



4 0f 26 E. Portelance et al. / Cognitive Science 47 (2023)

determining how neural network models come to learn languages and, second, using these
models as tools to better understand language learning in children. In one model-centered
investigation, Huebner, Sulem, Cynthia, and Roth (2021) found that training language mod-
els on corpora of child-directed utterances can actually help these models perform better on
grammatical knowledge evaluations than when trained on similar sized or larger corpora of
traditional NLP data, suggesting that child-directed language may help grammar learning.
Chang and Bergen (2022) have also proposed to use the average surprisal of words as a proxy
for the AoA of words for language models in order to develop a new model evaluation task.
They evaluated whether previously known predictors of the AoA of words in children—like
frequency, concreteness, MLU, lexical category, and number of characters—also predicted
the “AoA of words” in language models and found that there are clear differences between
the orders in which children and language models acquire words.

Language models have also been proposed as tools to evaluate children’s language devel-
opment. For example, Sagae (2021) suggest using LSTMs trained on children’s utterances
to quantify children’s syntactic development, finding that they perform as well or better than
previous metrics.

All of this work—both model-based and child-focused—has been limited to English data.
Here, we expand our analyses to cross-linguistic data, considering models trained in five
different languages: English, German, French, Spanish, and Mandarin.

Our approach. In the rest of this paper, we will take the following approach: for each lan-
guage, we fit a set of language models on a corpus of child-directed utterances and extract the
average surprisal of words for which we have AoA estimates in children. We then compare
regression models of children’s AoA with average surprisal as one key predictor in concert
with previous significant predictors, using cross-validation to estimate out-of-sample perfor-
mance. We present two different modeling methods in two experiments. The first considers
the effect of predictability on the AoA of words in each language individually, while the sec-
ond considers its effect on all languages as a whole. We close this paper by considering how
what we have learnt about the relation between word predictability, and AoA can inform our
understanding about the role predictability plays on both children’s vocabulary growth and
the complexity of languages as a whole.

2. Data

We relied on two types of data: (1) Corpora of child-directed utterances used to train the
language models.® These were taken from the CHILDES database (MacWhinney, 2000): (2)
AoA estimates. These were based on parental reports of children’s language use, taken from
the Wordbank repository (Frank, Braginsky, Yurovsky, & Marchman, 2016). We go into fur-
ther detail in the following subsections about both these resources, and the data they contain.
Importantly, in order for a language to be considered in this cross-linguistic study, there had
to be sufficient data in this language in both of these resources. This criterion narrowed down
the list of languages we could consider to English, German, French, Spanish, and Mandarin.
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Table 1

Amount of data available in CHILDES and Wordbank by language

Language Child-Directed Tokens (CHILDES) Dialect Vocabulary Reports (Wordbank)

English 25,659,263 American 7.955
British 23,129
Australian 1.497

German 5,663,294 1,181

French 3.183.037 European 863
Quebecois 1.364

Spanish 2,267,707 European 1.005
Mexican 1.934

Mandarin 2,369,896 Beijing 1,938
Taiwanese 2.654

English was by far the most represented language in CHILDES, but there were still enough
data for the other languages to be able to fit our language models (see Table 1 for the amounts
of data available in each language for both CHILDES and Wordbank).

2.1. CHILDES and child-directed utterances

The CHILDES database (MacWhinney, 2000) is a repository of child language data, con-
taining text transcripts of child—caregiver interactions as well as video and sound recordings
of some of these interactions. The data come from many different studies conducted during
the past 60 years, spanning multiple languages and countries. For the most part, the children
in these studies range in age between 9 months old and five and a half years old.

For this paper, we only considered text transcription data and no other modalities. For
each of the five languages considered (English, German, French, Spanish, Mandarin), we col-
lected all of the available transcripts across all corpora available through the childes-db API
(Sanchez et al., 2019) in July 202 1. We then removed all utterances spoken by the target child,
leaving only the utterances said to the child or around the child. These utterances can be con-
sidered as an estimate of the linguistic input the children in these transcripts have access to.
We combined all of these child-directed utterances* into a corpus used to fit the language
models presented in the next section and to calculate the relative frequency of words for the
regression models presented in our experiments. The result was five corpora of child-directed
utterances, one for each language. Unlike the Wordbank database (Frank et al., 2016) pre-
sented in the next subsection, childes-db does not explicitly distinguish data based on dialec-
tal varieties of each language, so we use the same aggregated data for each language across
all varieties when fitting our models.

2.2. Wordbank and age of acquisition estimates

The Wordbank database (Frank et al., 2016) is a repository of parental reports about
their children’s vocabularies—essentially, a checklist of words where parents can check
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off words their child produces or understands. Most of these reports are versions of the
MacArthur—Bates Communicative Development Inventories (CDI) (Fenson et al., 1993). The
database is a collection of reports originating from different studies that were conducted
across the world. These studies and the vocabulary checklists they use are dialect specific,
so for each of five languages we consider in this study, we collected data from all available
dialects. We did not combine the data from different dialects into single languages as each
dialect contains different word lists on their reports, leaving fewer words at their intersection.

Our predictive target is the age at which a word is acquired. Since not all children learn a
given word at the same time, we instead follow prior work in quantifying AoA as the age at
which 50% of children are reported to produce a word on the CDI (Goodman et al., 2008).°
There are a number of methods to estimate this 50% point from a group of binary responses
for children of different ages. The simplest method is to determine the youngest age group at
which the empirical proportion of children producing the word is > 50%, but this approach
has several shortcomings. If words are very hard or very easy to learn, then it is possible that
for the covered age range some words never reach the 50% point (e.g., beside) or have already
surpassed the 50% point (e.g., Mommy) for even the youngest children. Such words would
have to be discarded if we were to use this method. Another issue is that this approach is sus-
ceptible to bias AoA estimates towards ages for which more CDI instruments were available
since the number of observations at each age is not equal (i.e., there may be more CDI instru-
ments from 24-month-olds than with 20-month-olds in the dataset, but this density should not
lead to more words being acquired at exactly 24 months). For these reasons, we used Bayesian
generalized linear models predicting acquisition as a function of age to estimate the AoA for
each word, following the method suggested in Frank et al. (2021).5

