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Abstract

The paper concerns optimal control of discontinuous differential inclusions of the normal cone type 
governed by a generalized version of the Moreau sweeping process with control functions acting in both 
nonconvex moving sets and additive perturbations. This is a new class of optimal control problems in com-
parison with previously considered counterparts where the controlled sweeping sets are described by convex 
polyhedra. Besides a theoretical interest, a major motivation for our study of such challenging optimal con-
trol problems with intrinsic state constraints comes from the application to the crowd motion model in a 
practically adequate planar setting with nonconvex but prox-regular sweeping sets. Based on a constructive 
discrete approximation approach and advanced tools of first-order and second-order variational analysis and 
generalized differentiation, we establish the strong convergence of discrete optimal solutions and derive a 
complete set of necessary optimality conditions for discrete-time and continuous-time sweeping control 
systems that are expressed entirely via the problem data.
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1. Introduction, problem formulation, and discussions

The sweeping process was introduced and investigated by Jean-Jacques Moreau in the 1970s 
(see, in particular, [28–30]) in the differential inclusion form

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], (1.1)

where C(t) is a (Lipschitz or absolutely) continuous moving convex set, and where the normal 
cone N to it is understood in the sense of convex analysis for which Moreau was one of the 
creators and major players. The original Moreau’s motivation came mainly from applications to 
elastoplasticity, but it has been well recognized over the years that the sweeping process is im-
portant for many other applications to various problems in mechanics, hysteresis systems, traffic 
equilibria, social and economic modelings, etc.; see, e.g., [14,19–22,34,37] and the references 
therein.

Due to the maximal monotonicity of the normal cone operator in convex analysis, the sweep-
ing system (1.1) is described by a dissipative discontinuous differential inclusion and can for-
mally be related to control theory for dynamical systems governed by differential inclusions of 
the type ẋ ∈ F(x), which has been broadly developed in variational analysis and optimal con-
trol; see, e.g., the books [11,26,38] with their extensive bibliographies. However, the results of 
the latter theory, obtained under certain Lipschitzian assumptions on F , are not applicable to 
the discontinuous sweeping process (1.1). Moreover, it is well known that the Cauchy problem 
for (1.1) admits a unique solution, which excludes any optimization and control of the sweeping 
process in form (1.1) with a given moving set C(t).

The authors of [12] introduced a control version of the sweeping process by inserting control 
actions into the moving set C(t) with considering its polyhedral evolution

C(t) := {x ∈ R
n
∣∣ 〈ui(t), x〉 ≤ bi(t), i = 1, . . . ,m

}
, ‖ui(t)‖ = 1 for all t ∈ [0, T ], (1.2)

where optimal control functions ui(t) and bi(t) ought to be selected in order to minimize some 
cost functional. Formulated in this way optimization models for the controlled sweeping process 
in (1.1) and (1.2) can be written as optimal control problems for unbounded discontinuous dif-
ferential inclusions with pointwise state constraints of inequality and equality types, which have 
never been considered before in optimal control theory. The discrete approximation approach of 
variational analysis, which significantly extends the one developed in [24,26] for Lipschitzian 
differential inclusions, allowed the authors of [13] to derive an adequate set of necessary opti-
mality conditions for such polyhedral sweeping control problems with detailed illustrations of 
new phenomena by nontrivial examples.

A perturbed version of the polyhedral controlled sweeping process was considered in [7,8] in 
the form

−ẋ(t) ∈ N
(
x(t);C(t)

)+ f
(
x(t), a(t)

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0), (1.3)
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with controls a : [0, T ] → R
d acting in perturbations and controls u : [0, T ] → R

n acting in the 
polyhedral moving set generated by the fixed vectors x∗

i as

C(t) := C + u(t) with C := {x ∈ R
n
∣∣ 〈x∗

i , x〉 ≤ 0 for all i = 1, . . . ,m
}
. (1.4)

The necessary optimality conditions for the controlled sweeping process governed by (1.3) and 
(1.4), which were derived in [7,8] by using discrete approximations and appropriate tools of 
generalized differentiation, were then applied in [8] to an optimal control problem for the crowd 
motion model in a corridor [21,37] admitted a sweeping polyhedral description of type (1.3), 
(1.4).

Note also that other types of optimization problems for some versions of the sweeping process 
were considered in the literature without using control parameterizations of the moving sets. 
Control functions appeared there either in additive perturbations [2,4,10,16,32], or in associated 
ordinary differential equations [1,5]. Necessary optimality conditions for optimal controls in such 
controlled sweeping models were derived in [4,5] by employing some other methods different 
from [7,8,12,13] under certain strong smoothness assumptions on the boundaries of compact 
uncontrolled sweeping sets. In the more recent paper [36], the author addressed relaxation issues 
for sweeping optimization problems with controls in additive perturbations and uncontrolled 
convex moving sets that were also included in optimization.

In this paper we study a perturbed sweeping process of type (1.3), where controls enter both 
perturbations and the moving set given now in the nonconvex (and hence nonpolyhedral) form as

C(t) := C + u(t) =
m⋂

i=1

Ci + u(t) with Ci := {x ∈ R
n
∣∣ gi(x) ≥ 0

}
for all i = 1, . . . ,m (1.5)

defined by some convex and C2-smooth functions gi : Rn → R. Since the set C(t) is noncon-
vex, an appropriate normal cone notion to C(t) should be specified in (1.3). For definiteness 
we choose the proximal normal cone construction to describe the nonconvex sweeping process 
under consideration, but actually all the major normal cone notions agree in our setting due the 
prox-regularity of the set C(t) under the assumptions made; see Section 2. Besides being of its 
own theoretical interest and importance, the controlled sweeping process version from (1.3) and 
(1.5) arises in applications to optimal control of the planar crowd motion model, which is more 
adequate for the practical use in comparison of the polyhedral corridor version treated in [8]. In 
fact, this has been our primary motivation for the developments of this paper. The results of the 
crowd motion applications will be presented in the separate paper [9].

This paper concerns the problem of minimizing the Bolza-type functional

minimize J [x,u, a] := ϕ
(
x(T )

)+ T∫
0

�
(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
dt (1.6)

over the control functions u(·) ∈ W 1,2([0, T ]; Rn) and a(·) ∈ W 1,2([0, T ]; Rd) generating the 
corresponding trajectories x(·) ∈ W 1,2([0, T ]; Rn) of the sweeping differential inclusion (1.3)
with the controlled moving set (1.5), where the time final time T > 0 and the initial vec-
tor x0 ∈ R

n are fixed. The precise assumptions on terminal extended-real-valued cost function 
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ϕ : Rn → R := (−∞, ∞] and the running cost/integrand � : [0, T ] ×R
4n+2d → R will be formu-

lated in Section 2. In addition to the above, the optimal control problem (P ) under consideration 
contains the pointwise constraints on the controls

r1 ≤ ‖u(t)‖ ≤ r2 for all t ∈ [0, T ] (1.7)

with the fixed constraint bounds 0 < r1 ≤ r2. Note that the two inequality constraints in (1.7)
collapse to the equality one when r1 = r2. The positivity requirement on r1 in (1.7) is motivated 
by applications.

It is important to emphasize that due to the construction of the (proximal) normal cone in (1.3)
and the moving set structure in (1.5), we implicitly have the pointwise constraints of the other 
type

gi

(
x(t) − u(t)

)≥ 0 for all t ∈ [0, T ] and i = 1, . . . ,m, (1.8)

which should be taken into account in the subsequent derivations.
We pursue a threefold goal in this paper. The first one is to develop the method of discrete 

approximations to study the nonpolyhedral sweeping system in (1.3), (1.5), and (1.7) as well 
as the optimal control problem (P ) for it by constructing a well-posed sequence of discrete-
time control systems such that any sweeping feasible solution can be strongly approximated (in 
the W 1,2-norm) by feasible ones for discrete systems and that optimal solutions to the discrete 
counterparts of (P ) strongly converge to an optimal solution for the original sweeping control 
problem (P ). The second goal is to justify the existence of optimal solutions to the discrete prob-
lems and to derive optimality conditions for them by employing advanced tools of variational 
analysis and generalized differentiation, which are appropriate and in fact unavoidable in this 
framework. The final goal is to use discrete approximations as a vehicle to establish necessary 
optimality conditions for the given local optimal (in an appropriate sense) solution to (P ) by 
passing to the limit from those obtained for their discrete counterparts. The achievement of the 
latter goal is also heavily based on employing appropriate generalized differential techniques 
and, in particular, on second-order subdifferential computations in variational analysis.

As mentioned, the discrete approximation approach to deriving necessary optimality condi-
tions has been implemented before for Lipschitzian differential inclusions [24,26] as well as 
for various versions of the polyhedral sweeping process [7,8,13], where the polyhedrality of the 
moving set was strongly exploited. The nonpolyhedral case of the controlled sweeping process 
treated below is significantly more involved in comparison with the previous developments in all 
the major steps of our approach.

The rest of the paper is organized as follows. In Section 2 we recall the needed definitions from 
variational analysis and generalized differentiation, formulate and discuss the basic assumptions 
on the initial data of (P ), and present some preliminary results widely used below. Section 3
constructs a sequence of discrete approximations for all the constraints of problem (P ) simul-
taneously, without touching optimality so far, and show that any feasible solution to (P ) can 
be strongly approximated in the W 1,2-norm by feasible solutions to the discrete-time inclusions 
that are piecewise linearly extended to the continuous-time interval [0, T ] under fairly general 
assumptions. This line of the strong approximation is continued in Section 5 for local optimal (in 
the designated sense) solutions to (P ), while the preceding Section 4 is devoted to justifying the 
existence of global optimal solutions to (P ) as well as the definition of “intermediate” (between 
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weak and strong, the latter included) local minimizers and their relaxation that can be covered 
by the developed method of discrete approximations.

In Section 6 we start preparations to deriving necessary optimality conditions first for discrete-
time sweeping problems and then for the original one. These preparations, which are important 
for their own sake, include computations of the second-order constructions of generalized differ-
entiation that play a significant role in the subsequent results. Section 7 presents the derivation of 
necessary optimality conditions for discrete approximation problems by reducing them to non-
dynamic models of mathematical programming with nonsmooth and nonconvex data together 
with the usage of generalized differentiation calculus and the second-order computations given 
above.

Section 8 is a culmination, which establishes a complete set of necessary optimality condi-
tions for the original sweeping control problem (P ) by passing to the limit from those obtained 
in Section 7 for discrete approximations together with rather involved techniques of variational 
analysis ensuring the appropriate convergence of adjoint trajectories and the validity of the limit-
ing relationships. In Section 9 we present two examples, which are related to practical modeling 
while illustrating the scheme of applications of the obtained necessary optimality conditions to 
determine optimal solutions. More important practical applications of the obtained optimality 
conditions appear in [9].

Throughout the paper we use standard notation of variational analysis and control theory; see, 
e.g., [26,33,38]. Let us mention that B(x, r) stands for the closed ball of the space in question 
centered at x with radius r > 0, IN := {1, 2, . . .}, and x

ϕ→ x̄ means that x → x̄ with ϕ(x) →
ϕ(x̄).

2. Basic definitions, assumptions, and preliminaries

First we recall some definitions from variational analysis systematically used in what follows. 
The framework of this paper is Euclidean and finite-dimensional. We refer the reader to the 
books [11,25,33] for more details on generalized differentiation and related issues of variational 
analysis and to the excellent survey by Colombo and Thibault [14] on prox-regularity and its 
applications.

Let � ⊂ R
n be a nonempty set that is locally closed around x̄ ∈ �, and let dist(x; �) :=

infy∈� ‖x − y‖ be the distance between x ∈R
n and �. The Euclidean projector of x onto � is

�(x;�) := {w ∈ �
∣∣ ‖x − w‖ = dist(x;�)

}
, x ∈ R

n,

which is nonempty if x is sufficiently close to x̄. The proximal normal cone to � at x̄ is given by

NP (x̄;�) := {v ∈ R
n
∣∣ ∃α > 0 such that x̄ ∈ �(x̄ + αv;�)

}
, x̄ ∈ �, (2.1)

with NP (x̄; �) := ∅ if x̄ /∈ �. Another geometric construction of generalized differentiation used 
below is the (basic/limiting/Mordukhovich) normal cone to � at x̄ ∈ � defined by

N(x̄;�) := {v ∈ R
n
∣∣ ∃xk → x̄, wk ∈ �(xk;�), αk ≥ 0 s.t. αk(xk − wk) → v as k → ∞}

(2.2)

with N(x̄; �) := ∅ if x̄ /∈ �. In contrast to the proximal normal cone (2.1), the limiting one (2.2)
and the corresponding subdifferential and coderivative constructions for nonsmooth functions 
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and set-valued mappings, which are generated by (2.2) and are presented in Section 6, enjoy 
full calculi in general settings that are based on the variational/extremal principles of variational 
analysis; see, e.g., [25,33]. There is the following relationship between the limiting and proximal 
normal cone notions:

N(x̄;�) = {v ∈R
n
∣∣ ∃xk → x̄, vk → v with vk ∈ NP (xk;�) for all k ∈ IN

}
.

If the set � is convex, both constructions (2.1) and (2.2) reduce to the classical normal cone of 
convex analysis. But the convexity of � is not the only case when NP (x̄; �) = N(x̄; �), and 
thus we can combine nice properties of both cones; in particular, the convexity of (2.1) and the 
rich calculus for (2.2).

It has been well realized in variational analysis that the cones (2.1) and (2.2) agree for a re-
markable class of nonconvex sets introduced in variational analysis by Poliquin and Rockafellar 
[31] under the name of prox-regularity. In fact, this notion was first developed by Federer [17] in 
geometric measure theory under the name of “sets with positive reach.” The reader can find more 
information in [14] with its abounded bibliographies therein. Besides many other applications, 
prox-regular moving sets have been used in the sweeping process theory; see, e.g., [4,14,16,35,
37]. Our main attention is paid to uniformly prox-regular sets, the notion that was probably first 
developed by Canino [6] in the study of geodesics.

Definition 2.1 (Uniform prox-regularity). Let � be a closed subset of Rn, and let η > 0. Then �
is η-PROX-REGULAR if for all x ∈ bd� and v ∈ NP (x; �) with ‖v‖ = 1 we have B(x +ηv, η) ∩
� = {x}. Equivalently, the η-prox-regularity of � can be defined via the validity of the estimate

〈v, y − x〉 ≤ ‖v‖
2η

‖y − x‖2 for all y ∈ �, x ∈ bd�, and v ∈ NP (x;�).

Recall that any closed convex subset in Rn is ∞-prox-regular and that in this case for every 
η > 0 the well-defined Euclidean projection operator �(x; �) is single-valued if dist(x; �) < η.

Throughout the paper we impose the following assumptions on the given data of the optimal 
control problem (P ) ensuring, in particular, that for each t ∈ [0, T ] the controlled moving set 
C(t) in (1.5) is uniformly prox-regular, and thus the proximal and limiting normal cones agree 
for it. This allows us to use the normal cone notation “N” in (1.3) in the rest of the paper and 
employ the results available in variational analysis for either one of these cones. Here are our 
standing assumptions:

(H1) The perturbation mapping f : Rn × R
d → R

n in (1.3) is continuous on Rn × R
d and 

locally Lipschitzian with respect to the first argument, i.e., for every ε > 0 there is a constant 
K > 0 such that

‖f (x, a) − f (y, a)‖ ≤ K‖x − y‖ whenever (x, y) ∈ B(0, ε) × B(0, ε), a ∈ R
d . (2.3)

Furthermore, there is a constant M > 0 ensuring the growth condition

‖f (x, a)‖ ≤ M(1 + ‖x‖) for any x ∈
⋃

C(t), a ∈ R
d . (2.4)
t∈[0,T ]
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(H2) There exist positive constants c > 0 and Mj , j = 1, 2, 3, together with open sets Vi ⊃ Ci

such that dH (Ci, Rn \ Vi) > c and the functions gi(·), i = 1, . . . , m, are twice continuously dif-
ferentiable (C2-smooth) satisfying the estimates

M1 ≤ ‖∇gi(x)‖ ≤ M2, and ‖∇2gi(x)‖ ≤ M3 for all x ∈ Vi, (2.5)

where dH stands for the Hausdorff distance between sets.
(H3) There exist positive numbers β and ρ such that∑

i∈Iρ(x)

λi‖∇gi(x)‖ ≤ β

∥∥∥ ∑
i∈Iρ(x)

λi∇gi(x)

∥∥∥ for all x ∈ C and λi ≥ 0, (2.6)

where the index set for the perturbed constraints is defined by

Iρ(x) := {i ∈ {1, . . . ,m}∣∣ gi(x) ≤ ρ
}
. (2.7)

(H4) The terminal cost ϕ : Rn → R is lower semicontinuous (l.s.c.), while the running cost �
in (1.6) is such that �t := �(t, ·) : R4n+2d → R is l.s.c. for a.e. t ∈ [0, T ], bounded from below 
on bounded sets, and t �→ �(t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)) is summable on [0, T ] for each 
feasible triple (x(t), u(t), a(t)).

Observe that the simultaneous validity of (2.5) and (2.6) imply the positive linear indepen-
dence of the gradients ∇gi(x) of the active inequality constraints on C, and that it reduces to 
the validity of the classical Mangasarian–Fromovitz constraint qualification on C in the setting 
under consideration.

The following proposition is due to the result by Venel [37, Proposition 2.9]; see also [3] for 
more discussions and further developments.

