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Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic car-
bon cycle. The impacts of virus—host interactions range from short-term disruptions in
the mobility of microbial biomass carbon to higher trophic levels through cell lysis
(i.e, the viral shunt) to long-term reallocation of microbial biomass carbon to the deep
sea through accelerating the biological pump (i.e, the viral shuttle). The biogeochemical
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backdrop of the ocean—the physical, chemical, and biological landscape—influences
the likelihood of both virus—host interactions and particle formation, and the fate and
flow of carbon. As climate change reshapes the oceanic landscape through large-scale
shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon
flux is likely to shift in response. Dynamics in the directionality and magnitude of
changes in how, where, and when viruses mediate the recycling or storage of microbial
biomass carbon is largely unknown. Integrating viral infection dynamics data obtained
from experimental models and field systems, with particle motion microphysics and
global observations of oceanic biogeochemistry, into improved ecosystem models will
enable viral oceanographers to better predict the role of viruses in marine carbon
cycling in the future ocean.

1. Introduction

The ocean has cumulatively absorbed ~25% of anthropogenically-
released carbon since industrialization (Le Quéré et al., 2009). Much of that
carbon is tied up in oceanic microbes (e.g., picoplankton, unicellular algae,
and bacteria). The growth, metabolism, and death of these organisms influ-
ence the bioavailability, location, and storage of carbon. Considering that
viruses can alter the carbon metabolism of their hosts (Hurwitz and
U’Ren, 2016) and viral lysis results in mass mortality events contributing
to the microbial loop (Fenchel, 2008; Tsai et al., 2016), virus—microbe inter-
actions underpin and shape the flow of carbon in the ocean.

Viruses are pervasive and persistent regulators of carbon-based life and
death, largely through host mortality. Lytic viruses infect a host, hijack
the cell machinery for replication and virion production, and ultimately
burst the infected cell, dispersing new viruses and intracellular contents into
the environment. In many ways, lytic viral infection mirrors the predator—
prey cycles of protistan grazers by exerting top-down control on host
populations (Parsons et al., 2012; Yau et al., 2011). Moreover, viruses are
not only important ecological regulators of host populations, but also lubri-
cate biogeochemical cycling by transforming organic matter (OM).
Specifically, viral lysis both facilitates carbon and nutrient exchange between
trophic classes of microorganisms—autotrophs and heterotrophs—and par-
titions carbon and nutrients between stratified regions in the ocean.

Over the past 30 years, virus—host dynamics have been explored within
specific model systems having outsized relevance for the oceanic carbon
cycle. The scale of marine viral diversity, however, far outstrips any virol-
ogist’s capacity to fully characterize virus—host dynamics. For example, in
the Global Ocean Virome 2.0 study (Gregory et al., 2019), over 190,000
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unique marine populations were identified. Metagenomics and other ‘omics
approaches have expanded our appreciation for the scale of marine viral
diversity (Section 4.1) but are of limited use for assigning ecological function
to unknown virioplankton populations. The looming challenge for viral
oceanographers is connecting the vast amounts of viral genetic data coming
from genomic and metagenomic studies with specific viral life history phe-
notypes that ultimately determine the functional impacts of virus—host inter-
actions on the oceanic carbon cycle.

Virologists have a unique opportunity to connect infection dynamics to
large-scale ecological impacts, beyond the immediate and direct regulation
of host populations. While viruses can certainly be influenced by abiotic
environmental factors, for example, UV (Eich et al., 2021), temperature
(Kendrick etal., 2014), and pH (Fuhrmann et al., 2019), viruses are also eco-
system engineers that alter OM composition. Dissolved OM (DOM) tends
to be more labile and particulate OM (POM) tends to be more recalcitrant,
however, there are exceptions in both OM classes. OM transformation
(DOM—-POM interactions) influences the physical, chemical, and biological
contexts of the ocean, which in turn, shapes whether carbon is recycled in
the upper layers of the ocean (i.e., the viral shunt) or exported to deeper
layers for long-term storage (i.e., the viral shuttle) (Fig. 1). The viral
shunt remineralizes biomass carbon into OM supporting future rounds of
carbon recycling between microbial biomass and the OM pool in the upper
ocean. Each turn of the viral shunt fuels microbial respiration in the upper
ocean keeping carbon available for atmospheric exchange (Bates and
Mathis, 2009; Suttle, 2005). In contrast, the viral shuttle exports carbon
to deeper water through processes that facilitate the sinking of OM, such
as aggregation and inclusion of ballast minerals stimulated by host responses
to infection. Thus, virus-released carbon or even infected cells themselves
(Du Toit, 2018; Guidi et al., 2016; Laber et al., 2018; Sheyn et al., 2018)
are fundamentally altered by prevailing physical and chemical conditions
causing aggregation and sinking of OM to deeper oceanic layers or the ben-
thos where carbon is sequestered from atmospheric pools for centuries to
millennia (Jiao et al., 2010).

The balance of these two outcomes has profound implications for the
global carbon cycle, but little is known about the interplay between the
physical, biological, and chemical contexts of the ocean and how this shapes
virus—host interactions to influence the fate of carbon towards the shunt or
shuttle. Ocean microphysics critically impacts the probability of encounters,
both between viruses and compatible hosts which results in virocells, and
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Fig. 1 Role of virioplankton in the oceanic carbon cycle. Physical-chemical conditions,
community composition of resident hosts and viruses, and viral life history (temperate
or virulent) influence the fate of organic matter (OM) produced from viral infection of
microbial host cells. The physical and chemical contexts of the ocean are shaped by fac-
tors including temperature, light and nutrient availability, circulation, and stratification,
and determine the conditions of host growth and probabilities of virus—host encoun-
ters. The diversity and abundance of host communities determine potential contribu-
tions to OM, which are influenced by host cell physiology. Ultimately, virus life history
and infection impact the global oceanic carbon cycle through production of OM from
the infection process. The life history of individual viral populations encapsulates the
gradient of temperate to virulent replication strategy and inherent phenotypes of
adsorption, lysis, and decay. It is the confluence of these physical, chemical, and biolog-
ical factors that determines the chemical composition and nature of OM. Dissolved
organic matter (DOM) tends to be more labile while particulate organic matter
(POM) tends to be more recalcitrant, however, there are exceptions in both OM classes.
Physical conditions and OM chemical composition contribute to OM transformation
(DOM—POM interactions), and in turn influence whether OM produced through viral
lysis is recycled and remains within surface waters (viral shunt) or is aggregated and
sinks below the mixed layer (viral shuttle). The viral shunt attenuates OM into carbon
dioxide through future rounds of bacterioplankton secondary production, while the
viral shuttle aggregates OM with the inclusion of ballast minerals and sequesters carbon
into the deep ocean. Ultimately, climate change impacts on physical and chemical con-
ditions in the global ocean will influence the balance between viral shunt and shuttle
processes and the fate of carbon within oceanic ecosystems.
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between organic matter particles which results in sinking aggregates. Thus,
the viral shunt and shuttle are also governed by the same encounter theory
(Box 1) with importance to carbon cycling. Ultimately, it is the layering
of microphysics onto the biological (e.g., host physiology, community com-
position) and chemical (e.g., ballast, transparent exopolymeric particles
(TEP), stickiness) backdrops that shape virus replication strategy and life
history. Furthermore, infection can lead to enhanced particle formation
(or not), which structures the fate and flow of light-derived carbon in marine
systems. To date, studies integrating these interdisciplinary factors along
with diagnostic biomarkers of infection are lacking and thus limit our ability
to assess viral impacts on carbon flow. Notably, these factors and their
subsequent biogeochemical and ecological consequences are difficult to
experimentally mimic so researchers must look to natural systems. In this
review, we explore what is known for representative virus—host systems
and their contribution to carbon cycling to propose a new framework of
process-driven marine virology. We furthermore will argue that without
advances in modeling and expansions of ‘omics (Section 4), full integration
of biological, chemical, and physical factors into viral frameworks will
remain elusive.

While our understanding of how and when modern oceanographic pro-
cesses tip the balance between viral shunt and shuttle is limited, even less is
known about how climate-driven changes will impact this balance.
Climate-driven changes in oceanographic processes may exacerbate,
impede, or even reverse current patterns of marine virus-mediated carbon
recycling and storage. Addressing these uncertainties will require physical
oceanographers, biogeochemists, ecosystem modelers, and marine virolo-
gists to work together to leverage learned lessons from virus—host model sys-
tems and develop more comprehensive field and empirical approaches for
meeting the challenge of understanding the role of oceanic viruses in the
global carbon cycle.

Global climate change fundamentally threatens the ocean’s biogeochem-
ical balance and the interactive microbial food webs that rely on available
organic and inorganic nutrients. As atmospheric carbon increases, the
ocean’s role as a carbon sink increases in parallel. Between 1994 and
2007, the ocean absorbed 34.4 billion tonnes of carbon alone—on top of
the 118 billion tonnes of carbon already absorbed into the ocean between
1850 and 1994 (Gruber et al., 2019). Thus, the most direct effect of the
ocean’s absorption of atmospheric carbon (i.e., carbon dioxide (CO5)) has
been acidification which lowers cation concentration, particularly calcium,
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BOX 1 Microphysical processes that shape encounters,
infection, and particle formation in the oceans.
Virus—host encounters and particle formation are both governed by similar
microscale physical processes but remain poorly understood. This represents a
critical gap in our quantitative understanding that links predictions of infection
dynamics in planktonic systems with their subsequent impact on carbon flow and
marine ecosystem processes. Our understanding of natural infection processes
has been limited by the neglect of biophysical mechanisms on contact between
entities like viruses and their microbial hosts, the fundamental first step for infec-
tion to occur. The lytic infection rate (/) can be expressed mathematically as
I=E8y where E is the rate of encounters between viruses and host cells, & is
the adsorption efficiency of a virus to host cells, and vy is the probability that a
particular virus will cause lysis (infectivity). Physical encounter rates are given
by E=pC,C,: where B is an encounter kernel (encounters mL d'), and C; and
G, are the host and virus concentrations (or particle concentrations), respectively
(Burd and Jackson, 2009; Kigrboe and Saiz, 1995). Particle formation operates
under the same basic principles, with a “stickiness” component (a) representing
the likelihood that encounters lead to larger particle formation (Burd and Jackson,
2009) and ballast incorporation impacting a differential sinking term (see below).
Viruses, most known phytoplankton hosts, and particles are non-motile, with
encounters depending on other physical processes such as random diffusion
(Brownian motion), differential sinking, and turbulence. Hence, three potential
encounter mechanisms can be considered: Brownian motion (By), differential
sinking (Bs), and turbulent water motion (B7). Rates of encounter by these mech-
anisms vary with the size and density of individual particles. p can be expressed as
a sum of the individual encounter kernel expressions (Burd and Jackson, 2009;
Kigrboe and Saiz, 1995) and this framework can be used with empirical data
to quantify the infection rate of different cell systems and associated particle for-
mation across different ocean regions (K. Bondoc, Personal communication,
2022). Studies of viral infection typically consider only Brownian motion
(Brown and Bidle, 2014; Cottrell and Suttle, 1995b; Johns et al., 2019; Nissimov
et al,, 20193, b), but encounter rates can be higher due to sinking, especially
for ballasted cells, and due to fluid motion (i.e., turbulence). Host cells (such as
ballasted phytoplankton like coccolithophores and diatoms) also have relatively
high sinking rates due to their calcium carbonate and biogenic silica mineral bal-
last, but the role of differential sinking has been neglected in virus ecology.
Likewise, micro-scale turbulence facilitates encounters by increasing the relative
speeds of particles, but this mechanism has also largely been ignored
(Basterretxea et al., 2020). Turbulent kinetic energy (TKE) is injected into the
ocean via physical processes including wind stress and forms a cascade of eddies
from scales of meters to 10s or 100s of meters, down to the smallest,
Kolmogorov-scales (<1cm), where the energy dissipates (Margalef, 1998).
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BOX 1 Microphysical processes that shape encounters,

infection, and particle formation in the oceans.—cont’d

The dissipation rate (g) of TKE varies over many orders of magnitude (Franks et al.,
2022; Fuchs and Gerbi, 2016) and we expect it to drive considerable environmen-
tal variation in infection rates. The underlying principles of microscale ocean
physics shape the integrated outcomes of virus infection, whether it leads to par-
ticle formation, and the degree to which infection is coupled to shunt versus
shuttle.

negatively impacting calcifying marine organisms including microbes
(Doney et al., 2009; Kroeker et al., 2013; Yamamoto-Kawai et al., 2009).
However, of equally important concern for oceanic ecosystems are the
broader climatic changes resulting from intensification of the greenhouse
effect due to increasing levels of atmospheric warming gasses (e.g., CO»,
methane (CHy)). These impacts include increasing sea surface temperature
(Seager et al., 2019) and stratification-induced changes in ocean circulation
(Li et al., 2020), which have profound implications for many oceanic bio-
geochemical processes (Section 2). Like all other marine organisms,
microbes are sensitive to climate-induced changes in circulation, nutrient
availability, and pH, which likely means that changes in biogeochemical or
oceanographic context will have cascading effects. Ocean circulation and
stratification also shape the productivity of oceanic food webs where upwell-
ings of cold, nutrient-rich waters spur phytoplankton blooms, consequently
shaping the migration and population dynamics of microzooplankton grazers
(Batchelder et al., 2002; Edwards et al., 2000; Neuer and Cowles, 1994,
Smayda, 2010), as well as macroorganisms such as fish and whales (Croll
et al., 2005). The difficulty in understanding how physical and chemical con-
ditions modified by global climate change will impact virus—host interactions
and consequently virus-mediated marine processes mostly lies in the difficulty
of scale (from single interacting virus—host populations to ocean-scale
ecosystems).

Given the urgency to understand how climate change will fundamentally
alter the processes that shape the directionality and efficiency of
virus-mediated carbon cycling, this review will integrate knowledge of
widely varied concerns in a holistic approach aimed towards understanding
how viral processes may change the trajectory of oceanic carbon cycling as
the ocean responds to global climate change. Specifically, we (1) briefly
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review the current framework for the factors that tilt the microbial loop
towards either shunt- or shuttle-domination, (2) explore how climate-
induced changes to the underlying oceanographic processes could skew
the composition, amount, and fate of lysis-derived organic materials,
(3) highlight the key viral players that, to our current understanding, are crit-
ical to carbon cycling responses to climate change, and (4) outline the critical
role that modern ‘omics approaches and modeling plays in closing the gap
between the data generated by experimentalists and the nuanced complex-
ities of the ecological totality.

2. Climate change effects on the global ocean

Unprecedented atmospheric and oceanic CO, inputs are already alter-
ing fundamental abiotic conditions in marine systems, specifically patterns of
temperature, circulation, stratification, and ocean pH (Fig. 2). Here we
briefly review how these four oceanic features are critical to marine life
and how each is responding to global climate change.

2.1 Ocean temperature

The ocean absorbed 93% of excess heat produced by global climate change
between the 1970s and 2010 (Stocker, 2014). Consequently, the ocean is
warming continuously, albeit unevenly across depths. The upper layer
(epi- and meso-pelagic between 0 and 700m where mixing principally
occurs) has warmed at a rate of 5.3140.48 zettajoule (Z], or 10*' J) yr™'
(Bindoft et al., 2019). In contrast, the lower layer between 700 and
2000m (roughly bathypelagic and lower) has warmed at a slower rate of
4.0240.97 7] yr . To place these rates into understandable context,
humans consume approximately 0.5 ZJ yr™' (Tomabechi, 2010), although
this energy demand is continuously growing.

Increasing average water temperature disrupts thermohaline gradients
that drive ocean circulation (Section 2.2) and stratification (Section 2.3),
but there are also often overlooked biological effects of temperature.
Water temperature can directly alter host physiology, and indirectly alter
the probability and dynamics of infections. For example, lytic cyanophage
favor shortened latent periods and increased burst sizes under warmer con-
ditions (Steenhauer et al., 2016; Yadav and Ahn, 2021). In contrast,
warming confers improved resistance in Emiliania huxleyi against lytic infec-
tions, although the mechanism underpinning this response is unclear
(Kendrick et al., 2014).
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Fig. 2 Climate change effects on the global ocean. Climate change is fundamentally
altering patterns of (A) temperature, (B) circulation, (C) stratification, and
(D) acidification. (A) Increased temperatures tend to boost microbial productivity,
suggesting increased frequency and duration of bloom events. Warmer water holds less
dissolved oxygen, contributing to the expansion of oxygen minimum zones (OMZ).
Increased temperatures also shift outcomes of viral infection, influencing host suscep-
tibility and/or virus infectivity, as well as shortening the latent period and increasing
burst size. Contributing to sea ice melt and salinity, temperature is intimately linked
with circulation and stratification. (B) Thermohaline gradients drive global ocean
currents. Cold, salty water at polar surface depths sinks and travels toward the Equator.

