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Abstract

The paper concerns optimal control of discontinuous differential inclusions of the normal cone type
governed by a generalized version of the Moreau sweeping process with control functions acting in both
nonconvex moving sets and additive perturbations. This is a new class of optimal control problems in com-
parison with previously considered counterparts where the controlled sweeping sets are described by convex
polyhedra. Besides a theoretical interest, a major motivation for our study of such challenging optimal con-
trol problems with intrinsic state constraints comes from the application to the crowd motion model in a
practically adequate planar setting with nonconvex but prox-regular sweeping sets. Based on a constructive
discrete approximation approach and advanced tools of first-order and second-order variational analysis and
generalized differentiation, we establish the strong convergence of discrete optimal solutions and derive a
complete set of necessary optimality conditions for discrete-time and continuous-time sweeping control
systems that are expressed entirely via the problem data.
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1. Introduction, problem formulation, and discussions

The sweeping process was introduced and investigated by Jean-Jacques Moreau in the 1970s
(see, in particular, [28-30]) in the differential inclusion form

i(t) € =N (x(1); C(1)) ae. t€[0,T], (1.1)

where C(¢) is a (Lipschitz or absolutely) continuous moving convex set, and where the normal
cone N to it is understood in the sense of convex analysis for which Moreau was one of the
creators and major players. The original Moreau’s motivation came mainly from applications to
elastoplasticity, but it has been well recognized over the years that the sweeping process is im-
portant for many other applications to various problems in mechanics, hysteresis systems, traffic
equilibria, social and economic modelings, etc.; see, e.g., [14,19-22,34,37] and the references
therein.

Due to the maximal monotonicity of the normal cone operator in convex analysis, the sweep-
ing system (1.1) is described by a dissipative discontinuous differential inclusion and can for-
mally be related to control theory for dynamical systems governed by differential inclusions of
the type x € F(x), which has been broadly developed in variational analysis and optimal con-
trol; see, e.g., the books [11,26,38] with their extensive bibliographies. However, the results of
the latter theory, obtained under certain Lipschitzian assumptions on F, are not applicable to
the discontinuous sweeping process (1.1). Moreover, it is well known that the Cauchy problem
for (1.1) admits a unique solution, which excludes any optimization and control of the sweeping
process in form (1.1) with a given moving set C (7).

The authors of [12] introduced a control version of the sweeping process by inserting control
actions into the moving set C(¢) with considering its polyhedral evolution

Ct):={x €R"| (ui(0), x) <bi (1), i =1,...,m}, lu; ()| =1 forall £ €[0,T], (1.2)

where optimal control functions u;(¢) and b; (¢) ought to be selected in order to minimize some
cost functional. Formulated in this way optimization models for the controlled sweeping process
in (1.1) and (1.2) can be written as optimal control problems for unbounded discontinuous dif-
ferential inclusions with pointwise state constraints of inequality and equality types, which have
never been considered before in optimal control theory. The discrete approximation approach of
variational analysis, which significantly extends the one developed in [24,26] for Lipschitzian
differential inclusions, allowed the authors of [13] to derive an adequate set of necessary opti-
mality conditions for such polyhedral sweeping control problems with detailed illustrations of
new phenomena by nontrivial examples.

A perturbed version of the polyhedral controlled sweeping process was considered in [7,8] in
the form

—X(1) € N(x(®); C1)) + f(x(1),a®)) ae. t€[0,T], x(0)=xp€C(0), (1.3)
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with controls a: [0, T] — R4 acting in perturbations and controls u: [0, T] — R" acting in the
polyhedral moving set generated by the fixed vectors x;" as

C(t):=C+u(t) with C:={xeR"| (x,x) <0 forall i=1,...,m}. (1.4)

The necessary optimality conditions for the controlled sweeping process governed by (1.3) and
(1.4), which were derived in [7,8] by using discrete approximations and appropriate tools of
generalized differentiation, were then applied in [8] to an optimal control problem for the crowd
motion model in a corridor [21,37] admitted a sweeping polyhedral description of type (1.3),
(1.4).

Note also that other types of optimization problems for some versions of the sweeping process
were considered in the literature without using control parameterizations of the moving sets.
Control functions appeared there either in additive perturbations [2,4,10,16,32], or in associated
ordinary differential equations [1,5]. Necessary optimality conditions for optimal controls in such
controlled sweeping models were derived in [4,5] by employing some other methods different
from [7,8,12,13] under certain strong smoothness assumptions on the boundaries of compact
uncontrolled sweeping sets. In the more recent paper [36], the author addressed relaxation issues
for sweeping optimization problems with controls in additive perturbations and uncontrolled
convex moving sets that were also included in optimization.

In this paper we study a perturbed sweeping process of type (1.3), where controls enter both
perturbations and the moving set given now in the nonconvex (and hence nonpolyhedral) form as

m
C(1) :=C+u(t)=ﬂCi+u(t) with C; := {xeR"|g,~(x)20} forall i=1,...,m (1.5)

i=1

defined by some convex and C2-smooth functions g;: R” — R. Since the set C(¢) is noncon-
vex, an appropriate normal cone notion to C(z) should be specified in (1.3). For definiteness
we choose the proximal normal cone construction to describe the nonconvex sweeping process
under consideration, but actually all the major normal cone notions agree in our setting due the
prox-regularity of the set C(¢) under the assumptions made; see Section 2. Besides being of its
own theoretical interest and importance, the controlled sweeping process version from (1.3) and
(1.5) arises in applications to optimal control of the planar crowd motion model, which is more
adequate for the practical use in comparison of the polyhedral corridor version treated in [8]. In
fact, this has been our primary motivation for the developments of this paper. The results of the
crowd motion applications will be presented in the separate paper [9].
This paper concerns the problem of minimizing the Bolza-type functional

T
minimize J[x, u,a] :=<p(x(T))+/Z(t,x(t),u(t),a(t),fc(t),d(t),d(t))dt (1.6)
0

over the control functions u(-) € W]’z([O, T1;R") and a(-) € Wl’z([O, T1; RY) generating the
corresponding trajectories x(-) € w210, T7; R”™) of the sweeping differential inclusion (1.3)
with the controlled moving set (1.5), where the time final time 7 > O and the initial vec-
tor xg € R” are fixed. The precise assumptions on terminal extended-real-valued cost function
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¢: R" — R := (=00, 0o] and the running cost/integrand ¢ : [0, T'] x R4+2d _, R will be formu-
lated in Section 2. In addition to the above, the optimal control problem (P) under consideration
contains the pointwise constraints on the controls

ri<|lu@®)|| <rp forall t €[0,T] 1.7

with the fixed constraint bounds 0 < r; < r,. Note that the two inequality constraints in (1.7)
collapse to the equality one when r| = r,. The positivity requirement on rq in (1.7) is motivated
by applications.

It is important to emphasize that due to the construction of the (proximal) normal cone in (1.3)
and the moving set structure in (1.5), we implicitly have the pointwise constraints of the other

type
gi(x(t) —u(t)) >0 forall r€[0,T] and i =1,...,m, (1.8)

which should be taken into account in the subsequent derivations.

We pursue a threefold goal in this paper. The first one is to develop the method of discrete
approximations to study the nonpolyhedral sweeping system in (1.3), (1.5), and (1.7) as well
as the optimal control problem (P) for it by constructing a well-posed sequence of discrete-
time control systems such that any sweeping feasible solution can be strongly approximated (in
the W'-2-norm) by feasible ones for discrete systems and that optimal solutions to the discrete
counterparts of (P) strongly converge to an optimal solution for the original sweeping control
problem (P). The second goal is to justify the existence of optimal solutions to the discrete prob-
lems and to derive optimality conditions for them by employing advanced tools of variational
analysis and generalized differentiation, which are appropriate and in fact unavoidable in this
framework. The final goal is to use discrete approximations as a vehicle to establish necessary
optimality conditions for the given local optimal (in an appropriate sense) solution to (P) by
passing to the limit from those obtained for their discrete counterparts. The achievement of the
latter goal is also heavily based on employing appropriate generalized differential techniques
and, in particular, on second-order subdifferential computations in variational analysis.

As mentioned, the discrete approximation approach to deriving necessary optimality condi-
tions has been implemented before for Lipschitzian differential inclusions [24,26] as well as
for various versions of the polyhedral sweeping process [7,8,13], where the polyhedrality of the
moving set was strongly exploited. The nonpolyhedral case of the controlled sweeping process
treated below is significantly more involved in comparison with the previous developments in all
the major steps of our approach.

The rest of the paper is organized as follows. In Section 2 we recall the needed definitions from
variational analysis and generalized differentiation, formulate and discuss the basic assumptions
on the initial data of (P), and present some preliminary results widely used below. Section 3
constructs a sequence of discrete approximations for all the constraints of problem (P) simul-
taneously, without touching optimality so far, and show that any feasible solution to (P) can
be strongly approximated in the W!-2-norm by feasible solutions to the discrete-time inclusions
that are piecewise linearly extended to the continuous-time interval [0, 7] under fairly general
assumptions. This line of the strong approximation is continued in Section 5 for local optimal (in
the designated sense) solutions to (P), while the preceding Section 4 is devoted to justifying the
existence of global optimal solutions to (P) as well as the definition of “intermediate” (between
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weak and strong, the latter included) local minimizers and their relaxation that can be covered
by the developed method of discrete approximations.

In Section 6 we start preparations to deriving necessary optimality conditions first for discrete-
time sweeping problems and then for the original one. These preparations, which are important
for their own sake, include computations of the second-order constructions of generalized differ-
entiation that play a significant role in the subsequent results. Section 7 presents the derivation of
necessary optimality conditions for discrete approximation problems by reducing them to non-
dynamic models of mathematical programming with nonsmooth and nonconvex data together
with the usage of generalized differentiation calculus and the second-order computations given
above.

Section 8 is a culmination, which establishes a complete set of necessary optimality condi-
tions for the original sweeping control problem (P) by passing to the limit from those obtained
in Section 7 for discrete approximations together with rather involved techniques of variational
analysis ensuring the appropriate convergence of adjoint trajectories and the validity of the limit-
ing relationships. In Section 9 we present two examples, which are related to practical modeling
while illustrating the scheme of applications of the obtained necessary optimality conditions to
determine optimal solutions. More important practical applications of the obtained optimality
conditions appear in [9].

Throughout the paper we use standard notation of variational analysis and control theory; see,
e.g., [26,33,38]. Let us mention that B(x, r) stands for the closed ball of the space in question

centered at x with radius r > 0, IN :={1,2,...}, and x % % means that x — ¥ with ox) =
@(x).

2. Basic definitions, assumptions, and preliminaries

First we recall some definitions from variational analysis systematically used in what follows.
The framework of this paper is Euclidean and finite-dimensional. We refer the reader to the
books [11,25,33] for more details on generalized differentiation and related issues of variational
analysis and to the excellent survey by Colombo and Thibault [14] on prox-regularity and its
applications.

Let @ C R" be a nonempty set that is locally closed around x € €2, and let dist(x; 2) :=
infyecq [lx — y|| be the distance between x € R" and 2. The Euclidean projector of x onto Q2 is

Mx; Q) :={we Q| |x —w| =dist(x; Q)}, xeR",
which is nonempty if x is sufficiently close to x. The proximal normal cone to Q2 at X is given by
NP Q)= {[veR"|3a >0 suchthat X e TI(X + av; Q)}, e, .1

with NP (x; Q) := @if ¥ ¢ Q. Another geometric construction of generalized differentiation used
below is the (basic/limiting/Mordukhovich) normal cone to 2 at x € 2 defined by

N@E; Q) :={veR"|Ix — &, wp € M(x; Q), o >0 s.t. (g — wg) > v as k — oo}
(2.2)

with N (x; Q) := 0 if X ¢ Q. In contrast to the proximal normal cone (2.1), the limiting one (2.2)
and the corresponding subdifferential and coderivative constructions for nonsmooth functions
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and set-valued mappings, which are generated by (2.2) and are presented in Section 6, enjoy
full calculi in general settings that are based on the variational/extremal principles of variational
analysis; see, e.g., [25,33]. There is the following relationship between the limiting and proximal
normal cone notions:

N(i;Q):{veR”|3xk—>i, v — v with vy € NP (xy; ) for all keIN}.

If the set 2 is convex, both constructions (2.1) and (2.2) reduce to the classical normal cone of
convex analysis. But the convexity of €2 is not the only case when N¥(x; Q) = N(¥; Q), and
thus we can combine nice properties of both cones; in particular, the convexity of (2.1) and the
rich calculus for (2.2).

It has been well realized in variational analysis that the cones (2.1) and (2.2) agree for a re-
markable class of nonconvex sets introduced in variational analysis by Poliquin and Rockafellar
[31] under the name of prox-regularity. In fact, this notion was first developed by Federer [17] in
geometric measure theory under the name of “sets with positive reach.” The reader can find more
information in [14] with its abounded bibliographies therein. Besides many other applications,
prox-regular moving sets have been used in the sweeping process theory; see, e.g., [4,14,16,35,
37]. Our main attention is paid to uniformly prox-regular sets, the notion that was probably first
developed by Canino [6] in the study of geodesics.

Definition 2.1 (Uniform prox-regularity). Let Q2 be a closed subset of R", and let > 0. Then 2
is 7-PROX-REGULAR if for all x € bd 2 and v € N (x; ©) with ||v|| = 1 we have B(x + nv, n) N
Q = {x}. Equivalently, the n-prox-regularity of €2 can be defined via the validity of the estimate

(v,y —x) < ”2L”||y—x||2 forall ye, x ebd2, and ve N (x; Q).
n

Recall that any closed convex subset in R” is co-prox-regular and that in this case for every
n > 0 the well-defined Euclidean projection operator IT(x; €2) is single-valued if dist(x; 2) < n.