Proposition 2.2 (Uniform prox-regularity of the moving set). Under the validity of (H2) and

(H3) we have that for each t ∈ [0, T ] the set C(t) is η-prox-regular with η = α

M3β
·

Proof. It follows from [37, Proposition 2.9] that the set C in (1.5) is η-prox-regular with the 
modulus η defined in the proposition. Thus it holds for the moving set C(t) = C + u(t) as a 
translation of C. �

Proposition 2.2 allows us to verify the next proposition based on the well-posedness result by 
Edmond and Thibault taken from [16, Theorem 1].

Proposition 2.3 (Existence and estimates for sweeping trajectories). Consider the perturbed 
sweeping process (1.3) with the fixed controls u(·) ∈ W 1,2([0, T ]; Rn) and a(·) ∈
W 1,2([0, T ]; Rd) under the validity of (H1)–(H3) with the constant M > 0 taken from (2.4). 
There is a unique solution x(·) ∈ W 1,2([0, T ]; Rn) to (1.3) generated by the controls (u(·), a(·)). 
Furthermore, we have

‖x(t)‖ ≤ l := ‖x0‖ + e2MT

⎛⎝2MT (1 + ‖x0‖) +
T∫

0

‖u̇(s)‖ds

⎞⎠ for all t ∈ [0, T ],

‖ẋ(t)‖ ≤ 2(1 + l)M + ‖u̇(t)‖ a.e. t ∈ [0, T ]. (2.8)



1010 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050
Proof. With the fixed pair (u(·), a(·)), both existence and estimate statements of the theorem 
follow from [16, Theorem 1] under the validity of (H1), the uniform prox-regularity of C(t), and 
the property

∣∣dist
(
y;C(t)

)− dist
(
y;C(τ)

)∣∣≤ ‖v(t) − v(τ)‖ for all t, τ ∈ [0, T ] with v(t) :=
t∫

0

‖u̇(s)‖ds

and with the chosen W 1,2 control u(·). The latter fact was proved in [7, Proposition 1], while 
the uniform prox-regularity of C(t) follows from Proposition 2.2 under assumptions (H2) 
and (H3). �
3. Discrete approximation of nonconvex sweeping process

This section deals with the constrained nonconvex sweeping process described by (1.3), (1.5), 
and (1.7) without considering its optimization. In what follows we construct a sequence of 
discrete-time counterparts of the constrained sweeping process in such a way that any feasi-
ble triple to the continuous-time process (including controls u(t), a(t) and the corresponding 
trajectory x(t) satisfying rather unrestrictive conditions) can be strongly approximated in the 
W 1,2-norm by feasible solutions to the discrete-time systems that are piecewise linearly extended 
on the continuous-time interval [0, T ].

The first step of this procedure is used in all the results presented below. Unifying the control 
and state variables, we introduce the triple z := (x, u, a) ∈ R

n × R
n × R

d and show that (1.3)
with C(t) from (1.5) can be written in the usual form of differential inclusions with respect to 
the new variable z. Indeed, define the set-valued mapping F : Rn ×R

n ×R
d ⇒R

n by

F(z) = F(x,u, a) := N(x − u;C) + f (x, a) (3.1)

and deduce from [37, Proposition 2.8] that F admits the explicit representation

F(z) =
{

−
∑

i∈I (x−u)

λi∇gi(x − u)

∣∣∣ λi ≥ 0
}

+ f (x, a) (3.2)

via the index set of active constraints

I (y) := {i ∈ {1, . . . ,m}∣∣ gi(y) = 0
}

(3.3)

at the point y := x − u ∈ C. Then we can equivalently rewrite the sweeping inclusion (1.3) with 
the set C from (1.5) in the following equivalent form involving one variable z ∈ R

n ×R
n ×R

d :

−ż(t) ∈ F
(
z(t)
)×R

n ×R
d a.e. t ∈ [0, T ] with z(0) := (x0, u(0), a(0)

)
, x0 − u(0) ∈ C,

(3.4)

where the last condition means that gi(x0 −u(0)) ≥ 0 as i = 1, . . . , m. Proposition 2.3 tells us that 
the Cauchy problem in (3.4) has solutions in the class of W 1,2 functions z(t) = (x(t), u(t), a(t))

on [0, T ].
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For each k ∈ IN we define the discrete partitions of [0, T ] by


k := {0 = tk0 < tk1 < . . . < tkk } with hk := tkj+1 − tkj ↓ 0 as k → ∞. (3.5)

The next theorem justifies the desired strong discrete approximation for a large class of feasible 
solutions to the continuous-time inclusions (3.4) generated by the nonconvex sweeping set (1.5)
with perturbing the pointwise control constraints (1.7) and keeping the implicit state constraints 
(1.8).

Theorem 3.1 (Strong discrete approximation of feasible solutions to the constrained sweeping 
process). Let the assumptions in (H1)–(H3) be satisfied. Consider a triple z̄(·) = (x̄(·), ū(·), ā(·))
satisfying (3.4), (1.5), and (1.7) as well as the following properties, which all hold whenever 
z̄ ∈ W 2,∞([0, T ]): the sweeping inclusion (3.4) is fulfilled for z̄(·) at the partition points tkj from 
(3.5) as j = 0, . . . , k − 1 with the right-side derivative at t0 = 0 and for some constant μ > 0
independent of k we have

k−1∑
j=0

∥∥∥∥∥ x̄(tkj+1) − x̄(tkj )

hk

− ˙̄x(tkj )

∥∥∥∥∥≤ μ,

∥∥∥∥∥ ū(tk1 ) − ū(tk0 )

hk

∥∥∥∥∥≤ μ,

k−2∑
j=0

∥∥∥∥∥ ū(tkj+2) − ū(tkj+1)

hk

− ū(tkj+1) − ū(tkj )

hk

∥∥∥∥∥≤ μ.

(3.6)

Then there exist a sequence of piecewise linear functions zk(t) := (xk(t), uk(t), ak(t)) on [0, T ]
and a sequence of positive numbers εk ≤ 2hkμeK ↓ 0 as k → ∞ with the constant K > 0 taken 
from (2.3) so that (xk(0), uk(0), ak(0)) = (x0, ū(0), ā(0)),

r1 − εk ≤ ‖uk(tkj )‖ ≤ r2 + εk, tkj ∈ 
k, (3.7)

xk(t) = xk(tkj ) − (t − tkj )vk
j , xk(0) = x0, tkj ≤ t ≤ tkj+1 with vk

j ∈ F(zk(tkj )) (3.8)

for j = 0, . . . , k − 1 and that zk(·) → z̄(·) in the W 1,2-norm, i.e.,

zk(·) → z̄(·) uniformly on [0, T ] and

T∫
0

∥∥∥żk(t) − ˙̄z(t)
∥∥∥2

dt → 0 as k → ∞. (3.9)

Moreover, with μ̃ := max{3μ(1 + 4KT )eK, 4μ(eK + 1)} we have the estimates

∥∥∥∥∥uk(tk1 ) − uk(tk0 )

hk

∥∥∥∥∥≤ μ̃ and var
(
u̇k; [0, T ])≤ μ̃, (3.10)

where “var” denotes the total variation on [0, T ] of the derivative function in (3.10).



1012 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050
Proof. It mainly follows the lines in the proof of [7, Theorem 3.1], although the problems under 
consideration in [7] and here are significantly different. We just present the major constructions 
in the new setting of this theorem. Define first a sequence of piecewise linear functions yk(·) :=
(yk

1 (·), yk
2 (·), yk

3 (·)) on [0, T ] via their values at the mesh points of 
k by(
yk

1 (tkj ), yk
2 (tkj ), yk

3 (tkj )
) := (x̄(tkj ), ū(tkj ), ā(tkj )

)
for all j = 0, . . . , k and k ∈ IN.

Define further wk(t) = (wk
1(t), wk

2(t), w
k
3(t)) := ẏk(t) as piecewise constant and right continu-

ous functions on [0, T ] and easily deduce from these constructions that

yk(·) → z̄(·) uniformly on [0, T ] and wk(·) → ˙̄z(·) strongly in L2([0, T ];R2n+d).

For each fixed k ∈ IN , denote ak(t) := yk
3 (t) on [0, T ] and use for simplicity the notation tj := tkj

as j = 1, . . . , k in what follows. We construct the desired trajectories xk(t) of (3.8) by induction. 
Suppose that the value of xk(tj ) is known and define the vectors

uk(tj ) := xk(tj ) − yk
1(tj ) + yk

2(tj ) = xk(tj ) − x̄(tj ) + ū(tj ), j = 0, . . . , k,

for which we clearly have the relationships

xk(tj ) − uk(tj ) = x̄(tj ) − ū(tj ) as j = 0, . . . , k and (3.11)

r1 − εk ≤ ‖uk(tj )‖ ≤ r2 + εk with εk := ‖xk(tj ) − x̄(tj )‖.
This yields gi(x

k(tj ) − uk(tj )) = gi(x̄(tj ) − ū(tj )) ≥ 0 for i = 1, . . . , m and thus xk(tj ) −
uk(tj ) ∈ C, which shows that the values F(zk(tj )) = F(xk(tj ), uk(tj ), ak(tj )) of the map-
ping (3.1) are well defined whenever j = 0, . . . , k. Set xk(t) := xk(tj ) − (t − tj )v

k
j with 

vk
j ∈ �(−wk

1j ; F(zk(tj ))) for all t ∈ [tj , tj+1) and j = 0, . . . , k − 1 and then deduce from (3.2)
and (3.11) that

F
(
xk(tj ), u

k(tj ), a
k(tj )

)= F
(
x̄(tj ), ū(tj ), ā(tj )

)+ f
(
xk(tj ), ā(tj )

)− f
(
x̄(tj ), ā(tj )

)
.

Employing now the arguments similar to the proof of [7, Theorem 3.1], we readily verify that 
the triples zk(t) = (xk(t), uk(t), ak(t)) for t ∈ [0, T ] and k ∈ IN constructed above satisfy all the 
conclusions of this theorem and thus complete the proof of this theorem. �
4. Existence of optimal solutions and local relaxation

This section starts the study of the entire sweeping optimal control problem (P ) formulated 
in Section 1, not only its feasible solutions. First we establish the existence of optimal solutions 
to (P ) with adding the convexity of the running cost � of (1.6) in the velocity variables to our 
standing assumptions.

Theorem 4.1 (Existence of optimal solutions to the sweeping optimal control problem). Let (P) 
be the optimal control problem defined in Section 1 considering in the equivalent form (3.4)
of the sweeping differential inclusion over all the W 1,2([0, T ]) triples z(·) = (x(·), u(·), a(·)). 
In addition to the standing assumptions in (H1)–(H4), suppose that the integrand � in (1.6) is 
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convex with respect to the velocity variables (ẋ, u̇, ȧ) and that along a minimizing sequence of 
zk(·) = (xk(·), uk(·), ak(·)) as k ∈ IN we have that �(t, ·) is majorized by a summable function, 
{u̇k(·)} is bounded in L2([0, T ]; Rn) and {ak(·)} is bounded in W 1,2([0, T ]; Rd). Then problem 
(P ) admits an optimal solution in W 1,2([0, T ]; R2n+d).

Proof. It follows from Proposition 2.3 that the set of feasible solutions to (P ) is nonempty. Take 
the minimizing sequence (xk(·), uk(·), ak(·)) ∈ W 1,2([0, T ]; R2n+d) in (P ) from the formula-
tion of the theorem, where xk(·) is uniquely generated by (uk(·), ak(·)) in Proposition 2.3. The 
imposed boundedness assumptions on {uk(·)} and {ak(·)} yield by standard functional analysis 
that the sequence {(u̇k(·), ȧk(·))} is weakly compact in L2([0, T ]; Rn+d), and so we have – by 
passing to subsequences if necessary – the weak convergence u̇k(·) → ϑu(·) and ȧk(·) → ϑa(·)
in L2([0, T ]; Rn) and L2([0, T ]; Rd), respectively, for some functions ϑu(·) and ϑa(·) from the 
corresponding spaces. Due to pointwise constraints (1.7) and the boundedness of {ak(0)}, sup-
pose without loss of generality that uk(0) → u0 and ak(0) → a0 as k → ∞ for some u0 ∈R

n and 
a0 ∈ R

d . Then (uk(·), ak(·)) → (ū(·), ā(·)) in the norm of W 1,2([0, T ]; Rn+d) for the functions 
ū(·) ∈ W 1,2([0, T ]; Rn) and ā(·) ∈ W 1,2([0, T ]; Rd) defined by

ū(t) := u0 +
t∫

0

ϑu(s)ds and ā(t) := a0 +
t∫

0

ϑa(s)ds, (4.1)

which implies, in particular, that ū(·) satisfies the constraints in (1.7). Furthermore, it follows 
from estimate (2.8) in Proposition 2.3 that the sequence {ẋk(·)} is bounded in L2([0, T ]; Rn), and 
hence we get ϑx(·) ∈ L2([0, T ]; Rn) for which ẋk(·) → ϑx(·) weakly in L2([0, T ]; Rn) along a 
subsequence. It yields the convergence xk(·) → x̄(·) in the norm topology of W 1,2([0, T ]; Rn)

for x̄(·) ∈ W 1,2([0, T ]; Rn) defined by

x̄(t) := x0 +
t∫

0

ϑx(s)ds, t ∈ [0, T ].

The next step is to verify that the limiting triple z̄(·) = (x̄(·), ū(·), ā(·)) satisfies the differential in-
clusion (3.4) with mapping F(z) given in (3.1). Since the derivative sequences {żk(·)} converges 
to ˙̄z(·) weakly in L2([0, T ]; R2n+d), the classical Mazur theorem ensures the strong convergence 
to ˙̄z(·) in this space of some sequence of convex combinations of the functions żk(t). Thus there 
is a subsequence of these convex combinations that converges to ˙̄z(t) for a.e. t ∈ [0, T ]. It follows 
from the above that there exist a function ν : IN → IN and sequences of real numbers {α(k)j }, 
j = k, . . . , ν(k), such that

α(k)j ≥ 0,

ν(k)∑
j=k

α(k)j = 1, and
ν(k)∑
j=k

α(k)j ż
j (t) → ˙̄z(t) a.e. t ∈ [0, T ]

as k → ∞. By taking into account that x̄(t) − ū(t) = lim
k→∞(xk(t) − uk(t)) ∈ C we get

− ˙̄x(t)−f
(
x̄(t), ā(t)

)= lim
k→∞

(
−

ν(k)∑
α(k)j ẋ

j (t) −
ν(k)∑

α(k)jf
(
xj (t), aj (t)

))

j=k j=k
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= lim
k→∞

(
−

ν(k)∑
j=k

∑
i∈I (xj (t)−uj (t))

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

))

= lim
k→∞

(
−

ν(k)∑
j=k

∑
i∈I (x̄(t)−ū(t))

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

))

= lim
k→∞

(
−

∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

))
,

where I (·) is taken from (3.3), and where λj
i = 0 if i ∈ I (x̄(t) − ū(t))\I (xj (t) − uj (t)) due to 

the clear inclusion I (xj (t) −uj (t)) ⊂ I (x̄(t) − ū(t)) for all j = k, . . . , ν(k) and all large k ∈ IN .

Let us now show that the numerical sequence 
{ν(k)∑

j=k

α(k)jλ
j
i

}
is bounded for all i ∈ I (x̄(t) −

ū(t)). Indeed, we deduce from (2.5) and (2.6) the validity of the estimates

∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ≤ 1

M1

∑
i∈I (x̄(t)−ū(t))

( ν(k)∑
j=k

α(k)jλ
j
i

)∥∥∇gi

(
x̄(t) − ū(t)

)∥∥
≤ β

M1

∥∥∥ ∑
i∈I (x̄(t)−ū(t))

( ν(k)∑
j=k

α(k)jλ
j
i

)
∇gi

(
x̄(t) − ū(t)

)∥∥∥
≤ β

M1

∥∥∥ ∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
x̄(t) − ū(t)

)

−
∑

i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

)∥∥∥
+ β

M1

∥∥∥ ∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

)∥∥∥
≤ β

M1

∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i

∥∥∥∇gi

(
x̄(t) − ū(t)

)− ∇gi

(
xj (t) − uj (t)

)∥∥∥+ βM̃

M1

≤ 1

2

∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i + βM̃

M1

for all k sufficiently large, where M̃ is an upper bound of 
{ ∑

i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi(x

j (t) −

uj (t))

}
. This justifies the boundedness of the sequence 

{ν(k)∑
α(k)jλ

j
i

}
. Thus there exists ̃α > 0
j=k
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such that 

∥∥∥∥ν(k)∑
j=k

α(k)jλ
j
i

∥∥∥∥ ≤ α̃ and 
ν(k)∑
j=k

α(k)jλ
j
i → βi as k → ∞ along some subsequence, with 

no relabeling.
Next we verify that 

∑ν(k)
j=k α(k)jλ

j
i ∇gi(x

j (t) − uj (t)) → βi∇gi(x̄(t) − ū(t)) as k → ∞. 
Observe that

∥∥∥ ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

)− βi∇gi

(
x̄(t) − ū(t)

)∥∥∥
≤
∥∥∥ ν(k)∑

j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

)− ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
x̄(t) − ū(t)

)∥∥∥
+
∥∥∥ ν(k)∑

j=k

α(k)jλ
j
i ∇gi

(
x̄(t) − ū(t)

)− βi∇gi

(
x̄(t) − ū(t)

)∥∥∥
≤

ν(k)∑
j=k

α(k)jλ
j
i

∥∥∥∇gi

(
xj (t) − uj (t)

)− ∇gi

(
x̄(t) − ū(t)

)∥∥∥+ M2

∥∥∥ ν(k)∑
j=k

α(k)jλ
j
i − βi

∥∥∥
≤ α̃ε + M2ε for all large k ∈ IN,

where M2 is taken in (H2) while ε > 0 is an arbitrary small number with

max
{∥∥∇gi

(
xj (t) − uj (t)

)− ∇gi

(
x̄(t) − ū(t)

)∥∥,∥∥∥ ν(k)∑
j=k

α(k)jλ
j
i − βi

∥∥∥}≤ ε

whenever k ≤ j ≤ ν(k) and k is large enough. Thus we have

− ˙̄x(t)−f
(
x̄(t), ã(t)

)= lim
k→∞

(
−

∑
i∈I (x̄(t)−ū(t))

ν(k)∑
j=k

α(k)jλ
j
i ∇gi

(
xj (t) − uj (t)

))
= −

∑
i∈I (x̄(t)−ū(t))

βi∇gi

(
x̄(t) − ū(t)

) ∈ N
(
x̄(t) − ū(t);C) a.e. t ∈ [0, T ],

which verifies by (3.2) that z̄(·) satisfies the differential inclusion (3.4) and hence the constraints 
in (1.8).