(Continued)
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Additionally, increased temperature may impose new environmental fil-
ters on community composition assembly. The optimal temperature ranges
of cyanobacteria and green algae overlap, and surpass the optimal ranges for
both dinoflagellates and diatoms (Paerl, 2014). Consequently, warmer tem-
peratures may tip the scales in favor of cyanobacteria and green algae. At the
very least, warming waters will promote range expansion of warm-tolerant
species in replacement of cold-evolved species (Edwards and Richardson,
2004; Richardson and Schoeman, 2004). Despite these generalizable pat-
terns, predicting ecological community succession with warming marine
waters remains difficult at best due to intraspecific genetic diversity within
phytoplankton populations and species-specific differences between
populations. For example, while modeling predicts warmer oceans will lead
to earlier bloom phenology in the spring as well as more frequent bloom
events (Mészaros et al., 2021), phytoplankton demonstrate wide species-
specific responses to warmer waters ranging from tolerant to sensitive
(Barton and Yvon-Durocher, 2019). Disruptions to thermohaline gradients
will alter the mixed layer depth and may increase the probability of virus—host
interactions through increasing particle concentration (see Box 1).
Importantly, an increase in average water temperature, as well as an increase
in frequency and intensity of marine heat waves, may act as an environmental

Fig. 2—Cont’'d The warming water is pushed toward the surface, creating upwelling
zones that bring nutrients to the surface and support microbial productivity. Climate
change will disturb current circulation patterns primarily through increased sea ice melt
and reduced sea ice formation. Changes in upwelling and nutrient availability will
impact microbial productivity, though their effects are uncertain. (C) Vertical stratifica-
tion is primarily defined by water density gradients (impacted by thermohaline gradi-
ents). Stratification sets a physical boundary that defines the mixed layer depth (MLD)
that varies seasonally, across ocean regions, and in response to turbulence. Global cli-
mate change is predicted to make the MLD shallower and more stable, increasing the
impacts of characteristic increased microbial density and decreased nutrient and oxy-
gen availability on microbial communities. (D) The delicate balance of atmospheric car-
bon dioxide (CO,) exchange maintains seawater pH and releases carbonic acid with
cascading effects on biomineral availability and stability. Mineral chemistry impacts par-
ticle composition and sinking, facilitating carbon export to deeper waters. Increasing
CO, production disrupts this balance, reducing calcium carbonate or silica availability
that is critical for marine calcifying organisms (e.g., coccolithophores) and diatoms,
respectively. In turn, this will impact particle formation and carbon export. Variations
in bioavailability of typically limited nutrients (e.g., iron) have anticipated effects on
microbial productivity. The cumulative effect on temperature, circulation, stratification,
and acidification by global climate change will profoundly alter microbial communities
with relevance to carbon flow via the viral shunt or shuttle.
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filter or a narrow bottlenecking event that alters phytoplankton community
composition and diversity (Lindh et al., 2013; Striebel et al., 2016; Thomas
et al., 2016; Vallina et al., 2017).

2.2 Ocean circulation

Thermohaline circulation drives ocean currents through differences in sea-
water density. As colder, high salinity water sinks, it is replaced by warmer,
less saline waters, effectively creating a global conveyor belt of latitudinal
water movement around the Atlantic, Pacific, Indian, and Southern
Oceans. Sinking polar waters move down vertically and migrate latitudinally
along the ocean bottom toward tropical latitudes. As cold deep water returns
to the warmer tropics, it is forcibly moved up by the continuous pushing of
water behind. In these upwelling zones, cold deep waters bring nutrients to
the surface stimulating microbial food webs (Armengol et al., 2019; Vargas
et al., 2007).

Climate change decelerates existing circulation patterns primarily through
the destabilization and reduction of sea ice formation (Silvano et al., 2018).
Increased freshwater inputs in arctic regions from ice melt and increased pre-
cipitation decrease the density gradient traditionally produced by strong ther-
mohaline differences (Carlson and Clark, 2012; Farmer et al., 2021; Zaucker
etal., 1994). The Atlantic Meridional Overturning Circulation (AMOC) is a
well-studied system responsible for distributing warm, tropical water to north-
ern latitudes where it cools and sinks, pushing back down to the tropics
continuing the cycle. Currently, the AMOC is moving at its slowest rate
in approximately 1000years (Caesar et al., 2020). Likewise, models predict
slowdowns in other regional circulations, such as the Southern Indian
Ocean (Stellema et al., 2019).

2.3 Ocean stratification

The strength of vertical stratification is defined by the degree of density dif-
ference between warmer waters near the top of the water column and colder
waters below. Climate change may alter natural stratification patterns by
making regions of the ocean both more stratified and more stable, specifi-
cally altering the mixed layer depth (MLD) (Box 2). Naturally, the degree
of stratification differs across global ocean regions, seasonal changes, and
even in response to episodic storms (Diaz et al., 2021). Increasing surface
water temperatures may exacerbate existing seasonal extremes by creating
shallow MLDs during stretches of warm weather, or, alternatively, could
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BOX 2 Consequences of the mixed layer depth on oceanic
carbon cycling.

10,000X

10,000X

The surface mixed layer (ML) represents the uppermost region in the ocean
that is homogenized by turbulent mixing or convective overturning. The physical
boundary and plasticity of the mixed layer depth (MLD) has profound conse-
quences on marine microbial ecology, microbial productivity, and virus—host
interactions, and thus oceanic carbon availability and cycling. Deep ML (left
panel) are characterized by cooler surface waters, weaker stratification, and water
mass movement that distribute microbial communities well below the euphotic
zone (indicated by yellow/black gradient shading in middle bar). Here, mixing
occurs over a larger volume, which effectively distributes and dilutes microbial
communities and causes photoautotrophs to spend less time within the euphotic
zone, thereby imposing light limitation and reducing net primary production (PP)
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BOX 2 Consequences of the mixed layer depth on oceanic

carbon cycling.—cont'd

of the system. Reductions in PP cascade through the community reducing sec-
ondary (bacterioplankton) production, which is dependent on organic carbon
in the system. Dilution of hosts along with lowered host physiological activity
lead to less viral production and a general slowing of virus-mediated carbon
release. These conditions would favor viruses having temperate or pseudo-
temperate life cycles. In contrast, shallow ML (right panel) are characterized by
stronger stratification, higher integrated light levels through the day, warmer sur-
face waters, and little to no mass water movement below the euphotic zone.
Here, mixing occurs over a smaller volume, effectively concentrating microbial
communities in near surface waters and providing conditions whereby photoau-
totrophs spend more time within the euphotic zone, maximizing net PP fueling
increases in secondary production. Shallow ML conditions lead to increases in
host growth and virus—host encounter rates that would favor lytic viral life cycles,
enhanced virus production, and organic carbon release.

Seasonal phytoplankton blooms are intimately linked with MLD. As daily tem-
peratures and sunlight increase through the spring, the MLD shallows, exposing
phytoplankton to higher, integrated daily irradiance, resulting in increased sys-
tem productivity, high surface biomass accumulation, and an injection of organic
carbon into oceanic ecosystems (Behrenfeld and Boss, 2018; Smith et al., 2015).
Indeed, varied ocean systems, perhaps epitomized by those found in the North
Atlantic, host large seasonal blooms, whose phases and planktonic productivity
are shaped by MLD over days to months (Behrenfeld et al., 2019; Bolafos et al.,
2021; Diaz et al., 2021; Fox et al., 2020; Graff and Behrenfeld, 2018; Morison et al.,
2019; Penta et al., 2021). Upon subsequent shallowing, phytoplankton commu-
nities rapidly grow and accumulate biomass but exhibit pronounced signatures
of oxidative stress, transparent exopolymer particle production, and positive viral
production (Diaz et al., 2021). Prolonged stratification (like that seen in summer
and fall) leads to nutrient deprivation in the ML, decreases in phytoplankton con-
centrations, negative particulate accumulation rates, signatures of compromised
membranes, death-related protease activities, and virus production (Diaz et al.,
2021). Thus, the seasonal variation of MLD sets the biophysical parameters
and pace of photo-derived carbon into the microbial food web. Storms can epi-
sodically disturb seasonal stratification, deepening the ML to 200 m or greater, a
depth well below the euphotic zone, replenishing the ML with nutrients from
below but accompanied with transient light-limitation of phytoplankton (Diaz
et al,, 2021; B. Diaz, Personal communications, 2022). Subsequent stratification
(over several days) can then reset virus—host dynamics. Given these observations,
projected changes in MLD, namely enhanced stratification (Li et al, 2020)
resulting from global climate change, may critically impact virus—host interac-
tions and carbon cycle outcomes in oceanic microbial communities.
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disrupt natural patterns by creating a long-term or semi-permanent shallow
MLD. Since the 1960s, ocean stratification has increased at a rate of 0.9%
each decade, yielding an astonishing total change of 5.3% increased stratifi-
cation by 2018 (L1 et al., 2020). Increases in temperature have driven more
than 90% of this stratification change over the last 60 years, with greater
than 70% change accounted for by increased warming in the upper layers
(Li et al., 2020).

The ecological and biogeochemical consequences of increased ocean
stratification are numerous. Intergovernmental Panel on Climate Change
modeling predicts that increases in stratification will reduce nutrient avail-
ability in the upper layers where most of the ocean’s biological productivity
occurs. In the tropics alone, nutrient availability will shrink by 7-16% by
2081-2100 (Cassotta et al., 2022). Intensified stratification also reduces oxy-
gen availability; between 1970 and 2010, oxygen availability above 200m
shrank by 0.5-3%, whereas oxygen minimum zones occurring at mesope-
lagic depths grew by 3—8% (Bindoff et al., 2019). All of these effects serve to
reduce the biological productivity of the surface ocean where atmospheric
carbon is transformed into microbial biomass.

2.4 Ocean acidification

Throughout global industrialization, the ocean has acted as a major carbon
sink, absorbing approximately 30% of all CO, emissions since 1750
(Guinotte and Fabry, 2008). However, ocean acidification is the cost of
the ocean’s buffering against CO, concentrations greater than the current
420 ppm. Since the start of the Industrial Revolution, the average pH of
the ocean has dropped by 0.1 pH units, with an expected further drop of
0.3 pH units by the end of the 21st century (Feely et al., 2009; Guinotte
and Fabry, 2008). The consequences of this phenomena are numerous—
ocean acidification alters the chemistry of seawater in marine food webs,
as the release of carbonic acid into the ocean creates cascading effects on
the bioavailability and dissolution of minerals. Hence, ocean acidification
will have contrasting effects on biomineral production and dissolution,
depending on mineral chemistry, which will subsequently impact particle
composition. The relationship between acidification, virus infection, and
the facilitation (or not) of sinking will depend on the relative balance
between biomineral ballast production and dissolution (preservation). As
pH impacts biomineral stability, it stands to reason that fewer biominerals
will be incorporated into particles which would subsequently reduce sinking
of carbon captured within particles. Famously, ocean acidification erodes the
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stability of biogenic calcium carbonate minerals which is critical for marine
calcifying organisms, such as coccolithophores (Riebesell and Gattuso,
2015; Riebesell et al., 2017). Furthermore, coccolithophores’ calcifying
ability has key implications for virus infection outcomes, given that an intact
coccosphere affords the cell some protection against infection (Johns et al.,
2019) and that free-floating planktonic calcite biominerals can also adsorb
and deliver viruses to cells with greater efficiency than free viruses on their
own (Johns et al., 2019; C.T. Johns, Personal communication, 2022).
Ocean acidification has also been found to impair diatom silica production
(Petrou et al., 2019) which could mean less silica ballast would be available
for particle incorporation. However, given potential decreases in biogenic
silica dissolution at low pH, preservation of biogenic silica could be
enhanced by ocean acidification leading to enhanced ballast-mediated
export (Taucher et al., 2022).

Ocean acidification can also impact the availability of critical nutrients.
For example, low pH increases the bioavailability of the limiting trace metal
iron (Gledhill et al., 2015) so it stands to reason that microbial systems may
be freed from iron limitation and may experience enhanced productivity.
Taken together, the physical and chemical changes occurring to the global
ocean as a result of climate change will profoundly alter the ocean’s biolog-
ical systems in ways that are poorly understood by scientists and with rele-
vance to carbon flow through the viral shunt and shuttle pathways.

3. Key virus—host players in the marine carbon cycle

Ever since the adoption of the philosophical framework of the micro-
bial loop (Pomeroy, 1974), microbial ecologists have focused on unraveling
its underlying mechanistic details. Decades of investigation, leveraging
increasingly sensitive molecular genetic tools and DNA sequencing, have
unveiled the composition and diversity of marine microbial communities
to a point where some microbial taxa can be unambiguously assigned spe-
cific biogeochemical roles within the oceanic carbon cycle. In the following
subsections of this review, we highlight the ecological and biological
features of known viruses infecting some of the key microbial groups known
to have outsized impacts on the marine carbon cycle. In particular, we
examine virus—host interactions and their carbon cycle implications
within key microbial host groups: three bacterioplankton host groups—
heterotrophs Pelagibacter and Roseobacter, and the obligate photoautotrophs,
cyanobacteria—and multiple microalgal phytoplankton host groups—
haptophytes, chlorophytes, diatoms, and dinoflagellates. While not an
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exhaustive summary of all known ecologically important viruses of
microbes, these sections highlight key themes and research questions appli-
cable to understanding the implications of viral infection for specific micro-
bial taxa shaping the flow of carbon and nutrients within marine ecosystems.

3.1 Viral interactions in three bacterioplankton groups critical
in the oceanic carbon cycle

Starting with the discovery of the great plate count anomaly (MacLeod,
1965), where the number of observable host cells exceeds the number of
cultivable host cells by 10-fold or more, microbial ecologists began the con-
tinuing intellectual process of asking three fundamental questions essential in
dissecting the black box of microbial communities: Who'’s there? How
many of each are there? What are they doing? Succeeding rounds of tech-
nological advancement have improved the sensitivity and precision of
answers to these questions. With each round, studies of marine microbial
communities have led the way owing to both the importance of oceanic
ecosystems and the ease of obtaining relatively unadulterated samples of
microbial cells in different size classes by filtration (Mueller et al., 2014),
and viruses by filtration (Wommack et al., 2010) or chemical flocculation
(John et al., 2011). Early application of molecular cloning and sequencing
of small subunit rRNA genes (16S rDNA) PCR-amplified from marine
microbial communities uncovered the pelagic ocean’s vast bacterial diver-
sity. Here we focus on three dominant bacterioplankton groups with out-
sized contributions to carbon and nutrient cycling.

3.1.1 Pelagiphages

Early evaluations of oceanic microbial diversity revealed a particular predom-
inant but unknown 16S clade, initially termed clade SAR 11 (after the Sargasso
Sea where it was first isolated) and later assigned to the order Pelagibacterales
(Giovannoni, 2017; Giovannoni et al., 1990). Observations collected using a
variety of molecular genetics and microscopy approaches indicate that mem-
bers of the SAR11 clade are nearly ubiquitous in the world ocean occurring
from the mesopelagic zone to the surface. These important microbes reach
their highest abundances in the euphotic zone of the pelagic ocean oligotro-
phic gyres (Morris et al., 2002), systems of rotating ocean currents and the
world’s largest ecosystems by volume and area (Karl, 1999). Given this distri-
bution, SAR11 accounts for 25% of all plankton with an estimated global
abundance of 2.4 x 10** cells (Giovannoni, 2017). SAR11’s dominance indi-
cates that it is a critically important player in the oceanic carbon cycle where its
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niche is as an oligotroph capable of assimilating a wide range of simple growth
substrates. In pelagic ecosystems, SAR 11 populations are responsible for assim-
ilating half of available amino acids and 30% of dimethylsulfoniopropionate
(DMSP), a common osmolyte of microalgae (Malmstrom et al., 2004), as well
as a variety of C1 compounds (Sun et al., 2011) including carbon monoxide
(CO), CO,, and CH,. The fact that SAR 11 utilizes DMSP as a growth sub-
strate and produces dimethylsulfide (DMS) gas is noteworthy, as DMS plays an
important role in climate as a cloud condensation molecule (Sun et al., 2016).