From the reports available in each language, we narrowed down the list of items used
in our experiments to all single-word items on the forms that were classified as either nouns,
predicates (verbs and adjectives), or function words (closed class words like pronouns, prepo-
sitions, question words, connectives, determiners). We excluded items that were multiword
expressions (e.g. “all gone™) or that were classified as being part of the “other” lexical cate-
gory, which included animal sounds, onomatopoeia, and other non-word expressions. Words
were also excluded if they were not in the five thousand most common words in each lan-
guage in our corpora of child-directed utterances from CHILDES, as this was the vocabulary
size used for the language models (described in the next section). Table 2 contains the exact
number of items taken from Wordbank that we considered for each language as well as their
breakdown by a lexical category.

3. Language models and predictability

To determine the predictability of words in the child-directed utterance corpora described
above, we use language models as our probability models. Language models define probabil-
ity distributions over subsequent words in a given context. Here, we consider the predictability
of words solely based on linguistic contextual information. Specifically, we define the overall
predictability of a word, w;, as its average surprisal, or average negative log probability, across
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Table 2

Number of items and their breakdown by lexical category in each language

Language Number of Items Nouns Predicates Function Words
English (American) 563 301 (53%) 165 (29%) 97 (17%)
English (British) 333 196 (59%) 100 (30%) 37 (11%)
English (Australian) 368 230 (63%) 138 (37%) 0 (0%)
German 361 189 (52%) 108 (30%) 64 (18%)
French (European) 394 222 (56%) 119 (30%) 53 (13%)
French (Quebecois) 468 248 (53%) 159 (34%) 61 (13%)
Spanish (European) 430 212 (49%) 121 (28%) 97 (23%)
Spanish (Mexican) 339 181 (53%) 90 (27%) 68 (20%)
Mandarin (Beijing) 500 269 (54%) 185 (37%) 46 (9%)
Mandarin (Taiwanese) 412 257 (62%) 119 (29%) 36(8%)

all its contexts of use, C (Eq. 1).
1

predictability(w,) = »  —logP(w; | wy,...,Wi1) X —, 1)
Cw;eC |C|
where wy, ..., w;_; is a sequence of words of bounded length representing the preceding

linguistic context.

There are many different types of language models. They vary in terms of the context sizes
they consider, in how they represent words, and in how they come to calculate the overall
probability of a word. As our definition in Eq. 1 suggests, we only consider language models
that take into account preceding linguistic context (and not following context) and do so in
an incremental order. Specifically, the experiments that follow will contain average surprisal
values obtained from two types of language models: n-gram models, and LSTM models.

3.1. N-gram language models

N-gram models are basic language models that consider contexts of sequence length n,
such that a bi-gram model keeps track of two word sequences and the contextual probability
of a word is based on a single preceding word, and a tri-gram keeps track of three word
sequences and contextual probability of a word is based on the two preceding words. Thus,
given our formula in Eq. 1, we simply need to replace i by n to determine the predictability
measure or average surprisal, of a word for a given n-gram model.

In an n-gram probability model, the probability of a word w, in a given context,
Wiy eoosWot o OF Py_gram(Wa | Wi, ..., Wy_1). is simply its normalized count across all
words that follow this context in the corpus. For example, if our probability model was
a tri-gram model and we wanted to determine the probability of the word “bird” in the
context “is that a bird,” we would take Fi_gram(bird | that a), which in practice is equal
to count(that a bird)/count(that a), where count() returns the number of instances of an
expression in a corpus. In this study, we used four different n-gram models: uni-grams, bi-
grams, tri-grams, and four-grams. Note that uni-gram models only track single-word contexts,
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in other words they represent the normalized frequency counts of words so the average sur-
prisal of a word for a uni-gram model is equivalent to its negative log frequency. Uni-gram
surprisal is also in effect equivalent to contextual diversity. Though their definitions are dif-
ferent, when calculated on a large enough corpus, these two metrics converge, as we show
in Appendix C in the Supporting Information, reaching a correlation score of —0.97 between
uni-gram surprisal and log-transformed contextual diversity. For all intents and purposes, uni-
gram surprisal, or the predictability of words irrespective of previous linguistic context, can
also be interpreted as contextual diversity in the experiments which follow.’

One downside of n-gram models is that the context size is fixed across the whole probability
model. This means that though some words may be better predicted from a single preceding
word while others may be better predicted by two preceding words, we can only consider one
of these context sizes at a time. LSTM models can help us get around this problem.

3.2. LSTM language models

Recurrent neural networks (RINNs) which, use long-short term memory gating unit layers
(Hochreiter & Schmidhuber, 1997), commonly known as LSTMs, are neural networks that
can be trained on sequential data, such as sentences, up to some bounded maximum length n.
These models can be used for language modeling (Sundermeyer et al., 2012) and have become
a staple baseline that continues to be used in NLP because of their useful analytical properties,
even though more recent model architectures outperform them (Vaswani et al., 2017). Further-
more, regular RNNs have previously been proposed as cognitive models for language learning
(Christiansen, Allen, & Seidenberg, 1998; Elman, 1990, 1993); however, these earlier models
were computationally limited and could be used only with small schematic datasets; in con-
trast, LSTMs can be applied to larger datasets. Thus, LSTM language models lend themselves
well to our analyses.

LSTM language models process utterances incrementally and make use of nested lay-
ers of hidden units to learn abstract representations that can predict sequential dependen-
cies between words across a range of dependency lengths (Linzen, Dupoux, & Goldberg,
2016). LSTM neural units use a gating system that allows them to “forget” some of the pre-
vious states while “remembering” others, thus learning to prioritize some dependencies in
a sequence over others at each state. So, unlike n-gram models, when determining the pre-
dictability, or average surprisal, (Eq. 1) of a word w; for these models, the preceding contexts,
Wi, ..., w;_ in C, can vary in length, usually representing all of the previous words in the
sentence. Further, the probability of a word in context can weigh the importance of preceding
words differently based on the information encoded in the model’s different layers. The added
richness of these representations may lead to a better probability model overall.

