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Abstract

Octopamine has broad roles within invertebrate nervous systems as a neurohormone,
neurotransmitter and neuromodulator. It orchestrates foraging behavior in many insect taxa via
effects on feeding, gustatory responsiveness and appetitive learning. Knowledge of how this
biogenic amine regulates bee physiology and behavior is based largely on study of a single
species, the honey bee, Apis mellifera. Until recently, its role in the foraging ecology and social
organization of diverse bee taxa had been unexplored. Bumble bees (Bombus spp.) are a model
for research into the neural basis of foraging and learning, but whether octopamine similarly
affects sensory and cognitive performance in this genus is not known. To address this gap, we
explored the effects of octopamine on gustatory responsiveness and associative learning in
Bombus impatiens via conditioning of the Proboscis Extension Reflex (PER) using a visual
(color) cue. We found that octopamine had similar effects on bumble bee behavior as previously
reported in honey bees, however, higher doses were required to induce these effects. At this
higher dose, octopamine lowered bees’ gustatory responsiveness and appeared to enhance
associative learning performance during the early phase of our experiment. Adding to recent
studies on stingless bees (Meliponini), these findings support the idea that octopamine’s role in
reward perception and processing is broadly conserved across Apidae, while pointing towards

some differences across systems worth exploring further.

Keywords: biogenic amines, foraging, sensory processing, Bombus impatiens, bees, color

Introduction
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Octopamine (OA) is a biogenic amine involved in a diverse suite of physiological processes in
insects (Roeder, 1994; Roeder, 1999). In honey bees (4Apis mellifera) it may influence
phenomena as diverse as circadian and cardiac rhythms (Bloch and Meshi, 2007; Papaefthimiou
and Theophilidis, 2011), the stress response (Harris and Woodring, 1992) and motor
performance (Fussnecker et al., 2006). However its clearest role is in the nervous system where it
mediates sensory and cognitive processes associated with feeding (Giurfa, 2006; Rein et al.,
2013). Alongside other biogenic amines (e.g. Dopamine (DA) and Tyramine (TA), OA’s
precursor), OA has well-established effects on sensory responsiveness (Barron et al., 2002;
Scheiner et al., 2014; Schilcher et al., 2021), including responsiveness to sucrose (Pankiw and
Page, 2003; Scheiner et al., 2002). These effects on gustatory responsiveness are in turn a key
determinant of learning performance in a foraging context (Scheiner et al., 2001). OA is centrally
involved in the reward pathways that underlie appetitive learning: its injection into brain regions
involved in learning and memory substitutes for a reward in a PER (Proboscis Extension Reflex)
conditioning paradigm (Hammer and Menzel, 1998; Riemensperger et al., 2005; Schwaerzel et
al., 2003; Unoki et al., 2005). OA’s heightened presence in the brains of starved foragers
suggests that it also helps regulate the appetite—and perhaps more broadly, the motivation to

learn—of workers in a feeding context (Mayack et al., 2019, see also Akiilkii et al., 2021).

These effects of OA on individual 4. mellifera behavior may scale up to influence the
division of labor and collective foraging efforts more generally (Wagener-Hulme et al., 1999). In
the brains of nurses vs. foragers, OA receptor expression differs (Reim and Scheiner, 2014;
Schulz and Robinson, 2001), as do OA titers (Schulz et al., 2002). Among foragers, patterns of
OA receptor expression change with age (Peng et al., 2021) and OA-mediated differences may

underlie individual-level patterns of resource specialization (Arenas et al., 2021; Giray et al.,
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2007). For example, OA’s influence on sucrose response thresholds determines the quality of
food they bring back when foraging (Giray et al., 2007; Pankiw and Page Jr., 1999). Pollen
foragers have lower sucrose response thresholds and as such are less discriminating in the nectar
they will accept compared to nectar foragers (Page Jr et al., 1998; Scheiner et al., 2001). OA also
mediates social transmission of information about food resources: for example, bees treated with
OA over-represent the quality of the forage they encounter when communicating with nestmates
via their ‘dance language’(Barron et al., 2007a). Interestingly, OA affects dances for both pollen
and nectar quality in the same way, indicating that it plays a role in reward processing more

broadly, and thus has an role equivalent to the dopaminergic system in mammals (Wise, 2004).