While in situ evidence of a bacteria’s presence and abundance informs
ecological investigation and genomic evidence provides clues as to its poten-
tial physiology, only laboratory cultivation can provide purified virus—host
systems and, thus, model experimental systems for reductionist investiga-
tions. As could be hypothesized for a bacterial specialist living in a
nutrient-limited oligotrophic environment, SAR11 cells were among the
smallest cells ever observed having a high surface area to volume ratio
(vibroid shape, 0.37-0.89pm in length, and 0.12-0.2pm in diameter).
Under nutrient-replete conditions SAR 11 cultures reach maximal densities
of ~3.5 x 10° cells mL ™!, with doubling times around 0.5 d~!, which com-
pares well with in situ rates measured for SAR11 populations (Malmstrom
etal., 2005) and slightly greater than the high end range (~0.3 d~") observed
for bacterioplankton communities within the oligotrophic gyres (Rappé
et al., 2002; Schwalbach et al., 2010). The phenotypic features of cultivated
SAR11 strains, which include slow growth, low maximal cell density, and
diminutive cell size, contrast greatly with copiotrophic bacterial pathogens
such as Vibrio, Pseudomonas, Salmonella, Escherichia, and others that are more
commonly studied hosts for virus—host experimental models. Given the
unique challenges of growing SAR 11 in the lab, it took more than a decade
before the first isolated SAR 11 viruses were reported (Rappé et al., 2002;
Zhao etal., 2013). The lack of evidence for viruses infecting SAR 11 during
the decade between the first isolation of SAR 11 hosts and the first isolation
of its phages fueled hypotheses that SAR 11 was an exquisite defense special-
ist somehow immune to widespread viral infection. This notion of defense
specialism was brought into question by the discovery of SAR11 viruses,
termed pelagiphages (a nod to the host genera), and remains an intriguing
debate (Vage et al., 2013).

To date, 46 pelagiphages have been isolated by dilution-to-extinction
cultivation approaches on both cold and warm strains in SAR 11 subclade
1a. Most of these phages have been isolated on the cold strains Candidatus
Pelagibacter ubique type strain HTCC1062 and strain FZCC0015 from the
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Taiwan strait, with additional phages isolated on the warm strains
P. bermudensis HTCC7211 and H2P3a from the Western English
Channel (Buchholz et al., 2021a, b; Du et al., 2021; Zhang et al., 2019b,
2021; Zhao et al., 2013). While many details of the interactions between
pelagiphages and their ubiquitous SAR11 hosts remain a mystery, thanks
to metagenomics we know a surprising amount about the biogeographic
distribution of these phages. Bioinformatically “mapping” DNA sequence
reads from oceanic virome libraries (Section 4.1) against newly discovered
pelagiphage genomes revealed that these phages recruited an astounding
60% of the assignable reads from the Pacific Ocean Virome dataset
(Hurwitz and Sullivan, 2013) in analyses containing other phages existing
within marine ecosystems (Zhao et al., 2013). Subsequent studies using even
larger collections of virome sequence libraries from across the global ocean
and more pelagiphages have also shown the high frequency of pelagiphages
in both coastal and pelagic ocean environments (Buchholz et al., 2021a, b;
Zhang et al., 2021). Reflecting their host’s distribution, pelagiphage abun-
dance is highest in the epipelagic but is still notable for some phages in the
deeper waters of the meso- and bathypelagic (Zhang et al., 2021). Despite
the modest number of cultivated pelagiphages it is already clear that
pelagiphages demonstrate dramatic differences in their abundance. Some
pelagiphages, such as those isolated from the Western English Channel
(Buchholz et al., 2021a, b), appear to be rare within the virioplankton, rec-
ruiting few virome reads and supporting prior observations of the long tail of
rare viral populations within the virioplankton (Breitbart et al., 2018). In
contrast, every pelagiphage sequence mapping experiment has demonstrated
that HTCVO10P, a podovirus, is among the most commonly observed
viruses throughout the global ocean (Buchholz et al., 2021a, b; Kang
et al., 2013; Zhang et al., 2021; Zhao et al., 2013). Despite its abundance,
HTCVO010P is the most unknown of all cultivated pelagiphages. Only seven
of its 64 predicted open reading frames demonstrated homology to a func-
tionally annotated protein. Besides a peptidase and the large and small sub-
unit terminase genes, all are structural proteins. The fact that arguably the
ocean’s most abundant and ubiquitous virus is a genetic enigma is both excit-
ing and humbling. However, unwrapping the biology of this virus will
undoubtedly aid efforts towards understanding the role of pelagiphages in
the oceanic carbon cycle.

The majority of cultivated pelagiphages (42) have a podovirus morphol-
ogy with a short, non-contractile tail, and genome sizes ranging from 31.6 to
60.9kb. Host specificity is the norm among pelagipodophages, although a
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broad host range was observed for four isolated phages infecting both cold
and warm SAR 11 ecotypes (Zhao et al., 2019a) and three infecting two or
three warm ecotype strains (Buchholz et al., 2021a, b). The two reported
pelagiphages with a myoviral morphology, HTCV0O08M (Zhao et al.,
2013) and EXVC030M Mosig (Buchholz et al., 2021a, b), have long con-
tractile tails, larger capsids, and substantially larger genomes (141 and 147 kb,
respectively) than the pelagipodophages. Lastly, two pelagiphages having
siphoviral morphology have been reported, EXVC016S Kolga and
EXVCO013S Aegir (Buchholz et al., 2021a, b), with long non-contractile
tails and genomes more similar in size to podoviruses (EXVC016S Kolga,
48.7kb; EXVCO013S Aegir genome size unknown).

All pelagiphage isolation and cultivation has been done in liquid cultures
as SAR11 cannot be grown on solid media. Because of this constraint,
plaque assay is not possible with currently known pelagiphages and all assess-
ments of virus—host dynamics have been inferred from direct microscopic
observations of phage particles and host cells. As a consequence, the
virus—host infection dynamics of only four phages have been characterized
(Zhao et al., 2013), while the genomes of all 46 have been reported. The
infection dynamics of three pelagiphages belonging to the podoviridae
morphological group (HTVCO11P, 019P, and 010P) were remarkably sim-
ilar, with burst sizes 37-49 viruses per cell lysed and a latent period of
19-24h before the first increases in viral count. In contrast, the myovirus
HTCVO008M demonstrated a low burst size of nine viruses and shorter latent
period of 16—19h. These latent periods fit with reported Pelagibacter biolog-
ical characteristics in that phage lysis timing is modestly longer than the aver-
age reported host doubling time, and burst sizes reflect that the net amount
of dsDNA within the released phage particles is comparable to the size of a
typical Pelagibacter genome (~1.5Mb). Limited availability of deoxyribonu-
cleotides for phage genome replication could be particularly acute for the
larger genome of the myovirus HTCVO08M (147kb genome) and may
explain the unusually low burst size for this phage. After three to four infec-
tion rounds (60—70h), pelagiphage abundances exceeded Pelagibacter host
cell abundance by 5 to 10-fold with host cell abundance ~10-fold lower
than uninfected control cultures. Although not discussed by the authors
(Zhao et al., 2013), there were notable differences in the loss of host cells
between the phages, with podoviruses HTCV011P and HTCV019P show-
ing a more rapid rate of host cell loss and 5-fold lower host abundance at 60 h
than podovirus HTCV010P and myovirus HTCVO08M. Gene content var-
iation could be linked with these observed differences in virus:host ratios and



86 Hannah Locke et al.

host cell death rates. For instance, 011P and O19, both with observed high
virus:host ratios and increased host cell loss, carry genes encoding RNA
polymerase, DNA replication proteins (Family A DNA polymerase
(PolA), primase), integrase, and lysozyme. In contrast, 010P carries none
of these genes. HTVC008M also does not carry an RNA polymerase and
utilizes a different family B DNA polymerase (PolB) that is more commonly
seen in myoviruses.

Because of the lack of virus—host infection observations, most of what we
know of the pelagiphages comes from their genome sequences. All genomes
have low GC content (32.6% £ 1.4%), similar to that of SAR11 and indic-
ative of organisms thriving under nitrogen-limiting conditions (Grzymski
and Dussaq, 2012). No single gene is universally conserved within this group
and on average only 34% of predicted ORFs showed homology to a known
gene (Buchholz et al., 2021a,b; Zhao et al., 2013). Nevertheless, there are
some important functional genes that are shared among the group. In par-
ticular, each of the known pelagiphages carries at least one or more of an
important group of four genes—terminase, DNA polymerase (DNAP),
RNA polymerase, or ribonucleotide reductase (RINR)—that enable exam-
ination of deep phylogenetic relationships with other viruses and cellular life
and can inform hypotheses concerning the physiological and genetic con-
straints over viral replication. In particular, gene content recapitulates phy-
logenetic relationships, often separating pelagiphage into distinct clades that
reflect morphology. The DNA packaging protein, terminase, clearly sepa-
rates the podophages into three clades separate from two other clades each
containing a known siphovirus and from the two myoviruses (Buchholz
et al.,, 2021a, b). Sixty percent of the pelagiphages carry a DNAP, with
the two myoviruses carrying PolB and 27 podoviruses carrying PolA. All
DNAP-carrying pelagiphages also carry a primase suggesting that their
genome-encoded polymerases are principally responsible for viral genome
replication. Among the DNAP-carrying pelagiphages, all but nine also carry
RNR indicating that these phages have the capability of controlling the sup-
ply of deoxyribonucleotides available for genome replication. As observed in
other genes, the RNR carried by myoviruses differed from podoviruses,
existing in distinct phylogenetic clades (Class Ia subclass NrdAg and
NrdAk, respectively).

An additional functional gene indicative of potential pelagiphage infec-
tion dynamics is integrase, carried in 41% of the genomes. Discovery of
integrase within so many cultivated pelagiphages was somewhat surprising,
because all of these phages propagate via lytic infection, and subsequent
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metagenomic read mapping analysis (Zhang et al., 2021), gPCR (Eggleston
and Hewson, 2016) and droplet digital PCR (Martinez-Hernandez et al.,
2019) all indicated that lytic pelagiphages were more frequently observed
within oceanic ecosystems. Whole genome classification delineated these
integrase-carrying, putatively lysogenic, phage from obligately lytic
pelagiphages (without integrase) (Buchholz et al., 2021a, b; Zhang et al.,
2021). It is also notable that all of the integrase-carrying pelagipodophages
also carry a T7-like PolA having a tyrosine-762 (Escherichia coli numbering)
amino acid residue hypothesized to be predictive of a phage lytic life cycle in
bacteriophages that carry this gene (Keown et al., 2022; Nasko et al., 2018;
Schmidt et al., 2014). These enigmatic features have stimulated hypotheses
that prophage integration occurs within only small subpopulations of
Pelagibacter or that these phage exhibit a lyso-lysis phenomena during
lytic infection, as documented for coliphage lambda (Buchholz et al.,
2021a, b; Zhao et al., 2019a). Nevertheless, molecular genetic evidence
from cultivation studies and analysis of metagenomic sequence data indicates
that integrase is active, and that pelagiphages integrate into SAR 11 genomes
(Zhao et al., 2019a). The fact that integrase-carrying pelagiphages multiply
exponentially yet never seem to crash Pelagibacter cultures (Morris et al.,
2020; Zhao et al., 2013) indicates that this virus—host relationship does
not conform to either a strictly lytic or lysogenic life cycle.

Greater understanding of pelagiphage infection dynamics is critical in
appreciating how virus—host interactions impact carbon flow through the
ocean’s most abundant bacterioplankton group, SARI11. If physical—
chemical conditions are found to trigger switching between lytic and tem-
perate phage propagation (Fig. 3), then environmental conditions could
influence the strength of viral shunt or shuttle processes from abundant
SAR 11 populations in oceanic ecosystems under the influence of climate
change. Most recent studies of pelagiphage isolates have focused on genomic
characterization rather than culture-based characterization of infection
dynamics such as burst size or latent period, particularly under different
conditions of environmental parameters such as temperature, pH, or nutri-
ent availability (Du etal., 2021; Zhang et al., 2021). Others have investigated
genome content of metagenome-assembled phage genomes without isola-
tion (Wittmers et al., 2022). Cultures of a lysogenic host, Pelagibacter sp.
strain NP1, showed high host abundance even as the abundance of sponta-
neously produced viruses increased, but virus:host ratios grew to 0.84:1 or
15:1 under carbon-replete and carbon-deplete conditions, respectively
(Morris et al., 2020). These data support that nutrient limitation could have
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Fig. 3 Physical, biological, and chemical conditions toggle the switch between lytic and
temperate phage propagation. Physical, biological, and chemical factors likely all influ-
ence whether lysis-mediated contributions to organic matter (OM) pools end up as
dissolved OM (DOM) recycled by the viral shunt (upward flux) or as particulate OM
(POM), e.g., transparent exopolymeric particles (TEP) or cellular debris, that are ulti-
mately transported to the deep ocean via the viral shuttle (downward flux) for
long-term carbon storage. DOM—POM interactions are likely influenced by both abiotic
(e.g., temperature, turbulence) and biotic conditions (i.e. host physiology and virus—host
interaction dynamics). Sliders at the center of each gradient indicate that each factor
could push the system toward shunt (slide to the left) or shuttle (slide to the right).
While factors are portrayed as independent gradients, they may either covary or interact
synergistically to promote or suppress one carbon cycling pathway over the other.

consequential impacts on virus—host dynamics. Virus abundance was also
measured in environmental samples using SYBR Green I chip-based digital
PCR (SYBR dPCR) to enumerate particular, previously uncultured
pelagiphage populations, with reported potential carbon release due to viral
infection (McMullen et al., 2019). The evidence of differential host growth



Virioplankton, the carbon cycle, and our future ocean 89

and infection under nutrient limitation, and likely virus shunt—shuttle envi-
ronmental toggles, indicate a need to fill in the many gaps in understanding
pelagiphage infection and its implications for nutrient cycling in our chang-
ing climate.

3.1.2 Roseophages

Roseobacter represent one of the major clades of marine bacteria, often
comprising 15-25% of MLD bacterioplankton communities from coastal to
open oceans (Wagner-Dobler and Biebl, 2006; reviewed in Buchan et al.,
2005). Physiologically and morphologically diverse, these Proteobacteria
are important players in carbon and sulfur cycling through a variety of adap-
tations as free-living, particle-associated or commensal cells capable of aerobic
anoxygenic photosynthesis, CO oxidation, DMS production, sulfite oxida-
tion, and the acquisition of energy for growth through both phototrophy
and heterotrophy (i.e., mixotrophy) (Tang et al., 2010, 2016). However,
few of these characteristics represent the entire clade, and instead subclusters
occupy different marine ecological niches in coastal to pelagic oceans, tropical
to polar ocean regions, and surface to seafloor and sediments. Roseobacter are
found in algal blooms, microbial mats, and commensal relationships with
marine phytoplankton, invertebrates, and vertebrates (Buchan et al., 2005;
Geng and Belas, 2010; Jasti et al., 2005; Pohlner et al., 2017; Raina et al.,
2009; Zhang et al., 2016, 2020). Predominantly marine, Roseobacter isolates
and members of oceanic bacterioplankton communities have demonstrated a
salt requirement or tolerance (Jonkers and Abed, 2003; Labrenz et al., 1998;
Lau et al., 2004). Isolates can be representative of strains known to represent
up to 20% of a given environment’s natural bacterial community (Brinkmeyer
et al., 2003; Fuhrman et al., 1994; Pinhassi et al., 1997; referenced in Buchan
et al., 2005), but are poorly representative of natural diversity from other
environments (Eilers et al., 2001; Selje et al., 2004; referenced in Buchan
et al., 2005).