Throughout the paper we impose the following assumptions on the given data of the optimal
control problem (P) ensuring, in particular, that for each ¢ € [0, T'] the controlled moving set
C(¢) in (1.5) is uniformly prox-regular, and thus the proximal and limiting normal cones agree
for it. This allows us to use the normal cone notation “N” in (1.3) in the rest of the paper and
employ the results available in variational analysis for either one of these cones. Here are our
standing assumptions:

(H1) The perturbation mapping f: R” x R? — R” in (1.3) is continuous on R” x R? and
locally Lipschitzian with respect to the first argument, i.e., for every & > 0O there is a constant
K > 0 such that

I f G a) = f(y.a)l < Klx — yl| whenever (x,y) € B(0,¢) x B(0,&), ac R, (2.3)
Furthermore, there is a constant M > 0 ensuring the growth condition

If G )l < M+ |x|l) forany xe | C@), aeR? (2.4)
tel0,T]
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(H2) There exist positive constants ¢ > 0 and M;, j = 1, 2, 3, together with open sets V; D C;
such that dg (C;, R™ \ V;) > ¢ and the functions g;(-), i =1, ..., m, are twice continuously dif-
ferentiable (C-smooth) satisfying the estimates

M < |[Vgi(x)| < Mz, and |[Vgi(x)|| < M3 forall x € V;, (2.5)

where dy stands for the Hausdorff distance between sets.
(H3) There exist positive numbers 8 and p such that

3 nlve@l 5,3” 3 )\ivg,-(x)H forall x € C and A; >0, (2.6)

iel,(x) i€ly(x)

where the index set for the perturbed constraints is defined by

L) :={ie{l,....m}|g(x) <p}. (2.7)

(H4) The terminal cost ¢ : R” — R is lower semicontinuous (1.s.c.), while the running cost £
in (1.6) is such that £, := £(¢,-): R¥+2d 5 R is Ls.c. for a.e. ¢t € [0, T'], bounded from below
on bounded sets, and 1 +— £(t, x(¢), u(t),a(t), x(t), u(t), a(t)) is summable on [0, T'] for each
feasible triple (x(¢), u(t),a(t)).

Observe that the simultaneous validity of (2.5) and (2.6) imply the positive linear indepen-
dence of the gradients Vg;(x) of the active inequality constraints on C, and that it reduces to
the validity of the classical Mangasarian—Fromovitz constraint qualification on C in the setting
under consideration.

The following proposition is due to the result by Venel [37, Proposition 2.9]; see also [3] for
more discussions and further developments.

Proposition 2.2 (Uniform prox-regularity of the moving set). Under the validity of (H2) and
o

(H3) we have that for each t € [0, T] the set C(t) is n-prox-regular with n = M—,B
3

Proof. It follows from [37, Proposition 2.9] that the set C in (1.5) is n-prox-regular with the

modulus 1 defined in the proposition. Thus it holds for the moving set C(r) = C + u(¢) as a
translation of C. 0O

Proposition 2.2 allows us to verify the next proposition based on the well-posedness result by
Edmond and Thibault taken from [16, Theorem 1].

Proposition 2.3 (Existence and estimates for sweeping trajectories). Consider the perturbed
sweeping process (1.3) with the fixed controls u(-) € WL2([0, TI; R") and a(-) €
WL2([0, T1; R?) under the validity of (H1)-(H3) with the constant M > 0 taken from (2.4).
There is a unique solution x(-) € WL2([0, TT; R™) to (1.3) generated by the controls (u(-), a(-)).
Furthermore, we have

T
lx(® <1:=Ilxoll +*MT [ 2MT (1 + ||x0ll) + / li(s)lds | forall t€(0,T],
0

lxOI <20 +DM + lu(@®)|l ae te[0,T]. (2.8)
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Proof. With the fixed pair (u(-), a(-)), both existence and estimate statements of the theorem
follow from [16, Theorem 1] under the validity of (H1), the uniform prox-regularity of C(¢), and
the property

t
|dist(y; C (1)) — dist(y; C(v))| < lv(t) — v(r)|| forall t,7 €[0,T] with v(r) := / lli(s)|lds
0

and with the chosen W12 control u(-). The latter fact was proved in [7, Proposition 1], while
the uniform prox-regularity of C(z) follows from Proposition 2.2 under assumptions (H2)
and (H3). O

3. Discrete approximation of nonconvex sweeping process

This section deals with the constrained nonconvex sweeping process described by (1.3), (1.5),
and (1.7) without considering its optimization. In what follows we construct a sequence of
discrete-time counterparts of the constrained sweeping process in such a way that any feasi-
ble triple to the continuous-time process (including controls u(¢), a(¢) and the corresponding
trajectory x(¢) satisfying rather unrestrictive conditions) can be strongly approximated in the
W1-2_norm by feasible solutions to the discrete-time systems that are piecewise linearly extended
on the continuous-time interval [0, T].

The first step of this procedure is used in all the results presented below. Unifying the control
and state variables, we introduce the triple z := (x,u,a) € R” x R" x R? and show that (1.3)
with C(¢) from (1.5) can be written in the usual form of differential inclusions with respect to
the new variable z. Indeed, define the set-valued mapping F: R" x R" x RY = R” by

F)=Fx,u,a):=Nx—u;C)+ f(x,a) 3.1

and deduce from [37, Proposition 2.8] that F admits the explicit representation

FO={- Y aVat-w|nz0}+rea (32

iel(x—u)

via the index set of active constraints

1) :={ie{l,....,m}| g(y) =0} (3.3)

at the point y :=x — u € C. Then we can equivalently rewrite the sweeping inclusion (1.3) with
the set C from (1.5) in the following equivalent form involving one variable z € R” x R" x R¢:

—3(1) € F(z() x R" x R? ace. 1 €[0, T] with z(0) := (xo, u(0), a(0)), xo — u(0) € C,
(3.4)

where the last condition means that g; (xo —u(0)) > 0asi =1,..., m. Proposition 2.3 tells us that
the Cauchy problem in (3.4) has solutions in the class of W2 functions z(¢) = (x(¢), u(), a(t))
on [0, T].
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For each k € IN we define the discrete partitions of [0, T'] by
Ap={0=tF <tF <. <} with by :=75, =X | 0 as k> o0 (3.5)
k -— =1l 1 cen k k - — j-‘rl / . .

The next theorem justifies the desired strong discrete approximation for a large class of feasible
solutions to the continuous-time inclusions (3.4) generated by the nonconvex sweeping set (1.5)
with perturbing the pointwise control constraints (1.7) and keeping the implicit state constraints

(1.8).

Theorem 3.1 (Strong discrete approximation of feasible solutions to the constrained sweeping
process). Let the assumptions in (H1)—(H3) be satisfied. Consider a triple 7(-) = (x(-), u(-), a(-))
satisfying (3.4), (1.5), and (1.7) as well as the following properties, which all hold whenever
7€ W2([0, T): the sweeping inclusion (3.4) is fulfilled for 7(-) at the partition points t;.‘ from
(3.5)as j=0,...,k — 1 with the right-side derivative at to = 0 and for some constant . > 0
independent of k we have

Z

x(tm (%) (1) — i (ty)

=k
—x(tj) "

. . . (3.6)
u(t; +2) (/+1) u(t; +1) Lt(l‘j)
hy

<u.

Z

Then there exist a sequence of piecewise linear functions @) = k@), uk (@), a* (1)) on [0, T]
and a sequence of positive numbers g, < 2hipueX | 0 as k — oo with the constant K > 0 taken
from (2.3) so that (x*(0), u*(0), a*(0)) = (xo, i (0), @(0)),

ri—ex < luteHl <mte €A 3.7)

k) =2k @) — ¢ =k KOy =x0, F <<t with K e FEEER)  3.8)
for j=0,...,k—1and that zk(-) — Z(-) in the W2 norm, ie.,

T
Z’C(.)—)Z(.) uniformlyon [0,T] and /Hik(t)—z;(t)‘rdt—)() as k—o00. (3.9
0

Moreover, with [i := max{3u(1 +4KT)eX 4 (eX + 1)} we have the estimates

k() — u (1)

- <7 and var(i*;[0,T1) < 7, (3.10)
k

where “var” denotes the total variation on [0, T] of the derivative function in (3.10).
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Proof. It mainly follows the lines in the proof of [7, Theorem 3.1], although the problems under
consideration in [7] and here are significantly different. We just present the major constructions
in the new setting of this theorem. Define first a sequence of piecewise linear functions y*(-) :=
(yll‘(~), y§(~), y§(~)) on [0, T'] via their values at the mesh points of Ay by

(VY ). y5 (@), y5(@5)) == (), i (th), a(e))) forall j=0,....kand k € IN.

Define fu.rther wk(r) = (w’l‘(t),.wlz‘ (1), w§(t)) = yk(t) as piecc?wise constant and right continu-
ous functions on [0, 7] and easily deduce from these constructions that

yk(-) — Z(-) uniformly on [0, T'] and wk(-) —7() strongly in L2([0, T, R2"+d).

For each fixed k € IN, denote a*(¢) := y§ (t) on [0, T'] and use for simplicity the notation ¢; := t;.‘

as j =1, ..., k in what follows. We construct the desired trajectories xk () of (3.8) by induction.
Suppose that the value of x¥(z ) is known and define the vectors

uh (1) == xR () — yi ) + Y5 () = xM @) — 2@ +aey),  j=0.... .k,
for which we clearly have the relationships

x5 (t;) —uk(tj) =x(t;) —i(t;) as j=0,...,k and (3.11)

k : . k =
ri— e < |lut @Il < r2+ e with e = [Ix"(1;) — X @)l

This yields g; (x*(t;) — u*(t;)) = gi(¥(t;) — i(t;)) > 0 for i = 1,...,m and thus x*(z;) —
uk(t;) € C, which shows that the values F(zX(t;)) = F(x*(t;), u*(t;),a"(¢;)) of the map-
J J J J J
ping (3.1) are well defined whenever j =0, ..., k. Set xk(@) = xk(tj) —(t - tj)v]/‘. with
vk e H(—wk.; F(zk(t-))) forall t € [ti,tj+1) and j =0, ...,k — 1 and then deduce from (3.2)
j 1j J JARd/
and (3.11) that

F(xk @), uk 1)), d*(t))) = F(x@)), a(e)), aw)) + £ (x5 @), a@p) — f(x@)),a))).

Employing now the arguments similar to the proof of [7, Theorem 3.1], we readily verify that
the triples *@) = (xk(t), uk (1), ak(t)) fort € [0, T] and k € IN constructed above satisfy all the
conclusions of this theorem and thus complete the proof of this theorem. O

4. Existence of optimal solutions and local relaxation

This section starts the study of the entire sweeping optimal control problem (P) formulated
in Section 1, not only its feasible solutions. First we establish the existence of optimal solutions
to (P) with adding the convexity of the running cost £ of (1.6) in the velocity variables to our
standing assumptions.

Theorem 4.1 (Existence of optimal solutions to the sweeping optimal control problem). Let (P)
be the optimal control problem defined in Section I considering in the equivalent form (3.4)
of the sweeping differential inclusion over all the W“2([0, T1) triples z(-) = (x(-), u(-), a(-)).
In addition to the standing assumptions in (H1)—(H4), suppose that the integrand £ in (1.6) is



TH. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003—1050 1013

convex with respect to the velocity variables (X, i, a) and that along a minimizing sequence of
() = (@xFC), uk (), a* () as k € IN we have that €(t, ) is majorized by a summable function,
{(i* ()} is bounded in L*([0, T1; R") and {a*(-)} is bounded in W"2([0, T1; R?). Then problem
(P) admits an optimal solution in W1-2([0, T]; R?*+4),

Proof. It follows from Proposition 2.3 that the set of feasible solutions to (P) is nonempty. Take
the minimizing sequence k), uk (), a* () € wh2([0, T1; R?*t4) in (P) from the formula-
tion of the theorem, where x¥(-) is uniquely generated by WX (), a* () in Proposition 2.3. The
imposed boundedness assumptions on {uF ()} and {a¥ (")} yield by standard functional analysis
that the sequence {(i*(-), a*(-))} is weakly compact in L2([0, T]; R"*%), and so we have — by
passing to subsequences if necessary — the weak convergence ik () = () and ak () = ()
in L2([0, T1; R™) and L2([0, T]; RY), respectively, for some functions () and #¢(-) from the
corresponding spaces. Due to pointwise constraints (1.7) and the boundedness of {a¥(0)}, sup-
pose without loss of generality that uk(O) — ugp and ak(O) — ag as k — oo for some uy € R"” and
ap € R9. Then (u*(-), a*(-)) = (i(), a(-)) in the norm of W'2([0, T]; R"*9) for the functions
i(-) e Wh2([0, T1; R") and a(-) € Wh2([0, T]; RY) defined by

t t

i) == u0+/z9"(s)ds and a(r) := ao+/ﬁ”(s)ds, 4.1)
0 0

which implies, in particular, that u(-) satisfies the constraints in (1.7). Furthermore, it follows
from estimate (2.8) in Proposition 2.3 that the sequence {x¥()} is bounded in L2([0, T]; R"), and
hence we get 9*(-) € L?([0, T]; R") for which £*(-) = 9*(-) weakly in L2([0, T']; R") along a
subsequence. It yields the convergence x¥(-) — X(-) in the norm topology of W'-2([0, T]; R")
for x(-) € WH2([0, T1; R") defined by

t
x(@):=x0+ / ?*(s)ds, te€[0,T].
0

The next step is to verify that the limiting triple z(-) = (x(-), u(-), a(-)) satisfies the differential in-
clusion (3.4) with mapping F(z) given in (3.1). Since the derivative sequences (zk()} converges
to §(~) weakly in L%([0, T]; R4y the classical Mazur theorem ensures the strong convergence
to z(-) in this space of some sequence of convex combinations of the functions z¥(z). Thus there
is a subsequence of these convex combinations that converges to E(t) fora.e.r € [0, T]. It follows
from the above that there exist a function v : IN — IN and sequences of real numbers {o/(k);},
j=k,...,v(k), such that

v(k) v(k)
a(k); =0, Y a(k);=1, and > a(k);/ (1) > Z(1) ae. t€[0,T]
j=k Jj=k

as k — oo. By taking into account that x(t) — u(t) = klim (xk(t) — uk(t)) e C we get
—00