Given how clearly OA is involved in the regulation of individual and colony-level
foraging behavior in A. mellifera, what role does it play for other bees? A 2022 Web of Science
search of the scientific literature for "octopamine + bee” confirmed that while honey bees have
historically offered a tractable model for untangling complex relationships between aminergic
systems, individual physiology and collective behavior, other bee taxa are rarely considered (Fig.
1). Perhaps this reflects the assumption that OA’s key roles in these sensory and neural processes
are so fundamental that they must be broadly conserved, though recent reviews highlight the
need for more information across species (rev. Kambhi et al. 2017; Sasaki et al. 2021) that could
help test this assumption. Indeed, a recent study of the closely-related TA signaling system
pointed towards a shared neural expression of TA receptors among representatives of Apini,
Bombini, Meliponini, and Osmiini (Thamm et al., 2021), although behavioral data is needed to
confirm if similar expression patterns relate to similar functionality. Likewise, behavioral work
on stingless bees points to a conserved effect of OA on sucrose responsiveness and foraging

behavior: Melipona scutellaris fed OA had a lower sucrose reponse threshold (Mc Cabe et al.,
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2017), and Plebia droryana foraged on a sucrose feeder containing OA at a faster rate compared

to their behavior at a control feeder (Peng et al., 2020).

On the other hand, recent comparative work has also revealed intriguing potential for
differences in aminergic pathways. Thamm et al.’s (2021) study noted genus-level differences in
the expression patterns of a tyramine receptor (AmTAR1) within the optic lobes. Likewise,
within honey bees, OA receptor SNPs were associated with different ecotypes raising the
prospect of their role in adaption to elevation-specific foraging ecologies (Wallberg et al., 2017).
Given variation in bee sociality, dietary specialization and life histories (often involving both
social and solitary foraging phases), exploring whether the behavioral effects of OA that are
most established in 4. mellifera manifest in other species will help fill in the picture of how this

appetitive system supports diverse foraging behaviors across the bee tree of life.

Bumble bees (Bombus) are an important model for the study of insect cognition and
foraging behavior (Chittka and Thomson, 2001). Like Apis, Bombus are generalist foragers that
visit a variety of flowers when foraging, and as such must rapidly discriminate between floral
rewards (e.g. nectars differing in sucrose concentration) and learn which flowers contain the
highest quality rewards based on associated floral stimuli (color, scent etc.). Typically living as
part of a colony, bumble bees communicate information about resource availability, albeit
through chemical communication rather than a waggle dance (Dornhaus et al., 2003). Despite
these shared features, bumble bees show a number of cognitive (Sherry and Strang, 2015), and
neural (Gowda and Gronenberg, 2019) differences from honey bees. Given that individual
Bombus workers are less specialized in their roles within the colony than in 4pis and in their
collection of resources more generally (Goulson, 2003), OA’s role in coordinating foraging-

related behaviors is an open question.
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Here we addressed the role of OA in bumble bee sensory responsiveness and cognition.
Following a protocol similar to those used in the past with honey bees (Pankiw and Page, 2003;
Scheiner et al., 2002) and stingless bees (Melipona scutellaris; Mc Cabe et al., 2017), we
addressed how OA affected gustatory responsiveness and learning of a visual association in
bumble bees B. impatiens. If OA has a similar role in bumble bees as it does in honey bees and
stingless bees, then we expected its ingestion to increase gustatory responsiveness and enhance

appetitive learning in a dose-dependent manner.