To justify the optimality of the triple z̄(·) in (P ), it remains to show that

J [x̄, ū, ā] ≤ lim inf
k→∞ J [xk,uk, ak]

for the Bolza functional (1.6). But this is a clear consequence of the aforementioned Mazur 
theorem due the imposed convexity of the integrand � in the velocity variables and the Lebesgue 
dominated convergence theorem for passing to the limit under the integral sign. �
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Note that the convexity of the running cost � in (1.6) is not among the standing assumptions 
of the paper and is not needed for deriving our main results on necessary optimality conditions 
in (P ). Such conditions established below address the so-called “relaxed intermediate local min-
imizers” introduced in [24] and then studied in many publications. To recall this notion, we 
first consider the relaxed optimal control problem for (P ) following the Bogoluybov–Young re-
laxation/convexification procedure, which has been well understood in the classical calculus of 
variations and optimal control; see, e.g., [26] with the references therein and [10,15,16,36] for 
more recent results in this direction. To this end, denote by ̂�F (t, x, u, a, ẋ, u̇, ȧ) the convexifica-
tion (the largest l.s.c. convex function majorized by �(t, x, u, a, ·, ·, ·)) of the running cost in (1.6)
on the set F(x, u, a) from (3.1) with respect to the velocity variables (ẋ, u̇, ȧ) and put ̂� :≡ ∞ at 
points out of F(x, u, a). Define the relaxed optimal control problem (R) by

minimize Ĵ [z] = Ĵ [x,u, a] := ϕ
(
x(T )

)+ T∫
0

�̂F

(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
dt (4.2)

over all z(·) = (x(·), u(·), a(·)) ∈ W 1,2([0, T ]) satisfying (1.5), (1.7), and (3.4). Besides the obvi-
ous case of integrands that are convex in velocity variables, there are broad classes of variational 
and control problems over continuous-time intervals where optimal values of the cost function-
als in the (nonconvex) original and relaxed problems agree; it is known as “relaxation stability.” 
This is due to some “hidden convexity” for such problems (we refer again to [26, Chapter 6]
and the commentaries therein), which allows us, in particular, to verify the relaxation stability 
of nonconvex Bolza problems for Lipschitzian differential inclusions and also for those satisfy-
ing a certain one-sided Lipschitzian condition [15]. Unfortunately, neither of the aforementioned 
conditions is fulfilled for the controlled sweeping process under consideration. For a sweeping 
process over prox-regular moving sets with controls only in additive perturbations, the relaxation 
stability follows from the result by Edmond and Thibault [16, Theorem 2]; see also [10] for sim-
ilar relaxation results concerning BV solutions. It seems that the closest to our setting is a recent 
result by Tolstonogov [36, Theorem 4.2], which establishes the relaxation stability for a sweep-
ing process over variable convex moving sets involved in optimization together with controls in 
perturbations.

Implementing the general scheme of [24,26] for the case of the sweeping control problem 
under consideration, recall now the notion of local minimizers studied in this paper.

Definition 4.2 (Local minimizers). We say that z̄(·) ∈ W 1,2([0, T ]; R2n+d) is a RELAXED INTER-
MEDIATE LOCAL MINIMIZER (r.i.l.m.) of rank 2 for (P ) if it is feasible to (P ), J [z̄] = Ĵ [z̄], and 
there is ε > 0 such that J [z̄] ≤ J [z] for any feasible solution z(·) to (P ) satisfying the conditions

‖z(t) − z̄(t)‖ < ε whenever t ∈ [0, T ] and

T∫
0

‖ż(t) − ˙̄z(t)‖2dt < ε. (4.3)

For convenience we concentrate here on relaxed intermediate local minimizers of rank 2 and 
skip mentioning the rank in what follows. The name “intermediate” comes from the fact that 
the introduced notion clearly lies (strictly) between the conventional notions of weak and strong 
local minimizers in the calculus of variations and optimal control; see [26] for more discussions.
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Note also that in the case of J [z̄] = Ĵ [z̄] (in particular, if (P ) has the property of relaxation 
stability), there is no difference between relaxed intermediate local minimizers and merely in-
termediate local minimizers (without relaxation), which were also defined in [24]. Thus we can 
treat r.i.l.m. as a local version of relaxation stability. It can be distilled from the proofs of [16, 
Theorem 2] and [36, Theorem 4.2] that no relaxation is needed provided that z̄(·) is a strong local 
minimizer of (P ) and, in addition to our standing assumptions, either controls are presented only 
in perturbations, or the set C in (1.5) is convex.

5. Discrete approximation of intermediate local minimizers

In this section we continue with developing the method of discrete approximation, while now 
paying our main attention not to constructing such approximations of any feasible solution to the 
constrained system (3.4), (1.5), and (1.7) as in Section 3 but to the given local optimal solution
z̄(·) = (x̄(·), ū(·), ā(·)) (in the r.i.l.m. sense) of this system with respect to the cost functional 
(1.6), which we can write as

minimize J [z] = ϕ
(
z(T )

)+ T∫
0

�
(
t, z(t), ż(t)

)
dt (5.1)

with ϕ(z) := ϕ(x). It means that our goal here is to construct discrete approximations of the entire 
problem (P ) including its cost functional and the given r.i.l.m. for which we aim subsequently 
to derive necessary optimality conditions by employing the discrete approximation method.

For any fixed k ∈ IN we define the discrete sweeping control problem (Pk) as follows: mini-
mize

Jk[zk] := ϕ(xk
k ) + hk

k−1∑
j=0

�

(
tkj , xk

j , uk
j , a

k
j ,

xk
j+1 − xk

j

hk

,
uk

j+1 − uk
j

hk

,
ak
j+1 − ak

j

hk

)

+
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥∥xk
j+1 − xk

j

hk

− ˙̄x(t)

∥∥∥∥2

+
∥∥∥∥uk

j+1 − uk
j

hk

− ˙̄u(t)

∥∥∥∥2

+
∥∥∥∥ak

j+1 − ak
j

hk

− ˙̄a(t)

∥∥∥∥2
)

+ dist2
(∥∥∥∥uk

1 − uk
0

hk

∥∥∥∥; (−∞, μ̃]
)

+ dist2

⎛⎝k−2∑
j=0

∥∥∥∥uk
j+2 − 2uk

j+1 + uk
j

hk

∥∥∥∥; (−∞, μ̃]
⎞⎠ (5.2)

over elements zk := (xk
0 , xk

1 , . . . , xk
k , uk

0, u
k
1, . . . , u

k
k−1, a

k
0, ak

1, . . . , ak
k−1) satisfying the con-

straints

xk
j+1 ∈ xk

j − hkF (xk
j , uk

j , a
k
j ) for j = 0, . . . , k − 1 with (xk

0 , uk
0, a

k
0) = (x0, ū(0), ā(0)

)
, (5.3)

gi(x
k
k − uk

k) ≥ 0 for i = 1, . . . ,m, (5.4)

r1 − εk ≤ ‖uk
j‖ ≤ r2 + εk for j = 0, . . . , k, (5.5)

‖(xk, uk, ak) − (x̄(tk), ū(tk), ā(tk))‖ ≤ ε/2 for j = 0, . . . , k − 1, (5.6)
j j j j j j
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k−1∑
j=0

tkj+1∫
tkj

(∥∥∥∥xk
j+1 − xk

j

hk

− ˙̄x(t)

∥∥∥∥2

+
∥∥∥∥uk

j+1 − uk
j

hk

− ˙̄u(t)

∥∥∥∥2

+
∥∥∥∥ak

j+1 − ak
j

hk

− ˙̄a(t)

∥∥∥∥2
)

dt ≤ ε

2
,

(5.7)∥∥∥∥uk
1 − uk

0

tk1 − tk0

∥∥∥∥≤ μ̃ + 1 and
k−2∑
j=0

∥∥∥∥uk
j+2 − 2uk

j+1 + uk
j

hk

∥∥∥∥≤ μ̃ + 1, (5.8)

where ε is taken from (4.3) while εk and μ̃ are taken from Theorem 3.1 applied to the given 
r.i.l.m. z̄(·).

To study z̄(·) via the method of discrete approximations, we have to verify first that all the 
problems (Pk) for each k ∈ IN sufficiently large admit optimal solutions.

Proposition 5.1 (Existence of optimal solutions to discrete sweeping control problems). Under 
the standing assumptions (H1)–(H4) holding along the r.i.l.m. z̄(·) each problem (Pk) for large 
k ∈ IN admits an optimal solution z̄k(·).

Proof. It follows directly from Theorem 3.1 and the construction of (Pk) along the given r.i.l.m. 
z̄(·) that the set of feasible solutions to (Pk) is nonempty for all large k ∈ IN . Furthermore, the 
imposed constraints (5.5)-(5.7) ensure that this set is bounded for each k. Thus the existence of 
optimal solutions to finite-dimensional problems (Pk) is ensures by the classical the Weierstrass 
existence theorem provided that the feasible solution set to each problem (Pk) is closed. To check 
it, take a sequence zν(·) = zν := (xν

0 , . . . , xν
k , uν

0, . . . , u
ν
k−1, a

ν
0 , . . . , aν

k−1) of feasible solutions 
for (Pk) converging to some z(·) = z := (x0, . . . , xk, u0, . . . , uk−1, a0, . . . , ak−1) as ν → ∞. We 
need to show that z is feasible to (Pk). Observing that gi(xj − uj ) = lim

ν→∞gi(x
ν
j − uν

j ) ≥ 0 for 

all i = 1, . . . , m and j = 0, . . . , k − 1 gives us that xj − uj ∈ C for all j = 0, . . . , k − 1. It is not 
hard to see that I (xν

j −uν
j ) ⊂ I (xj −uj ) for ν ∈ IN sufficiently large. Taking (3.1) and (3.4) into 

account, gives us for all such indices j that

xν
j+1 − xν

j

−hk

− f (xν
j , aν

j ) ∈ NC(xν
j − uν

j ),

which implies therefore by passing to the limit as ν → ∞ that

xν
j+1 − xν

j

−hk

− f (xν
j , aν

j ) → xj+1 − xj

−hk

− f (xj , aj ) and xν
j − uν

j → xj − uj .

This allows us to arrive at the inclusions

xj+1 − xj

−hk

− f (xj , aj ) ∈ Lim sup
x−u→xj −uj

NC(x − u) = NC(xj − uj ),

ensuring that xj+1 − xj ∈ F(xj , uj , aj ) for all j = 0, . . . , k − 1 and thus completing the 
proof. �
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The next key result makes a bridge between optimal solutions to the control problems (P )

and (Pk) by showing on one hand that the optimal solutions z̄k(·) to (Pk) are approximately opti-
mal/suboptimal solutions to (P ) and that necessary optimality conditions for z̄k can be treated as 
“almost optimality conditions” for z̄(·). On the other hand, the necessary optimality conditions 
for the discrete solutions z̄k(·) obtained below will serve as the basis to derive the exact necessary 
optimality conditions for z̄(·) by passing to the limit in their relationships as k → ∞.

Theorem 5.2 (Strong W 1,2 convergence of discrete optimal solutions). Suppose that all the 
standing assumptions (H1)–(H4) and those of Theorem 3.1 hold along the given r.i.l.m. z̄(·)
of problem (P ). Assume in addition that the terminal cost ϕ is continuous at x̄(T ), that the 
running cost � in (5.1) is continuous at (t, ̄z(t), ̇̄z(t)) for a.e. t ∈ [0, T ], and that �(·, z, ̇z) is uni-
formly majorized around z̄(·) by a summable function on [0, T ]. Then any sequence of optimal 
solutions z̄k(·) = (x̄k(·), ūk(·), āk(·)) of (Pk), piecewise linearly extended to the whole interval 
[0, T ], converges to z̄(·) in the strong topology of W 1,2([0, T ]; R2n+d) with the validity of the 
estimates ∥∥∥∥ ūk

1 − ūk
0

hk

∥∥∥∥≤ μ̃ and lim sup
k→∞

k−2∑
j=0

∥∥∥∥ ūk
j+2 − 2ūk

j+1 + ūk
j

hk

∥∥∥∥≤ μ̃, (5.9)

where the number μ̃ > 0 is taken from Theorem 3.1.

Proof. Take any sequence {z̄k(·)} of optimal solutions to (Pk), the existence of which is ensured 
by Proposition 5.1, and then extend each z̄k(·) piecewise linearly to the continuous-time interval 
[0, T ]. All the statements of the theorem follow from the following limiting equality:

lim
k→∞

T∫
0

(∥∥∥ ˙̄x(t) − ˙̄xk(t)

∥∥∥2 +
∥∥∥ ˙̄u(t) − ˙̄uk(t)

∥∥∥2 +
∥∥∥ ˙̄a(t) − ˙̄ak(t)

∥∥∥2
)

dt

+
∥∥∥ x̄k

1 − x̄k
0

hk

− ˙̄x(0)

∥∥∥2 + dist2
(∥∥∥∥ ūk

1 − ūk
0

hk

∥∥∥∥; (− ∞, μ̃
])

+ dist2
( k−2∑

j=0

∥∥∥∥ ūk
j+2 − 2ūk

j+1 + ūk
j

hk

∥∥∥∥; (− ∞, μ̃
])= 0.

(5.10)

Arguing by contradiction, suppose that (5.10) fails and thus find a subsequence of k ∈ IN along 
which the limit in (5.10) equals to some c > 0. The weak compactness of the unit ball in 
L2([0, T ]; R2n+d) yields the existence of a triple (v(·), w(·), q(·)) ∈ L2([0, T ]; R2n+d) such that( ˙̄xk(·), ˙̄uk(·), ˙̄ak(·))→ (

v(·),w(·), q(·)) weakly in L2([0, T ];R2n+d)

along a subsequence of optimal velocities {˙̄zk(·)}. It is clear that ˙̃z(t) = (v(t), w(t), q(t)) a.e. on 
[0, T ] for the absolutely continuous triple defined by

z̃(t) := (x0, ū(0), ā(0)
)+ t∫

(v(s),w(s), q(s)
)
ds for all t ∈ [0, T ].
0
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The latter implies that ˙̄zk(·) → ˙̃z(·) = ( ˙̃x(·), ˙̃u(·), ˙̃a(·)) weakly in L2([0, T ]; R2n+d), and hence 
it yields ̃z(·) ∈ W 1,2([0, T ]; R2n+d). Similarly to the proof of Theorem 4.1 we verify that ̃z(·)
satisfies inclusion (3.4) with the constraints in (1.7) and (1.8). The rest of the proof of this theorem 
follows the lines in the proof of [7, Theorem 5.1], which show that ̃z(·) is feasible to the relaxed 
problem (R), belongs to the selected W 1,2 neighborhood of z̄(·), and gives a smaller value to 
(4.2) than z̄(·) with Ĵ [z̄] = J [z̄]. Thus the assumed failure of (5.10) contradicts the choice of z̄(·)
as a r.i.l.m. in (P ), and we are done. �
6. Second-order subdifferential computations

Optimization problems (P ) and (Pk) are intrinsically nonsmooth and nonconvex, even for 
smooth and/or convex terminal and running costs. The unavoidable source of nonsmoothness and 
nonconvexity comes from the sweeping differential inclusion (3.4) and its discrete approxima-
tions (5.3), which constitute nonconvex geometric constraints of the graphical type. Furthermore, 
the first-order normal cone (subdifferential, variational structure) of the sweeping inclusions (3.4)
and (5.3) calls for appropriate second-order subdifferential constructions to derive and analyze 
optimality conditions for their solutions. In this section we recall the corresponding generalized 
differential constructions and present the results of their computations in terms of the initial 
problem data that play a significant role in what follows.

Given a set-valued mapping F : Rn ⇒R
m, we always assume that its graph

gphF := {(x, y) ∈ R
n ×R

m
∣∣ y ∈ F(x)

}
is locally closed around the reference point (x̄, ȳ) ∈ gphF and define its coderivative of F at this 
point via the (limiting) normal cone (2.2) by

D∗F(x̄, ȳ)(u) := {v ∈ R
n | (v,−u) ∈ N

(
(x̄, ȳ);gphF

)}
for all u ∈ R

m. (6.1)

When F : Rn → R
m is single-valued (then ȳ = F(x̄) is omitted in the coderivative notation) and 

continuously differentiable (C1-smooth) around x̄, we have the representation

D∗F(x̄)(u) = {∇F(x̄)∗u
}
, u ∈ R

m,

via the adjoint/transposed Jacobian matrix ∇F(x̄)∗. The corresponding (first-order) subdiffer-
ential of an l.s.c. function φ : Rn → R at x̄ ∈ domφ := {x ∈ R

n| φ(x) < ∞} can be defined 
geometrically

∂φ(x̄) := {v ∈R
n
∣∣ (v,−1) ∈ N

(
(x̄, φ(x̄)

); epiφ)
}

(6.2)

via the normal cone (2.2) of its epigraph epiφ := {(x, α) ∈ R
n+1| α ≥ φ(x)} while admitting, 

together with the coderivative (6.1) equivalent analytical representations and – the crucial issue 
– satisfy comprehensive calculus rules despite the nonconvexity of their values; see [25,33] with 
the references therein.