Given the environmental significance of their host, it is surprising that
relatively few roseophage have been isolated with the first report occurring
over 20 years ago (Rohwer et al., 2000). Isolated from multiple host clades,
the majority of the >50 roseophage isolates (Bischoft et al., 2019; Huang
et al.,, 2021; Zhan and Chen, 2019a; Zhang et al., 2019a) are dsDNA
podoviruses (short tail) or siphoviruses (long non-contractile tail) with
genome sizes ranging from 25 to 146kb (Zhan and Chen, 2019a), though
two ~4kb ssDNA roseophage have been identified (Zhan and Chen,
2019b). In general, roseophage are thought to have a narrow host range
as many isolates are only able to infect their original isolation host
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(Chan et al., 2014; Yang et al., 2017; Zhang and Jiao, 2009), though there
are several which are able to infect multiple host isolates (Li et al., 2016b;
Zhao et al., 2009). Latent periods range from 1 to 6 h, with variable burst
sizes from 10 to 1500 viruses (Cai et al., 2019; Li et al., 2016b; Rihtman
et al., 2021; Zhao et al., 2009).

Roseophage are presumed to impact their hosts’ contributions to carbon,
sulfur, and phosphorus cycling, though little data is available on the compar-
ison of phage infection dynamics under varying nutrient conditions. Instead,
the potential for roseophage impact on nutrient cycling is primarily based on
genome content and potential function. Whole genome comparative anal-
ysis of 50 roseophage generated 32 operational taxonomic units (OTUs)
based on 97% nucleotide similarity (Huang et al., 2021). Auxiliary metabolic
genes (AMGs), elsewhere referred to as host-derived genes, were identical
within each OTU, and further divided into low frequency (45% of AMGs
were present in a single genome OTU) and high frequency groups. High
frequency AMGs include six genes related to nucleotide biosynthesis
(RNR was present in 67% of genome OTUs) and a single gene, phoH,
involved in phosphate intake. The first sequenced roseophage genome,
Roseophage SIO1, was the first phage genome reported to carry phoH-
or thyl-like genes (Rohwer et al., 2000). Low frequency genes were
involved in multiple metabolic pathways including protein and receptor
metabolism, cell signal transduction, and phage competition. Integrases or
lytic repressors were identified in ~75% of lytic roseophage isolate genomes
overall and in almost all roseosiphophage, suggesting the potential for inte-
gration into the host genome and a lysogenic lifestyle (Forcone et al., 2021;
Zhan and Chen, 2019a).

There is also evidence of temperate roseophage based on induction with
mitomycin C or UV exposure, and prophage and phage-like gene transfer
agent regions in host genomes (Ankrah et al., 2014a; Chen et al., 2006;
Forcone et al., 2021; Sonnenschein et al., 2017; Zhan et al., 2016; Zhao
et al.,, 2010). Whole genome analysis of 79 host roseobacter bio-
informatically identified 173 prophage regions (22 high-quality or com-
plete) (Forcone et al., 2021). Though the most commonly observed gene
was located in these prophage regions, all 22 instances were observed in
low-quality regions and were considered to be gene transfer agents
(GTA) based on synteny and homology to rcGTA, a GTA of Rhodobacter
capsulatus strain 1003. Of the 50 medium- or high-quality prophage regions,
only five carried an integrase. No replication or nucleotide metabolism
genes, such as RINR, were observed in these prophage regions or in the
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genomes of two temperate roseophages (Ankrah et al., 2014a), supporting
the hypothesis that RINR is absent from most temperate phage and is indic-
ative of lytic replication (Harrison et al., 2019; Nasko et al., 2018). Read
recruitment of Tara Oceans viromes to these 50 prophage regions suggests
that abundance decreased with increasing latitude and temperature.
Increasing temperatures due to global climate change could influence the
prevalence of lysogenic infection and modulation between viral shunt and
shuttle processes.

3.1.3 Cyanophages

Cyanobacteria encompass all prokaryotic taxa capable of oxygenic photo-
synthesis, making this group of microorganisms critical players in the global
carbon cycle and especially the world’s oceans. Cyanobacteria are divided
into three morphological groups based on cellular aggregation characteristics
and the presence of a unique differentiated cell type known as the heterocyst,
a cell type dedicated to nitrogen fixation. These types are aggregated or sol-
itary non-heterocystous filamentous, heterocystous filamentous, or single
cells. Diverse physiological and ecological adaptations, including consortial
and symbiotic associations, coloniality, nutrient sequestration and storage,
buoyancy regulation, and nitrogen fixation, also reflect cyanobacteria adapta-
tions to a wide range of environmental conditions shaped by nutrient deple-
tion, turbulence, and suboptimal light and temperature (Mann and
Clokie, 2012). As the only prokaryotes capable of photosynthesis, these
diverse bacteria are restricted to the euphotic zone in the upper
100200 m, and represent a significant portion of phytoplankton productivity
and biomass. Small (<3 pm) single-celled picocyanobacteria, most notably of
the genera Prochlorococcus and Synechococcus, dominate vast expanses of the
global oceans and often constitute ~25% of oceanic photosynthetic produc-
tion and biomass (Flombaum et al., 2013; Mann and Clokie, 2012). Oceanic
cyanobacteria are also major players in the global nitrogen cycle, with outsized
contributions from a free-living unicellular cyanobacteria (Crocosphaera), a
group of uncultured, unicellular symbiotic cyanobacteria (UCYN-A), a fila-
mentous non-heterocystous cyanobacteria (Trichodesmium), and groups of fil-
amentous heterocystous symbionts (Richelia and Calothrix) (Zehr, 2011; Zehr
and Capone, 2020).

Given the global abundance and significance of their hosts, cyanophages
represent one of Earth’s most abundant biological entities. Cyanophage
infections shape the composition and availability of DOM as current esti-
mates indicate that 5-40% of cyanobacteria are infected and lysed every
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day (Fuhrman, 1999; Proctor and Fuhrman, 1990). Viral infection impacts
the chemical profile of available DOM pools, not only due to variations in
DOM chemical composition produced by the lysis of different genera
(Becker et al., 2014), but also through the release of DOM compounds dif-
ferent than those produced via exudation (Xiao et al., 2021) or mechanical
cell lysis (Ma et al., 2018). For example, DOM produced by viral-mediated
Synechococcus lysis contained higher molecular weight nitrogen-containing
compounds when compared with mechanical cell lysis (Ma et al., 2018),
and the virus-mediated release of intracellular iron occurs at a greater rate
and with greater bioavailability compared to iron released from cyano-
bacteria without phage (Poorvin et al., 2004). Observations within oxygen
deficient zones at the base of the euphotic zone indicate high cyanophage:
cyanobacteria ratios and presumably high levels of cyanophage contribution
to DOM release from sinking particles containing cyanobacterial host cells
(Fuchsman et al., 2019).

Reflecting the diversity of their hosts, cyanophage across and within all
host morphological groups are diverse in terms of both their genomes
(lengths of 30-252kb, GC content, and gene content and organization)
and phenomes (morphology; infection dynamics including burst size, latent
period, and diel patterns; and impact on biogeochemical cycling). Isolated
cyanophage carry dsDNA genomes, although a ssDNA prophage-like par-
ticle was induced in Synechococcus cultures in response to mitomycin C
(McDaniel and Paul, 2006). Cyanophage are present as myo- (long contrac-
tile tail), podo- (short tail), or siphovirus (long non-contractile tail) mor-
phologies. Additional cyanophage morphologies have been observed,
including filamentous freshwater Microcystis and Anabaena phage (Deng
and Hayes, 2008) and tailless freshwater Plankfothrix (Gao et al., 2009)
and Pseudoanabaena (Zhang et al., 2020) phage. Most cyanophage are in
the myo and podo morphological groups, with genome organization resem-
bling T4-like and T7-like bacteriophages, respectively. Cyanosiphoviruses
are found globally but in far lower densities, and have more diverse genomes
(Huang et al., 2012).

Most cultivated phages are obligately lytic, and cyanophage are no
exception. LPP-1, named for the Lyngbya, Plectonema, and Phormidium gen-
era it infects, was the first cyanophage isolated, in 1963 (Safterman and
Morris, 1963, 1964). Extensive collections of lytic cyanophage have been
isolated infecting multiple host genera including Anabaena (Hu et al.,
1981; Wu et al., 2009), Nostoc (Chénard et al., 2016; Hu et al., 1981),
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Procholorococcus (Sullivan et al., 2003), and Synechococcus (Chen and Lu, 2002;
McDaniel and Paul, 2006; Stoddard et al., 2007), and often from the specific
well characterized Synechococcus isolate, WH7803 (Kana and Gilbert, 1987
Kana et al., 1988). Temperate cyanophage have been isolated infecting
freshwater Anabaena (Franche, 1987; Marei et al., 2013), Anacystis (Lee
et al., 2006), and Synechococcus (Chu et al., 2011; Dillon and Parry, 2008);
and marine Synechococcus. Temperate cyanophage have been induced from
cultures and natural populations of multiple genera such as Trichodesmium
(Hewson et al., 2004; Ohki, 1999) and Synechococcus (including a ssDNA,
tailless inducible particle from a Synechococcus isolate) (McDaniel et al.,
2002; McDaniel and Paul, 2006; Ortmann et al., 2002). However, no intact
prophage regions have been identified in cyanobacteria genomes, despite
genomic remnants of phage integration into genomes of multiple genera
including those for Synechococcus, Prochlorococcus, Nostoc, and Anabaena
(Coleman et al., 2006; Flores-Uribe et al., 2019; Jungblut et al., 2021;
Malmstrom et al., 2013; Qiu et al., 2019; Shitrit et al., 2022).
Filamentous cyanobacteria are critical players in biogeochemical cycling
in many aquatic ecosystems. Phage isolates infecting these hosts provided the
first cultivated model systems, yet few isolates have sequenced genomes and
well characterized infection dynamics that permit the generation and testing
of genome to phenome hypotheses with subsequent application to meta-
genomic datasets (Chevallereau et al., 2022). The outsized importance of
cyanobacteria in the global carbon cycle makes understanding the effects
of cyanophages on these microbial hosts critically important. Some filamen-
tous cyanobacteria are known to form blooms, potentially releasing toxins
with significant adverse health effects. Infection of Nodularia spumigena with
cyanophage isolate 68v162—1 led to higher cellular concentrations of the
hepatotoxin nodularin (Suléius et al., 2018). These blooms are expected
to be more common and intense with warmer temperatures due to climate
change (Gobler, 2020; O’Neil et al., 2012; Paerl and Huisman, 2009).
Among the most astonishing findings characterizing cyanophage—host
dynamics was the discovery that obligately lytic cyanophages carry a suite
of host-derived metabolic genes that, when expressed in the infected cell
(virocell; Forterre, 2011), serve in maintaining or enhancing key aspects
of host metabolism. The first of these discoveries was a report that
Synechococcus-infecting phage S-PM2 carries the psbA gene, encoding the
photosystem II D1 protein (Mann et al., 2003). A flurry of other reports
followed demonstrating that cyanophage photosystem genes were likely
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acquired from cyanobacteria (Sullivan et al., 2006) and are expressed during
infection (Lindell et al., 2005), and that some Prochlorococcus-infecting
cyanophages carried multiple photosystem genes (Sullivan et al., 20006).
Intriguingly, those phages having a greater number of genes, beyond
psbA, tended to also have broader host ranges (Sullivan et al., 2006). Itis clear
from virioplankton community studies that the phenomena of carrying
photosystem genes is widespread among cyanophages having highly diver-
gent genomic and phenomic characteristics (Sandaa et al., 2008). That
cyanophages specifically carry photosystem II genes was rational as UV dam-
age causes rapid turnover of these proteins. By encoding its own psbA, the
infecting cyanophage maintains photosystem function and sustains photo-
autotrophy necessary for phage replication. The influence of cyanophage
on photosynthesis can also extend to control of cellular metabolic pathways
responsible for synthesizing key light-harvesting proteins (Gasper et al.,
2017; Puxty et al., 2015; Shan et al., 2008).

Cyanophage, however, have acquired many other host-derived genes
that presumably increase fitness during infection, enabling these phages to
respond not only to the extracellular environment and particular niches
inhabited by their hosts but to intracellular nutrient and substrate availability.
Cyanophage at depth and lower light intensity carry genes encoding proteins
within the purine synthesis pathway (purN, purM, purC, and purS) which
may sustain purine production for nucleotide synthesis, energy storage
and transfer, signaling, and cofactor production (Sullivan et al., 2005;
Zhao et al., 2013). These genes promote continued host metabolism for
the longer latent periods observed at low light levels rather than at the sur-
face. Several genes (e.g., the gene encoding CP12, as well as genes talC, zuf,
and gnd) direct carbon flux toward the pentose phosphate pathway for
NADPH production and ultimately dNTP biosynthesis (Thompson
et al., 2011). Phosphate uptake and regulation is impacted by viral genes
encoding pstS, phoA, and phoH, members of the pho regulon (Rong
et al., 2022). Cyanophage carry several proteins that seem to be confined
to phages infecting cyanobacteria, including DNA polymerase gamma
(Chan et al., 2011) and the Cyano M (cyanomyovirus) and Cyano SP
(cyanosipho- and cyanopodovirus) clades of RNR (Harrison et al,
2019). The key lesson learned from the numerous studies reporting that
cyanophages encode genes capable of sustaining or redirecting host central
metabolism during infection is that cyanophages can substantially alter the
spectrum of metabolites within the cell (Gao et al., 2016). Subsequent lysis
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alters the DOM composition released from cyanobacterial populations com-
pared with that released from uninfected cells (Zheng et al.,, 2021).
Alterations in DOM composition with viral-mediated lysis are critical for
understanding carbon fate (shunt or shuttle) in the upper ocean (Fig. 1).
It 1s the interplay of prevailing physical and chemical conditions around
DOM release from cyanophage lysis that will shape whether this carbon
recycles and remains within surface waters that readily exchange carbon with
the atmosphere or aggregates and sinks below the mixed layer.

Cyanobacteria are expected to increase in abundance under predicted
climate conditions such as increased temperature, stratification, and nutrient
availability (reviewed in Carey et al., 2012). The ecophysiological adapta-
tions of cyanobacteria across and within genera, including photosynthesis
at multiple intensities and wavelengths, proliferation and bloom formation
at warmer temperatures, buoyancy regulation, phosphorus storage, and
nitrogen fixation, may allow them to dominate in many aquatic environ-
ments. Increases in cyanophage abundance have been observed with ele-
vated seasonal temperatures (Clasen et al., 2013; Mankiewicz-Boczek
et al., 2016; Marston and Sallee, 2003; Millard and Mann, 2006), though
the opposite has been observed with particular clades (Maidanik et al.,
2022). Many of the same environmental factors also impact cyanophage vir-
ulence (reviewed in Grasso et al.,, 2022). Cyanophage are stable under
sustained increases in temperature often reflective of their hosts’ temperature
tolerances. While infectivity was observed to decrease with increased tem-
perature (Garza and Suttle, 1998), cyanophage remained infective up to
45 °C (Safferman and Morris, 1964), with some thermotolerant strains infec-
tive after incubation at 70 °C for 60 min (Franche, 1987). Increased temper-
ature is also found to impact infection dynamics, shortening the latent period
and increasing burst size (Steenhauer et al., 2016; Yadav and Ahn, 2021).
Induction of temperate cyanophage was observed with increasing temper-
atures (Chu et al., 2011; McDaniel et al., 2002; Rimon and Oppenheim,
1975), shifting phage impacts on nutrient cycling more toward viral shuttle
than shunt.

Ocean stratification was correlated with cyanophage abundance and
phylotype in natural populations, with minimal abundance at stable stratifi-
cation (Maidanik et al., 2022). Stratification is associated with cyanobacteria
community composition, with physiologically distinct Prochlorococcus and
Synechococcus ecotypes observed in low light, high nutrient deep euphotic
zone conditions compared to high light, low nutrient surface conditions
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(Ahlgren and Rocap, 2006; Campbell and Vaulot, 1993; Partensky et al.,
1996). Cyanophage abundance reflects this host stratification, with peak
abundances occurring at the maximum abundance of Prochlorococcus ecotypes
(Fuchsman et al., 2021) adapted to low light (near the base of the euphotic
zone) and high light (surface waters). Cyanophage phylotype also correlated
with stratification, with cyanophages carrying multiple photosystem genes
dominant at the primary chlorophyll maximum depth and those carrying
multiple nucleotide biosynthesis genes increasing with depth (Fuchsman
et al., 2021). Although cyanophage diversity appears to positively correlate
with stratification, dissecting the impacts of light, temperature, nutrient
availability, and host abundance on this trend is difficult (Maidanik et al.,
2022; Wilson et al., 2000).