For the experiments that follow, we use a two-layered LSTM language model (Fig. 1). The
model has randomly initialized 100-dimensional word embeddings as its input layer, which
are updated during learning. Hidden states encode information about the preceding context.
At each time step, the current word embedding w; and the hidden state from the previous time-
step h}_, are passed through a transformation function, resulting in a new hidden state A} . This
hidden state h! and the hidden state from the previous time step in the second hidden layer
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P( ‘that’ | W is’ ) P( @’ | H;,‘ is that ) P( bird’ | W is that a’ )
b H 4
P(W|*..is") P(W|“...is that’) P(W|“..isthata’)
Softmax
. — LSTM Cell h? ) }ﬁ! ...
. — LSTM Cell h! ) kf; R
‘is’ ‘that’ ‘a’

Fig. 1. The LSTM model architecture incrementally processing the utterance “is that a bird.” At each step, the
model generates a conditional probability distribution over the vocabulary W representing the likelihood of being
the next word. During training, the model updates its weights to maximize the probability of the actual next word.
‘We can estimate the probability of words in context by retrieving their probability from the model output at each
state.

h?_, are then also passed through a transformation function, resulting in a new hidden state
h?. This final hidden state is then resized through a linear layer to the size of our vocabulary
before going through a softmax transformation to produce the output—a distribution over the
whole vocabulary W representing a prediction about the upcoming word. We use a vocabulary
size of 5,000, representing the most frequent words, because we found that including the
5,000 most common words usually resulted in the inclusion of almost all the words we had
on our AoA word lists for all languages. Fig. 1 shows how the probability of a word given its
preceding context Py g7y (w; | wi, ..., w;_;) can be extracted from the model.

The model’s objective during training is to maximize the likelihood of the next word at
each step—in other words, the model updates its parameters to minimize the surprisal of
words in context. We performed cross-validation tests to find the hyperparameter settings for
the LSTM language models that best minimized overall word surprisal. The hyperparameters
tested were the vocabulary size (2,000, 4,000, or 5,000), the word embedding size (100, 150),
the hidden state dimension size (100, 150), the batch size (128, 256, 512), and the number of
epochs (up to 50). We found that the optimal parameter combination was a vocabulary size of
5,000, 100-dimensional word embeddings, a 100 hidden state size, a batch size of 256, and
about 20 epochs of training.

We trained the models on all of the child-directed utterances for each language since the
models were to be used as probability models and not predictive models. We were therefore
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not concerned with overfitting to the training data. Utterances were shuffled at each epoch of
training. (For further details on the model implementation, see Appendix A in the Supporting
Information.)

4. Experiment 1: The role of word predictability beyond log frequency

In this first experiment, we consider how word predictability beyond frequency predicts
the AoA of words. Previous work (Braginsky et al., 2019; Fourtassi et al., 2020; Goodman
et al., 2008; Kuperman et al., 2012; Roy et al., 2015) has found that log frequency—or, equiv-
alently, uni-gram surprisal—is an important predictor of the AoA of words; here, we evaluate
the explanatory power of larger context sizes by using their residualized effect beyond uni-
gram surprisal as predictors. We compare models with different versions of average surprisal,
obtained using different language models: bi-gram, tri-gram, four-gram, or LSTM average
surprisals. We do so using leave-one-out (LOOQ) cross-validation.

4.1. Predictors

There are two main types of predictors considered in our models. First, we consider several
methods for computing average surprisal using language models conditioned on different
sizes and types of previous linguistic context. Second, we include other predictors that have
been found to be informative in previous work: concreteness and lexical category (Braginsky
et al., 2019; Goodman et al., 2008; Kuperman et al., 2012). All predictors are scaled by
centering their mean at zero and dividing by their standard deviation so that their magnitudes
can be compared.

uni-gram surprisal. is computed as the negative logarithm of frequency. Log frequency has
been found to explain substantial variance in AoA in previous work.

Residualized n-gram surprisal. tepresents the residual variance left after fitting a lin-
ear model which predicts n-gram average surprisal as a function of uni-gram surprisal,
n-gram average surprisal ~ uni-gram surprisal. n-gram average surprisal is the
predictability of a word given all contexts of size n in which it appears in the nth position.
We compare the average surprisal of bi-gram, tri-gram, and four-gram language models. If
an item had multiple word forms associated with it on the parental report instrument (e.g.,
“inside/in”"), we used the weighted mean average surprisal across all forms—in other words,
if one form was overall more frequent, then it was weighted it accordingly.®

Residualized LSTM surprisal. represents the residual variance left after fitting a linear model
which predicts LSTM average surprisal as a function of uni-gram surprisal, LSTM average
surprisal ~ uni-gram surprisal. LSTM average surprisal is calculated using the
LSTM language models described above. We compute the average surprisal of each word
across all of the child-directed utterances available in each language. We trained three LSTM
language models in each language using different random seeds and then used the mean
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average surprisal across these three runs as our measure of word predictability in each lan-
guage. As with n-gram surprisal, we used the weighted mean average surprisal across all
word forms.

Concreteness. is a rating score ranging between 1 and 5 for each word representing some
measure along the abstract to concrete scale. These scores are taken from Brysbaert, Warriner,
and Kuperman (2014). In order to obtain them for languages other than English, Wordbank
data associate each item to a “unilemma,” which is an equivalent English concept across all
languages for that item in the database. The concreteness score for the equivalent English
concept was then used for each word. This practice follows previous work (Braginsky et al.,
2019).

Lexical category. is included via contrast coding of three lexical categories: nouns (common
nouns), predicates (verbs and adjectives), and function words (closed-class words) follow-
ing Bates et al. (1994). Word categories were derived from the categories on the CDI forms
(e.g., verbs are listed as “action words™). Lexical category serves as interacting variable with
all predictors.