(k) (k)

—HO—f(F0).a0) = lim (=Y alo 0 = Y e, £ (1).a/ 1))

j=k j=k
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v(k)
T AT o () ]
_kll)ngo(—z Z a(k)]Angl(xj(t)—uf(t))>
J=kiel (xJ(t)—ul (1))
v(k)

=lim (=3 3w Va0 - ()

k— 00 - _ _
j=kiel(x(t)—u(t))

v(k)

:klggo(_ 3 Za(k)jx{Vg,-(xf(t)—uf(t))),

iel (R()—ii(t)) j=k

where 7 (-) is taken from (3.3), and where Aj =0ifielI(x(t) — ﬁ(t))\](xj(t) — ul (1)) due to

the clear inclusion 7 (x/ (t) — u’ (1)) C I(x(t) —u(t)) forall j = ., v(k) and all large k € IN.
v(k)

Let us now show that the numerical sequence {Za(k)j)\{ } is bounded for all i € I (x(r) —
j=k

u(t)). Indeed, we deduce from (2.5) and (2.6) the validity of the estimates

v(k) | v(k) _
Yo Yewps— Y (Za(k),-xl!) |Vei (E ) — () |
iel (X()—i(r)) j=k iel(x()—i(t) j=k
v(k)

LY (ewpd)vatio i)

iel R —i(t) j=k
v(k)

SEH Yoo D kA Vei(E@) — i)

iel F()—ii(t) j=k
v(k)

— Z Za(k)jA{Vg,-(xj(t)—btj(t))H

iel (x(t)—u(t)) j=k

5 (k)

AR

iel (x(t)—ii(r)) j=k
v(k) M

D SN ST (ng (50 —0)) ~ Vai (/0w 0) | + 2
iel(x(t)—u(t)) j=k
1 v(k) ;
<5 2 el +—

iel(x(t)—u(t)) j=k

v(k)
for all k sufficiently large, where M is an upper bound of { Z Za(k) jA{ Vi (x/ (1) —
iel (ZF(t)—i(n) j=k
v(k) '
ul (1)) } This justifies the boundedness of the sequence { Za(k) j)\{ } Thus there exists & > 0
j=k
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v(k) v(k)
such that Za(k)j)»i] <o and Za(k)jk{ — Bi as k — oo along some subsequence, with
j=k Jj=k

no relabeling. _
Next we verify that Z;f,ia(k)jA{Vgi(x-/(t) —ul (1)) > BiVgi(x(t) — ii(t)) as k — oo.
Observe that

v(k)

| Y03 Vi (x 0 = ul 1)) - i Vg (3 — a(0) |
=k

v(k) ) ‘ ‘ v(k) ]
< | Y w3/ Vel 0 = (0) = 3 @i Vai (i) — o) |
=k j=k
v(k) )
+ | Do a3 Vai(E 0 - ) - 4iVe (20) — i)
j=k

v (k)

= 2w | Vel 0 —ul 0) = Vi (80 =5 ) | + M2 | Yot 3] = B
j=k =k

|

<ae + Mpe forall large k € IN,

where M is taken in (H2) while ¢ > 0 is an arbitrary small number with

max || Ve (v (1) — ! (1)) — Vs (50) — 1))

=

(k)
X ewind -
=k

whenever k < j <v(k) and k is large enough. Thus we have

—HO-f(FO.G0) = im (= Y Y eh) 1 Ve 0 - 1))
iel (x(t)—u(t)) j=k

=— Z BiVgi(X(t) —u(1)) € N(x(t) —iu(1); C) ae. t €[0,T],

iel (x(1)—u(t))

which verifies by (3.2) that z(-) satisfies the differential inclusion (3.4) and hence the constraints
in (1.8).
To justify the optimality of the triple Z(-) in (P), it remains to show that

JIX, i, a] < liminf J[x%, u*, a¥]
k—o00

for the Bolza functional (1.6). But this is a clear consequence of the aforementioned Mazur
theorem due the imposed convexity of the integrand £ in the velocity variables and the Lebesgue
dominated convergence theorem for passing to the limit under the integral sign. O
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Note that the convexity of the running cost £ in (1.6) is not among the standing assumptions
of the paper and is not needed for deriving our main results on necessary optimality conditions
in (P). Such conditions established below address the so-called “relaxed intermediate local min-
imizers” introduced in [24] and then studied in many publications. To recall this notion, we
first consider the relaxed optimal control problem for (P) following the Bogoluybov—Young re-
laxation/convexification procedure, which has been well understood in the classical calculus of
variations and optimal control; see, e.g., [26] with the references therein and [10,15,16,36] for
more recent results in this direction. To this end, denote by ZF (t,x,u,a,x,u,a) the convexifica-
tion (the largest L.s.c. convex function majorized by £(¢, x, u, a, -, -, -)) of the running cost in (1.6)
on the set F(x, u, a) from (3.1) with respect to the velocity variables (x, #, @) and put 7= o0 at
points out of F(x, u, a). Define the relaxed optimal control problem (R) by

T
minimize J[z] = Jlx,u,al := ¢(x(T)) +/ZF(t,x(t),u(t),a(t),x(t),u(t),a(r))dt 4.2)
0

overall z(-) = (x(-), u(-), a(-)) € Wh2([0, T]) satisfying (1.5), (1.7), and (3.4). Besides the obvi-
ous case of integrands that are convex in velocity variables, there are broad classes of variational
and control problems over continuous-time intervals where optimal values of the cost function-
als in the (nonconvex) original and relaxed problems agree; it is known as “relaxation stability.”
This is due to some “hidden convexity” for such problems (we refer again to [26, Chapter 6]
and the commentaries therein), which allows us, in particular, to verify the relaxation stability
of nonconvex Bolza problems for Lipschitzian differential inclusions and also for those satisfy-
ing a certain one-sided Lipschitzian condition [15]. Unfortunately, neither of the aforementioned
conditions is fulfilled for the controlled sweeping process under consideration. For a sweeping
process over prox-regular moving sets with controls only in additive perturbations, the relaxation
stability follows from the result by Edmond and Thibault [16, Theorem 2]; see also [10] for sim-
ilar relaxation results concerning BV solutions. It seems that the closest to our setting is a recent
result by Tolstonogov [36, Theorem 4.2], which establishes the relaxation stability for a sweep-
ing process over variable convex moving sets involved in optimization together with controls in
perturbations.

Implementing the general scheme of [24,26] for the case of the sweeping control problem
under consideration, recall now the notion of local minimizers studied in this paper.

Definition 4.2 (Local minimizers). We say that Z(-) € W12([0, T]; R¥"*¢) is a RELAXED INTER-

MEDIATE LOCAL MINIMIZER (r.i.l.m.) of rank 2 for (P) if it is feasible to (P), J[z] = J[z], and
there is ¢ > 0 such that J[z] < J[z] for any feasible solution z(-) to (P) satisfying the conditions

T
lz(t) — z(t)|| < & whenever ¢ € [0, T] and / 12() — z()||%dt < e. 4.3)
0

For convenience we concentrate here on relaxed intermediate local minimizers of rank 2 and
skip mentioning the rank in what follows. The name “intermediate” comes from the fact that
the introduced notion clearly lies (strictly) between the conventional notions of weak and strong
local minimizers in the calculus of variations and optimal control; see [26] for more discussions.
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Note also that in the case of J[z] = [ ] (in particular, if (P) has the property of relaxation
stability), there is no difference between relaxed intermediate local minimizers and merely in-
termediate local minimizers (without relaxation), which were also defined in [24]. Thus we can
treat r.i.L.m. as a local version of relaxation stability. It can be distilled from the proofs of [16,
Theorem 2] and [36, Theorem 4.2] that no relaxation is needed provided that z(-) is a strong local
minimizer of (P) and, in addition to our standing assumptions, either controls are presented only
in perturbations, or the set C in (1.5) is convex.

5. Discrete approximation of intermediate local minimizers

In this section we continue with developing the method of discrete approximation, while now
paying our main attention not to constructing such approximations of any feasible solution to the
constrained system (3.4), (1.5), and (1.7) as in Section 3 but to the given local optimal solution
Z(:) = (x(-), u(-),a(-)) (in the ri.l.m. sense) of this system with respect to the cost functional
(1.6), which we can write as

T
minimize J[z] = ¢(z(7T)) +/€(t,z(t),i(t))dt (5.1)
0

with ¢(z) := ¢(x). It means that our goal here is to construct discrete approximations of the entire
problem (P) including its cost functional and the given r.i.l.m. for which we aim subsequently
to derive necessary optimality conditions by employing the discrete approximation method.

For any fixed k € IN we define the discrete sweeping control problem (Py) as follows: mini-
mize

k kook ko k k
X — X u- —u. a. —a
+1 +1 +1
il —w(xk)+hkz e ey, x5, af, L, L, - !
hi hi hy
j=0

t,
e k k k k 2
Y1 T Ujpr —Hj . d4j1 -4 -
+ x 13 — —ult — —alt
§ L/ ( x (1) H I () I )
k k k—2 k ) k k
. uy—u ~ . Uiy u; 1+u' ~
+ dist? | | L1 (—oo0, il ) +dist? [ Y | E—TE L (o0, 1] | (52)
hi ; hi
Jj=0
over elements z¥ := (xg,x{‘,...,x,’(‘,ul(‘),u]f,...,ulz_l,ag,a{‘,...,a,]f_l) satisfying the con-

straints

" 1€x hkF(x af) for j=0,....k—1 with (x§,u,al) = (x0,(0),a(0)), (5.3)
gi(xf —uby>0fori=1,...,m, (5.4)

ri—ex < |ukll <r2 4 & for j=0,....k, (5.5)

G, ub, aby — k), ah), a@h)l <e/2 for j=0,... k-1, (5.6)



1018 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003—1050

k
P

' i 5 k k 2 k k 2
x5 =X uhi g —ul. 4jp —4; -

/ ‘]JF] I _ %) +‘L—ﬁ(t) +‘L—fl(f) dr <,
i=0 hk hk hk ?
=0k

(5.7)
P k=2 k ok k
ut —u Uuj Wi T
llc ko <@+1 and Z e AT <41, (5-8)

where ¢ is taken from (4.3) while ¢, and jx are taken from Theorem 3.1 applied to the given
rilm. z(-).

To study z(-) via the method of discrete approximations, we have to verify first that all the
problems (Py) for each k € IN sufficiently large admit optimal solutions.

Proposition 5.1 (Existence of optimal solutions to discrete sweeping control problems). Under
the standing assumptions (H1)—(H4) holding along the r.i.L.m. z(-) each problem (Py) for large
k € IN admits an optimal solution 7% ().

Proof. It follows directly from Theorem 3.1 and the construction of (Py) along the given r.i.L.m.
z(-) that the set of feasible solutions to (P) is nonempty for all large k € IN. Furthermore, the
imposed constraints (5.5)-(5.7) ensure that this set is bounded for each k. Thus the existence of
optimal solutions to finite-dimensional problems (Py) is ensures by the classical the Weierstrass
existence theorem provided that the feasible solution set to each problem (Py) is closed. To check
it, take a sequence z"(-) = z" := (xg, ..., X, Ugy, ..., uy_;.ag,...,a;_;) of feasible solutions
for (Py) converging to some z(-) =z := (X0, -, Xk, UQy - - - Uk—1, Qs - - -, Ak—1) AS V —> 00. We
need to show that z is feasible to (Py). Observing that g;(x; —u;) = JL”;O gi (x; — u;) > 0 for
alli=1,...,mand j=0,...,k—1givesus thatx; —u; € Cforall j=0,...,k—1.Itis not
hard to see that 7 (x¥ — u;) C I(xj—uj) for v € IN sufficiently large. Taking (3.1) and (3.4) into
account, gives us for all such indices j that

vV
Yjr1 — 4

T f(xj,aj) € Ne(xj —uj),

which implies therefore by passing to the limit as v — oo that

v %
x¥ = xt Ly
1 Xj+1 — X
J+ J —f(x;,a;) J+ J
—hy —hy

v

— f(xj,a;) and x;—uj—>xj—uj.

This allows us to arrive at the inclusions

Xj+1 — Xj .
——— — f(xj,aj) € Limsup N¢c(x —u)=Nc(x; —u;),
—hy X—U—>Xj—U;
ensuring that x4 — x; € F(xj,uj,a;) for all j =0,...,k — 1 and thus completing the

proof. O
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The next key result makes a bridge between optimal solutions to the control problems (P)
and (Py) by showing on one hand that the optimal solutions 7K () to (Py) are approximately opti-
mal/suboptimal solutions to (P) and that necessary optimality conditions for z* can be treated as
“almost optimality conditions” for z(-). On the other hand, the necessary optimality conditions
for the discrete solutions z¥ (-) obtained below will serve as the basis to derive the exact necessary
optimality conditions for z(-) by passing to the limit in their relationships as k — oo.

Theorem 5.2 (Strong W2 convergence of discrete optimal solutions). Suppose that all the
standing assumptions (H1)-(H4) and those of Theorem 3.1 hold along the given rilm. 7(-)
of problem (P). Assume in addition that the terminal cost ¢ is continuous at x(T), that the
running cost £ in (5.1) is continuous at (t, z(t), Z(t))for a.e. t €[0,T], and that £(-, z, Z) is uni-
formly majorized around zZ(-) by a summable function on [0, T]. Then any sequence of optimal
solutions 7X(-) = (X* (), u* (), a* () of (Py), piecewise linearly extended to the whole interval
[0, T'], converges to Z(-) in the strong topology of W1-2([0, T1; R?**4) with the validity of the
estimates

‘- ik

hi

~k ~k ~k
u —2uj+1+uj

u j+2
hi

k2
<M and limsup Z <, (5.9)

k— 00 =0

where the number [ > 0 is taken from Theorem 3.1.