Cyanophage abundance and infection dynamics are also impacted by
nutrient availability. Phosphate depletion in cyanophage—host incubations
increased latent period, decreased burst size, and decreased cell lysis,
suggesting a switch to a more temperate life cycle under phosphate depletion
(Cheng et al., 2019; Shang et al., 2016; Wilson et al., 1996), although con-
flicting impacts on viral adsorption were also observed. Phosphate addition
in a mesocosm study resulted in an increase in viral abundance (Wilson et al.,
1998), potentially reflecting an induction of temperate cyanophage. The
observation of decreasing cyanophage titers along a transect from coastal
to oligotrophic waters (Sullivan et al., 2003) also supports the hypothesis
of a connection between phosphate availability and infection dynamics.
Few studies have discussed the effect of nitrogen availability on cyanophage
infection dynamics, though multiple studies have evaluated the impacts of
cyanophage infections on the fate of nitrogen. Cyanophage infection has
sustained nitrogen uptake and fixation, and impacted nitrogen flow through
incorporation of extracellular nitrogen into new phage particles or the
release of nitrogenous compounds with host lysis (Kuznecova et al.,
2020; Pasulka et al., 2018; Waldbauer et al., 2019). More thorough exper-
imentalist studies of cyanophage infection dynamics and life history will help
unvelil the potential carbon cycle impacts of cyanophage—host interactions in
the changing ocean. In particular, improved understanding of the critical
roles of key available nutrients, such as iron, phosphorus, and nitrogen
(the abundance of which will certainly change alongside the broader physical
and chemical changes in the ocean) will shape predictions of viral-mediated
carbon release from oceanic cyanobacteria.
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3.2 Viral interactions in phytoplankton groups critical

in the oceanic carbon cycle
3.2.1 Viruses of haptophytes—Coccolithophores and Phaeocystis
The haptophytes, or prymnesiophytes, consist of ~500 living species (within
50 genera) of primarily marine unicellular, photosynthetic, globally distrib-
uted algae, some of which synthesize biominerals which are incorporated
into the geological sediment record. Perhaps the best-known haptophytes
are coccolithophores, which enhance transport of particulate organic carbon
(POC) from the upper ocean to the seafloor through calcification, a light-
dependent process that produces particulate inorganic carbon (PIC) in the
form of calcium carbonate (CaCQOs3) plates known as coccoliths (Paasche,
2001; Rost and Riebesell, 2004). Globally, coccolithophores account for
at least half of the annual 80—120 Tmol of PIC produced in the pelagic ocean
(Balch et al., 2007; Berelson et al., 2007; Broecker and Clark, 2009;
Westbroek et al., 1993), with ~50% of this calcite reaching the sea floor
(Broecker and Clark, 2009). Given that calcite is denser and experiences less
water column dissolution than other ballast biominerals like biogenic silica,
coccolith-associated calcite is responsible for up to 83% of the carbon flux to
depth globally (Klaas and Archer, 2002). Thus, fluctuations in PIC and/or
POC production by coccolithophores under different environmental
conditions can impact associated CaCO3:POC ratios (or “rain ratios”) with
important implications for the efficiency of the biological pump (Armstrong
et al., 2001; Klaas and Archer, 2002; Ridgwell et al., 2009).

Arguably, the most direct evidence for stimulation of carbon export by
virus infection comes from the globally distributed, cosmopolitan
coccolithophore, E. huxleyi. E. huxleyi forms massive blooms spanning hun-
dreds of square kilometers across diverse oceanic regimes excluding the polar
oceans (Tyrrell and Merico, 2004), but that is likely to change with climate
alterations. These blooms, which develop and then fade over ~10days, are
detected by Earth-observing satellites and are routinely terminated by lytic
dsDNA-containing coccolithoviruses called EhVs (Bratbak et al., 1993;
Vardi et al., 2012). As members of the Phycodnaviridae, EhVs are giant
microalgal viruses (~180 nm in diameter) with an extensive genetic capabil-
ity (~407kb genomes) for manipulating host metabolic pathways for their
replication (Castberg et al., 2002; Schroeder et al., 2002; Van Etten et al.,
2002; Wilson et al., 2005). A variety of lipid- and nucleic acid-based bio-
markers have been developed using both sensitive and resistant strains of
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E. huxleyi and various strains of EhVs (Bidle and Kwityn, 2012; Bidle
et al., 2007; Fulton et al., 2014; Hunter et al., 2015; Kendrick et al.,
2014; Nissimov et al., 2019a, b; Rose et al., 2014; Rosenwasser et al.,
2014; Schieler et al., 2019; Sheyn et al., 2016, 2018; Vardi et al., 2009,
2012; Ziv et al., 2016) in both lab-based model systems for which reference
genome sequences and transcriptomic responses for hosts and viruses exist
(Allen et al., 2006a, b; Nissimov et al., 2013, 2016, 2017; Wilson et al.,
2005) and for natural populations (Hunter et al., 2015; Knowles et al.,
2020; Laber et al., 2018; Sheyn et al., 2018; Vardi et al., 2009, 2012;
Vincent et al., 2021). This has unlocked unprecedented insight into EhV
infection strategies, ecological connections, and biogeochemical outcomes
(Bidle, 2015; Bidle and Vardi, 2011). Direct evidence for viral stimulation
of both POC and PIC export comes from the North Atlantic Virus Infection
of Coccolithophores Expedition (NA-VICE) for which the aforementioned
diagnostic markers were used to diagnose mesoscale (~50-100km) E. huxleyi
blooms within early-, late- and post-infection stages (Laber et al., 2018).
Active, early infection of E. huxleyi blooms greatly increased export fluxes
of both PIC and POC from the surface mixed layer into the mesopelagic,
thereby increasing biological pump efficiency and “shuttling” carbon to depth
aided by the dense, calcite biomineral. Carbon export fluxes down to 300 m
were measured both using Particle Interceptor Traps (PITs) and optical pro-
filers, equipped with backscatter, fluorescence, and oxygen sensors, through
which spike signatures and associated carbon respiration were quantified into
the mesopelagic (Laber et al., 2018). Preferential export and sinking of
infected cells from the overlying surface waters was confirmed by the enrich-
ment of infection-specific lipids (viral glycosphingolipids and betaine-like
lipids) ratios in sedimenting particles, along with gene expression profiling
(Sheyn et al., 2018). Active infection in sinking aggregates has since been cor-
roborated using high-throughput single-molecule messenger RNA in situ
hybridization (smFISH) in coastal populations (Vincent et al., 2021). Taken
together, they provide “smoking gun” evidence for virus-mediated carbon
export (Laber et al., 2018).

Carbon export is facilitated by virus-induced, cellular production of
TEP, a sticky acidic polysaccharide with a density of ~0.8 gcm ™, produced
in response to viral infection (Nissimov et al., 2018). Under the right micro-
scale physical conditions where particle encounters are accentuated (Box 1),
the overproduction of sticky TEP by infected cells aggregates cells, cellular
debris, and dense coccolith biominerals into larger aggregates with high
sinking transport rates into the mesopelagic. Large-scale infection-induced
coccolith shedding (Johns et al., 2019), as well as recent surprising findings
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that coccolith biominerals interactively adsorb both cells and viruses (C.T.
Johns, Personal communication, 2022), enhance infections and entrain large
pools of ballast biominerals into aggregating particles, further facilitating
export to depth with important implications for carbon sequestration over
long geologic timescales.

Despite the availability of a unique suite of biomolecular tools for diag-
nosing coccolithophore infection at sea, predicting the outcome of infection
events in terms of attenuation and rapid respiration of carbon in the surface
ocean (virus shunt) or aggregation and export of carbon into the mesopelagic
(virus shuttle) remains a challenge (Fig. 1). Predicting these outcomes is crit-
ical, because they determine whether carbon remains active or is sequestered
for hundreds to thousands of years depending on sinking depths reached. A
few mechanisms have surfaced in the E. huxleyi system that can toggle these
respective outcomes of bloom demise. These mechanisms serve to critically
inform our thinking and predictive understanding in our virus—host systems.

The first mechanism is the relative ability of EhV strains to induce sticky
exopolymer production (e.g., TEP) and stimulate particle formation. EhV
strains can have different infection dynamics in culture, based on their reg-
ulation of lipid metabolism and the nature and activity of their encoded ser-
ine palmitoyl transferase (SPT) enzymes, which impact host cell responses to
viral infection, TEP production, and aggregation (Nissimov et al., 2018,
2019a, b). For example, fast-infecting, more virulent viruses generate more
TEP and their characteristic SPT gene signatures are more enriched in sink-
ing particles found at depth (~150m). Conversely, slow-infecting, less vir-
ulent EhVs are more widely distributed in surface populations and less
connected with exporting particles (Nissimov et al.,, 2019a, b), despite a
wider host infection range. It is critical to note that in these examples the
differing life history strategies of the infecting EhV changed the fate of car-
bon existing within E. huxleyi biomass.

Secondly, the fate of carbon during infection is fundamentally impacted
by the mode of infection itself. Due to a lack of diagnostic infection markers,
limited understanding of infection dynamics has fundamentally hampered
our ability to discern how virioplankton populations actually impact the fate
of carbon in natural systems. Another confounding factor has been the tra-
ditional emphasis on studying virus—host systems in lab cultures that exceed
virus and host concentrations by orders of magnitude over those observed in
natural systems. The E. huxleyi—EhV system, a traditional paragon of viru-
lence, was recently shown instead to be characterized by fundamentally
different, temperate infection dynamics (Knowles et al., 2020). Rather than
showing density-dependence, EhVs exhibit extended asymptomatic
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infection during bloom formation (virus—host “Détente”), only killing their
hosts when they become stressed upon resource limitation (a viral-mediated
“Coup de grace”), suggesting that viral propagation and bloom termination
are physiology-dependent rather than density-dependent processes.
Corroborating evidence for the chronic release of particles from
E. huxleyi cells in the absence of lytic infection was also recently demon-
strated in natural, coastal populations (Vincent et al., 2021). This Coup de
grace model challenges long-held tenets in oceanography and viral “rules
for infection strategy” with broad implications. Temperate infection in
E. huxleyi may explain how EhV infection is sustained despite the encounter
rate gap (K. Bondoc, Personal communication, 2022) between free viruses
and E. huxleyi cells existing in the dilute ocean conditions. Temperance
could aid in spreading EhV across micro- (microns) to meso-scales (kilome-
ters) to collapse blooms the size of small countries, particularly under envi-
ronmental conditions that present barriers to virulent transmission like low
virus—host encounters, rapid viral decay, and absorptive particles. These
barriers apply universally to viruses infecting oceanic microbial hosts.
Thus some measure of “temperate” phenotypes outside of the classic models
identified for well-known experimental virus—host systems, as possibly seen
in pelagiphages carrying integrase genes (Zhao et al., 2019b), may be essen-
tial to the propagation of many oceanic viral populations. Beyond EhV
dynamics, it is likely that other traditionally strictly “virulent” models actu-
ally show environmentally and physiologically induced temperate behavior.
Transitioning from density- to physiologically-driven viral controls of
bloom formation and decline is also a major shift in how we view and model
bloom growth and death processes. Such a relationship resembles condi-
tional symbiosis (Roossinck and Bazan, 2017), which can enhance host
proliferation and reduce predation, with transition to lethal lytic stages hap-
pening when host cells become physiologically stressed and the symbiosis
breaks down. It highlights the need for conceptual and experimental empha-
sis on coupled virocell interactions at the microscale driving bloom forma-
tion and propagation across mesoscales based on altered host physiology
rather than virus—host densities.

Lastly, the mechanisms and degree to which virus infection couples with
grazing activity can significantly shape carbon cycling outcomes. TEP plays
an outsized role in this context. Because TEP facilitates aggregation and
stimulates sinking of infected particle aggregates, it can also serve to couple
infection and grazing by shifting the availability of infected cells towards
larger, macrozooplankton grazers which produce fecal pellets with very
high sinking speeds (hundreds of md™"). This process further shuttles
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virus-infected cells to depth. Direct evidence for this phenomenon in natural
populations came by examining the gut contents of copepods for the pres-
ence of infected E. huxleyi cells. EhV major capsid protein genes were
detected 1n nearly all collected copepods (Frada et al., 2014). Subsequent
production of fecal pellets further enhances export of infected material,
essentially “lubricating” the biological pump for greater efficiency in carbon
export. Observations of virus—zooplankton coupling suggested that such
processes may also serve as possible transmission vectors for virus infection
in the upper ocean as macrozooplankton (e.g., copepods) swim and verti-
cally migrate through the water column (Frada et al., 2014).

Another cosmopolitan, bloom-forming haptophyte genus that is a key
contributor to primary productivity and biogeochemical cycling in high
latitude and polar environments is Phaeocystis. This unicellular algal genus
displays a unique ability for cycling between single, flagellated cells and colo-
nial, non-flagellated cells. This physiology is particularly relevant to carbon
cycling and the coupling of virus infection and grazing as relevant carbon loss
factors. In their colony form, prominent Phaeocystis species (e.g., P. pouchetii
and P. globosa) routinely dominate phytoplankton communities, and field
studies indicate that virus infection is a dynamic component involved in
the decline of Phaeocystis blooms (Brussaard et al., 2007).

Viruses that infect species of Phaeocystis have been isolated in natural
blooms (Baudoux and Brussaard, 2005; Brussaard et al., 2004; Jacobsen
et al., 1996) and, like EhVs, belong to the Phycodnaviridae family of
nucleocytoplasmic large DNA-containing viruses (NCLDVs) (Van Etten
et al., 2002). During infection Phaeocystis viruses induce morphological,
physiological, and wviability changes in their host populations (Bratbak
et al., 1998b; Brussaard et al., 2001; Jacobsen et al., 1996). Mesocosm and
field studies on natural populations provided evidence that viruses could
be important mortality agents for P. globosa and P. pouchetii as the concen-
trations of Phaeocystis viruses exceeded respective host concentrations by
30- to 100-fold during bloom maxima (Brussaard et al., 2004, 2005a;
Larsen et al., 2001). This phenomena is heavily impacted by Phaeocystis life
cycle stage, with the single-cell stage of P. globosa supporting 30% increases
in P. globosa virus (PgV) concentrations, as compared to the colonial form,
resulting in prevention of a P. globosa bloom.

Observations of P. globosa bloom dynamics has implicated cell lysis
being responsible for loss rates of up to 30% d ™' (Brussaard et al., 1995), with
viruses being the most likely cause (Baudoux and Brussaard, 2005; Brussaard,
2004; Brussaard et al., 2005b; Larsen et al., 2001). In cultivation studies, viral
lysis rates of Phacocystis cultures have been observed as high as 80% d™'
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(Brussaard et al., 1999). Unfortunately, methods for specific and accurate
determination of viral-mediated mortality of Phaeocystis (and other key phy-
toplankton genera) in natural waters are still lacking. Adaptations of the clas-
sical grazer dilution method (Baudoux et al., 2006), originally designed to
determine microzooplankton grazing rates (Evans et al., 2003; Landry and
Hassett, 1982), have shown limited success with large error in viral lysis esti-
mates (see Section 4.2 for more information). Other mortality estimates have
relied on virus production and loss rates, combined with assumed burst sizes
and measurements of total cell lysis (Baudoux et al., 2006). Observations of
P. globosa blooms have showed microzooplankton grazing dominating cell
loss during bloom development, while viral lysis became increasingly impor-
tant at later stages, with rates comparable to grazing (as high as 35% d ') and
accounting for over 50% of the total loss of single-cell morphotypes
(Baudoux et al., 2006). Modeling also supports the dominance of viral lysis
as the principal loss of P. globosa single cells (Brussaard et al., 2007). Colonies
appear to be protected against grazing and viral infection, allowing for bio-
mass accumulation and bloom development. Indeed, modeled carbon bud-
gets showed P. globosa dominated primary production only when colonies
were present (68% of total). Moreover, daily carbon flux from viral lysis
was 10-fold higher with only single cells present as compared with condi-
tions that included colonies (115 vs. 11pgCL™"). Viral lysis respectively
accounted for 2% and 53% of daily P. globosa primary production with
and without colonies present.