Methods

General methods

In all experiments we used Bombus impatiens workers (Experiment 1 n=65; Experiment 2 n =
56) purchased from Koppert Biological Systems (Howell, MI, U.S.A.). Bumblebee colonies
were maintained indoors at the University of Nevada, Reno. To obtain individuals for testing, we
used an insect aspirator to remove bees from wicked feeders (Exp. 1: 30% (w/w) sucrose; Exp. 2:
15% (w/w) sucrose) in a central foraging arena (L x W x H: 100 x 95 x 90 cm) which had 3-5
colonies attached at any one time. We supplemented colonies with 5g of honey bee pollen

(Koppert Biological Systems, Howell, MI, U.S.A.) every two to three days.

Following Riveros and Gronenberg (2009) and Riveros et al. (2020), we cooled bees in
plastic vials placed on ice to immobilize them. Bees were then placed into individual plastic
tubes (modified 1000 pul pipette tips, Fig. 2a) and restrained with two metal insect pins forming a
“yoke” between their head and thorax that was secured with tape to the plastic tube (as in Muth

et al., 2015; Riveros and Gronenberg, 2009). The bee could extend its proboscis and move its
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antennae but was otherwise immobilized. Bees were left to acclimate for three hours at room
temperature in a dark room. After this time, we screened bees for responsiveness by presenting a
droplet of 30% (w/w) sucrose to their antennae; bees that did not exhibit PER were removed

from the experiment.

All experiments were conducted in a dark room, illuminated only with a red light to
reduce any additional visual stimuli that could influence responsiveness or learning. In all
experiments, we fed bees OA, rather than injecting or exposing bees topically with the OA
dissolved in a solvent. All three methods have been used in the past, and OA can reach all tissues
(including the brain) via all methods (Barron et al., 2007b). We chose oral treatment since it is
non-invasive and has been an effective method in the past (Pankiw and Page, 2003; Scheiner et

al., 2002).

All statistical analyses were performed in R version 4.1.2 (2021) (R Core Team, 2020).
We carried out GLMMs using the glmer function in the Ime4 package; (Bates et al., 2015),
including “bee” as a random factor to control for the multiple measures per bee. To determine
the significance of interaction effects, we ran models with and without the interactions and used
the anova() function to compare the fit of models using AICs. We carried out post-hoc tests
using the emmeans package (Lenth 2017) and visualized relationships using effects() (Fox &

Weisberg 2003).

Experiment 1: Does OA affect gustatory responsiveness in bumble bees?

To determine whether OA affected gustatory responsiveness, we assigned bees randomly to one

of three treatments that varied in the solution they were fed prior to testing. In all treatments, we
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used a Hamilton syringe to feed bees 10l of 30% (w/w) sucrose containing 1) Oug/ul OA
(control); 2) 2pg/ul OA (0.013M) (i.e. a total of 20 pg); or 3) Sug/ul OA (0.052M) (i.e. a total of
80 pg). Final sample sizes were n=23, 27 and 25 for control, 2pg/ul OA and 8pug/ul doses,
respectively. After feeding bees, we allowed them to sit for 30 minutes to allow full absorption

of the OA (Pankiw & Page, 2003). All three treatments were represented on a given day.

We tested the gustatory responsiveness of all bees by presenting them with eight different
concentrations (w/w) of sucrose solution in succession (0.01%, 0.03%, 0.1%, 0.3%, 1%, 3%,
10%, 30%, 50%), with a presentation of water at the beginning and between each sucrose
presentation (as in Mc Cabe et al., 2017; Pankiw and Page, 2003). As in these previous studies,
presentation of water allowed us to distinguish a possible increase in sucrose responsiveness
from a generalized increase in responsiveness (e.g. to other gustatory or chemotactile stimuli
sensed by antennae). For each water trial, we presented the liquid to the bees’ antennae and
allowed them three seconds to respond, before presenting them with the sucrose solution, and
again giving them three seconds to respond. The inter-trial-interval between each sucrose

presentation was 5 minutes.