4.2. Regression models

Our approach involves a nested model comparison between the model containing previ-
ously known predictors, the uni-gram model, and augmented models that additionally contain
residualized average surprisal from either LSTM or n-gram language models. This compari-
son allows us to assess whether adding information from more dynamic context sizes using
LSTMs or from fixed n-gram context sizes beyond log frequency helps predict AoA. We
consider the uni-gram model as our base model:

1. The uni-gram model : AoA ~ lexical category *(uni-gram surprisal +
concreteness)

‘We then compare it to the following augmented models:

2. The residualized n-gram model : AoA ~ lexical category *(uni-gram
surprisal + n-gram residual average surprisal 4 concreteness), where
n-grams are either bi-grams, tri-grams, or four-grams.

3. Theresidualized LSTM model : AoA ~ lexical category *(uni-gram surprisal
+ LSTM residual average surprisal 4 concreteness)

4.3. Results

We compare the uni-gram models in each language to their augmented versions which
additionally contain residualized LSTM or n-gram average surprisals as predictors. We ana-
lIyze the difference between the base uni-gram models and the augmented models using both
LOO cross-validation and an analysis of variance (ANOVA)-nested model comparison across
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Table 3
Model comparison results augmenting uni-gram surprisal model with residualized surprisals by language and
model. Numbers indicate LOO cross-validation MAD (in months) with 95% confidence intervals

Language Uni-gram 2-gram 3-gram 4-gram LSTM
English (American) 2.071.86,2.141 2.02y1.83.2.16] 2.01p1.87,2.15] 201187014 2.01p870151™
English (British) 2.19%2.0,239 222 maan 2.21po124 2.21po124) 218 00237 ™
English (Australian) 1.9311.76,2.17 1.9311.76,2.11 1.9401 77011 1.9401.77.2.11) 19311762111
German 2.21190,2.41] 2.22p.02,243] 2.221 01,2.43] 221p 24y 2.3p.02,258]
French (European) 23p123 2.33p12,253] 2.31pa1,257 2.3p12s1 2.46p.1,29)
French (Quebecois) 2.54p 352731 2.56137,2.75] 2.54p 31273 2.5512.36,2.74] 2.54p 352731
Spanish (European) 2.4813202.671 2.4903 2 69 2.512.31,2.69] 2.51pa1am 2.49133268]
Spanish (Mexican) 2.081.91,2.25] 2.1p.93207m 2.1[1.93,2.29] 2.0911.92,2.0m 2.06p 80203 ™
Mandarin (Beijing) 1.8971.75,2.02] 1.89;1.752.001* 1.8671.73 2.00™* 1.87p1.742.01* 1.911.76,2.041
Mandarin (Taiwanese)  2.98p 7531 3.0p2.77.3.3] 3.0p2.78,3.23] 3.0p.77320" 2.98p 75 3.07%

Note: * (p <0.05) and ** (p <0.01) indicate that the nested ANOVA is significant.

languages. We report the mean absolute deviation (MAD) across all LOO model fits in each
language: the lower the MAD, the better the model fit.

4.3.1. Predictability overall

The overall results are available in Table 3, where we report MAD and 95% confidence
intervals across LOO cross-validation folds, as well as p values from our ANOVA-nested model
comparison. The models with the smallest MAD, or best fits, are given in bold.

The nested ANOVA results suggest that adding residualized LSTM surprisal as a predic-
tor significantly increases model fit in four of the ten datasets. However, given the cross-
validation results which show that there is very little difference in MAD values between our
base models and augmented models, we may want to be cautious about these results and
suggest instead that the overall effects are likely small.

The large majority of items across all languages are nouns. Average surprisal using more
linguistic context may not be such a good predictor of the AoA of nouns, at least not as much
as simple frequency (Portelance, Degen, & Frank, 2020). For this reason, the fact that we do
not see a large difference between our base and augmented models here may be expected.
If we consider the interaction between lexical category and residualized LSTM surprisal, we
find that the interaction terms for predicates are significant (p < .05) in five of the languages
(English (American), English (British), English (Australian), French (Quebecois), Spanish
(Mexican)).’

4.3.2. Predictability by lexical category

Adding residualized surprisal beyond uni-gram surprisal as a predictor of AoA does not
substantially improve overall prediction, but it may make a difference in predicting the AoA
of specific words. We next consider how effect sizes may differ by lexical category.'® Here,
we do so by plotting the estimated coefficients by lexical category for the different surprisal
predictors.!!
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Fig. 2. Coefficient estimates for surprisal values by lexical category in each language.

The plots in Fig. 2 show the estimated coefficients for variables across LOO folds by lexical
category. In each of these graphs, a point represents the estimated coefficient of a predictor for
one fitted model tun from the LOO cross-validation, so, for example, in English (American)
there are 563 items and therefore 563 folds all of which have been plotted here.

For each language in Fig. 2, we see that residualized bi-gram, tri-gram, four-gram, and
LSTM surprisals generally have little to no effect on nouns, but have a positive effect on
function words and predicates in most languages. In other words, the harder function words
and predicates are to predict in their linguistic contexts, the later they are acquired. The excep-
tion to this rule is Mandarin, where both function words and predicates show a negative effect

) seoRFpues) pue mumay, ap 905 TE70g/ [1/60] ve AmiqE] SUEQ (LY, WSPEY - UHOR N JO AmLAR Aq yeee] ¥Roo/] [ 111 sopmes Ko drexppurmo; sday wog pepeopmoc 6 ET0T G0LSI 55T

S

PRI SISO QAres) B Eorjdde ot Aq pOSA0E o SORRLE V() oM J0 SO Jof Aeayr] QU Adfty, 1O



14 of 26 E. Portelance et al. / Cognitive Science 47 (2023)

for all types of residual surprisal, meaning predicates with higher average surprisal, or less
predictability, seem to be learned earlier and have a lower AoA.