Energy flow and biogeochemical cycling within pelagic and benthic
ecosystems where Phaeocystis is an important phytoplankton group is highly
influenced by the fate of Phaeocystis primary production (Schoemann et al.,
2005). Extensive viral lysis provides a source of DOM and regenerated
inorganic nutrients in the euphotic zone (i.e., the viral shunt) (Brussaard
et al., 1996; Gobler et al., 1997; Ruardjj et al., 2005; Wilhelm and Suttle,
1999). In P. pouchetii cultures, viral lysis rapidly (within 3 days) drove algal
biomass into DOC (Bratbak et al., 1998a). Observations of Phaeocystis
blooms showed that viral lysis stimulated bacterial secondary production
(Brussaard et al., 2005a), with carbon release from Phaeocystis cell lysis
accounting for bacterial carbon demand. Observed shifts in responding bac-
terial community composition resulted in differential DOC fate, such that
sudden lysate bursts of readily degradable and organic nutrient-rich DOC
favored opportunistic bacterioplankton populations (Brussaard et al.,
2005b). Similar observations of efficient trophic coupling have been made
in model ecosystems with P. pouchetii, P. pouchetii virus (PpV), bacteria, and



Virioplankton, the carbon cycle, and our future ocean 103

heterotrophic nanoflagellates (HNF). Infection of P. pouchetii by PpV had
strong positive effects on the concentrations of bacteria and HNF, with the
mass balances of carbon, nitrogen, and phosphorus implicating efficient het-
erotrophic biomass transfer upon viral lysis (Haaber and Middelboe, 2009).

An intriguing finding related to carbon flow and possible coupling of
viral lysis to grazing is that viral infection of P. globosa impedes the formation
of carbon-enriched chitinous star-like structures, as visualized in single cells
by high resolution nanometer-scale, secondary-ion mass spectrometry
(nanoSIMS) and atomic force microscopy (AFM) (Sheik et al., 2013).
Uninfected cells transfer up to 44.5mmolCL™" (36%) of cellular biomass
in the form of these structures, implicating the star-like structures as having
an important role in cell survival. Viral infection impedes the release of these
structures and facilitates the formation of aggregated flocs after cell lysis
which make infected cells more susceptible to grazing and possibly accen-
tuates the virus shuttle.

3.2.2 Viruses infecting unicellular chlorophytes—Micromonas
and Ostreococcus

Chlorophytes consist of cosmopolitan, unicellular picoeukaryotic (<2 pm in
diameter) taxa of the green plastid lineage (Lewis and McCourt, 2004) found
in both coastal and oceanic systems (Foulon et al., 2008; Guillou et al.,
2004). Although often less abundant than prokaryotic picophytoplankton
(e.g., marine cyanobacteria Prochlorococcus and Synechococcus) and generally
not forming massive mesoscale blooms (unlike the aforementioned
haptophytes), these picoeukaryotes can account for more biomass per cell
(6.5- to 14-fold more carbon) and can exhibit higher growth rates than
the evolutionarily distant picophytoplankton. Because of this biomass differ-
ence, picoeukaryotes account for 76% of the net carbon production in oce-
anic ecosystems, while helping to facilitate carbon transfer to higher trophic
levels through grazing (Worden et al., 2004). Understanding the turnover of
picophytoplankton biomass through viral infection is important for under-
standing the global carbon cycle as picoeukaryotes account for such a large
portion of carbon production (Cottrell and Suttle, 19952). In some cases,
viral lysis has been estimated to consume 9-25% of picoeukaryote standing
stock each day (Evans et al., 2003). Species within two major chlorophyte
genera, Micromonas and Ostreococcus, have been used as model organisms for
exploring virus—host infection dynamics within marine chlorophytes, with
most of the experimental work focused on Micromonas virus—host systems.
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In fact, the first reported dsDNA virus infecting a marine eukaryotic phy-
toplankton infects a Micromonas host (Mayer and Taylor, 1979).

Studies have explored some of the factors that impact infection dynamics
within chlorophytes, including light (Baudoux and Brussaard, 2008; Brown
et al., 2007; Derelle et al., 2018; Zimmerman et al., 2019); UV-radiation
(Eich et al., 2021); nutrients including nitrogen, phosphorus, and iron
(Bachy et al., 2018; Maat and Brussaard, 2016; Maat et al., 2014; Slagter
et al., 2016); as well as temperature (Demory et al., 2017). In Micromonas
cultures adapted to different light regimes (25, 100, and 250 mmol photons
m~Zs ), the impact on infection dynamics was relatively minimal, with all
treatments undergoing cell lysis within 10—20h post infection with similar
burst sizes (285-360 viruses cell ') (Baudoux and Brussaard, 2008).
Similar results were shown for Ostreococcus, however reduced burst sizes
were observed at lower light levels (15mmol photons m™ >s™ ') in two dif-
ferent virus strains (Zimmerman et al., 2019). Complete darkness inhibits
viral replication (Baudoux and Brussaard, 2008), potentially from reduced
viral adsorption to cells, which was also observed in the E. huxleyi~EhV sys-
tem (Thamatrakoln et al., 2019). However, when viruses do infect, light
impacts the timing of viral gene expression, with 96.8% of predicted viral
genes transcribed at night in the dark (Derelle et al., 2018) albeit only
observed in Ostreococcus thus far. UV exposure is also expected to play a role
in infection dynamics, especially with intensified vertical stratification
predicted due to climate change, and it has been shown that greater than
28h of exposure to UV-AB wavelengths lowered viral production in a
Micromonas polaris virus—host system (Eich et al., 2021).

Nutrient limitation (i.e., reduced nitrogen and phosphorus) has a mixed
impact on the latent period of infection in a Micromonas pusilla virus—host
system (Maat and Brussaard, 2016; Maat et al., 2014), with nitrogen-limited
cells showing no change (Maat and Brussaard, 2016), and phosphorus-
limited cells showing a longer latent period in some cases (Maat et al.,
2014). However, under both nitrogen and phosphorus limitation, there
was lower viral production vyielding lower burst sizes (Maat and
Brussaard, 2016), with some examples citing a lower percentage of lysed cells
under phosphorus limitation (Bachy et al., 2018). Iron limitation also lowers
burst sizes, as well as reduces the infectivity of viruses by ~30% (Slagter et al.,
2016). In addition, temperature has an important impact on infection
dynamics. When cells were grown below their predicted optimum temper-
ature, infections took longer with reduced viral production, whereas cells
grown above their optimum temperature did not undergo cell lysis
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(Demory et al., 2017). Similar results were observed in the E. huxleyi—EhV
system, where cells grown at higher temperatures (i.e., 21°C instead of
18°C) were not infected (Kendrick et al., 2014). Although these were
reductionist experimental systems, they nevertheless illustrate that a few
degrees of increased temperature (which is an increasingly common occur-
rence as the ocean changes along with the climate) can have a dramatic
impact on virus—host interactions.

Ultimately, a better characterization of infection dynamics and viral life
strategies under varying conditions will help us understand the role that
chlorophyte infection plays in regulating the flow of carbon between the
shunt (carbon retention) and shuttle (carbon export) (Fig. 1). Some viral
mortality studies in Micromonas have suggested that viruses can coexist stably
within Micromonas populations (Cottrell and Suttle, 1995b) instead of induc-
ing rapid cell lysis (Zingone et al., 1999). These observations suggest a mode
of viral infection that is more temperate than virulent in nature. This would
support the observation mentioned above that the E. huxleyi-EhV system
shows a more temperate infection strategy at environmental host concentra-
tions instead of the virulent dynamics shown in lab culture experiments
(Knowles et al., 2020). While it has been shown that infection increases
the release of DOM, there is also evidence demonstrating that TEP produc-
tion increased during viral infection, similar to what has been observed in the
E. huxleyi~EhV system (Nissimov et al., 2018). This increased TEP produc-
tion can promote particle aggregation and sinking (Lonborg et al., 2013), a
key factor to increasing biological pump efficiency. This provides some
lab-based evidence that infection could help stimulate carbon export; how-
ever, as TEP production was only measured in Micromonas, these observa-
tions will need to be expanded to other chlorophytes, like Ostreococcus, to
determine if any genera-specific variability exists among chlorophytes.
Field work recently demonstrated a potential link between chlorophyte
infection and carbon export. One study examined the impact of viral com-
munity composition (using the Tara Oceans dataset; Guidi et al., 2016) on
carbon export efficiency and found that viruses infecting chlorophytes were
positively correlated with carbon export efficiency (Kaneko et al., 2021).
Overall, these studies highlight the potential link between infection of these
picoeukaryotic phytoplankton and carbon export. They also highlight the
need for expanded lab-based studies using other genera and species of
chlorophytes to better understand genera/species-specific responses during
infection, as well as more field-based observations to improve understanding
of virus—chlorophyte infection dynamics in natural systems. This could be
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achieved with the development of better diagnostic biomarkers like the
lipid-based biomarkers in the E. huxleyi~EhV system (Laber et al., 2018;
Vardi et al., 2009) for interrogating the infection state of chlorophyte
populations. Expanded lab- and field-based observations will help in inter-
preting the role of chlorophyte viruses in regulating biological pump efti-
ciency and their impacts on the carbon cycle.

3.2.3 Diatom viruses

Diatoms are among the most widely distributed and diverse eukaryotic phy-
toplankton in the global ocean (Malviya et al., 2016), contributing up to 40%
of total marine productivity (Field et al., 1998). Despite their global dom-
inance and importance in the global carbon cycle, it took 15 years after the
discovery of high viral abundance in the ocean (Bergh et al., 1989) for the
first diatom virus to be discovered (Nagasaki et al., 2004). Once considered
immune to viral infection due to the physical protection of their silica-based
cell walls, the discovery of diatom-infecting viruses revealed a unique and
unclassified group of marine viruses. Unlike bacteriophages and viruses
infecting eukaryotic phytoplankton groups, diatom viruses are unique with
genomes comprised of either single-stranded ssRINA or ssDNA and virions
among the smallest ever observed (~20—40nm in diameter; Nagasaki et al.,
2004; Tomaru et al., 2015). These characteristics contrast greatly with the
large capsid sizes and equally large dsSDNA genomes of the “giant” viruses
infecting haptophytes. Diatoms disproportionately contribute to carbon
export owing to their biomineralized, silica-ballasted cell wall. Likewise,
viruses that infect and subsequently cause diatom mortality can dispropor-
tionately impact the global carbon cycle.

Around 30 distinct ssRINA or ssDNA diatom viruses have been discov-
ered and isolated from both marine and freshwater environments (reviewed
in Arsenieff et al., 2022). These viral genomes range from 5 to 9 kb in length
and contain between two and four predicted genes, which encode for a rep-
lication enzyme (e.g., RNA-dependent RNA polymerase for the ssRINA
viruses or replicase for the ssDNA viruses), a viral capsid structural protein,
and one or two unknown proteins. All known diatom viruses exhibit lytic
infection, causing host lysis and mortality within 2—10 days of infection.
However, evidence for the production of viruses prior to host lysis
(Kimura and Tomaru, 2015; Shirai et al., 2008; Tomaru et al., 2014) suggests
that a chronic or lysogenic life cycle may potentially exist among
diatom-infecting viruses. Given the limited studies on lysogeny in diatom
viruses, we will focus here on lytic infection and its subsequent impacts
on carbon cycling.
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With burst sizes ranging from 10" to 10> viruses produced per host cell,
diatom virus abundance could equal or exceed the abundance of all other
algal viruses combined. However, unlike these other systems, diatom viruses
do not contain auxiliary metabolic genes like cyanophages (Hurwitz and
U’Ren, 2016; Thompson et al., 2011) and roseophages (Huang et al.,
2021). Similarly, there is no evidence for coordinated host and viral gene
expression as seen in the E. huxleyi-EhV system (Sheyn et al., 2018).
Thus, the impact of diatom viruses on the fate of diatom organic matter
and associated elements is likely dictated by changes in host metabolism/
physiology and/or the dynamics of infection, both of which can tip the bal-
ance between viral lysis as a shunt or shuttle of diatom biomass.

Recent studies highlighting the dynamic nature of diatom virus—host
interactions suggest environmental conditions and host physiology play a
critical role in determining whether viruses act as shunts or shuttles.
Nutrient availability is an important factor influencing the timing of
viral-induced host lysis and mortality. It was found that silicon and iron lim-
itation had distinct and opposing impacts on infection of both natural diatom
communities and laboratory virus—host model systems (Kranzler et al., 2021,
2019). As obligate silicifyers, diatoms require silicon for cell wall, or frustule,
synthesis. Diatoms respond to short-term silicon limitation by decreasing
biogenic silica production in favor of maintaining maximum growth
(Brzezinski et al., 1990; McNair et al., 2018), but after prolonged limitation,
undergo cell cycle arrest and eventual physiological stress and mortality.
Diatom viruses appear to capitalize on this weakened state accelerating the
latent period and time to host lysis (Kranzler et al., 2019), suggesting that
infection under silicon-limiting conditions would favor the viral shunt. In
contrast, iron limitation of diatoms appears to slow infection, leading to a lon-
ger latent period and significantly delaying and reducing host mortality
(Kranzler et al., 2021). Temperature also impacts diatom virus infection
dynamics in Chaetoceros tenuissimus virus—host systems (Tomaru et al.,
2014). Higher temperatures accelerated viral-induced mortality for a
ssDNA virus infecting all C. fenuissimus strains but showed differential strain
effects for an infecting ssRINA virus. Here again, a critical physical parameter,
temperature, predicted to increase within the oceanic regions diatoms inhabit,
can have strain-specific impacts on virus—host interactions and likely
knock-on effects on carbon cycling from this important phytoplankton group.

Working counter to the processes that might facilitate the viral shunt are
those that would favor the viral shuttle. Similar to E. huxleyi, viral infection
of diatoms stimulates particle aggregation, although diatoms aggregation pro-
cesses are mediated by the production of proteinaceous, Coomassie-stainable
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particles, rather than TEP (Yamada et al., 2018). An additional mechanism
facilitating the viral shuttle are recent reports that viral infection induces spore
formation in Chaetoceros socialis (Pelusi et al., 2021). Spores represent a resting
stage of diatoms characterized by a heavily silicified cell wall that has been asso-
ciated with mass export events in the North Atlantic (Rynearson et al., 2013).
The induction of spore formation by viral infection appears to be a defensive
strategy as “infected” spores failed to propagate or transmit infectious viruses
upon germination. Nevertheless, this phenomena adds to a growing list of
virus-induced physiological changes in host cells that may have significant
impacts on oceanic carbon cycling.