Experiment 1 Data Analysis

To determine whether bees assigned to the three pre-treatments differed in their responsiveness
to sucrose, we carried out a binomial GLMM with the binary response variable of whether the
bee responded or not (1/0) and the following explanatory variables: sucrose concentration
(continuous), treatment (3 levels) and the random factor “bee”. We initially planned to use a

similar model to compare responsiveness to water, but due to the large number of bees that did
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not respond to this stimulus, we just compared the first water trial (during which we observed the
greatest response) using a binomial linear model with the response variable “1” responded or “0”

did not respond.

Experiment 2: Does OA affect visual learning in bumble bees?

We trained bumble bees via a visual conditioning paradigm similar to one used previously with
bumblebees (Riveros and Gronenberg, 2012). We harnessed 56 bees and trained and tested them
using the proboscis extension response (PER) protocol. Bees were randomly assigned to two
treatments, and fed prior to training 10ul of 30% (w/w) sucrose containing either 1) Oug/ul OA
(control; n=28) or 2) 8ug/ul OA (treatment; n=28). This dose was informed by our findings
from Experiment 1. After being fed, individuals were transferred to the PER training apparatus
and left to sit for 30 minutes before undergoing training and testing. Bees from both treatment

groups were represented equally on each testing day.

The PER training apparatus consisted of a circular rotating platform suspended above the
tabletop (Fig. 2a). Twelve ‘training chambers’ created from plastic cylinders were glued to the
underside of this platform, approx. 6 cm apart. An opening (wxh: 3cmx1.5cm) in each training
chamber allowed experimental access to the harnessed bee. Apart from a thin platform
supporting the harnessed bee, the underside of each training chamber was open, allowing light to
enter in from below (on which three blue (A=470 nm) LED lights were mounted). Each chamber

was lined with aluminum foil to evenly disperse lights which were controlled via a switchboard.

In an absolute conditioning paradigm, each bee was given 11 training trials followed by a

test trial. While our previous work using absolute conditioning to train bees to the same blue
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LED conditioned stimulus (CS+) as used here (Muth et al., 2018; Riveros et al., 2020) involved

8 trials, in that previous work we observed ~40-60% of subjects showing a conditioned response
at the last trial; we thus increased the number of trials here to 11 in order to give bees a greater
opportunity to learn. Each training trial consisted of a presentation of the CS+ (blue light),
followed by the unconditioned stimulus (30% (w/w) sucrose). In the initial trials, we exposed a
bee to the CS+ for 10 seconds before presenting the bee with the sucrose reward for an additional
five seconds (2 seconds to antennae, 3 seconds to proboscis) (Fig. 2b). After the bee showed a
conditioned response, the reward was presented (for 3 seconds) as soon as the bee extended its
proboscis (even if 10 seconds had not elapsed). In all cases the reward and stimulus were
removed simultaneously. As in Exp. 1, we used an inter-trial-interval of 5 minutes. The test trial
was the same as the training trials with the exception that the CS+ was given without the reward.
While in all trials, bees were not given a sucrose reward until after they extended their proboscis,
unrewarding test (or probe) trials are typical in learning assays to ensure that an animals’
response is to the conditioned stimulus rather than the unconditioned stimulus or another feature
associated with it. In all learning and test trials we recorded (via live observation) whether the
individual bee extended its proboscis in response to the blue light, and in cases when they did not
but were presented with a reward (i.e. during the learning trials), if they responded to the
presentation of the reward. This allowed us to not only determine if learning performance
differed between the treatment groups but also if overall tendency to respond to sucrose

presentation also differed.
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Experiment 2 Data Analysis

If a bee did not exhibit a proboscis extension to presentation of the sucrose reward more than 4
times across the 11 training trials, then we considered it to be unresponsive and excluded it from
further analysis (OA n=1; control n=5), resulting in final sample sizes of OA n=27 and control
n=23. To analyze whether bees learned differently across trials on the basis of treatment, we
carried out binomial GLMMs where the response variable was whether the bee responded to the
light stimulus or not (0/1) prior to receiving a reward, and the explanatory variables included
were trial, treatment, and the random factor bee. Because both groups showed evidence of
learning initially but then a decline after trial 6, we split the data into two models: trials 1-6 and

trials 7-11. The test trial data were analyzed alone using a binomial GLM.