Proof. Take any sequence {Zk (-)} of optimal solutions to (Py), the existence of which is ensured
by Proposition 5.1, and then extend each z¥(-) piecewise linearly to the continuous-time interval
[0, T']. All the statements of the theorem follow from the following limiting equality:

; . ‘1 2 . ) 2 . <1 2
lim <Hm)—x (t)H + iy —i (r)H +lam —a (r)H )dt
—00
sk _zk o "
+Hx1hkxo _X(O)H _I_dist2<HM1hkuo ;(—oo,ﬁ]) (5.10)
2 ok —k —k
k-2 uj+2—2uj+1+uj

+ dist? < Z

j=0

;(—oo,ﬁ]):o.

h

Arguing by contradiction, suppose that (5.10) fails and thus find a subsequence of k € IN along

which the limit in (5.10) equals to some ¢ > 0. The weak compactness of the unit ball in

L%([0, T]; R?"*9) yields the existence of a triple (v(-), w(-), ¢(-)) € L*([0, T]; R***9) such that
(&), i (), @ () = (v(), w(), g () weakly in L*([0, T]; R***)

along a subsequence of optimal velocities (ZK()}. Tt is clear that Z(r) = (v (1), w(7), q(1)) a.e. on
[0, T'] for the absolutely continuous triple defined by

t
() = (xo,ﬁ(O),Ez(O))+f(v(s),w(s),q(s))ds forall 7 [0, T].
0
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The latter implies that z%(-) — Z(-) = (¥(-), #(-), @(-)) weakly in L2([0, T]; R?**%), and hence
it yields Z(-) € wl2([0, T1; R?"+4), Similarly to the proof of Theorem 4.1 we verify that Z(-)
satisfies inclusion (3.4) with the constraints in (1.7) and (1.8). The rest of the proof of this theorem
follows the lines in the proof of [7, Theorem 5.1], which show that Z(-) is feasible to the relaxed
problem (R), belongs to the selected w2 neighborhood of z(-), and gives a smaller value to
(4.2) than z(-) with Tl [z] = J[z]. Thus the assumed failure of (5.10) contradicts the choice of zZ(-)
as ari.l.m. in (P), and we are done. 0O

6. Second-order subdifferential computations

Optimization problems (P) and (Py) are intrinsically nonsmooth and nonconvex, even for
smooth and/or convex terminal and running costs. The unavoidable source of nonsmoothness and
nonconvexity comes from the sweeping differential inclusion (3.4) and its discrete approxima-
tions (5.3), which constitute nonconvex geometric constraints of the graphical type. Furthermore,
the first-order normal cone (subdifferential, variational structure) of the sweeping inclusions (3.4)
and (5.3) calls for appropriate second-order subdifferential constructions to derive and analyze
optimality conditions for their solutions. In this section we recall the corresponding generalized
differential constructions and present the results of their computations in terms of the initial
problem data that play a significant role in what follows.

Given a set-valued mapping F: R” =% R", we always assume that its graph

gph F := {(x,y)eR” me|yeF(x)}

is locally closed around the reference point (x, y) € gph F and define its coderivative of F at this
point via the (limiting) normal cone (2.2) by

D*F(x,7)(u):={veR" | (v,—u) € N((x,y); gph F)} for all u € R". (6.1)

When F: R" — R™ is single-valued (then y = F(x) is omitted in the coderivative notation) and
continuously differentiable (C 1 -smooth) around X, we have the representation

D*F(X)w)={VF(®)*u}, ueR™,

via the adjoint/transposed Jacobian matrix V F'(x)*. The corresponding (first-order) subdiffer-
ential of an l.s.c. function ¢: R" — R at x € dom¢ := {x € R"| ¢(x) < oo} can be defined
geometrically

3p(x):={veR"| (v,—1) € N((x,¢(X)); epip)} (6.2)

via the normal cone (2.2) of its epigraph epi¢ := {(x, ) € R”+1| o > ¢(x)} while admitting,
together with the coderivative (6.1) equivalent analytical representations and — the crucial issue
— satisfy comprehensive calculus rules despite the nonconvexity of their values; see [25,33] with
the references therein.

Now we turn to the second-order subdifferential/generalized Hessian of ¢: R* — R at
X € dom¢ relative to v € d¢(x), which plays an underlying role in this paper and is defined,
following the “dual derivative-of-derivative” scheme [23], as the coderivative of the first-order
subdifferential of ¢ by
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0’p (X, 0)(u) == (D*3¢)(X, D) (u), ueR". (6.3)

If ¢ is C2-smooth around ¥, then (6.3) reduces to the (symmetric) Hessian matrix 3%¢ () (u) =
{V2¢ (%)u)} for all u € R", while in general it is a positively homogeneous set-valued mapping of
u satisfying well-developed second-order subdifferential calculus; see [26,27].

To present next the second-order computations needed in what follows, we recall the definition
of calmness, which is a weak “one-point” stability property that has been well-understood by now
in variational analysis and optimization; see [33], [18] and the references therein. A set-valued
mapping F: RS = RY is calm at (i, 7) € gph F if there are positive numbers y and 7 such that

F(®) N (G +nIB) C F(9) + u||9 — & IB whenever © € 9 + niB,

where [B stands for the unit closed ball of the space in question. Due to the normal cone descrip-
tion of the sweeping process, in this paper we employ the second-order subdifferential (6.3) just
for the set indicator function §q(x) of 2 C R” thatis equal to 0 if x € 2 and to oo if x ¢ Q2. The
second-order subdifferential of the indicator function clearly reduces to D* Ng, where we use the
notation Nq(x) := N (x; Q) for convenience. In this case the following upper estimates and ex-
act computations of D*Ng can be deduced from [18] and the previous developments mentioned
therein. We use the standard notation

R" = {(yl,...,ym)ERmUiSO for all i:l,...,m}.

Proposition 6.1 (Coderivative of the normal cone mapping to inequality constraints). Consider
the set Q= {x € R"| g;(x) > 0} defined by the C*>-smooth functions g = (g1, ..., &m): R" —
R™ around x € Q so that the vectors Vgi(x),...Vg,(X) are positively linearly independent,
which amounts to saying that the Mangasarian—Fromovitz constraint qualification (MFCQ) is
satisfied at X. Given a normal v € N (X), suppose in addition that the multifunction M : R*" =
R defined by

M®):={(x, )| (—gx),A) + 9 € gph Ngn } (6.4)

is calm at (0, %, 1) forall x = (A1, ..., Ay) > 0 satisfying the equation —V g(x)*1 = v. Then we
have the second-order upper estimate

D*Ng(x, v)(u)

C U {(—ZI\,-W&-()E))u—Vg(;)*D*NR@(—g(f),X)(—Vg()z)u) .
i=1

2>0,—Vg(X)A=0

Strengthening the calmness assumption by the full rank of the Jacobian V g(x) gives us the pre-
cise formula

D*Ngq (%, v)(u) = (— Z)_»Nzgi (i)> U — Vg(X)* D* Ngn (- g(X), 1) (= Vg(@u),
i=1
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where A > 0 is a unique solution to the equation —V g(X)*1 = v. Furthermore, the coderivative
of the normal cone mapping generated by the nonpositive orthant R” above is computed by

] if 3i with v;y; #0,

* p—
D*Ngm (x,v)(y) = { (ylvi=0Vieli(y), y; >0Vic Iz(y)} otherwise

(6.5)

whenever (x, v) € gph Ngm with the index subsets in (6.5) defined by
Li(y):={i|xi <0} U{i|vi=0, yi <0}, L():={i|xi=0,v=0,y>0}. (6.6
Proof. Compare [18, Theorem 3.3], its proof, and the further references therein. O

The next result presents the crucial second-order computations of the coderivative of the
sweeping process under consideration entirely in terms of its given data.

Theorem 6.2 (Second-order computations for the sweeping process). Consider the set-valued
mapping F associated with the sweeping process (1.3) by (3.1), where the nonconvex set C
is taken from (1.5), and where the perturbation mapping that f is C'-smooth. Given x,u €
R" with x —u € C as well as w € Nc(x — u) and a € RY, suppose that the vectors Vgi(x —
u), ..., Vgm(x —u) are positively linearly independent and that the multifunction M from (6.4)
is calm at (0,x —u, ) for all A = (Ay, ..., Ay) = 0 satisfying the equation —Vg(x — u)*A =
w — f(x,a). Then we have the upper estimate

D*F(x,u,a, w)(y)

c U {(vxﬂx, a)*y — (szgi (x — u>)y — Ve(x —w)*y,

A>0,—Vg(x—u)r=w— f(x,a) i=1

(szgi (x — u))y + Vet —u)y. Vaf(x, a)*y) }

i=1

forall y € dom D*Nc(x —u,w— f(x, a)), 6.7)

where the coderivative domain is satisfied the inclusion

dom D*N¢e(x —u, w — f(x,a)) C {y| AL >0 suchthat —Vgx —ui=w — f(x,a),
Ai(Vgi(x —u),y)=0 for i=1,...,m}, (6.8)

and where we have in (6.7) that y; = 0 if either gi(x —u) >0oriA; =0and (Vg;(x —u),y) >0,
and that y; > 0if gi(x —u) =0, 4; =0, and (Vg;(x —u),y) <O.

Furthermore, replacing the calmness of (6.4) by the stronger assumptions on the full rank of
the Jacobian matrix V g(x — u) (which is actually the classical LICQ — linear independence con-
straint qualification) ensures that the equalities hold in both inclusions (6.7) and (6.7) with the
collection of nonnegative multipliers A = (A1, ..., Ay) = 0 uniquely determined by the equation
—Vgx —u)*r=w— f(x,a).
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Proof. Consider the mappings G(x,u,a) := Nc(x — u) and f(x, u,a):= f(x,a). It follows
from the coderivative sum rule in [25, Theorem 1.62] that

fe Vf(x, u,a)*y + D*G(x, u,a,w — f(X,a))()’)

for any y e dom D*N¢(x —u, w — f(x,a)) and z* € D*F(x, u,a, w)(y). Observe further that
G(x,u,a) = N¢cog(x,u,a) with g(x,u,a) :=x —u,

where the Jacobian of latter mapping is obviously of full rank. It follows from the coderivative
chain rule of [25, Theorem 1.66] applied to the above composition that

eV ua)y+ V3(x, u,a)*D*Ne(x —u,w — f(x,a))(y). (6.9)

Substituting now into (6.9) the corresponding results of Proposition 6.1 and taking into account
the structure of the mapping f in (6.9) give us all the statements claimed in the theorem. O

Note that for the linear case of g;(x) = —(x/, x), corresponding to the polyhedral sweeping
process, the upper estimate in (6.7) reduces to our previous computations in [7, Theorem 6.1].

7. Necessary optimality conditions for discrete-time problems

This section is devoted to deriving necessary optimality conditions for local optimal solu-
tion to the discrete-time control problems (Py), for each fixed k € IN. First we establish, under
minimal assumptions, necessary optimality conditions in the extended Euler—Lagrange form for
a general class of problems (P;) with an arbitrary discrete velocity map F via its coderiva-
tive by reducing such problems to nonsmooth mathematical programming with many geometric
constraints of the graphical type. Then we exploit the special normal cone structure (3.1) of F' to
obtain optimality conditions for the discrete sweeping control problems (Py) defined in Section 5
expressed entirely via the given data by using the second-order computations of Section 6. Due
to the approximation results of Section 5, the optimality conditions for (Pj) obtained in this way
can be treated as suboptimality conditions for the given r.i.l.m. of the original sweeping control
problem (P), while our main goal in what follows is to derive necessary optimality conditions
for such local minimizers of (P) by passing to the limit from those in discrete approximations.

Theorem 7.1 (Necessary conditions of the Euler—Lagrange type for discrete-time optimal con-
trol). Let 7k = (xo,ill‘, .. .,)?,];, 1216, R ﬁi, 5116, e, &Ik‘) be a local optimal solution to problem
(Py) for whenever k € IN, where F is an arbitrary closed-graph mapping, and where ¢ and
£, :=L(t, -, ) are locally Lipschitzian around the optimal points for any t € Ay. Then there ex-
ist dual elements o* = (a]f, e, afn) eR™, glk = (E(}k, ey éklk) € Rl_f'l, g2k = (g2K, ..., §k2k) €
R and plj‘. = (p;k, p;fk, p;’.k) eR" x R" x RY for j =0, ..., k satisfying the conditions

k—1
W+ 185+ 18 + 21+ 1P I+ et + gk Il # 0. (7.1)
j=0

kg @F -y =0, i=1,...,m, (7.2)
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1k k .
El (”uj”_rz—Ek)ZOfOI"JZO,...,k,
2k k .
7 (Nufll —ri+e0) =0 for j=0,....k,

—p}ﬁk e )Lka(p(xk) - Za Vgi (xk - uk)
i=1

m
=) e Ve — ) — 26" + 695, pit=0,
i=l1

P =2k e, pi =2 o), j=0. k-1,

xk o xk uk uk
<P1+1 Pi” iy, o, Pini Pi ok, . P = pS
hi

_ )\’k wak
hi hy

Pt =ik 4 h,jlej"))

2 Xk —xk
€ (0, H@}k +s}")ﬁ’;,o,o> +N(<i§, it} @, ’Tk’) gphF)

for j=0,...,k—1with the triples

Ut ok —k ik —k ~k ~k

X~ X us ak, , —a’ .