Now we turn to the second-order subdifferential/generalized Hessian of φ : Rn → R at 
x̄ ∈ domφ relative to v̄ ∈ ∂φ(x̄), which plays an underlying role in this paper and is defined, 
following the “dual derivative-of-derivative” scheme [23], as the coderivative of the first-order 
subdifferential of φ by
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∂2φ(x̄, v̄)(u) := (D∗∂φ
)
(x̄, v̄)(u), u ∈R

n. (6.3)

If φ is C2-smooth around x̄, then (6.3) reduces to the (symmetric) Hessian matrix ∂2φ(x̄)(u) =
{∇2φ(x̄)u} for all u ∈R

n, while in general it is a positively homogeneous set-valued mapping of 
u satisfying well-developed second-order subdifferential calculus; see [26,27].

To present next the second-order computations needed in what follows, we recall the definition 
of calmness, which is a weak “one-point” stability property that has been well-understood by now 
in variational analysis and optimization; see [33], [18] and the references therein. A set-valued 
mapping F : Rs ⇒R

q is calm at (ϑ̄, q̄) ∈ gphF if there are positive numbers μ and η such that

F(ϑ) ∩ (q̄ + ηIB) ⊂ F(ϑ̄) + μ‖ϑ − ϑ̄‖IB whenever ϑ ∈ ϑ̄ + ηIB,

where IB stands for the unit closed ball of the space in question. Due to the normal cone descrip-
tion of the sweeping process, in this paper we employ the second-order subdifferential (6.3) just 
for the set indicator function δ�(x) of � ⊂R

n that is equal to 0 if x ∈ � and to ∞ if x /∈ �. The 
second-order subdifferential of the indicator function clearly reduces to D∗N�, where we use the 
notation N�(x) := N(x; �) for convenience. In this case the following upper estimates and ex-
act computations of D∗N� can be deduced from [18] and the previous developments mentioned 
therein. We use the standard notation

Rm− := {(y1, . . . , ym) ∈R
m
∣∣ yi ≤ 0 for all i = 1, . . . ,m

}
.

Proposition 6.1 (Coderivative of the normal cone mapping to inequality constraints). Consider 
the set � := {x ∈ R

n| gi(x) ≥ 0} defined by the C2-smooth functions g = (g1, . . . , gm) : Rn →
R

m around x̄ ∈ � so that the vectors ∇g1(x̄), . . .∇gm(x̄) are positively linearly independent, 
which amounts to saying that the Mangasarian–Fromovitz constraint qualification (MFCQ) is 
satisfied at x̄. Given a normal v̄ ∈ N�(x̄), suppose in addition that the multifunction M : R2m ⇒
R

n+m defined by

M(ϑ) := {(x,λ)
∣∣ (− g(x), λ

)+ ϑ ∈ gphNR
m−
}

(6.4)

is calm at (0, x̄, ̄λ) for all λ̄ = (λ̄1, . . . , ̄λm) ≥ 0 satisfying the equation −∇g(x̄)∗λ̄ = v̄. Then we 
have the second-order upper estimate

D∗N�(x̄, v̄)(u)

⊂
⋃

λ̄≥0,−∇g(x̄)λ̄=v̄

{(
−

m∑
i=1

λ̄i∇2gi(x̄)

)
u − ∇g(x̄)∗D∗NR

m−
(− g(x̄), λ̄

)(− ∇g(x̄)u
)}

.

Strengthening the calmness assumption by the full rank of the Jacobian ∇g(x̄) gives us the pre-
cise formula

D∗N�(x̄, v̄)(u) =
(

−
m∑

λ̄i∇2gi(x̄)

)
u − ∇g(x̄)∗D∗NR

m−
(− g(x̄), λ̄

)(− ∇g(x̄)u
)
,

i=1



1022 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050
where λ̄ ≥ 0 is a unique solution to the equation −∇g(x̄)∗λ̄ = v̄. Furthermore, the coderivative 
of the normal cone mapping generated by the nonpositive orthant Rm− above is computed by

D∗NR
m−(x, v)(y) =

{ ∅ if ∃ i with viyi �= 0,

{γ | γi = 0 ∀ i ∈ I1(y), γi ≥ 0 ∀ i ∈ I2(y)
}

otherwise
(6.5)

whenever (x, v) ∈ gphNR
m− with the index subsets in (6.5) defined by

I1(y) := {i∣∣ xi < 0
}∪ {i∣∣ vi = 0, yi < 0

}
, I2(y) := {i∣∣ xi = 0, vi = 0, yi > 0

}
. (6.6)

Proof. Compare [18, Theorem 3.3], its proof, and the further references therein. �
The next result presents the crucial second-order computations of the coderivative of the 

sweeping process under consideration entirely in terms of its given data.

Theorem 6.2 (Second-order computations for the sweeping process). Consider the set-valued 
mapping F associated with the sweeping process (1.3) by (3.1), where the nonconvex set C
is taken from (1.5), and where the perturbation mapping that f is C1-smooth. Given x, u ∈
R

n with x − u ∈ C as well as w ∈ NC(x − u) and a ∈ R
d , suppose that the vectors ∇g1(x −

u), . . . , ∇gm(x − u) are positively linearly independent and that the multifunction M from (6.4)
is calm at (0, x − u, λ) for all λ = (λ1, . . . , λm) ≥ 0 satisfying the equation −∇g(x − u)∗λ =
w − f (x, a). Then we have the upper estimate

D∗F(x,u, a,w)(y)

⊂
⋃

λ≥0,−∇g(x−u)λ=w−f (x,a)

{(
∇xf (x, a)∗y −

( m∑
i=1

λ∇2gi(x − u)

)
y − ∇g(x − u)∗γ,

( m∑
i=1

λ∇2gi(x − u)

)
y + ∇g(x − u)∗γ,∇af (x, a)∗y

)}
for all y ∈ domD∗NC

(
x − u,w − f (x, a)

)
, (6.7)

where the coderivative domain is satisfied the inclusion

domD∗NC(x − u,w − f (x, a)) ⊂ {y| ∃λ ≥ 0 such that − ∇g(x − u)λ = w − f (x, a),

λi〈∇gi(x − u), y〉 = 0 for i = 1, . . . ,m
}
, (6.8)

and where we have in (6.7) that γi = 0 if either gi(x −u) > 0 or λi = 0 and 〈∇gi(x −u), y〉 > 0, 
and that γi ≥ 0 if gi(x − u) = 0, λi = 0, and 〈∇gi(x − u), y〉 < 0.

Furthermore, replacing the calmness of (6.4) by the stronger assumptions on the full rank of 
the Jacobian matrix ∇g(x −u) (which is actually the classical LICQ – linear independence con-
straint qualification) ensures that the equalities hold in both inclusions (6.7) and (6.7) with the 
collection of nonnegative multipliers λ = (λ1, . . . , λm) ≥ 0 uniquely determined by the equation 
−∇g(x − u)∗λ = w − f (x, a).
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Proof. Consider the mappings G(x, u, a) := NC(x − u) and f̃ (x, u, a) := f (x, a). It follows 
from the coderivative sum rule in [25, Theorem 1.62] that

z∗ ∈ ∇f̃ (x,u, a)∗y + D∗G
(
x,u, a,w − f (x, a)

)
(y)

for any y ∈ domD∗NC(x − u, w − f (x, a)) and z∗ ∈ D∗F(x, u, a, w)(y). Observe further that

G(x,u, a) = NC ◦ g̃(x, u, a) with g̃(x, u, a) := x − u,

where the Jacobian of latter mapping is obviously of full rank. It follows from the coderivative 
chain rule of [25, Theorem 1.66] applied to the above composition that

z∗ ∈ ∇f̃ (x,u, a)∗y + ∇g̃(x, u, a)∗D∗NC

(
x − u,w − f (x, a)

)
(y). (6.9)

Substituting now into (6.9) the corresponding results of Proposition 6.1 and taking into account 
the structure of the mapping f̃ in (6.9) give us all the statements claimed in the theorem. �

Note that for the linear case of gi(x) = −〈x∗
i , x〉, corresponding to the polyhedral sweeping 

process, the upper estimate in (6.7) reduces to our previous computations in [7, Theorem 6.1].

7. Necessary optimality conditions for discrete-time problems

This section is devoted to deriving necessary optimality conditions for local optimal solu-
tion to the discrete-time control problems (Pk), for each fixed k ∈ IN . First we establish, under 
minimal assumptions, necessary optimality conditions in the extended Euler–Lagrange form for 
a general class of problems (Pk) with an arbitrary discrete velocity map F via its coderiva-
tive by reducing such problems to nonsmooth mathematical programming with many geometric 
constraints of the graphical type. Then we exploit the special normal cone structure (3.1) of F to 
obtain optimality conditions for the discrete sweeping control problems (Pk) defined in Section 5
expressed entirely via the given data by using the second-order computations of Section 6. Due 
to the approximation results of Section 5, the optimality conditions for (Pk) obtained in this way 
can be treated as suboptimality conditions for the given r.i.l.m. of the original sweeping control 
problem (P ), while our main goal in what follows is to derive necessary optimality conditions 
for such local minimizers of (P ) by passing to the limit from those in discrete approximations.

Theorem 7.1 (Necessary conditions of the Euler–Lagrange type for discrete-time optimal con-
trol). Let z̄k = (x0, x̄k

1 , . . . , x̄k
k , ūk

0, . . . , ū
k
k, ā

k
0, . . . , āk

k ) be a local optimal solution to problem 
(Pk) for whenever k ∈ IN , where F is an arbitrary closed-graph mapping, and where ϕ and 
�t := �(t, ·, ·) are locally Lipschitzian around the optimal points for any t ∈ 
k . Then there ex-
ist dual elements αk = (αk

1, . . . , αk
m) ∈ R

m+, ξ1k = (ξ1k
0 , . . . , ξ1k

k ) ∈ R
k+1+ , ξ2k = (ξ2k

0 , . . . , ξ2k
k ) ∈

R
k+1− , and pk

j = (pxk
j , puk

j , pak
j ) ∈ R

n ×R
n ×R

d for j = 0, . . . , k satisfying the conditions

λk + ‖αk‖ + ‖βk‖ + ‖ξ1k + ξ2k‖ +
k−1∑
j=0

‖pxk
j ‖ + ‖puk

0 ‖ + ‖pak
0 ‖ �= 0, (7.1)

αkgi(x̄
k − ūk) = 0, i = 1, . . . ,m, (7.2)
i k k



1024 T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050
ξ1k
j (‖uk

j‖ − r2 − εk) = 0 for j = 0, . . . , k, (7.3)

ξ2k
j (‖uk

j‖ − r1 + εk) = 0 for j = 0, . . . , k, (7.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−pxk

k ∈ λk∂ϕ(x̄k
k ) −

m∑
i=1

αk
i ∇gi(x̄

k
k − ūk

k),

puk
k = −

m∑
i=1

αk
i ∇gi(x̄

k
k − ūk

k) − 2(ξ1k
k + ξ2k

k )ūk
k, pak

k = 0,

(7.5)

puk
j+1 = λk(vuk

j + h−1
k θuk

j ), pak
j+1 = λk(vak

j + h−1
k θak

j ), j = 0, . . . , k − 1, (7.6)

(
pxk

j+1 − pxk
j

hk

− λkwxk
j ,

puk
j+1 − puk

j

hk

− λkwuk
j ,

pak
j+1 − pak

j

hk

− λkwak
j ,

pxk
j+1 − λk(vxk

j + h−1
k θxk

j )

)

∈
(

0,
2

hk

(ξ1k
j + ξ2k

j )ūk
j ,0,0

)
+ N

((
x̄k
j , ūk

j , ā
k
j ,

x̄k
j+1 − x̄k

j

−hk

)
;gphF

)
(7.7)

for j = 0, . . . , k − 1 with the triples

(θxk
j , θuk

j , θak
j ) := 2

tj+1∫
tj

(
x̄k
j+1 − x̄k

j

hk

− ˙̄x(t),
ūk

j+1 − ūk
j

hk

− ˙̄u(t),
āk
j+1 − āk

j

hk

− ˙̄a(t)

)
dt (7.8)

and the subgradient collections

(wxk
j ,wuk

j ,wuk
j , vxk

j , vuk
j , vak

j ) ∈ ∂�t

(
z̄k
j ,

z̄k
j+1 − z̄k

j

hk

)
, j = 0, . . . , k − 1, (7.9)

where the sequence {εk} ↓ 0 as k → ∞ is taken from Theorem 3.1.

Proof. For simplicity we drop the upper index “k” in the notation below and consider the “long” 
vector y reflecting the collection of feasible solutions to each discrete-time problem (Pk):

y = (x0, . . . , xk, u0, . . . , uk, a0, . . . , ak,X0, . . . ,Xk−1,U0, . . . ,Uk−1,A0, . . . ,Ak−1).

We now reduce (Pk) to the following equivalent nondynamic problem of mathematical program-
ming (MP) with respect to the variable vector y, where the starting point x0 is fixed:
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minimize ϕ0[y] := ϕ(xk) + hk

k−1∑
j=0

�(xj , uj , aj ,Xj ,Uj ,Aj )

+
k−1∑
j=0

tj+1∫
tj

∥∥(Xj ,Uj ,Aj ) − ˙̄z(t)∥∥2
dt

+
∥∥∥∥∥xk

1 − xk
0

hk

− ˙̄x(0)

∥∥∥∥∥
2

+ dist2
(∥∥∥∥∥uk

1 − uk
0

hk

∥∥∥∥∥ ; (−∞, μ̃]
)

+ dist2

⎛⎝k−2∑
j=0

∥∥Uj+1 − Uj

∥∥ ; (− ∞, μ̃
]⎞⎠

subject to the finitely many equality, inequality, and geometric constraints given by

bx
j (y) := xj+1 − xj − hkXj = 0 for j = 0, . . . , k − 1,

bu
j (y) := uj+1 − uj − hkUj = 0 for j = 0, . . . , k − 1,

ba
j (y) := aj+1 − aj − hkAj = 0 for j = 0, . . . , k − 1,

ci(y) := −gi(xk − uk) ≤ 0 for i = 1, . . . ,m,

d1
j (y) := ‖uj‖2 − (r2 + εk)

2 ≤ 0 for j = 0, . . . , k,

d2
j (y) := ‖uj‖2 − (r1 − εk)

2 ≥ 0 for j = 0, . . . , k,

φj (y) := ∥∥(xj , uj , aj ) − z̄(tj )
∥∥− ε/2 ≤ 0 for j = 0, . . . , k,

φk+1(y) :=
k−1∑
j=0

tj+1∫
tj

(∥∥(Xj ,Uj ,Aj ) − ˙̄z(t)∥∥2
)

dt − ε

2
≤ 0,

φk+2(y) :=
k−2∑
j=0

∥∥Uj+1 − Uj

∥∥≤ μ̃ + 1, φk+3(y) := ‖u1 − u0‖ ≤ (μ̃ + 1)(tk1 − tk0 ),

y ∈ �j := {y| − Xj ∈ F(xj ,uj , aj )
}

for j = 0, . . . , k − 1,

y ∈ �k := {y| x0 is fixed, (u0, a0) = (ū(0), ā(0)
)}

.

Let us apply the necessary optimality conditions from [26, Theorem 5.24] to any local op-
timal solution ȳ of the finite-dimensional problem (MP) written above with taking into ac-
count that by Theorem 5.2 all the inequality constraints in (MP) relating to functions φj as 
j = 0, . . . , k + 2 are inactive for large k ∈ IN , and hence the corresponding multipliers do not 
appear in the optimality conditions. In this way we find dual elements λ ≥ 0, α = (α1, . . . , αm) ∈
R

m+, ξ1k = (ξ1k
0 , . . . , ξ1k

k ) ∈ R
k+1+ , ξ2k = (ξ2k

0 , . . . , ξ2k
k ) ∈ R

k+1− , pj = (px
j , pu

j , pa
j ) ∈ R

2n+d as 
j = 0, . . . , k, and

y∗
j = (x∗

0j , . . . , x
∗
kj , u

∗
0j , . . . , u

∗
kj , a

∗
0j , . . . , a

∗
kj ,X

∗
0j , . . . ,X

∗
(k−1)j ,U

∗
0j , . . . ,U

∗
(k−1)j ,

A∗ , . . . ,A∗ ),
0j (k−1)j
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j = 0, . . . , k, which are not zero simultaneously, satisfy the conditions in (7.5) and the inclusions

y∗
j ∈ N(ȳ;�j) for j = 0, . . . , k, (7.10)

−y∗
0 − . . . − y∗

k ∈ λ∂ϕ0(ȳ)+
m∑

i=1

αi∇ci(ȳ)+
k∑

j=0

ξ1
j ∇d1

j (ȳ)+
k∑

j=0

ξ2
j ∇d2

j (ȳ)+
k−1∑
j=0

∇bj (ȳ)∗pj+1,

(7.11)

αici(ȳ) = 0 for i = 1, . . . ,m.