To address whether feeding motivation/ responsiveness varied across trials we also
carried out models, this time using all 56 bees tested. We included the response variable of
whether the bee responded to the sucrose or not once it was presented to them (0/1) and the same
explanatory variables as above. Interactions between trial and treatment were always included

initially, but excluded if non-significant.

Results
Experiment 1: Does OA affect gustatory responsiveness?

Bees that were pre-fed the higher dose of OA were more responsive to sucrose than both the
control and lower-dose treatment, which did not differ to each other (comparison of models with

and without treatment x concentration interaction: y* = 6.830; p = 0.033; conditional R? of final
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model = 0.673; Tukey post-hoc comparison between treatments: control vs. low: z=0.761, p =

0.727; control vs. high: z=4.713, p <0.0001; low vs. high: z =-4.302; p = 0.0001; Fig. 3a).

Similarly, in the first water trial, bees assigned to the high-dose pre-treatment were more
responsive than the control group (z = 2.408, p = 0.016; Fig. 3b; conditional R? of final model =
0.161) while the bees that were pre-fed the lower dose of OA did not differ from the control bees
(z=0.103; 0.918; Fig. 3b). After the first water trial, bees across all treatments rarely responded

at all.

Experiment 2: Does OA affect visual learning in bumble bees?
Learning performance — response to the conditioned stimulus

Across the first 6 learning trials, performance improved in both bees pre-treated with OA as well
as in control bees (z =4.731, p <0.0001) but the OA-treated bees showed higher performance (z
=-2.196, p = 0.028; conditional R? of final model = 0.299). From the 7 to 11" learning trial,
performance declined in both groups and there was an interactive effect, where the OA-treated
bees at first out-performed the control group, but this effect disappeared towards the end of
training (treatment x trial: z =2.021; p = 0.043; trial z = -2.781; p = 0.005; treatment: z = -2.205,
p = 0.027; conditional R? of final model = 0.341; Fig. 4a). There was no effect of treatment in the
test phase (z = 0.167; p = 0.867; conditional R? of final model = 0.001), however overall

response was very low by this point (Fig. 4a).
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Responsiveness — response to the unconditioned stimulus

To address whether bees’ motivation to respond to the unconditioned stimulus (sucrose reward)
varied across treatments, we compared whether bees in the OA-treated and control groups
responded similarly once the sucrose reward was presented to them. Our results suggest that
initially the motivation to feed dropped in the control treatment but remained in the OA
treatment; however towards the end of the training period bees assigned to both treatments
showed similarly low motivation to consume the sucrose reward (treatment X trial: z = 2.444; p =
0.015; trial z = -4.347; p < 0.001; treatment: z = -3.604, p < 0.001; conditional R? of final model

= 0.428; Fig. 4b).

Discussion

Octopamine (OA) has long been known to play an important role in orchestrating the foraging
behavior of honey bees (rev. Giurfa, 2006; Roeder, 1999), a system often used as a model to
study the neural basis of bee behavior (Menzel, 2012) and the physiological mechanisms of task
specialization (Riveros and Gronenberg, 2010). Yet, how OA affects behavior and physiology in
other bee taxa exhibiting different levels of sociality (e.g. Halictidae: Jeanson et al., 2008; Smith
et al., 2019); (Ceratina: Cook et al., 2019) (merge citations) is only beginning to be explored
(Fig. 1). Our understanding of how OA mediates collective foraging in other social bees (e.g.
Meliponinae; Mc Cabe et al., 2017; Peng et al., 2020) is equally limited. Within Bombus, only
five prior studies have, to our knowledge, directly measured or manipulated OA. Four of these
involve measuring OA levels or related gene expression with the aim of understanding