CANEND :=2/ A R L—ﬁ(r),M—a(t) dt
hi hi hi

tj

and the subgradient collections

_k -
z — 2z~
+1 .
(w3, whk, wik, vk vk, “k)eae,( S f), Jj=0.... k-1,

where the sequence {ei} | 0 as k — o0 is taken from Theorem 3.1.

(7.3)

(7.4)

(7.5)

(7.6)

7.7)

(7.8)

(7.9

Proof. For simplicity we drop the upper index “k” in the notation below and consider the “long”

vector y reflecting the collection of feasible solutions to each discrete-time problem (Py):

y=(x0,...,Xk, Uo, ..., Uk, A0, ..., ak, X0, ..., Xk—1,Uo, ..., Ux—1, Ao, ..., Ar—1).

We now reduce (Py) to the following equivalent nondynamic problem of mathematical program-

ming (M P) with respect to the variable vector y, where the starting point xg is fixed:



TH. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003—1050 1025

k—1
minimize @oly] =@ (xx) +hx Y €Cxjuj a5 Xj. Uj, Aj)
j=0
k—1 it
+Z/ |(xj,Uj, Ap) = 20| dt
J4=Ozj
+ —x(0)| +dist ; (—oo, ]
hy k
k—
+ dist? Z|U]+1 |; (= oo, 1]

subject to the finitely many equality, inequality, and geometric constraints given by

bi(y)i=xj41 —xj —hX; =0 for j=0,.... k-1,
bi(y) :=ujp1 —uj—hU;=0 for j=0,....k—1,
bi(y)i=ajs1 —a; —hgAj=0 for j=0,....k—1,
¢i(y):=—gi(xx —ux) <0 fori=1,...,m,

dj(y) = llujl|* = (2 + &)* <0 for j=0,....k,

d7(y) :=|luj|I> = (r1 — &x)> = 0 for j=0,....k,

6 = |(xj uj a;) —2t))| —e/2<0 for j=0,....k,

k—1 L+l

= &
=3 [ (Jox3.054p =201 Jar =5 <0
J= tj
k—2
G2 =Y U1 —Uj| B+ 1, deaz(y) = llur —uoll < (@ + (e} —15),
j=0

[I]

={ | —Xj € F(xj,uj,aj)} for j=0,....k—1,

yE€
y € Er:={yl xo is fixed, (ug,ao) = (i1(0),a(0))}.

[I]

Let us apply the necessary optimality conditions from [26, Theorem 5.24] to any local op-
timal solution y of the finite-dimensional problem (M P) written above with taking into ac-
count that by Theorem 5.2 all the inequality constraints in (M P) relating to functions ¢; as
Jj=0,...,k+ 2 are inactive for large k € IN, and hence the corresponding multipliers do not

appear in the optimality conditions. In this Way we find dual elements A > 0, ¢ = (1, ..., ) €
k+1 k+1
Rﬂ,slk G\ 59 e RETL 6% = (555, 609 e RE pj = (pf. pl. p) e R as
j=0,...,k,and
y;‘=(x§j,...,x,fj,ugj,...,u,ﬁj,a;/,...,a,fj,X(’jj,...,X?‘kfl)j,US‘j,...,U(’;cfl)j,

Afjo Al
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Jj=0,..., k, which are not zero simultaneously, satisfy the conditions in (7.5) and the inclusions
y;‘eN(y; E;) forj=0,...,k, (7.10)
m k k k—1
=5 = = Y €M+ Y i Vei()+ Y EIVA]()+ Y _EIVAT )+ Y Vbi(F)*pjsi,
i=1 Jj=0 Jj=0 j=0
(7.11)

aici(y)=0 fori=1,...,m.

It is easy to see that the validity of (7.3) follows directly from the structure of the sets &;, and
that the inclusions in (7.10) can be equivalently rewritten as

<k )Ek

xko o —xk
* * * * -k -k -k TJjtl J ). s
(xj,,u,-j,ajj,—ij) EN((%‘f”j’“j’ T) ’gphF)’ j=0.nk (712

while every other components of y;‘ equals to zero. We conclude similarly that the only nonzero
component of y! might be (xg, ugy,, ag,). This gives us the equality

* * * __ * * * * * * *
Yo —YV1 — - Mk _(_ka = X00s =X[1s -+ —Xp—1 k1> 0y —Uox —Uggs oy —UE_1 k1,0,
* * * * * k
_a()k_aoo, —an,...,—akfl’kfl,o, _Xoo,...,_inl’kil,o,...,o).
(7.13)

Next we calculate the sums on the right-hand side of (7.11). It follows from the constructions
above that

<Z aNCi(i)) = (— D eiVgiCa —ur), Y aiVgi(xk — ug), 0) ;
i=1

(Xk U ay) i=1 i=1
k k
D EVAG)+ Y EVAI ()| =] +26Di; for j=0,... .k,
j=0 j=0 0
k—1 —P1 if j =0,
- * . .
> (Vb)) i =\ pi=pin i j=1 k=1
Jj=0 (xjuj.a;) Pk if ]:ks
k—1
(Vb;(3)) pjt1 =—hkp=(—hepf, ..., —hipt, —hipl, ...,
j=0 (X,U,A)
- hkp]’:a _hkpllla ) _hkp]‘:)a

where the subscripts on the left-hand side refer to the corresponding components of the vectors
therein. Applying the subdifferential sum rule from [25, Theorem 2.13] yields the inclusion
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k—1 k—1
090(Y) Cdp(x) +he Y 04(Xj.itj.aj, Xj. Uj, Aj)+ Y Vpi(3) + 90 (F)
j=0 Jj=0

with the real-valued functions p;(-) and o (-) given by

Lj+1
o= [ 106505 4p =30 ar

tj

;(— )-I—dlst Z”UJ“

k_ ok
uy —uy
k

o(y):= dist? ( ( ,,17]

Using now the differentiability of ¥ (x) := dist?(x; (—o0, ]) with the gradient V¢ (x) =0
whenever x < i and combining it with second condition in (5.9) tells us that o (y) = {0}. Fur-
thermore, we get

Vi () = Vx,.u,.4,0() = (67,60%,6%)
for nonzero components. Putting this together shows that Adgo(y) in (7.11) is represented as
Alhgwd, bgwX, L hew? | 9F w0, hwd, L hwd L 0,68 + vy
91?71 + hkvl){tl, Qét + hkv(b;, ey 9;:71 + hkvzil, 98 + hkvg, ceey 9,?71 + hkvgil)

with 9% d¢(xx) and with the components of (w*, w, w?, v*, v*

ing (7.13), we derive from (7.10) the following relationships:

, v4) satisfying (7.9). Involv-

* * x X
—Xor — Xgo = Mhrwy — py,

—x;=Myw; +pj —pjyy for j=1,... k-1,

m
0=r9% — Zaivxgi()wc, ui) + py,
i=1

—ugy — ugo = Mhxwi + (269 +253)iio — pi.
—ul; = Mhew' + 2] +EDi + pt — plyy for j=1,.. k-1,
m
0=") " 0iVui(xe, ux) + pif + & +260)iux,
i=1
—ag, — ago = Mhwg — py,
—aj; =Myw§ +pj—piyy for j=1,.. k-1,
0=py,
—X5; = Mhevj +07) —hipjyy for j=0,... k-1,
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0= A(hgvt +6%) — hply, for j=0,....k—1,
Ozk(hkv7+97)—hkp7+l for j=0,...,k—1.

To complete the proof, we proceed similarly to the last part in the proof of [7, Theorem 7.1]. O

Employing the second-order calculations conducted in Section 6 allows us to derive from
Theorem 7.1 necessary optimality conditions for each discrete control problem (FPx) expressed
entirely via its given data. For simplicity of the formulation we assume that the perturbation
mapping f is smooth with respect to the state variable x. The reader can proceed with the case of
Lipschitz continuous mapping f by using well-developed calculus rules for our basic first-order
generalized differential constructions [25].

Theorem 7.2 (Optimality conditions for discretized sweeping control problems via their original
data). Given an optimal control 78 = (¥, i*, @) to discrete-time problem (Py) with any fixed
k € IN and with the sweeping velocity mapping F defined in (3.1), suppose that the functions g;
in (1.5) are of class C* and the perturbation mapping f(-,a) is of class C' around the optimal
points. Then there are dual elements (\*, B*, 1% €2k | pky together with vectors 77]; eRVasj=
0,....kand 7/]/.‘ eR™as j=0,...,k— 1satisfying (7.3) and such that the following conditions
hold:

NONTRIVIALITY CONDITION

k—1

M gl + 1™ + &1+ 13kl + 1p6E 1+ 11pgE 1 0; (7.14)
j=0

PRIMAL-DUAL DYNAMIC RELATIONSHIP forall j =0,...,k —1:

-k -k
x.+1—X» _ _ bt 7
ST fEa = L Ve =), (719
iel (& —ik)
pxkl _pxk
ok . o —1xk k
LT bt = (88 0+ 67 = o)

m
PIUARIG R

i=1

x K@+ h o) — pit )

m
= Ve — i), (7.16)
i=1
uk

k m

Py — P 2 _ & - _

o M e 0 = ) 0 Ve () — @D 0w 4 e — p)
i=1

m
+ > vk vei G — i), (7.17)

i=1
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ak ak
Pj+1~Pj

M = VL a0 + a1 05Y = P, (7118)

where (w;?k, w?k, w?k, vj?k, v?k, v;’k) are taken from (7.9) while the active constraint index set

1 () and the triples 9;]‘, 9;‘]‘, 9;‘]‘ are defined in (3.3) and (7.8), respectively;
TRANSVERSALITY CONDITIONS

m
—piR e Mk opEh) = Yk Ve — ),

i=l (7.19)
Pk = Z e Ve (f — i) — 28 + &5y, pit=0
with dual vectors Sklk and Ekzk satisfying the inclusions
g5 € Noryte (1D, X € Niry—e.00) (litk D3 (7.20)
COMPLEMENTARITY SLACKNESS CONDITIONS
[gi (&% — %) > 0] = 4}, =0, (7.21)
[ike h(-pi, 4]: ,\k(_;;;lg;k 7: v;k))k], ,_e] [‘ii (x5 - %) > 0or ) 722
Nji =0, <Vgi(xj - uj)a —Pﬁ_l +A (hk 9; + U; ) >0]= [Vj,‘ =0],
li € b(—p, + Ak(h,;‘e;ck +u)], ie, [gi K — k) =0, 7%, =0, and 7.23)
(Vi (&5 — k), —pih | + 28 655 +v3h) <01 = [y}, = 0] '
for j=0,....k—1andi=1,...,m, where the index subsets 11(-) and I>(-) are taken from
(6.6), in addition to (7.3) together with the implications
[¢i (X} —i%) > 0=y, =0for j=0,....k—1l and i=1,....m, (7.24)
[gi(GF =Xy > 01=nk, =0 fori=1,...,m, and (7.25)
M5 > 0= (Vi (T — ), —pihy + 25 107 +uj)) =01, (7.26)

Furthermore, assuming the surjectivity of the Jacobian matrix {V g(i;? — IZ]]‘.)} ensures the validity
of the ENHANCED NONTRIVIALITY CONDITION

AL IETR 4+ 2K 4 1 pk ) £ 0. (7.27)

Proof. It follows from (7.7) and the coderivative definition (6.1) that

k xk uk uk ak ak
Pit1—P; v o Pit— Py Pl — Pj
— Wk , J J kkwtgk 1k + 2k k J J )Lkqu
( hk ! hk ! (S R hk !

=k k
ko
eD*F<x],u’;,a’;,%>(xk(h ok oy —pih . =0, k=1 (7.28)
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L — f@&h,ah) e NG =i €) for j=0,....k — 1 and the representation of F in

(3.2), we find vectors n’]‘. eRY, j=0,...,k—1,such that the conditions in (7.15) and (7.21) are

satisfied. Employing the second-order upper estimate from Theorem 6.2 with x := xf U= u’} ,
5k —k
Y R o S kel gxk o ok k L -
a:=a;, w:= ——hk’ and y := A%(h; 07" 4+ vi") — p;., and combining it with (6.8) give

us yj’-‘ € R™ for which

uk

k xk uk
Pt = Pj Pt = Pj 2 P, —ps
jtl Ik xk jtl Ik 2 g lk +§]3k)ﬁ/;’ J+1 Iy kyak

hic hi A T J hy J

(V FES @ OF @+ n o) — pit )

m
=Y 0k Ve — ) ki Tk — pik )
i=1

m m
= Ve = i),y ok Ve — iy okt ntert) - pih )
i=1 i=1

+Zy,,ng<x — i), Va f @ @) 0L + iy 9"">—p]+1>> J=0, k=1
i=1

This yields the validity of all the conditions in (7.16), (7.17), (7.18), (7.22), and (7.23). Put ni =
o with o taken from the statement of Theorem 7.1 and observe that nk. eRYforj=0,...,k.In
this way we deduce the nontriviality condition (7.14) from (7.1) and the transversality conditions
(7.19) from (7.5). Furthermore, (7.25) follows immediately from (7.2) and the definition of n,’f ,
while (7.28) yields

=k
X —
Ay 19"k+v"k)—pl+ledomD*Nc<i.1;—ﬁll;,% FEE "‘))

This implies by (6.8) that (7.26) holds. Inclusions (7.20) follow from (7.3) and (7.4).
To complete the proof of the theorem, it remains to justify the enhanced nontriviality condition
(7.27) under the surjectivity of the Jacobians {Vg()?k — ﬁlj‘. )}. Arguing by contradiction, suppose

that (7.27) fails, i.e., Ak = 0, £1¥ +- &2 = 0, and p* = 0. Then it follows from (7.6) that p;fk =0
for j=0,...,k and p?k =0 for j =1,...,k. Employing the second condition in (7.19) with
m

p,’jk =0 tells us that Z r;,’ii Vgi (21]; — ﬁl,ﬁ) =0, and so p,fk = 0 by the first condition therein. We
i=1
also get from (7.17) that

Zn,lV 8i (%) —uk><kk<v*k+hk‘exk>—p,+1>+2y,lVg, ) — %) =0,
i=1 i=1

j=0,.. k—1.
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Using this together with (7.16) and p,’gk = 0 shows that p;?k =O0forall j =0,...,k— 1. Finally,

it follows from (7.18) that pgk = 0, which contradicts the validity of (7.14) and thus verifies
(7.27). O

8. Necessary conditions for sweeping optimal solutions

This section is the culmination of the paper. Given an arbitrary relaxed intermediate local
minimizer 7(-) of the sweeping optimal control problem (P) and using the discrete approxi-
mation method, we derive verifiable necessary optimality conditions for z(-), which expressed
entirely via the problem data, by combining the strong convergence of discrete optimal solutions
to z(-) established in Section 5 and the necessary optimality conditions in discrete approxima-
tions taken from Section 7 with a rather involved technique to justify a proper convergence of the
adjoint trajectories from Theorem 7.2. The latter technique developed here is heavily based on
the underlying properties of our basic generalized differential constructions and the second-order
calculations of Section 6. As discussed in Section 4, no relaxation is needed if z(-) is a strong
local minimizer of (P) and either controls are located only in perturbations, or the set C in (1.5)
is convex in addition to the standing assumptions formulated in Section 2.