3.2.4 Dinoflagellate viruses

Among major eukaryotic phytoplankton groups, dinoflagellates are unique
being well-characterized as mixotrophs and contributing to the carbon cycle
as both autotrophic primary producers and heterotrophic secondary con-
sumers. Despite the ubiquity, diversity, and abundance of dinoflagellates
in marine environments, Heferocapsa cicrularisquama, a dinoflagellate capable
of forming harmful blooms, is the only host for which viruses have been
identified. Two genomically distinct viruses have been identified to infect
H. ccrularisquama—a dsDNA virus, HCDNAV (Tarutani et al., 2001), and
a ssRINA virus, HCRNAV (Tomaru et al., 2004). Both viruses remain tax-
onomically unclassified, but both induce host lysis in culture and in natural
communities (Takano et al., 2018; Tarutani et al., 2001; Tomaru et al.,
2004). The appearance of thick-walled cysts in infected cultures and success-
ful regrowth has led to the hypothesis that a virus-induced shift in life stage
may represent a host defense strategy (Nagasaki et al., 2003; Tarutani et al.,
2001; Tomaru et al., 2004) as has also been proposed in diatoms (Pelusi et al.,
2021). Fast-sinking dinoflagellate cysts have been observed to dominate
sinking material (Heiskanen, 1993), thus representing another link between
viral infection and carbon export. Furthermore, a recent study estimates
dinoflagellates may contribute up to 35% of sinking carbon in certain regions
of the ocean (Juranek et al., 2020). With predictions that harmful algal
blooms, particularly those dominated by dinoflagellates, may become more
prominent in a future ocean (Brandenburg et al., 2019; Glibert et al., 2014;
Gobler et al., 2017), more in-depth studies are critically needed on physical
encounter rates of hosts and viruses (given dinoflagellates actively swim), as
well as how viruses impact growth, life stage, and mortality of this severely
understudied group of phytoplankton.
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Each of the aforementioned virus—host players influence the bioavailabil-
ity, location, biochemical form, and fate of light-derived carbon. However,
virus—host dynamics occur within a complex landscape of physical, biolog-
ical, and chemical contexts. These contexts can be divided into three main
components: (1) physical processes, e.g., how particles move and interact
(Box 1); (2) organic matter biochemistry from cell lysis, e.g., ballast, density
of individual OM components, and DOM (labile) vs. POM (recalcitrant)
organic matter; and (3) biological contexts of the community, e.g., commu-
nity composition of both hosts and viruses, and viral life history (Fig. 1).
Even under predictable and well-established climate conditions, these com-
ponents can individually and interactively influence both the probability of
virus—host interactions, and the probability of organic material from cell lysis
contributing to either the viral shunt or the viral shuttle (Fig. 3 and Boxes 1
and 2). Under climate change regimes, the carbon cycling consequences of
changes in physical, chemical, and biological context are even more elusive
to track, characterize, and mimic experimentally. Therefore, detecting gen-
eralizable patterns in virus-mediated carbon cycling under climate change
conditions requires that marine virology must integrate improved viral
infection dynamics data into biogeochemical modeling.

4. Modern approaches to investigating virus—host
dynamics in a changing climate

Given that life history strategies underpin infection dynamics, under-
standing how viral life history strategies alter carbon flow is critical to con-
necting genomic data to ecological forecasting. Leveraging ‘omic
approaches and global modeling approaches in marine virology will likely lead
to improved forecasting of virus—host responses to climate change. For exam-
ple, data mining well-established metagenomes libraries for replication marker
genes experimentally proven to correlate with life history strategies could pro-
vide real-time evidence for fluctuations in favored life history strategies under
different oceanic conditions (seasonality, bloom associations, temperature var-
iation, storm or upwelling events, etc.). Integrating those predicted life history
strategies with current climate models forecasts of changing climatic conditions
may support predictions of virus shunt- or shuttle-dominance in future oceans.
Here, we highlight the potential for expanded ‘omics toolboxes and modeling
approaches to shed light on population dynamics and function, forecast eco-
logical changes in viral life history strategies, and consequently better forecast
the role of viruses in mediating carbon flux and fate at a global level.
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4.1 Using the meta-omics toolbox for understanding
virioplankton carbon cycle dynamics

Viral life history strategy, the physiological changes occurring in virocells,
and the unique character of OM released from infected and lysed cells all
play an important role in shaping the flow of carbon through oceanic micro-
bial communities. Measuring the details of these three phenomena—viral
life history, virocell physiology, and OM release—seems an intractable
problem given the vast diversity of oceanic virus—host systems. However,
modern ‘omics tools now provide unprecedented capacity for observing
virus and host communities at the population scale. Today, using
high-throughput DNA sequencing technologies, viral oceanographers can
identify unknown viral populations (Bin Jang et al., 2019; Roux et al.,
2019), the hosts they may infect (Ahlgren et al., 2017), each population’s
potential functional capabilities through the genes they carry, and even a
population’s gene activity. This suite of approaches is known as meta-
genomics when sequencing viral genomic material (DNA and RNA) and
metatranscriptomics when sequencing host cell messenger RNNA. With
high-resolution mass spectral analyses, viral oceanographers can track
real-time changes in the organic matter released from infected cells or from
cell lysis. Collectively these approaches are referred to as metabolomics.
Continuous technological improvements and reductions in analytical costs
have steadily widened the application of metagenomics and metabolomics
approaches in viral ecology, but there is still much work to be done in fully
leveraging these emerging technologies for understanding how virus—host
interactions shape oceanic carbon cycling.

Continuous technological advancement, the increasing availability of
high-throughput DNA sequencing, and bioinformatics algorithms for
sequence analysis have transformed 21st century virioplankton research.
Each sequencing technology and experimental approach provides unique
advantages in studying virus—host systems and virioplankton communities.
DNA sequencing technologies can be divided into two broad groups based
on sequence read length and accuracy, features that to-date have been ana-
lytical tradeoffs. Instruments with short read lengths (i.e., less than ~250bp)
often have the highest accuracy and provide the largest volume of data per
analytical run. These instruments also have the lowest per bp cost. These
features have made short-read technologies attractive for metagenomic ana-
lyses, where massive data volume provides deep sampling of even rare
populations within the virioplankton. However, accuracy and affordability
come at the expense of observing true biological sequences. Each individual
short read typically provides too little of its parent gene sequence for reliable
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assessment of gene identity and function. In other words, the information
content of each short read is insufficient for most purposes in studying
the genetic potential of unknown viral populations (Wommack et al.,
2008). However, large metagenome libraries of individual short sequence
reads can provide useful ecological and biological information if the reads
are “mapped” (matched by sequence homology) to longer sequences such
as whole viral genomes or long contiguous genome fragments (contigs).

Thus, an essential step in fully leveraging the information content of a
virome (viral metagenome) is assembly of the short read library into contigs.
Bioinformatic algorithms for short-read sequence assembly have seen dramatic
improvements in speed and computational efficiency and are freely available
(Boisvert et al., 2012; Ji et al., 2017; Li et al., 2016a; Liang and Sakakibara,
2021; Namiki etal., 2011; Nurk etal., 2017; Peng et al., 2012). The assembled
contigs, some even being complete viral genomes, are useful for defining
unknown viral populations and their genetic potential (Roux et al., 2019).
Standard best practices in defining the minimum information for an
uncultivated viral genome (MIUViIG) (Roux et al., 2019) aid all researchers
in leveraging contigs assembled in prior studies for new investigations.
Subsequent mapping of short-read sequence virome libraries against contigs
and complete viral genomes provides ecological information on the biogeo-
graphic and/or temporal prevalence and frequency of viral populations. The
key assumption behind this analytical approach is that the number of short
reads mapping to a contig indicates the abundance of the viral population rep-
resented by the contig. For example, mapping of short-read virome sequence
libraries to the genome sequences of pelagiphages demonstrated the broad
biogeographic distribution and high frequency of these phages in the global
ocean (Buchholz et al., 2021a, b; Zhang et al., 2021; Zhao et al., 2013). In
an analogous way, short-read metatranscriptome libraries of mRINA isolated
from host cell communities have been mapped to phage genomes and contigs
for assessing the lytic activity of phage populations (Alonso-Saez et al., 2018).
However, the scientific utility of short-read sequencing has limits in that only
a small percentage of virome contigs (~10% or less) are of sufficient length
(>5-10kb) for assessing the genetic content of unknown viral populations.
Moreover, sequencing of single virus particles purified directly from water
samples showed that microdiversity within viral populations may be a reason
that short-read sequence assembly fails in providing greater yield of long
virome contigs (Martinez-Hernandez et al., 2017).

Fortunately, alternative long-read sequencing technologies can over-
come some short-read sequencing limitations. Long-read sequencing
approaches yield more informative virome sequences that have been useful
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for examining virioplankton population microdiversity (Warwick-Dugdale
et al., 2019) and gene diversity within functional genomic modules of
unknown viral populations such as replication modules (Nasko et al.,
2018). However, the combination of long and short reads from the same
virioplankton DNA sample is essential as long-read technologies have error
rates approaching 10%. The most powerful approaches have used accurate
short reads for “correcting” sequencing errors in long reads, however, some
have shown that correction can be done without short reads (Beaulaurier
et al., 2020). Another limitation of long-read sequencing is the need for
larger input quantities of virioplankton DNA for sequencing, which requires
greater effort in water sample processing. While short-read sequencing is
possible from even sub-nanogram amounts of input DNA, long-read
sequencing typically cannot go below a microgram (without amplification).
The greater DNA requirements are, in part, a consequence of the fact that
for a given quantity of isolated DNA, only a fraction of the sequencing input
molecules will be of a sufficient length (i.e., >10kb) for which long-read
sequencing can be beneficial. Issues of input DNA quantity can be addressed
by inclusion of clever amplification approaches; however, amplification can
also be a source of significant bias, hampering the utility of sequencing for
quantitative ecological studies (Marine et al., 2014).

By and large, the scientific focus of metagenomic studies has been under-
standing the genetic and population diversity and community composition
of the virioplankton. However, less attention has been paid to leveraging
metagenomic data for predicting the prevailing life history characteristics
of virioplankton populations. The individual life history traits of virus—host
systems can critically shape carbon fate within oceanic ecosystems, for exam-
ple, pelagiphages and EhVs capable of toggling between temperate and vir-
ulent life cycles. This lack of attention largely stems from an inability to
accurately predict the phenotypes of an unknown virus based on its genome
sequence alone. Nevertheless, there are promising signs that environmental
virologists will eventually overcome the genotype to phenotype knowledge
gap and more fully leverage metagenomic information for making informed
predictions of how the collection of infection phenotypes observed across
virioplankton populations may impact carbon flow within oceanic microbial
communities. For example, the presence of auxiliary metabolic genes within
specific virioplankton populations demonstrates potential infection impacts
on the nitrogen (Ahlgren et al., 2019; Sullivan et al., 2010; Zhao et al.,
2022), sulfur (Anantharaman et al., 2014; Zhao et al., 2022), and phosphorus
(Huang et al., 2021; Kathuria and Martiny, 2011; Kelly et al., 2013) cycles, as
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well as host photosynthesis (Bailey et al., 2004; Fridman et al., 2017; Lindell
et al., 2005; Mann et al., 2003). Recent work has hypothesized that specific
single amino acid changes in PolA indicate whether an unknown phage
more likely follows a lytic, or lysogenic/pseudolysogenic life history strategy
(Schmidt et al., 2014). Examining genes neighboring PolA within the rep-
lication module such as helicase or RNR can provide even greater resolu-
tion as to the potential infection dynamics traits of an unknown virus (Nasko
et al., 2018; Sakowski et al., 2014). While so many of the putative genes
identified within viral genomes show no known function through sequence
homology, genome replication genes are well known, common, and widely
distributed across evolutionarily distant viral populations, making these
genes good targets for building hypotheses connecting viral genotype to
phenotype. Refining and testing genome to phenome hypotheses will
require both reductionist study of model oceanic virus—host systems and
application of metagenomics approaches for observing the behavior of spe-
cific viral populations in the ocean. The “holy grail” of this work will be in
developing analytical tools based on validated genome to phenome linkages
that predict the infection dynamics phenotypes of the hundreds of virus—host
pairs observed within marine microbial communities.

The ubiquitous presence and activity of viruses in microbial communi-
ties and their extraordinary genetic diversity, which includes the presence of
central cellular metabolic genes (i.e., termed auxiliary metabolic genes) in
viral genomes, has fundamentally changed scientific perspectives of viral
impacts on the life history of cellular microbes. Many now acknowledge that
a virocell is fundamentally diftferent from an uninfected cell in ways that
extend beyond simply its physiological trajectory for making new viruses
and eventual death by lysis (Forterre, 2011; Rosenwasser et al., 2016;
Zimmerman et al., 2020). However, the scientific challenges in understand-
ing the unique nature of the virocell lie first in observing the difterences
between infected and uninfected cells and then interpreting how these dif-
ferences may impact ecosystem processes. With regards to the first challenge,
the chemical constitution of a cell or its surrounding environment can
be observed with high precision and sensitivity using metabolomics.
Analyses of metabolites within Pseudomonas aeruginosa cells infected with
one of six phylogenetically distinct phages demonstrated that metabolite
alterations were clearly phage-specific, falling along a continuum from
exhausting all existing cellular resources for phage production to modulating
cellular metabolism for new resource production (De Smet et al., 2016). Not
surprisingly, many of the metabolic changes occurring in infected cells are
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geared towards increasing the production or availability of nucleotides for
viral genome replication (De Smet et al., 2016; Howard-Varona et al.,
2020; Hurwitz et al., 2014). A study using a combination of proteomic
(i.e., ‘omic analysis of a complex collection of proteins) and transcriptomic
analyses of a marine Pseudoalteromonas species infected with one of two dif-
ferent lytic phages came to a similar conclusion that each phage difterentially
altered host metabolism (Howard-Varona et al., 2020). Intriguingly,
observed differences in cellular metabolism reflected phage fitness and its
degree of complementarity with the host’s codon usage patterns. The phage
with lower complementarity required greater metabolic effort and resources
from the host cell in producing phage particles. These metabolic differences
could subsequently translate into differential effects on the composition of
DOM released from lysis.

Metabolomic investigations have confirmed that viral infection changes
the character of DOM exuded or released from lysed bacteria. A study
of marine roseobacter species Sulfitobacter sp. 2047 found that, like
Pseudoalteromonas, phage infection redirected most of cellular nutrients into
phage production (Ankrah et al., 2014b). Surprisingly, most of the extracel-
lular small metabolite compounds existing in uninfected control cultures
showed reduced concentration with viral infection. The authors concluded
that surviving uninfected cells rapidly consumed newly available small
metabolite compounds confirming earlier work hypothesizing such
DOM exchanges between infected and uninfected cells (Middelboe and
Lyck, 2002; Middelboe et al., 1996). A study observing thousands of com-
pounds within the DOM of infected and uninfected marine Synechococcus
WH7803 cultures found that DOM released from infected cells was substan-
tially more complex and starkly differed from the collection of DOM com-
pounds exuded from cells in uninfected control cultures or mechanically
lysed cells (Ma et al., 2018). In particular, virus-induced DOM (vDOM)
was enriched in peptides resulting from the protolysis of Synechococcus’ major
light harvesting protein, phycoerythrin, making infected cells an important
source of high molecular weight nitrogen compounds within the DOM.
vDOM released through wviral lysis of picocyanobacteria, such as
Synechococcus, is particularly important in the oceanic carbon cycle given
the importance of this host group in the global ocean. Recent metabolomics
work has demonstrated that vDOM released from picocyanobacterial infec-
tion is readily processed by heterotrophic bacterioplankton fueling increases
in the diversity and complexity of these communities (Zhao et al., 2019a).

While these metabolomic studies have confirmed a unique role for
vDOM in the oceanic carbon cycle, they may also provide new tools for
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examining the carbon cycle impacts of viral infection. By connecting spe-
cific DOM compounds with specific DOM release mechanisms (e.g., exu-
dation or viral lysis), metabolomics may provide specific biomarkers of viral
infection within oceanic microbial communities. Perhaps the best example
for the use of chemical biomarkers in tracking infection comes from the pre-
viously mentioned E. huxleyi~EhV system. Sequencing revealed that the
EhV genome encodes an entire glycosphingolipid synthesis pathway
(Wilson et al., 2005). Subsequent metabolomic analysis confirmed that
indeed a unique viral glycosphingolipid (vGSL) was synthesized by this
pathway and incorporated into EhV virions (Vardi et al., 2009). The virus
likely uses its unique vGSL for stimulating the programmed cell death
response in E. huxleyi which ultimately results in cell lysis and release of
EhV. Field investigations leveraged these unique host and viral lipid bio-
markers for diagnosing in situ levels of viral infection within natural
coccolithophore blooms detected through satellite remote sensing (Laber
et al., 2018). Biomarker-based characterization showed that EhV infection
significantly enhanced biological pump processes with greater levels of OM
aggregation and downward flux of particulate organic and inorganic carbon.
These effects mostly occurred during early bloom infection when sinking
material was notably enriched in infected E. huxleyi cells. It is unlikely that
the E. huxleyi-EhV system is unique in producing chemical biomarkers
capable of demonstrating in situ infection levels. The future looks bright
for discovering new means for quantifying viral infection impacts on the
oceanic carbon cycle through application of the metabolomic tool box to
investigations of virus—host interactions in the sea.