reproductive division of labor: Bloch et al. (2000) found that OA titers in Bombus terrestris
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correlated with the dominance status of workers, independent of age or ovarian development;
more recently, Sasaki et al. measured OA levels in Bombus ignitus queens at different
reproductive stages (Sasaki et al., 2017) or across workers vs. queens (Sasaki et al., 2021).
Besides the present study, the only other experiment on Bombus that considers OA’s role in a
foraging context appears to be Cnaani et al. (2003), which asked whether OA altered floral
choice in B. impatiens. This experiment used a free-flying assay with automatically refilling
artificial flowers to show that the presence of OA in “nectar” impacted B. impatiens workers’
persistence visiting a food source that became unrewarding. Although these results have
intriguing implications for understanding how nectar chemistry might activate octopaminergic
pathways (Muth et al., 2022), this experiment was not designed to identify the mechanism
behind shifts in floral choice. Indeed, understanding how OA (or other biogenic amines)
influences foraging behavior in diverse bee taxa will require standardized and replicable
behavioral assays. To this end, we adapted two protocols that have long been widely used to
study the effects of OA on honey bee (and recently, stingless bee) learning. Using these, we
found that OA has an analogous effect on bumble bees as in these two other genera, increasing
gustatory responsiveness and seeming to enhance associative learning. Our results indicate that
similar mechanisms may underlie appetitive learning within Apidae, but also highlight

differences that may inform future work in this and other systems.

Our first experiment explored how consumption of OA at two concentrations affected
bees’ responsiveness to water and sucrose solutions. Broadly in keeping with work on honey
bees, we report the first evidence that OA consumption increases gustatory responsiveness in
Bombus. Whether this increase in gustatory responsiveness is reflective of a lowered sucrose

response threshold, an increase in motivation to forage, an increase in thirst, or a combination of
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these traits, cannot be determined from the current protocol. In addition, harnessed bees will
accept different concentrations of sucrose compared with free-moving bees (Mommaerts et al.,
2013; Mujagic and Erber, 2009), and as such, determination of how octopamine affects sucrose
acceptability in an ecologically-realistic context will need to be addressed in a free-moving
protocol in future work. As in Apis, effects were dose-dependent: bees fed a higher dose of 10ul
of 8ug/ ul (80png) were more responsive to sucrose across nearly all concentrations, and initially
more responsive to water. Individuals in our lower-dose treatment (10ul of 2pg/ ul = 20pg) were
not more responsive to sucrose or water than control bees. Scheiner et al., (2002) assayed honey
bees using a similar method and found analogous dose-dependency. In contrast to our findings
with Bombus, in this previous work, honey bees showed an increased sucrose responsiveness
following exposure to much lower doses of OA (1.9 and 9ug). In a second study of OA’s effects
on honey bees, increased sucrose responsiveness occurred following doses of 0.2, 2.0 and 20 pg
(Pankiw and Page, 2003). In stingless bees, Mc Cabe et al. (2017) compared the sucrose
responsiveness of bees following doses of 9.5, 19, and 38 pg OA and reported effects at the
lowest doses as well. These differences in effectiveness of the lowest doses are unlikely to be
due to differences in protocol, since in all these studies bees were immobilized and
responsiveness was measured in a similar fashion. Without further data we cannot identify the
source of this discrepancy. Body size is certainly a plausible explanation, but more subtle
differences—for example, differences in receptor type or density, cannot be ruled out. As Mc
Cabe et al (2017) noted, when OA is consumed by honey bees its behavioral effects are clear but
their etiology is not: OA might change brain titers directly, or via more complex signaling
cascades (as Scheiner et al, 2017 showed for TA); likewise effects following consumption leave

the role of OA’s metabolites open (although work by Barron et al. (2007b) showed that
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radiolabelled OA consumed by honey bees rapidly makes its way to the brain). In addition to the
dose difference noted here, discrepancies between 4. mellifera and stingless bees in the timing of
OA-enhanced sucrose responsiveness were noted by Mc Cabe et al (2017) raising the prospect

that OA may exert its effects on gustatory responsiveness differently across taxa.