We now add to the standing assumptions the one on time dependence of the basic subdif-
ferential d¢ of the running cost in (1.6) taken below with respect to all but ¢ variables. It is well
known that the subdifferential mapping (6.2) is robust (which reduces to the graph-closedness for
continuous functions) with respect to the variables of subdifferentiation. We suppose that this ro-
bustness property keeps holding when the time parameter is involved into the limiting procedure.
Precisely it amounts to saying that

3¢(t,z(),z()) =  Limsup  3€(t,u,v) ae. t €[0,T]

(2,,0)5 (0,2(0),5(1))

around the given local optimal solution to (P), where “Limsup” stands for the Painlevé—
Kuratowski outer/upper limit [33]. This assumption is not restrictive and is satisfied, in particular,
for smooth functions with time-continuous derivatives as well as in broad nonsmooth settings;
see [24,26].

Theorem 8.1 (Optimality conditions for the nonconvex sweeping process). Given an r.i.l.m.

z(:) = (x(), u(-),a(-)) for problem (P), suppose in addition to the standing assumptions and
those in Theorem 3.1 that £ is continuous in t a.e. on [0, T] and is represented as

£(t,z,2) =L1(t,2,%) + Lo(t, ) + L3(¢,a) 8.1
where the local Lipschitz constants of £1(t, -, -) and £3(t, -) are essentially bounded on [0, T] and

continuous at a.e. t € [0, T including t = 0, and where € is differentiable in it on R" with the
estimates

IVala(t, i, @)|l < Lllull and |[Vila(t, 1) — Vila(s, u2)|l < LIt —s| + Lluy — a2l (8.2)

holding for all t,s € [0,T], a € R4, and u, iy, uy € R* with some uniform constant L > 0.
Then there are . >0, p(-) = (p*(), p"“ (), p*(-)) € WL2([0, T];: R" x R" x RY), w(:) =



1032 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003—1050

W™ (), w" (), w*(-)) € L2([0, T]; R*"*), and v(-) = (v* (), v"(-), v*(-)) € L2([0, T]; R*"*)
satisfying

(w(®), v(®)) €codt(t,z(t),2(t)) ae t€[0,T] (8.3)

as well as measures y = (y1,...,vs) € C(0,T];RM*, &' € C([0,T];Ry)*, and &% €
C ([0, T]; R_)* on [0, T such that the following conditions hold:
o PRIMAL-DUAL DYNAMIC RELATIONSHIPS:

X+ f(E®,am) = Z ni (Vg (X(t) — (1)) forae t€[0,T] (8.4)
i=1
with n;(-) € L*([0, T1; Rt) a.e. uniquely determined by representation (8.4) and well defined at
t=T;
@) =2w@) + (Vo f(X(1),a))* W (1) — ¢ (1)), 0, Vo f (R (1), a(1))* Gv* (1) — ¢* (1)) ,
(8.5)
q" (1) =AVl(t,u(n), q°@t) € 1d:L3(t,a()) a.e. t €[0,T], (8.6)

where g = (¢*, q*, q%) : [0, T1— R" x R" x R? is a vector function of bounded variation, and
its left-continuous representative is given for all t € [0, T, except at most a countable subset, by

q(1) = p(1) - / (—dy (). 20()d(E" (5) + () +dy (5).,0) . (8.7)
[£,T]
Furthermore, for a.e. t € [0, T including t =T and foralli =1, ..., m we have

gi(X(@)—u(1)) > 0= ni(1) =0, n;(t) > 0= (Vg;(X(t)—u(t), \w* (1) —q" (1)))=0. (8.8)

o TRANSVERSALITY CONDITIONS

—p*(T) + Z ni(T)Vgi ()_C(T) - ﬁ(T)) € )»390()5(7")), p*(T)=0,
iel F(T)—i(T))

PO - Y m(MVaET) — (1)) (8.9)
iel (F(T)—i(T))
€ =2(T) (Njo.ry) (1 (D)) + Niry o) (15 (T)1D)

with the validity of the inclusion

- > n(T)Vgi(X(T) —i(T)) € Ne(R(T) — i(T)). (8.10)
iel (F(T)—i(T))

o MEASURE NONATOMICITY CONDITIONS:
(a) Take t € [0, T] with g; (x(t) — u(t)) > O wheneveri =1, ..., m. Then there is a neighbor-
hood V; of t in [0, T] such that y (V) = 0 for all the Borel subsets V of V;.
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(b) Take t € [0, T with ry < ||u(t)|| < rp. Then there is a neighborhood W, of t in [0, T] such
that EY (W) = 0 and £2(W) = 0 for all the Borel subsets W of W;.
e NONTRIVIALITY CONDITIONS: We always have:

A+ 1 O + I p(DI + 1E 1 7v + 1E2]I7v > 0. (8.11)

Furthermore, the following implications hold while ensuring the ENHANCED NONTRIVIALITY:

[gi(x0—@(0) >0, i=1,....m]= [A+Ilp(DI+ & I7v +IE%17v >0].  (8.12)
[¢i(X(T) —a(T)) >0, r < |a(T)| <rz, i=1,...,m]
= [A+ Ig“ Ol + I I7v + €% 7v > 0], (8.13)

where ||&||Tv stands for the measure & total variation on [0, T].

Proof. We split the proof into the following major steps in accordance to the statement of the
theorem.

Step 1: Subgradients of the running cost. To verify the subdifferential inclusion (8.3),
take the subgradient sequence {wlj‘., vlj‘. } from Theorem 7.2 and consider the piecewise con-

stant extensions wX, v¥: [0, T] — R?**4_ 1t follows from (7.9) therein. The imposed as-
sumptions and the structure of ¢ in (8.1) with estimates (8.2) ensure that the subgradient
sets d£(t,-) are uniformly L2?-bounded near Z(-), and hence the sequence {(wk(~), vk(-))} is
weakly compact in L2([0, T]; R2@n+d)y .= [2[0, T]. Without relabeling we get the weak con-
vergence (wk(~), vk(-)) — (w(-),v(-)) € L*[0,T] and thus, by Mazur’s theorem, the strong
L2-convergence to (w(-), v(-)) of a sequence of convex combinations of (wk(-), vk(-)); that is,
the a.e. convergence on [0, T'] to the above limiting pair of some subsequence of the latter. This
readily verifies (8.3) by taking into account the assumed a.e. continuity of £ in ¢ and the robust-
ness of its subdifferential.

Step 2: Verification of the primal dynamic limiting relationships. We claim two of them: the
differential equation (8.4) and the first implication in (8.8). We proceed by passing to the limit in
(7.15), (7.26) and first construct the piecewise constant functions on [0, 7] by

ok
ok (1) ::h_fk as te[t.]/‘,tf_‘_l), j=0,...,k—1, kelN,

where 9;‘ are taken from (7.8). It follows from Theorem 7.2 that

T k—1 1 nxk 2 k=1, it —k —k
o751l 4 . ik - i 2
0k (1)|12dt = J < /H‘t _MH[”
[ oipar =3 = < f -
0 j=0 j=0 s
) ! (8.14)
N
k=1, It =

—k k
x" —x"

= Jj+1 j
x(t) — ——
hi

2 T
)dt =4/ H;é(t) —fc"(t)uzdz -0
0

Jj=0

=2(/

Jj
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as k — oo with the same conclusion for 6*%(.) and gak (-). Thus some subsequences of these
functions converge to zero a.e. on [0, T']. Invoking further the vectors n’j‘. € R” from Theorem 7.2,

define the piecewise constant functions nk () on [0, T] by nk(t) = nlj‘. ast e [tf, t}‘H) with
nk(T) = n,f and deduce from (7.15) for each k € IN we have the relationships

Fo+ f(E 0, @0) =Y nf OV (@ —a ) if re @}, 1. (8.15)

The feasibility of z(-) in (P) tells us that —x(t) € Nec(X(t) — (1)) + fx(@),a()) for a.e.
t € [0, T], where the closed-valued normal cone mapping Nc(-) is measurable by [33, Theo-
rem 14.26]. The classical measurable selection result (see, e.g., [33, Corollary 14.6]) gives us
nonnegative measurable functions 1;(-) on [0, T] asi =1, ..., m for which the differential equa-
tion (8.4) and the first implication in (8.8) are satisfied. Then invoking (8.15) and (8.4) yields the
equalities

X(0) — 3 + (7@, am) — £(x5 @), a @)

=3 [10Vei(F0) — a0) = nf O Ve () - 1)

i=1

whenever ¢ € (%, t;.‘H) and j =0, ...,k — 1, which imply the estimate

H 3 [V (70) = 0) = nf ) Vs (710) ~ 7)) H
<|x@) O+ | £E®,am) - £(FF @), aO)|

on (t;.‘, t}‘ +1)- Passing to the limit as k — oo in this estimate with replacing t;.‘ by

vE(@t) = max{tﬂ t;? <t,0<j<k}, tel0,T], (8.16)

and taking into account that [(x5() — %)) c I(x() — () for k € IN sufficiently large and
that the sequence {Zk(-)} converges to x(-) strongly in wL2(0, T]), we get

3 [m (Vi (¥() — (1)) — 1k (1) Vi (5 (1) — ﬁk(t))] S0 ae t€0,T].

iel(x(t)—u(t))

Observe also that ¥ (-) — n(-) a.e.on [0, T'] by (2.5) and (2.6). Postponing till Step 5 the verifica-
tion of the claim that the sequence {ni} converges to the well-defined vector (n1(T), ..., nu(T)),
we check now that n(-) € L2([0, T1; R™Y). In fact, it follows from the estimates
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1 _ _ 1 - -
Tli(f)fﬁlni(f)nvgi(x(f)—u(f))uSV Y. n@|Va(E@ —aw)|

iel(x(t)—u(t))

fﬂl” > Ve EO -am)|

iel (x(t)—u(t))

B

< =
=M,

. B v
llx (@)l + 7 | f(x@®,am)]|

valid for a.e. r € [0, T] and all i = 1, ..., m, which are consequences of (8.4), (2.5), and (2.6).
The uniqueness of n(¢) a.e. on [0, T'] follows from the positive linear independence of the gradi-
ents Vg;(x) on C, which is a consequence of the standing assumptions in Section 2.

Step 3: Constructions of approximating dual elements on [0, T]. The next step is to extend
the discrete dual elements from Theorem 7.2 on the continuous-time interval [0, T'] in the way
appropriate for the subsequent limiting procedure. Define ¢*(t) = (¢**(1), ¢“* (1), ¢** (1)) on
[0, T] as the piecewise linear extensions of qk(t}‘) = plj‘. when j =0, ..., k. Then construct

y*(t) on [0, T] by
yi@) =y for teleh b, ), j=0,....k—1, with y*(f):=0
1k 2k
and define further £'%(r) := -1, £2%(t) := L for t € [tX,#*, ) and j = 0,...,k — | with
hi hi J i+
élk(t,’(‘) = Ska and E”‘(t,’:) = ékzk. It follows from the relationships in (7.16)—(7.18) with vE(t)
given in (8.16) that
qu(t) _ )\.klUXk(t)
= Vi f(ZE R0, d 0F @) (F 00 + 05 0) — ¢ (VR (1) + o)

= bV (R F 1) — @ R 0)) (W) + 07 (0) — g (VF (1) + he)

i=1
=Y vk ove (F k@) — i ko)),
i=1
q-uk(t) _ Akw“k(t)

=Y nf Ve (& 0F @) — a* 0F ) (AF @ @) + 0 (1) — g™ (v () + he))

i=1

+) v OVa (E 0f o) —d* 0f @) + 26" @) + 5 o)t 0F @),
i=1
G @) = M w ™ (1) = Vo f (B 0F @), @ 0 @) (A @F 0 + 07 @) — ¢ (v 0 + )

fort e (tj.‘, tfH) and j =0, ..., k— 1. The next triple is p(r) = (p**(¢), p** (1), p™ (1)) defined
by
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Pr@) =4 )+ / ( = nf Ve (F 0F 1) — @ 0 @) (@) + 0 @)

[r.T] i=1

Vi) + h)) Zy, )V (¥ (v () — i (vF (5))).