It is easy to see that the validity of (7.3) follows directly from the structure of the sets �j , and 
that the inclusions in (7.10) can be equivalently rewritten as

(
x∗
jj , u

∗
jj , a

∗
jj ,−X∗

jj

)
∈ N

((
x̄k
j , ūk

j , ā
k
j ,

x̄k
j+1 − x̄k

j

−hk

)
;gphF

)
, j = 0, . . . , k, (7.12)

while every other components of y∗
j equals to zero. We conclude similarly that the only nonzero 

component of y∗
k might be (x∗

0k, u
∗
0k, a

∗
0k). This gives us the equality

−y∗
0 − y∗

1 − . . . − y∗
k = (− x∗

0k − x∗
00,−x∗

11, . . . ,−x∗
k−1,k−1,0,−u∗

0k − u∗
00, . . . ,−u∗

k−1,k−1,0,

− a∗
0k − a∗

00,−a∗
11, . . . ,−a∗

k−1,k−1,0,−X∗
00, . . . ,−X∗

k−1,k−1,0, . . . ,0
)
.

(7.13)

Next we calculate the sums on the right-hand side of (7.11). It follows from the constructions 
above that (

m∑
i=1

αi∇ci(ȳ)

)
(xk,uk,ak)

=
(

−
m∑

i=1

αi∇gi(xk − uk),

m∑
i=1

αi∇gi(xk − uk),0

)
,

⎛⎝ k∑
j=0

ξ1
j ∇d1

j (ȳ) +
k∑

j=0

ξ2
j ∇d2

j (ȳ)

⎞⎠
uj

= (2ξ1
j + 2ξ2

j )ūj for j = 0, . . . , k,

⎛⎝k−1∑
j=0

(∇bj (ȳ)
)∗

pj+1

⎞⎠
(xj ,uj ,aj )

=
⎧⎨⎩

−p1 if j = 0,

pj − pj+1 if j = 1, . . . , k − 1,

pk if j = k,⎛⎝k−1∑
j=0

(∇bj (ȳ)
)∗

pj+1

⎞⎠
(X,U,A)

= −hkp = (− hkp
x
1 , . . . ,−hkp

x
k ,−hkp

u
1 , . . . ,

− hkp
u
k ,−hkp

a
1 , . . . ,−hkp

a
k

)
,

where the subscripts on the left-hand side refer to the corresponding components of the vectors 
therein. Applying the subdifferential sum rule from [25, Theorem 2.13] yields the inclusion
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∂ϕ0(ȳ) ⊂ ∂ϕ(x̄k) + hk

k−1∑
j=0

∂�t (x̄j , ūj , āj , X̄j , Ūj , Āj ) +
k−1∑
j=0

∇ρj (ȳ) + ∂σ (ȳ)

with the real-valued functions ρj (·) and σ(·) given by

ρj (y) :=
tj+1∫
tj

∥∥(Xj ,Uj ,Aj ) − ˙̄z(t)∥∥2
dt,

σ (y) := dist2
(∥∥∥∥∥uk

1 − uk
0

hk

∥∥∥∥∥ ; (− ∞, μ̃
])+ dist2

⎛⎝k−2∑
j=0

∥∥Uj+1 − Uj

∥∥ ; (− ∞, μ̃
]⎞⎠ .

Using now the differentiability of ψ(x) := dist2(x; (−∞, ̃μ]) with the gradient ∇ψ(x) = 0
whenever x ≤ μ̃ and combining it with second condition in (5.9) tells us that ∂σ (ȳ) = {0}. Fur-
thermore, we get

∇ρj (ȳ) = ∇Xj ,Uj ,Aj
ρ(ȳ) = (θx

j , θu
j , θa

j )

for nonzero components. Putting this together shows that λ∂ϕ0(ȳ) in (7.11) is represented as

λ(hkw
x
0 , hkw

k
1, . . . , hkw

x
k−1, ϑ

k,hkw
u
0 , . . . , hkw

u
k−1,0, hkw

a
0 , . . . , hkw

a
k−1,0, θx

0 + hkv
x
0 , . . . ,

θx
k−1 + hkv

x
k−1, θ

u
0 + hkv

u
0 , . . . , θu

k−1 + hkv
u
k−1, θ

a
0 + hkv

a
0 , . . . , θa

k−1 + hkv
a
k−1)

with ϑk ∈ ∂ϕ(x̄k) and with the components of (wx, wu, wa, vx, vu, va) satisfying (7.9). Involv-
ing (7.13), we derive from (7.10) the following relationships:

−x∗
0k − x∗

00 = λhkw
x
0 − px

1 ,

−x∗
jj = λhkw

x
j + px

j − px
j+1 for j = 1, . . . , k − 1,

0 = λϑk −
m∑

i=1

αi∇xg̃i(xk, uk) + px
k ,

−u∗
0k − u∗

00 = λhkw
u
0 + (2ξ1

0 + 2ξ2
0 )ū0 − pu

1 ,

−u∗
jj = λhkw

u
j + 2(ξ1

j + ξ2
j )ūj + pu

j − pu
j+1 for j = 1, . . . , k − 1,

0 =
m∑

i=1

αi∇ug̃i(xk, uk) + pu
k + (2ξ1

k + 2ξ2
k )ūk,

−a∗
0k − a∗

00 = λhkw
a
0 − pa

1 ,

−a∗
jj = λhkw

a
j + pa

j − pa
j+1 for j = 1, . . . , k − 1,

0 = pa
k ,

−X∗ = λ(hkv
x + θx) − hkp

x for j = 0, . . . , k − 1,
jj j j j+1
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0 = λ(hkv
u
j + θu

j ) − hkp
u
j+1 for j = 0, . . . , k − 1,

0 = λ(hkv
a
j + θa

j ) − hkp
a
j+1 for j = 0, . . . , k − 1.

To complete the proof, we proceed similarly to the last part in the proof of [7, Theorem 7.1]. �
Employing the second-order calculations conducted in Section 6 allows us to derive from 

Theorem 7.1 necessary optimality conditions for each discrete control problem (Pk) expressed 
entirely via its given data. For simplicity of the formulation we assume that the perturbation 
mapping f is smooth with respect to the state variable x. The reader can proceed with the case of 
Lipschitz continuous mapping f by using well-developed calculus rules for our basic first-order 
generalized differential constructions [25].

Theorem 7.2 (Optimality conditions for discretized sweeping control problems via their original 
data). Given an optimal control z̄k = (x̄k, ūk, āk) to discrete-time problem (Pk) with any fixed 
k ∈ IN and with the sweeping velocity mapping F defined in (3.1), suppose that the functions gi

in (1.5) are of class C2 and the perturbation mapping f (·, a) is of class C1 around the optimal 
points. Then there are dual elements (λk, βk, ξ1k, ξ2k, pk) together with vectors ηk

j ∈R
m+ as j =

0, . . . , k and γ k
j ∈R

m as j = 0, . . . , k − 1 satisfying (7.3) and such that the following conditions 
hold:

NONTRIVIALITY CONDITION

λk + ‖ηk
k‖ + ‖ξ1k + ξ2k‖ +

k−1∑
j=0

‖pxk
j ‖ + ‖puk

0 ‖ + ‖pak
0 ‖ �= 0; (7.14)

PRIMAL-DUAL DYNAMIC RELATIONSHIP for all j = 0, . . . , k − 1:

x̄k
j+1 − x̄k

j

hk

+ f (x̄k
j , āk

j ) =
∑

i∈I (x̄k
j −ūk

j )

ηk
ji∇gi(x̄

k
j − ūk

j ), (7.15)

pxk
j+1 − pxk

j

hk

− λkwxk
j = ∇xf (x̄k

j , āk
j )

∗(λk(vxk
j + h−1

k θxk
j ) − pxk

j+1)

−
m∑

i=1

ηk
ji∇2gi(x̄

k
j − ūk

j )

× (λk(vxk
j + h−1

k θxk
j ) − pxk

j+1)

−
m∑

i=1

γ k
ji∇gi(x̄

k
j − ūk

j ), (7.16)

puk
j+1 − puk

j

hk

− λkwuk
j − 2

hk

(ξ1k
j + ξ2k

j )ūk
j =

m∑
i=1

ηk
ji∇2gi(x̄

k
j − ūk

j )(λ
k(vxk

j + h−1
k θxk

j ) − pxk
j+1)

+
m∑

γ k
ji∇gi(x̄

k
j − ūk

j ), (7.17)

i=1
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pak
j+1 − pak

j

hk

− λkwak
j = ∇af (x̄k

j , āk
j )

∗(λk(vxk
j + h−1

k θxk
j ) − pxk

j+1), (7.18)

where (wxk
j , wuk

j , wak
j , vxk

j , vuk
j , vak

j ) are taken from (7.9) while the active constraint index set 

I (·) and the triples θxk
j , θuk

j , θak
j are defined in (3.3) and (7.8), respectively;

TRANSVERSALITY CONDITIONS⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−pxk

k ∈ λk∂ϕ(x̄k
k ) −

m∑
i=1

ηk
ki∇gi(x̄

k
k − ūk

k),

puk
k = −

m∑
i=1

ηk
ki∇gi(x̄

k
k − ūk

k) − 2(ξ1k
k + ξ2k

k )ūk
k, pak

k = 0

(7.19)

with dual vectors ξ1k
k and ξ2k

k satisfying the inclusions

ξ1k
k ∈ N[0,r2+εk](‖ūk

k‖), ξ2k
k ∈ N[r1−εk,∞)(‖ūk

k‖); (7.20)

COMPLEMENTARITY SLACKNESS CONDITIONS

[gi(x̄
k
j − ūk

j ) > 0] =⇒ ηk
ji = 0, (7.21){

[i ∈ I1(−pxk
j+1 + λk(h−1

k θxk
j + vxk

j ))], i.e., [gi(x̄
k
j − ūk

j ) > 0 or

ηk
ji = 0, 〈∇gi(x̄

k
j − ūk

j ),−pxk
j+1 + λk(h−1

k θxk
j + vxk

j )〉 > 0] =⇒ [γ k
ji = 0], (7.22){

[i ∈ I2(−pxk
j+1 + λk(h−1

k θxk
j + vxk

j ))], i.e., [gi(x̄
k
j − ūk

j ) = 0, ηk
ji = 0, and

〈∇gi(x̄
k
j − ūk

j ),−pxk
j+1 + λk(h−1

k θxk
j + vxk

j )〉 < 0] =⇒ [γ k
ji ≥ 0] (7.23)

for j = 0, . . . , k − 1 and i = 1, . . . , m, where the index subsets I1(·) and I2(·) are taken from 
(6.6), in addition to (7.3) together with the implications

[gi(x̄
k
j − ūk

j ) > 0] =⇒ γ k
ji = 0 for j = 0, . . . , k − 1 and i = 1, . . . ,m, (7.24)

[gi(x̄
k
k − ūk

k) > 0] =⇒ ηk
ki = 0 for i = 1, . . . ,m, and (7.25)

ηk
ji > 0 =⇒ [〈∇gi(x̄

k
j − ūk

j ),−pxk
j+1 + λk(h−1

k θxk
j + vxk

j )〉 = 0]. (7.26)

Furthermore, assuming the surjectivity of the Jacobian matrix {∇g(x̄k
j − ūk

j )} ensures the validity 
of the ENHANCED NONTRIVIALITY CONDITION

λk + ‖ξ1k + ξ2k‖ + ‖puk
0 ‖ �= 0. (7.27)

Proof. It follows from (7.7) and the coderivative definition (6.1) that(
pxk

j+1 − pxk
j

hk

− λkwxk
j ,

puk
j+1 − puk

j

hk

− λkwuk
j − 2

hk

(ξ1k
j + ξ2k

j )ūk
j ,

pak
j+1 − pak

j

hk

− λkwak
j

)

∈ D∗F
(

x̄k
j , ūk

j , ā
k
j ,

x̄k
j+1 − x̄k

j

−hk

)
(λk(h−1

k θxk
j + vxk

j ) − pxk
j+1), j = 0, . . . , k − 1. (7.28)
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By 
x̄k
j+1 − x̄k

j

−hk

− f (x̄k
j , āk

j ) ∈ N(x̄k
j − ūk

j ; C) for j = 0, . . . , k − 1 and the representation of F in 

(3.2), we find vectors ηk
j ∈ R

m+, j = 0, . . . , k − 1, such that the conditions in (7.15) and (7.21) are 

satisfied. Employing the second-order upper estimate from Theorem 6.2 with x := x̄k
j , u := ūk

j , 

a := āk
j , w := x̄k

j+1 − x̄k
j

−hk

, and y := λk(h−1
k θxk

j + vxk
j ) − pxk

j+1 and combining it with (6.8) give 

us γ k
j ∈R

m for which

(
pxk

j+1 − pxk
j

hk

− λkwxk
j ,

puk
j+1 − puk

j

hk

− λkwuk
j − 2

hk

(ξ1k
j + ξ2k

k )ūk
j ,

pak
j+1 − pak

j

hk

− λkwak
j

)
=
(

∇xf (x̄k
j , āk

j )
∗(λk(vxk

j + h−1
k θxk

j ) − pxk
j+1)

−
m∑

i=1

ηk
ji∇2gi(x̄

k
j − ūk

j )(λ
k(vxk

j + h−1
k θxk

j ) − pxk
j+1)

−
m∑

i=1

γ k
ji∇gi(x̄

k
j − ūk

j ),

m∑
i=1

ηk
ji∇2gi(x̄

k
j − ūk

j )(λ
k(vxk

j + h−1
k θxk

j ) − pxk
j+1)

+
m∑

i=1

γ k
ji∇gi(x̄

k
j − ūk

j ),∇af (x̄k
j , āk

j )
∗(λk(vxk

j + h−1
k θxk

j ) − pxk
j+1)

)
, j = 0, . . . , k − 1.

This yields the validity of all the conditions in (7.16), (7.17), (7.18), (7.22), and (7.23). Put ηk
k :=

αk with αk taken from the statement of Theorem 7.1 and observe that ηk
j ∈R

m+ for j = 0, . . . , k. In 
this way we deduce the nontriviality condition (7.14) from (7.1) and the transversality conditions 
(7.19) from (7.5). Furthermore, (7.25) follows immediately from (7.2) and the definition of ηk

k , 
while (7.28) yields

λk(h−1
k θxk

j + vxk
j ) − pxk

j+1 ∈ domD∗NC

(
x̄k
j − ūk

j ,
x̄k
j+1 − x̄k

j

−hk

− f (x̄k
j , āk

j )

)
.

This implies by (6.8) that (7.26) holds. Inclusions (7.20) follow from (7.3) and (7.4).
To complete the proof of the theorem, it remains to justify the enhanced nontriviality condition 

(7.27) under the surjectivity of the Jacobians {∇g(x̄k
j − ūk

j )}. Arguing by contradiction, suppose 

that (7.27) fails, i.e., λk = 0, ξ1k + ξ2k = 0, and puk
0 = 0. Then it follows from (7.6) that puk

j = 0

for j = 0, . . . , k and pak
j = 0 for j = 1, . . . , k. Employing the second condition in (7.19) with 

puk
k = 0 tells us that 

m∑
i=1

ηk
ki∇gi(x̄

k
k − ūk

k) = 0, and so pxk
k = 0 by the first condition therein. We 

also get from (7.17) that

m∑
i=1

ηk
ji∇2gi(x̄

k
j − ūk

j )(λ
k(vxk

j + h−1
k θxk

j ) − pxk
j+1) +

m∑
i=1

γ k
ji∇gi(x̄

k
j − ūk

j ) = 0,

j = 0, . . . , k − 1.



T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050 1031
Using this together with (7.16) and pxk
k = 0 shows that pxk

j = 0 for all j = 0, . . . , k − 1. Finally, 

it follows from (7.18) that pak
0 = 0, which contradicts the validity of (7.14) and thus verifies 

(7.27). �
8. Necessary conditions for sweeping optimal solutions

This section is the culmination of the paper. Given an arbitrary relaxed intermediate local 
minimizer z̄(·) of the sweeping optimal control problem (P ) and using the discrete approxi-
mation method, we derive verifiable necessary optimality conditions for z̄(·), which expressed 
entirely via the problem data, by combining the strong convergence of discrete optimal solutions 
to z̄(·) established in Section 5 and the necessary optimality conditions in discrete approxima-
tions taken from Section 7 with a rather involved technique to justify a proper convergence of the 
adjoint trajectories from Theorem 7.2. The latter technique developed here is heavily based on 
the underlying properties of our basic generalized differential constructions and the second-order 
calculations of Section 6. As discussed in Section 4, no relaxation is needed if z̄(·) is a strong
local minimizer of (P ) and either controls are located only in perturbations, or the set C in (1.5)
is convex in addition to the standing assumptions formulated in Section 2.

We now add to the standing assumptions the one on time dependence of the basic subdif-
ferential ∂� of the running cost in (1.6) taken below with respect to all but t variables. It is well 
known that the subdifferential mapping (6.2) is robust (which reduces to the graph-closedness for 
continuous functions) with respect to the variables of subdifferentiation. We suppose that this ro-
bustness property keeps holding when the time parameter is involved into the limiting procedure. 
Precisely it amounts to saying that

∂�
(
t, z̄(t), ˙̄z(t))= Lim sup

(τ,u,v)
�→(t,z(t),ż(t))

∂�(τ,u, v) a.e. t ∈ [0, T ]

around the given local optimal solution to (P ), where “Lim sup” stands for the Painlevé–
Kuratowski outer/upper limit [33]. This assumption is not restrictive and is satisfied, in particular, 
for smooth functions with time-continuous derivatives as well as in broad nonsmooth settings; 
see [24,26].