Also in keeping with previous findings from honey bees, we found that when we used
the higher dose of OA (80pg) in Experiment 2, pre-consumption of OA appeared to enhance
learning performance, at least until around trial 8. However, mid-way through the training trials,
all bees appeared to have a reduction in motivation, meaning that performance was equivalent in
the final, test trial. Previous work on bumble bees has tested individuals over 8 trials (Muth et al.,
2018; Riveros et al., 2020); here we attempted 11 trials in order to give bees a greater
opportunity to learn, however bees’ motivation across all treatments dropped after the 6'" trial.
While the PER protocol carries the advantage of being able to tightly control stimulus and
reward presentation, it is limited in that the only behavior that is recorded is the bees’ tendency
to extend its proboscis, which can be confounded with factors aside from learning and memory
such as motivation (rev. Muth et al., 2017). As such, the PER protocol is less useful when
motivation is likely affecting performance, and in these cases free-flying assays may be more
appropriate (as discussed in Muth and Leonard, 2019). Although we attempted to control for
motivational effects by removing bees that did not respond to sucrose before starting the learning
trials and by excluding bees that did not respond to sucrose more than 4 times across the 11
trials, there were still clear differences in motivation between the two groups (Fig. 4b). Namely,
over the course of all trials, OA-fed bees were more likely to extend their proboscis to consume
the sucrose reward than control bees (i.e. they showed a differential response to the

unconditioned stimulus). As such, the differences seen between the treatments in bees’ tendency
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to extend their proboscis towards the conditioned stimulus may reflect motivational differences
as much as differences in learning aptitude. In addition, bees were less responsive in general in
the current learning protocol than has been found in previous work using similar protocols (e.g.
(Muth et al., 2018; Riveros and Gronenberg, 2012). Work addressing OA effects on learning in a

free-moving protocol (e.g. Muth et al., 2017) may combat some of these limitations.

Work from honey bees also suggested that OA may have had the capacity to affect
sensory responsiveness to features of both the unconditioned stimulus (US+) and conditioned
stimulus (CS+) in ways that could promote learning performance. For example, given that Exp.1
established clear effects on gustatory responsiveness, bees in the treated group might have
perceived the value of the US+ as higher value than control bees, a feature that can boost
learning performance. It is also possible that OA’s ability to increase visual responsiveness
(Scheiner et al. 2014) rendered the CS+ more salient to OA-dosed subjects in some way. Further
work would be required to pinpoint the driver/s of the apparent performance difference we
detected. Going forward, the effects of OA on learning and memory in bumble bees may be
better addressed in protocols where bees are free-moving and where motivation vs. learning can
be more easily differentiated (e.g. as in Muth and Leonard, 2019). While data collected similarly
on this apparatus did not detect changes in responses through 8 training trials (Riveros et al.,
2020) clearly our bees’ participation dropped markedly after the 6" trial, due to satiation, fatigue,
or other unknown factors. This led to few responses to the conditioned stimulus in the test phase
across both groups, making them difficult to compare and likely obscuring any potential