D onf OV (FF 0 @) — a0 ) (W @) + 0 1) — ¢ 0F 0 + )

i=1

+ ) OV E O @) — @ R o)) +2(8 ) + £ ()it (v (1), 0> ds

i=1
for all ¢ € [0, T']. We clearly have pk (T) = qk (T) together with the differential condition
m
Py =¢" ) - ( = iV (R 0f ) — @ 0F @) (@) + 6 (1)

i=1

Vi) + hy)) — Zm (Vg (B0 ) —a* 0 1)),

D V2 (F 0F(0) — @t 0F 0)) AF @) + 6 (0) — (v (1) + k)

i=1

+ ) v OVa (0 @0) —dt 0f @) + 26 @) + o)t (Vo) 0)

i=1

valid for a.e. ¢ € [0, T']. It follows from the relationships above that

PO = k@) = v f(FROR0), @ 0F @) (WF @) + 67 @1) — ¢ (V@) + hw),

(8.17)
P ) — A w k(1) =0, (8.18)
) — Mwk(0) = Vi, f (FF 0K @), d 0F () (AF w0 + 075 0) — ¢ (V@) + o)),
(8.19)
for every t € (t}‘, t}‘H), j=0,..., k — 1. Now we get the measures yk, Slk, and SZk on [0, T]

given by

/ dy* = f (X w0V (00 = i R @) (0 + 6% 0)
i=l1

A

—qu(vk(t>+hk>))dr+ (Zy,-k(ngi(xk(vk(r))—zz"(vk(r»))dr, (8.20)

/(&
/dé”‘(t)dt :=/g”<(t)dz, /
A A

de* (t)dt := / £2(1)dt
A A
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for any Borel subset A C [0, T']. Finally in the step, we employ the standard normalization pro-
cedure to equivalently rewrite the nontriviality condition (7.27) in the form

T T

q“k(O)H—f-/’:‘Elk(t))dt—F/‘Ezk(t)‘dt+|§1<1k|+|$kzk|=l, keIN. (821)

0 0

o]+

Step 4: Verifying the dual dynamic conditions. By (8.21) we get Ak — A > 0 along a subse-
quence. To verity next that {g"¥(-)} is of uniformly bounded variations on [0, T'], observe by
(7.6) that

k—1
> g i) — g @)l
j=0
—anﬁl ||_Z||p,+1 P+ 1P+ 1pg
k
Qu k” uk” k uk _ o uk k., uk
+ A}jn 1+ AR g+ g
|2k b it (1)) — 2@ + it )
+ 2X
hi
k” Ok” k uk uk k. uk
+2 -+A§:n L+ 2K g+ 1
YL BT VRV
<4t 4 S 21” VI I+ 25 g I+ 1l
J

with 1t taken from Theorem 3.1. The differentiability of £5 in (8.1) with respect to u yields

~k ~k =k ~k
u- 1—l/lj aj+1—a

k j+ J :
vj”. =Vl (zj, I , I ) for j=0,...,k—1.

Then the third estimate above ensures that

k—1 k—1
k uk uk k k k
MY = vl <A ZL(GH—O’JF
j=1 j—1

Ui —2uk +uj 1
hi

)5Mur+m,

which in turn yields by the construction of §** in (7.8) the relationships

— d AFZ0 T <ok
e I I an (n+m)
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due to the first estimate in (5.9). Furthermore

“k_ =k =k _ =k
Vi, [0, T ay —ay
he ~ hg

due to the first estimate in (8.2). This tells us that

~k —k

u u -
log 1l = <L ‘hk O <Ly

Z lg“* 1) — g @l = Z 1Pty — P

< 4m’< + 20K (w4 D) + ARL(T + ) + AL+ 11 pekl
=A*Qu+6i+ LT + L) + || pe|l

(8.22)

and verifies therefore the uniform bounded variations of the sequence {g“*(-)} on [0, T'].
Our next goal is to prove the boundedness of {(p(’)‘k, ey pkk)} It follows from (7.16) and
(7.17) that

Py — i = hok @ + wth) + 2+ 620k
+ Vo f R @) O0F W + 07 — pi ) — (04 — P, (8.23)

and readily implies the estimates

P3N < (U + Rl Vo f G5 @D D IPTE + Rd Qi+ b 1D + 226 * + €7

IV G @D il I+ iV f G5 @D IRk e apll + 1P — Pl
(8.24)

valid for all j =0, ..., k — 1. Denoting further

AR = R (I )+ ) + 2r2E ) + &5 + 1V F @S @D - T
+ il Vo @S @D I 0 apll + 1045, — Pl

and selecting a 1\71 such that ||fo()2§,c_z§)|| < 1\71 forall j=0,...,k—1and k € IN, we have
by (8.21)

Lj+1

QXk(t)‘)<AkMIZ hk/ |0k )| ar

tj

S GRS
j=0

<A, / |65k @)|* dr | 0as k — oo.
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The structure (8.1) of the running cost in (1.6) and the imposed assumptions on its Lipschitz
constant L(¢) yield by (8.3) the relationships

k-1 k—1 T
= th H ka(;j)H < ZL(tj)hk < 2/ L(t)dt :=L < oo,
j=0 j=0 0

k—1

xk
> Hhkwj
=0

< L. We also have

k—1 k—1
. uk T xk
which ensure furthermore that Z ”hk wit | < L and Z ”hk v
=0 j=0

k—1 r
> 1EF 47 =/|S”‘(t) ey dr < 1.
i=0 0

As follows from the above arguments, the boundedness of {||V, f ()E];, Elf) I} with the usage of
(8.22) that '

k—1
Z Ak < M, (8.25)
=0

for some constant 1\72 > 0. Combining it with (8.24) gives us the estimates

1P < (L + M) | p3 | + AR forall j=0,... k—1.

X
J
Proceeding now by induction shows that

k—1
P31 < (4 M) 1l 4+ ) - AR+ Mihg) ™
i=j
<eM MY AF <M (14 M)
i=0

for j =0,...,k — 1, which justifies the boundedness of {(pgX, ..., pff)}.
Next we show that the functional sequences {g**(-)} and {g?*(-)} are of uniform bounded
variations on [0, T]. It follows from (8.23) that

F

which verifies the claimed property for {g**(-)} due to (8.25) and the boundedness of
{(pgk, e, p,fk)}. Furthermore, (7.18) leads us to the estimate

k—1 k—1 k—1 k—1

k k -k =k k
S| @ —a*ap| =3 | - pt| = DAk + Y me| Vst ad| |k,
=0 =0 j=0 =0
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k—1 ‘
j=0

g (140 — 9™ 1))

+|

exk(tf)H) + ’

xk xk
g rihl).

k—1 k—1
<y H,\"w;f" ey H Vo f (&, ab) H (xk (
j=0 j=0

which ensures the uniform bounded variations of {g?(-)} and hence of the whole sequence of
triples {g*(-)}. We clearly get the validity of

2|a 0] - [0 - | @] < |0 - ¢ O] + |¢“ @) — ¢*0)| = var (% 10.71)

whenever 7 € [0, T']. Hence {¢(-)} is bounded on [0, T'] due to the boundedness of {g¥(0)} and
{qk(T)}. The classical Helly theorem provides a function of bounded variation ¢(-) such that
qk(t) — ¢q(t) for all ¢ € [0, T]. It follows from (8.21) that the sequences {S”‘} and {52]‘} are
bounded in C([0, T]; Ry)* and C([0, T]; R_)*, respectively. It allows us to get the bounded-
ness of {y*} in C([0, T'1; R")* from (7.17) and the uniform bounded variations of {g“¥(-)} on
[0, T]. We derive from the weak™ sequential compactness of balls in these spaces that there
are y € C([0, T];RM*, &' € C([0, T]; R;)*, and &2 € C([0, T]; R_)* such that the triples
(yk, g1k £2K) weak* converge to (y, &', £2) along some subsequence.

Using (8.17)—(8.19) and (8.21) together with the uniform boundedness of qk(-), wk ("), and
v¥(-) on [0, T ensures the boundedness of the sequence {p*()} in WH2([0, T1; R?") and hence
its weak compact in this space. By Mazur’s theorem we find a function p(-) € w20, T1; R3")
such that a sequence of convex combinations of p¥(r) converges to p(t) for a.e. ¢ € [0, T]. Then
the passage to the limit in (8.17)—(8.19) justifies the claimed representation of p(-) in (8.5).

Our next aim is to derive the optimality conditions of the theorem that involve the dual arc
q(+) of bounded variation on [0, T']. Observe that the condition »;(t) > 0 for some ¢ € [0, T'] and
ief{l,...,m}yields nl]?(t) > 0 for large k by the a.e. convergence nl]?(-) — 1;(-) on [0, T]. This
implies by (7.26) that

(Vei (x* () = uk ), =g (v(®) + hie) + 25 (6™ (1) + v™* (1)) =0
for such k and ¢, and hence we get by passing to the limit that
(Vai(x(1) —a(®)), w™ (1) = ¢" (1) =0,
which verifies the second implication in (8.8). By the construction of g (-) we get
g" (v(0) + hi) = A (v (1) + "% (1)) and K (v(©) + hie) = AF(vE @) + 6% (1))  (8.26)

whenever ¢ € (t;.‘, t;fH) and j =0,...,k — 1. Involving (8.3) and the assumptions on €7, £3 in
(8.1) gives us both conditions in (8.6) by passing to the limit in (8.26). Proceeding similarly to
[38, p. 325] yields
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H / (an-‘(s)vzgi(xk(v"(s»—ﬁ"(v"(s»)(xk(vxk(s)+9’”‘(s>)—q""(vk(s>+hk))

[6.T] i=1

+ Z v () Vg (FF k() — ﬁk(vk(s)))>ds - / dy(s)

i=1 [£.7T]
=H / dy¥(s) f dy (s)
[t,T] [t,T]

for all ¢ € [0, T'] except a countable subset of [0, T]. It tells us by using (8.20) that

—0as k— o©

D k) V2 (R 0F () — @ 0 ) (W () + 07 () — g (v () + )
[6.7] i=1
(8.27)

+Y vV (R s) - L?k(vk(s)))>ds - / dy(s) as k — co.
i=1 [.7]

To derive (8.7) by passing to the limit in the differential condition for p*(z), consider the estimate

/ (&% (s) + £2(5)) @ (v (5))ds — / G()d(E (5) +E2(s))

[¢,T] [¢,T]
< / (E'%(s) + 62 (5))i* (VK (s))ds — / (E%(s) + £ (5))ii(s)ds
[t,T] [t,T]
+ f (&% (s) + % (9))ii(s)ds — / iw(s)d (&' (s) +&(5)) (8.28)

[t,T] [t,T]

= / E () + £ ) [a* (v (5)) — it (s)]ds

[r.T]

+ / (&% (s) + £2(5))ii(s)ds — f a()d(E () +£29) .

[t,T] [t,T]

Note that the first summand after the equality sign in (8.28) vanishes as k — oo due to the
T

uniform convergence ak () = u(-) on [0, T'] and the uniform boundedness of / |§1k(t)|dt +
0
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T
/ |§2k (t)|dt by (8.21). The second summand there also converges to zero for all ¢ € [0, T']

0
except some countable subset by the weak™ convergence of Slk — 51 in C([0, T]; R4)* and
g% — £2in C([0, T]; R_)*. Thus we get

/ (&% (s) + £ ()it (t*(5))ds — / G($)d(E (5) + £2(s)) as k — 0o

[r,T] [r,T]

and hence obtain (8.7) by passing to the limit in the above differential condition for PR().

Step S: Verifying transversality. Observe first that the sequence {n],i ;} admits a convergent
subsequence. To show it, we deduce from the second discrete transversality condition in (7.19)
that

> Ve —ah= Y ahVei —ip = —pi* -2 + 5
i€l (X(T)—a(T)) iel (¥k—il)

with ¥, =0 for i e {1,...,m}\I(xf — i¥). This justifies by (8.21) the boundedness of the se-

quence Z Nk Vei(xk — i) ¢ . Tt follows from the standing assumptions in (2.5) and
i€l (8(T)—i(T))
(2.6) that

1 _ _ B _ _
== Yk |Ve@ -ab| =) Y ahve —ah.
! JEI(x(T)—u(T)) ! iel X(T)—a(T))

which ensures the boundedness of {’711;'} fori =1,...,m, and thus we get nii — 7; along a
subsequence of k — oo. Denote n(T) := (71, ..., ) and observe that it is well defined due to
the positive linear independence of vectors Vg;(x(T) — u(T)), which follows from the standing
assumptions. Then

ve= ) Ve —ap o= Y m(NVe(R(T) —a(T))
iel (X(T)—i(T)) iel (X(T)—i(T))

as k — oo, where the defined vector # satisfies the inclusion in (8.10). Further, it follows from
(7.20) and the second equation in (7.19) that

Pk + v = =28 + 67 e —2it; (N[o,r2+sk](||ﬁ’;||> + Niry—ep.00) (Il ||)) . (829)

Passing now to the limit in (8.29) and (7.19) with taking into account the subdifferential robust-
ness as well as the convergence of {éklk} and {Ekzk} (7.20), we justify the transversality conditions
(8.9).

Step 6: Verifying measure nonatomicity. We provide the verification of the nonatomicity
condition (a) while observing that the case of (b) is similar. To proceed, pick ¢ € [0, T] with
gi(x(t) —u(t)) > 0 whenever i = 1, ..., m and employing the continuity of g; and (x(-), «(-))
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get a neighborhood V; of ¢ such that g; (x(s) —u(s)) >Oforalls € V; andi =1, ..., m. The ob-
tained convergence of the discrete optimal solutions tells us that g; (¥ (t;? ) — ik (t;? )) > 0if t;? eV;

fori =1,...,m and all large k. It follows from (7.21) and (7.24) that ﬂ'}i =0 and y]’.j. =0 for
i=1,...,m.Thus

i = 4] = [ o]0
\%4 \4

by (8.20). Passing to the limit as k — oo with taking into account the measure convergence
established in Step 3, we get ||y || (V) = 0, which verifies the claimed measure nonatomicity.