Theorem 8.1 (Optimality conditions for the nonconvex sweeping process). Given an r.i.l.m. 
z̄(·) = (x̄(·), ū(·), ā(·)) for problem (P ), suppose in addition to the standing assumptions and 
those in Theorem 3.1 that � is continuous in t a.e. on [0, T ] and is represented as

�(t, z, ż) = �1(t, z, ẋ) + �2(t, u̇) + �3(t, ȧ) (8.1)

where the local Lipschitz constants of �1(t, ·, ·) and �3(t, ·) are essentially bounded on [0, T ] and 
continuous at a.e. t ∈ [0, T ] including t = 0, and where �2 is differentiable in u̇ on Rn with the 
estimates

‖∇u̇�2(t, u̇, ȧ)‖ ≤ L‖u̇‖ and ‖∇u̇�2(t, u̇1) − ∇u̇�2(s, u̇2)‖ ≤ L|t − s| + L‖u̇1 − u̇2‖ (8.2)

holding for all t, s ∈ [0, T ], ȧ ∈ R
d , and u̇, u̇1, u̇2 ∈ R

n with some uniform constant L > 0. 
Then there are λ ≥ 0, p(·) = (px(·), pu(·), pa(·)) ∈ W 1,2([0, T ]; Rn × R

n × R
d), w(·) =
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(wx(·), wu(·), wa(·)) ∈ L2([0, T ]; R2n+d), and v(·) = (vx(·), vu(·), va(·)) ∈ L2([0, T ]; R2n+d)

satisfying (
w(t), v(t)

) ∈ co ∂�
(
t, z̄(t), ˙̄z(t)) a.e. t ∈ [0, T ] (8.3)

as well as measures γ = (γ1, . . . , γn) ∈ C([0, T ]; Rn)∗, ξ1 ∈ C([0, T ]; R+)∗, and ξ2 ∈
C([0, T ]; R−)∗ on [0, T ] such that the following conditions hold:

• PRIMAL-DUAL DYNAMIC RELATIONSHIPS:

˙̄x(t) + f
(
x̄(t), ā(t)

)= m∑
i=1

ηi(t)∇gi

(
x̄(t) − ū(t)

)
for a.e. t ∈ [0, T ] (8.4)

with ηi(·) ∈ L2([0, T ]; R+) a.e. uniquely determined by representation (8.4) and well defined at 
t = T ;

ṗ(t) = λw(t) + (∇xf (x̄(t), ā(t))∗(λvx(t) − qx(t)),0,∇af (x̄(t), ā(t))∗(λvx(t) − qx(t))
)
,

(8.5)

qu(t) = λ∇u̇�
(
t, ˙̄u(t)

)
, qa(t) ∈ λ∂ȧ�3

(
t, ˙̄a(t)

)
a.e. t ∈ [0, T ], (8.6)

where q = (qx, qu, qa) : [0, T ] → R
n ×R

n ×R
d is a vector function of bounded variation, and 

its left-continuous representative is given for all t ∈ [0, T ], except at most a countable subset, by

q(t) := p(t) −
∫

[t,T ]

(
−dγ (s),2ū(s)d(ξ1(s) + ξ2(s)) + dγ (s),0

)
. (8.7)

Furthermore, for a.e. t ∈ [0, T ] including t = T and for all i = 1, . . . , m we have

gi

(
x̄(t)− ū(t)

)
> 0 =⇒ ηi(t) = 0, ηi(t) > 0 =⇒ 〈∇gi

(
x̄(t)− ū(t), λvx(t)−qx(t))

〉= 0. (8.8)

• TRANSVERSALITY CONDITIONS⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−px(T ) +
∑

i∈I (x̄(T )−ū(T ))

ηi(T )∇gi

(
x̄(T ) − ū(T )

) ∈ λ∂ϕ
(
x̄(T )

)
, pa(T ) = 0,

pu(T ) −
∑

i∈I (x̄(T )−ū(T ))

ηi(T )∇gi(x̄(T ) − ū(T ))

∈ −2ū(T )
(
N[0,r2](‖ū(T )‖) + N[r1,∞)(‖ū(T )‖))

(8.9)

with the validity of the inclusion

−
∑

i∈I (x̄(T )−ū(T ))

ηi(T )∇gi

(
x̄(T ) − ū(T )

) ∈ NC

(
x̄(T ) − ū(T )

)
. (8.10)

• MEASURE NONATOMICITY CONDITIONS:
(a) Take t ∈ [0, T ] with gi(x̄(t) − ū(t)) > 0 whenever i = 1, . . . , m. Then there is a neighbor-

hood Vt of t in [0, T ] such that γ (V ) = 0 for all the Borel subsets V of Vt .
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(b) Take t ∈ [0, T ] with r1 < ‖ū(t)‖ < r2. Then there is a neighborhood Wt of t in [0, T ] such 
that ξ1(W) = 0 and ξ2(W) = 0 for all the Borel subsets W of Wt .

• NONTRIVIALITY CONDITIONS: We always have:

λ + ‖qu(0)‖ + ‖p(T )‖ + ‖ξ1‖T V + ‖ξ2‖T V > 0. (8.11)

Furthermore, the following implications hold while ensuring the ENHANCED NONTRIVIALITY:[
gi

(
x0 − ū(0)

)
> 0, i = 1, . . . ,m

]=⇒ [
λ + ‖p(T )‖ + ‖ξ1‖T V + ‖ξ2‖T V > 0

]
, (8.12)[

gi

(
x̄(T ) − ū(T )

)
> 0, r1 < ‖ū(T )‖ < r2, i = 1, . . . ,m

]
=⇒ [

λ + ‖qu(0)‖ + ‖ξ1‖T V + ‖ξ2‖T V > 0
]
, (8.13)

where ‖ξ‖T V stands for the measure ξ total variation on [0, T ].

Proof. We split the proof into the following major steps in accordance to the statement of the 
theorem.

Step 1: Subgradients of the running cost. To verify the subdifferential inclusion (8.3), 
take the subgradient sequence {wk

j , v
k
j } from Theorem 7.2 and consider the piecewise con-

stant extensions wk, vk : [0, T ] → R
2n+d . It follows from (7.9) therein. The imposed as-

sumptions and the structure of � in (8.1) with estimates (8.2) ensure that the subgradient 
sets ∂�(t, ·) are uniformly L2-bounded near z̄(·), and hence the sequence {(wk(·), vk(·))} is 
weakly compact in L2([0, T ]; R2(2n+d)) := L2[0, T ]. Without relabeling we get the weak con-
vergence (wk(·), vk(·)) → (w(·), v(·)) ∈ L2[0, T ] and thus, by Mazur’s theorem, the strong 
L2-convergence to (w(·), v(·)) of a sequence of convex combinations of (wk(·), vk(·)); that is, 
the a.e. convergence on [0, T ] to the above limiting pair of some subsequence of the latter. This 
readily verifies (8.3) by taking into account the assumed a.e. continuity of � in t and the robust-
ness of its subdifferential.

Step 2: Verification of the primal dynamic limiting relationships. We claim two of them: the 
differential equation (8.4) and the first implication in (8.8). We proceed by passing to the limit in 
(7.15), (7.26) and first construct the piecewise constant functions on [0, T ] by

θk(t) := θk
j

hk

as t ∈ [tkj , tkj+1), j = 0, . . . , k − 1, k ∈ IN,

where θk
j are taken from (7.8). It follows from Theorem 7.2 that

T∫
0

‖θxk(t)‖2dt =
k−1∑
j=0

‖θxk
j ‖2

hk

≤ 4

hk

k−1∑
j=0

( tkj+1∫
tkj

∥∥∥ ˙̄x(t) − x̄k
j+1 − x̄k

j

hk

∥∥∥dt

)2

≤ 4
k−1∑
j=0

( tkj+1∫
tk

∥∥∥∥∥ ˙̄x(t) − x̄k
j+1 − x̄k

j

hk

∥∥∥∥∥
2)

dt = 4

T∫
0

∥∥∥ ˙̄x(t) − ˙̄xk(t)

∥∥∥2
dt → 0

(8.14)
j
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as k → ∞ with the same conclusion for θuk(·) and θak(·). Thus some subsequences of these 
functions converge to zero a.e. on [0, T ]. Invoking further the vectors ηk

j ∈ R
m+ from Theorem 7.2, 

define the piecewise constant functions ηk(·) on [0, T ] by ηk(t) := ηk
j as t ∈ [tkj , tkj+1) with 

ηk(T ) := ηk
k and deduce from (7.15) for each k ∈ IN we have the relationships

˙̄xk(t) + f
(
x̄k(t), āk(t)

)= m∑
i=1

ηk
i (t)∇gi

(
x̄k(t) − ūk(t)

)
if t ∈ (tkj , tkj+1). (8.15)

The feasibility of z̄(·) in (P ) tells us that − ˙̄x(t) ∈ NC(x̄(t) − ū(t)) + f (x̄(t), ā(t)) for a.e. 
t ∈ [0, T ], where the closed-valued normal cone mapping NC(·) is measurable by [33, Theo-
rem 14.26]. The classical measurable selection result (see, e.g., [33, Corollary 14.6]) gives us 
nonnegative measurable functions ηi(·) on [0, T ] as i = 1, . . . , m for which the differential equa-
tion (8.4) and the first implication in (8.8) are satisfied. Then invoking (8.15) and (8.4) yields the 
equalities

˙̄x(t) − ˙̄xk(t) + f
(
x̄(t), ā(t)

)− f
(
x̄k(t), āk(t)

)
=

m∑
i=1

[
ηi(t)∇gi

(
x̄(t) − ū(t)

)− ηk
i (t)∇gi

(
x̄k(t) − ūk(t)

)]

whenever t ∈ (tkj , tkj+1) and j = 0, . . . , k − 1, which imply the estimate

∥∥∥ m∑
i=1

[
ηi(t)∇gi

(
x̄(t) − ū(t)

)− ηk
i (t)∇gi

(
x̄k(t) − ūk(t)

)]∥∥∥
≤ ∥∥ ˙̄x(t) − ˙̄xk(t)

∥∥+ ∥∥f (x̄(t), ā(t)
)− f

(
x̄k(t), āk(t)

)∥∥
on (tkj , tkj+1). Passing to the limit as k → ∞ in this estimate with replacing tkj by

νk(t) := max
{
tkj

∣∣ tkj ≤ t, 0 ≤ j ≤ k
}
, t ∈ [0, T ], (8.16)

and taking into account that I (x̄k(·) − ūk(·)) ⊂ I (x̄(·) − ū(·)) for k ∈ IN sufficiently large and 
that the sequence {z̄k(·)} converges to x̄(·) strongly in W 1,2([0, T ]), we get

∑
i∈I (x̄(t)−ū(t))

[
ηi(t)∇gi

(
x̄(t) − ū(t)

)− ηk
i (t)∇gi

(
x̄k(t) − ūk(t)

)]→ 0 a.e. t ∈ [0, T ].

Observe also that ηk(·) → η(·) a.e. on [0, T ] by (2.5) and (2.6). Postponing till Step 5 the verifica-
tion of the claim that the sequence {ηk

k} converges to the well-defined vector (η1(T ), . . . , ηm(T )), 
we check now that η(·) ∈ L2([0, T ]; Rm+). In fact, it follows from the estimates
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ηi(t) ≤ 1

M1
ηi(t)

∥∥∇gi

(
x̄(t) − ū(t)

)∥∥≤ 1

M1

∑
i∈I (x̄(t)−ū(t))

ηi(t)
∥∥∇gi

(
x̄(t) − ū(t)

)∥∥
≤ β

M1

∥∥∥ ∑
i∈I (x̄(t)−ū(t))

ηi(t)∇gi

(
x̄(t) − ū(t)

)∥∥∥
≤ β

M1
‖ ˙̄x(t)‖ + β

M1

∥∥f (x̄(t), ā(t)
)∥∥

valid for a.e. t ∈ [0, T ] and all i = 1, . . . , m, which are consequences of (8.4), (2.5), and (2.6). 
The uniqueness of η(t) a.e. on [0, T ] follows from the positive linear independence of the gradi-
ents ∇gi(x) on C, which is a consequence of the standing assumptions in Section 2.

Step 3: Constructions of approximating dual elements on [0, T ]. The next step is to extend 
the discrete dual elements from Theorem 7.2 on the continuous-time interval [0, T ] in the way 
appropriate for the subsequent limiting procedure. Define qk(t) = (qxk(t), quk(t), qak(t)) on 
[0, T ] as the piecewise linear extensions of qk(tkj ) := pk

j when j = 0, . . . , k. Then construct 

γ k(t) on [0, T ] by

γ k(t) := γ k
j for t ∈ [tkj , tkj+1), j = 0, . . . , k − 1, with γ k(tkk ) := 0

and define further ξ1k(t) := ξ1k
j

hk

, ξ2k(t) := ξ2k
j

hk

for t ∈ [tkj , tkj+1) and j = 0, . . . , k − 1 with 

ξ1k(tkk ) := ξ2k
k and ξ1k(tkk ) := ξ2k

k . It follows from the relationships in (7.16)–(7.18) with νk(t)

given in (8.16) that

q̇xk(t) − λkwxk(t)

= ∇xf
(
x̄k(νk(t)), āk(νk(t))

)∗(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
−

m∑
i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
−

m∑
i=1

γ k
i (t)∇gi

(
x̄k(νk(t)) − ūk(νk(t))

)
,

q̇uk(t) − λkwuk(t)

=
m∑

i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
+

m∑
i=1

γ k
i (t)∇gi

(
x̄k(νk(t)) − ūk(νk(t))

)+ 2
(
ξ1k(t) + ξ2k(t)

)
ūk(νk(t)

)
,

q̇ak(t) − λkwak(t) = ∇af
(
x̄k(νk(t)), āk(νk(t))

)∗(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
for t ∈ (tkj , tkj+1) and j = 0, . . . , k −1. The next triple is pk(t) = (pxk(t), puk(t), pak(t)) defined 
by
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pk(t) := qk(t) +
∫

[t,T ]

(
−

m∑
i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)

− qxk
(
νk(t) + hk)

)− m∑
i=1

γ k
i (s)∇gi

(
x̄k(νk(s)) − ūk(νk(s))

)
,

m∑
i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)) − qxk(νk(t) + hk))

+
m∑

i=1

γ k
i (t)∇gi(x̄

k(νk(t)) − ūk(νk(t))) + 2
(
ξ1k(t) + ξ2k(t)

)
ūk
(
νk(t)

)
,0

)
ds

for all t ∈ [0, T ]. We clearly have pk(T ) = qk(T ) together with the differential condition

ṗk(t) = q̇k(t) −
(

−
m∑

i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)
− qxk

(
νk(t) + hk)

)− m∑
i=1

γ k
i (t)∇gi

(
x̄k(νk(t)) − ūk(νk(t))

)
,

m∑
i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
+

m∑
i=1

γ k
i (t)∇gi

(
x̄k(νk(t)) − ūk(νk(t))

)+ 2
(
ξ1k(t) + ξ2k(t)

)
ūk
(
νk(t)

)
,0

)
valid for a.e. t ∈ [0, T ]. It follows from the relationships above that

ṗxk(t) − λkwxk(t) = ∇xf
(
x̄k(νk(t)), āk(νk(t))

)∗(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
,

(8.17)

ṗuk(t) − λkwuk(t) = 0, (8.18)

ṗak(t) − λkwak(t) = ∇af
(
x̄k(νk(t)), āk(νk(t))

)∗(
λk(vxk(t) + θxk(t)

)− qxk
(
νk(t) + hk)

)
,

(8.19)

for every t ∈ (tkj , tkj+1), j = 0, . . . , k − 1. Now we get the measures γ k , ξ1k , and ξ2k on [0, T ]
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
A

dγ k :=
∫
A

( m∑
i=1

ηk
i (t)∇2gi

(
x̄k(νk(t)) − ūk(νk(t))

)(
λk(vxk(t) + θxk(t)

)
− qxk

(
νk(t) + hk)

))
dt +

∫
A

( m∑
i=1

γ k
i (t)∇gi

(
x̄k(νk(t)) − ūk(νk(t))

))
dt,∫

dξ1k(t)dt :=
∫

ξ1k(t)dt,

∫
dξ2k(t)dt :=

∫
ξ2k(t)dt

(8.20)
A A A A
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for any Borel subset A ⊂ [0, T ]. Finally in the step, we employ the standard normalization pro-
cedure to equivalently rewrite the nontriviality condition (7.27) in the form

λk +
∥∥∥pk(T )

∥∥∥+
∥∥∥quk(0)

∥∥∥+
T∫

0

∣∣∣ξ1k(t)

∣∣∣dt +
T∫

0

∣∣∣ξ2k(t)

∣∣∣dt + |ξ1k
k | + |ξ2k

k | = 1, k ∈ IN. (8.21)

Step 4: Verifying the dual dynamic conditions. By (8.21) we get λk → λ ≥ 0 along a subse-
quence. To verity next that {quk(·)} is of uniformly bounded variations on [0, T ], observe by 
(7.6) that

k−1∑
j=0

‖quk(tj+1) − quk(tj )‖

=
k−1∑
j=0

‖puk
j+1 − puk

j ‖ ≤
k−1∑
j=1

‖puk
j+1 − puk

j ‖ + ‖puk
1 ‖ + ‖puk

0 ‖

≤ λk
k−1∑
j=1

∥∥∥∥∥θuk
j − θuk

j−1

hk

∥∥∥∥∥+ λk ‖θuk
0 ‖
hk

+ λk
k−1∑
j=1

‖vuk
j − vuk

j−1‖ + λk‖vuk
0 ‖ + ‖puk

0 ‖

≤ 2λk

k−1∑
j=1

∥∥∥∥∥ ūk
j+1 − 2ūk

j + ūk
j−1

hk

∥∥∥∥∥+ 2λk

k−1∑
j=1

∥∥∥∥∥ ūk(tkj+1) − 2ūk(tkj ) + ūk(tkj−1)

hk

∥∥∥∥∥
+ λk ‖θuk

0 ‖
hk

+ λk

k−1∑
j=1

‖vuk
j − vuk

j−1‖ + λk‖vuk
0 ‖ + ‖puk

0 ‖

≤ 4μ̃λk + λk ‖θuk
0 ‖
hk

+ λk

k−1∑
j=1

‖vuk
j − vuk

j−1‖ + λk‖vuk
0 ‖ + ‖puk

0 ‖

with μ̃ taken from Theorem 3.1. The differentiability of �2 in (8.1) with respect to u̇ yields

vuk
j = ∇u̇�2

(
tj ,

ūk
j+1 − ūk

j

hk

,
āk
j+1 − āk

j

hk

)
for j = 0, . . . , k − 1.