differences.
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Conclusion

Following OA consumption, results found in Bombus mirror those reported in Apis and
Meliponinae in relation to sucrose responsiveness (both genera) and learning performance
generally (which has only been measured in 4pis). Yet, we did note some differences—namely,
Bombus workers were not affected by our lower dose of OA, which work on the two other
genera would have predicted to increase sucrose responsiveness. While subtle differences in OA-
mediated behavior may not be significant for understanding broad patterns of aminergic-
mediated social organization, we believe they are worth noting for two reasons. First, small
changes in appetitive signaling pathways could be meaningful for understanding mechanisms
involved in ecological radiation (Ji et al., 2020; Pankiw, 2003) as OA is clearly involved in
determining what bees choose to collect and their motivation to do so. Secondly, many popular
pesticides target OA receptors (Ahmed and Vogel, 2020; Farooqui, 2013; Papaefthimiou et al.,
2013) and the OA signaling pathway in particular has been implicated in mediating bees’
responses to stress (Chen et al., 2008; Corby-Harris et al., 2020), pathogens and parasites
(Mayack et al., 2015; Spivak et al., 2003), and pollutants (Sevik et al., 2015). In an era of wild
bee declines, understanding whether A. mellifera is indeed a representative model for

anthropogenic influence on aminergic pathways more broadly is a pressing challenge.
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Figure Captions

Figure 1: Summary of studies from a 2022 Web of Science search of the scientific literature for
"octopamine + bee”. Color indicates bee family; Apidae and specifically Apis mellifera are

greatly over-represented in the literature compared to other bee families.

Figure 2: A diagram of the Proboscis Extension Response (PER) a) training apparatus and b)

training protocol used in Experiment 2.

Figure 3: OA effects on bumble bee sucrose responsiveness (Experiment 1). When bees were
pre-fed OA of two doses, a) sucrose responsiveness increased at the higher, but not lower, dose

and b) initial responsiveness to water was higher in the high OA-treated group.

Figure 4: OA effects on bumble bee learning (Experiment 2). a) Bumble bees pre-fed a high
dose of OA were more responsive to the conditioned stimulus than a control group; dashed line
indicates where motivation to respond dropped across both treatments. b) The proportion of bees

responding to the sucrose reward was higher in the OA-fed group than the control group.
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Figure 1: Summary of studies from a 2022 Web of Science search of the scientific literature for
"octopamine + bee”. Color indicates bee family; Apidae and specifically Apis mellifera are

greatly over-represented in the literature compared to other bee families.



Rotating platform

l Training chamber

Harnessed bee
@ " Blue LED lights

Training platform

b) 10s

Blue light (CS) ;HSS

Reward (US)

(30% w/w sucrose)
623

624  Figure 2: A diagram of the Proboscis Extension Response (PER) a) training apparatus and b)

625  training protocol used in Experiment 2.

626



1.0 -©-control
O 2ug/ul OA
@ 8ug/ul OA

0.8

0.6
n=25
0.4
n=23

0.29 =27

Proportion of bees responding

(@)

0.0

0.0001 0.0003 0.001 0003 001 003 01 03 05
Sucrose concentration % (w/w)

b. 1.0 -©-control
O 2ug/ul OA
sig @ 8ug/ul OA
0.6{ n=25

Proportion of bees responding

~Q

T 7 ~ S
1 2 3 4 5 6
Water trial number

627

628  Figure 3: OA effects on bumble bee sucrose responsiveness (Experiment 1). When bees were
629  pre-fed OA of two doses, a) sucrose responsiveness increased at the higher, but not lower, dose

630 and b) initial responsiveness to water was higher in the high OA-treated group.

631



632

633

634

635

636

-O- control
-@- 8ug/ul OA

o

30+

20+

% bees exhibit PER to light

1 2 3 4 5 6 7 8 9 10 11 test

Trial number

-O- control
-@- 8ug/ul OA

100+

% bees responding to sucrose

] 1 ] ] ] 1 ] T ] ]
.@:‘»1234567891011
™
Trial number

Figure 4: OA effects on bumble bee learning (Experiment 2). a) Bumble bees pre-fed a high
dose of OA were more responsive to the conditioned stimulus than a control group; dashed line
indicates where motivation to respond dropped across both treatments. b) The proportion of bees

responding to the sucrose reward was higher in the OA-fed group than the control group.