Several explanations for the disparate results in Mandarin are possible. First, Mandarin has
been known to pattern differently to other languages in other early word learning studies.
For example, it has been said that Mandarin learners do not show the same “noun bias”—the
observations that learners tend to initially learn to produce more nouns before increasing their
productions of verbs—that English learners seem to have (Tardif, Gelman, & Xu, 1999), an
observation that has been reproduced using the Wordbank parental report data (Frank et al.,
2021; Yee, 2020). Instead, Mandarin learners have been found to produce more predicates
early on during learning, even though both English- and Mandarin-speaking parents produce
relatively more predicates than nouns (Tardif et al., 1999). Another second possible expla-
nation for this difference may, however, lie in some of the Wordbank data itself. As Frank,
Braginsky, Marchman, & YurovskyFrank et al. (2019, chap. 11) note, there seem to be some
discrepancies with some of the Mandarin data in the repository, specifically forms collected
for Mandarin (Beijing) from the Tardif, Fletcher, Liang, and Kaciroti (2009) study seem to
show a much stronger predicate bias than other forms available for Mandarin (Beijing) or
other languages. This data imbalance may also be contributing to this effect for predicates.
On the other hand, the Mandarin (Taiwanese) data are not known to have this same issue, yet
it shows a similarly negative effect for average surprisal with predicates albeit weaker than
that of Mandarin (Beijing). 12

Finally, uni-gram surprisal has a positive effect on all lexical categories across almost all
languages: words that are more predictable based on their frequency are generally learned
earlier, here again the exception being Mandarin function words and predicates.

4.4. Interim conclusions

In this first experiment, we addressed our first set of research questions: Does a word’s
predictability across linguistic contexts help explain how difficult a word is to learn beyond
previously known predictors? If so, how much sequential context matters? And, is predictabil-
ity equally important for all words or not and why? Since average surprisal and log frequency
are correlated (see Appendix B in the Supporting Information), we elected to remove any vari-
ance explained by frequency by using residualized surprisal values as our predictor. We found
that including word predictability as a predictor of AoA helped explain some of the variance
unaccounted for by previous predictors like log frequency. However, these effects were not
universal, showing differences across lexical categories. Specifically, more predictable predi-
cates and function words were found to generally be acquired earlier than their less predictable
counterparts. As for how much previous sequential context mattered when determining word
predictability, based on our plots in Fig. 2, residual LSTM surprisal had a notably greater
effect size than all other n-gram surprisals, suggesting that dynamic context sizes which vary
from word to word may be most useful in measuring predictability.'?

5. Experiment 2: The role of word predictability across languages

In the previous section, we fit models for different languages using different word lists
(Table 2). It was, therefore hard to determine whether the differences in effect sizes we
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observed across languages were caused by variation within each individual language word
list or by real distinctions in effect sizes. To remedy this issue, we needed to use the same
word list for all languages. We achieved this by unifying words with the same concept across
languages using their unilemmas and then taking their intersection.

First, we aggregated our data across languages to find the intersection of all unilemmas.
There were a total of 89 unilemmas for which we have AoA estimates in all languages. These
included 64 nouns and 25 predicates; no function words were left because one language,
English (Australian), did not have function words in its word lists. Although we were left
with very few unilemmas overall, since we have 10 language groups, we still had 640 noun
items and 250 predicate items. Our previous results suggested that the effects of residualized
surprisal differed by lexical category, for this reason we split our data into nouns and predi-
cates, testing each category separately. We then fitted mixed-effects models on each category
with by-language random effects to compare effect sizes across languages.

5.1. Regression models

The models in this section differ from those used in the previous section as they include
an additional random effect term: (1 + uni-gram surprisal 4 residual average
surprisal | language). This term means that the models consider by-language differ-
ences in coefficient estimates for intercepts, the effects of uni-gram surprisal, and LSTM or
n-gram residual average surprisal, taking those differences as a source of variance in the data.
We did not include a separate random effect by language for concreteness ratings, since these
were based on the unilemmas for words and were therefore identical in all languages.

1. The residualized n-gram mixed-effects model : AoA ~ uni-gram surprisal +
n-gram residual average surprisal + concreteness + (1 4+ uni-gram
surprisal 4+ n-gram residual average surprisal | language), where n-
grams are either bi-grams, tri-grams, or four-grams.

2. The residualized LSTM mixed-effects model : AoA ~ uni-gram surprisal
+ LSTM residual average surprisal 4+ concreteness + (1 + uni-gram
surprisal + LSTM residual average surprisal | language)

5.2. Results

All predictors were scaled by language, centering predictors at zero and setting the standard
deviation to one.!*

5.2.1. Predictability overall

As shown in Fig. 3, when we examine words occurring in all languages, we find that the
effects of frequency (uni-gram surprisal) and concreteness are the same as before. Words
with higher uni-gram surprisal are learned later, that is, more frequent words are learned
earlier. Controlling for frequency and concreteness, none of the residual n-gram surprisal
predictors showed significant effects overall, but LSTM surprisal did. The reason may be
that n-grams only include information from a fixed length of context, while LSTM surprisal
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Fig. 3. Mean coefficient estimates for surprisal values by lexical category for mixed-effects model using the inter-
section of items in all languages.

Nouns Predicates
uni-gram ¥ o
LSTM residual " §
-1 0 1 2 -1 0 1 2
Coefficient estimate
English (American) English {British) ~ ® French {Quebecois) Mandarin (Beijing) Spanish (European)
English (Australian) ® French {European) Cierman Mandarin (Taiwanese) Spanish (Mexican)

Fig. 4. Coefficient estimates for surprisal values for nouns and predicates in each language. Only words with data
for all languages are included in this analysis.

contains information from more dynamic context sizes in the course of word learning. For
predicates, higher LSTM average surprisal predicts later AoA, so less predictable predicates
across linguistic contexts are harder to learn and, therefore, learned later. However, for nouns,
residual LSTM surprisal instead shows a negative effect, meaning that less predictable nouns
tend to be learned earlier.