Then the third estimate above ensures that

λk

k−1∑
j=1

‖vuk
j − vuk

j−1‖ ≤ λk

k−1∑
j−1

L

(
tkj+1 − tkj +

∥∥∥∥∥ ūk
j+1 − 2ūk

j + ūk
j−1

hk

∥∥∥∥∥
)

≤ λkL(T + μ̃),

which in turn yields by the construction of θuk in (7.8) the relationships

θuk
0 = 2(ūk

1 − ūk
0) − 2(ū(hk) − ū(0))

and λk ‖θuk
0 ‖ ≤ 2λk(μ + μ̃)
hk hk hk hk
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due to the first estimate in (5.9). Furthermore

‖vuk
0 ‖ =

∥∥∥∥∥∇u̇�2

(
0,

ūk
1 − ūk

0

hk

,
āk

1 − āk
0

hk

)∥∥∥∥∥≤ L‖ ūk
1 − ūk

0

hk

‖ ≤ Lμ̃

due to the first estimate in (8.2). This tells us that

k−1∑
j=0

‖quk(tj+1) − quk(tj )‖ =
k−1∑
j=0

‖puk
j+1 − puk

j ‖

≤ 4μ̃λk + 2λk(μ + μ̃) + λkL(T + μ̃) + λkLμ̃ + ‖puk
0 ‖

= λk(2μ + 6μ̃ + LT + Lμ̃) + ‖puk
0 ‖

(8.22)

and verifies therefore the uniform bounded variations of the sequence {quk(·)} on [0, T ].
Our next goal is to prove the boundedness of {(pxk

0 , . . . , pxk
k )}. It follows from (7.16) and 

(7.17) that

pxk
j+1 − pxk

j = hkλ
k(wxk

j + wuk
j ) + 2(ξ1k

j + ξ2k
j )ūk

j

+ hk∇xf (x̄k
j , āk

j )
∗(λk(vxk

j + h−1
k θxk

j ) − pxk
j+1) − (puk

j+1 − puk
j ), (8.23)

and readily implies the estimates

‖pxk
j ‖ ≤ (1 + hk‖∇xf (x̄k

j , āk
j )‖)‖pxk

j+1‖ + hkλ
k(‖wxk

j ‖ + ‖wuk
j ‖) + 2r2(ξ

1k
j + ξ2k

j )

+ ‖∇xf (x̄k
j , āk

j )‖ · ‖hkv
xk
j ‖ + hk‖∇xf (x̄k

j , āk
j )‖λk‖θxk(tj )‖ + ‖puk

j+1 − puk
j ‖

(8.24)

valid for all j = 0, . . . , k − 1. Denoting further

Ak
j := hkλ

k
(‖wxk

j ‖ + ‖wuk
j ‖)+ 2r2(ξ

1k
j + ξ2k

j ) + ‖∇xf (x̄k
j , āk

j )‖ · ‖hkv
xk
j ‖

+ hk‖∇xf (x̄k
j , āk

j )‖λk‖θxk(tj )‖ + ‖puk
j+1 − puk

j ‖

and selecting a M̃1 such that ‖∇xf (x̄k
j , āk

j )‖ ≤ M̃1 for all j = 0, . . . , k − 1 and k ∈ IN , we have 
by (8.21)

k−1∑
j=0

hk

∥∥∥∇xf (x̄k
j , āk

j )

∥∥∥λk
∥∥∥θxk(tj )

∥∥∥≤ λkM̃1

k−1∑
j=0

√√√√√√hk

tj+1∫
tj

∥∥θxk(t)
∥∥2

dt

≤ λkM̃1

√√√√√ T∫ ∥∥θxk(t)
∥∥2

dt ↓ 0 as k → ∞.
0



T.H. Cao, B.S. Mordukhovich / J. Differential Equations 266 (2019) 1003–1050 1039
The structure (8.1) of the running cost in (1.6) and the imposed assumptions on its Lipschitz 
constant L(t) yield by (8.3) the relationships

k−1∑
j=0

∥∥∥hkw
xk
j

∥∥∥=
k−1∑
j=0

hk

∥∥∥wxk(tj )

∥∥∥≤
k−1∑
j=0

L(tj )hk ≤ 2

T∫
0

L(t)dt := L̃ < ∞,

which ensure furthermore that 
k−1∑
j=0

∥∥∥hkw
uk
j

∥∥∥≤ L̃ and 
k−1∑
j=0

∥∥∥hkv
xk
j

∥∥∥≤ L̃. We also have

k−1∑
i=0

|ξ1k
j + ξ2k

j | =
T∫

0

|ξ1k(t) + ξ2k(t)|dt ≤ 1.

As follows from the above arguments, the boundedness of {‖∇xf (x̄k
j , āk

j )‖} with the usage of 
(8.22) that

k−1∑
j=0

Ak
j ≤ M̃2 (8.25)

for some constant M̃2 > 0. Combining it with (8.24) gives us the estimates

‖pxk
j ‖ ≤ (1 + M̃1hk)‖pxk

j+1‖ + Ak
j for all j = 0, . . . , k − 1.

Proceeding now by induction shows that

‖pxk
j ‖ ≤ (1 + M̃1hk)

k−j‖pxk
k ‖ +

k−1∑
i=j

Ak
i (1 + M̃1hk)

i−j

≤ eM̃1 + eM̃1

k−1∑
i=0

Ak
i ≤ eM̃1(1 + M̃2)

for j = 0, . . . , k − 1, which justifies the boundedness of {(pxk
0 , . . . , pxk

k )}.
Next we show that the functional sequences {qxk(·)} and {qak(·)} are of uniform bounded 

variations on [0, T ]. It follows from (8.23) that

k−1∑
j=0

∥∥∥qxk(tj+1) − qxk(tj )

∥∥∥=
k−1∑
j=0

∥∥∥pxk
j+1 − pxk

j

∥∥∥≤
k−1∑
j=0

Ak
j +

k−1∑
j=0

hk

∥∥∥∇xf (x̄k
j , āk

j )

∥∥∥∥∥∥pxk
j+1

∥∥∥ ,

which verifies the claimed property for {qxk(·)} due to (8.25) and the boundedness of 
{(pxk, . . . , pxk)}. Furthermore, (7.18) leads us to the estimate
0 k
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k−1∑
j=0

∥∥∥qak(tj+1) − qak(tj )

∥∥∥
≤ hk

k−1∑
j=0

∥∥∥λkwak
j

∥∥∥+ hk

k−1∑
j=0

∥∥∥∇af (x̄k
j , āk

j )

∥∥∥(λk
(∥∥∥vxk

j

∥∥∥+
∥∥∥θxk(tkj )

∥∥∥)+
∥∥∥pxk

j+1

∥∥∥) ,

which ensures the uniform bounded variations of {qak(·)} and hence of the whole sequence of 
triples {qk(·)}. We clearly get the validity of

2
∥∥∥qk(t)

∥∥∥−
∥∥∥qk(0)

∥∥∥−
∥∥∥qk(T )

∥∥∥≤
∥∥∥qk(t) − qk(0)

∥∥∥+
∥∥∥qk(T ) − qk(t)

∥∥∥≤ var
(
qk; [0, T ]

)
whenever t ∈ [0, T ]. Hence {qk(·)} is bounded on [0, T ] due to the boundedness of {qk(0)} and 
{qk(T )}. The classical Helly theorem provides a function of bounded variation q(·) such that 
qk(t) → q(t) for all t ∈ [0, T ]. It follows from (8.21) that the sequences {ξ1k} and {ξ2k} are 
bounded in C([0, T ]; R+)∗ and C([0, T ]; R−)∗, respectively. It allows us to get the bounded-
ness of {γ k} in C([0, T ]; Rn)∗ from (7.17) and the uniform bounded variations of {quk(·)} on 
[0, T ]. We derive from the weak∗ sequential compactness of balls in these spaces that there 
are γ ∈ C([0, T ]; Rn)∗, ξ1 ∈ C([0, T ]; R+)∗, and ξ2 ∈ C([0, T ]; R−)∗ such that the triples 
(γ k, ξ1k, ξ2k) weak∗ converge to (γ, ξ1, ξ2) along some subsequence.

Using (8.17)–(8.19) and (8.21) together with the uniform boundedness of qk(·), wk(·), and 
vk(·) on [0, T ] ensures the boundedness of the sequence {pk(·)} in W 1,2([0, T ]; R3n) and hence 
its weak compact in this space. By Mazur’s theorem we find a function p(·) ∈ W 1,2([0, T ]; R3n)

such that a sequence of convex combinations of ṗk(t) converges to ṗ(t) for a.e. t ∈ [0, T ]. Then 
the passage to the limit in (8.17)–(8.19) justifies the claimed representation of ṗ(·) in (8.5).

Our next aim is to derive the optimality conditions of the theorem that involve the dual arc 
q(·) of bounded variation on [0, T ]. Observe that the condition ηi(t) > 0 for some t ∈ [0, T ] and 
i ∈ {1, . . . , m} yields ηk

i (t) > 0 for large k by the a.e. convergence ηk
i (·) → ηi(·) on [0, T ]. This 

implies by (7.26) that

〈∇gi

(
xk(t) − uk(t)

)
,−qxk

(
ν(t) + hk

)+ λk
(
θxk(t) + vxk(t)

)〉= 0

for such k and t , and hence we get by passing to the limit that

〈∇gi

(
x̄(t) − ū(t)

)
, λvx(t) − qx(t)

〉= 0,

which verifies the second implication in (8.8). By the construction of qk(·) we get

quk
(
ν(t) + hk

)= λk
(
vuk(t) + θuk(t)

)
and qak

(
ν(t) + hk

)= λk
(
vak(t) + θak(t)

)
(8.26)

whenever t ∈ (tkj , tkj+1) and j = 0, . . . , k − 1. Involving (8.3) and the assumptions on �2, �3 in 
(8.1) gives us both conditions in (8.6) by passing to the limit in (8.26). Proceeding similarly to 
[38, p. 325] yields
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∥∥∥∥ ∫
[t,T ]

( m∑
i=1

ηk
i (s)∇2gi

(
x̄k(νk(s)) − ūk(νk(s))

)(
λk(vxk(s) + θxk(s)

)− qxk
(
νk(s) + hk)

)

+
m∑

i=1

γ k
i (s)∇gi

(
x̄k(νk(s)) − ūk(νk(s))

))
ds −

∫
[t,T ]

dγ (s)

∥∥∥∥
=
∥∥∥∥ ∫
[t,T ]

dγ k(s) −
∫

[t,T ]
dγ (s)

∥∥∥∥→ 0 as k → ∞

for all t ∈ [0, T ] except a countable subset of [0, T ]. It tells us by using (8.20) that

∫
[t,T ]

( m∑
i=1

ηk
i (s)∇2gi

(
x̄k(νk(s)) − ūk(νk(s))

)(
λk(vxk(s) + θxk(s)

)− qxk
(
νk(s) + hk)

)

+
m∑

i=1

γ k
i (s)∇gi

(
x̄k(νk(s)) − ūk(νk(s))

))
ds →

∫
[t,T ]

dγ (s) as k → ∞.

(8.27)

To derive (8.7) by passing to the limit in the differential condition for pk(t), consider the estimate∥∥∥∥∥∥∥
∫

[t,T ]

(
ξ1k(s) + ξ2k(s)

)
ūk
(
νk(s)

)
ds −

∫
[t,T ]

ū(s)d(ξ1(s) + ξ2(s))

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
∫

[t,T ]

(
ξ1k(s) + ξ2k(s)

)
ūk
(
νk(s)

)
ds −

∫
[t,T ]

(
ξ1k(s) + ξ2k(s)

)
ū(s)ds

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∫

[t,T ]

(
ξ1k(s) + ξ2k(s)

)
ū(s)ds −

∫
[t,T ]

ū(s)d
(
ξ1(s) + ξ2(s)

)∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
∫

[t,T ]
(ξ1k(s) + ξ2k(s))

[
ūk
(
νk(s)

)− ū(s)
]
ds

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∫

[t,T ]

(
ξ1k(s) + ξ2k(s)

)
ū(s)ds −

∫
[t,T ]

ū(s)d
(
ξ1(s) + ξ2(s)

)∥∥∥∥∥∥∥ .

(8.28)

Note that the first summand after the equality sign in (8.28) vanishes as k → ∞ due to the 

uniform convergence ūk(·) → ū(·) on [0, T ] and the uniform boundedness of 

T∫
|ξ1k(t)|dt +
0
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T∫
0

|ξ2k(t)|dt by (8.21). The second summand there also converges to zero for all t ∈ [0, T ]

except some countable subset by the weak∗ convergence of ξ1k → ξ1 in C([0, T ]; R+)∗ and 
ξ2k → ξ2 in C([0, T ]; R−)∗. Thus we get∫

[t,T ]
(ξ1k(s) + ξ2k(s))ūk(τ k(s))ds →

∫
[t,T ]

ū(s)d(ξ1(s) + ξ2(s)) as k → ∞

and hence obtain (8.7) by passing to the limit in the above differential condition for pk(t).
Step 5: Verifying transversality. Observe first that the sequence {ηk

ki} admits a convergent 
subsequence. To show it, we deduce from the second discrete transversality condition in (7.19)
that ∑

i∈I (x̄(T )−ū(T ))

ηk
ki∇gi(x̄

k
k − ūk

k) =
∑

i∈I (x̄k
k −ūk

k)

ηk
ki∇gi(x̄

k
k − ūk

k) = −puk
k − 2(ξ1k

k + ξ2k
k )ūk

k

with ηk
ki = 0 for i ∈ {1, . . . , m}\I (x̄k

k − ūk
k). This justifies by (8.21) the boundedness of the se-

quence 

⎧⎨⎩ ∑
i∈I (x̄(T )−ū(T ))

ηk
ki∇gi(x̄

k
k − ūk

k)

⎫⎬⎭. It follows from the standing assumptions in (2.5) and 

(2.6) that

ηk
ki ≤ 1

M1

∑
j∈I (x̄(T )−ū(T ))

ηk
kj

∥∥∥∇gi(x̄
k
k − ūk

k)

∥∥∥≤ β

M1

∥∥∥∥∥∥
∑

i∈I (x̄(T )−ū(T ))

ηk
ki∇gi(x̄

k
k − ūk

k)

∥∥∥∥∥∥ ,

which ensures the boundedness of {ηk
ki} for i = 1, . . . , m, and thus we get ηk

ki → η̃i along a 
subsequence of k → ∞. Denote η(T ) := (̃η1, . . . , ̃ηn) and observe that it is well defined due to 
the positive linear independence of vectors ∇gi(x̄(T ) − ū(T )), which follows from the standing 
assumptions. Then

ϑk :=
∑

i∈I (x̄(T )−ū(T ))

ηk
ki∇gi(x̄

k
k − ūk

k) → ϑ :=
∑

i∈I (x̄(T )−ū(T ))

ηi(T )∇gi

(
x̄(T ) − ū(T )

)
as k → ∞, where the defined vector ϑ satisfies the inclusion in (8.10). Further, it follows from 
(7.20) and the second equation in (7.19) that

puk
k + ϑk = −2(ξ1k

k + ξ2k
k ) ∈ −2ūk

k

(
N[0,r2+εk](‖ūk

k‖) + N[r1−εk,∞)(‖ūk
k‖)
)

. (8.29)

Passing now to the limit in (8.29) and (7.19) with taking into account the subdifferential robust-
ness as well as the convergence of {ξ1k

k } and {ξ2k
k } (7.20), we justify the transversality conditions 

(8.9).
Step 6: Verifying measure nonatomicity. We provide the verification of the nonatomicity 

condition (a) while observing that the case of (b) is similar. To proceed, pick t ∈ [0, T ] with 
gi(x̄(t) − ū(t)) > 0 whenever i = 1, . . . , m and employing the continuity of gi and (x̄(·), ū(·))
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get a neighborhood Vt of t such that gi(x̄(s) − ū(s)) > 0 for all s ∈ Vt and i = 1, . . . , m. The ob-
tained convergence of the discrete optimal solutions tells us that gi(x̄

k(tkj ) − ūk(tkj )) > 0 if tkj ∈ Vt

for i = 1, . . . , m and all large k. It follows from (7.21) and (7.24) that ηk
ji = 0 and γ k

ji = 0 for 
i = 1, . . . , m. Thus

‖γ k‖T V =
∫
V

d

∥∥∥γ k
∥∥∥=

∫
V

∥∥∥γ k(t)

∥∥∥dt = 0

by (8.20). Passing to the limit as k → ∞ with taking into account the measure convergence 
established in Step 3, we get ‖γ ‖(V ) = 0, which verifies the claimed measure nonatomicity.