Step 7: Verifying nontriviality. To start with the verification of the general nontriviality con-
dition (8.11), suppose on the contrary that A = 0, ¢“(0) =0, p(T) =0, ||.§1 lrv = 0, and
18%I7v = 0. Then

M0, g (0) = 0, p(T) = 0, / &% () ]dr — 0, / 25 ()]dt — 0
[0,T] [0,T]

as k — oo. Let us check that in this case we get éklk + ékzk — 0. Indeed, observe that the conver-
gence pX(T) — 0, A¥* — 0 implies by the first condition in (7.19) that p,fk — 0, p,’jk — 0, and

m
Zn,’ing,' ()E,li — IZI,E) — 0. Then the second condition in (7.19) yields (Eklk + $lfk)ﬁ/,: — 0, and
i=1
Eklk + ’g’kzk — 0 due to 12’,2 # 0 for all large k. This clearly contradicts (8.21), and so we are done
with (8.11).

It remains to verify the enhanced nontriviality conditions of the theorem under the additional
assumptions made. To proceed with (8.12), suppose that g; (xo —u(0)) >0 fori =1,...,m and,
arguing by contradiction, that A =0, p(T) =0, ||€'||7y =0, and ||2||7y = 0. Then g; ()?’6 -
its) > 0 for large k. It follows from (7.21) and (7.22) that n’;i =0 and y]’.g. =0fori=1,...,m.

Unifying it with (7.17) and the construction of ¢**(-) in Step 3 shows that

q" () = pt* = pi* + 206" + & )it + hidFwi®
whenever k € IN is sufficiently large. This yields the estimates

Quk
lg“* )] < 2 ||vi] +xk”Lk” + i it

)
h 2

%.Olk+€§k‘

<KL+ 22K+ ) + 25+ f &% (1) dr + / 182 (1))dt,
[0,T] [0,T]

which imply in turn that g% (0) = klim ¢"*(0) = 0 while contradicting the nontriviality condition
—00

(8.11). The verification of the other enhanced nontriviality condition (8.13) is similar. O
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O—Q

-250 0

Fig. 1. Direction of optimal control. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

9. Numerical examples

In this section we present two examples, which are related to real-life models while illustrat-
ing some special features and applications of the obtained necessary optimality conditions for
the controlled sweeping process under consideration. In both examples, the obtained optimality
conditions allow us to determine optimal solutions and explicitly calculate their parameters.

The first example addresses a one-dimensional sweeping control model of type (P).

Example 9.1 (Optimal control of car motion). Consider a car moving towards the traffic light
with the initial speed s =9 m/s (about 20 mi/h). When the car is 250 meters away from the
traffic light, the light turns into green color and it lasts for 30 seconds. We need to control the
motion of the car in such a way that after 20 seconds it must be as close to the traffic light as
possible and the energy used to adjust the speed must be minimized as well; see Fig. 1.

To solve this problem numerically, let us specify the initial data in problem (P) as follows:

n=m=d=1, T=20, xo:=-250, g1(x) :=—x, f(x,a):=sa=09a,
2

9.1
r1 =103, rp :=50, Q= %, and £(¢t,x,u,a,x,u,a) := %az O

with C = R_ in this case. For definiteness, suppose that the traffic light is located at the origin. It
follows from (9.1) that the set of a-controls can be assumed to be uniformly bounded. Thus (P)
admits an optimal solution (x(-), ii(-), a(-)) € W12([0, 20]; R?) by Theorem 4.1. It is also easy
to check that all the assumptions of Theorem 8.1 are satisfied. Supposing now that x (¢) € int(C +
u(t)) for any ¢ € [0, 20) and that x (20) — u(20) € bd C, we see that these assumptions are realized
for the optimal solution found via the necessary optimality conditions of Theorem 8.1. Since we
expect the car to be as close to the traffic light as possible after 20 seconds with x(20) = u(20),
the value u(20) should be small. The choice of r| and r; in (9.1) ensures that the validity of the
constraints r; < |u(t)| < rp forall ¢ € [0, 20].

Applying the necessary optimality conditions of Theorem 8.1 gives us the following relation-
ships with a number A > 0 and a function 7(-) € L*([0, 20]; R) well defined at r = 20:

. w(t)=1(0,0,a()), v(t) =(0,0,0) a.e. r €0, 20];

. x()<u()=n@)=0ae.t€[0,20];

. n(t) >0=¢*(t) =0ae.t €[0,20] including r = 20;

. X)) +9a(r) = —n(@t) ae. t €[0,20];

- (pT@®), p*(1), p*()) = (0,0, ra(t) —9g* (1)) a.e. t €0, 20];
. q"(1)=0,q%t)=0a.e.t €[0,20];

AN AW
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7. (g* (1), q" (1), q" () = (p* (1), p"“ (1), p“ (1)) — / (—dy. 2ii(s)d(E" (s) +£%(s)),0) ae. t €
[£,20]
[0, 20];
8. —p*(20) — n(20) = Ax(20);
9. p*(20) +n(20) € —2i(20) (Njo,11(|(20)]) + Ny1g-3 00y (2 (20)]));
10. —n(20) € Nc(x(20) — u(20));
1L 2+ 1g" )|+ [pQO)| + IE I7v + 1% 7v > 0.

We get from (5)—(7) that p*(-) is a constant function on [0, 20] and that
ra(t) =9q¢* () =9p*(20) +9 / dy.
[£,20]

Proceeding similarly to [8, Example 1] gives us the relationship
ra(t) =9p*(20) + 9y ({20}) a.e. [0,20]. 9.2)

If A > 0, we can deduce from (9.2) that a(-) must be a constant function, a(-) = ¢, on [0, 20] due
to its continuity on this interval. In the case 1 = 0, we may assume that we control the speed of
the car at the initial time as )?(O) = —10?9 and maintain this speed till the end of the process, i.e.,
)?(t) = —109 for a.e. t € [0, 20]. This results in a(-) = ¥ on [0, 20]. Then (2) and (4) yield

t
() :x0+/§c(s)ds = —250 — 991 forall € [0, 20].
0

Consequently, the cost functional in our problem (P) is computed as

(=250 — 180%)2 N 2002
2 2

JIx,u,a]l=
45000

and clearly achieves its absolute minimum at ¢ = —3577=5 ~ —1.388. Thus in this case we arrive
by the necessary optimality conditions of Theorem 8.1 at the (local) optimal solution written as

¥(f) = —250 + 12.492¢, a(t) = —1.388 on [0, 20]

with u(-) being an absolutely continuous function on [0, 20] such that #(20) = x(20) = —0.16.
This tells us that at the moment when the car is 250 meters away from the traffic light its speed
should be switched to 1.388 x 9 = 12.492 m/s, and we should maintain this speed till the end of
the process. After 20 seconds, the car is just 0.16 meter away from the traffic light. As seen, the

value 12.492 m/s is very close to 12.5 = %?. To save more energy needed to get such speed, it
makes sense to adjust the running cost as follows: £(¢, x, u, a, x,u,a) := %a? In this case the

cost functional is represented by

(=250 — 18092 20002
- 2 Tt

JIx,u,al
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and achieves its absolute minimum at ¢ = —% ~ —1.308 by using the optimal solution

x(t)=-250411.772¢, a(t) = —1.308,

where the optimal control i(-) is absolutely continuous on [0, 20] and such that #(20) = x(20) =
—14.56. Hence we should switch the speed of the car to 11.772 m/s when it is 250 meters away
from the traffic light and maintain this new constant speed till the end of the process. In this way
the car is about 14.56 meters away from the traffic light after 20 seconds.

The next example concerns a rather particular case of the two-dimensional crowd motion
model that is formalized as a nonconvex controlled sweeping process of type (P). A more general
controlled crowd motion model on the plane is the subject of our adjacent paper [9]. Note that
the given example demonstrates the usefulness for calculating optimal solutions of the necessary
optimality conditions from Theorem 8.1 with the general nontriviality condition (8.11).

Example 9.2 (Case for optimal control of the planar crowd motion model). We refer the reader
to [21,37] for describing an uncontrolled microscopic version of the crowd motion model as a
sweeping process. Here we introduce (following the previous corridor version in [8]) controls
entering both the moving set and perturbations. In what follows we restrict ourselves to the case
of two participants identified with rigid disks of the same radius R = 3. The center of the i-th
disk is denoted by x; € R2. To fulfill the nonoverlapping condition crucial in the crowd motion
model, the vector of positions x = (x1, x2) € R* has to belong to the nonconvex set of feasible
configurations (see Fig. 2) defined by

Ci={x =1 x) R g(0) = llx1 — 12| — 2R 2 0.

Suppose that the initial positions of the two participants are

6 6
0)i=(—48 — —. 48+ — |,

and that the exit is located at the origin (0, 0).
Assume also that the participants exhibit the same behavior and aim to reach the exit by the

shortest path. To regulate the participant speeds under the nonoverlapping condition, we use
control functions in the moving set

x2(0) :=(—48, 48),

u1(t) =uy(t) forall ¢ € [0,6] with the bounds 1 =1 and r, =10 9.3)

as well as in the perturbations a(-) = (a;(-), az2(+)) : [0,20] — R2 entering via the velocity func-
tion

sial - $2a2
X1, x2
lenll " ezl

fx,a):= (

) = (s1a1 cos 61, sjaj sinfy, spap cosbr, sran sint92),

where s; = 6, s» = 3, and 6; = 6, = 135°. Then the controlled dynamics is:

—%(t) € Neay (x (D) + f(x (@), a()) ae. 1 €0,6],
CO):=CHu@), ur(®) =uz®), ri = llu@l =<r2 on[0,6], x(0) =x¢ € C(0).
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Exit

Fig. 2. Planar crowd motion model.

We consider the cost functional given of the form

1
Jlx,uali= ||x(6)||2+/||a(r>||2dr

the meaning of which is to minimize the distance of the two participants to the exit together with
the energy of feasible controls a(-) after six seconds. Applying now the necessary conditions
of Theorem 8.1 yields the following, where A > 0 and n; € L2([0, 6]; Ry) are well defined at

t=6:

1. w(t) = (0,0,a()), v(r) = (0,0,0) ae. € [0, 6];

2. 50+ £(£0,40) = n2() Vg (1) — (1) = (=ma(0) =0 12 2 E=10):
3. [|%2(t) — X1 (0] > 2R = n12(t) =0 ae. 1 € [0, 6];

4. ma(t) > 0= (g3 () = g (1), %a(t) = %1(1)) = O ac. 1 € [0, 6];

5.5 = (0.0.2a10) -6 (—La}, () + Lah(0)) . 2820 =3 (= Fa3, 0+ La30)))

ae.t €|0,06];

6. g*(t)=p* () +y(z,6]) ae.t€]0,6];

q"(1)=p"(1) - / 2i(s)d (£ () +£2(5)) +dy () =0 ae. 1 €[0. 6

[7,6]
q(@t)=p*@t)=0ae.t€[0,6];

] 2(6) — %1(6) £2(6) — ©1(6)
*(6) +rx(6) = | — 6)——m——, 6)———— |;
pHONFANO ( ’_“26( )||)§2(g>—x1<6>|| ’_“26( )Il)fz(g)—X1(6)||)
e (_’“2(6) ||ZE6; :256;||’””(6) ||;§E6; :256;0 € 2O Mo (EOD +

N1, oo (17(6) )3

A1 O+ Ip@®1 + 1E Ty + 127y > 0.
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Since the two participants are in contact at the initial time, i.e., || x2(0) — x1(0)| = 6, they have
the same velocity and maintain it till the end of process. Thus the common velocity is constant
on [0, 6], which implies that a; (-) = a; on this interval. Hence 112(-) = 112 on [0, 6]. It allows us
to rewrite (2) as

. 2 2
X)) = (3\/55!1 - %mz, —3v2a; + %mz) ,

+ -2, -
27712 ) az 27712

. (3f V2 32 W2 )
xX2(t) = ,

which gives us by integration the trajectory formulas

%) = (—48 = 5 + (32 — o) 1,48 + 5+ (=3v/2ar + L)1),
fz(l)=( 48+(3fa2+£7712>l 48+< ‘[az—imz) )

We have fcl )= )ch (t) on [0, 6] due to the same velocity of the participants, which yields

6a; — 3a»
o=t ©.4)

Furthermore, it follows from the optimality conditions in (5) and (8) that

372 372
Ay = —3v2q5, (1) 4+ 332g5, (1), Aay = —*qugl (1) + T“/—qu(t) on [0, 6]. 9.5)

If n12 > 0, we immediately deduce from (4) that

—q11(t) +q1,(1) = —q3, () + g3, () on [0, 6].

Combining the latter with (9.5) shows that a; = 2a, provided that A > 0; otherwise we do not
have enough information to proceed. Consider now the following two cases:

Case 1: n12 = 0. Then (9.4) tells us that a; = 2a; and the cost functional reads as

6 2
Jla) = 1311a? — 36(96v/2 + 6)a; + (48 + ﬁ) + 487

96+4/2 + 6)18
while attaining its minimum at a; = (\/_—+) ~ 1.95. Thus ap = 2a; ~ 3.9, the minimum

cost is J ~ 66.49, and the optimal trajectories are calculated by

6 6
x1(t) = (—48 — — +8.271,48 + % — 8.27t> , Xp(t) = (—48 + 8.27t,48 — 8.271) .

V2
(9.6)
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Case 2: n1» > 0. By a; =2a» in this case we get 1y = %éz. The cost functional reads as

6 2
Jlas] = 2040a3 — 45(967/2 + 6)ay + (48 + %) +48?

4596246
with its minimum value achieved at a; = % ~ 1.56. Hence a; = 2a; ~ 3.12, the
minimum cost is J & 45.9, and the optimal trajectories are given by the same formulas (9.6)

as in Case 1. Observe that in both cases we have (9.3) for the corresponding u-control u(-) =
(i1(-), ua(-)) satisfying the constraints r; < ||i(¢)|| < rp, and thus we obtain a complete solution
of the problem under consideration.
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