A possible explanation for the case of nouns is that cross-situational learning for nouns
across diverse social and visual contexts in theory may also lead to more diverse linguistic
contexts and, therefore, higher surprisal (Hills, 2013; Roy et al., 2015). For predicates, how-
ever, children rely heavily on linguistic context to learn these words. Therefore, higher pre-
dictability across linguistic contexts may indicate that there are more linguistic cues helping
children learn certain predicates earlier than others.

5.2.2. Surprisal and AoA across languages

Fig. 4 plots effect sizes of uni-gram surprisal and residual LSTM surprisal for each
individual language by lexical category. > Comparing the predictive power of surprisal
across languages, we find that uni-gram surprisal (word frequency) is equally and positively
predictive of noun AoA. LSTM surprisal for nouns shows some variation, being somewhat
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more negative—greater surprisal is associated with earlier AoA—in Mandarin and Spanish
than in other tested languages. In the case of predicates, we see more variation. This result
may simply be due to there being fewer items used to fit the predicate mixed-effects model,
with only 250 words that were predicates compared to 640 words in the nouns mixed-effects
model. The positive effect of both uni-gram surprisal and LSTM surprisal is strongest for
Mandarin (Taiwanese and Beijing). This is an interesting result because our analyses from
our first experiment using separate models for each language (Section 4) found that Mandarin
was the only language to show a negative effect for surprisal when predicting the AoA of
predicates. It is likely that this difference in effect polarity is due to items included in the
mixed-effects models being a small subsample of those included in the previous experiment,
suggesting that the specific words used to fit the models may be introducing a bias towards
one or the other effect direction. We test and confirm this hypothesis in Appendix H in the
Supporting Information.

‘What makes the items from Experiment 2 different from the rest in Experiment 1 specifi-
cally in Mandarin is unclear (the item lists are provided in the Appendix as well). However, we
note that in Experiment 1 uni-gram surprisal also seemed to have negative estimates, albeit
smaller, for function words and predicates in this language. Less frequent function words
and predicates were supposedly acquired earlier contradicting the pattern seen in all other
languages. Given that the discrepancy in average surprisal estimate polarity between Experi-
ments 1 and 2 extends to uni-gram surprisal and not only LSTM average surprisal, the issue
is unlikely to be with our predictability measure. Instead, it likely follows from issues with
overall data quality in this language specifically. There are two places where data quality may
be eroded. First, as we explain in the results section of Experiment 1, the AoA estimates for
Mandarin may be questionable. Second, the corpus built from CHILDES data that we used
to calculate both log frequency and probability model surprisal values could be the issue. It
could simply be noisier and of poorer quality than the data in other languages, for example,
because the Mandarin data were much sparser in CHILDES than many of the other languages
(see Table 1).

Although children learning different languages follow broadly similar learning trajectories
(e.g., learning frequent concrete nouns before less common abstract verbs), there are differ-
ences between the AoA of words that mean roughly the same thing across languages. Taking
just the words available in all the languages, we find that for 45% of the word/language pairs,
the mean difference in AoA is greater than 2 months. For 16% of the pairs, it is greater than
4 months. Are these differences predictable by differences in average surprisal for the same
word across languages?

To answer this question, we first computed differences in AoA, uni-gram surprisal, and
LSTM residual average surprisal (i.e., LSTM average surprisal controlling for uni-gram sur-
prisal) for each lemma attested in each pair of languages (e.g., American English and Span-
ish). Uni-gram surprisal and LSTM residual average surprisal values were scaled within each
language before computing the differences. We then used a mixed-effects model to predict
cross-linguistic differences in AoA from differences in uni-gram surprisal and differences in
LSTM residual surprisal. Since some pairs of languages belong to the same base language,
for example, English (American) and English (Australian), we also added a binary variable
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Nouns Predicates
uni-gram differences —— ——

LSTM residual differences —— —_—

10 -05 00 05 10-1.0 -05 00 05 1.0
Estimate
p-level + <.001

Fig. 5. Differences in frequency (uni-gram surprisal) and LSTM-based word surprisal are associated with dif-
ferences in AoA. A positive coefficient indicates that if the same word has higher surprisal in language 1 than
language 2. it is learned later in language 1 than language 2.

to the model indicating whether the two languages have the same base language. Moreover,
we also included by-unilemma, by-the-first-base-language, and by-the-second-base-language
random intercepts in the model, thatis, (1 | unilemma) + (1 | base language 1) +
(1 | base language 2) because those random effects could also be a source of variance
in the data. Concreteness was not included as a predictor because we did not have separate
concreteness estimates for each language.

e The AoA differences mixed-effects model : AoA differences ~ differences
in uni-gram surprisal + differences in LSTM residual average
surprisal 4 whether the base languages are the same 4+ (1 |
unilemma) + (1 | base language 1) 4+ (1 | base language 2)

From our final analysis (Fig. 5), we see that for both nouns and predicates, if a word occurs
more frequently in language 1 than its equivalent'® in language 2, then its AoA is likely
to be earlier in language 1. The same pattern is true with higher order LSTM surprisal for
predicates, though for nouns we see an opposite effect, which aligns with our previous finding
that LSTM surprisal has opposite effects on predicates and nouns. A greater difference in
surprisal between two languages is associated with earlier AoAs for nouns and later AoAs
for predicates.

5.3. Interim conclusions

In this second experiment, we tried to answer our second set of questions: Are the effects
of predictability on AoA observable across many languages and linguistic communities or are
they isolated to only some? And, do differences in word predictability predict differences in
AoA between languages? We found that word predictability in context was a good predictor
across language, showing little variation in effect size. The effects for nouns and predicates
had polarity, however, such that less predictable nouns in linguistic contexts were learnt ear-
lier, while less predictable predicates were learnt later. Additionally, in our secondary analysis
we found that for predicates, there was a positive relationship between differences in surprisal
and differences in AoA: predicate lemmas that have a greater surprisal in language 1 than lan-
guage 2 tend to have a later AoA in language 1.
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6. Discussion

Are words that are more predictable given their linguistic context (i.e., words with lower
surprisal), easier to learn by young children? For predicates and function words, the answer
seems to be yes. Although uni-gram surprisal (i.e., word log frequency) was overall a better
predictor of AoA than higher order surprisal, surprisal derived from an LSTM neural network
predicted AoA beyond uni-gram surprisal and the words’ frequency. This effect was largely
restricted to predicates and function words—words whose meaning is especially dependent
on their context.