Step 7: Verifying nontriviality. To start with the verification of the general nontriviality con-
dition (8.11), suppose on the contrary that λ = 0, qu(0) = 0, p(T ) = 0, ‖ξ1‖T V = 0, and 
‖ξ2‖T V = 0. Then

λk → 0, quk(0) → 0, pk(T ) → 0,

∫
[0,T ]

|ξ1k(t)|dt → 0,

∫
[0,T ]

|ξ2k(t)|dt → 0

as k → ∞. Let us check that in this case we get ξ1k
k + ξ2k

k → 0. Indeed, observe that the conver-
gence pk(T ) → 0, λk → 0 implies by the first condition in (7.19) that pxk

k → 0, puk
k → 0, and 

m∑
i=1

ηk
ki∇gi(x̄

k
k − ūk

k) → 0. Then the second condition in (7.19) yields (ξ1k
k + ξ2k

k )ūk
k → 0, and 

ξ1k
k + ξ2k

k → 0 due to ūk
k �= 0 for all large k. This clearly contradicts (8.21), and so we are done 

with (8.11).
It remains to verify the enhanced nontriviality conditions of the theorem under the additional 

assumptions made. To proceed with (8.12), suppose that gi(x0 − ū(0)) > 0 for i = 1, . . . , m and, 
arguing by contradiction, that λ = 0, p(T ) = 0, ‖ξ1‖T V = 0, and ‖ξ2‖T V = 0. Then gi(x̄

k
0 −

ūk
0) > 0 for large k. It follows from (7.21) and (7.22) that ηk

ji = 0 and γ k
ji = 0 for i = 1, . . . , m. 

Unifying it with (7.17) and the construction of quk(·) in Step 3 shows that

quk(0) = puk
0 = puk

1 + 2(ξ1k
0 + ξ2k

0 )ūk
0 + hkλ

kwuk
0

whenever k ∈ IN is sufficiently large. This yields the estimates

‖quk(0)‖ ≤ λk‖vuk
0 ‖ + λk

∥∥θuk
0

∥∥
hk

+ λkhk

∥∥∥wuk
0

∥∥∥+ 2r2

∣∣∣ξ1k
0 + ξ2k

0

∣∣∣
≤ λkLμ̃ + 2λk(μ + μ̃) + λkμ̃ +

∫
[0,T ]

|ξ1k(t)|dt +
∫

[0,T ]
|ξ2k(t)|dt,

which imply in turn that qu(0) = lim
k→∞quk(0) = 0 while contradicting the nontriviality condition 

(8.11). The verification of the other enhanced nontriviality condition (8.13) is similar. �
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Fig. 1. Direction of optimal control. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

9. Numerical examples

In this section we present two examples, which are related to real-life models while illustrat-
ing some special features and applications of the obtained necessary optimality conditions for 
the controlled sweeping process under consideration. In both examples, the obtained optimality 
conditions allow us to determine optimal solutions and explicitly calculate their parameters.

The first example addresses a one-dimensional sweeping control model of type (P ).

Example 9.1 (Optimal control of car motion). Consider a car moving towards the traffic light 
with the initial speed s = 9 m/s (about 20 mi/h). When the car is 250 meters away from the 
traffic light, the light turns into green color and it lasts for 30 seconds. We need to control the 
motion of the car in such a way that after 20 seconds it must be as close to the traffic light as 
possible and the energy used to adjust the speed must be minimized as well; see Fig. 1.

To solve this problem numerically, let us specify the initial data in problem (P ) as follows:

⎧⎨⎩ n = m = d = 1, T = 20, x0 := −250, g1(x) := −x, f (x, a) := sa = 9a,

r1 := 10−3, r2 := 50, ϕ := x2

2
, and �(t, x,u, a, ẋ, u̇, ȧ) := 1

2a2 (9.1)

with C =R− in this case. For definiteness, suppose that the traffic light is located at the origin. It 
follows from (9.1) that the set of a-controls can be assumed to be uniformly bounded. Thus (P )

admits an optimal solution (x̄(·), ū(·), ā(·)) ∈ W 1,2([0, 20]; R3) by Theorem 4.1. It is also easy 
to check that all the assumptions of Theorem 8.1 are satisfied. Supposing now that x̄(t) ∈ int(C +
ū(t)) for any t ∈ [0, 20) and that x̄(20) − ū(20) ∈ bdC, we see that these assumptions are realized 
for the optimal solution found via the necessary optimality conditions of Theorem 8.1. Since we 
expect the car to be as close to the traffic light as possible after 20 seconds with x̄(20) = ū(20), 
the value ū(20) should be small. The choice of r1 and r2 in (9.1) ensures that the validity of the 
constraints r1 ≤ |ū(t)| ≤ r2 for all t ∈ [0, 20].

Applying the necessary optimality conditions of Theorem 8.1 gives us the following relation-
ships with a number λ ≥ 0 and a function η(·) ∈ L2([0, 20]; R+) well defined at t = 20:

1. w(t) = (0, 0, ā(t)), v(t) = (0, 0, 0) a.e. t ∈ [0, 20];
2. x̄(t) < ū(t) =⇒ η(t) = 0 a.e. t ∈ [0, 20];
3. η(t) > 0 =⇒ qx(t) = 0 a.e. t ∈ [0, 20] including t = 20;
4. ˙̄x(t) + 9ā(t) = −η(t) a.e. t ∈ [0, 20];
5. (ṗx(t), ṗu(t), ṗa(t)) = (0, 0, λā(t) − 9qx(t)) a.e. t ∈ [0, 20];
6. qu(t) = 0, qa(t) = 0 a.e. t ∈ [0, 20];
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7. (qx(t), qu(t), qa(t)) = (px(t), pu(t), pa(t)) −
∫

[t,20]
(−dγ, 2ū(s)d(ξ1(s) + ξ2(s)), 0) a.e. t ∈

[0, 20];
8. −px(20) − η(20) = λx̄(20);
9. pu(20) + η(20) ∈ −2ū(20) 

(
N[0,1](|ū(20)|) + N[10−3,∞)(|ū(20)|));

10. −η(20) ∈ NC(x̄(20) − ū(20));
11. λ + |qu(0)| + |p(20)| + ‖ξ1‖T V + ‖ξ2‖T V > 0.

We get from (5)–(7) that px(·) is a constant function on [0, 20] and that

λā(t) = 9qx(t) = 9px(20) + 9
∫

[t,20]
dγ.

Proceeding similarly to [8, Example 1] gives us the relationship

λā(t) = 9px(20) + 9γ ({20}) a.e. [0,20]. (9.2)

If λ > 0, we can deduce from (9.2) that ā(·) must be a constant function, ā(·) ≡ ϑ , on [0, 20] due 
to its continuity on this interval. In the case λ = 0, we may assume that we control the speed of 
the car at the initial time as ˙̄x(0) = −10ϑ and maintain this speed till the end of the process, i.e., 
˙̄x(t) = −10ϑ for a.e. t ∈ [0, 20]. This results in ā(·) ≡ ϑ on [0, 20]. Then (2) and (4) yield

x̄(t) = x0 +
t∫

0

˙̄x(s)ds = −250 − 9ϑt for all t ∈ [0,20].

Consequently, the cost functional in our problem (P ) is computed as

J [x̄, ū, ā] = (−250 − 180ϑ)2

2
+ 20ϑ2

2

and clearly achieves its absolute minimum at ϑ = − 45000
32420 ≈ −1.388. Thus in this case we arrive 

by the necessary optimality conditions of Theorem 8.1 at the (local) optimal solution written as

x̄(t) = −250 + 12.492t, ā(t) = −1.388 on [0,20]

with ū(·) being an absolutely continuous function on [0, 20] such that ū(20) = x̄(20) = −0.16. 
This tells us that at the moment when the car is 250 meters away from the traffic light its speed 
should be switched to 1.388 × 9 = 12.492 m/s, and we should maintain this speed till the end of 
the process. After 20 seconds, the car is just 0.16 meter away from the traffic light. As seen, the 
value 12.492 m/s is very close to 12.5 = 250

20 . To save more energy needed to get such speed, it 
makes sense to adjust the running cost as follows: �(t, x, u, a, ẋ, u̇, ȧ) := 100

2 a2. In this case the 
cost functional is represented by

J [x̄, ū, ā] = (−250 − 180ϑ)2

+ 2000ϑ2
2 2
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and achieves its absolute minimum at ϑ = − 45000
34400 ≈ −1.308 by using the optimal solution

x̄(t) = −250 + 11.772t, ā(t) = −1.308,

where the optimal control ū(·) is absolutely continuous on [0, 20] and such that ū(20) = x̄(20) =
−14.56. Hence we should switch the speed of the car to 11.772 m/s when it is 250 meters away 
from the traffic light and maintain this new constant speed till the end of the process. In this way 
the car is about 14.56 meters away from the traffic light after 20 seconds.

The next example concerns a rather particular case of the two-dimensional crowd motion 
model that is formalized as a nonconvex controlled sweeping process of type (P ). A more general 
controlled crowd motion model on the plane is the subject of our adjacent paper [9]. Note that 
the given example demonstrates the usefulness for calculating optimal solutions of the necessary 
optimality conditions from Theorem 8.1 with the general nontriviality condition (8.11).

Example 9.2 (Case for optimal control of the planar crowd motion model). We refer the reader 
to [21,37] for describing an uncontrolled microscopic version of the crowd motion model as a 
sweeping process. Here we introduce (following the previous corridor version in [8]) controls 
entering both the moving set and perturbations. In what follows we restrict ourselves to the case 
of two participants identified with rigid disks of the same radius R = 3. The center of the i-th 
disk is denoted by xi ∈ R

2. To fulfill the nonoverlapping condition crucial in the crowd motion 
model, the vector of positions x = (x1, x2) ∈ R

4 has to belong to the nonconvex set of feasible 
configurations (see Fig. 2) defined by

C :=
{
x = (x1, x2) ∈R

4
∣∣ g(x) := ‖x1 − x2‖ − 2R ≥ 0

}
.

Suppose that the initial positions of the two participants are

x1(0) :=
(

−48 − 6√
2
,48 + 6√

2

)
, x2(0) := (−48,48),

and that the exit is located at the origin (0, 0).
Assume also that the participants exhibit the same behavior and aim to reach the exit by the 

shortest path. To regulate the participant speeds under the nonoverlapping condition, we use 
control functions in the moving set

u1(t) = u2(t) for all t ∈ [0,6] with the bounds r1 = 1 and r2 = 10 (9.3)

as well as in the perturbations a(·) = (a1(·), a2(·)) : [0, 20] → R
2 entering via the velocity func-

tion

f (x, a) :=
(

s1a1

‖x1‖x1,
s2a2

‖x2‖x2

)
= (s1a1 cos θ1, s1a1 sin θ1, s2a2 cos θ2, s2a2 sin θ2

)
,

where s1 = 6, s2 = 3, and θ1 = θ2 = 135◦. Then the controlled dynamics is:{−ẋ(t) ∈ NC(t)

(
x(t)) + f (x(t), a(t)

)
a.e. t ∈ [0,6],

C(t) := C + u(t), u (t) = u (t), r ≤ ‖u(t)‖ ≤ r on [0,6], x(0) = x ∈ C(0).
1 2 1 2 0
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Fig. 2. Planar crowd motion model.

We consider the cost functional given of the form

J [x,u, a] := 1

2

⎛⎝‖x(6)‖2 +
6∫

0

‖a(t)‖2dt

⎞⎠
the meaning of which is to minimize the distance of the two participants to the exit together with 
the energy of feasible controls a(·) after six seconds. Applying now the necessary conditions 
of Theorem 8.1 yields the following, where λ ≥ 0 and η12 ∈ L2([0, 6]; R+) are well defined at 
t = 6:

1. w(t) = (0, 0, ā(t)
)
, v(t) = (0, 0, 0) a.e. t ∈ [0, 6];

2. ˙̄x(t) + f
(
x̄(t), ā(t)

)= η12(t)∇g
(
x̄(t) − ū(t)

)= (−η12(t)
x̄2(t)−x̄1(t)‖x̄2(t)−x̄1(t)‖ , η12(t)

x̄2(t)−x̄1(t)‖x̄2(t)−x̄1(t)‖
)

;

3. ‖x̄2(t) − x̄1(t)‖ > 2R =⇒ η12(t) = 0 a.e. t ∈ [0, 6];
4. η12(t) > 0 =⇒ 〈qx

2 (t) − qx
1 (t), x̄2(t) − x̄1(t)〉 = 0 a.e. t ∈ [0, 6];

5. ṗ(t) =
(

0,0, λā1(t) − 6
(
−

√
2

2 qx
11(t) +

√
2

2 qx
12(t)

)
, λā2(t) − 3

(
−

√
2

2 qx
21(t) +

√
2

2 qx
22(t)

))
a.e. t ∈ [0, 6];

6. qx(t) = px(t) + γ ([t, 6]) a.e. t ∈ [0, 6];
7. qu(t) = pu(t) −

∫
[t,6]

2ū(s)d
(
ξ1(s) + ξ2(s)

)
+ dγ (s) = 0 a.e. t ∈ [0, 6];

8. qa(t) = pa(t) = 0 a.e. t ∈ [0, 6];
9. px(6) + λx̄(6) =

(
−η12(6)

x̄2(6) − x̄1(6)

‖x̄2(6) − x̄1(6)‖ , η12(6)
x̄2(6) − x̄1(6)

‖x̄2(6) − x̄1(6)‖
)

;

10. pu(6) −
(

−η12(6)
x̄2(6) − x̄1(6)

‖x̄2(6) − x̄1(6)‖ , η12(6)
x̄2(6) − x̄1(6)

‖x̄2(6) − x̄1(6)‖
)

∈ −2ū(6)
(
N[0,2](‖ū(6)‖) +

N[1,∞](‖ū(6)‖));
11. λ + ‖qu(0)‖ + ‖p(6)‖ + ‖ξ1‖T V + ‖ξ2‖T V > 0.
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Since the two participants are in contact at the initial time, i.e., ‖x̄2(0) − x̄1(0)‖ = 6, they have 
the same velocity and maintain it till the end of process. Thus the common velocity is constant 
on [0, 6], which implies that āi(·) ≡ āi on this interval. Hence η12(·) ≡ η12 on [0, 6]. It allows us 
to rewrite (2) as

˙̄x1(t) =
(

3
√

2ā1 −
√

2

2
η12,−3

√
2ā1 +

√
2

2
η12

)
,

˙̄x2(t) =
(

3
√

2

2
ā2 +

√
2

2
η12,−3

√
2

2
ā2 −

√
2

2
η12

)
,

which gives us by integration the trajectory formulas⎧⎨⎩ x̄1(t) =
(
−48 − 6√

2
+
(

3
√

2ā1 −
√

2
2 η12

)
t,48 + 6√

2
+
(
−3

√
2ā1 +

√
2

2 η12

)
t
)

,

x̄2(t) =
(
−48 +

(
3
√

2
2 ā2 +

√
2

2 η12

)
t,48 +

(
− 3

√
2

2 ā2 −
√

2
2 η12

)
t
)

.

We have ˙̄x1(t) = ˙̄x2(t) on [0, 6] due to the same velocity of the participants, which yields

η12 = 6ā1 − 3ā2

2
. (9.4)

Furthermore, it follows from the optimality conditions in (5) and (8) that

λā1 = −3
√

2qx
11(t) + 3

√
2qx

12(t), λā2 = −3
√

2

2
qx

21(t) + 3
√

2

2
qx

22(t) on [0,6]. (9.5)

If η12 > 0, we immediately deduce from (4) that

−qx
11(t) + qx

12(t) = −qx
21(t) + qx

22(t) on [0,6].

Combining the latter with (9.5) shows that ā1 = 2ā2 provided that λ > 0; otherwise we do not 
have enough information to proceed. Consider now the following two cases:

Case 1: η12 = 0. Then (9.4) tells us that ā2 = 2ā1 and the cost functional reads as

J [ā1] = 1311ā2
1 − 36(96

√
2 + 6)ā1 +

(
48 + 6√

2

)2

+ 482

while attaining its minimum at ā1 = (96
√

2 + 6)18

1311
≈ 1.95. Thus ā2 = 2ā1 ≈ 3.9, the minimum 

cost is J ≈ 66.49, and the optimal trajectories are calculated by

x̄1(t) =
(

−48 − 6√
2

+ 8.27t,48 + 6√
2

− 8.27t

)
, x̄2(t) = (−48 + 8.27t,48 − 8.27t) .

(9.6)
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Case 2: η12 > 0. By ā1 = 2ā2 in this case we get η12 = 9
2 ā2. The cost functional reads as

J [ā2] = 2040ā2
2 − 45(96

√
2 + 6)ā2 +

(
48 + 6√

2

)2

+ 482

with its minimum value achieved at ā2 = 45(96
√

2 + 6)

4080
≈ 1.56. Hence ā1 = 2ā2 ≈ 3.12, the 

minimum cost is J ≈ 45.9, and the optimal trajectories are given by the same formulas (9.6)
as in Case 1. Observe that in both cases we have (9.3) for the corresponding u-control ū(·) =
(ū1(·), ū2(·)) satisfying the constraints r1 ≤ ‖ū(t)‖ ≤ r2, and thus we obtain a complete solution 
of the problem under consideration.
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