4.2 Incorporating viral processes into global marine carbon
cycling models

Reliably estimating the past, present, and future of the carbon cycle neces-
sarily requires including the multi-layered role of viruses in the dynamics of
different nutrient cycles. The benefits of accounting for viruses in models
for oceanic biogeochemistry go beyond greater quantitative accuracy.
Including virus—host dynamics in models modifies existing pathways of bio-
geochemical transformation and adds mechanisms to the description of the
marine food web (e.g., viral shuttle/shunt, see above and Collins et al., 2015;
Lehahn et al., 2014). Biogeochemical transformation pathways are impor-
tant in quantitatively describing and predicting not only the flux of carbon
and other nutrients but also their timing, and therefore are essential to the
understanding of the dynamics of blooms, succession, and ultimately the
biogeography of phytoplankton and how it changes over time.
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Importantly, changes in the spatio-temporal distribution of phytoplankton
and bacteria ripple across the rest of the marine food web, thus affecting esti-
mates of zooplankton density and community composition, which in turn
affects the nekton (fish and other microorganisms that swim). Additionally,
improved models can create testable predictions and hypotheses for more
targeted field, laboratory, and metagenomic research, or consider “what-
if” scenarios (e.g., different climate change scenarios) at spatio-temporal
scales that are not attainable empirically.

Only recently, however, have viruses started to be explicitly accounted
for in models that aim to predict primary productivity (reviewed in Mateus,
2017). Neglected in most oceanic biogeochemistry models, attempts to add
viruses have relied on indirect effective mortality terms for the phytoplankton
dynamic equations (e.g., density-dependent terms) (Baretta-Bekker et al.,
1995; Beltrami and Carroll, 1994; Chattopadhyay and Pal, 2002; Hasumi
and Nagata, 2014; Singh et al., 2004; Stock et al., 2020). Only now do eco-
system models consider viruses explicitly as dynamic agents through indepen-
dent equations, although still only at a local/regional level (i.e., no global
descriptions) (Béchette et al,, 2013; Keller and Hood, 2011, 2013;
Richards, 2017; Talmy et al., 2019; Weitz et al., 2015; Xie et al., 2022).

The incorporation of viral dynamics into biogeochemical models of any
type is mostly hindered by the multiple scales at which viruses shape such
cycles. On one hand, experimental and laboratory information is sufficiently
detailed for building and validating models pertaining to the individual
virocell or to population levels under controlled conditions. However, such
scales are too fine-grained (and too ideal) compared with the typical
spatio-temporal scales on which global biogeochemical models focus
(Follows et al., 2007; Pahlow et al., 2020; Stock et al., 2020). On the other
hand, representing the vast diversity of potential hosts (Bonachela et al.,
2016; Finkel et al., 2010) and viruses (Breitbart, 2012; Brussaard, 2004)
within models is impossible and, despite the specificity of viral infection
which limits the possible virus—host combinations (Poullain et al., 2008),
we lack information on which pairings are eventually realized (Kauffman
et al., 2022).

Most of the information used for developing and parametrizing
virus—host models i1s obtained in controlled environments, as such condi-
tions facilitate the focus on specific aspects of the virus—host interaction
while avoiding confounding effects. Such conditions can, however, also lead
to overly idealistic perceptions of the reality of virus—host dynamics. For
example, typical infection experiments start with a very abundant host
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population that grows at its maximum growth rate, ensuring infection of a
large proportion of hosts (Hadas et al., 1997). In the ocean, however, those
conditions are the exception more than the rule, and considering more real-
istic scenarios have led to observations that have challenged our intuition
about virus—host interactions. Infection experiments with E. huxleyi and
EhV using initial host densities similar to those observed in the field (orders
of magnitude lower than those typically used in the lab) have described a
temperance life history for such viruses, which previous experiments con-
sistently reported as purely lytic (Section 3.2.1 and Knowles et al., 2020
for details). In these cases, viral infection did not result in lysis until the host
population reached high densities and hosts started to show physiological
stress, leading to the hypothesis, supported through experimental and
modeling data, that the lytic switch was triggered by host physiological
changes. Similarly, experiments measuring viral traits and performance
when the host was not under ideal growth conditions have reported values
that are very different from those typically used in models (Cheng et al.,
2015; Golec et al., 2014; Hadas et al., 1997; Kranzler et al., 2019; Maat
et al., 2016; Piedade et al., 2018; Van Etten et al., 1983; You et al.,
2002). For example, for the bacterium E. coli and its infecting T phage, a
higher host growth rate resulted in shorter infections that produced more
numerous offspring (i.e., shorter latent periods and larger burst sizes)
(Golec et al., 2014; Hadas et al., 1997; You et al., 2002). Increased temper-
ature had a similar effect for viruses infecting the chlorophyte Micromonas
polaris (Maat et al., 2017; Piedade etal., 2018). Similar qualitative effects have
also been shown in green algae and diatoms for high versus low nutrient
availability and for high versus low light intensity (Bratbak et al., 1998a;
Cheng et al., 2015; Kranzler et al., 2019; Piedade et al., 2018).

When included in models, this dependence of viral traits on host phys-
iology (termed “viral plasticity” since the host cell constitutes the virus’
reproductive environment) leads to ecological and evolutionary predictions
very different from those built with standard models that use “ideal” viral
trait values (Bonachela et al., 2022; Choua and Bonachela, 2019; Choua
etal., 2020; Edwards and Steward, 2018). For example, burst size is expected
to decrease as host growth conditions worsen (see above, and Webb et al.,
1982), as opposed to the fixed ideal value used in standard models. There are
other reasons why the burst size can show discrepancies between values esti-
mated under ideal conditions and open-ocean conditions. Key assumptions
in the standard calculation of the burst size, for example, may not be appli-
cable to all virus—host systems. A typical way to calculate burst size is by
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monitoring the growth of the host and extracellular virus populations after
an initial adsorption event, and dividing the change in viral density by the
decline in host density. The assumption is that all new extracellular viruses
result from lytic events, which in turn (it is assumed) are the only reason host
cells die. Even under ideal conditions, however, some viruses like EhV can
show initial replication through budding (Mackinder et al., 2009), which
constitutes viral production without lysis thus tainting the calculation of
the burst size. A solution would be to monitor intracellular viruses through-
out an infection cycle. In systems such as E. coli and T viruses, this can be
done by regularly sampling the host population during one infection cycle,
artificially bursting open cells for each sample measuring the number of
infective (i.e., mature) viruses, and finally dividing that number by the num-
ber of hosts that have been lysed (e.g., You et al., 2002). In the case of phy-
toplankton, however, the longer timescales for host and viral growth
necessitate less labor-intensive solutions such as viral staining and qPCR
techniques (Knowles et al., 2020). Incidentally, monitoring intracellular
viruses would bring the estimate of the burst size closer to the definition used
in theory (number of new mature viruses released per lytic event).

The values typically used for the adsorption rate constitute another
remarkable example of divergences between estimates for ideal, controlled
environments versus realistic ones. The adsorption rate is defined as the rate
at which an individual virus encounters a host cell and attaches to it success-
fully, using its specific host receptor (Poullain et al., 2008). Estimates obtained
in laboratory experiments and used in virus—host models (e.g., De Paepe and
Taddei, 2006; Weitz et al., 2005) are much larger than the predictions
that physical models make assuming randomly diffusing particles under
ocean-like conditions (e.g., Knowles et al., 2020; Murray and Jackson,
1992). The solution to this apparent discrepancy may be, again, taking into
consideration the diversity of hosts and viruses when estimating the adsorption
rate, and that their spatio-temporal distribution and growth conditions are far
from homogeneous or ideal (Kauftman et al., 2022). Understanding the origin
of this quantitative gap between ideal and realistic values for burst size and
adsorption rate is important because any virus—host infection dynamics model
includes these two parameters/traits as part of the infection term.

Importantly, the much lower rates at which host cells and viruses are
predicted to meet under realistic scenarios, and the lower productivity of
those encounters, somewhat throws into question that viruses are actually
responsible for the high levels of mortality assumed for the marine microbial
community. Nonetheless, reported mortality ranges are admittedly quite
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broad, from 5 to 15% for some cyanobacteria to up to 50% of E. huxleyi cells
during bloom demise, and always larger when considering controlled
experiments, e.g., mortality rates up to 100% for E. huxleyi in mesocosm
experimental blooms (reviewed in Fuhrman, 1999; Zimmerman et al.,
2020). This mismatch between theoretically assumed and empirically mea-
sured mortality is reflected in what, for years, has been the preferred method
for estimating viral mortality for phytoplankton: viral dilution experiments.
Originally devised to estimate mortality due to grazing (Landry and Hassett,
1982), the idea underlying the experiment is that dilution of grazers and
phytoplankton reduces grazing rates and thus increases phytoplankton net
growth rate with respect to undiluted samples. Changes in apparent growth
rate (AGR) with dilution (i.e., slope of AGR) enable the calculation of the
grazing rate. The original methodology, and calculation of AGRs and thus
grazing rates, was devised using theoretical arguments that assumed, for
example, a duration of the experiment such that the population of grazers
remained constant (24h). The methodology was later adapted to measure
phytoplankton viral mortality by adding an additional step in which viruses
were also diluted (Evans et al., 2003); however, the theoretical assumptions
(some of which were already questionable for some grazers (Dolan and
McKeon, 2005; Evans and Paranjape, 1992) were not adapted to viruses,
for which some of these assumptions further break down (e.g., population
of viruses remaining constant during the 24h of the experiment).
Unknowingly, experiments using the dilution technique disregarded as arti-
facts or outliers any data that produced unusual predictions (e.g., opposite
slope for AGR), thus missing valuable information about the top-down pres-
sure occurring on the focal phytoplankton population (Baudoux et al., 2006;
Dolan and McKeon, 2005). Recent efforts integrating the ecological aspects
of the dilution experiment and theory have proposed revisions to the meth-
odology (e.g., measuring not only phytoplankton abundance but also grazer
and viral densities, as is routinely done in bacterioplankton dilution experi-
ments) that allow for a reinterpretation and use of the data collected with it
(Beckett and Weitz, 2017, 2018; Talmy et al., 2019).

These examples illustrate how the dialogue across disciplines and meth-
odologies can help improve both empirical methods and theoretical models.
Further, such efforts may be the key to unlocking the inclusion of viral
dynamics into biogeochemical models. For example, past and current work
to understand how viral traits depend on host physiology will provide key
information for models to move from unrealistic fixed viral trait values to
values that change in space and time with host growth conditions.
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Inclusion of viral plasticity in models will improve realism and predictability,
and also may help ameliorate the diversity problem as viral plasticity intro-
duces variability and thus a better representation of the viral trait space in
models. Trait-based approaches commonly used to model, for example,
phytoplankton diversity (Bonachela et al., 2016; Follows and Dutkiewicz,
2011; Litchman and Klausmeier, 2008; Schmidt, 2019), are, for that reason,
more and more used in biogeochemical models (Follows et al., 2007) and
may offer a computationally cost-effective level of detail for representing
viral diversity. Such approaches can bridge the gap between controlled
experiments and large-scale predictions by providing an opportunity to
build multi-layered models and study increasingly complex communities
or scenarios. For example, data obtained in controlled experiments for iso-
lated virus—host systems can be used to inform a model in which such systems
are brought together to form a specific, documented, diverse community
(which may or may not be realizable in an experimental setup), with the
aim of predicting the dynamics of the community as a whole. Such an
approach has been used to, for example, estimate the competing effects of
grazing and viral mortality (Talmy et al., 2019) and top-down versus
bottom-up regulation (Pourtois et al., 2020; Weitz et al., 2015) on primary
production and carbon export, steps that can be used as building blocks to
the inclusion of viruses in global models for oceanic biogeochemistry.

A possible argument against using trait-based approaches for representing
virioplankton is the intertwinement between host and virus within the
virocell, which makes the definition of “viral traits” a delicate matter
(DeLong etal., 2022). As an alternative, a more detailed model at the virocell
level can be scaled-up to much larger spatio-temporal scales using theoretical
tools from disciplines such as statistical physics (Gardiner, 2009; van
Kampen, 2007), which have been adapted to the ecological context repeat-
edly (Flierl et al., 1999; Levin, 1992). The end product would be equations
that, keeping a discernible link with the microscopic level, describe
virus—host dynamics at a coarser scale that is suitable for global models.

A last important piece of information required for representing realistic
levels of diversity pertains to the virus—host pairs that are realized (i.e., actu-
ally interacting) in the ocean. A naive approach would consider that all hosts
are infected by all viruses; however, marine viruses typically show a narrow
host range and hosts show remarkable resistance levels (Kauffman et al.,
2022). Although an important body of work has focused on pairwise inter-
actions (one host and one virus population), increasingly empirical and the-
oretical research uses the tools of network theory and statistical mechanics to
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describe the interactions of whole communities (Beckett and Williams,
2013; Flores et al., 2011, 2013; Kauffman et al., 2022; Moebus and
Nattkemper, 1981). These analyses have revealed complex, multi-scale
structures for the interaction network that show clusters at one scale (mod-
ules) and, within such clusters, nestedness and submodules. Including viruses
in global models will require documenting and describing empirically, and
being able to predict theoretically, not only the structure of the network but
also how it changes over time.

5. Overall takeaways and conclusions

Climate change poses an immediate and long-term threat to the
ocean’s current structure and function, both biogeochemically and ecolog-
ically. Currently, it is unclear how changes in oceanic temperature, circula-
tion, stratification, and acidification affect whole microbial communities,
their associated viromes, and consequential carbon flux. Untangling the
physical, biological, and chemical mechanisms that shape virus-mediated
carbon cycling provides opportunities for rebuilding integrated frameworks,
experimental approaches, and models in a more holistic way that considers
ocean-relevant spatial and temporal scales.

As this review has shown, achieving this goal will require research col-
laboration that pushes the boundaries of microbial and viral research by inte-
grating model systems, experimental work, and field microbial ecology
investigations alongside rigorous consideration of prevailing biogeochemical
and physical contexts, all of which shape the probability, outcome, and con-
sequences of virus—host interactions in the sea. For example, several
virus—host model systems critical to light-derived carbon cycling dynami-
cally respond to changes in environmental context. Thus, these dynamic
physiological changes and viral responses must be considered in empirical
and theoretical investigations.

Given that rapid evolution is a hallmark of both microbes and viruses,
biogeochemical changes and concomitant host physiological changes could
alter evolutionary trajectories of both viruses and hosts. An unpredictable
environment will favor a generalist’s capacity to plastically respond to, nav-
igate, and survive various conditions over a specialist’s more rigid pheno-
types (Huey and Slatkin, 1976; Hughes et al., 2007; Levins, 1968), even
if the specialist is able to outcompete the generalist under stable environ-
mental conditions (Hughes et al., 2007). As plasticity is a trait unto itself
that confers improved fitness in fluctuating or variable environments
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(Kassen, 2002; Levins, 1968; von Meijenteldt et al., 2022), direct tests of
microbial evolution with elevated CO, partial pressures (pCO,) found that
fluctuating environments selected for phenotypic plasticity in Ostreococcus
lineages (an important oceanic chlorophyte) (Schaum and Collins, 2014).
In contrast, under constant high pCO, conditions, lineages evolved direc-
tional tolerance at the cost of phenotypic plasticity such that populations failed
to survive in their ancestral conditions (Schaum and Collins, 2014). Notably,
how interactions respond to the cascading effects of evolving host phenotypic
plasticity under fluctuating environments remains an unexplored question.

In addition, steadily closing the genome-to-phenome knowledge gap for
marine viruses (and their microbial hosts) will unlock the extraordinary
observational power of ‘omics tools and approaches for examining hypoth-
esized responses of oceanic microbial communities to global climate change.
Omics-driven observations will also help in unveiling the ecological and
evolutionary factors influencing the assembly and dynamics of virus—host
interaction networks, and thus contribute to developing predictive models
capturing such dynamics.

Numerous challenges remain that prevent well constrained and explicit
inclusion of viruses in the description and prediction of global biogeochem-
ical cycles. As illustrated here, however, interdisciplinary dialogue that
allows for the combination of empirical and theoretical expertise across fields
is helping in the search for solutions that will fully incorporate viral dynamics
into our understanding of the global ocean, the virus’ dominion.
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