One route by which linguistic context is known to affect learning is via syntactic bootstrap-
ping. Introduced by Brown (1957) and coined by Gleitman (1990), syntactic bootstrapping
refers to the use of syntactic context to help determine meaning, especially for predicates.
A wealth of evidence from individual experiments and computational models supports the
ability of children to use linguistic information to make inferences about meaning Fisher,
Gertner, Scott, and Yuan (2010), Fisher, Jin, and Scott (2020). Although our experiments
do not directly test this idea, our results are certainly congruent with syntactic bootstrap-
ping accounts.

A somewhat puzzling finding is that when predicting the AoA of nouns, greater LSTM
surprisal was associated with earlier AoA—the opposite of what we observed for predicates
and function words. One possible explanation for this pattern is that noun learning is more
dependent on the perception of concrete referents, the salience of which is often obvious from
the extra-linguistic context (Gillette, Gleitman, Gleitman, & Lederer, 1999). Frequent nouns
are likely to appear in a broader set of contexts, which would increase their higher order
surprisal while at the same time making it more semantically interconnected and improved
learning (Hills, 2013; Hills et al., 2010; Roy et al., 2015). The results in Appendix C (in the
Supporting Information), which show how frequency and predictability relate to contextual
diversity, support this hypothesis. Frequency and contextual diversity are strongly correlated,
thus, more frequent words also tend to be more contextually diverse. Furthermore, contextual
diversity is negatively correlated with predictability; in other words, more predictable words
also tend to have higher contextual diversity.!”

We found the effects of surprisal to be mostly consistent across the tested languages. The
one exception was Mandarin. In our first experiment using separate models for each language,
Mandarin showed the opposite effects for surprisal on predicates and function words com-
pared to other languages. However, in Experiment 2 using a single-mixed effects model over
common unilemmas, Mandarin showed the largest effect of LSTM-based surprisal on AoA.
We suggested that this discrepancy may follow from data quality issues in Mandarin specifi-
cally.

6.1. Broader theoretical implications

Beyond helping us understand the role played by sequential word predictability in deter-
mining which words are easier or harder to learn, this research can also offer insights into
other theoretical questions.
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First, a broad literature has explored the so-called “AoA effect” which refers to the finding
that earlier learnt words are both easier to process for adults (Elsherif, Preece, & Catling,
2023) and more robustly accessible in aphasia patients (Brysbaert & Ellis, 2016). Most stud-
ies have looked at the effect specifically with referential nouns; a few exceptions have also
considered it with predicates and none have looked at function words, that is, Colombo and
Burani (2002), Morrison, Hirsh, and Duggan (2003), Bogka et al. (2003), Bonin, Boyer, Méot,
Fayol, and Droit (2004), and Boulenger, Décoppet, Roy, Paulignan, and Nazir (2007). The
first four mentioned studies found an AoA effect for both nouns and verbs, all however used
an image naming task, and AoA effects are known to be strongly modulated by the image-
ability of words (Elsherif et al., 2023). The most recent study, Boulenger et al. (2007), used a
lexical decision task which requires participants to read words and decided whether they are
a real or nonce word. The AoA effect was only found with nouns and not verbs. The authors
suggest that verbs and nouns may be learnt and processed differently resulting in different
AoA effects depending on task demands. Our results confirm that nouns and predicates may
not be learnt using the same cues and that their AoAs are dependent on different predictive
factors, including predictability, or average surprisal, in the case of predicates. These learning
differences could then result in different AoA effects, depending on task demands. Surprisal
is known to predict sentence processing difficulty in incremental reading tasks (Hale, 2016).
Reading task demands—as opposed to image naming task demands—may be different for
words whose AoAs are more dependent on surprisal, like predicates, than those that are not,
like nouns.'®

Second, our results shed light on a puzzle of linguistic complexity. Languages spoken
by larger communities, those with many nonnative speakers, and those that have under-
gone substantial language contact (factors that are often, but not always positively corre-
lated), tend to be morphologically simpler (Bentz, Dediu, Verkerk, & Jager, 2018; Lupyan
& Dale, 2010; Winters, Kirby, & Smith, 2015; Trudgill, 2011; Wray & Grace, 2007). On
the other hand, languages spoken by smaller groups are more complex and less compress-
ible (Koplenig, 2019; Lupyan, 2019; Lupyan & Dale, 2010). But why? One possibility—
a prediction made by Lupyan and Dale’s (2010) linguistic niche hypothesis—is that there
may be a trade-off between optimizing languages for use by larger/more diverse groups and
optimizing languages for maximally efficient learning by young children. Greater compress-
ibility is intimately linked to predictability: A more compressible language is one that con-
tains utterances where one part is better predicted from other parts, making them informa-
tionally redundant. An intriguing possibility is that the reason smaller languages are more
compressible—i.e., have overall higher predictability, or lower average surprisal—is that pre-
dictability is especially important to young children learning their first language (Lupyan
& Dale, 2010, 2016). Our results show initial support for this idea: at least for predicates, a
decrease in surprisal is associated with faster word learning suggesting that redundancy (lower
surprisal) may provide more effective learning opportunities for young children. Further
tests of this hypothesis would require comparison across a much wider range of languages,
however.
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7. Conclusion and limitations

‘We investigated the relationship between word predictability—formulated as average sur-
prisal in linguistic contexts—and AoA—a proxy for how difficult learning a given word is
for children. Word predictability seems to be especially important for the acquisition of pred-
icates and function words, rather than nouns. Less predictable verbs and adjectives in lin-
guistic contexts tend to be acquired later by children and are therefore harder to learn. We
found this effect to be true in multiple languages, and that differences in surprisal predict dif-
ferences in AoA. This finding is broadly in line with the prediction that decreasing surprisal
(i-e., increasing redundancy) may—all else being equal—facilitate child language learning,
particularly of more relational words.

Theories of language learning must explain not just words like “ball” and “dog” but also
words whose meaning in context is almost entirely dependent on other words. Sequential
models like the LSTM we used here may be a promising avenue to help explain the acquisition
of these “hard words.”

A major limitation of our analyses is that it is based on the data available in CHILDES.
These corpora of child-directed utterances were—by necessity—assembled from many sub-
corpora from different children and studies and may not be the best representations of the
regularity, idiosyncrasies, and contextual diversity found in the language targeted to a sin-
gle child. Furthermore, our corpora contained utterances directed at children who were older
in some cases than those surveyed for the AoA estimates. Ideally, these sentences would
span the exact same developmental stages. A second limitation is that the words and AoA
estimates we use are based on parents’ reports of their children’s language. Although val-
idated and highly reliable, these data cannot capture the full richness of individual chil-
dren’s vocabularies and language use. Finally, our sample of language is restricted to lan-
guages with a large digital footprint. We hope future studies can begin to overcome these
limitations.

Open Research Badges

0 This article has earned Open Data and Open Materials badges. Data and materials
are available at https://github.com/evaportelance/multilingual-aoa-prediction

Notes

1 For an overview of empirical evidence supporting the validity of surprisal as a predictor
of processing difficulty, see Hale (2016).

2 Context size can vary depending on the language model, ranging from a single previous
token in n-gram models to a bounded ordered list of all previous or subsequent tokens
in an ong-short-term-memory (LSTM) model.

3 All of the data, models, and experiment code presented in this paper are publicly avail-
able at https://github.com/evaportelance/multilingual-aoa-prediction.
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We will use the term child directed somewhat loosely here such that it may also refer to
utterances that were directed to other adults or children present, but that the target child
could still hear.

We chose to use these AoA estimates from parental reports over those of Kuperman
et al. (2012), which exist for a much larger vocabulary, because the latter are based
on adult estimates of their own AoA, rather than timely reports of children’s AoA.
Additionally, Kuperman et al. (2012) report word comprehension AoA estimates, while
the estimates we use here are word production AoA estimates.

For a more detailed description of this method, see Appendix E of Frank et al. (2021).
Though contextual diversity is strongly correlated with uni-gram surprisal, importantly,
it is not related to higher order surprisal metrics which take into account contextualized
sequential predictability, like LSTM average surprisal, as shown in Appendix C in the
Supporting Information.

We also tried considering different forms as separate items; these results are available
in Appendix D in the Supporting Information.

We used contrast coding for our lexical categories, such that interaction terms between a
lexical category and residualized surprisal can be interpreted as main effects, indicating
a difference from the overall mean.

Since lexical categories differ significantly in their concreteness ratings, we also
explored whether the by-lexical-category differences in surprisal effects seen in this
subsection can be better explained by an interaction between residualized surprisal and
concreteness in Appendix F in the Supporting Information.

In Appendix E in the Supporting Information, we also fit models to items in each lexi-
cal category individually and consider their MAD; Table S5 shows that nouns are gen-
erally best predicted by simply using the uni-gram base model, while predicates and
function words often benefit from the augmented versions which include some form of
higher order residualized surprisal, LSTM and tri-gram residualized surprisal generally
doing best.

It is also possible that these differences are simply due to strength and nature of the
resources we had at our disposal for Mandarin. For example, it is possible that differ-
ent corpora in CHILDES data used different character systems or word segmentation
norms, since there exists different standards for this language, which in turn could have
led to noisier data.

The importance of context size has previously been studied in the case of contextual
diversity (Hills et al., 2010), but as we note in Appendix C in the Supporting Infor-
mation, contextual diversity and predictability measure different properties and may,
therefore, require different types of contexts.

Doing so for each language individually allows us to compare the effects across lan-
guages without worrying that any differences in variation that are due to our predictive
n-gram or LSTM models having different surprisal distributions in different languages.
The effect sizes by language for residualized n-gram surprisal values are available in
Appendix G in the Supporting Information.

Equivalent words refer to word with the same unilemma in Wordbank.
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17 We note that when controlling for the effect of log frequency, predictability and con-
textual diversity are no longer as correlated. Additionally, nouns pattern differently
from predicates and function words in terms of the relationship between predictabil-
ity and frequency.

18 We note the caveat that Boulenger et al. (2007) used subjective AoA measures based on
retrospective adult ratings; Our research used objective ratings based of parental reports
of children’s productions. As mentioned in the introduction, these measures are related
but not always strongly correlated.
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Table S1: Pearson correlation between LSTM, bi-
gram, tri-gram, four-gram average surprisal and uni-gram
surprisal in each language

Table S2: Pearson correlation between frequency,
uni-gram surprisal, LSTM average surprisal, contextual
diversity (CD), and log transformed contextual diversity
(log CD) across all languages

Table S3: Pearson correlation between uni-gram sur-
prisal, residualised LSTM average surprisal, and residu-
alised log transformed contextual diversity by lexical cat-
egory across all languages

Table S4: Approach 1 model comparison results aug-
menting uni-gram surprisal model with residualised sur-
prisal by language

Figure S1: Coefficient estimates by lexical category
in each language using first approach with all words as
separate items

Table S5: Approach 1 model comparison results aug-
menting uni-gram surprisal model with residualised sur-
prisal by language and lexical category

Figure S2: Concreteness distribution for different lexi-
cal categories

Table S6: Approach 1 model comparison results using
interaction with concreteness by language

Figure S3: By-language random effects in Residu-
alised n-gram mixed-effects models for second approach

Figure S4: Coefficient estimates for surprisal values
using the model from Experiment 1 on the dataset from
Experiment 2 for Mandarin
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